2 * xHCI host controller driver
4 * Copyright (C) 2008 Intel Corp.
7 * Some code borrowed from the Linux EHCI driver.
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software Foundation,
20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23 #include <linux/pci.h>
24 #include <linux/irq.h>
25 #include <linux/log2.h>
26 #include <linux/module.h>
27 #include <linux/moduleparam.h>
28 #include <linux/slab.h>
29 #include <linux/dmi.h>
30 #include <linux/dma-mapping.h>
33 #include "xhci-trace.h"
35 #define DRIVER_AUTHOR "Sarah Sharp"
36 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
38 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
39 static int link_quirk;
40 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
41 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
43 /* TODO: copied from ehci-hcd.c - can this be refactored? */
45 * xhci_handshake - spin reading hc until handshake completes or fails
46 * @ptr: address of hc register to be read
47 * @mask: bits to look at in result of read
48 * @done: value of those bits when handshake succeeds
49 * @usec: timeout in microseconds
51 * Returns negative errno, or zero on success
53 * Success happens when the "mask" bits have the specified value (hardware
54 * handshake done). There are two failure modes: "usec" have passed (major
55 * hardware flakeout), or the register reads as all-ones (hardware removed).
57 int xhci_handshake(struct xhci_hcd *xhci, void __iomem *ptr,
58 u32 mask, u32 done, int usec)
63 result = xhci_readl(xhci, ptr);
64 if (result == ~(u32)0) /* card removed */
76 * Disable interrupts and begin the xHCI halting process.
78 void xhci_quiesce(struct xhci_hcd *xhci)
85 halted = xhci_readl(xhci, &xhci->op_regs->status) & STS_HALT;
89 cmd = xhci_readl(xhci, &xhci->op_regs->command);
91 xhci_writel(xhci, cmd, &xhci->op_regs->command);
95 * Force HC into halt state.
97 * Disable any IRQs and clear the run/stop bit.
98 * HC will complete any current and actively pipelined transactions, and
99 * should halt within 16 ms of the run/stop bit being cleared.
100 * Read HC Halted bit in the status register to see when the HC is finished.
102 int xhci_halt(struct xhci_hcd *xhci)
105 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
108 ret = xhci_handshake(xhci, &xhci->op_regs->status,
109 STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
111 xhci->xhc_state |= XHCI_STATE_HALTED;
112 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
114 xhci_warn(xhci, "Host not halted after %u microseconds.\n",
120 * Set the run bit and wait for the host to be running.
122 static int xhci_start(struct xhci_hcd *xhci)
127 temp = xhci_readl(xhci, &xhci->op_regs->command);
129 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
131 xhci_writel(xhci, temp, &xhci->op_regs->command);
134 * Wait for the HCHalted Status bit to be 0 to indicate the host is
137 ret = xhci_handshake(xhci, &xhci->op_regs->status,
138 STS_HALT, 0, XHCI_MAX_HALT_USEC);
139 if (ret == -ETIMEDOUT)
140 xhci_err(xhci, "Host took too long to start, "
141 "waited %u microseconds.\n",
144 xhci->xhc_state &= ~XHCI_STATE_HALTED;
151 * This resets pipelines, timers, counters, state machines, etc.
152 * Transactions will be terminated immediately, and operational registers
153 * will be set to their defaults.
155 int xhci_reset(struct xhci_hcd *xhci)
161 state = xhci_readl(xhci, &xhci->op_regs->status);
162 if ((state & STS_HALT) == 0) {
163 xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
167 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
168 command = xhci_readl(xhci, &xhci->op_regs->command);
169 command |= CMD_RESET;
170 xhci_writel(xhci, command, &xhci->op_regs->command);
172 ret = xhci_handshake(xhci, &xhci->op_regs->command,
173 CMD_RESET, 0, 10 * 1000 * 1000);
177 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
178 "Wait for controller to be ready for doorbell rings");
180 * xHCI cannot write to any doorbells or operational registers other
181 * than status until the "Controller Not Ready" flag is cleared.
183 ret = xhci_handshake(xhci, &xhci->op_regs->status,
184 STS_CNR, 0, 10 * 1000 * 1000);
186 for (i = 0; i < 2; ++i) {
187 xhci->bus_state[i].port_c_suspend = 0;
188 xhci->bus_state[i].suspended_ports = 0;
189 xhci->bus_state[i].resuming_ports = 0;
196 static int xhci_free_msi(struct xhci_hcd *xhci)
200 if (!xhci->msix_entries)
203 for (i = 0; i < xhci->msix_count; i++)
204 if (xhci->msix_entries[i].vector)
205 free_irq(xhci->msix_entries[i].vector,
213 static int xhci_setup_msi(struct xhci_hcd *xhci)
216 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
218 ret = pci_enable_msi(pdev);
220 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
221 "failed to allocate MSI entry");
225 ret = request_irq(pdev->irq, xhci_msi_irq,
226 0, "xhci_hcd", xhci_to_hcd(xhci));
228 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
229 "disable MSI interrupt");
230 pci_disable_msi(pdev);
238 * free all IRQs request
240 static void xhci_free_irq(struct xhci_hcd *xhci)
242 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
245 /* return if using legacy interrupt */
246 if (xhci_to_hcd(xhci)->irq > 0)
249 ret = xhci_free_msi(xhci);
253 free_irq(pdev->irq, xhci_to_hcd(xhci));
261 static int xhci_setup_msix(struct xhci_hcd *xhci)
264 struct usb_hcd *hcd = xhci_to_hcd(xhci);
265 struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
268 * calculate number of msi-x vectors supported.
269 * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
270 * with max number of interrupters based on the xhci HCSPARAMS1.
271 * - num_online_cpus: maximum msi-x vectors per CPUs core.
272 * Add additional 1 vector to ensure always available interrupt.
274 xhci->msix_count = min(num_online_cpus() + 1,
275 HCS_MAX_INTRS(xhci->hcs_params1));
278 kmalloc((sizeof(struct msix_entry))*xhci->msix_count,
280 if (!xhci->msix_entries) {
281 xhci_err(xhci, "Failed to allocate MSI-X entries\n");
285 for (i = 0; i < xhci->msix_count; i++) {
286 xhci->msix_entries[i].entry = i;
287 xhci->msix_entries[i].vector = 0;
290 ret = pci_enable_msix(pdev, xhci->msix_entries, xhci->msix_count);
292 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
293 "Failed to enable MSI-X");
297 for (i = 0; i < xhci->msix_count; i++) {
298 ret = request_irq(xhci->msix_entries[i].vector,
300 0, "xhci_hcd", xhci_to_hcd(xhci));
305 hcd->msix_enabled = 1;
309 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
311 pci_disable_msix(pdev);
313 kfree(xhci->msix_entries);
314 xhci->msix_entries = NULL;
318 /* Free any IRQs and disable MSI-X */
319 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
321 struct usb_hcd *hcd = xhci_to_hcd(xhci);
322 struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
326 if (xhci->msix_entries) {
327 pci_disable_msix(pdev);
328 kfree(xhci->msix_entries);
329 xhci->msix_entries = NULL;
331 pci_disable_msi(pdev);
334 hcd->msix_enabled = 0;
338 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
342 if (xhci->msix_entries) {
343 for (i = 0; i < xhci->msix_count; i++)
344 synchronize_irq(xhci->msix_entries[i].vector);
348 static int xhci_try_enable_msi(struct usb_hcd *hcd)
350 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
351 struct pci_dev *pdev;
354 /* The xhci platform device has set up IRQs through usb_add_hcd. */
355 if (xhci->quirks & XHCI_PLAT)
358 pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
360 * Some Fresco Logic host controllers advertise MSI, but fail to
361 * generate interrupts. Don't even try to enable MSI.
363 if (xhci->quirks & XHCI_BROKEN_MSI)
366 /* unregister the legacy interrupt */
368 free_irq(hcd->irq, hcd);
371 ret = xhci_setup_msix(xhci);
373 /* fall back to msi*/
374 ret = xhci_setup_msi(xhci);
377 /* hcd->irq is 0, we have MSI */
381 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
386 /* fall back to legacy interrupt*/
387 ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
388 hcd->irq_descr, hcd);
390 xhci_err(xhci, "request interrupt %d failed\n",
394 hcd->irq = pdev->irq;
400 static int xhci_try_enable_msi(struct usb_hcd *hcd)
405 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
409 static void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
415 static void compliance_mode_recovery(unsigned long arg)
417 struct xhci_hcd *xhci;
422 xhci = (struct xhci_hcd *)arg;
424 for (i = 0; i < xhci->num_usb3_ports; i++) {
425 temp = xhci_readl(xhci, xhci->usb3_ports[i]);
426 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
428 * Compliance Mode Detected. Letting USB Core
429 * handle the Warm Reset
431 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
432 "Compliance mode detected->port %d",
434 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
435 "Attempting compliance mode recovery");
436 hcd = xhci->shared_hcd;
438 if (hcd->state == HC_STATE_SUSPENDED)
439 usb_hcd_resume_root_hub(hcd);
441 usb_hcd_poll_rh_status(hcd);
445 if (xhci->port_status_u0 != ((1 << xhci->num_usb3_ports)-1))
446 mod_timer(&xhci->comp_mode_recovery_timer,
447 jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
451 * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
452 * that causes ports behind that hardware to enter compliance mode sometimes.
453 * The quirk creates a timer that polls every 2 seconds the link state of
454 * each host controller's port and recovers it by issuing a Warm reset
455 * if Compliance mode is detected, otherwise the port will become "dead" (no
456 * device connections or disconnections will be detected anymore). Becasue no
457 * status event is generated when entering compliance mode (per xhci spec),
458 * this quirk is needed on systems that have the failing hardware installed.
460 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
462 xhci->port_status_u0 = 0;
463 init_timer(&xhci->comp_mode_recovery_timer);
465 xhci->comp_mode_recovery_timer.data = (unsigned long) xhci;
466 xhci->comp_mode_recovery_timer.function = compliance_mode_recovery;
467 xhci->comp_mode_recovery_timer.expires = jiffies +
468 msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
470 set_timer_slack(&xhci->comp_mode_recovery_timer,
471 msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
472 add_timer(&xhci->comp_mode_recovery_timer);
473 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
474 "Compliance mode recovery timer initialized");
478 * This function identifies the systems that have installed the SN65LVPE502CP
479 * USB3.0 re-driver and that need the Compliance Mode Quirk.
481 * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
483 bool xhci_compliance_mode_recovery_timer_quirk_check(void)
485 const char *dmi_product_name, *dmi_sys_vendor;
487 dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
488 dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
489 if (!dmi_product_name || !dmi_sys_vendor)
492 if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
495 if (strstr(dmi_product_name, "Z420") ||
496 strstr(dmi_product_name, "Z620") ||
497 strstr(dmi_product_name, "Z820") ||
498 strstr(dmi_product_name, "Z1 Workstation"))
504 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
506 return (xhci->port_status_u0 == ((1 << xhci->num_usb3_ports)-1));
511 * Initialize memory for HCD and xHC (one-time init).
513 * Program the PAGESIZE register, initialize the device context array, create
514 * device contexts (?), set up a command ring segment (or two?), create event
515 * ring (one for now).
517 int xhci_init(struct usb_hcd *hcd)
519 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
522 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
523 spin_lock_init(&xhci->lock);
524 if (xhci->hci_version == 0x95 && link_quirk) {
525 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
526 "QUIRK: Not clearing Link TRB chain bits.");
527 xhci->quirks |= XHCI_LINK_TRB_QUIRK;
529 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
530 "xHCI doesn't need link TRB QUIRK");
532 retval = xhci_mem_init(xhci, GFP_KERNEL);
533 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
535 /* Initializing Compliance Mode Recovery Data If Needed */
536 if (xhci_compliance_mode_recovery_timer_quirk_check()) {
537 xhci->quirks |= XHCI_COMP_MODE_QUIRK;
538 compliance_mode_recovery_timer_init(xhci);
544 /*-------------------------------------------------------------------------*/
547 static int xhci_run_finished(struct xhci_hcd *xhci)
549 if (xhci_start(xhci)) {
553 xhci->shared_hcd->state = HC_STATE_RUNNING;
554 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
556 if (xhci->quirks & XHCI_NEC_HOST)
557 xhci_ring_cmd_db(xhci);
559 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
560 "Finished xhci_run for USB3 roothub");
565 * Start the HC after it was halted.
567 * This function is called by the USB core when the HC driver is added.
568 * Its opposite is xhci_stop().
570 * xhci_init() must be called once before this function can be called.
571 * Reset the HC, enable device slot contexts, program DCBAAP, and
572 * set command ring pointer and event ring pointer.
574 * Setup MSI-X vectors and enable interrupts.
576 int xhci_run(struct usb_hcd *hcd)
581 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
583 /* Start the xHCI host controller running only after the USB 2.0 roothub
587 hcd->uses_new_polling = 1;
588 if (!usb_hcd_is_primary_hcd(hcd))
589 return xhci_run_finished(xhci);
591 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
593 ret = xhci_try_enable_msi(hcd);
597 xhci_dbg(xhci, "Command ring memory map follows:\n");
598 xhci_debug_ring(xhci, xhci->cmd_ring);
599 xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
600 xhci_dbg_cmd_ptrs(xhci);
602 xhci_dbg(xhci, "ERST memory map follows:\n");
603 xhci_dbg_erst(xhci, &xhci->erst);
604 xhci_dbg(xhci, "Event ring:\n");
605 xhci_debug_ring(xhci, xhci->event_ring);
606 xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
607 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
608 temp_64 &= ~ERST_PTR_MASK;
609 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
610 "ERST deq = 64'h%0lx", (long unsigned int) temp_64);
612 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
613 "// Set the interrupt modulation register");
614 temp = xhci_readl(xhci, &xhci->ir_set->irq_control);
615 temp &= ~ER_IRQ_INTERVAL_MASK;
617 xhci_writel(xhci, temp, &xhci->ir_set->irq_control);
619 /* Set the HCD state before we enable the irqs */
620 temp = xhci_readl(xhci, &xhci->op_regs->command);
622 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
623 "// Enable interrupts, cmd = 0x%x.", temp);
624 xhci_writel(xhci, temp, &xhci->op_regs->command);
626 temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
627 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
628 "// Enabling event ring interrupter %p by writing 0x%x to irq_pending",
629 xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
630 xhci_writel(xhci, ER_IRQ_ENABLE(temp),
631 &xhci->ir_set->irq_pending);
632 xhci_print_ir_set(xhci, 0);
634 if (xhci->quirks & XHCI_NEC_HOST)
635 xhci_queue_vendor_command(xhci, 0, 0, 0,
636 TRB_TYPE(TRB_NEC_GET_FW));
638 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
639 "Finished xhci_run for USB2 roothub");
643 static void xhci_only_stop_hcd(struct usb_hcd *hcd)
645 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
647 spin_lock_irq(&xhci->lock);
650 /* The shared_hcd is going to be deallocated shortly (the USB core only
651 * calls this function when allocation fails in usb_add_hcd(), or
652 * usb_remove_hcd() is called). So we need to unset xHCI's pointer.
654 xhci->shared_hcd = NULL;
655 spin_unlock_irq(&xhci->lock);
661 * This function is called by the USB core when the HC driver is removed.
662 * Its opposite is xhci_run().
664 * Disable device contexts, disable IRQs, and quiesce the HC.
665 * Reset the HC, finish any completed transactions, and cleanup memory.
667 void xhci_stop(struct usb_hcd *hcd)
670 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
672 if (!usb_hcd_is_primary_hcd(hcd)) {
673 xhci_only_stop_hcd(xhci->shared_hcd);
677 spin_lock_irq(&xhci->lock);
678 /* Make sure the xHC is halted for a USB3 roothub
679 * (xhci_stop() could be called as part of failed init).
683 spin_unlock_irq(&xhci->lock);
685 xhci_cleanup_msix(xhci);
687 /* Deleting Compliance Mode Recovery Timer */
688 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
689 (!(xhci_all_ports_seen_u0(xhci)))) {
690 del_timer_sync(&xhci->comp_mode_recovery_timer);
691 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
692 "%s: compliance mode recovery timer deleted",
696 if (xhci->quirks & XHCI_AMD_PLL_FIX)
699 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
700 "// Disabling event ring interrupts");
701 temp = xhci_readl(xhci, &xhci->op_regs->status);
702 xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status);
703 temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
704 xhci_writel(xhci, ER_IRQ_DISABLE(temp),
705 &xhci->ir_set->irq_pending);
706 xhci_print_ir_set(xhci, 0);
708 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
709 xhci_mem_cleanup(xhci);
710 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
711 "xhci_stop completed - status = %x",
712 xhci_readl(xhci, &xhci->op_regs->status));
716 * Shutdown HC (not bus-specific)
718 * This is called when the machine is rebooting or halting. We assume that the
719 * machine will be powered off, and the HC's internal state will be reset.
720 * Don't bother to free memory.
722 * This will only ever be called with the main usb_hcd (the USB3 roothub).
724 void xhci_shutdown(struct usb_hcd *hcd)
726 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
728 if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
729 usb_disable_xhci_ports(to_pci_dev(hcd->self.controller));
731 spin_lock_irq(&xhci->lock);
733 spin_unlock_irq(&xhci->lock);
735 xhci_cleanup_msix(xhci);
737 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
738 "xhci_shutdown completed - status = %x",
739 xhci_readl(xhci, &xhci->op_regs->status));
743 static void xhci_save_registers(struct xhci_hcd *xhci)
745 xhci->s3.command = xhci_readl(xhci, &xhci->op_regs->command);
746 xhci->s3.dev_nt = xhci_readl(xhci, &xhci->op_regs->dev_notification);
747 xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
748 xhci->s3.config_reg = xhci_readl(xhci, &xhci->op_regs->config_reg);
749 xhci->s3.erst_size = xhci_readl(xhci, &xhci->ir_set->erst_size);
750 xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
751 xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
752 xhci->s3.irq_pending = xhci_readl(xhci, &xhci->ir_set->irq_pending);
753 xhci->s3.irq_control = xhci_readl(xhci, &xhci->ir_set->irq_control);
756 static void xhci_restore_registers(struct xhci_hcd *xhci)
758 xhci_writel(xhci, xhci->s3.command, &xhci->op_regs->command);
759 xhci_writel(xhci, xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
760 xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
761 xhci_writel(xhci, xhci->s3.config_reg, &xhci->op_regs->config_reg);
762 xhci_writel(xhci, xhci->s3.erst_size, &xhci->ir_set->erst_size);
763 xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
764 xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
765 xhci_writel(xhci, xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
766 xhci_writel(xhci, xhci->s3.irq_control, &xhci->ir_set->irq_control);
769 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
773 /* step 2: initialize command ring buffer */
774 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
775 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
776 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
777 xhci->cmd_ring->dequeue) &
778 (u64) ~CMD_RING_RSVD_BITS) |
779 xhci->cmd_ring->cycle_state;
780 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
781 "// Setting command ring address to 0x%llx",
782 (long unsigned long) val_64);
783 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
787 * The whole command ring must be cleared to zero when we suspend the host.
789 * The host doesn't save the command ring pointer in the suspend well, so we
790 * need to re-program it on resume. Unfortunately, the pointer must be 64-byte
791 * aligned, because of the reserved bits in the command ring dequeue pointer
792 * register. Therefore, we can't just set the dequeue pointer back in the
793 * middle of the ring (TRBs are 16-byte aligned).
795 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
797 struct xhci_ring *ring;
798 struct xhci_segment *seg;
800 ring = xhci->cmd_ring;
804 sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
805 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
806 cpu_to_le32(~TRB_CYCLE);
808 } while (seg != ring->deq_seg);
810 /* Reset the software enqueue and dequeue pointers */
811 ring->deq_seg = ring->first_seg;
812 ring->dequeue = ring->first_seg->trbs;
813 ring->enq_seg = ring->deq_seg;
814 ring->enqueue = ring->dequeue;
816 ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
818 * Ring is now zeroed, so the HW should look for change of ownership
819 * when the cycle bit is set to 1.
821 ring->cycle_state = 1;
824 * Reset the hardware dequeue pointer.
825 * Yes, this will need to be re-written after resume, but we're paranoid
826 * and want to make sure the hardware doesn't access bogus memory
827 * because, say, the BIOS or an SMI started the host without changing
828 * the command ring pointers.
830 xhci_set_cmd_ring_deq(xhci);
834 * Stop HC (not bus-specific)
836 * This is called when the machine transition into S3/S4 mode.
839 int xhci_suspend(struct xhci_hcd *xhci)
842 struct usb_hcd *hcd = xhci_to_hcd(xhci);
845 if (hcd->state != HC_STATE_SUSPENDED ||
846 xhci->shared_hcd->state != HC_STATE_SUSPENDED)
849 /* Don't poll the roothubs on bus suspend. */
850 xhci_dbg(xhci, "%s: stopping port polling.\n", __func__);
851 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
852 del_timer_sync(&hcd->rh_timer);
854 spin_lock_irq(&xhci->lock);
855 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
856 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
857 /* step 1: stop endpoint */
858 /* skipped assuming that port suspend has done */
860 /* step 2: clear Run/Stop bit */
861 command = xhci_readl(xhci, &xhci->op_regs->command);
863 xhci_writel(xhci, command, &xhci->op_regs->command);
864 if (xhci_handshake(xhci, &xhci->op_regs->status,
865 STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC)) {
866 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
867 spin_unlock_irq(&xhci->lock);
870 xhci_clear_command_ring(xhci);
872 /* step 3: save registers */
873 xhci_save_registers(xhci);
875 /* step 4: set CSS flag */
876 command = xhci_readl(xhci, &xhci->op_regs->command);
878 xhci_writel(xhci, command, &xhci->op_regs->command);
879 if (xhci_handshake(xhci, &xhci->op_regs->status,
880 STS_SAVE, 0, 10 * 1000)) {
881 xhci_warn(xhci, "WARN: xHC save state timeout\n");
882 spin_unlock_irq(&xhci->lock);
885 spin_unlock_irq(&xhci->lock);
888 * Deleting Compliance Mode Recovery Timer because the xHCI Host
889 * is about to be suspended.
891 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
892 (!(xhci_all_ports_seen_u0(xhci)))) {
893 del_timer_sync(&xhci->comp_mode_recovery_timer);
894 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
895 "%s: compliance mode recovery timer deleted",
899 /* step 5: remove core well power */
900 /* synchronize irq when using MSI-X */
901 xhci_msix_sync_irqs(xhci);
907 * start xHC (not bus-specific)
909 * This is called when the machine transition from S3/S4 mode.
912 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
914 u32 command, temp = 0;
915 struct usb_hcd *hcd = xhci_to_hcd(xhci);
916 struct usb_hcd *secondary_hcd;
918 bool comp_timer_running = false;
920 /* Wait a bit if either of the roothubs need to settle from the
921 * transition into bus suspend.
923 if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
925 xhci->bus_state[1].next_statechange))
928 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
929 set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
931 spin_lock_irq(&xhci->lock);
932 if (xhci->quirks & XHCI_RESET_ON_RESUME)
936 /* step 1: restore register */
937 xhci_restore_registers(xhci);
938 /* step 2: initialize command ring buffer */
939 xhci_set_cmd_ring_deq(xhci);
940 /* step 3: restore state and start state*/
941 /* step 3: set CRS flag */
942 command = xhci_readl(xhci, &xhci->op_regs->command);
944 xhci_writel(xhci, command, &xhci->op_regs->command);
945 if (xhci_handshake(xhci, &xhci->op_regs->status,
946 STS_RESTORE, 0, 10 * 1000)) {
947 xhci_warn(xhci, "WARN: xHC restore state timeout\n");
948 spin_unlock_irq(&xhci->lock);
951 temp = xhci_readl(xhci, &xhci->op_regs->status);
954 /* If restore operation fails, re-initialize the HC during resume */
955 if ((temp & STS_SRE) || hibernated) {
957 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
958 !(xhci_all_ports_seen_u0(xhci))) {
959 del_timer_sync(&xhci->comp_mode_recovery_timer);
960 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
961 "Compliance Mode Recovery Timer deleted!");
964 /* Let the USB core know _both_ roothubs lost power. */
965 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
966 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
968 xhci_dbg(xhci, "Stop HCD\n");
971 spin_unlock_irq(&xhci->lock);
972 xhci_cleanup_msix(xhci);
974 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
975 temp = xhci_readl(xhci, &xhci->op_regs->status);
976 xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status);
977 temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
978 xhci_writel(xhci, ER_IRQ_DISABLE(temp),
979 &xhci->ir_set->irq_pending);
980 xhci_print_ir_set(xhci, 0);
982 xhci_dbg(xhci, "cleaning up memory\n");
983 xhci_mem_cleanup(xhci);
984 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
985 xhci_readl(xhci, &xhci->op_regs->status));
987 /* USB core calls the PCI reinit and start functions twice:
988 * first with the primary HCD, and then with the secondary HCD.
989 * If we don't do the same, the host will never be started.
991 if (!usb_hcd_is_primary_hcd(hcd))
994 secondary_hcd = xhci->shared_hcd;
996 xhci_dbg(xhci, "Initialize the xhci_hcd\n");
997 retval = xhci_init(hcd->primary_hcd);
1000 comp_timer_running = true;
1002 xhci_dbg(xhci, "Start the primary HCD\n");
1003 retval = xhci_run(hcd->primary_hcd);
1005 xhci_dbg(xhci, "Start the secondary HCD\n");
1006 retval = xhci_run(secondary_hcd);
1008 hcd->state = HC_STATE_SUSPENDED;
1009 xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1013 /* step 4: set Run/Stop bit */
1014 command = xhci_readl(xhci, &xhci->op_regs->command);
1016 xhci_writel(xhci, command, &xhci->op_regs->command);
1017 xhci_handshake(xhci, &xhci->op_regs->status, STS_HALT,
1020 /* step 5: walk topology and initialize portsc,
1021 * portpmsc and portli
1023 /* this is done in bus_resume */
1025 /* step 6: restart each of the previously
1026 * Running endpoints by ringing their doorbells
1029 spin_unlock_irq(&xhci->lock);
1033 usb_hcd_resume_root_hub(hcd);
1034 usb_hcd_resume_root_hub(xhci->shared_hcd);
1038 * If system is subject to the Quirk, Compliance Mode Timer needs to
1039 * be re-initialized Always after a system resume. Ports are subject
1040 * to suffer the Compliance Mode issue again. It doesn't matter if
1041 * ports have entered previously to U0 before system's suspension.
1043 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1044 compliance_mode_recovery_timer_init(xhci);
1046 /* Re-enable port polling. */
1047 xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1048 set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1049 usb_hcd_poll_rh_status(hcd);
1053 #endif /* CONFIG_PM */
1055 /*-------------------------------------------------------------------------*/
1058 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1059 * HCDs. Find the index for an endpoint given its descriptor. Use the return
1060 * value to right shift 1 for the bitmask.
1062 * Index = (epnum * 2) + direction - 1,
1063 * where direction = 0 for OUT, 1 for IN.
1064 * For control endpoints, the IN index is used (OUT index is unused), so
1065 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1067 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1070 if (usb_endpoint_xfer_control(desc))
1071 index = (unsigned int) (usb_endpoint_num(desc)*2);
1073 index = (unsigned int) (usb_endpoint_num(desc)*2) +
1074 (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1078 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1079 * address from the XHCI endpoint index.
1081 unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1083 unsigned int number = DIV_ROUND_UP(ep_index, 2);
1084 unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1085 return direction | number;
1088 /* Find the flag for this endpoint (for use in the control context). Use the
1089 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is
1092 unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1094 return 1 << (xhci_get_endpoint_index(desc) + 1);
1097 /* Find the flag for this endpoint (for use in the control context). Use the
1098 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is
1101 unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
1103 return 1 << (ep_index + 1);
1106 /* Compute the last valid endpoint context index. Basically, this is the
1107 * endpoint index plus one. For slot contexts with more than valid endpoint,
1108 * we find the most significant bit set in the added contexts flags.
1109 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1110 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1112 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1114 return fls(added_ctxs) - 1;
1117 /* Returns 1 if the arguments are OK;
1118 * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1120 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1121 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1123 struct xhci_hcd *xhci;
1124 struct xhci_virt_device *virt_dev;
1126 if (!hcd || (check_ep && !ep) || !udev) {
1127 pr_debug("xHCI %s called with invalid args\n", func);
1130 if (!udev->parent) {
1131 pr_debug("xHCI %s called for root hub\n", func);
1135 xhci = hcd_to_xhci(hcd);
1136 if (check_virt_dev) {
1137 if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1138 xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1143 virt_dev = xhci->devs[udev->slot_id];
1144 if (virt_dev->udev != udev) {
1145 xhci_dbg(xhci, "xHCI %s called with udev and "
1146 "virt_dev does not match\n", func);
1151 if (xhci->xhc_state & XHCI_STATE_HALTED)
1157 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1158 struct usb_device *udev, struct xhci_command *command,
1159 bool ctx_change, bool must_succeed);
1162 * Full speed devices may have a max packet size greater than 8 bytes, but the
1163 * USB core doesn't know that until it reads the first 8 bytes of the
1164 * descriptor. If the usb_device's max packet size changes after that point,
1165 * we need to issue an evaluate context command and wait on it.
1167 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1168 unsigned int ep_index, struct urb *urb)
1170 struct xhci_container_ctx *in_ctx;
1171 struct xhci_container_ctx *out_ctx;
1172 struct xhci_input_control_ctx *ctrl_ctx;
1173 struct xhci_ep_ctx *ep_ctx;
1174 int max_packet_size;
1175 int hw_max_packet_size;
1178 out_ctx = xhci->devs[slot_id]->out_ctx;
1179 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1180 hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1181 max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1182 if (hw_max_packet_size != max_packet_size) {
1183 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1184 "Max Packet Size for ep 0 changed.");
1185 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1186 "Max packet size in usb_device = %d",
1188 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1189 "Max packet size in xHCI HW = %d",
1190 hw_max_packet_size);
1191 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1192 "Issuing evaluate context command.");
1194 /* Set up the input context flags for the command */
1195 /* FIXME: This won't work if a non-default control endpoint
1196 * changes max packet sizes.
1198 in_ctx = xhci->devs[slot_id]->in_ctx;
1199 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1201 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1205 /* Set up the modified control endpoint 0 */
1206 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1207 xhci->devs[slot_id]->out_ctx, ep_index);
1209 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1210 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1211 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1213 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1214 ctrl_ctx->drop_flags = 0;
1216 xhci_dbg(xhci, "Slot %d input context\n", slot_id);
1217 xhci_dbg_ctx(xhci, in_ctx, ep_index);
1218 xhci_dbg(xhci, "Slot %d output context\n", slot_id);
1219 xhci_dbg_ctx(xhci, out_ctx, ep_index);
1221 ret = xhci_configure_endpoint(xhci, urb->dev, NULL,
1224 /* Clean up the input context for later use by bandwidth
1227 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1233 * non-error returns are a promise to giveback() the urb later
1234 * we drop ownership so next owner (or urb unlink) can get it
1236 int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1238 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1239 struct xhci_td *buffer;
1240 unsigned long flags;
1242 unsigned int slot_id, ep_index;
1243 struct urb_priv *urb_priv;
1246 if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1247 true, true, __func__) <= 0)
1250 slot_id = urb->dev->slot_id;
1251 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1253 if (!HCD_HW_ACCESSIBLE(hcd)) {
1254 if (!in_interrupt())
1255 xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1260 if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1261 size = urb->number_of_packets;
1265 urb_priv = kzalloc(sizeof(struct urb_priv) +
1266 size * sizeof(struct xhci_td *), mem_flags);
1270 buffer = kzalloc(size * sizeof(struct xhci_td), mem_flags);
1276 for (i = 0; i < size; i++) {
1277 urb_priv->td[i] = buffer;
1281 urb_priv->length = size;
1282 urb_priv->td_cnt = 0;
1283 urb->hcpriv = urb_priv;
1285 if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1286 /* Check to see if the max packet size for the default control
1287 * endpoint changed during FS device enumeration
1289 if (urb->dev->speed == USB_SPEED_FULL) {
1290 ret = xhci_check_maxpacket(xhci, slot_id,
1293 xhci_urb_free_priv(xhci, urb_priv);
1299 /* We have a spinlock and interrupts disabled, so we must pass
1300 * atomic context to this function, which may allocate memory.
1302 spin_lock_irqsave(&xhci->lock, flags);
1303 if (xhci->xhc_state & XHCI_STATE_DYING)
1305 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1309 spin_unlock_irqrestore(&xhci->lock, flags);
1310 } else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) {
1311 spin_lock_irqsave(&xhci->lock, flags);
1312 if (xhci->xhc_state & XHCI_STATE_DYING)
1314 if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1315 EP_GETTING_STREAMS) {
1316 xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1317 "is transitioning to using streams.\n");
1319 } else if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1320 EP_GETTING_NO_STREAMS) {
1321 xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1322 "is transitioning to "
1323 "not having streams.\n");
1326 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1331 spin_unlock_irqrestore(&xhci->lock, flags);
1332 } else if (usb_endpoint_xfer_int(&urb->ep->desc)) {
1333 spin_lock_irqsave(&xhci->lock, flags);
1334 if (xhci->xhc_state & XHCI_STATE_DYING)
1336 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1340 spin_unlock_irqrestore(&xhci->lock, flags);
1342 spin_lock_irqsave(&xhci->lock, flags);
1343 if (xhci->xhc_state & XHCI_STATE_DYING)
1345 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1349 spin_unlock_irqrestore(&xhci->lock, flags);
1354 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for "
1355 "non-responsive xHCI host.\n",
1356 urb->ep->desc.bEndpointAddress, urb);
1359 xhci_urb_free_priv(xhci, urb_priv);
1361 spin_unlock_irqrestore(&xhci->lock, flags);
1365 /* Get the right ring for the given URB.
1366 * If the endpoint supports streams, boundary check the URB's stream ID.
1367 * If the endpoint doesn't support streams, return the singular endpoint ring.
1369 static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci,
1372 unsigned int slot_id;
1373 unsigned int ep_index;
1374 unsigned int stream_id;
1375 struct xhci_virt_ep *ep;
1377 slot_id = urb->dev->slot_id;
1378 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1379 stream_id = urb->stream_id;
1380 ep = &xhci->devs[slot_id]->eps[ep_index];
1381 /* Common case: no streams */
1382 if (!(ep->ep_state & EP_HAS_STREAMS))
1385 if (stream_id == 0) {
1387 "WARN: Slot ID %u, ep index %u has streams, "
1388 "but URB has no stream ID.\n",
1393 if (stream_id < ep->stream_info->num_streams)
1394 return ep->stream_info->stream_rings[stream_id];
1397 "WARN: Slot ID %u, ep index %u has "
1398 "stream IDs 1 to %u allocated, "
1399 "but stream ID %u is requested.\n",
1401 ep->stream_info->num_streams - 1,
1407 * Remove the URB's TD from the endpoint ring. This may cause the HC to stop
1408 * USB transfers, potentially stopping in the middle of a TRB buffer. The HC
1409 * should pick up where it left off in the TD, unless a Set Transfer Ring
1410 * Dequeue Pointer is issued.
1412 * The TRBs that make up the buffers for the canceled URB will be "removed" from
1413 * the ring. Since the ring is a contiguous structure, they can't be physically
1414 * removed. Instead, there are two options:
1416 * 1) If the HC is in the middle of processing the URB to be canceled, we
1417 * simply move the ring's dequeue pointer past those TRBs using the Set
1418 * Transfer Ring Dequeue Pointer command. This will be the common case,
1419 * when drivers timeout on the last submitted URB and attempt to cancel.
1421 * 2) If the HC is in the middle of a different TD, we turn the TRBs into a
1422 * series of 1-TRB transfer no-op TDs. (No-ops shouldn't be chained.) The
1423 * HC will need to invalidate the any TRBs it has cached after the stop
1424 * endpoint command, as noted in the xHCI 0.95 errata.
1426 * 3) The TD may have completed by the time the Stop Endpoint Command
1427 * completes, so software needs to handle that case too.
1429 * This function should protect against the TD enqueueing code ringing the
1430 * doorbell while this code is waiting for a Stop Endpoint command to complete.
1431 * It also needs to account for multiple cancellations on happening at the same
1432 * time for the same endpoint.
1434 * Note that this function can be called in any context, or so says
1435 * usb_hcd_unlink_urb()
1437 int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1439 unsigned long flags;
1442 struct xhci_hcd *xhci;
1443 struct urb_priv *urb_priv;
1445 unsigned int ep_index;
1446 struct xhci_ring *ep_ring;
1447 struct xhci_virt_ep *ep;
1449 xhci = hcd_to_xhci(hcd);
1450 spin_lock_irqsave(&xhci->lock, flags);
1451 /* Make sure the URB hasn't completed or been unlinked already */
1452 ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1453 if (ret || !urb->hcpriv)
1455 temp = xhci_readl(xhci, &xhci->op_regs->status);
1456 if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_HALTED)) {
1457 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1458 "HW died, freeing TD.");
1459 urb_priv = urb->hcpriv;
1460 for (i = urb_priv->td_cnt; i < urb_priv->length; i++) {
1461 td = urb_priv->td[i];
1462 if (!list_empty(&td->td_list))
1463 list_del_init(&td->td_list);
1464 if (!list_empty(&td->cancelled_td_list))
1465 list_del_init(&td->cancelled_td_list);
1468 usb_hcd_unlink_urb_from_ep(hcd, urb);
1469 spin_unlock_irqrestore(&xhci->lock, flags);
1470 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1471 xhci_urb_free_priv(xhci, urb_priv);
1474 if ((xhci->xhc_state & XHCI_STATE_DYING) ||
1475 (xhci->xhc_state & XHCI_STATE_HALTED)) {
1476 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1477 "Ep 0x%x: URB %p to be canceled on "
1478 "non-responsive xHCI host.",
1479 urb->ep->desc.bEndpointAddress, urb);
1480 /* Let the stop endpoint command watchdog timer (which set this
1481 * state) finish cleaning up the endpoint TD lists. We must
1482 * have caught it in the middle of dropping a lock and giving
1488 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1489 ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index];
1490 ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1496 urb_priv = urb->hcpriv;
1497 i = urb_priv->td_cnt;
1498 if (i < urb_priv->length)
1499 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1500 "Cancel URB %p, dev %s, ep 0x%x, "
1501 "starting at offset 0x%llx",
1502 urb, urb->dev->devpath,
1503 urb->ep->desc.bEndpointAddress,
1504 (unsigned long long) xhci_trb_virt_to_dma(
1505 urb_priv->td[i]->start_seg,
1506 urb_priv->td[i]->first_trb));
1508 for (; i < urb_priv->length; i++) {
1509 td = urb_priv->td[i];
1510 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1513 /* Queue a stop endpoint command, but only if this is
1514 * the first cancellation to be handled.
1516 if (!(ep->ep_state & EP_HALT_PENDING)) {
1517 ep->ep_state |= EP_HALT_PENDING;
1518 ep->stop_cmds_pending++;
1519 ep->stop_cmd_timer.expires = jiffies +
1520 XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1521 add_timer(&ep->stop_cmd_timer);
1522 xhci_queue_stop_endpoint(xhci, urb->dev->slot_id, ep_index, 0);
1523 xhci_ring_cmd_db(xhci);
1526 spin_unlock_irqrestore(&xhci->lock, flags);
1530 /* Drop an endpoint from a new bandwidth configuration for this device.
1531 * Only one call to this function is allowed per endpoint before
1532 * check_bandwidth() or reset_bandwidth() must be called.
1533 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1534 * add the endpoint to the schedule with possibly new parameters denoted by a
1535 * different endpoint descriptor in usb_host_endpoint.
1536 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1539 * The USB core will not allow URBs to be queued to an endpoint that is being
1540 * disabled, so there's no need for mutual exclusion to protect
1541 * the xhci->devs[slot_id] structure.
1543 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1544 struct usb_host_endpoint *ep)
1546 struct xhci_hcd *xhci;
1547 struct xhci_container_ctx *in_ctx, *out_ctx;
1548 struct xhci_input_control_ctx *ctrl_ctx;
1549 struct xhci_slot_ctx *slot_ctx;
1550 unsigned int last_ctx;
1551 unsigned int ep_index;
1552 struct xhci_ep_ctx *ep_ctx;
1554 u32 new_add_flags, new_drop_flags, new_slot_info;
1557 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1560 xhci = hcd_to_xhci(hcd);
1561 if (xhci->xhc_state & XHCI_STATE_DYING)
1564 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1565 drop_flag = xhci_get_endpoint_flag(&ep->desc);
1566 if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1567 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1568 __func__, drop_flag);
1572 in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1573 out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1574 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1576 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1581 ep_index = xhci_get_endpoint_index(&ep->desc);
1582 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1583 /* If the HC already knows the endpoint is disabled,
1584 * or the HCD has noted it is disabled, ignore this request
1586 if (((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) ==
1587 cpu_to_le32(EP_STATE_DISABLED)) ||
1588 le32_to_cpu(ctrl_ctx->drop_flags) &
1589 xhci_get_endpoint_flag(&ep->desc)) {
1590 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1595 ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1596 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1598 ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1599 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1601 last_ctx = xhci_last_valid_endpoint(le32_to_cpu(ctrl_ctx->add_flags));
1602 slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1603 /* Update the last valid endpoint context, if we deleted the last one */
1604 if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) >
1605 LAST_CTX(last_ctx)) {
1606 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1607 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx));
1609 new_slot_info = le32_to_cpu(slot_ctx->dev_info);
1611 xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1613 xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1614 (unsigned int) ep->desc.bEndpointAddress,
1616 (unsigned int) new_drop_flags,
1617 (unsigned int) new_add_flags,
1618 (unsigned int) new_slot_info);
1622 /* Add an endpoint to a new possible bandwidth configuration for this device.
1623 * Only one call to this function is allowed per endpoint before
1624 * check_bandwidth() or reset_bandwidth() must be called.
1625 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1626 * add the endpoint to the schedule with possibly new parameters denoted by a
1627 * different endpoint descriptor in usb_host_endpoint.
1628 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1631 * The USB core will not allow URBs to be queued to an endpoint until the
1632 * configuration or alt setting is installed in the device, so there's no need
1633 * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1635 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1636 struct usb_host_endpoint *ep)
1638 struct xhci_hcd *xhci;
1639 struct xhci_container_ctx *in_ctx, *out_ctx;
1640 unsigned int ep_index;
1641 struct xhci_slot_ctx *slot_ctx;
1642 struct xhci_input_control_ctx *ctrl_ctx;
1644 unsigned int last_ctx;
1645 u32 new_add_flags, new_drop_flags, new_slot_info;
1646 struct xhci_virt_device *virt_dev;
1649 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1651 /* So we won't queue a reset ep command for a root hub */
1655 xhci = hcd_to_xhci(hcd);
1656 if (xhci->xhc_state & XHCI_STATE_DYING)
1659 added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1660 last_ctx = xhci_last_valid_endpoint(added_ctxs);
1661 if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1662 /* FIXME when we have to issue an evaluate endpoint command to
1663 * deal with ep0 max packet size changing once we get the
1666 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1667 __func__, added_ctxs);
1671 virt_dev = xhci->devs[udev->slot_id];
1672 in_ctx = virt_dev->in_ctx;
1673 out_ctx = virt_dev->out_ctx;
1674 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1676 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1681 ep_index = xhci_get_endpoint_index(&ep->desc);
1682 /* If this endpoint is already in use, and the upper layers are trying
1683 * to add it again without dropping it, reject the addition.
1685 if (virt_dev->eps[ep_index].ring &&
1686 !(le32_to_cpu(ctrl_ctx->drop_flags) &
1687 xhci_get_endpoint_flag(&ep->desc))) {
1688 xhci_warn(xhci, "Trying to add endpoint 0x%x "
1689 "without dropping it.\n",
1690 (unsigned int) ep->desc.bEndpointAddress);
1694 /* If the HCD has already noted the endpoint is enabled,
1695 * ignore this request.
1697 if (le32_to_cpu(ctrl_ctx->add_flags) &
1698 xhci_get_endpoint_flag(&ep->desc)) {
1699 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1705 * Configuration and alternate setting changes must be done in
1706 * process context, not interrupt context (or so documenation
1707 * for usb_set_interface() and usb_set_configuration() claim).
1709 if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1710 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1711 __func__, ep->desc.bEndpointAddress);
1715 ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1716 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1718 /* If xhci_endpoint_disable() was called for this endpoint, but the
1719 * xHC hasn't been notified yet through the check_bandwidth() call,
1720 * this re-adds a new state for the endpoint from the new endpoint
1721 * descriptors. We must drop and re-add this endpoint, so we leave the
1724 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1726 slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1727 /* Update the last valid endpoint context, if we just added one past */
1728 if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) <
1729 LAST_CTX(last_ctx)) {
1730 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1731 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx));
1733 new_slot_info = le32_to_cpu(slot_ctx->dev_info);
1735 /* Store the usb_device pointer for later use */
1738 xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1739 (unsigned int) ep->desc.bEndpointAddress,
1741 (unsigned int) new_drop_flags,
1742 (unsigned int) new_add_flags,
1743 (unsigned int) new_slot_info);
1747 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1749 struct xhci_input_control_ctx *ctrl_ctx;
1750 struct xhci_ep_ctx *ep_ctx;
1751 struct xhci_slot_ctx *slot_ctx;
1754 ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
1756 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1761 /* When a device's add flag and drop flag are zero, any subsequent
1762 * configure endpoint command will leave that endpoint's state
1763 * untouched. Make sure we don't leave any old state in the input
1764 * endpoint contexts.
1766 ctrl_ctx->drop_flags = 0;
1767 ctrl_ctx->add_flags = 0;
1768 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1769 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1770 /* Endpoint 0 is always valid */
1771 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1772 for (i = 1; i < 31; ++i) {
1773 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1774 ep_ctx->ep_info = 0;
1775 ep_ctx->ep_info2 = 0;
1777 ep_ctx->tx_info = 0;
1781 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1782 struct usb_device *udev, u32 *cmd_status)
1786 switch (*cmd_status) {
1788 dev_warn(&udev->dev, "Not enough host controller resources "
1789 "for new device state.\n");
1791 /* FIXME: can we allocate more resources for the HC? */
1794 case COMP_2ND_BW_ERR:
1795 dev_warn(&udev->dev, "Not enough bandwidth "
1796 "for new device state.\n");
1798 /* FIXME: can we go back to the old state? */
1801 /* the HCD set up something wrong */
1802 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1804 "and endpoint is not disabled.\n");
1808 dev_warn(&udev->dev, "ERROR: Incompatible device for endpoint "
1809 "configure command.\n");
1813 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1814 "Successful Endpoint Configure command");
1818 xhci_err(xhci, "ERROR: unexpected command completion "
1819 "code 0x%x.\n", *cmd_status);
1826 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1827 struct usb_device *udev, u32 *cmd_status)
1830 struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id];
1832 switch (*cmd_status) {
1834 dev_warn(&udev->dev, "WARN: xHCI driver setup invalid evaluate "
1835 "context command.\n");
1839 dev_warn(&udev->dev, "WARN: slot not enabled for"
1840 "evaluate context command.\n");
1843 case COMP_CTX_STATE:
1844 dev_warn(&udev->dev, "WARN: invalid context state for "
1845 "evaluate context command.\n");
1846 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1);
1850 dev_warn(&udev->dev, "ERROR: Incompatible device for evaluate "
1851 "context command.\n");
1855 /* Max Exit Latency too large error */
1856 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
1860 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1861 "Successful evaluate context command");
1865 xhci_err(xhci, "ERROR: unexpected command completion "
1866 "code 0x%x.\n", *cmd_status);
1873 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
1874 struct xhci_input_control_ctx *ctrl_ctx)
1876 u32 valid_add_flags;
1877 u32 valid_drop_flags;
1879 /* Ignore the slot flag (bit 0), and the default control endpoint flag
1880 * (bit 1). The default control endpoint is added during the Address
1881 * Device command and is never removed until the slot is disabled.
1883 valid_add_flags = ctrl_ctx->add_flags >> 2;
1884 valid_drop_flags = ctrl_ctx->drop_flags >> 2;
1886 /* Use hweight32 to count the number of ones in the add flags, or
1887 * number of endpoints added. Don't count endpoints that are changed
1888 * (both added and dropped).
1890 return hweight32(valid_add_flags) -
1891 hweight32(valid_add_flags & valid_drop_flags);
1894 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
1895 struct xhci_input_control_ctx *ctrl_ctx)
1897 u32 valid_add_flags;
1898 u32 valid_drop_flags;
1900 valid_add_flags = ctrl_ctx->add_flags >> 2;
1901 valid_drop_flags = ctrl_ctx->drop_flags >> 2;
1903 return hweight32(valid_drop_flags) -
1904 hweight32(valid_add_flags & valid_drop_flags);
1908 * We need to reserve the new number of endpoints before the configure endpoint
1909 * command completes. We can't subtract the dropped endpoints from the number
1910 * of active endpoints until the command completes because we can oversubscribe
1911 * the host in this case:
1913 * - the first configure endpoint command drops more endpoints than it adds
1914 * - a second configure endpoint command that adds more endpoints is queued
1915 * - the first configure endpoint command fails, so the config is unchanged
1916 * - the second command may succeed, even though there isn't enough resources
1918 * Must be called with xhci->lock held.
1920 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
1921 struct xhci_input_control_ctx *ctrl_ctx)
1925 added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
1926 if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
1927 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1928 "Not enough ep ctxs: "
1929 "%u active, need to add %u, limit is %u.",
1930 xhci->num_active_eps, added_eps,
1931 xhci->limit_active_eps);
1934 xhci->num_active_eps += added_eps;
1935 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1936 "Adding %u ep ctxs, %u now active.", added_eps,
1937 xhci->num_active_eps);
1942 * The configure endpoint was failed by the xHC for some other reason, so we
1943 * need to revert the resources that failed configuration would have used.
1945 * Must be called with xhci->lock held.
1947 static void xhci_free_host_resources(struct xhci_hcd *xhci,
1948 struct xhci_input_control_ctx *ctrl_ctx)
1952 num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
1953 xhci->num_active_eps -= num_failed_eps;
1954 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1955 "Removing %u failed ep ctxs, %u now active.",
1957 xhci->num_active_eps);
1961 * Now that the command has completed, clean up the active endpoint count by
1962 * subtracting out the endpoints that were dropped (but not changed).
1964 * Must be called with xhci->lock held.
1966 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
1967 struct xhci_input_control_ctx *ctrl_ctx)
1969 u32 num_dropped_eps;
1971 num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
1972 xhci->num_active_eps -= num_dropped_eps;
1973 if (num_dropped_eps)
1974 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1975 "Removing %u dropped ep ctxs, %u now active.",
1977 xhci->num_active_eps);
1980 static unsigned int xhci_get_block_size(struct usb_device *udev)
1982 switch (udev->speed) {
1984 case USB_SPEED_FULL:
1986 case USB_SPEED_HIGH:
1988 case USB_SPEED_SUPER:
1990 case USB_SPEED_UNKNOWN:
1991 case USB_SPEED_WIRELESS:
1993 /* Should never happen */
1999 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2001 if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2003 if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2008 /* If we are changing a LS/FS device under a HS hub,
2009 * make sure (if we are activating a new TT) that the HS bus has enough
2010 * bandwidth for this new TT.
2012 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2013 struct xhci_virt_device *virt_dev,
2016 struct xhci_interval_bw_table *bw_table;
2017 struct xhci_tt_bw_info *tt_info;
2019 /* Find the bandwidth table for the root port this TT is attached to. */
2020 bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2021 tt_info = virt_dev->tt_info;
2022 /* If this TT already had active endpoints, the bandwidth for this TT
2023 * has already been added. Removing all periodic endpoints (and thus
2024 * making the TT enactive) will only decrease the bandwidth used.
2028 if (old_active_eps == 0 && tt_info->active_eps != 0) {
2029 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2033 /* Not sure why we would have no new active endpoints...
2035 * Maybe because of an Evaluate Context change for a hub update or a
2036 * control endpoint 0 max packet size change?
2037 * FIXME: skip the bandwidth calculation in that case.
2042 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2043 struct xhci_virt_device *virt_dev)
2045 unsigned int bw_reserved;
2047 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2048 if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2051 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2052 if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2059 * This algorithm is a very conservative estimate of the worst-case scheduling
2060 * scenario for any one interval. The hardware dynamically schedules the
2061 * packets, so we can't tell which microframe could be the limiting factor in
2062 * the bandwidth scheduling. This only takes into account periodic endpoints.
2064 * Obviously, we can't solve an NP complete problem to find the minimum worst
2065 * case scenario. Instead, we come up with an estimate that is no less than
2066 * the worst case bandwidth used for any one microframe, but may be an
2069 * We walk the requirements for each endpoint by interval, starting with the
2070 * smallest interval, and place packets in the schedule where there is only one
2071 * possible way to schedule packets for that interval. In order to simplify
2072 * this algorithm, we record the largest max packet size for each interval, and
2073 * assume all packets will be that size.
2075 * For interval 0, we obviously must schedule all packets for each interval.
2076 * The bandwidth for interval 0 is just the amount of data to be transmitted
2077 * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2078 * the number of packets).
2080 * For interval 1, we have two possible microframes to schedule those packets
2081 * in. For this algorithm, if we can schedule the same number of packets for
2082 * each possible scheduling opportunity (each microframe), we will do so. The
2083 * remaining number of packets will be saved to be transmitted in the gaps in
2084 * the next interval's scheduling sequence.
2086 * As we move those remaining packets to be scheduled with interval 2 packets,
2087 * we have to double the number of remaining packets to transmit. This is
2088 * because the intervals are actually powers of 2, and we would be transmitting
2089 * the previous interval's packets twice in this interval. We also have to be
2090 * sure that when we look at the largest max packet size for this interval, we
2091 * also look at the largest max packet size for the remaining packets and take
2092 * the greater of the two.
2094 * The algorithm continues to evenly distribute packets in each scheduling
2095 * opportunity, and push the remaining packets out, until we get to the last
2096 * interval. Then those packets and their associated overhead are just added
2097 * to the bandwidth used.
2099 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2100 struct xhci_virt_device *virt_dev,
2103 unsigned int bw_reserved;
2104 unsigned int max_bandwidth;
2105 unsigned int bw_used;
2106 unsigned int block_size;
2107 struct xhci_interval_bw_table *bw_table;
2108 unsigned int packet_size = 0;
2109 unsigned int overhead = 0;
2110 unsigned int packets_transmitted = 0;
2111 unsigned int packets_remaining = 0;
2114 if (virt_dev->udev->speed == USB_SPEED_SUPER)
2115 return xhci_check_ss_bw(xhci, virt_dev);
2117 if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2118 max_bandwidth = HS_BW_LIMIT;
2119 /* Convert percent of bus BW reserved to blocks reserved */
2120 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2122 max_bandwidth = FS_BW_LIMIT;
2123 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2126 bw_table = virt_dev->bw_table;
2127 /* We need to translate the max packet size and max ESIT payloads into
2128 * the units the hardware uses.
2130 block_size = xhci_get_block_size(virt_dev->udev);
2132 /* If we are manipulating a LS/FS device under a HS hub, double check
2133 * that the HS bus has enough bandwidth if we are activing a new TT.
2135 if (virt_dev->tt_info) {
2136 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2137 "Recalculating BW for rootport %u",
2138 virt_dev->real_port);
2139 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2140 xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2141 "newly activated TT.\n");
2144 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2145 "Recalculating BW for TT slot %u port %u",
2146 virt_dev->tt_info->slot_id,
2147 virt_dev->tt_info->ttport);
2149 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2150 "Recalculating BW for rootport %u",
2151 virt_dev->real_port);
2154 /* Add in how much bandwidth will be used for interval zero, or the
2155 * rounded max ESIT payload + number of packets * largest overhead.
2157 bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2158 bw_table->interval_bw[0].num_packets *
2159 xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2161 for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2162 unsigned int bw_added;
2163 unsigned int largest_mps;
2164 unsigned int interval_overhead;
2167 * How many packets could we transmit in this interval?
2168 * If packets didn't fit in the previous interval, we will need
2169 * to transmit that many packets twice within this interval.
2171 packets_remaining = 2 * packets_remaining +
2172 bw_table->interval_bw[i].num_packets;
2174 /* Find the largest max packet size of this or the previous
2177 if (list_empty(&bw_table->interval_bw[i].endpoints))
2180 struct xhci_virt_ep *virt_ep;
2181 struct list_head *ep_entry;
2183 ep_entry = bw_table->interval_bw[i].endpoints.next;
2184 virt_ep = list_entry(ep_entry,
2185 struct xhci_virt_ep, bw_endpoint_list);
2186 /* Convert to blocks, rounding up */
2187 largest_mps = DIV_ROUND_UP(
2188 virt_ep->bw_info.max_packet_size,
2191 if (largest_mps > packet_size)
2192 packet_size = largest_mps;
2194 /* Use the larger overhead of this or the previous interval. */
2195 interval_overhead = xhci_get_largest_overhead(
2196 &bw_table->interval_bw[i]);
2197 if (interval_overhead > overhead)
2198 overhead = interval_overhead;
2200 /* How many packets can we evenly distribute across
2201 * (1 << (i + 1)) possible scheduling opportunities?
2203 packets_transmitted = packets_remaining >> (i + 1);
2205 /* Add in the bandwidth used for those scheduled packets */
2206 bw_added = packets_transmitted * (overhead + packet_size);
2208 /* How many packets do we have remaining to transmit? */
2209 packets_remaining = packets_remaining % (1 << (i + 1));
2211 /* What largest max packet size should those packets have? */
2212 /* If we've transmitted all packets, don't carry over the
2213 * largest packet size.
2215 if (packets_remaining == 0) {
2218 } else if (packets_transmitted > 0) {
2219 /* Otherwise if we do have remaining packets, and we've
2220 * scheduled some packets in this interval, take the
2221 * largest max packet size from endpoints with this
2224 packet_size = largest_mps;
2225 overhead = interval_overhead;
2227 /* Otherwise carry over packet_size and overhead from the last
2228 * time we had a remainder.
2230 bw_used += bw_added;
2231 if (bw_used > max_bandwidth) {
2232 xhci_warn(xhci, "Not enough bandwidth. "
2233 "Proposed: %u, Max: %u\n",
2234 bw_used, max_bandwidth);
2239 * Ok, we know we have some packets left over after even-handedly
2240 * scheduling interval 15. We don't know which microframes they will
2241 * fit into, so we over-schedule and say they will be scheduled every
2244 if (packets_remaining > 0)
2245 bw_used += overhead + packet_size;
2247 if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2248 unsigned int port_index = virt_dev->real_port - 1;
2250 /* OK, we're manipulating a HS device attached to a
2251 * root port bandwidth domain. Include the number of active TTs
2252 * in the bandwidth used.
2254 bw_used += TT_HS_OVERHEAD *
2255 xhci->rh_bw[port_index].num_active_tts;
2258 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2259 "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2260 "Available: %u " "percent",
2261 bw_used, max_bandwidth, bw_reserved,
2262 (max_bandwidth - bw_used - bw_reserved) * 100 /
2265 bw_used += bw_reserved;
2266 if (bw_used > max_bandwidth) {
2267 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2268 bw_used, max_bandwidth);
2272 bw_table->bw_used = bw_used;
2276 static bool xhci_is_async_ep(unsigned int ep_type)
2278 return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2279 ep_type != ISOC_IN_EP &&
2280 ep_type != INT_IN_EP);
2283 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2285 return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2288 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2290 unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2292 if (ep_bw->ep_interval == 0)
2293 return SS_OVERHEAD_BURST +
2294 (ep_bw->mult * ep_bw->num_packets *
2295 (SS_OVERHEAD + mps));
2296 return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2297 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2298 1 << ep_bw->ep_interval);
2302 void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2303 struct xhci_bw_info *ep_bw,
2304 struct xhci_interval_bw_table *bw_table,
2305 struct usb_device *udev,
2306 struct xhci_virt_ep *virt_ep,
2307 struct xhci_tt_bw_info *tt_info)
2309 struct xhci_interval_bw *interval_bw;
2310 int normalized_interval;
2312 if (xhci_is_async_ep(ep_bw->type))
2315 if (udev->speed == USB_SPEED_SUPER) {
2316 if (xhci_is_sync_in_ep(ep_bw->type))
2317 xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2318 xhci_get_ss_bw_consumed(ep_bw);
2320 xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2321 xhci_get_ss_bw_consumed(ep_bw);
2325 /* SuperSpeed endpoints never get added to intervals in the table, so
2326 * this check is only valid for HS/FS/LS devices.
2328 if (list_empty(&virt_ep->bw_endpoint_list))
2330 /* For LS/FS devices, we need to translate the interval expressed in
2331 * microframes to frames.
2333 if (udev->speed == USB_SPEED_HIGH)
2334 normalized_interval = ep_bw->ep_interval;
2336 normalized_interval = ep_bw->ep_interval - 3;
2338 if (normalized_interval == 0)
2339 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2340 interval_bw = &bw_table->interval_bw[normalized_interval];
2341 interval_bw->num_packets -= ep_bw->num_packets;
2342 switch (udev->speed) {
2344 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2346 case USB_SPEED_FULL:
2347 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2349 case USB_SPEED_HIGH:
2350 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2352 case USB_SPEED_SUPER:
2353 case USB_SPEED_UNKNOWN:
2354 case USB_SPEED_WIRELESS:
2355 /* Should never happen because only LS/FS/HS endpoints will get
2356 * added to the endpoint list.
2361 tt_info->active_eps -= 1;
2362 list_del_init(&virt_ep->bw_endpoint_list);
2365 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2366 struct xhci_bw_info *ep_bw,
2367 struct xhci_interval_bw_table *bw_table,
2368 struct usb_device *udev,
2369 struct xhci_virt_ep *virt_ep,
2370 struct xhci_tt_bw_info *tt_info)
2372 struct xhci_interval_bw *interval_bw;
2373 struct xhci_virt_ep *smaller_ep;
2374 int normalized_interval;
2376 if (xhci_is_async_ep(ep_bw->type))
2379 if (udev->speed == USB_SPEED_SUPER) {
2380 if (xhci_is_sync_in_ep(ep_bw->type))
2381 xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2382 xhci_get_ss_bw_consumed(ep_bw);
2384 xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2385 xhci_get_ss_bw_consumed(ep_bw);
2389 /* For LS/FS devices, we need to translate the interval expressed in
2390 * microframes to frames.
2392 if (udev->speed == USB_SPEED_HIGH)
2393 normalized_interval = ep_bw->ep_interval;
2395 normalized_interval = ep_bw->ep_interval - 3;
2397 if (normalized_interval == 0)
2398 bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2399 interval_bw = &bw_table->interval_bw[normalized_interval];
2400 interval_bw->num_packets += ep_bw->num_packets;
2401 switch (udev->speed) {
2403 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2405 case USB_SPEED_FULL:
2406 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2408 case USB_SPEED_HIGH:
2409 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2411 case USB_SPEED_SUPER:
2412 case USB_SPEED_UNKNOWN:
2413 case USB_SPEED_WIRELESS:
2414 /* Should never happen because only LS/FS/HS endpoints will get
2415 * added to the endpoint list.
2421 tt_info->active_eps += 1;
2422 /* Insert the endpoint into the list, largest max packet size first. */
2423 list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2425 if (ep_bw->max_packet_size >=
2426 smaller_ep->bw_info.max_packet_size) {
2427 /* Add the new ep before the smaller endpoint */
2428 list_add_tail(&virt_ep->bw_endpoint_list,
2429 &smaller_ep->bw_endpoint_list);
2433 /* Add the new endpoint at the end of the list. */
2434 list_add_tail(&virt_ep->bw_endpoint_list,
2435 &interval_bw->endpoints);
2438 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2439 struct xhci_virt_device *virt_dev,
2442 struct xhci_root_port_bw_info *rh_bw_info;
2443 if (!virt_dev->tt_info)
2446 rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2447 if (old_active_eps == 0 &&
2448 virt_dev->tt_info->active_eps != 0) {
2449 rh_bw_info->num_active_tts += 1;
2450 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2451 } else if (old_active_eps != 0 &&
2452 virt_dev->tt_info->active_eps == 0) {
2453 rh_bw_info->num_active_tts -= 1;
2454 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2458 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2459 struct xhci_virt_device *virt_dev,
2460 struct xhci_container_ctx *in_ctx)
2462 struct xhci_bw_info ep_bw_info[31];
2464 struct xhci_input_control_ctx *ctrl_ctx;
2465 int old_active_eps = 0;
2467 if (virt_dev->tt_info)
2468 old_active_eps = virt_dev->tt_info->active_eps;
2470 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
2472 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2477 for (i = 0; i < 31; i++) {
2478 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2481 /* Make a copy of the BW info in case we need to revert this */
2482 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2483 sizeof(ep_bw_info[i]));
2484 /* Drop the endpoint from the interval table if the endpoint is
2485 * being dropped or changed.
2487 if (EP_IS_DROPPED(ctrl_ctx, i))
2488 xhci_drop_ep_from_interval_table(xhci,
2489 &virt_dev->eps[i].bw_info,
2495 /* Overwrite the information stored in the endpoints' bw_info */
2496 xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2497 for (i = 0; i < 31; i++) {
2498 /* Add any changed or added endpoints to the interval table */
2499 if (EP_IS_ADDED(ctrl_ctx, i))
2500 xhci_add_ep_to_interval_table(xhci,
2501 &virt_dev->eps[i].bw_info,
2508 if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2509 /* Ok, this fits in the bandwidth we have.
2510 * Update the number of active TTs.
2512 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2516 /* We don't have enough bandwidth for this, revert the stored info. */
2517 for (i = 0; i < 31; i++) {
2518 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2521 /* Drop the new copies of any added or changed endpoints from
2522 * the interval table.
2524 if (EP_IS_ADDED(ctrl_ctx, i)) {
2525 xhci_drop_ep_from_interval_table(xhci,
2526 &virt_dev->eps[i].bw_info,
2532 /* Revert the endpoint back to its old information */
2533 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2534 sizeof(ep_bw_info[i]));
2535 /* Add any changed or dropped endpoints back into the table */
2536 if (EP_IS_DROPPED(ctrl_ctx, i))
2537 xhci_add_ep_to_interval_table(xhci,
2538 &virt_dev->eps[i].bw_info,
2548 /* Issue a configure endpoint command or evaluate context command
2549 * and wait for it to finish.
2551 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2552 struct usb_device *udev,
2553 struct xhci_command *command,
2554 bool ctx_change, bool must_succeed)
2558 unsigned long flags;
2559 struct xhci_container_ctx *in_ctx;
2560 struct xhci_input_control_ctx *ctrl_ctx;
2561 struct completion *cmd_completion;
2563 struct xhci_virt_device *virt_dev;
2564 union xhci_trb *cmd_trb;
2566 spin_lock_irqsave(&xhci->lock, flags);
2567 virt_dev = xhci->devs[udev->slot_id];
2570 in_ctx = command->in_ctx;
2572 in_ctx = virt_dev->in_ctx;
2573 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
2575 spin_unlock_irqrestore(&xhci->lock, flags);
2576 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2581 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2582 xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2583 spin_unlock_irqrestore(&xhci->lock, flags);
2584 xhci_warn(xhci, "Not enough host resources, "
2585 "active endpoint contexts = %u\n",
2586 xhci->num_active_eps);
2589 if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2590 xhci_reserve_bandwidth(xhci, virt_dev, in_ctx)) {
2591 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2592 xhci_free_host_resources(xhci, ctrl_ctx);
2593 spin_unlock_irqrestore(&xhci->lock, flags);
2594 xhci_warn(xhci, "Not enough bandwidth\n");
2599 cmd_completion = command->completion;
2600 cmd_status = &command->status;
2601 command->command_trb = xhci->cmd_ring->enqueue;
2603 /* Enqueue pointer can be left pointing to the link TRB,
2604 * we must handle that
2606 if (TRB_TYPE_LINK_LE32(command->command_trb->link.control))
2607 command->command_trb =
2608 xhci->cmd_ring->enq_seg->next->trbs;
2610 list_add_tail(&command->cmd_list, &virt_dev->cmd_list);
2612 cmd_completion = &virt_dev->cmd_completion;
2613 cmd_status = &virt_dev->cmd_status;
2615 init_completion(cmd_completion);
2617 cmd_trb = xhci->cmd_ring->dequeue;
2619 ret = xhci_queue_configure_endpoint(xhci, in_ctx->dma,
2620 udev->slot_id, must_succeed);
2622 ret = xhci_queue_evaluate_context(xhci, in_ctx->dma,
2623 udev->slot_id, must_succeed);
2626 list_del(&command->cmd_list);
2627 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2628 xhci_free_host_resources(xhci, ctrl_ctx);
2629 spin_unlock_irqrestore(&xhci->lock, flags);
2630 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2631 "FIXME allocate a new ring segment");
2634 xhci_ring_cmd_db(xhci);
2635 spin_unlock_irqrestore(&xhci->lock, flags);
2637 /* Wait for the configure endpoint command to complete */
2638 timeleft = wait_for_completion_interruptible_timeout(
2640 XHCI_CMD_DEFAULT_TIMEOUT);
2641 if (timeleft <= 0) {
2642 xhci_warn(xhci, "%s while waiting for %s command\n",
2643 timeleft == 0 ? "Timeout" : "Signal",
2645 "configure endpoint" :
2646 "evaluate context");
2647 /* cancel the configure endpoint command */
2648 ret = xhci_cancel_cmd(xhci, command, cmd_trb);
2655 ret = xhci_configure_endpoint_result(xhci, udev, cmd_status);
2657 ret = xhci_evaluate_context_result(xhci, udev, cmd_status);
2659 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2660 spin_lock_irqsave(&xhci->lock, flags);
2661 /* If the command failed, remove the reserved resources.
2662 * Otherwise, clean up the estimate to include dropped eps.
2665 xhci_free_host_resources(xhci, ctrl_ctx);
2667 xhci_finish_resource_reservation(xhci, ctrl_ctx);
2668 spin_unlock_irqrestore(&xhci->lock, flags);
2673 /* Called after one or more calls to xhci_add_endpoint() or
2674 * xhci_drop_endpoint(). If this call fails, the USB core is expected
2675 * to call xhci_reset_bandwidth().
2677 * Since we are in the middle of changing either configuration or
2678 * installing a new alt setting, the USB core won't allow URBs to be
2679 * enqueued for any endpoint on the old config or interface. Nothing
2680 * else should be touching the xhci->devs[slot_id] structure, so we
2681 * don't need to take the xhci->lock for manipulating that.
2683 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2687 struct xhci_hcd *xhci;
2688 struct xhci_virt_device *virt_dev;
2689 struct xhci_input_control_ctx *ctrl_ctx;
2690 struct xhci_slot_ctx *slot_ctx;
2692 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2695 xhci = hcd_to_xhci(hcd);
2696 if (xhci->xhc_state & XHCI_STATE_DYING)
2699 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2700 virt_dev = xhci->devs[udev->slot_id];
2702 /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2703 ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
2705 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2709 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2710 ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2711 ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2713 /* Don't issue the command if there's no endpoints to update. */
2714 if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2715 ctrl_ctx->drop_flags == 0)
2718 xhci_dbg(xhci, "New Input Control Context:\n");
2719 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2720 xhci_dbg_ctx(xhci, virt_dev->in_ctx,
2721 LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2723 ret = xhci_configure_endpoint(xhci, udev, NULL,
2726 /* Callee should call reset_bandwidth() */
2730 xhci_dbg(xhci, "Output context after successful config ep cmd:\n");
2731 xhci_dbg_ctx(xhci, virt_dev->out_ctx,
2732 LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2734 /* Free any rings that were dropped, but not changed. */
2735 for (i = 1; i < 31; ++i) {
2736 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2737 !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1))))
2738 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2740 xhci_zero_in_ctx(xhci, virt_dev);
2742 * Install any rings for completely new endpoints or changed endpoints,
2743 * and free or cache any old rings from changed endpoints.
2745 for (i = 1; i < 31; ++i) {
2746 if (!virt_dev->eps[i].new_ring)
2748 /* Only cache or free the old ring if it exists.
2749 * It may not if this is the first add of an endpoint.
2751 if (virt_dev->eps[i].ring) {
2752 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2754 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2755 virt_dev->eps[i].new_ring = NULL;
2761 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2763 struct xhci_hcd *xhci;
2764 struct xhci_virt_device *virt_dev;
2767 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2770 xhci = hcd_to_xhci(hcd);
2772 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2773 virt_dev = xhci->devs[udev->slot_id];
2774 /* Free any rings allocated for added endpoints */
2775 for (i = 0; i < 31; ++i) {
2776 if (virt_dev->eps[i].new_ring) {
2777 xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2778 virt_dev->eps[i].new_ring = NULL;
2781 xhci_zero_in_ctx(xhci, virt_dev);
2784 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2785 struct xhci_container_ctx *in_ctx,
2786 struct xhci_container_ctx *out_ctx,
2787 struct xhci_input_control_ctx *ctrl_ctx,
2788 u32 add_flags, u32 drop_flags)
2790 ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2791 ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2792 xhci_slot_copy(xhci, in_ctx, out_ctx);
2793 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2795 xhci_dbg(xhci, "Input Context:\n");
2796 xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags));
2799 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2800 unsigned int slot_id, unsigned int ep_index,
2801 struct xhci_dequeue_state *deq_state)
2803 struct xhci_input_control_ctx *ctrl_ctx;
2804 struct xhci_container_ctx *in_ctx;
2805 struct xhci_ep_ctx *ep_ctx;
2809 in_ctx = xhci->devs[slot_id]->in_ctx;
2810 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
2812 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2817 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
2818 xhci->devs[slot_id]->out_ctx, ep_index);
2819 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
2820 addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
2821 deq_state->new_deq_ptr);
2823 xhci_warn(xhci, "WARN Cannot submit config ep after "
2824 "reset ep command\n");
2825 xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
2826 deq_state->new_deq_seg,
2827 deq_state->new_deq_ptr);
2830 ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
2832 added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
2833 xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
2834 xhci->devs[slot_id]->out_ctx, ctrl_ctx,
2835 added_ctxs, added_ctxs);
2838 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci,
2839 struct usb_device *udev, unsigned int ep_index)
2841 struct xhci_dequeue_state deq_state;
2842 struct xhci_virt_ep *ep;
2844 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2845 "Cleaning up stalled endpoint ring");
2846 ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2847 /* We need to move the HW's dequeue pointer past this TD,
2848 * or it will attempt to resend it on the next doorbell ring.
2850 xhci_find_new_dequeue_state(xhci, udev->slot_id,
2851 ep_index, ep->stopped_stream, ep->stopped_td,
2854 /* HW with the reset endpoint quirk will use the saved dequeue state to
2855 * issue a configure endpoint command later.
2857 if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
2858 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2859 "Queueing new dequeue state");
2860 xhci_queue_new_dequeue_state(xhci, udev->slot_id,
2861 ep_index, ep->stopped_stream, &deq_state);
2863 /* Better hope no one uses the input context between now and the
2864 * reset endpoint completion!
2865 * XXX: No idea how this hardware will react when stream rings
2868 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2869 "Setting up input context for "
2870 "configure endpoint command");
2871 xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
2872 ep_index, &deq_state);
2876 /* Deal with stalled endpoints. The core should have sent the control message
2877 * to clear the halt condition. However, we need to make the xHCI hardware
2878 * reset its sequence number, since a device will expect a sequence number of
2879 * zero after the halt condition is cleared.
2880 * Context: in_interrupt
2882 void xhci_endpoint_reset(struct usb_hcd *hcd,
2883 struct usb_host_endpoint *ep)
2885 struct xhci_hcd *xhci;
2886 struct usb_device *udev;
2887 unsigned int ep_index;
2888 unsigned long flags;
2890 struct xhci_virt_ep *virt_ep;
2892 xhci = hcd_to_xhci(hcd);
2893 udev = (struct usb_device *) ep->hcpriv;
2894 /* Called with a root hub endpoint (or an endpoint that wasn't added
2895 * with xhci_add_endpoint()
2899 ep_index = xhci_get_endpoint_index(&ep->desc);
2900 virt_ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2901 if (!virt_ep->stopped_td) {
2902 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2903 "Endpoint 0x%x not halted, refusing to reset.",
2904 ep->desc.bEndpointAddress);
2907 if (usb_endpoint_xfer_control(&ep->desc)) {
2908 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2909 "Control endpoint stall already handled.");
2913 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2914 "Queueing reset endpoint command");
2915 spin_lock_irqsave(&xhci->lock, flags);
2916 ret = xhci_queue_reset_ep(xhci, udev->slot_id, ep_index);
2918 * Can't change the ring dequeue pointer until it's transitioned to the
2919 * stopped state, which is only upon a successful reset endpoint
2920 * command. Better hope that last command worked!
2923 xhci_cleanup_stalled_ring(xhci, udev, ep_index);
2924 kfree(virt_ep->stopped_td);
2925 xhci_ring_cmd_db(xhci);
2927 virt_ep->stopped_td = NULL;
2928 virt_ep->stopped_trb = NULL;
2929 virt_ep->stopped_stream = 0;
2930 spin_unlock_irqrestore(&xhci->lock, flags);
2933 xhci_warn(xhci, "FIXME allocate a new ring segment\n");
2936 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
2937 struct usb_device *udev, struct usb_host_endpoint *ep,
2938 unsigned int slot_id)
2941 unsigned int ep_index;
2942 unsigned int ep_state;
2946 ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
2949 if (ep->ss_ep_comp.bmAttributes == 0) {
2950 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
2951 " descriptor for ep 0x%x does not support streams\n",
2952 ep->desc.bEndpointAddress);
2956 ep_index = xhci_get_endpoint_index(&ep->desc);
2957 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
2958 if (ep_state & EP_HAS_STREAMS ||
2959 ep_state & EP_GETTING_STREAMS) {
2960 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
2961 "already has streams set up.\n",
2962 ep->desc.bEndpointAddress);
2963 xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
2964 "dynamic stream context array reallocation.\n");
2967 if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
2968 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
2969 "endpoint 0x%x; URBs are pending.\n",
2970 ep->desc.bEndpointAddress);
2976 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
2977 unsigned int *num_streams, unsigned int *num_stream_ctxs)
2979 unsigned int max_streams;
2981 /* The stream context array size must be a power of two */
2982 *num_stream_ctxs = roundup_pow_of_two(*num_streams);
2984 * Find out how many primary stream array entries the host controller
2985 * supports. Later we may use secondary stream arrays (similar to 2nd
2986 * level page entries), but that's an optional feature for xHCI host
2987 * controllers. xHCs must support at least 4 stream IDs.
2989 max_streams = HCC_MAX_PSA(xhci->hcc_params);
2990 if (*num_stream_ctxs > max_streams) {
2991 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
2993 *num_stream_ctxs = max_streams;
2994 *num_streams = max_streams;
2998 /* Returns an error code if one of the endpoint already has streams.
2999 * This does not change any data structures, it only checks and gathers
3002 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3003 struct usb_device *udev,
3004 struct usb_host_endpoint **eps, unsigned int num_eps,
3005 unsigned int *num_streams, u32 *changed_ep_bitmask)
3007 unsigned int max_streams;
3008 unsigned int endpoint_flag;
3012 for (i = 0; i < num_eps; i++) {
3013 ret = xhci_check_streams_endpoint(xhci, udev,
3014 eps[i], udev->slot_id);
3018 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3019 if (max_streams < (*num_streams - 1)) {
3020 xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3021 eps[i]->desc.bEndpointAddress,
3023 *num_streams = max_streams+1;
3026 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3027 if (*changed_ep_bitmask & endpoint_flag)
3029 *changed_ep_bitmask |= endpoint_flag;
3034 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3035 struct usb_device *udev,
3036 struct usb_host_endpoint **eps, unsigned int num_eps)
3038 u32 changed_ep_bitmask = 0;
3039 unsigned int slot_id;
3040 unsigned int ep_index;
3041 unsigned int ep_state;
3044 slot_id = udev->slot_id;
3045 if (!xhci->devs[slot_id])
3048 for (i = 0; i < num_eps; i++) {
3049 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3050 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3051 /* Are streams already being freed for the endpoint? */
3052 if (ep_state & EP_GETTING_NO_STREAMS) {
3053 xhci_warn(xhci, "WARN Can't disable streams for "
3055 "streams are being disabled already\n",
3056 eps[i]->desc.bEndpointAddress);
3059 /* Are there actually any streams to free? */
3060 if (!(ep_state & EP_HAS_STREAMS) &&
3061 !(ep_state & EP_GETTING_STREAMS)) {
3062 xhci_warn(xhci, "WARN Can't disable streams for "
3064 "streams are already disabled!\n",
3065 eps[i]->desc.bEndpointAddress);
3066 xhci_warn(xhci, "WARN xhci_free_streams() called "
3067 "with non-streams endpoint\n");
3070 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3072 return changed_ep_bitmask;
3076 * The USB device drivers use this function (though the HCD interface in USB
3077 * core) to prepare a set of bulk endpoints to use streams. Streams are used to
3078 * coordinate mass storage command queueing across multiple endpoints (basically
3079 * a stream ID == a task ID).
3081 * Setting up streams involves allocating the same size stream context array
3082 * for each endpoint and issuing a configure endpoint command for all endpoints.
3084 * Don't allow the call to succeed if one endpoint only supports one stream
3085 * (which means it doesn't support streams at all).
3087 * Drivers may get less stream IDs than they asked for, if the host controller
3088 * hardware or endpoints claim they can't support the number of requested
3091 int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3092 struct usb_host_endpoint **eps, unsigned int num_eps,
3093 unsigned int num_streams, gfp_t mem_flags)
3096 struct xhci_hcd *xhci;
3097 struct xhci_virt_device *vdev;
3098 struct xhci_command *config_cmd;
3099 struct xhci_input_control_ctx *ctrl_ctx;
3100 unsigned int ep_index;
3101 unsigned int num_stream_ctxs;
3102 unsigned long flags;
3103 u32 changed_ep_bitmask = 0;
3108 /* Add one to the number of streams requested to account for
3109 * stream 0 that is reserved for xHCI usage.
3112 xhci = hcd_to_xhci(hcd);
3113 xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3116 config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
3118 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
3121 ctrl_ctx = xhci_get_input_control_ctx(xhci, config_cmd->in_ctx);
3123 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3125 xhci_free_command(xhci, config_cmd);
3129 /* Check to make sure all endpoints are not already configured for
3130 * streams. While we're at it, find the maximum number of streams that
3131 * all the endpoints will support and check for duplicate endpoints.
3133 spin_lock_irqsave(&xhci->lock, flags);
3134 ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3135 num_eps, &num_streams, &changed_ep_bitmask);
3137 xhci_free_command(xhci, config_cmd);
3138 spin_unlock_irqrestore(&xhci->lock, flags);
3141 if (num_streams <= 1) {
3142 xhci_warn(xhci, "WARN: endpoints can't handle "
3143 "more than one stream.\n");
3144 xhci_free_command(xhci, config_cmd);
3145 spin_unlock_irqrestore(&xhci->lock, flags);
3148 vdev = xhci->devs[udev->slot_id];
3149 /* Mark each endpoint as being in transition, so
3150 * xhci_urb_enqueue() will reject all URBs.
3152 for (i = 0; i < num_eps; i++) {
3153 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3154 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3156 spin_unlock_irqrestore(&xhci->lock, flags);
3158 /* Setup internal data structures and allocate HW data structures for
3159 * streams (but don't install the HW structures in the input context
3160 * until we're sure all memory allocation succeeded).
3162 xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3163 xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3164 num_stream_ctxs, num_streams);
3166 for (i = 0; i < num_eps; i++) {
3167 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3168 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3170 num_streams, mem_flags);
3171 if (!vdev->eps[ep_index].stream_info)
3173 /* Set maxPstreams in endpoint context and update deq ptr to
3174 * point to stream context array. FIXME
3178 /* Set up the input context for a configure endpoint command. */
3179 for (i = 0; i < num_eps; i++) {
3180 struct xhci_ep_ctx *ep_ctx;
3182 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3183 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3185 xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3186 vdev->out_ctx, ep_index);
3187 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3188 vdev->eps[ep_index].stream_info);
3190 /* Tell the HW to drop its old copy of the endpoint context info
3191 * and add the updated copy from the input context.
3193 xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3194 vdev->out_ctx, ctrl_ctx,
3195 changed_ep_bitmask, changed_ep_bitmask);
3197 /* Issue and wait for the configure endpoint command */
3198 ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3201 /* xHC rejected the configure endpoint command for some reason, so we
3202 * leave the old ring intact and free our internal streams data
3208 spin_lock_irqsave(&xhci->lock, flags);
3209 for (i = 0; i < num_eps; i++) {
3210 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3211 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3212 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3213 udev->slot_id, ep_index);
3214 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3216 xhci_free_command(xhci, config_cmd);
3217 spin_unlock_irqrestore(&xhci->lock, flags);
3219 /* Subtract 1 for stream 0, which drivers can't use */
3220 return num_streams - 1;
3223 /* If it didn't work, free the streams! */
3224 for (i = 0; i < num_eps; i++) {
3225 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3226 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3227 vdev->eps[ep_index].stream_info = NULL;
3228 /* FIXME Unset maxPstreams in endpoint context and
3229 * update deq ptr to point to normal string ring.
3231 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3232 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3233 xhci_endpoint_zero(xhci, vdev, eps[i]);
3235 xhci_free_command(xhci, config_cmd);
3239 /* Transition the endpoint from using streams to being a "normal" endpoint
3242 * Modify the endpoint context state, submit a configure endpoint command,
3243 * and free all endpoint rings for streams if that completes successfully.
3245 int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3246 struct usb_host_endpoint **eps, unsigned int num_eps,
3250 struct xhci_hcd *xhci;
3251 struct xhci_virt_device *vdev;
3252 struct xhci_command *command;
3253 struct xhci_input_control_ctx *ctrl_ctx;
3254 unsigned int ep_index;
3255 unsigned long flags;
3256 u32 changed_ep_bitmask;
3258 xhci = hcd_to_xhci(hcd);
3259 vdev = xhci->devs[udev->slot_id];
3261 /* Set up a configure endpoint command to remove the streams rings */
3262 spin_lock_irqsave(&xhci->lock, flags);
3263 changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3264 udev, eps, num_eps);
3265 if (changed_ep_bitmask == 0) {
3266 spin_unlock_irqrestore(&xhci->lock, flags);
3270 /* Use the xhci_command structure from the first endpoint. We may have
3271 * allocated too many, but the driver may call xhci_free_streams() for
3272 * each endpoint it grouped into one call to xhci_alloc_streams().
3274 ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3275 command = vdev->eps[ep_index].stream_info->free_streams_command;
3276 ctrl_ctx = xhci_get_input_control_ctx(xhci, command->in_ctx);
3278 spin_unlock_irqrestore(&xhci->lock, flags);
3279 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3284 for (i = 0; i < num_eps; i++) {
3285 struct xhci_ep_ctx *ep_ctx;
3287 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3288 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3289 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3290 EP_GETTING_NO_STREAMS;
3292 xhci_endpoint_copy(xhci, command->in_ctx,
3293 vdev->out_ctx, ep_index);
3294 xhci_setup_no_streams_ep_input_ctx(xhci, ep_ctx,
3295 &vdev->eps[ep_index]);
3297 xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3298 vdev->out_ctx, ctrl_ctx,
3299 changed_ep_bitmask, changed_ep_bitmask);
3300 spin_unlock_irqrestore(&xhci->lock, flags);
3302 /* Issue and wait for the configure endpoint command,
3303 * which must succeed.
3305 ret = xhci_configure_endpoint(xhci, udev, command,
3308 /* xHC rejected the configure endpoint command for some reason, so we
3309 * leave the streams rings intact.
3314 spin_lock_irqsave(&xhci->lock, flags);
3315 for (i = 0; i < num_eps; i++) {
3316 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3317 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3318 vdev->eps[ep_index].stream_info = NULL;
3319 /* FIXME Unset maxPstreams in endpoint context and
3320 * update deq ptr to point to normal string ring.
3322 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3323 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3325 spin_unlock_irqrestore(&xhci->lock, flags);
3331 * Deletes endpoint resources for endpoints that were active before a Reset
3332 * Device command, or a Disable Slot command. The Reset Device command leaves
3333 * the control endpoint intact, whereas the Disable Slot command deletes it.
3335 * Must be called with xhci->lock held.
3337 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3338 struct xhci_virt_device *virt_dev, bool drop_control_ep)
3341 unsigned int num_dropped_eps = 0;
3342 unsigned int drop_flags = 0;
3344 for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3345 if (virt_dev->eps[i].ring) {
3346 drop_flags |= 1 << i;
3350 xhci->num_active_eps -= num_dropped_eps;
3351 if (num_dropped_eps)
3352 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3353 "Dropped %u ep ctxs, flags = 0x%x, "
3355 num_dropped_eps, drop_flags,
3356 xhci->num_active_eps);
3360 * This submits a Reset Device Command, which will set the device state to 0,
3361 * set the device address to 0, and disable all the endpoints except the default
3362 * control endpoint. The USB core should come back and call
3363 * xhci_address_device(), and then re-set up the configuration. If this is
3364 * called because of a usb_reset_and_verify_device(), then the old alternate
3365 * settings will be re-installed through the normal bandwidth allocation
3368 * Wait for the Reset Device command to finish. Remove all structures
3369 * associated with the endpoints that were disabled. Clear the input device
3370 * structure? Cache the rings? Reset the control endpoint 0 max packet size?
3372 * If the virt_dev to be reset does not exist or does not match the udev,
3373 * it means the device is lost, possibly due to the xHC restore error and
3374 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3375 * re-allocate the device.
3377 int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
3380 unsigned long flags;
3381 struct xhci_hcd *xhci;
3382 unsigned int slot_id;
3383 struct xhci_virt_device *virt_dev;
3384 struct xhci_command *reset_device_cmd;
3386 int last_freed_endpoint;
3387 struct xhci_slot_ctx *slot_ctx;
3388 int old_active_eps = 0;
3390 ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3393 xhci = hcd_to_xhci(hcd);
3394 slot_id = udev->slot_id;
3395 virt_dev = xhci->devs[slot_id];
3397 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3398 "not exist. Re-allocate the device\n", slot_id);
3399 ret = xhci_alloc_dev(hcd, udev);
3406 if (virt_dev->udev != udev) {
3407 /* If the virt_dev and the udev does not match, this virt_dev
3408 * may belong to another udev.
3409 * Re-allocate the device.
3411 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3412 "not match the udev. Re-allocate the device\n",
3414 ret = xhci_alloc_dev(hcd, udev);
3421 /* If device is not setup, there is no point in resetting it */
3422 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3423 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3424 SLOT_STATE_DISABLED)
3427 xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3428 /* Allocate the command structure that holds the struct completion.
3429 * Assume we're in process context, since the normal device reset
3430 * process has to wait for the device anyway. Storage devices are
3431 * reset as part of error handling, so use GFP_NOIO instead of
3434 reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO);
3435 if (!reset_device_cmd) {
3436 xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3440 /* Attempt to submit the Reset Device command to the command ring */
3441 spin_lock_irqsave(&xhci->lock, flags);
3442 reset_device_cmd->command_trb = xhci->cmd_ring->enqueue;
3444 /* Enqueue pointer can be left pointing to the link TRB,
3445 * we must handle that
3447 if (TRB_TYPE_LINK_LE32(reset_device_cmd->command_trb->link.control))
3448 reset_device_cmd->command_trb =
3449 xhci->cmd_ring->enq_seg->next->trbs;
3451 list_add_tail(&reset_device_cmd->cmd_list, &virt_dev->cmd_list);
3452 ret = xhci_queue_reset_device(xhci, slot_id);
3454 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3455 list_del(&reset_device_cmd->cmd_list);
3456 spin_unlock_irqrestore(&xhci->lock, flags);
3457 goto command_cleanup;
3459 xhci_ring_cmd_db(xhci);
3460 spin_unlock_irqrestore(&xhci->lock, flags);
3462 /* Wait for the Reset Device command to finish */
3463 timeleft = wait_for_completion_interruptible_timeout(
3464 reset_device_cmd->completion,
3465 USB_CTRL_SET_TIMEOUT);
3466 if (timeleft <= 0) {
3467 xhci_warn(xhci, "%s while waiting for reset device command\n",
3468 timeleft == 0 ? "Timeout" : "Signal");
3469 spin_lock_irqsave(&xhci->lock, flags);
3470 /* The timeout might have raced with the event ring handler, so
3471 * only delete from the list if the item isn't poisoned.
3473 if (reset_device_cmd->cmd_list.next != LIST_POISON1)
3474 list_del(&reset_device_cmd->cmd_list);
3475 spin_unlock_irqrestore(&xhci->lock, flags);
3477 goto command_cleanup;
3480 /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3481 * unless we tried to reset a slot ID that wasn't enabled,
3482 * or the device wasn't in the addressed or configured state.
3484 ret = reset_device_cmd->status;
3486 case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */
3487 case COMP_CTX_STATE: /* 0.96 completion code for same thing */
3488 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3490 xhci_get_slot_state(xhci, virt_dev->out_ctx));
3491 xhci_dbg(xhci, "Not freeing device rings.\n");
3492 /* Don't treat this as an error. May change my mind later. */
3494 goto command_cleanup;
3496 xhci_dbg(xhci, "Successful reset device command.\n");
3499 if (xhci_is_vendor_info_code(xhci, ret))
3501 xhci_warn(xhci, "Unknown completion code %u for "
3502 "reset device command.\n", ret);
3504 goto command_cleanup;
3507 /* Free up host controller endpoint resources */
3508 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3509 spin_lock_irqsave(&xhci->lock, flags);
3510 /* Don't delete the default control endpoint resources */
3511 xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3512 spin_unlock_irqrestore(&xhci->lock, flags);
3515 /* Everything but endpoint 0 is disabled, so free or cache the rings. */
3516 last_freed_endpoint = 1;
3517 for (i = 1; i < 31; ++i) {
3518 struct xhci_virt_ep *ep = &virt_dev->eps[i];
3520 if (ep->ep_state & EP_HAS_STREAMS) {
3521 xhci_free_stream_info(xhci, ep->stream_info);
3522 ep->stream_info = NULL;
3523 ep->ep_state &= ~EP_HAS_STREAMS;
3527 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
3528 last_freed_endpoint = i;
3530 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3531 xhci_drop_ep_from_interval_table(xhci,
3532 &virt_dev->eps[i].bw_info,
3537 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3539 /* If necessary, update the number of active TTs on this root port */
3540 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3542 xhci_dbg(xhci, "Output context after successful reset device cmd:\n");
3543 xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint);
3547 xhci_free_command(xhci, reset_device_cmd);
3552 * At this point, the struct usb_device is about to go away, the device has
3553 * disconnected, and all traffic has been stopped and the endpoints have been
3554 * disabled. Free any HC data structures associated with that device.
3556 void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3558 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3559 struct xhci_virt_device *virt_dev;
3560 unsigned long flags;
3564 #ifndef CONFIG_USB_DEFAULT_PERSIST
3566 * We called pm_runtime_get_noresume when the device was attached.
3567 * Decrement the counter here to allow controller to runtime suspend
3568 * if no devices remain.
3570 if (xhci->quirks & XHCI_RESET_ON_RESUME)
3571 pm_runtime_put_noidle(hcd->self.controller);
3574 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3575 /* If the host is halted due to driver unload, we still need to free the
3578 if (ret <= 0 && ret != -ENODEV)
3581 virt_dev = xhci->devs[udev->slot_id];
3583 /* Stop any wayward timer functions (which may grab the lock) */
3584 for (i = 0; i < 31; ++i) {
3585 virt_dev->eps[i].ep_state &= ~EP_HALT_PENDING;
3586 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3589 if (udev->usb2_hw_lpm_enabled) {
3590 xhci_set_usb2_hardware_lpm(hcd, udev, 0);
3591 udev->usb2_hw_lpm_enabled = 0;
3594 spin_lock_irqsave(&xhci->lock, flags);
3595 /* Don't disable the slot if the host controller is dead. */
3596 state = xhci_readl(xhci, &xhci->op_regs->status);
3597 if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3598 (xhci->xhc_state & XHCI_STATE_HALTED)) {
3599 xhci_free_virt_device(xhci, udev->slot_id);
3600 spin_unlock_irqrestore(&xhci->lock, flags);
3604 if (xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id)) {
3605 spin_unlock_irqrestore(&xhci->lock, flags);
3606 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3609 xhci_ring_cmd_db(xhci);
3610 spin_unlock_irqrestore(&xhci->lock, flags);
3612 * Event command completion handler will free any data structures
3613 * associated with the slot. XXX Can free sleep?
3618 * Checks if we have enough host controller resources for the default control
3621 * Must be called with xhci->lock held.
3623 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3625 if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3626 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3627 "Not enough ep ctxs: "
3628 "%u active, need to add 1, limit is %u.",
3629 xhci->num_active_eps, xhci->limit_active_eps);
3632 xhci->num_active_eps += 1;
3633 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3634 "Adding 1 ep ctx, %u now active.",
3635 xhci->num_active_eps);
3641 * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3642 * timed out, or allocating memory failed. Returns 1 on success.
3644 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3646 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3647 unsigned long flags;
3650 union xhci_trb *cmd_trb;
3652 spin_lock_irqsave(&xhci->lock, flags);
3653 cmd_trb = xhci->cmd_ring->dequeue;
3654 ret = xhci_queue_slot_control(xhci, TRB_ENABLE_SLOT, 0);
3656 spin_unlock_irqrestore(&xhci->lock, flags);
3657 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3660 xhci_ring_cmd_db(xhci);
3661 spin_unlock_irqrestore(&xhci->lock, flags);
3663 /* XXX: how much time for xHC slot assignment? */
3664 timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
3665 XHCI_CMD_DEFAULT_TIMEOUT);
3666 if (timeleft <= 0) {
3667 xhci_warn(xhci, "%s while waiting for a slot\n",
3668 timeleft == 0 ? "Timeout" : "Signal");
3669 /* cancel the enable slot request */
3670 return xhci_cancel_cmd(xhci, NULL, cmd_trb);
3673 if (!xhci->slot_id) {
3674 xhci_err(xhci, "Error while assigning device slot ID\n");
3678 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3679 spin_lock_irqsave(&xhci->lock, flags);
3680 ret = xhci_reserve_host_control_ep_resources(xhci);
3682 spin_unlock_irqrestore(&xhci->lock, flags);
3683 xhci_warn(xhci, "Not enough host resources, "
3684 "active endpoint contexts = %u\n",
3685 xhci->num_active_eps);
3688 spin_unlock_irqrestore(&xhci->lock, flags);
3690 /* Use GFP_NOIO, since this function can be called from
3691 * xhci_discover_or_reset_device(), which may be called as part of
3692 * mass storage driver error handling.
3694 if (!xhci_alloc_virt_device(xhci, xhci->slot_id, udev, GFP_NOIO)) {
3695 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
3698 udev->slot_id = xhci->slot_id;
3700 #ifndef CONFIG_USB_DEFAULT_PERSIST
3702 * If resetting upon resume, we can't put the controller into runtime
3703 * suspend if there is a device attached.
3705 if (xhci->quirks & XHCI_RESET_ON_RESUME)
3706 pm_runtime_get_noresume(hcd->self.controller);
3709 /* Is this a LS or FS device under a HS hub? */
3710 /* Hub or peripherial? */
3714 /* Disable slot, if we can do it without mem alloc */
3715 spin_lock_irqsave(&xhci->lock, flags);
3716 if (!xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id))
3717 xhci_ring_cmd_db(xhci);
3718 spin_unlock_irqrestore(&xhci->lock, flags);
3723 * Issue an Address Device command (which will issue a SetAddress request to
3725 * We should be protected by the usb_address0_mutex in khubd's hub_port_init, so
3726 * we should only issue and wait on one address command at the same time.
3728 * We add one to the device address issued by the hardware because the USB core
3729 * uses address 1 for the root hubs (even though they're not really devices).
3731 int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
3733 unsigned long flags;
3735 struct xhci_virt_device *virt_dev;
3737 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3738 struct xhci_slot_ctx *slot_ctx;
3739 struct xhci_input_control_ctx *ctrl_ctx;
3741 union xhci_trb *cmd_trb;
3743 if (!udev->slot_id) {
3744 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3745 "Bad Slot ID %d", udev->slot_id);
3749 virt_dev = xhci->devs[udev->slot_id];
3751 if (WARN_ON(!virt_dev)) {
3753 * In plug/unplug torture test with an NEC controller,
3754 * a zero-dereference was observed once due to virt_dev = 0.
3755 * Print useful debug rather than crash if it is observed again!
3757 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
3762 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3763 ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
3765 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3770 * If this is the first Set Address since device plug-in or
3771 * virt_device realloaction after a resume with an xHCI power loss,
3772 * then set up the slot context.
3774 if (!slot_ctx->dev_info)
3775 xhci_setup_addressable_virt_dev(xhci, udev);
3776 /* Otherwise, update the control endpoint ring enqueue pointer. */
3778 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
3779 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
3780 ctrl_ctx->drop_flags = 0;
3782 xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3783 xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3784 trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3785 slot_ctx->dev_info >> 27);
3787 spin_lock_irqsave(&xhci->lock, flags);
3788 cmd_trb = xhci->cmd_ring->dequeue;
3789 ret = xhci_queue_address_device(xhci, virt_dev->in_ctx->dma,
3792 spin_unlock_irqrestore(&xhci->lock, flags);
3793 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3794 "FIXME: allocate a command ring segment");
3797 xhci_ring_cmd_db(xhci);
3798 spin_unlock_irqrestore(&xhci->lock, flags);
3800 /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
3801 timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
3802 XHCI_CMD_DEFAULT_TIMEOUT);
3803 /* FIXME: From section 4.3.4: "Software shall be responsible for timing
3804 * the SetAddress() "recovery interval" required by USB and aborting the
3805 * command on a timeout.
3807 if (timeleft <= 0) {
3808 xhci_warn(xhci, "%s while waiting for address device command\n",
3809 timeleft == 0 ? "Timeout" : "Signal");
3810 /* cancel the address device command */
3811 ret = xhci_cancel_cmd(xhci, NULL, cmd_trb);
3817 switch (virt_dev->cmd_status) {
3818 case COMP_CTX_STATE:
3820 xhci_err(xhci, "Setup ERROR: address device command for slot %d.\n",
3825 dev_warn(&udev->dev, "Device not responding to set address.\n");
3829 dev_warn(&udev->dev, "ERROR: Incompatible device for address "
3830 "device command.\n");
3834 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3835 "Successful Address Device command");
3838 xhci_err(xhci, "ERROR: unexpected command completion "
3839 "code 0x%x.\n", virt_dev->cmd_status);
3840 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3841 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3842 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
3849 temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
3850 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3851 "Op regs DCBAA ptr = %#016llx", temp_64);
3852 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3853 "Slot ID %d dcbaa entry @%p = %#016llx",
3855 &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
3856 (unsigned long long)
3857 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
3858 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3859 "Output Context DMA address = %#08llx",
3860 (unsigned long long)virt_dev->out_ctx->dma);
3861 xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3862 xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3863 trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3864 slot_ctx->dev_info >> 27);
3865 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3866 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3868 * USB core uses address 1 for the roothubs, so we add one to the
3869 * address given back to us by the HC.
3871 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3872 trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
3873 slot_ctx->dev_info >> 27);
3874 /* Use kernel assigned address for devices; store xHC assigned
3875 * address locally. */
3876 virt_dev->address = (le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK)
3878 /* Zero the input context control for later use */
3879 ctrl_ctx->add_flags = 0;
3880 ctrl_ctx->drop_flags = 0;
3882 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3883 "Internal device address = %d", virt_dev->address);
3889 * Transfer the port index into real index in the HW port status
3890 * registers. Caculate offset between the port's PORTSC register
3891 * and port status base. Divide the number of per port register
3892 * to get the real index. The raw port number bases 1.
3894 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
3896 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3897 __le32 __iomem *base_addr = &xhci->op_regs->port_status_base;
3898 __le32 __iomem *addr;
3901 if (hcd->speed != HCD_USB3)
3902 addr = xhci->usb2_ports[port1 - 1];
3904 addr = xhci->usb3_ports[port1 - 1];
3906 raw_port = (addr - base_addr)/NUM_PORT_REGS + 1;
3911 * Issue an Evaluate Context command to change the Maximum Exit Latency in the
3912 * slot context. If that succeeds, store the new MEL in the xhci_virt_device.
3914 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
3915 struct usb_device *udev, u16 max_exit_latency)
3917 struct xhci_virt_device *virt_dev;
3918 struct xhci_command *command;
3919 struct xhci_input_control_ctx *ctrl_ctx;
3920 struct xhci_slot_ctx *slot_ctx;
3921 unsigned long flags;
3924 spin_lock_irqsave(&xhci->lock, flags);
3925 if (max_exit_latency == xhci->devs[udev->slot_id]->current_mel) {
3926 spin_unlock_irqrestore(&xhci->lock, flags);
3930 /* Attempt to issue an Evaluate Context command to change the MEL. */
3931 virt_dev = xhci->devs[udev->slot_id];
3932 command = xhci->lpm_command;
3933 ctrl_ctx = xhci_get_input_control_ctx(xhci, command->in_ctx);
3935 spin_unlock_irqrestore(&xhci->lock, flags);
3936 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3941 xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
3942 spin_unlock_irqrestore(&xhci->lock, flags);
3944 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3945 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
3946 slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
3947 slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
3949 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
3950 "Set up evaluate context for LPM MEL change.");
3951 xhci_dbg(xhci, "Slot %u Input Context:\n", udev->slot_id);
3952 xhci_dbg_ctx(xhci, command->in_ctx, 0);
3954 /* Issue and wait for the evaluate context command. */
3955 ret = xhci_configure_endpoint(xhci, udev, command,
3957 xhci_dbg(xhci, "Slot %u Output Context:\n", udev->slot_id);
3958 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 0);
3961 spin_lock_irqsave(&xhci->lock, flags);
3962 virt_dev->current_mel = max_exit_latency;
3963 spin_unlock_irqrestore(&xhci->lock, flags);
3968 #ifdef CONFIG_PM_RUNTIME
3970 /* BESL to HIRD Encoding array for USB2 LPM */
3971 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
3972 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
3974 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
3975 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
3976 struct usb_device *udev)
3978 int u2del, besl, besl_host;
3979 int besl_device = 0;
3982 u2del = HCS_U2_LATENCY(xhci->hcs_params3);
3983 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
3985 if (field & USB_BESL_SUPPORT) {
3986 for (besl_host = 0; besl_host < 16; besl_host++) {
3987 if (xhci_besl_encoding[besl_host] >= u2del)
3990 /* Use baseline BESL value as default */
3991 if (field & USB_BESL_BASELINE_VALID)
3992 besl_device = USB_GET_BESL_BASELINE(field);
3993 else if (field & USB_BESL_DEEP_VALID)
3994 besl_device = USB_GET_BESL_DEEP(field);
3999 besl_host = (u2del - 51) / 75 + 1;
4002 besl = besl_host + besl_device;
4009 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4010 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4017 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4019 /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4020 l1 = udev->l1_params.timeout / 256;
4022 /* device has preferred BESLD */
4023 if (field & USB_BESL_DEEP_VALID) {
4024 besld = USB_GET_BESL_DEEP(field);
4028 return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4031 static int xhci_usb2_software_lpm_test(struct usb_hcd *hcd,
4032 struct usb_device *udev)
4034 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4035 struct dev_info *dev_info;
4036 __le32 __iomem **port_array;
4037 __le32 __iomem *addr, *pm_addr;
4039 unsigned int port_num;
4040 unsigned long flags;
4044 if (hcd->speed == HCD_USB3 || !xhci->sw_lpm_support ||
4048 /* we only support lpm for non-hub device connected to root hub yet */
4049 if (!udev->parent || udev->parent->parent ||
4050 udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4053 spin_lock_irqsave(&xhci->lock, flags);
4055 /* Look for devices in lpm_failed_devs list */
4056 dev_id = le16_to_cpu(udev->descriptor.idVendor) << 16 |
4057 le16_to_cpu(udev->descriptor.idProduct);
4058 list_for_each_entry(dev_info, &xhci->lpm_failed_devs, list) {
4059 if (dev_info->dev_id == dev_id) {
4065 port_array = xhci->usb2_ports;
4066 port_num = udev->portnum - 1;
4068 if (port_num > HCS_MAX_PORTS(xhci->hcs_params1)) {
4069 xhci_dbg(xhci, "invalid port number %d\n", udev->portnum);
4075 * Test USB 2.0 software LPM.
4076 * FIXME: some xHCI 1.0 hosts may implement a new register to set up
4077 * hardware-controlled USB 2.0 LPM. See section 5.4.11 and 4.23.5.1.1.1
4078 * in the June 2011 errata release.
4080 xhci_dbg(xhci, "test port %d software LPM\n", port_num);
4082 * Set L1 Device Slot and HIRD/BESL.
4083 * Check device's USB 2.0 extension descriptor to determine whether
4084 * HIRD or BESL shoule be used. See USB2.0 LPM errata.
4086 pm_addr = port_array[port_num] + PORTPMSC;
4087 hird = xhci_calculate_hird_besl(xhci, udev);
4088 temp = PORT_L1DS(udev->slot_id) | PORT_HIRD(hird);
4089 xhci_writel(xhci, temp, pm_addr);
4091 /* Set port link state to U2(L1) */
4092 addr = port_array[port_num];
4093 xhci_set_link_state(xhci, port_array, port_num, XDEV_U2);
4096 spin_unlock_irqrestore(&xhci->lock, flags);
4098 spin_lock_irqsave(&xhci->lock, flags);
4100 /* Check L1 Status */
4101 ret = xhci_handshake(xhci, pm_addr,
4102 PORT_L1S_MASK, PORT_L1S_SUCCESS, 125);
4103 if (ret != -ETIMEDOUT) {
4104 /* enter L1 successfully */
4105 temp = xhci_readl(xhci, addr);
4106 xhci_dbg(xhci, "port %d entered L1 state, port status 0x%x\n",
4110 temp = xhci_readl(xhci, pm_addr);
4111 xhci_dbg(xhci, "port %d software lpm failed, L1 status %d\n",
4112 port_num, temp & PORT_L1S_MASK);
4116 /* Resume the port */
4117 xhci_set_link_state(xhci, port_array, port_num, XDEV_U0);
4119 spin_unlock_irqrestore(&xhci->lock, flags);
4121 spin_lock_irqsave(&xhci->lock, flags);
4124 xhci_test_and_clear_bit(xhci, port_array, port_num, PORT_PLC);
4126 /* Check PORTSC to make sure the device is in the right state */
4128 temp = xhci_readl(xhci, addr);
4129 xhci_dbg(xhci, "resumed port %d status 0x%x\n", port_num, temp);
4130 if (!(temp & PORT_CONNECT) || !(temp & PORT_PE) ||
4131 (temp & PORT_PLS_MASK) != XDEV_U0) {
4132 xhci_dbg(xhci, "port L1 resume fail\n");
4138 /* Insert dev to lpm_failed_devs list */
4139 xhci_warn(xhci, "device LPM test failed, may disconnect and "
4141 dev_info = kzalloc(sizeof(struct dev_info), GFP_ATOMIC);
4146 dev_info->dev_id = dev_id;
4147 INIT_LIST_HEAD(&dev_info->list);
4148 list_add(&dev_info->list, &xhci->lpm_failed_devs);
4150 xhci_ring_device(xhci, udev->slot_id);
4154 spin_unlock_irqrestore(&xhci->lock, flags);
4158 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4159 struct usb_device *udev, int enable)
4161 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4162 __le32 __iomem **port_array;
4163 __le32 __iomem *pm_addr, *hlpm_addr;
4164 u32 pm_val, hlpm_val, field;
4165 unsigned int port_num;
4166 unsigned long flags;
4167 int hird, exit_latency;
4170 if (hcd->speed == HCD_USB3 || !xhci->hw_lpm_support ||
4174 if (!udev->parent || udev->parent->parent ||
4175 udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4178 if (udev->usb2_hw_lpm_capable != 1)
4181 spin_lock_irqsave(&xhci->lock, flags);
4183 port_array = xhci->usb2_ports;
4184 port_num = udev->portnum - 1;
4185 pm_addr = port_array[port_num] + PORTPMSC;
4186 pm_val = xhci_readl(xhci, pm_addr);
4187 hlpm_addr = port_array[port_num] + PORTHLPMC;
4188 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4190 xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4191 enable ? "enable" : "disable", port_num);
4194 /* Host supports BESL timeout instead of HIRD */
4195 if (udev->usb2_hw_lpm_besl_capable) {
4196 /* if device doesn't have a preferred BESL value use a
4197 * default one which works with mixed HIRD and BESL
4198 * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4200 if ((field & USB_BESL_SUPPORT) &&
4201 (field & USB_BESL_BASELINE_VALID))
4202 hird = USB_GET_BESL_BASELINE(field);
4204 hird = udev->l1_params.besl;
4206 exit_latency = xhci_besl_encoding[hird];
4207 spin_unlock_irqrestore(&xhci->lock, flags);
4209 /* USB 3.0 code dedicate one xhci->lpm_command->in_ctx
4210 * input context for link powermanagement evaluate
4211 * context commands. It is protected by hcd->bandwidth
4212 * mutex and is shared by all devices. We need to set
4213 * the max ext latency in USB 2 BESL LPM as well, so
4214 * use the same mutex and xhci_change_max_exit_latency()
4216 mutex_lock(hcd->bandwidth_mutex);
4217 ret = xhci_change_max_exit_latency(xhci, udev,
4219 mutex_unlock(hcd->bandwidth_mutex);
4223 spin_lock_irqsave(&xhci->lock, flags);
4225 hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4226 xhci_writel(xhci, hlpm_val, hlpm_addr);
4228 xhci_readl(xhci, hlpm_addr);
4230 hird = xhci_calculate_hird_besl(xhci, udev);
4233 pm_val &= ~PORT_HIRD_MASK;
4234 pm_val |= PORT_HIRD(hird) | PORT_RWE;
4235 xhci_writel(xhci, pm_val, pm_addr);
4236 pm_val = xhci_readl(xhci, pm_addr);
4238 xhci_writel(xhci, pm_val, pm_addr);
4240 xhci_readl(xhci, pm_addr);
4242 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK);
4243 xhci_writel(xhci, pm_val, pm_addr);
4245 xhci_readl(xhci, pm_addr);
4246 if (udev->usb2_hw_lpm_besl_capable) {
4247 spin_unlock_irqrestore(&xhci->lock, flags);
4248 mutex_lock(hcd->bandwidth_mutex);
4249 xhci_change_max_exit_latency(xhci, udev, 0);
4250 mutex_unlock(hcd->bandwidth_mutex);
4255 spin_unlock_irqrestore(&xhci->lock, flags);
4259 /* check if a usb2 port supports a given extened capability protocol
4260 * only USB2 ports extended protocol capability values are cached.
4261 * Return 1 if capability is supported
4263 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4264 unsigned capability)
4266 u32 port_offset, port_count;
4269 for (i = 0; i < xhci->num_ext_caps; i++) {
4270 if (xhci->ext_caps[i] & capability) {
4271 /* port offsets starts at 1 */
4272 port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4273 port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4274 if (port >= port_offset &&
4275 port < port_offset + port_count)
4282 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4284 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4286 int portnum = udev->portnum - 1;
4288 ret = xhci_usb2_software_lpm_test(hcd, udev);
4290 xhci_dbg(xhci, "software LPM test succeed\n");
4291 if (xhci->hw_lpm_support == 1 &&
4292 xhci_check_usb2_port_capability(xhci, portnum, XHCI_HLC)) {
4293 udev->usb2_hw_lpm_capable = 1;
4294 udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4295 udev->l1_params.besl = XHCI_DEFAULT_BESL;
4296 if (xhci_check_usb2_port_capability(xhci, portnum,
4298 udev->usb2_hw_lpm_besl_capable = 1;
4299 ret = xhci_set_usb2_hardware_lpm(hcd, udev, 1);
4301 udev->usb2_hw_lpm_enabled = 1;
4310 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4311 struct usb_device *udev, int enable)
4316 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4321 #endif /* CONFIG_PM_RUNTIME */
4323 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4326 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4327 static unsigned long long xhci_service_interval_to_ns(
4328 struct usb_endpoint_descriptor *desc)
4330 return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4333 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4334 enum usb3_link_state state)
4336 unsigned long long sel;
4337 unsigned long long pel;
4338 unsigned int max_sel_pel;
4343 /* Convert SEL and PEL stored in nanoseconds to microseconds */
4344 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4345 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4346 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4350 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4351 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4352 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4356 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4358 return USB3_LPM_DISABLED;
4361 if (sel <= max_sel_pel && pel <= max_sel_pel)
4362 return USB3_LPM_DEVICE_INITIATED;
4364 if (sel > max_sel_pel)
4365 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4366 "due to long SEL %llu ms\n",
4369 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4370 "due to long PEL %llu ms\n",
4372 return USB3_LPM_DISABLED;
4375 /* Returns the hub-encoded U1 timeout value.
4376 * The U1 timeout should be the maximum of the following values:
4377 * - For control endpoints, U1 system exit latency (SEL) * 3
4378 * - For bulk endpoints, U1 SEL * 5
4379 * - For interrupt endpoints:
4380 * - Notification EPs, U1 SEL * 3
4381 * - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4382 * - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4384 static u16 xhci_calculate_intel_u1_timeout(struct usb_device *udev,
4385 struct usb_endpoint_descriptor *desc)
4387 unsigned long long timeout_ns;
4391 ep_type = usb_endpoint_type(desc);
4393 case USB_ENDPOINT_XFER_CONTROL:
4394 timeout_ns = udev->u1_params.sel * 3;
4396 case USB_ENDPOINT_XFER_BULK:
4397 timeout_ns = udev->u1_params.sel * 5;
4399 case USB_ENDPOINT_XFER_INT:
4400 intr_type = usb_endpoint_interrupt_type(desc);
4401 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4402 timeout_ns = udev->u1_params.sel * 3;
4405 /* Otherwise the calculation is the same as isoc eps */
4406 case USB_ENDPOINT_XFER_ISOC:
4407 timeout_ns = xhci_service_interval_to_ns(desc);
4408 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4409 if (timeout_ns < udev->u1_params.sel * 2)
4410 timeout_ns = udev->u1_params.sel * 2;
4416 /* The U1 timeout is encoded in 1us intervals. */
4417 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4418 /* Don't return a timeout of zero, because that's USB3_LPM_DISABLED. */
4419 if (timeout_ns == USB3_LPM_DISABLED)
4422 /* If the necessary timeout value is bigger than what we can set in the
4423 * USB 3.0 hub, we have to disable hub-initiated U1.
4425 if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4427 dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4428 "due to long timeout %llu ms\n", timeout_ns);
4429 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4432 /* Returns the hub-encoded U2 timeout value.
4433 * The U2 timeout should be the maximum of:
4434 * - 10 ms (to avoid the bandwidth impact on the scheduler)
4435 * - largest bInterval of any active periodic endpoint (to avoid going
4436 * into lower power link states between intervals).
4437 * - the U2 Exit Latency of the device
4439 static u16 xhci_calculate_intel_u2_timeout(struct usb_device *udev,
4440 struct usb_endpoint_descriptor *desc)
4442 unsigned long long timeout_ns;
4443 unsigned long long u2_del_ns;
4445 timeout_ns = 10 * 1000 * 1000;
4447 if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4448 (xhci_service_interval_to_ns(desc) > timeout_ns))
4449 timeout_ns = xhci_service_interval_to_ns(desc);
4451 u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4452 if (u2_del_ns > timeout_ns)
4453 timeout_ns = u2_del_ns;
4455 /* The U2 timeout is encoded in 256us intervals */
4456 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4457 /* If the necessary timeout value is bigger than what we can set in the
4458 * USB 3.0 hub, we have to disable hub-initiated U2.
4460 if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4462 dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4463 "due to long timeout %llu ms\n", timeout_ns);
4464 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4467 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4468 struct usb_device *udev,
4469 struct usb_endpoint_descriptor *desc,
4470 enum usb3_link_state state,
4473 if (state == USB3_LPM_U1) {
4474 if (xhci->quirks & XHCI_INTEL_HOST)
4475 return xhci_calculate_intel_u1_timeout(udev, desc);
4477 if (xhci->quirks & XHCI_INTEL_HOST)
4478 return xhci_calculate_intel_u2_timeout(udev, desc);
4481 return USB3_LPM_DISABLED;
4484 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4485 struct usb_device *udev,
4486 struct usb_endpoint_descriptor *desc,
4487 enum usb3_link_state state,
4492 alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4493 desc, state, timeout);
4495 /* If we found we can't enable hub-initiated LPM, or
4496 * the U1 or U2 exit latency was too high to allow
4497 * device-initiated LPM as well, just stop searching.
4499 if (alt_timeout == USB3_LPM_DISABLED ||
4500 alt_timeout == USB3_LPM_DEVICE_INITIATED) {
4501 *timeout = alt_timeout;
4504 if (alt_timeout > *timeout)
4505 *timeout = alt_timeout;
4509 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4510 struct usb_device *udev,
4511 struct usb_host_interface *alt,
4512 enum usb3_link_state state,
4517 for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4518 if (xhci_update_timeout_for_endpoint(xhci, udev,
4519 &alt->endpoint[j].desc, state, timeout))
4526 static int xhci_check_intel_tier_policy(struct usb_device *udev,
4527 enum usb3_link_state state)
4529 struct usb_device *parent;
4530 unsigned int num_hubs;
4532 if (state == USB3_LPM_U2)
4535 /* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4536 for (parent = udev->parent, num_hubs = 0; parent->parent;
4537 parent = parent->parent)
4543 dev_dbg(&udev->dev, "Disabling U1 link state for device"
4544 " below second-tier hub.\n");
4545 dev_dbg(&udev->dev, "Plug device into first-tier hub "
4546 "to decrease power consumption.\n");
4550 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4551 struct usb_device *udev,
4552 enum usb3_link_state state)
4554 if (xhci->quirks & XHCI_INTEL_HOST)
4555 return xhci_check_intel_tier_policy(udev, state);
4559 /* Returns the U1 or U2 timeout that should be enabled.
4560 * If the tier check or timeout setting functions return with a non-zero exit
4561 * code, that means the timeout value has been finalized and we shouldn't look
4562 * at any more endpoints.
4564 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4565 struct usb_device *udev, enum usb3_link_state state)
4567 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4568 struct usb_host_config *config;
4571 u16 timeout = USB3_LPM_DISABLED;
4573 if (state == USB3_LPM_U1)
4575 else if (state == USB3_LPM_U2)
4578 dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4583 if (xhci_check_tier_policy(xhci, udev, state) < 0)
4586 /* Gather some information about the currently installed configuration
4587 * and alternate interface settings.
4589 if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4593 config = udev->actconfig;
4597 for (i = 0; i < USB_MAXINTERFACES; i++) {
4598 struct usb_driver *driver;
4599 struct usb_interface *intf = config->interface[i];
4604 /* Check if any currently bound drivers want hub-initiated LPM
4607 if (intf->dev.driver) {
4608 driver = to_usb_driver(intf->dev.driver);
4609 if (driver && driver->disable_hub_initiated_lpm) {
4610 dev_dbg(&udev->dev, "Hub-initiated %s disabled "
4611 "at request of driver %s\n",
4612 state_name, driver->name);
4613 return xhci_get_timeout_no_hub_lpm(udev, state);
4617 /* Not sure how this could happen... */
4618 if (!intf->cur_altsetting)
4621 if (xhci_update_timeout_for_interface(xhci, udev,
4622 intf->cur_altsetting,
4629 static int calculate_max_exit_latency(struct usb_device *udev,
4630 enum usb3_link_state state_changed,
4631 u16 hub_encoded_timeout)
4633 unsigned long long u1_mel_us = 0;
4634 unsigned long long u2_mel_us = 0;
4635 unsigned long long mel_us = 0;
4641 disabling_u1 = (state_changed == USB3_LPM_U1 &&
4642 hub_encoded_timeout == USB3_LPM_DISABLED);
4643 disabling_u2 = (state_changed == USB3_LPM_U2 &&
4644 hub_encoded_timeout == USB3_LPM_DISABLED);
4646 enabling_u1 = (state_changed == USB3_LPM_U1 &&
4647 hub_encoded_timeout != USB3_LPM_DISABLED);
4648 enabling_u2 = (state_changed == USB3_LPM_U2 &&
4649 hub_encoded_timeout != USB3_LPM_DISABLED);
4651 /* If U1 was already enabled and we're not disabling it,
4652 * or we're going to enable U1, account for the U1 max exit latency.
4654 if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4656 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4657 if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4659 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4661 if (u1_mel_us > u2_mel_us)
4665 /* xHCI host controller max exit latency field is only 16 bits wide. */
4666 if (mel_us > MAX_EXIT) {
4667 dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4668 "is too big.\n", mel_us);
4674 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
4675 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4676 struct usb_device *udev, enum usb3_link_state state)
4678 struct xhci_hcd *xhci;
4679 u16 hub_encoded_timeout;
4683 xhci = hcd_to_xhci(hcd);
4684 /* The LPM timeout values are pretty host-controller specific, so don't
4685 * enable hub-initiated timeouts unless the vendor has provided
4686 * information about their timeout algorithm.
4688 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4689 !xhci->devs[udev->slot_id])
4690 return USB3_LPM_DISABLED;
4692 hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4693 mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4695 /* Max Exit Latency is too big, disable LPM. */
4696 hub_encoded_timeout = USB3_LPM_DISABLED;
4700 ret = xhci_change_max_exit_latency(xhci, udev, mel);
4703 return hub_encoded_timeout;
4706 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4707 struct usb_device *udev, enum usb3_link_state state)
4709 struct xhci_hcd *xhci;
4713 xhci = hcd_to_xhci(hcd);
4714 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4715 !xhci->devs[udev->slot_id])
4718 mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
4719 ret = xhci_change_max_exit_latency(xhci, udev, mel);
4724 #else /* CONFIG_PM */
4726 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4727 struct usb_device *udev, enum usb3_link_state state)
4729 return USB3_LPM_DISABLED;
4732 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4733 struct usb_device *udev, enum usb3_link_state state)
4737 #endif /* CONFIG_PM */
4739 /*-------------------------------------------------------------------------*/
4741 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
4742 * internal data structures for the device.
4744 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
4745 struct usb_tt *tt, gfp_t mem_flags)
4747 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4748 struct xhci_virt_device *vdev;
4749 struct xhci_command *config_cmd;
4750 struct xhci_input_control_ctx *ctrl_ctx;
4751 struct xhci_slot_ctx *slot_ctx;
4752 unsigned long flags;
4753 unsigned think_time;
4756 /* Ignore root hubs */
4760 vdev = xhci->devs[hdev->slot_id];
4762 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
4765 config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
4767 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
4770 ctrl_ctx = xhci_get_input_control_ctx(xhci, config_cmd->in_ctx);
4772 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4774 xhci_free_command(xhci, config_cmd);
4778 spin_lock_irqsave(&xhci->lock, flags);
4779 if (hdev->speed == USB_SPEED_HIGH &&
4780 xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
4781 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
4782 xhci_free_command(xhci, config_cmd);
4783 spin_unlock_irqrestore(&xhci->lock, flags);
4787 xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
4788 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4789 slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
4790 slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
4792 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
4793 if (xhci->hci_version > 0x95) {
4794 xhci_dbg(xhci, "xHCI version %x needs hub "
4795 "TT think time and number of ports\n",
4796 (unsigned int) xhci->hci_version);
4797 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
4798 /* Set TT think time - convert from ns to FS bit times.
4799 * 0 = 8 FS bit times, 1 = 16 FS bit times,
4800 * 2 = 24 FS bit times, 3 = 32 FS bit times.
4802 * xHCI 1.0: this field shall be 0 if the device is not a
4805 think_time = tt->think_time;
4806 if (think_time != 0)
4807 think_time = (think_time / 666) - 1;
4808 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
4809 slot_ctx->tt_info |=
4810 cpu_to_le32(TT_THINK_TIME(think_time));
4812 xhci_dbg(xhci, "xHCI version %x doesn't need hub "
4813 "TT think time or number of ports\n",
4814 (unsigned int) xhci->hci_version);
4816 slot_ctx->dev_state = 0;
4817 spin_unlock_irqrestore(&xhci->lock, flags);
4819 xhci_dbg(xhci, "Set up %s for hub device.\n",
4820 (xhci->hci_version > 0x95) ?
4821 "configure endpoint" : "evaluate context");
4822 xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id);
4823 xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0);
4825 /* Issue and wait for the configure endpoint or
4826 * evaluate context command.
4828 if (xhci->hci_version > 0x95)
4829 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4832 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4835 xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id);
4836 xhci_dbg_ctx(xhci, vdev->out_ctx, 0);
4838 xhci_free_command(xhci, config_cmd);
4842 int xhci_get_frame(struct usb_hcd *hcd)
4844 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4845 /* EHCI mods by the periodic size. Why? */
4846 return xhci_readl(xhci, &xhci->run_regs->microframe_index) >> 3;
4849 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
4851 struct xhci_hcd *xhci;
4852 struct device *dev = hcd->self.controller;
4855 /* Accept arbitrarily long scatter-gather lists */
4856 hcd->self.sg_tablesize = ~0;
4858 /* support to build packet from discontinuous buffers */
4859 hcd->self.no_sg_constraint = 1;
4861 /* XHCI controllers don't stop the ep queue on short packets :| */
4862 hcd->self.no_stop_on_short = 1;
4864 if (usb_hcd_is_primary_hcd(hcd)) {
4865 xhci = kzalloc(sizeof(struct xhci_hcd), GFP_KERNEL);
4868 *((struct xhci_hcd **) hcd->hcd_priv) = xhci;
4869 xhci->main_hcd = hcd;
4870 /* Mark the first roothub as being USB 2.0.
4871 * The xHCI driver will register the USB 3.0 roothub.
4873 hcd->speed = HCD_USB2;
4874 hcd->self.root_hub->speed = USB_SPEED_HIGH;
4876 * USB 2.0 roothub under xHCI has an integrated TT,
4877 * (rate matching hub) as opposed to having an OHCI/UHCI
4878 * companion controller.
4882 /* xHCI private pointer was set in xhci_pci_probe for the second
4883 * registered roothub.
4888 xhci->cap_regs = hcd->regs;
4889 xhci->op_regs = hcd->regs +
4890 HC_LENGTH(xhci_readl(xhci, &xhci->cap_regs->hc_capbase));
4891 xhci->run_regs = hcd->regs +
4892 (xhci_readl(xhci, &xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
4893 /* Cache read-only capability registers */
4894 xhci->hcs_params1 = xhci_readl(xhci, &xhci->cap_regs->hcs_params1);
4895 xhci->hcs_params2 = xhci_readl(xhci, &xhci->cap_regs->hcs_params2);
4896 xhci->hcs_params3 = xhci_readl(xhci, &xhci->cap_regs->hcs_params3);
4897 xhci->hcc_params = xhci_readl(xhci, &xhci->cap_regs->hc_capbase);
4898 xhci->hci_version = HC_VERSION(xhci->hcc_params);
4899 xhci->hcc_params = xhci_readl(xhci, &xhci->cap_regs->hcc_params);
4900 xhci_print_registers(xhci);
4902 get_quirks(dev, xhci);
4904 /* In xhci controllers which follow xhci 1.0 spec gives a spurious
4905 * success event after a short transfer. This quirk will ignore such
4908 if (xhci->hci_version > 0x96)
4909 xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
4911 /* Make sure the HC is halted. */
4912 retval = xhci_halt(xhci);
4916 xhci_dbg(xhci, "Resetting HCD\n");
4917 /* Reset the internal HC memory state and registers. */
4918 retval = xhci_reset(xhci);
4921 xhci_dbg(xhci, "Reset complete\n");
4923 /* Set dma_mask and coherent_dma_mask to 64-bits,
4924 * if xHC supports 64-bit addressing */
4925 if (HCC_64BIT_ADDR(xhci->hcc_params) &&
4926 !dma_set_mask(dev, DMA_BIT_MASK(64))) {
4927 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4928 dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
4931 xhci_dbg(xhci, "Calling HCD init\n");
4932 /* Initialize HCD and host controller data structures. */
4933 retval = xhci_init(hcd);
4936 xhci_dbg(xhci, "Called HCD init\n");
4943 MODULE_DESCRIPTION(DRIVER_DESC);
4944 MODULE_AUTHOR(DRIVER_AUTHOR);
4945 MODULE_LICENSE("GPL");
4947 static int __init xhci_hcd_init(void)
4951 retval = xhci_register_pci();
4953 pr_debug("Problem registering PCI driver.\n");
4956 retval = xhci_register_plat();
4958 pr_debug("Problem registering platform driver.\n");
4962 * Check the compiler generated sizes of structures that must be laid
4963 * out in specific ways for hardware access.
4965 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
4966 BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
4967 BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
4968 /* xhci_device_control has eight fields, and also
4969 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
4971 BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
4972 BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
4973 BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
4974 BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 7*32/8);
4975 BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
4976 /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
4977 BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
4980 xhci_unregister_pci();
4983 module_init(xhci_hcd_init);
4985 static void __exit xhci_hcd_cleanup(void)
4987 xhci_unregister_pci();
4988 xhci_unregister_plat();
4990 module_exit(xhci_hcd_cleanup);