]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/usb/host/xhci.c
ARM: 7805/1: mm: change max*pfn to include the physical offset of memory
[karo-tx-linux.git] / drivers / usb / host / xhci.c
1 /*
2  * xHCI host controller driver
3  *
4  * Copyright (C) 2008 Intel Corp.
5  *
6  * Author: Sarah Sharp
7  * Some code borrowed from the Linux EHCI driver.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16  * for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software Foundation,
20  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22
23 #include <linux/pci.h>
24 #include <linux/irq.h>
25 #include <linux/log2.h>
26 #include <linux/module.h>
27 #include <linux/moduleparam.h>
28 #include <linux/slab.h>
29 #include <linux/dmi.h>
30 #include <linux/dma-mapping.h>
31
32 #include "xhci.h"
33 #include "xhci-trace.h"
34
35 #define DRIVER_AUTHOR "Sarah Sharp"
36 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
37
38 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
39 static int link_quirk;
40 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
41 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
42
43 /* TODO: copied from ehci-hcd.c - can this be refactored? */
44 /*
45  * xhci_handshake - spin reading hc until handshake completes or fails
46  * @ptr: address of hc register to be read
47  * @mask: bits to look at in result of read
48  * @done: value of those bits when handshake succeeds
49  * @usec: timeout in microseconds
50  *
51  * Returns negative errno, or zero on success
52  *
53  * Success happens when the "mask" bits have the specified value (hardware
54  * handshake done).  There are two failure modes:  "usec" have passed (major
55  * hardware flakeout), or the register reads as all-ones (hardware removed).
56  */
57 int xhci_handshake(struct xhci_hcd *xhci, void __iomem *ptr,
58                       u32 mask, u32 done, int usec)
59 {
60         u32     result;
61
62         do {
63                 result = xhci_readl(xhci, ptr);
64                 if (result == ~(u32)0)          /* card removed */
65                         return -ENODEV;
66                 result &= mask;
67                 if (result == done)
68                         return 0;
69                 udelay(1);
70                 usec--;
71         } while (usec > 0);
72         return -ETIMEDOUT;
73 }
74
75 /*
76  * Disable interrupts and begin the xHCI halting process.
77  */
78 void xhci_quiesce(struct xhci_hcd *xhci)
79 {
80         u32 halted;
81         u32 cmd;
82         u32 mask;
83
84         mask = ~(XHCI_IRQS);
85         halted = xhci_readl(xhci, &xhci->op_regs->status) & STS_HALT;
86         if (!halted)
87                 mask &= ~CMD_RUN;
88
89         cmd = xhci_readl(xhci, &xhci->op_regs->command);
90         cmd &= mask;
91         xhci_writel(xhci, cmd, &xhci->op_regs->command);
92 }
93
94 /*
95  * Force HC into halt state.
96  *
97  * Disable any IRQs and clear the run/stop bit.
98  * HC will complete any current and actively pipelined transactions, and
99  * should halt within 16 ms of the run/stop bit being cleared.
100  * Read HC Halted bit in the status register to see when the HC is finished.
101  */
102 int xhci_halt(struct xhci_hcd *xhci)
103 {
104         int ret;
105         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
106         xhci_quiesce(xhci);
107
108         ret = xhci_handshake(xhci, &xhci->op_regs->status,
109                         STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
110         if (!ret) {
111                 xhci->xhc_state |= XHCI_STATE_HALTED;
112                 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
113         } else
114                 xhci_warn(xhci, "Host not halted after %u microseconds.\n",
115                                 XHCI_MAX_HALT_USEC);
116         return ret;
117 }
118
119 /*
120  * Set the run bit and wait for the host to be running.
121  */
122 static int xhci_start(struct xhci_hcd *xhci)
123 {
124         u32 temp;
125         int ret;
126
127         temp = xhci_readl(xhci, &xhci->op_regs->command);
128         temp |= (CMD_RUN);
129         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
130                         temp);
131         xhci_writel(xhci, temp, &xhci->op_regs->command);
132
133         /*
134          * Wait for the HCHalted Status bit to be 0 to indicate the host is
135          * running.
136          */
137         ret = xhci_handshake(xhci, &xhci->op_regs->status,
138                         STS_HALT, 0, XHCI_MAX_HALT_USEC);
139         if (ret == -ETIMEDOUT)
140                 xhci_err(xhci, "Host took too long to start, "
141                                 "waited %u microseconds.\n",
142                                 XHCI_MAX_HALT_USEC);
143         if (!ret)
144                 xhci->xhc_state &= ~XHCI_STATE_HALTED;
145         return ret;
146 }
147
148 /*
149  * Reset a halted HC.
150  *
151  * This resets pipelines, timers, counters, state machines, etc.
152  * Transactions will be terminated immediately, and operational registers
153  * will be set to their defaults.
154  */
155 int xhci_reset(struct xhci_hcd *xhci)
156 {
157         u32 command;
158         u32 state;
159         int ret, i;
160
161         state = xhci_readl(xhci, &xhci->op_regs->status);
162         if ((state & STS_HALT) == 0) {
163                 xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
164                 return 0;
165         }
166
167         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
168         command = xhci_readl(xhci, &xhci->op_regs->command);
169         command |= CMD_RESET;
170         xhci_writel(xhci, command, &xhci->op_regs->command);
171
172         ret = xhci_handshake(xhci, &xhci->op_regs->command,
173                         CMD_RESET, 0, 10 * 1000 * 1000);
174         if (ret)
175                 return ret;
176
177         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
178                          "Wait for controller to be ready for doorbell rings");
179         /*
180          * xHCI cannot write to any doorbells or operational registers other
181          * than status until the "Controller Not Ready" flag is cleared.
182          */
183         ret = xhci_handshake(xhci, &xhci->op_regs->status,
184                         STS_CNR, 0, 10 * 1000 * 1000);
185
186         for (i = 0; i < 2; ++i) {
187                 xhci->bus_state[i].port_c_suspend = 0;
188                 xhci->bus_state[i].suspended_ports = 0;
189                 xhci->bus_state[i].resuming_ports = 0;
190         }
191
192         return ret;
193 }
194
195 #ifdef CONFIG_PCI
196 static int xhci_free_msi(struct xhci_hcd *xhci)
197 {
198         int i;
199
200         if (!xhci->msix_entries)
201                 return -EINVAL;
202
203         for (i = 0; i < xhci->msix_count; i++)
204                 if (xhci->msix_entries[i].vector)
205                         free_irq(xhci->msix_entries[i].vector,
206                                         xhci_to_hcd(xhci));
207         return 0;
208 }
209
210 /*
211  * Set up MSI
212  */
213 static int xhci_setup_msi(struct xhci_hcd *xhci)
214 {
215         int ret;
216         struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
217
218         ret = pci_enable_msi(pdev);
219         if (ret) {
220                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
221                                 "failed to allocate MSI entry");
222                 return ret;
223         }
224
225         ret = request_irq(pdev->irq, xhci_msi_irq,
226                                 0, "xhci_hcd", xhci_to_hcd(xhci));
227         if (ret) {
228                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
229                                 "disable MSI interrupt");
230                 pci_disable_msi(pdev);
231         }
232
233         return ret;
234 }
235
236 /*
237  * Free IRQs
238  * free all IRQs request
239  */
240 static void xhci_free_irq(struct xhci_hcd *xhci)
241 {
242         struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
243         int ret;
244
245         /* return if using legacy interrupt */
246         if (xhci_to_hcd(xhci)->irq > 0)
247                 return;
248
249         ret = xhci_free_msi(xhci);
250         if (!ret)
251                 return;
252         if (pdev->irq > 0)
253                 free_irq(pdev->irq, xhci_to_hcd(xhci));
254
255         return;
256 }
257
258 /*
259  * Set up MSI-X
260  */
261 static int xhci_setup_msix(struct xhci_hcd *xhci)
262 {
263         int i, ret = 0;
264         struct usb_hcd *hcd = xhci_to_hcd(xhci);
265         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
266
267         /*
268          * calculate number of msi-x vectors supported.
269          * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
270          *   with max number of interrupters based on the xhci HCSPARAMS1.
271          * - num_online_cpus: maximum msi-x vectors per CPUs core.
272          *   Add additional 1 vector to ensure always available interrupt.
273          */
274         xhci->msix_count = min(num_online_cpus() + 1,
275                                 HCS_MAX_INTRS(xhci->hcs_params1));
276
277         xhci->msix_entries =
278                 kmalloc((sizeof(struct msix_entry))*xhci->msix_count,
279                                 GFP_KERNEL);
280         if (!xhci->msix_entries) {
281                 xhci_err(xhci, "Failed to allocate MSI-X entries\n");
282                 return -ENOMEM;
283         }
284
285         for (i = 0; i < xhci->msix_count; i++) {
286                 xhci->msix_entries[i].entry = i;
287                 xhci->msix_entries[i].vector = 0;
288         }
289
290         ret = pci_enable_msix(pdev, xhci->msix_entries, xhci->msix_count);
291         if (ret) {
292                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
293                                 "Failed to enable MSI-X");
294                 goto free_entries;
295         }
296
297         for (i = 0; i < xhci->msix_count; i++) {
298                 ret = request_irq(xhci->msix_entries[i].vector,
299                                 xhci_msi_irq,
300                                 0, "xhci_hcd", xhci_to_hcd(xhci));
301                 if (ret)
302                         goto disable_msix;
303         }
304
305         hcd->msix_enabled = 1;
306         return ret;
307
308 disable_msix:
309         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
310         xhci_free_irq(xhci);
311         pci_disable_msix(pdev);
312 free_entries:
313         kfree(xhci->msix_entries);
314         xhci->msix_entries = NULL;
315         return ret;
316 }
317
318 /* Free any IRQs and disable MSI-X */
319 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
320 {
321         struct usb_hcd *hcd = xhci_to_hcd(xhci);
322         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
323
324         xhci_free_irq(xhci);
325
326         if (xhci->msix_entries) {
327                 pci_disable_msix(pdev);
328                 kfree(xhci->msix_entries);
329                 xhci->msix_entries = NULL;
330         } else {
331                 pci_disable_msi(pdev);
332         }
333
334         hcd->msix_enabled = 0;
335         return;
336 }
337
338 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
339 {
340         int i;
341
342         if (xhci->msix_entries) {
343                 for (i = 0; i < xhci->msix_count; i++)
344                         synchronize_irq(xhci->msix_entries[i].vector);
345         }
346 }
347
348 static int xhci_try_enable_msi(struct usb_hcd *hcd)
349 {
350         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
351         struct pci_dev  *pdev;
352         int ret;
353
354         /* The xhci platform device has set up IRQs through usb_add_hcd. */
355         if (xhci->quirks & XHCI_PLAT)
356                 return 0;
357
358         pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
359         /*
360          * Some Fresco Logic host controllers advertise MSI, but fail to
361          * generate interrupts.  Don't even try to enable MSI.
362          */
363         if (xhci->quirks & XHCI_BROKEN_MSI)
364                 goto legacy_irq;
365
366         /* unregister the legacy interrupt */
367         if (hcd->irq)
368                 free_irq(hcd->irq, hcd);
369         hcd->irq = 0;
370
371         ret = xhci_setup_msix(xhci);
372         if (ret)
373                 /* fall back to msi*/
374                 ret = xhci_setup_msi(xhci);
375
376         if (!ret)
377                 /* hcd->irq is 0, we have MSI */
378                 return 0;
379
380         if (!pdev->irq) {
381                 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
382                 return -EINVAL;
383         }
384
385  legacy_irq:
386         /* fall back to legacy interrupt*/
387         ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
388                         hcd->irq_descr, hcd);
389         if (ret) {
390                 xhci_err(xhci, "request interrupt %d failed\n",
391                                 pdev->irq);
392                 return ret;
393         }
394         hcd->irq = pdev->irq;
395         return 0;
396 }
397
398 #else
399
400 static int xhci_try_enable_msi(struct usb_hcd *hcd)
401 {
402         return 0;
403 }
404
405 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
406 {
407 }
408
409 static void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
410 {
411 }
412
413 #endif
414
415 static void compliance_mode_recovery(unsigned long arg)
416 {
417         struct xhci_hcd *xhci;
418         struct usb_hcd *hcd;
419         u32 temp;
420         int i;
421
422         xhci = (struct xhci_hcd *)arg;
423
424         for (i = 0; i < xhci->num_usb3_ports; i++) {
425                 temp = xhci_readl(xhci, xhci->usb3_ports[i]);
426                 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
427                         /*
428                          * Compliance Mode Detected. Letting USB Core
429                          * handle the Warm Reset
430                          */
431                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
432                                         "Compliance mode detected->port %d",
433                                         i + 1);
434                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
435                                         "Attempting compliance mode recovery");
436                         hcd = xhci->shared_hcd;
437
438                         if (hcd->state == HC_STATE_SUSPENDED)
439                                 usb_hcd_resume_root_hub(hcd);
440
441                         usb_hcd_poll_rh_status(hcd);
442                 }
443         }
444
445         if (xhci->port_status_u0 != ((1 << xhci->num_usb3_ports)-1))
446                 mod_timer(&xhci->comp_mode_recovery_timer,
447                         jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
448 }
449
450 /*
451  * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
452  * that causes ports behind that hardware to enter compliance mode sometimes.
453  * The quirk creates a timer that polls every 2 seconds the link state of
454  * each host controller's port and recovers it by issuing a Warm reset
455  * if Compliance mode is detected, otherwise the port will become "dead" (no
456  * device connections or disconnections will be detected anymore). Becasue no
457  * status event is generated when entering compliance mode (per xhci spec),
458  * this quirk is needed on systems that have the failing hardware installed.
459  */
460 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
461 {
462         xhci->port_status_u0 = 0;
463         init_timer(&xhci->comp_mode_recovery_timer);
464
465         xhci->comp_mode_recovery_timer.data = (unsigned long) xhci;
466         xhci->comp_mode_recovery_timer.function = compliance_mode_recovery;
467         xhci->comp_mode_recovery_timer.expires = jiffies +
468                         msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
469
470         set_timer_slack(&xhci->comp_mode_recovery_timer,
471                         msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
472         add_timer(&xhci->comp_mode_recovery_timer);
473         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
474                         "Compliance mode recovery timer initialized");
475 }
476
477 /*
478  * This function identifies the systems that have installed the SN65LVPE502CP
479  * USB3.0 re-driver and that need the Compliance Mode Quirk.
480  * Systems:
481  * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
482  */
483 bool xhci_compliance_mode_recovery_timer_quirk_check(void)
484 {
485         const char *dmi_product_name, *dmi_sys_vendor;
486
487         dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
488         dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
489         if (!dmi_product_name || !dmi_sys_vendor)
490                 return false;
491
492         if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
493                 return false;
494
495         if (strstr(dmi_product_name, "Z420") ||
496                         strstr(dmi_product_name, "Z620") ||
497                         strstr(dmi_product_name, "Z820") ||
498                         strstr(dmi_product_name, "Z1 Workstation"))
499                 return true;
500
501         return false;
502 }
503
504 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
505 {
506         return (xhci->port_status_u0 == ((1 << xhci->num_usb3_ports)-1));
507 }
508
509
510 /*
511  * Initialize memory for HCD and xHC (one-time init).
512  *
513  * Program the PAGESIZE register, initialize the device context array, create
514  * device contexts (?), set up a command ring segment (or two?), create event
515  * ring (one for now).
516  */
517 int xhci_init(struct usb_hcd *hcd)
518 {
519         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
520         int retval = 0;
521
522         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
523         spin_lock_init(&xhci->lock);
524         if (xhci->hci_version == 0x95 && link_quirk) {
525                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
526                                 "QUIRK: Not clearing Link TRB chain bits.");
527                 xhci->quirks |= XHCI_LINK_TRB_QUIRK;
528         } else {
529                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
530                                 "xHCI doesn't need link TRB QUIRK");
531         }
532         retval = xhci_mem_init(xhci, GFP_KERNEL);
533         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
534
535         /* Initializing Compliance Mode Recovery Data If Needed */
536         if (xhci_compliance_mode_recovery_timer_quirk_check()) {
537                 xhci->quirks |= XHCI_COMP_MODE_QUIRK;
538                 compliance_mode_recovery_timer_init(xhci);
539         }
540
541         return retval;
542 }
543
544 /*-------------------------------------------------------------------------*/
545
546
547 static int xhci_run_finished(struct xhci_hcd *xhci)
548 {
549         if (xhci_start(xhci)) {
550                 xhci_halt(xhci);
551                 return -ENODEV;
552         }
553         xhci->shared_hcd->state = HC_STATE_RUNNING;
554         xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
555
556         if (xhci->quirks & XHCI_NEC_HOST)
557                 xhci_ring_cmd_db(xhci);
558
559         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
560                         "Finished xhci_run for USB3 roothub");
561         return 0;
562 }
563
564 /*
565  * Start the HC after it was halted.
566  *
567  * This function is called by the USB core when the HC driver is added.
568  * Its opposite is xhci_stop().
569  *
570  * xhci_init() must be called once before this function can be called.
571  * Reset the HC, enable device slot contexts, program DCBAAP, and
572  * set command ring pointer and event ring pointer.
573  *
574  * Setup MSI-X vectors and enable interrupts.
575  */
576 int xhci_run(struct usb_hcd *hcd)
577 {
578         u32 temp;
579         u64 temp_64;
580         int ret;
581         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
582
583         /* Start the xHCI host controller running only after the USB 2.0 roothub
584          * is setup.
585          */
586
587         hcd->uses_new_polling = 1;
588         if (!usb_hcd_is_primary_hcd(hcd))
589                 return xhci_run_finished(xhci);
590
591         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
592
593         ret = xhci_try_enable_msi(hcd);
594         if (ret)
595                 return ret;
596
597         xhci_dbg(xhci, "Command ring memory map follows:\n");
598         xhci_debug_ring(xhci, xhci->cmd_ring);
599         xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
600         xhci_dbg_cmd_ptrs(xhci);
601
602         xhci_dbg(xhci, "ERST memory map follows:\n");
603         xhci_dbg_erst(xhci, &xhci->erst);
604         xhci_dbg(xhci, "Event ring:\n");
605         xhci_debug_ring(xhci, xhci->event_ring);
606         xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
607         temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
608         temp_64 &= ~ERST_PTR_MASK;
609         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
610                         "ERST deq = 64'h%0lx", (long unsigned int) temp_64);
611
612         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
613                         "// Set the interrupt modulation register");
614         temp = xhci_readl(xhci, &xhci->ir_set->irq_control);
615         temp &= ~ER_IRQ_INTERVAL_MASK;
616         temp |= (u32) 160;
617         xhci_writel(xhci, temp, &xhci->ir_set->irq_control);
618
619         /* Set the HCD state before we enable the irqs */
620         temp = xhci_readl(xhci, &xhci->op_regs->command);
621         temp |= (CMD_EIE);
622         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
623                         "// Enable interrupts, cmd = 0x%x.", temp);
624         xhci_writel(xhci, temp, &xhci->op_regs->command);
625
626         temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
627         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
628                         "// Enabling event ring interrupter %p by writing 0x%x to irq_pending",
629                         xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
630         xhci_writel(xhci, ER_IRQ_ENABLE(temp),
631                         &xhci->ir_set->irq_pending);
632         xhci_print_ir_set(xhci, 0);
633
634         if (xhci->quirks & XHCI_NEC_HOST)
635                 xhci_queue_vendor_command(xhci, 0, 0, 0,
636                                 TRB_TYPE(TRB_NEC_GET_FW));
637
638         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
639                         "Finished xhci_run for USB2 roothub");
640         return 0;
641 }
642
643 static void xhci_only_stop_hcd(struct usb_hcd *hcd)
644 {
645         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
646
647         spin_lock_irq(&xhci->lock);
648         xhci_halt(xhci);
649
650         /* The shared_hcd is going to be deallocated shortly (the USB core only
651          * calls this function when allocation fails in usb_add_hcd(), or
652          * usb_remove_hcd() is called).  So we need to unset xHCI's pointer.
653          */
654         xhci->shared_hcd = NULL;
655         spin_unlock_irq(&xhci->lock);
656 }
657
658 /*
659  * Stop xHCI driver.
660  *
661  * This function is called by the USB core when the HC driver is removed.
662  * Its opposite is xhci_run().
663  *
664  * Disable device contexts, disable IRQs, and quiesce the HC.
665  * Reset the HC, finish any completed transactions, and cleanup memory.
666  */
667 void xhci_stop(struct usb_hcd *hcd)
668 {
669         u32 temp;
670         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
671
672         if (!usb_hcd_is_primary_hcd(hcd)) {
673                 xhci_only_stop_hcd(xhci->shared_hcd);
674                 return;
675         }
676
677         spin_lock_irq(&xhci->lock);
678         /* Make sure the xHC is halted for a USB3 roothub
679          * (xhci_stop() could be called as part of failed init).
680          */
681         xhci_halt(xhci);
682         xhci_reset(xhci);
683         spin_unlock_irq(&xhci->lock);
684
685         xhci_cleanup_msix(xhci);
686
687         /* Deleting Compliance Mode Recovery Timer */
688         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
689                         (!(xhci_all_ports_seen_u0(xhci)))) {
690                 del_timer_sync(&xhci->comp_mode_recovery_timer);
691                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
692                                 "%s: compliance mode recovery timer deleted",
693                                 __func__);
694         }
695
696         if (xhci->quirks & XHCI_AMD_PLL_FIX)
697                 usb_amd_dev_put();
698
699         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
700                         "// Disabling event ring interrupts");
701         temp = xhci_readl(xhci, &xhci->op_regs->status);
702         xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status);
703         temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
704         xhci_writel(xhci, ER_IRQ_DISABLE(temp),
705                         &xhci->ir_set->irq_pending);
706         xhci_print_ir_set(xhci, 0);
707
708         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
709         xhci_mem_cleanup(xhci);
710         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
711                         "xhci_stop completed - status = %x",
712                         xhci_readl(xhci, &xhci->op_regs->status));
713 }
714
715 /*
716  * Shutdown HC (not bus-specific)
717  *
718  * This is called when the machine is rebooting or halting.  We assume that the
719  * machine will be powered off, and the HC's internal state will be reset.
720  * Don't bother to free memory.
721  *
722  * This will only ever be called with the main usb_hcd (the USB3 roothub).
723  */
724 void xhci_shutdown(struct usb_hcd *hcd)
725 {
726         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
727
728         if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
729                 usb_disable_xhci_ports(to_pci_dev(hcd->self.controller));
730
731         spin_lock_irq(&xhci->lock);
732         xhci_halt(xhci);
733         spin_unlock_irq(&xhci->lock);
734
735         xhci_cleanup_msix(xhci);
736
737         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
738                         "xhci_shutdown completed - status = %x",
739                         xhci_readl(xhci, &xhci->op_regs->status));
740 }
741
742 #ifdef CONFIG_PM
743 static void xhci_save_registers(struct xhci_hcd *xhci)
744 {
745         xhci->s3.command = xhci_readl(xhci, &xhci->op_regs->command);
746         xhci->s3.dev_nt = xhci_readl(xhci, &xhci->op_regs->dev_notification);
747         xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
748         xhci->s3.config_reg = xhci_readl(xhci, &xhci->op_regs->config_reg);
749         xhci->s3.erst_size = xhci_readl(xhci, &xhci->ir_set->erst_size);
750         xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
751         xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
752         xhci->s3.irq_pending = xhci_readl(xhci, &xhci->ir_set->irq_pending);
753         xhci->s3.irq_control = xhci_readl(xhci, &xhci->ir_set->irq_control);
754 }
755
756 static void xhci_restore_registers(struct xhci_hcd *xhci)
757 {
758         xhci_writel(xhci, xhci->s3.command, &xhci->op_regs->command);
759         xhci_writel(xhci, xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
760         xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
761         xhci_writel(xhci, xhci->s3.config_reg, &xhci->op_regs->config_reg);
762         xhci_writel(xhci, xhci->s3.erst_size, &xhci->ir_set->erst_size);
763         xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
764         xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
765         xhci_writel(xhci, xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
766         xhci_writel(xhci, xhci->s3.irq_control, &xhci->ir_set->irq_control);
767 }
768
769 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
770 {
771         u64     val_64;
772
773         /* step 2: initialize command ring buffer */
774         val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
775         val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
776                 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
777                                       xhci->cmd_ring->dequeue) &
778                  (u64) ~CMD_RING_RSVD_BITS) |
779                 xhci->cmd_ring->cycle_state;
780         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
781                         "// Setting command ring address to 0x%llx",
782                         (long unsigned long) val_64);
783         xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
784 }
785
786 /*
787  * The whole command ring must be cleared to zero when we suspend the host.
788  *
789  * The host doesn't save the command ring pointer in the suspend well, so we
790  * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
791  * aligned, because of the reserved bits in the command ring dequeue pointer
792  * register.  Therefore, we can't just set the dequeue pointer back in the
793  * middle of the ring (TRBs are 16-byte aligned).
794  */
795 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
796 {
797         struct xhci_ring *ring;
798         struct xhci_segment *seg;
799
800         ring = xhci->cmd_ring;
801         seg = ring->deq_seg;
802         do {
803                 memset(seg->trbs, 0,
804                         sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
805                 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
806                         cpu_to_le32(~TRB_CYCLE);
807                 seg = seg->next;
808         } while (seg != ring->deq_seg);
809
810         /* Reset the software enqueue and dequeue pointers */
811         ring->deq_seg = ring->first_seg;
812         ring->dequeue = ring->first_seg->trbs;
813         ring->enq_seg = ring->deq_seg;
814         ring->enqueue = ring->dequeue;
815
816         ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
817         /*
818          * Ring is now zeroed, so the HW should look for change of ownership
819          * when the cycle bit is set to 1.
820          */
821         ring->cycle_state = 1;
822
823         /*
824          * Reset the hardware dequeue pointer.
825          * Yes, this will need to be re-written after resume, but we're paranoid
826          * and want to make sure the hardware doesn't access bogus memory
827          * because, say, the BIOS or an SMI started the host without changing
828          * the command ring pointers.
829          */
830         xhci_set_cmd_ring_deq(xhci);
831 }
832
833 /*
834  * Stop HC (not bus-specific)
835  *
836  * This is called when the machine transition into S3/S4 mode.
837  *
838  */
839 int xhci_suspend(struct xhci_hcd *xhci)
840 {
841         int                     rc = 0;
842         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
843         u32                     command;
844
845         if (hcd->state != HC_STATE_SUSPENDED ||
846                         xhci->shared_hcd->state != HC_STATE_SUSPENDED)
847                 return -EINVAL;
848
849         /* Don't poll the roothubs on bus suspend. */
850         xhci_dbg(xhci, "%s: stopping port polling.\n", __func__);
851         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
852         del_timer_sync(&hcd->rh_timer);
853
854         spin_lock_irq(&xhci->lock);
855         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
856         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
857         /* step 1: stop endpoint */
858         /* skipped assuming that port suspend has done */
859
860         /* step 2: clear Run/Stop bit */
861         command = xhci_readl(xhci, &xhci->op_regs->command);
862         command &= ~CMD_RUN;
863         xhci_writel(xhci, command, &xhci->op_regs->command);
864         if (xhci_handshake(xhci, &xhci->op_regs->status,
865                       STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC)) {
866                 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
867                 spin_unlock_irq(&xhci->lock);
868                 return -ETIMEDOUT;
869         }
870         xhci_clear_command_ring(xhci);
871
872         /* step 3: save registers */
873         xhci_save_registers(xhci);
874
875         /* step 4: set CSS flag */
876         command = xhci_readl(xhci, &xhci->op_regs->command);
877         command |= CMD_CSS;
878         xhci_writel(xhci, command, &xhci->op_regs->command);
879         if (xhci_handshake(xhci, &xhci->op_regs->status,
880                                 STS_SAVE, 0, 10 * 1000)) {
881                 xhci_warn(xhci, "WARN: xHC save state timeout\n");
882                 spin_unlock_irq(&xhci->lock);
883                 return -ETIMEDOUT;
884         }
885         spin_unlock_irq(&xhci->lock);
886
887         /*
888          * Deleting Compliance Mode Recovery Timer because the xHCI Host
889          * is about to be suspended.
890          */
891         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
892                         (!(xhci_all_ports_seen_u0(xhci)))) {
893                 del_timer_sync(&xhci->comp_mode_recovery_timer);
894                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
895                                 "%s: compliance mode recovery timer deleted",
896                                 __func__);
897         }
898
899         /* step 5: remove core well power */
900         /* synchronize irq when using MSI-X */
901         xhci_msix_sync_irqs(xhci);
902
903         return rc;
904 }
905
906 /*
907  * start xHC (not bus-specific)
908  *
909  * This is called when the machine transition from S3/S4 mode.
910  *
911  */
912 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
913 {
914         u32                     command, temp = 0;
915         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
916         struct usb_hcd          *secondary_hcd;
917         int                     retval = 0;
918         bool                    comp_timer_running = false;
919
920         /* Wait a bit if either of the roothubs need to settle from the
921          * transition into bus suspend.
922          */
923         if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
924                         time_before(jiffies,
925                                 xhci->bus_state[1].next_statechange))
926                 msleep(100);
927
928         set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
929         set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
930
931         spin_lock_irq(&xhci->lock);
932         if (xhci->quirks & XHCI_RESET_ON_RESUME)
933                 hibernated = true;
934
935         if (!hibernated) {
936                 /* step 1: restore register */
937                 xhci_restore_registers(xhci);
938                 /* step 2: initialize command ring buffer */
939                 xhci_set_cmd_ring_deq(xhci);
940                 /* step 3: restore state and start state*/
941                 /* step 3: set CRS flag */
942                 command = xhci_readl(xhci, &xhci->op_regs->command);
943                 command |= CMD_CRS;
944                 xhci_writel(xhci, command, &xhci->op_regs->command);
945                 if (xhci_handshake(xhci, &xhci->op_regs->status,
946                               STS_RESTORE, 0, 10 * 1000)) {
947                         xhci_warn(xhci, "WARN: xHC restore state timeout\n");
948                         spin_unlock_irq(&xhci->lock);
949                         return -ETIMEDOUT;
950                 }
951                 temp = xhci_readl(xhci, &xhci->op_regs->status);
952         }
953
954         /* If restore operation fails, re-initialize the HC during resume */
955         if ((temp & STS_SRE) || hibernated) {
956
957                 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
958                                 !(xhci_all_ports_seen_u0(xhci))) {
959                         del_timer_sync(&xhci->comp_mode_recovery_timer);
960                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
961                                 "Compliance Mode Recovery Timer deleted!");
962                 }
963
964                 /* Let the USB core know _both_ roothubs lost power. */
965                 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
966                 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
967
968                 xhci_dbg(xhci, "Stop HCD\n");
969                 xhci_halt(xhci);
970                 xhci_reset(xhci);
971                 spin_unlock_irq(&xhci->lock);
972                 xhci_cleanup_msix(xhci);
973
974                 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
975                 temp = xhci_readl(xhci, &xhci->op_regs->status);
976                 xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status);
977                 temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
978                 xhci_writel(xhci, ER_IRQ_DISABLE(temp),
979                                 &xhci->ir_set->irq_pending);
980                 xhci_print_ir_set(xhci, 0);
981
982                 xhci_dbg(xhci, "cleaning up memory\n");
983                 xhci_mem_cleanup(xhci);
984                 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
985                             xhci_readl(xhci, &xhci->op_regs->status));
986
987                 /* USB core calls the PCI reinit and start functions twice:
988                  * first with the primary HCD, and then with the secondary HCD.
989                  * If we don't do the same, the host will never be started.
990                  */
991                 if (!usb_hcd_is_primary_hcd(hcd))
992                         secondary_hcd = hcd;
993                 else
994                         secondary_hcd = xhci->shared_hcd;
995
996                 xhci_dbg(xhci, "Initialize the xhci_hcd\n");
997                 retval = xhci_init(hcd->primary_hcd);
998                 if (retval)
999                         return retval;
1000                 comp_timer_running = true;
1001
1002                 xhci_dbg(xhci, "Start the primary HCD\n");
1003                 retval = xhci_run(hcd->primary_hcd);
1004                 if (!retval) {
1005                         xhci_dbg(xhci, "Start the secondary HCD\n");
1006                         retval = xhci_run(secondary_hcd);
1007                 }
1008                 hcd->state = HC_STATE_SUSPENDED;
1009                 xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1010                 goto done;
1011         }
1012
1013         /* step 4: set Run/Stop bit */
1014         command = xhci_readl(xhci, &xhci->op_regs->command);
1015         command |= CMD_RUN;
1016         xhci_writel(xhci, command, &xhci->op_regs->command);
1017         xhci_handshake(xhci, &xhci->op_regs->status, STS_HALT,
1018                   0, 250 * 1000);
1019
1020         /* step 5: walk topology and initialize portsc,
1021          * portpmsc and portli
1022          */
1023         /* this is done in bus_resume */
1024
1025         /* step 6: restart each of the previously
1026          * Running endpoints by ringing their doorbells
1027          */
1028
1029         spin_unlock_irq(&xhci->lock);
1030
1031  done:
1032         if (retval == 0) {
1033                 usb_hcd_resume_root_hub(hcd);
1034                 usb_hcd_resume_root_hub(xhci->shared_hcd);
1035         }
1036
1037         /*
1038          * If system is subject to the Quirk, Compliance Mode Timer needs to
1039          * be re-initialized Always after a system resume. Ports are subject
1040          * to suffer the Compliance Mode issue again. It doesn't matter if
1041          * ports have entered previously to U0 before system's suspension.
1042          */
1043         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1044                 compliance_mode_recovery_timer_init(xhci);
1045
1046         /* Re-enable port polling. */
1047         xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1048         set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1049         usb_hcd_poll_rh_status(hcd);
1050
1051         return retval;
1052 }
1053 #endif  /* CONFIG_PM */
1054
1055 /*-------------------------------------------------------------------------*/
1056
1057 /**
1058  * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1059  * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1060  * value to right shift 1 for the bitmask.
1061  *
1062  * Index  = (epnum * 2) + direction - 1,
1063  * where direction = 0 for OUT, 1 for IN.
1064  * For control endpoints, the IN index is used (OUT index is unused), so
1065  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1066  */
1067 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1068 {
1069         unsigned int index;
1070         if (usb_endpoint_xfer_control(desc))
1071                 index = (unsigned int) (usb_endpoint_num(desc)*2);
1072         else
1073                 index = (unsigned int) (usb_endpoint_num(desc)*2) +
1074                         (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1075         return index;
1076 }
1077
1078 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1079  * address from the XHCI endpoint index.
1080  */
1081 unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1082 {
1083         unsigned int number = DIV_ROUND_UP(ep_index, 2);
1084         unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1085         return direction | number;
1086 }
1087
1088 /* Find the flag for this endpoint (for use in the control context).  Use the
1089  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1090  * bit 1, etc.
1091  */
1092 unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1093 {
1094         return 1 << (xhci_get_endpoint_index(desc) + 1);
1095 }
1096
1097 /* Find the flag for this endpoint (for use in the control context).  Use the
1098  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1099  * bit 1, etc.
1100  */
1101 unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
1102 {
1103         return 1 << (ep_index + 1);
1104 }
1105
1106 /* Compute the last valid endpoint context index.  Basically, this is the
1107  * endpoint index plus one.  For slot contexts with more than valid endpoint,
1108  * we find the most significant bit set in the added contexts flags.
1109  * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1110  * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1111  */
1112 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1113 {
1114         return fls(added_ctxs) - 1;
1115 }
1116
1117 /* Returns 1 if the arguments are OK;
1118  * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1119  */
1120 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1121                 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1122                 const char *func) {
1123         struct xhci_hcd *xhci;
1124         struct xhci_virt_device *virt_dev;
1125
1126         if (!hcd || (check_ep && !ep) || !udev) {
1127                 pr_debug("xHCI %s called with invalid args\n", func);
1128                 return -EINVAL;
1129         }
1130         if (!udev->parent) {
1131                 pr_debug("xHCI %s called for root hub\n", func);
1132                 return 0;
1133         }
1134
1135         xhci = hcd_to_xhci(hcd);
1136         if (check_virt_dev) {
1137                 if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1138                         xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1139                                         func);
1140                         return -EINVAL;
1141                 }
1142
1143                 virt_dev = xhci->devs[udev->slot_id];
1144                 if (virt_dev->udev != udev) {
1145                         xhci_dbg(xhci, "xHCI %s called with udev and "
1146                                           "virt_dev does not match\n", func);
1147                         return -EINVAL;
1148                 }
1149         }
1150
1151         if (xhci->xhc_state & XHCI_STATE_HALTED)
1152                 return -ENODEV;
1153
1154         return 1;
1155 }
1156
1157 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1158                 struct usb_device *udev, struct xhci_command *command,
1159                 bool ctx_change, bool must_succeed);
1160
1161 /*
1162  * Full speed devices may have a max packet size greater than 8 bytes, but the
1163  * USB core doesn't know that until it reads the first 8 bytes of the
1164  * descriptor.  If the usb_device's max packet size changes after that point,
1165  * we need to issue an evaluate context command and wait on it.
1166  */
1167 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1168                 unsigned int ep_index, struct urb *urb)
1169 {
1170         struct xhci_container_ctx *in_ctx;
1171         struct xhci_container_ctx *out_ctx;
1172         struct xhci_input_control_ctx *ctrl_ctx;
1173         struct xhci_ep_ctx *ep_ctx;
1174         int max_packet_size;
1175         int hw_max_packet_size;
1176         int ret = 0;
1177
1178         out_ctx = xhci->devs[slot_id]->out_ctx;
1179         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1180         hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1181         max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1182         if (hw_max_packet_size != max_packet_size) {
1183                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1184                                 "Max Packet Size for ep 0 changed.");
1185                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1186                                 "Max packet size in usb_device = %d",
1187                                 max_packet_size);
1188                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1189                                 "Max packet size in xHCI HW = %d",
1190                                 hw_max_packet_size);
1191                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1192                                 "Issuing evaluate context command.");
1193
1194                 /* Set up the input context flags for the command */
1195                 /* FIXME: This won't work if a non-default control endpoint
1196                  * changes max packet sizes.
1197                  */
1198                 in_ctx = xhci->devs[slot_id]->in_ctx;
1199                 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1200                 if (!ctrl_ctx) {
1201                         xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1202                                         __func__);
1203                         return -ENOMEM;
1204                 }
1205                 /* Set up the modified control endpoint 0 */
1206                 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1207                                 xhci->devs[slot_id]->out_ctx, ep_index);
1208
1209                 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1210                 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1211                 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1212
1213                 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1214                 ctrl_ctx->drop_flags = 0;
1215
1216                 xhci_dbg(xhci, "Slot %d input context\n", slot_id);
1217                 xhci_dbg_ctx(xhci, in_ctx, ep_index);
1218                 xhci_dbg(xhci, "Slot %d output context\n", slot_id);
1219                 xhci_dbg_ctx(xhci, out_ctx, ep_index);
1220
1221                 ret = xhci_configure_endpoint(xhci, urb->dev, NULL,
1222                                 true, false);
1223
1224                 /* Clean up the input context for later use by bandwidth
1225                  * functions.
1226                  */
1227                 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1228         }
1229         return ret;
1230 }
1231
1232 /*
1233  * non-error returns are a promise to giveback() the urb later
1234  * we drop ownership so next owner (or urb unlink) can get it
1235  */
1236 int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1237 {
1238         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1239         struct xhci_td *buffer;
1240         unsigned long flags;
1241         int ret = 0;
1242         unsigned int slot_id, ep_index;
1243         struct urb_priv *urb_priv;
1244         int size, i;
1245
1246         if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1247                                         true, true, __func__) <= 0)
1248                 return -EINVAL;
1249
1250         slot_id = urb->dev->slot_id;
1251         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1252
1253         if (!HCD_HW_ACCESSIBLE(hcd)) {
1254                 if (!in_interrupt())
1255                         xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1256                 ret = -ESHUTDOWN;
1257                 goto exit;
1258         }
1259
1260         if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1261                 size = urb->number_of_packets;
1262         else
1263                 size = 1;
1264
1265         urb_priv = kzalloc(sizeof(struct urb_priv) +
1266                                   size * sizeof(struct xhci_td *), mem_flags);
1267         if (!urb_priv)
1268                 return -ENOMEM;
1269
1270         buffer = kzalloc(size * sizeof(struct xhci_td), mem_flags);
1271         if (!buffer) {
1272                 kfree(urb_priv);
1273                 return -ENOMEM;
1274         }
1275
1276         for (i = 0; i < size; i++) {
1277                 urb_priv->td[i] = buffer;
1278                 buffer++;
1279         }
1280
1281         urb_priv->length = size;
1282         urb_priv->td_cnt = 0;
1283         urb->hcpriv = urb_priv;
1284
1285         if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1286                 /* Check to see if the max packet size for the default control
1287                  * endpoint changed during FS device enumeration
1288                  */
1289                 if (urb->dev->speed == USB_SPEED_FULL) {
1290                         ret = xhci_check_maxpacket(xhci, slot_id,
1291                                         ep_index, urb);
1292                         if (ret < 0) {
1293                                 xhci_urb_free_priv(xhci, urb_priv);
1294                                 urb->hcpriv = NULL;
1295                                 return ret;
1296                         }
1297                 }
1298
1299                 /* We have a spinlock and interrupts disabled, so we must pass
1300                  * atomic context to this function, which may allocate memory.
1301                  */
1302                 spin_lock_irqsave(&xhci->lock, flags);
1303                 if (xhci->xhc_state & XHCI_STATE_DYING)
1304                         goto dying;
1305                 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1306                                 slot_id, ep_index);
1307                 if (ret)
1308                         goto free_priv;
1309                 spin_unlock_irqrestore(&xhci->lock, flags);
1310         } else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) {
1311                 spin_lock_irqsave(&xhci->lock, flags);
1312                 if (xhci->xhc_state & XHCI_STATE_DYING)
1313                         goto dying;
1314                 if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1315                                 EP_GETTING_STREAMS) {
1316                         xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1317                                         "is transitioning to using streams.\n");
1318                         ret = -EINVAL;
1319                 } else if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1320                                 EP_GETTING_NO_STREAMS) {
1321                         xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1322                                         "is transitioning to "
1323                                         "not having streams.\n");
1324                         ret = -EINVAL;
1325                 } else {
1326                         ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1327                                         slot_id, ep_index);
1328                 }
1329                 if (ret)
1330                         goto free_priv;
1331                 spin_unlock_irqrestore(&xhci->lock, flags);
1332         } else if (usb_endpoint_xfer_int(&urb->ep->desc)) {
1333                 spin_lock_irqsave(&xhci->lock, flags);
1334                 if (xhci->xhc_state & XHCI_STATE_DYING)
1335                         goto dying;
1336                 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1337                                 slot_id, ep_index);
1338                 if (ret)
1339                         goto free_priv;
1340                 spin_unlock_irqrestore(&xhci->lock, flags);
1341         } else {
1342                 spin_lock_irqsave(&xhci->lock, flags);
1343                 if (xhci->xhc_state & XHCI_STATE_DYING)
1344                         goto dying;
1345                 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1346                                 slot_id, ep_index);
1347                 if (ret)
1348                         goto free_priv;
1349                 spin_unlock_irqrestore(&xhci->lock, flags);
1350         }
1351 exit:
1352         return ret;
1353 dying:
1354         xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for "
1355                         "non-responsive xHCI host.\n",
1356                         urb->ep->desc.bEndpointAddress, urb);
1357         ret = -ESHUTDOWN;
1358 free_priv:
1359         xhci_urb_free_priv(xhci, urb_priv);
1360         urb->hcpriv = NULL;
1361         spin_unlock_irqrestore(&xhci->lock, flags);
1362         return ret;
1363 }
1364
1365 /* Get the right ring for the given URB.
1366  * If the endpoint supports streams, boundary check the URB's stream ID.
1367  * If the endpoint doesn't support streams, return the singular endpoint ring.
1368  */
1369 static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci,
1370                 struct urb *urb)
1371 {
1372         unsigned int slot_id;
1373         unsigned int ep_index;
1374         unsigned int stream_id;
1375         struct xhci_virt_ep *ep;
1376
1377         slot_id = urb->dev->slot_id;
1378         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1379         stream_id = urb->stream_id;
1380         ep = &xhci->devs[slot_id]->eps[ep_index];
1381         /* Common case: no streams */
1382         if (!(ep->ep_state & EP_HAS_STREAMS))
1383                 return ep->ring;
1384
1385         if (stream_id == 0) {
1386                 xhci_warn(xhci,
1387                                 "WARN: Slot ID %u, ep index %u has streams, "
1388                                 "but URB has no stream ID.\n",
1389                                 slot_id, ep_index);
1390                 return NULL;
1391         }
1392
1393         if (stream_id < ep->stream_info->num_streams)
1394                 return ep->stream_info->stream_rings[stream_id];
1395
1396         xhci_warn(xhci,
1397                         "WARN: Slot ID %u, ep index %u has "
1398                         "stream IDs 1 to %u allocated, "
1399                         "but stream ID %u is requested.\n",
1400                         slot_id, ep_index,
1401                         ep->stream_info->num_streams - 1,
1402                         stream_id);
1403         return NULL;
1404 }
1405
1406 /*
1407  * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1408  * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1409  * should pick up where it left off in the TD, unless a Set Transfer Ring
1410  * Dequeue Pointer is issued.
1411  *
1412  * The TRBs that make up the buffers for the canceled URB will be "removed" from
1413  * the ring.  Since the ring is a contiguous structure, they can't be physically
1414  * removed.  Instead, there are two options:
1415  *
1416  *  1) If the HC is in the middle of processing the URB to be canceled, we
1417  *     simply move the ring's dequeue pointer past those TRBs using the Set
1418  *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1419  *     when drivers timeout on the last submitted URB and attempt to cancel.
1420  *
1421  *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1422  *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1423  *     HC will need to invalidate the any TRBs it has cached after the stop
1424  *     endpoint command, as noted in the xHCI 0.95 errata.
1425  *
1426  *  3) The TD may have completed by the time the Stop Endpoint Command
1427  *     completes, so software needs to handle that case too.
1428  *
1429  * This function should protect against the TD enqueueing code ringing the
1430  * doorbell while this code is waiting for a Stop Endpoint command to complete.
1431  * It also needs to account for multiple cancellations on happening at the same
1432  * time for the same endpoint.
1433  *
1434  * Note that this function can be called in any context, or so says
1435  * usb_hcd_unlink_urb()
1436  */
1437 int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1438 {
1439         unsigned long flags;
1440         int ret, i;
1441         u32 temp;
1442         struct xhci_hcd *xhci;
1443         struct urb_priv *urb_priv;
1444         struct xhci_td *td;
1445         unsigned int ep_index;
1446         struct xhci_ring *ep_ring;
1447         struct xhci_virt_ep *ep;
1448
1449         xhci = hcd_to_xhci(hcd);
1450         spin_lock_irqsave(&xhci->lock, flags);
1451         /* Make sure the URB hasn't completed or been unlinked already */
1452         ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1453         if (ret || !urb->hcpriv)
1454                 goto done;
1455         temp = xhci_readl(xhci, &xhci->op_regs->status);
1456         if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_HALTED)) {
1457                 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1458                                 "HW died, freeing TD.");
1459                 urb_priv = urb->hcpriv;
1460                 for (i = urb_priv->td_cnt; i < urb_priv->length; i++) {
1461                         td = urb_priv->td[i];
1462                         if (!list_empty(&td->td_list))
1463                                 list_del_init(&td->td_list);
1464                         if (!list_empty(&td->cancelled_td_list))
1465                                 list_del_init(&td->cancelled_td_list);
1466                 }
1467
1468                 usb_hcd_unlink_urb_from_ep(hcd, urb);
1469                 spin_unlock_irqrestore(&xhci->lock, flags);
1470                 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1471                 xhci_urb_free_priv(xhci, urb_priv);
1472                 return ret;
1473         }
1474         if ((xhci->xhc_state & XHCI_STATE_DYING) ||
1475                         (xhci->xhc_state & XHCI_STATE_HALTED)) {
1476                 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1477                                 "Ep 0x%x: URB %p to be canceled on "
1478                                 "non-responsive xHCI host.",
1479                                 urb->ep->desc.bEndpointAddress, urb);
1480                 /* Let the stop endpoint command watchdog timer (which set this
1481                  * state) finish cleaning up the endpoint TD lists.  We must
1482                  * have caught it in the middle of dropping a lock and giving
1483                  * back an URB.
1484                  */
1485                 goto done;
1486         }
1487
1488         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1489         ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index];
1490         ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1491         if (!ep_ring) {
1492                 ret = -EINVAL;
1493                 goto done;
1494         }
1495
1496         urb_priv = urb->hcpriv;
1497         i = urb_priv->td_cnt;
1498         if (i < urb_priv->length)
1499                 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1500                                 "Cancel URB %p, dev %s, ep 0x%x, "
1501                                 "starting at offset 0x%llx",
1502                                 urb, urb->dev->devpath,
1503                                 urb->ep->desc.bEndpointAddress,
1504                                 (unsigned long long) xhci_trb_virt_to_dma(
1505                                         urb_priv->td[i]->start_seg,
1506                                         urb_priv->td[i]->first_trb));
1507
1508         for (; i < urb_priv->length; i++) {
1509                 td = urb_priv->td[i];
1510                 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1511         }
1512
1513         /* Queue a stop endpoint command, but only if this is
1514          * the first cancellation to be handled.
1515          */
1516         if (!(ep->ep_state & EP_HALT_PENDING)) {
1517                 ep->ep_state |= EP_HALT_PENDING;
1518                 ep->stop_cmds_pending++;
1519                 ep->stop_cmd_timer.expires = jiffies +
1520                         XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1521                 add_timer(&ep->stop_cmd_timer);
1522                 xhci_queue_stop_endpoint(xhci, urb->dev->slot_id, ep_index, 0);
1523                 xhci_ring_cmd_db(xhci);
1524         }
1525 done:
1526         spin_unlock_irqrestore(&xhci->lock, flags);
1527         return ret;
1528 }
1529
1530 /* Drop an endpoint from a new bandwidth configuration for this device.
1531  * Only one call to this function is allowed per endpoint before
1532  * check_bandwidth() or reset_bandwidth() must be called.
1533  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1534  * add the endpoint to the schedule with possibly new parameters denoted by a
1535  * different endpoint descriptor in usb_host_endpoint.
1536  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1537  * not allowed.
1538  *
1539  * The USB core will not allow URBs to be queued to an endpoint that is being
1540  * disabled, so there's no need for mutual exclusion to protect
1541  * the xhci->devs[slot_id] structure.
1542  */
1543 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1544                 struct usb_host_endpoint *ep)
1545 {
1546         struct xhci_hcd *xhci;
1547         struct xhci_container_ctx *in_ctx, *out_ctx;
1548         struct xhci_input_control_ctx *ctrl_ctx;
1549         struct xhci_slot_ctx *slot_ctx;
1550         unsigned int last_ctx;
1551         unsigned int ep_index;
1552         struct xhci_ep_ctx *ep_ctx;
1553         u32 drop_flag;
1554         u32 new_add_flags, new_drop_flags, new_slot_info;
1555         int ret;
1556
1557         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1558         if (ret <= 0)
1559                 return ret;
1560         xhci = hcd_to_xhci(hcd);
1561         if (xhci->xhc_state & XHCI_STATE_DYING)
1562                 return -ENODEV;
1563
1564         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1565         drop_flag = xhci_get_endpoint_flag(&ep->desc);
1566         if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1567                 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1568                                 __func__, drop_flag);
1569                 return 0;
1570         }
1571
1572         in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1573         out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1574         ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1575         if (!ctrl_ctx) {
1576                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1577                                 __func__);
1578                 return 0;
1579         }
1580
1581         ep_index = xhci_get_endpoint_index(&ep->desc);
1582         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1583         /* If the HC already knows the endpoint is disabled,
1584          * or the HCD has noted it is disabled, ignore this request
1585          */
1586         if (((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) ==
1587              cpu_to_le32(EP_STATE_DISABLED)) ||
1588             le32_to_cpu(ctrl_ctx->drop_flags) &
1589             xhci_get_endpoint_flag(&ep->desc)) {
1590                 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1591                                 __func__, ep);
1592                 return 0;
1593         }
1594
1595         ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1596         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1597
1598         ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1599         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1600
1601         last_ctx = xhci_last_valid_endpoint(le32_to_cpu(ctrl_ctx->add_flags));
1602         slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1603         /* Update the last valid endpoint context, if we deleted the last one */
1604         if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) >
1605             LAST_CTX(last_ctx)) {
1606                 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1607                 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx));
1608         }
1609         new_slot_info = le32_to_cpu(slot_ctx->dev_info);
1610
1611         xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1612
1613         xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1614                         (unsigned int) ep->desc.bEndpointAddress,
1615                         udev->slot_id,
1616                         (unsigned int) new_drop_flags,
1617                         (unsigned int) new_add_flags,
1618                         (unsigned int) new_slot_info);
1619         return 0;
1620 }
1621
1622 /* Add an endpoint to a new possible bandwidth configuration for this device.
1623  * Only one call to this function is allowed per endpoint before
1624  * check_bandwidth() or reset_bandwidth() must be called.
1625  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1626  * add the endpoint to the schedule with possibly new parameters denoted by a
1627  * different endpoint descriptor in usb_host_endpoint.
1628  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1629  * not allowed.
1630  *
1631  * The USB core will not allow URBs to be queued to an endpoint until the
1632  * configuration or alt setting is installed in the device, so there's no need
1633  * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1634  */
1635 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1636                 struct usb_host_endpoint *ep)
1637 {
1638         struct xhci_hcd *xhci;
1639         struct xhci_container_ctx *in_ctx, *out_ctx;
1640         unsigned int ep_index;
1641         struct xhci_slot_ctx *slot_ctx;
1642         struct xhci_input_control_ctx *ctrl_ctx;
1643         u32 added_ctxs;
1644         unsigned int last_ctx;
1645         u32 new_add_flags, new_drop_flags, new_slot_info;
1646         struct xhci_virt_device *virt_dev;
1647         int ret = 0;
1648
1649         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1650         if (ret <= 0) {
1651                 /* So we won't queue a reset ep command for a root hub */
1652                 ep->hcpriv = NULL;
1653                 return ret;
1654         }
1655         xhci = hcd_to_xhci(hcd);
1656         if (xhci->xhc_state & XHCI_STATE_DYING)
1657                 return -ENODEV;
1658
1659         added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1660         last_ctx = xhci_last_valid_endpoint(added_ctxs);
1661         if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1662                 /* FIXME when we have to issue an evaluate endpoint command to
1663                  * deal with ep0 max packet size changing once we get the
1664                  * descriptors
1665                  */
1666                 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1667                                 __func__, added_ctxs);
1668                 return 0;
1669         }
1670
1671         virt_dev = xhci->devs[udev->slot_id];
1672         in_ctx = virt_dev->in_ctx;
1673         out_ctx = virt_dev->out_ctx;
1674         ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1675         if (!ctrl_ctx) {
1676                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1677                                 __func__);
1678                 return 0;
1679         }
1680
1681         ep_index = xhci_get_endpoint_index(&ep->desc);
1682         /* If this endpoint is already in use, and the upper layers are trying
1683          * to add it again without dropping it, reject the addition.
1684          */
1685         if (virt_dev->eps[ep_index].ring &&
1686                         !(le32_to_cpu(ctrl_ctx->drop_flags) &
1687                                 xhci_get_endpoint_flag(&ep->desc))) {
1688                 xhci_warn(xhci, "Trying to add endpoint 0x%x "
1689                                 "without dropping it.\n",
1690                                 (unsigned int) ep->desc.bEndpointAddress);
1691                 return -EINVAL;
1692         }
1693
1694         /* If the HCD has already noted the endpoint is enabled,
1695          * ignore this request.
1696          */
1697         if (le32_to_cpu(ctrl_ctx->add_flags) &
1698             xhci_get_endpoint_flag(&ep->desc)) {
1699                 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1700                                 __func__, ep);
1701                 return 0;
1702         }
1703
1704         /*
1705          * Configuration and alternate setting changes must be done in
1706          * process context, not interrupt context (or so documenation
1707          * for usb_set_interface() and usb_set_configuration() claim).
1708          */
1709         if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1710                 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1711                                 __func__, ep->desc.bEndpointAddress);
1712                 return -ENOMEM;
1713         }
1714
1715         ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1716         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1717
1718         /* If xhci_endpoint_disable() was called for this endpoint, but the
1719          * xHC hasn't been notified yet through the check_bandwidth() call,
1720          * this re-adds a new state for the endpoint from the new endpoint
1721          * descriptors.  We must drop and re-add this endpoint, so we leave the
1722          * drop flags alone.
1723          */
1724         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1725
1726         slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1727         /* Update the last valid endpoint context, if we just added one past */
1728         if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) <
1729             LAST_CTX(last_ctx)) {
1730                 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1731                 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx));
1732         }
1733         new_slot_info = le32_to_cpu(slot_ctx->dev_info);
1734
1735         /* Store the usb_device pointer for later use */
1736         ep->hcpriv = udev;
1737
1738         xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1739                         (unsigned int) ep->desc.bEndpointAddress,
1740                         udev->slot_id,
1741                         (unsigned int) new_drop_flags,
1742                         (unsigned int) new_add_flags,
1743                         (unsigned int) new_slot_info);
1744         return 0;
1745 }
1746
1747 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1748 {
1749         struct xhci_input_control_ctx *ctrl_ctx;
1750         struct xhci_ep_ctx *ep_ctx;
1751         struct xhci_slot_ctx *slot_ctx;
1752         int i;
1753
1754         ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
1755         if (!ctrl_ctx) {
1756                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1757                                 __func__);
1758                 return;
1759         }
1760
1761         /* When a device's add flag and drop flag are zero, any subsequent
1762          * configure endpoint command will leave that endpoint's state
1763          * untouched.  Make sure we don't leave any old state in the input
1764          * endpoint contexts.
1765          */
1766         ctrl_ctx->drop_flags = 0;
1767         ctrl_ctx->add_flags = 0;
1768         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1769         slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1770         /* Endpoint 0 is always valid */
1771         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1772         for (i = 1; i < 31; ++i) {
1773                 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1774                 ep_ctx->ep_info = 0;
1775                 ep_ctx->ep_info2 = 0;
1776                 ep_ctx->deq = 0;
1777                 ep_ctx->tx_info = 0;
1778         }
1779 }
1780
1781 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1782                 struct usb_device *udev, u32 *cmd_status)
1783 {
1784         int ret;
1785
1786         switch (*cmd_status) {
1787         case COMP_ENOMEM:
1788                 dev_warn(&udev->dev, "Not enough host controller resources "
1789                                 "for new device state.\n");
1790                 ret = -ENOMEM;
1791                 /* FIXME: can we allocate more resources for the HC? */
1792                 break;
1793         case COMP_BW_ERR:
1794         case COMP_2ND_BW_ERR:
1795                 dev_warn(&udev->dev, "Not enough bandwidth "
1796                                 "for new device state.\n");
1797                 ret = -ENOSPC;
1798                 /* FIXME: can we go back to the old state? */
1799                 break;
1800         case COMP_TRB_ERR:
1801                 /* the HCD set up something wrong */
1802                 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1803                                 "add flag = 1, "
1804                                 "and endpoint is not disabled.\n");
1805                 ret = -EINVAL;
1806                 break;
1807         case COMP_DEV_ERR:
1808                 dev_warn(&udev->dev, "ERROR: Incompatible device for endpoint "
1809                                 "configure command.\n");
1810                 ret = -ENODEV;
1811                 break;
1812         case COMP_SUCCESS:
1813                 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1814                                 "Successful Endpoint Configure command");
1815                 ret = 0;
1816                 break;
1817         default:
1818                 xhci_err(xhci, "ERROR: unexpected command completion "
1819                                 "code 0x%x.\n", *cmd_status);
1820                 ret = -EINVAL;
1821                 break;
1822         }
1823         return ret;
1824 }
1825
1826 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1827                 struct usb_device *udev, u32 *cmd_status)
1828 {
1829         int ret;
1830         struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id];
1831
1832         switch (*cmd_status) {
1833         case COMP_EINVAL:
1834                 dev_warn(&udev->dev, "WARN: xHCI driver setup invalid evaluate "
1835                                 "context command.\n");
1836                 ret = -EINVAL;
1837                 break;
1838         case COMP_EBADSLT:
1839                 dev_warn(&udev->dev, "WARN: slot not enabled for"
1840                                 "evaluate context command.\n");
1841                 ret = -EINVAL;
1842                 break;
1843         case COMP_CTX_STATE:
1844                 dev_warn(&udev->dev, "WARN: invalid context state for "
1845                                 "evaluate context command.\n");
1846                 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1);
1847                 ret = -EINVAL;
1848                 break;
1849         case COMP_DEV_ERR:
1850                 dev_warn(&udev->dev, "ERROR: Incompatible device for evaluate "
1851                                 "context command.\n");
1852                 ret = -ENODEV;
1853                 break;
1854         case COMP_MEL_ERR:
1855                 /* Max Exit Latency too large error */
1856                 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
1857                 ret = -EINVAL;
1858                 break;
1859         case COMP_SUCCESS:
1860                 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1861                                 "Successful evaluate context command");
1862                 ret = 0;
1863                 break;
1864         default:
1865                 xhci_err(xhci, "ERROR: unexpected command completion "
1866                                 "code 0x%x.\n", *cmd_status);
1867                 ret = -EINVAL;
1868                 break;
1869         }
1870         return ret;
1871 }
1872
1873 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
1874                 struct xhci_input_control_ctx *ctrl_ctx)
1875 {
1876         u32 valid_add_flags;
1877         u32 valid_drop_flags;
1878
1879         /* Ignore the slot flag (bit 0), and the default control endpoint flag
1880          * (bit 1).  The default control endpoint is added during the Address
1881          * Device command and is never removed until the slot is disabled.
1882          */
1883         valid_add_flags = ctrl_ctx->add_flags >> 2;
1884         valid_drop_flags = ctrl_ctx->drop_flags >> 2;
1885
1886         /* Use hweight32 to count the number of ones in the add flags, or
1887          * number of endpoints added.  Don't count endpoints that are changed
1888          * (both added and dropped).
1889          */
1890         return hweight32(valid_add_flags) -
1891                 hweight32(valid_add_flags & valid_drop_flags);
1892 }
1893
1894 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
1895                 struct xhci_input_control_ctx *ctrl_ctx)
1896 {
1897         u32 valid_add_flags;
1898         u32 valid_drop_flags;
1899
1900         valid_add_flags = ctrl_ctx->add_flags >> 2;
1901         valid_drop_flags = ctrl_ctx->drop_flags >> 2;
1902
1903         return hweight32(valid_drop_flags) -
1904                 hweight32(valid_add_flags & valid_drop_flags);
1905 }
1906
1907 /*
1908  * We need to reserve the new number of endpoints before the configure endpoint
1909  * command completes.  We can't subtract the dropped endpoints from the number
1910  * of active endpoints until the command completes because we can oversubscribe
1911  * the host in this case:
1912  *
1913  *  - the first configure endpoint command drops more endpoints than it adds
1914  *  - a second configure endpoint command that adds more endpoints is queued
1915  *  - the first configure endpoint command fails, so the config is unchanged
1916  *  - the second command may succeed, even though there isn't enough resources
1917  *
1918  * Must be called with xhci->lock held.
1919  */
1920 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
1921                 struct xhci_input_control_ctx *ctrl_ctx)
1922 {
1923         u32 added_eps;
1924
1925         added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
1926         if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
1927                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1928                                 "Not enough ep ctxs: "
1929                                 "%u active, need to add %u, limit is %u.",
1930                                 xhci->num_active_eps, added_eps,
1931                                 xhci->limit_active_eps);
1932                 return -ENOMEM;
1933         }
1934         xhci->num_active_eps += added_eps;
1935         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1936                         "Adding %u ep ctxs, %u now active.", added_eps,
1937                         xhci->num_active_eps);
1938         return 0;
1939 }
1940
1941 /*
1942  * The configure endpoint was failed by the xHC for some other reason, so we
1943  * need to revert the resources that failed configuration would have used.
1944  *
1945  * Must be called with xhci->lock held.
1946  */
1947 static void xhci_free_host_resources(struct xhci_hcd *xhci,
1948                 struct xhci_input_control_ctx *ctrl_ctx)
1949 {
1950         u32 num_failed_eps;
1951
1952         num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
1953         xhci->num_active_eps -= num_failed_eps;
1954         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1955                         "Removing %u failed ep ctxs, %u now active.",
1956                         num_failed_eps,
1957                         xhci->num_active_eps);
1958 }
1959
1960 /*
1961  * Now that the command has completed, clean up the active endpoint count by
1962  * subtracting out the endpoints that were dropped (but not changed).
1963  *
1964  * Must be called with xhci->lock held.
1965  */
1966 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
1967                 struct xhci_input_control_ctx *ctrl_ctx)
1968 {
1969         u32 num_dropped_eps;
1970
1971         num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
1972         xhci->num_active_eps -= num_dropped_eps;
1973         if (num_dropped_eps)
1974                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1975                                 "Removing %u dropped ep ctxs, %u now active.",
1976                                 num_dropped_eps,
1977                                 xhci->num_active_eps);
1978 }
1979
1980 static unsigned int xhci_get_block_size(struct usb_device *udev)
1981 {
1982         switch (udev->speed) {
1983         case USB_SPEED_LOW:
1984         case USB_SPEED_FULL:
1985                 return FS_BLOCK;
1986         case USB_SPEED_HIGH:
1987                 return HS_BLOCK;
1988         case USB_SPEED_SUPER:
1989                 return SS_BLOCK;
1990         case USB_SPEED_UNKNOWN:
1991         case USB_SPEED_WIRELESS:
1992         default:
1993                 /* Should never happen */
1994                 return 1;
1995         }
1996 }
1997
1998 static unsigned int
1999 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2000 {
2001         if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2002                 return LS_OVERHEAD;
2003         if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2004                 return FS_OVERHEAD;
2005         return HS_OVERHEAD;
2006 }
2007
2008 /* If we are changing a LS/FS device under a HS hub,
2009  * make sure (if we are activating a new TT) that the HS bus has enough
2010  * bandwidth for this new TT.
2011  */
2012 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2013                 struct xhci_virt_device *virt_dev,
2014                 int old_active_eps)
2015 {
2016         struct xhci_interval_bw_table *bw_table;
2017         struct xhci_tt_bw_info *tt_info;
2018
2019         /* Find the bandwidth table for the root port this TT is attached to. */
2020         bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2021         tt_info = virt_dev->tt_info;
2022         /* If this TT already had active endpoints, the bandwidth for this TT
2023          * has already been added.  Removing all periodic endpoints (and thus
2024          * making the TT enactive) will only decrease the bandwidth used.
2025          */
2026         if (old_active_eps)
2027                 return 0;
2028         if (old_active_eps == 0 && tt_info->active_eps != 0) {
2029                 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2030                         return -ENOMEM;
2031                 return 0;
2032         }
2033         /* Not sure why we would have no new active endpoints...
2034          *
2035          * Maybe because of an Evaluate Context change for a hub update or a
2036          * control endpoint 0 max packet size change?
2037          * FIXME: skip the bandwidth calculation in that case.
2038          */
2039         return 0;
2040 }
2041
2042 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2043                 struct xhci_virt_device *virt_dev)
2044 {
2045         unsigned int bw_reserved;
2046
2047         bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2048         if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2049                 return -ENOMEM;
2050
2051         bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2052         if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2053                 return -ENOMEM;
2054
2055         return 0;
2056 }
2057
2058 /*
2059  * This algorithm is a very conservative estimate of the worst-case scheduling
2060  * scenario for any one interval.  The hardware dynamically schedules the
2061  * packets, so we can't tell which microframe could be the limiting factor in
2062  * the bandwidth scheduling.  This only takes into account periodic endpoints.
2063  *
2064  * Obviously, we can't solve an NP complete problem to find the minimum worst
2065  * case scenario.  Instead, we come up with an estimate that is no less than
2066  * the worst case bandwidth used for any one microframe, but may be an
2067  * over-estimate.
2068  *
2069  * We walk the requirements for each endpoint by interval, starting with the
2070  * smallest interval, and place packets in the schedule where there is only one
2071  * possible way to schedule packets for that interval.  In order to simplify
2072  * this algorithm, we record the largest max packet size for each interval, and
2073  * assume all packets will be that size.
2074  *
2075  * For interval 0, we obviously must schedule all packets for each interval.
2076  * The bandwidth for interval 0 is just the amount of data to be transmitted
2077  * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2078  * the number of packets).
2079  *
2080  * For interval 1, we have two possible microframes to schedule those packets
2081  * in.  For this algorithm, if we can schedule the same number of packets for
2082  * each possible scheduling opportunity (each microframe), we will do so.  The
2083  * remaining number of packets will be saved to be transmitted in the gaps in
2084  * the next interval's scheduling sequence.
2085  *
2086  * As we move those remaining packets to be scheduled with interval 2 packets,
2087  * we have to double the number of remaining packets to transmit.  This is
2088  * because the intervals are actually powers of 2, and we would be transmitting
2089  * the previous interval's packets twice in this interval.  We also have to be
2090  * sure that when we look at the largest max packet size for this interval, we
2091  * also look at the largest max packet size for the remaining packets and take
2092  * the greater of the two.
2093  *
2094  * The algorithm continues to evenly distribute packets in each scheduling
2095  * opportunity, and push the remaining packets out, until we get to the last
2096  * interval.  Then those packets and their associated overhead are just added
2097  * to the bandwidth used.
2098  */
2099 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2100                 struct xhci_virt_device *virt_dev,
2101                 int old_active_eps)
2102 {
2103         unsigned int bw_reserved;
2104         unsigned int max_bandwidth;
2105         unsigned int bw_used;
2106         unsigned int block_size;
2107         struct xhci_interval_bw_table *bw_table;
2108         unsigned int packet_size = 0;
2109         unsigned int overhead = 0;
2110         unsigned int packets_transmitted = 0;
2111         unsigned int packets_remaining = 0;
2112         unsigned int i;
2113
2114         if (virt_dev->udev->speed == USB_SPEED_SUPER)
2115                 return xhci_check_ss_bw(xhci, virt_dev);
2116
2117         if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2118                 max_bandwidth = HS_BW_LIMIT;
2119                 /* Convert percent of bus BW reserved to blocks reserved */
2120                 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2121         } else {
2122                 max_bandwidth = FS_BW_LIMIT;
2123                 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2124         }
2125
2126         bw_table = virt_dev->bw_table;
2127         /* We need to translate the max packet size and max ESIT payloads into
2128          * the units the hardware uses.
2129          */
2130         block_size = xhci_get_block_size(virt_dev->udev);
2131
2132         /* If we are manipulating a LS/FS device under a HS hub, double check
2133          * that the HS bus has enough bandwidth if we are activing a new TT.
2134          */
2135         if (virt_dev->tt_info) {
2136                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2137                                 "Recalculating BW for rootport %u",
2138                                 virt_dev->real_port);
2139                 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2140                         xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2141                                         "newly activated TT.\n");
2142                         return -ENOMEM;
2143                 }
2144                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2145                                 "Recalculating BW for TT slot %u port %u",
2146                                 virt_dev->tt_info->slot_id,
2147                                 virt_dev->tt_info->ttport);
2148         } else {
2149                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2150                                 "Recalculating BW for rootport %u",
2151                                 virt_dev->real_port);
2152         }
2153
2154         /* Add in how much bandwidth will be used for interval zero, or the
2155          * rounded max ESIT payload + number of packets * largest overhead.
2156          */
2157         bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2158                 bw_table->interval_bw[0].num_packets *
2159                 xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2160
2161         for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2162                 unsigned int bw_added;
2163                 unsigned int largest_mps;
2164                 unsigned int interval_overhead;
2165
2166                 /*
2167                  * How many packets could we transmit in this interval?
2168                  * If packets didn't fit in the previous interval, we will need
2169                  * to transmit that many packets twice within this interval.
2170                  */
2171                 packets_remaining = 2 * packets_remaining +
2172                         bw_table->interval_bw[i].num_packets;
2173
2174                 /* Find the largest max packet size of this or the previous
2175                  * interval.
2176                  */
2177                 if (list_empty(&bw_table->interval_bw[i].endpoints))
2178                         largest_mps = 0;
2179                 else {
2180                         struct xhci_virt_ep *virt_ep;
2181                         struct list_head *ep_entry;
2182
2183                         ep_entry = bw_table->interval_bw[i].endpoints.next;
2184                         virt_ep = list_entry(ep_entry,
2185                                         struct xhci_virt_ep, bw_endpoint_list);
2186                         /* Convert to blocks, rounding up */
2187                         largest_mps = DIV_ROUND_UP(
2188                                         virt_ep->bw_info.max_packet_size,
2189                                         block_size);
2190                 }
2191                 if (largest_mps > packet_size)
2192                         packet_size = largest_mps;
2193
2194                 /* Use the larger overhead of this or the previous interval. */
2195                 interval_overhead = xhci_get_largest_overhead(
2196                                 &bw_table->interval_bw[i]);
2197                 if (interval_overhead > overhead)
2198                         overhead = interval_overhead;
2199
2200                 /* How many packets can we evenly distribute across
2201                  * (1 << (i + 1)) possible scheduling opportunities?
2202                  */
2203                 packets_transmitted = packets_remaining >> (i + 1);
2204
2205                 /* Add in the bandwidth used for those scheduled packets */
2206                 bw_added = packets_transmitted * (overhead + packet_size);
2207
2208                 /* How many packets do we have remaining to transmit? */
2209                 packets_remaining = packets_remaining % (1 << (i + 1));
2210
2211                 /* What largest max packet size should those packets have? */
2212                 /* If we've transmitted all packets, don't carry over the
2213                  * largest packet size.
2214                  */
2215                 if (packets_remaining == 0) {
2216                         packet_size = 0;
2217                         overhead = 0;
2218                 } else if (packets_transmitted > 0) {
2219                         /* Otherwise if we do have remaining packets, and we've
2220                          * scheduled some packets in this interval, take the
2221                          * largest max packet size from endpoints with this
2222                          * interval.
2223                          */
2224                         packet_size = largest_mps;
2225                         overhead = interval_overhead;
2226                 }
2227                 /* Otherwise carry over packet_size and overhead from the last
2228                  * time we had a remainder.
2229                  */
2230                 bw_used += bw_added;
2231                 if (bw_used > max_bandwidth) {
2232                         xhci_warn(xhci, "Not enough bandwidth. "
2233                                         "Proposed: %u, Max: %u\n",
2234                                 bw_used, max_bandwidth);
2235                         return -ENOMEM;
2236                 }
2237         }
2238         /*
2239          * Ok, we know we have some packets left over after even-handedly
2240          * scheduling interval 15.  We don't know which microframes they will
2241          * fit into, so we over-schedule and say they will be scheduled every
2242          * microframe.
2243          */
2244         if (packets_remaining > 0)
2245                 bw_used += overhead + packet_size;
2246
2247         if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2248                 unsigned int port_index = virt_dev->real_port - 1;
2249
2250                 /* OK, we're manipulating a HS device attached to a
2251                  * root port bandwidth domain.  Include the number of active TTs
2252                  * in the bandwidth used.
2253                  */
2254                 bw_used += TT_HS_OVERHEAD *
2255                         xhci->rh_bw[port_index].num_active_tts;
2256         }
2257
2258         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2259                 "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2260                 "Available: %u " "percent",
2261                 bw_used, max_bandwidth, bw_reserved,
2262                 (max_bandwidth - bw_used - bw_reserved) * 100 /
2263                 max_bandwidth);
2264
2265         bw_used += bw_reserved;
2266         if (bw_used > max_bandwidth) {
2267                 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2268                                 bw_used, max_bandwidth);
2269                 return -ENOMEM;
2270         }
2271
2272         bw_table->bw_used = bw_used;
2273         return 0;
2274 }
2275
2276 static bool xhci_is_async_ep(unsigned int ep_type)
2277 {
2278         return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2279                                         ep_type != ISOC_IN_EP &&
2280                                         ep_type != INT_IN_EP);
2281 }
2282
2283 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2284 {
2285         return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2286 }
2287
2288 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2289 {
2290         unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2291
2292         if (ep_bw->ep_interval == 0)
2293                 return SS_OVERHEAD_BURST +
2294                         (ep_bw->mult * ep_bw->num_packets *
2295                                         (SS_OVERHEAD + mps));
2296         return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2297                                 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2298                                 1 << ep_bw->ep_interval);
2299
2300 }
2301
2302 void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2303                 struct xhci_bw_info *ep_bw,
2304                 struct xhci_interval_bw_table *bw_table,
2305                 struct usb_device *udev,
2306                 struct xhci_virt_ep *virt_ep,
2307                 struct xhci_tt_bw_info *tt_info)
2308 {
2309         struct xhci_interval_bw *interval_bw;
2310         int normalized_interval;
2311
2312         if (xhci_is_async_ep(ep_bw->type))
2313                 return;
2314
2315         if (udev->speed == USB_SPEED_SUPER) {
2316                 if (xhci_is_sync_in_ep(ep_bw->type))
2317                         xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2318                                 xhci_get_ss_bw_consumed(ep_bw);
2319                 else
2320                         xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2321                                 xhci_get_ss_bw_consumed(ep_bw);
2322                 return;
2323         }
2324
2325         /* SuperSpeed endpoints never get added to intervals in the table, so
2326          * this check is only valid for HS/FS/LS devices.
2327          */
2328         if (list_empty(&virt_ep->bw_endpoint_list))
2329                 return;
2330         /* For LS/FS devices, we need to translate the interval expressed in
2331          * microframes to frames.
2332          */
2333         if (udev->speed == USB_SPEED_HIGH)
2334                 normalized_interval = ep_bw->ep_interval;
2335         else
2336                 normalized_interval = ep_bw->ep_interval - 3;
2337
2338         if (normalized_interval == 0)
2339                 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2340         interval_bw = &bw_table->interval_bw[normalized_interval];
2341         interval_bw->num_packets -= ep_bw->num_packets;
2342         switch (udev->speed) {
2343         case USB_SPEED_LOW:
2344                 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2345                 break;
2346         case USB_SPEED_FULL:
2347                 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2348                 break;
2349         case USB_SPEED_HIGH:
2350                 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2351                 break;
2352         case USB_SPEED_SUPER:
2353         case USB_SPEED_UNKNOWN:
2354         case USB_SPEED_WIRELESS:
2355                 /* Should never happen because only LS/FS/HS endpoints will get
2356                  * added to the endpoint list.
2357                  */
2358                 return;
2359         }
2360         if (tt_info)
2361                 tt_info->active_eps -= 1;
2362         list_del_init(&virt_ep->bw_endpoint_list);
2363 }
2364
2365 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2366                 struct xhci_bw_info *ep_bw,
2367                 struct xhci_interval_bw_table *bw_table,
2368                 struct usb_device *udev,
2369                 struct xhci_virt_ep *virt_ep,
2370                 struct xhci_tt_bw_info *tt_info)
2371 {
2372         struct xhci_interval_bw *interval_bw;
2373         struct xhci_virt_ep *smaller_ep;
2374         int normalized_interval;
2375
2376         if (xhci_is_async_ep(ep_bw->type))
2377                 return;
2378
2379         if (udev->speed == USB_SPEED_SUPER) {
2380                 if (xhci_is_sync_in_ep(ep_bw->type))
2381                         xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2382                                 xhci_get_ss_bw_consumed(ep_bw);
2383                 else
2384                         xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2385                                 xhci_get_ss_bw_consumed(ep_bw);
2386                 return;
2387         }
2388
2389         /* For LS/FS devices, we need to translate the interval expressed in
2390          * microframes to frames.
2391          */
2392         if (udev->speed == USB_SPEED_HIGH)
2393                 normalized_interval = ep_bw->ep_interval;
2394         else
2395                 normalized_interval = ep_bw->ep_interval - 3;
2396
2397         if (normalized_interval == 0)
2398                 bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2399         interval_bw = &bw_table->interval_bw[normalized_interval];
2400         interval_bw->num_packets += ep_bw->num_packets;
2401         switch (udev->speed) {
2402         case USB_SPEED_LOW:
2403                 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2404                 break;
2405         case USB_SPEED_FULL:
2406                 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2407                 break;
2408         case USB_SPEED_HIGH:
2409                 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2410                 break;
2411         case USB_SPEED_SUPER:
2412         case USB_SPEED_UNKNOWN:
2413         case USB_SPEED_WIRELESS:
2414                 /* Should never happen because only LS/FS/HS endpoints will get
2415                  * added to the endpoint list.
2416                  */
2417                 return;
2418         }
2419
2420         if (tt_info)
2421                 tt_info->active_eps += 1;
2422         /* Insert the endpoint into the list, largest max packet size first. */
2423         list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2424                         bw_endpoint_list) {
2425                 if (ep_bw->max_packet_size >=
2426                                 smaller_ep->bw_info.max_packet_size) {
2427                         /* Add the new ep before the smaller endpoint */
2428                         list_add_tail(&virt_ep->bw_endpoint_list,
2429                                         &smaller_ep->bw_endpoint_list);
2430                         return;
2431                 }
2432         }
2433         /* Add the new endpoint at the end of the list. */
2434         list_add_tail(&virt_ep->bw_endpoint_list,
2435                         &interval_bw->endpoints);
2436 }
2437
2438 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2439                 struct xhci_virt_device *virt_dev,
2440                 int old_active_eps)
2441 {
2442         struct xhci_root_port_bw_info *rh_bw_info;
2443         if (!virt_dev->tt_info)
2444                 return;
2445
2446         rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2447         if (old_active_eps == 0 &&
2448                                 virt_dev->tt_info->active_eps != 0) {
2449                 rh_bw_info->num_active_tts += 1;
2450                 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2451         } else if (old_active_eps != 0 &&
2452                                 virt_dev->tt_info->active_eps == 0) {
2453                 rh_bw_info->num_active_tts -= 1;
2454                 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2455         }
2456 }
2457
2458 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2459                 struct xhci_virt_device *virt_dev,
2460                 struct xhci_container_ctx *in_ctx)
2461 {
2462         struct xhci_bw_info ep_bw_info[31];
2463         int i;
2464         struct xhci_input_control_ctx *ctrl_ctx;
2465         int old_active_eps = 0;
2466
2467         if (virt_dev->tt_info)
2468                 old_active_eps = virt_dev->tt_info->active_eps;
2469
2470         ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
2471         if (!ctrl_ctx) {
2472                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2473                                 __func__);
2474                 return -ENOMEM;
2475         }
2476
2477         for (i = 0; i < 31; i++) {
2478                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2479                         continue;
2480
2481                 /* Make a copy of the BW info in case we need to revert this */
2482                 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2483                                 sizeof(ep_bw_info[i]));
2484                 /* Drop the endpoint from the interval table if the endpoint is
2485                  * being dropped or changed.
2486                  */
2487                 if (EP_IS_DROPPED(ctrl_ctx, i))
2488                         xhci_drop_ep_from_interval_table(xhci,
2489                                         &virt_dev->eps[i].bw_info,
2490                                         virt_dev->bw_table,
2491                                         virt_dev->udev,
2492                                         &virt_dev->eps[i],
2493                                         virt_dev->tt_info);
2494         }
2495         /* Overwrite the information stored in the endpoints' bw_info */
2496         xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2497         for (i = 0; i < 31; i++) {
2498                 /* Add any changed or added endpoints to the interval table */
2499                 if (EP_IS_ADDED(ctrl_ctx, i))
2500                         xhci_add_ep_to_interval_table(xhci,
2501                                         &virt_dev->eps[i].bw_info,
2502                                         virt_dev->bw_table,
2503                                         virt_dev->udev,
2504                                         &virt_dev->eps[i],
2505                                         virt_dev->tt_info);
2506         }
2507
2508         if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2509                 /* Ok, this fits in the bandwidth we have.
2510                  * Update the number of active TTs.
2511                  */
2512                 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2513                 return 0;
2514         }
2515
2516         /* We don't have enough bandwidth for this, revert the stored info. */
2517         for (i = 0; i < 31; i++) {
2518                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2519                         continue;
2520
2521                 /* Drop the new copies of any added or changed endpoints from
2522                  * the interval table.
2523                  */
2524                 if (EP_IS_ADDED(ctrl_ctx, i)) {
2525                         xhci_drop_ep_from_interval_table(xhci,
2526                                         &virt_dev->eps[i].bw_info,
2527                                         virt_dev->bw_table,
2528                                         virt_dev->udev,
2529                                         &virt_dev->eps[i],
2530                                         virt_dev->tt_info);
2531                 }
2532                 /* Revert the endpoint back to its old information */
2533                 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2534                                 sizeof(ep_bw_info[i]));
2535                 /* Add any changed or dropped endpoints back into the table */
2536                 if (EP_IS_DROPPED(ctrl_ctx, i))
2537                         xhci_add_ep_to_interval_table(xhci,
2538                                         &virt_dev->eps[i].bw_info,
2539                                         virt_dev->bw_table,
2540                                         virt_dev->udev,
2541                                         &virt_dev->eps[i],
2542                                         virt_dev->tt_info);
2543         }
2544         return -ENOMEM;
2545 }
2546
2547
2548 /* Issue a configure endpoint command or evaluate context command
2549  * and wait for it to finish.
2550  */
2551 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2552                 struct usb_device *udev,
2553                 struct xhci_command *command,
2554                 bool ctx_change, bool must_succeed)
2555 {
2556         int ret;
2557         int timeleft;
2558         unsigned long flags;
2559         struct xhci_container_ctx *in_ctx;
2560         struct xhci_input_control_ctx *ctrl_ctx;
2561         struct completion *cmd_completion;
2562         u32 *cmd_status;
2563         struct xhci_virt_device *virt_dev;
2564         union xhci_trb *cmd_trb;
2565
2566         spin_lock_irqsave(&xhci->lock, flags);
2567         virt_dev = xhci->devs[udev->slot_id];
2568
2569         if (command)
2570                 in_ctx = command->in_ctx;
2571         else
2572                 in_ctx = virt_dev->in_ctx;
2573         ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
2574         if (!ctrl_ctx) {
2575                 spin_unlock_irqrestore(&xhci->lock, flags);
2576                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2577                                 __func__);
2578                 return -ENOMEM;
2579         }
2580
2581         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2582                         xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2583                 spin_unlock_irqrestore(&xhci->lock, flags);
2584                 xhci_warn(xhci, "Not enough host resources, "
2585                                 "active endpoint contexts = %u\n",
2586                                 xhci->num_active_eps);
2587                 return -ENOMEM;
2588         }
2589         if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2590                         xhci_reserve_bandwidth(xhci, virt_dev, in_ctx)) {
2591                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2592                         xhci_free_host_resources(xhci, ctrl_ctx);
2593                 spin_unlock_irqrestore(&xhci->lock, flags);
2594                 xhci_warn(xhci, "Not enough bandwidth\n");
2595                 return -ENOMEM;
2596         }
2597
2598         if (command) {
2599                 cmd_completion = command->completion;
2600                 cmd_status = &command->status;
2601                 command->command_trb = xhci->cmd_ring->enqueue;
2602
2603                 /* Enqueue pointer can be left pointing to the link TRB,
2604                  * we must handle that
2605                  */
2606                 if (TRB_TYPE_LINK_LE32(command->command_trb->link.control))
2607                         command->command_trb =
2608                                 xhci->cmd_ring->enq_seg->next->trbs;
2609
2610                 list_add_tail(&command->cmd_list, &virt_dev->cmd_list);
2611         } else {
2612                 cmd_completion = &virt_dev->cmd_completion;
2613                 cmd_status = &virt_dev->cmd_status;
2614         }
2615         init_completion(cmd_completion);
2616
2617         cmd_trb = xhci->cmd_ring->dequeue;
2618         if (!ctx_change)
2619                 ret = xhci_queue_configure_endpoint(xhci, in_ctx->dma,
2620                                 udev->slot_id, must_succeed);
2621         else
2622                 ret = xhci_queue_evaluate_context(xhci, in_ctx->dma,
2623                                 udev->slot_id, must_succeed);
2624         if (ret < 0) {
2625                 if (command)
2626                         list_del(&command->cmd_list);
2627                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2628                         xhci_free_host_resources(xhci, ctrl_ctx);
2629                 spin_unlock_irqrestore(&xhci->lock, flags);
2630                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
2631                                 "FIXME allocate a new ring segment");
2632                 return -ENOMEM;
2633         }
2634         xhci_ring_cmd_db(xhci);
2635         spin_unlock_irqrestore(&xhci->lock, flags);
2636
2637         /* Wait for the configure endpoint command to complete */
2638         timeleft = wait_for_completion_interruptible_timeout(
2639                         cmd_completion,
2640                         XHCI_CMD_DEFAULT_TIMEOUT);
2641         if (timeleft <= 0) {
2642                 xhci_warn(xhci, "%s while waiting for %s command\n",
2643                                 timeleft == 0 ? "Timeout" : "Signal",
2644                                 ctx_change == 0 ?
2645                                         "configure endpoint" :
2646                                         "evaluate context");
2647                 /* cancel the configure endpoint command */
2648                 ret = xhci_cancel_cmd(xhci, command, cmd_trb);
2649                 if (ret < 0)
2650                         return ret;
2651                 return -ETIME;
2652         }
2653
2654         if (!ctx_change)
2655                 ret = xhci_configure_endpoint_result(xhci, udev, cmd_status);
2656         else
2657                 ret = xhci_evaluate_context_result(xhci, udev, cmd_status);
2658
2659         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2660                 spin_lock_irqsave(&xhci->lock, flags);
2661                 /* If the command failed, remove the reserved resources.
2662                  * Otherwise, clean up the estimate to include dropped eps.
2663                  */
2664                 if (ret)
2665                         xhci_free_host_resources(xhci, ctrl_ctx);
2666                 else
2667                         xhci_finish_resource_reservation(xhci, ctrl_ctx);
2668                 spin_unlock_irqrestore(&xhci->lock, flags);
2669         }
2670         return ret;
2671 }
2672
2673 /* Called after one or more calls to xhci_add_endpoint() or
2674  * xhci_drop_endpoint().  If this call fails, the USB core is expected
2675  * to call xhci_reset_bandwidth().
2676  *
2677  * Since we are in the middle of changing either configuration or
2678  * installing a new alt setting, the USB core won't allow URBs to be
2679  * enqueued for any endpoint on the old config or interface.  Nothing
2680  * else should be touching the xhci->devs[slot_id] structure, so we
2681  * don't need to take the xhci->lock for manipulating that.
2682  */
2683 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2684 {
2685         int i;
2686         int ret = 0;
2687         struct xhci_hcd *xhci;
2688         struct xhci_virt_device *virt_dev;
2689         struct xhci_input_control_ctx *ctrl_ctx;
2690         struct xhci_slot_ctx *slot_ctx;
2691
2692         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2693         if (ret <= 0)
2694                 return ret;
2695         xhci = hcd_to_xhci(hcd);
2696         if (xhci->xhc_state & XHCI_STATE_DYING)
2697                 return -ENODEV;
2698
2699         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2700         virt_dev = xhci->devs[udev->slot_id];
2701
2702         /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2703         ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
2704         if (!ctrl_ctx) {
2705                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2706                                 __func__);
2707                 return -ENOMEM;
2708         }
2709         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2710         ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2711         ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2712
2713         /* Don't issue the command if there's no endpoints to update. */
2714         if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2715                         ctrl_ctx->drop_flags == 0)
2716                 return 0;
2717
2718         xhci_dbg(xhci, "New Input Control Context:\n");
2719         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2720         xhci_dbg_ctx(xhci, virt_dev->in_ctx,
2721                      LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2722
2723         ret = xhci_configure_endpoint(xhci, udev, NULL,
2724                         false, false);
2725         if (ret) {
2726                 /* Callee should call reset_bandwidth() */
2727                 return ret;
2728         }
2729
2730         xhci_dbg(xhci, "Output context after successful config ep cmd:\n");
2731         xhci_dbg_ctx(xhci, virt_dev->out_ctx,
2732                      LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2733
2734         /* Free any rings that were dropped, but not changed. */
2735         for (i = 1; i < 31; ++i) {
2736                 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2737                     !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1))))
2738                         xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2739         }
2740         xhci_zero_in_ctx(xhci, virt_dev);
2741         /*
2742          * Install any rings for completely new endpoints or changed endpoints,
2743          * and free or cache any old rings from changed endpoints.
2744          */
2745         for (i = 1; i < 31; ++i) {
2746                 if (!virt_dev->eps[i].new_ring)
2747                         continue;
2748                 /* Only cache or free the old ring if it exists.
2749                  * It may not if this is the first add of an endpoint.
2750                  */
2751                 if (virt_dev->eps[i].ring) {
2752                         xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2753                 }
2754                 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2755                 virt_dev->eps[i].new_ring = NULL;
2756         }
2757
2758         return ret;
2759 }
2760
2761 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2762 {
2763         struct xhci_hcd *xhci;
2764         struct xhci_virt_device *virt_dev;
2765         int i, ret;
2766
2767         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2768         if (ret <= 0)
2769                 return;
2770         xhci = hcd_to_xhci(hcd);
2771
2772         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2773         virt_dev = xhci->devs[udev->slot_id];
2774         /* Free any rings allocated for added endpoints */
2775         for (i = 0; i < 31; ++i) {
2776                 if (virt_dev->eps[i].new_ring) {
2777                         xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2778                         virt_dev->eps[i].new_ring = NULL;
2779                 }
2780         }
2781         xhci_zero_in_ctx(xhci, virt_dev);
2782 }
2783
2784 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2785                 struct xhci_container_ctx *in_ctx,
2786                 struct xhci_container_ctx *out_ctx,
2787                 struct xhci_input_control_ctx *ctrl_ctx,
2788                 u32 add_flags, u32 drop_flags)
2789 {
2790         ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2791         ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2792         xhci_slot_copy(xhci, in_ctx, out_ctx);
2793         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2794
2795         xhci_dbg(xhci, "Input Context:\n");
2796         xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags));
2797 }
2798
2799 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2800                 unsigned int slot_id, unsigned int ep_index,
2801                 struct xhci_dequeue_state *deq_state)
2802 {
2803         struct xhci_input_control_ctx *ctrl_ctx;
2804         struct xhci_container_ctx *in_ctx;
2805         struct xhci_ep_ctx *ep_ctx;
2806         u32 added_ctxs;
2807         dma_addr_t addr;
2808
2809         in_ctx = xhci->devs[slot_id]->in_ctx;
2810         ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
2811         if (!ctrl_ctx) {
2812                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2813                                 __func__);
2814                 return;
2815         }
2816
2817         xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
2818                         xhci->devs[slot_id]->out_ctx, ep_index);
2819         ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
2820         addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
2821                         deq_state->new_deq_ptr);
2822         if (addr == 0) {
2823                 xhci_warn(xhci, "WARN Cannot submit config ep after "
2824                                 "reset ep command\n");
2825                 xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
2826                                 deq_state->new_deq_seg,
2827                                 deq_state->new_deq_ptr);
2828                 return;
2829         }
2830         ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
2831
2832         added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
2833         xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
2834                         xhci->devs[slot_id]->out_ctx, ctrl_ctx,
2835                         added_ctxs, added_ctxs);
2836 }
2837
2838 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci,
2839                 struct usb_device *udev, unsigned int ep_index)
2840 {
2841         struct xhci_dequeue_state deq_state;
2842         struct xhci_virt_ep *ep;
2843
2844         xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2845                         "Cleaning up stalled endpoint ring");
2846         ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2847         /* We need to move the HW's dequeue pointer past this TD,
2848          * or it will attempt to resend it on the next doorbell ring.
2849          */
2850         xhci_find_new_dequeue_state(xhci, udev->slot_id,
2851                         ep_index, ep->stopped_stream, ep->stopped_td,
2852                         &deq_state);
2853
2854         /* HW with the reset endpoint quirk will use the saved dequeue state to
2855          * issue a configure endpoint command later.
2856          */
2857         if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
2858                 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2859                                 "Queueing new dequeue state");
2860                 xhci_queue_new_dequeue_state(xhci, udev->slot_id,
2861                                 ep_index, ep->stopped_stream, &deq_state);
2862         } else {
2863                 /* Better hope no one uses the input context between now and the
2864                  * reset endpoint completion!
2865                  * XXX: No idea how this hardware will react when stream rings
2866                  * are enabled.
2867                  */
2868                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2869                                 "Setting up input context for "
2870                                 "configure endpoint command");
2871                 xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
2872                                 ep_index, &deq_state);
2873         }
2874 }
2875
2876 /* Deal with stalled endpoints.  The core should have sent the control message
2877  * to clear the halt condition.  However, we need to make the xHCI hardware
2878  * reset its sequence number, since a device will expect a sequence number of
2879  * zero after the halt condition is cleared.
2880  * Context: in_interrupt
2881  */
2882 void xhci_endpoint_reset(struct usb_hcd *hcd,
2883                 struct usb_host_endpoint *ep)
2884 {
2885         struct xhci_hcd *xhci;
2886         struct usb_device *udev;
2887         unsigned int ep_index;
2888         unsigned long flags;
2889         int ret;
2890         struct xhci_virt_ep *virt_ep;
2891
2892         xhci = hcd_to_xhci(hcd);
2893         udev = (struct usb_device *) ep->hcpriv;
2894         /* Called with a root hub endpoint (or an endpoint that wasn't added
2895          * with xhci_add_endpoint()
2896          */
2897         if (!ep->hcpriv)
2898                 return;
2899         ep_index = xhci_get_endpoint_index(&ep->desc);
2900         virt_ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2901         if (!virt_ep->stopped_td) {
2902                 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2903                         "Endpoint 0x%x not halted, refusing to reset.",
2904                         ep->desc.bEndpointAddress);
2905                 return;
2906         }
2907         if (usb_endpoint_xfer_control(&ep->desc)) {
2908                 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2909                                 "Control endpoint stall already handled.");
2910                 return;
2911         }
2912
2913         xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2914                         "Queueing reset endpoint command");
2915         spin_lock_irqsave(&xhci->lock, flags);
2916         ret = xhci_queue_reset_ep(xhci, udev->slot_id, ep_index);
2917         /*
2918          * Can't change the ring dequeue pointer until it's transitioned to the
2919          * stopped state, which is only upon a successful reset endpoint
2920          * command.  Better hope that last command worked!
2921          */
2922         if (!ret) {
2923                 xhci_cleanup_stalled_ring(xhci, udev, ep_index);
2924                 kfree(virt_ep->stopped_td);
2925                 xhci_ring_cmd_db(xhci);
2926         }
2927         virt_ep->stopped_td = NULL;
2928         virt_ep->stopped_trb = NULL;
2929         virt_ep->stopped_stream = 0;
2930         spin_unlock_irqrestore(&xhci->lock, flags);
2931
2932         if (ret)
2933                 xhci_warn(xhci, "FIXME allocate a new ring segment\n");
2934 }
2935
2936 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
2937                 struct usb_device *udev, struct usb_host_endpoint *ep,
2938                 unsigned int slot_id)
2939 {
2940         int ret;
2941         unsigned int ep_index;
2942         unsigned int ep_state;
2943
2944         if (!ep)
2945                 return -EINVAL;
2946         ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
2947         if (ret <= 0)
2948                 return -EINVAL;
2949         if (ep->ss_ep_comp.bmAttributes == 0) {
2950                 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
2951                                 " descriptor for ep 0x%x does not support streams\n",
2952                                 ep->desc.bEndpointAddress);
2953                 return -EINVAL;
2954         }
2955
2956         ep_index = xhci_get_endpoint_index(&ep->desc);
2957         ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
2958         if (ep_state & EP_HAS_STREAMS ||
2959                         ep_state & EP_GETTING_STREAMS) {
2960                 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
2961                                 "already has streams set up.\n",
2962                                 ep->desc.bEndpointAddress);
2963                 xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
2964                                 "dynamic stream context array reallocation.\n");
2965                 return -EINVAL;
2966         }
2967         if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
2968                 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
2969                                 "endpoint 0x%x; URBs are pending.\n",
2970                                 ep->desc.bEndpointAddress);
2971                 return -EINVAL;
2972         }
2973         return 0;
2974 }
2975
2976 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
2977                 unsigned int *num_streams, unsigned int *num_stream_ctxs)
2978 {
2979         unsigned int max_streams;
2980
2981         /* The stream context array size must be a power of two */
2982         *num_stream_ctxs = roundup_pow_of_two(*num_streams);
2983         /*
2984          * Find out how many primary stream array entries the host controller
2985          * supports.  Later we may use secondary stream arrays (similar to 2nd
2986          * level page entries), but that's an optional feature for xHCI host
2987          * controllers. xHCs must support at least 4 stream IDs.
2988          */
2989         max_streams = HCC_MAX_PSA(xhci->hcc_params);
2990         if (*num_stream_ctxs > max_streams) {
2991                 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
2992                                 max_streams);
2993                 *num_stream_ctxs = max_streams;
2994                 *num_streams = max_streams;
2995         }
2996 }
2997
2998 /* Returns an error code if one of the endpoint already has streams.
2999  * This does not change any data structures, it only checks and gathers
3000  * information.
3001  */
3002 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3003                 struct usb_device *udev,
3004                 struct usb_host_endpoint **eps, unsigned int num_eps,
3005                 unsigned int *num_streams, u32 *changed_ep_bitmask)
3006 {
3007         unsigned int max_streams;
3008         unsigned int endpoint_flag;
3009         int i;
3010         int ret;
3011
3012         for (i = 0; i < num_eps; i++) {
3013                 ret = xhci_check_streams_endpoint(xhci, udev,
3014                                 eps[i], udev->slot_id);
3015                 if (ret < 0)
3016                         return ret;
3017
3018                 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3019                 if (max_streams < (*num_streams - 1)) {
3020                         xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3021                                         eps[i]->desc.bEndpointAddress,
3022                                         max_streams);
3023                         *num_streams = max_streams+1;
3024                 }
3025
3026                 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3027                 if (*changed_ep_bitmask & endpoint_flag)
3028                         return -EINVAL;
3029                 *changed_ep_bitmask |= endpoint_flag;
3030         }
3031         return 0;
3032 }
3033
3034 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3035                 struct usb_device *udev,
3036                 struct usb_host_endpoint **eps, unsigned int num_eps)
3037 {
3038         u32 changed_ep_bitmask = 0;
3039         unsigned int slot_id;
3040         unsigned int ep_index;
3041         unsigned int ep_state;
3042         int i;
3043
3044         slot_id = udev->slot_id;
3045         if (!xhci->devs[slot_id])
3046                 return 0;
3047
3048         for (i = 0; i < num_eps; i++) {
3049                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3050                 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3051                 /* Are streams already being freed for the endpoint? */
3052                 if (ep_state & EP_GETTING_NO_STREAMS) {
3053                         xhci_warn(xhci, "WARN Can't disable streams for "
3054                                         "endpoint 0x%x, "
3055                                         "streams are being disabled already\n",
3056                                         eps[i]->desc.bEndpointAddress);
3057                         return 0;
3058                 }
3059                 /* Are there actually any streams to free? */
3060                 if (!(ep_state & EP_HAS_STREAMS) &&
3061                                 !(ep_state & EP_GETTING_STREAMS)) {
3062                         xhci_warn(xhci, "WARN Can't disable streams for "
3063                                         "endpoint 0x%x, "
3064                                         "streams are already disabled!\n",
3065                                         eps[i]->desc.bEndpointAddress);
3066                         xhci_warn(xhci, "WARN xhci_free_streams() called "
3067                                         "with non-streams endpoint\n");
3068                         return 0;
3069                 }
3070                 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3071         }
3072         return changed_ep_bitmask;
3073 }
3074
3075 /*
3076  * The USB device drivers use this function (though the HCD interface in USB
3077  * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3078  * coordinate mass storage command queueing across multiple endpoints (basically
3079  * a stream ID == a task ID).
3080  *
3081  * Setting up streams involves allocating the same size stream context array
3082  * for each endpoint and issuing a configure endpoint command for all endpoints.
3083  *
3084  * Don't allow the call to succeed if one endpoint only supports one stream
3085  * (which means it doesn't support streams at all).
3086  *
3087  * Drivers may get less stream IDs than they asked for, if the host controller
3088  * hardware or endpoints claim they can't support the number of requested
3089  * stream IDs.
3090  */
3091 int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3092                 struct usb_host_endpoint **eps, unsigned int num_eps,
3093                 unsigned int num_streams, gfp_t mem_flags)
3094 {
3095         int i, ret;
3096         struct xhci_hcd *xhci;
3097         struct xhci_virt_device *vdev;
3098         struct xhci_command *config_cmd;
3099         struct xhci_input_control_ctx *ctrl_ctx;
3100         unsigned int ep_index;
3101         unsigned int num_stream_ctxs;
3102         unsigned long flags;
3103         u32 changed_ep_bitmask = 0;
3104
3105         if (!eps)
3106                 return -EINVAL;
3107
3108         /* Add one to the number of streams requested to account for
3109          * stream 0 that is reserved for xHCI usage.
3110          */
3111         num_streams += 1;
3112         xhci = hcd_to_xhci(hcd);
3113         xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3114                         num_streams);
3115
3116         config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
3117         if (!config_cmd) {
3118                 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
3119                 return -ENOMEM;
3120         }
3121         ctrl_ctx = xhci_get_input_control_ctx(xhci, config_cmd->in_ctx);
3122         if (!ctrl_ctx) {
3123                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3124                                 __func__);
3125                 xhci_free_command(xhci, config_cmd);
3126                 return -ENOMEM;
3127         }
3128
3129         /* Check to make sure all endpoints are not already configured for
3130          * streams.  While we're at it, find the maximum number of streams that
3131          * all the endpoints will support and check for duplicate endpoints.
3132          */
3133         spin_lock_irqsave(&xhci->lock, flags);
3134         ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3135                         num_eps, &num_streams, &changed_ep_bitmask);
3136         if (ret < 0) {
3137                 xhci_free_command(xhci, config_cmd);
3138                 spin_unlock_irqrestore(&xhci->lock, flags);
3139                 return ret;
3140         }
3141         if (num_streams <= 1) {
3142                 xhci_warn(xhci, "WARN: endpoints can't handle "
3143                                 "more than one stream.\n");
3144                 xhci_free_command(xhci, config_cmd);
3145                 spin_unlock_irqrestore(&xhci->lock, flags);
3146                 return -EINVAL;
3147         }
3148         vdev = xhci->devs[udev->slot_id];
3149         /* Mark each endpoint as being in transition, so
3150          * xhci_urb_enqueue() will reject all URBs.
3151          */
3152         for (i = 0; i < num_eps; i++) {
3153                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3154                 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3155         }
3156         spin_unlock_irqrestore(&xhci->lock, flags);
3157
3158         /* Setup internal data structures and allocate HW data structures for
3159          * streams (but don't install the HW structures in the input context
3160          * until we're sure all memory allocation succeeded).
3161          */
3162         xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3163         xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3164                         num_stream_ctxs, num_streams);
3165
3166         for (i = 0; i < num_eps; i++) {
3167                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3168                 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3169                                 num_stream_ctxs,
3170                                 num_streams, mem_flags);
3171                 if (!vdev->eps[ep_index].stream_info)
3172                         goto cleanup;
3173                 /* Set maxPstreams in endpoint context and update deq ptr to
3174                  * point to stream context array. FIXME
3175                  */
3176         }
3177
3178         /* Set up the input context for a configure endpoint command. */
3179         for (i = 0; i < num_eps; i++) {
3180                 struct xhci_ep_ctx *ep_ctx;
3181
3182                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3183                 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3184
3185                 xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3186                                 vdev->out_ctx, ep_index);
3187                 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3188                                 vdev->eps[ep_index].stream_info);
3189         }
3190         /* Tell the HW to drop its old copy of the endpoint context info
3191          * and add the updated copy from the input context.
3192          */
3193         xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3194                         vdev->out_ctx, ctrl_ctx,
3195                         changed_ep_bitmask, changed_ep_bitmask);
3196
3197         /* Issue and wait for the configure endpoint command */
3198         ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3199                         false, false);
3200
3201         /* xHC rejected the configure endpoint command for some reason, so we
3202          * leave the old ring intact and free our internal streams data
3203          * structure.
3204          */
3205         if (ret < 0)
3206                 goto cleanup;
3207
3208         spin_lock_irqsave(&xhci->lock, flags);
3209         for (i = 0; i < num_eps; i++) {
3210                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3211                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3212                 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3213                          udev->slot_id, ep_index);
3214                 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3215         }
3216         xhci_free_command(xhci, config_cmd);
3217         spin_unlock_irqrestore(&xhci->lock, flags);
3218
3219         /* Subtract 1 for stream 0, which drivers can't use */
3220         return num_streams - 1;
3221
3222 cleanup:
3223         /* If it didn't work, free the streams! */
3224         for (i = 0; i < num_eps; i++) {
3225                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3226                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3227                 vdev->eps[ep_index].stream_info = NULL;
3228                 /* FIXME Unset maxPstreams in endpoint context and
3229                  * update deq ptr to point to normal string ring.
3230                  */
3231                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3232                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3233                 xhci_endpoint_zero(xhci, vdev, eps[i]);
3234         }
3235         xhci_free_command(xhci, config_cmd);
3236         return -ENOMEM;
3237 }
3238
3239 /* Transition the endpoint from using streams to being a "normal" endpoint
3240  * without streams.
3241  *
3242  * Modify the endpoint context state, submit a configure endpoint command,
3243  * and free all endpoint rings for streams if that completes successfully.
3244  */
3245 int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3246                 struct usb_host_endpoint **eps, unsigned int num_eps,
3247                 gfp_t mem_flags)
3248 {
3249         int i, ret;
3250         struct xhci_hcd *xhci;
3251         struct xhci_virt_device *vdev;
3252         struct xhci_command *command;
3253         struct xhci_input_control_ctx *ctrl_ctx;
3254         unsigned int ep_index;
3255         unsigned long flags;
3256         u32 changed_ep_bitmask;
3257
3258         xhci = hcd_to_xhci(hcd);
3259         vdev = xhci->devs[udev->slot_id];
3260
3261         /* Set up a configure endpoint command to remove the streams rings */
3262         spin_lock_irqsave(&xhci->lock, flags);
3263         changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3264                         udev, eps, num_eps);
3265         if (changed_ep_bitmask == 0) {
3266                 spin_unlock_irqrestore(&xhci->lock, flags);
3267                 return -EINVAL;
3268         }
3269
3270         /* Use the xhci_command structure from the first endpoint.  We may have
3271          * allocated too many, but the driver may call xhci_free_streams() for
3272          * each endpoint it grouped into one call to xhci_alloc_streams().
3273          */
3274         ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3275         command = vdev->eps[ep_index].stream_info->free_streams_command;
3276         ctrl_ctx = xhci_get_input_control_ctx(xhci, command->in_ctx);
3277         if (!ctrl_ctx) {
3278                 spin_unlock_irqrestore(&xhci->lock, flags);
3279                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3280                                 __func__);
3281                 return -EINVAL;
3282         }
3283
3284         for (i = 0; i < num_eps; i++) {
3285                 struct xhci_ep_ctx *ep_ctx;
3286
3287                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3288                 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3289                 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3290                         EP_GETTING_NO_STREAMS;
3291
3292                 xhci_endpoint_copy(xhci, command->in_ctx,
3293                                 vdev->out_ctx, ep_index);
3294                 xhci_setup_no_streams_ep_input_ctx(xhci, ep_ctx,
3295                                 &vdev->eps[ep_index]);
3296         }
3297         xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3298                         vdev->out_ctx, ctrl_ctx,
3299                         changed_ep_bitmask, changed_ep_bitmask);
3300         spin_unlock_irqrestore(&xhci->lock, flags);
3301
3302         /* Issue and wait for the configure endpoint command,
3303          * which must succeed.
3304          */
3305         ret = xhci_configure_endpoint(xhci, udev, command,
3306                         false, true);
3307
3308         /* xHC rejected the configure endpoint command for some reason, so we
3309          * leave the streams rings intact.
3310          */
3311         if (ret < 0)
3312                 return ret;
3313
3314         spin_lock_irqsave(&xhci->lock, flags);
3315         for (i = 0; i < num_eps; i++) {
3316                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3317                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3318                 vdev->eps[ep_index].stream_info = NULL;
3319                 /* FIXME Unset maxPstreams in endpoint context and
3320                  * update deq ptr to point to normal string ring.
3321                  */
3322                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3323                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3324         }
3325         spin_unlock_irqrestore(&xhci->lock, flags);
3326
3327         return 0;
3328 }
3329
3330 /*
3331  * Deletes endpoint resources for endpoints that were active before a Reset
3332  * Device command, or a Disable Slot command.  The Reset Device command leaves
3333  * the control endpoint intact, whereas the Disable Slot command deletes it.
3334  *
3335  * Must be called with xhci->lock held.
3336  */
3337 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3338         struct xhci_virt_device *virt_dev, bool drop_control_ep)
3339 {
3340         int i;
3341         unsigned int num_dropped_eps = 0;
3342         unsigned int drop_flags = 0;
3343
3344         for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3345                 if (virt_dev->eps[i].ring) {
3346                         drop_flags |= 1 << i;
3347                         num_dropped_eps++;
3348                 }
3349         }
3350         xhci->num_active_eps -= num_dropped_eps;
3351         if (num_dropped_eps)
3352                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3353                                 "Dropped %u ep ctxs, flags = 0x%x, "
3354                                 "%u now active.",
3355                                 num_dropped_eps, drop_flags,
3356                                 xhci->num_active_eps);
3357 }
3358
3359 /*
3360  * This submits a Reset Device Command, which will set the device state to 0,
3361  * set the device address to 0, and disable all the endpoints except the default
3362  * control endpoint.  The USB core should come back and call
3363  * xhci_address_device(), and then re-set up the configuration.  If this is
3364  * called because of a usb_reset_and_verify_device(), then the old alternate
3365  * settings will be re-installed through the normal bandwidth allocation
3366  * functions.
3367  *
3368  * Wait for the Reset Device command to finish.  Remove all structures
3369  * associated with the endpoints that were disabled.  Clear the input device
3370  * structure?  Cache the rings?  Reset the control endpoint 0 max packet size?
3371  *
3372  * If the virt_dev to be reset does not exist or does not match the udev,
3373  * it means the device is lost, possibly due to the xHC restore error and
3374  * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3375  * re-allocate the device.
3376  */
3377 int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
3378 {
3379         int ret, i;
3380         unsigned long flags;
3381         struct xhci_hcd *xhci;
3382         unsigned int slot_id;
3383         struct xhci_virt_device *virt_dev;
3384         struct xhci_command *reset_device_cmd;
3385         int timeleft;
3386         int last_freed_endpoint;
3387         struct xhci_slot_ctx *slot_ctx;
3388         int old_active_eps = 0;
3389
3390         ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3391         if (ret <= 0)
3392                 return ret;
3393         xhci = hcd_to_xhci(hcd);
3394         slot_id = udev->slot_id;
3395         virt_dev = xhci->devs[slot_id];
3396         if (!virt_dev) {
3397                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3398                                 "not exist. Re-allocate the device\n", slot_id);
3399                 ret = xhci_alloc_dev(hcd, udev);
3400                 if (ret == 1)
3401                         return 0;
3402                 else
3403                         return -EINVAL;
3404         }
3405
3406         if (virt_dev->udev != udev) {
3407                 /* If the virt_dev and the udev does not match, this virt_dev
3408                  * may belong to another udev.
3409                  * Re-allocate the device.
3410                  */
3411                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3412                                 "not match the udev. Re-allocate the device\n",
3413                                 slot_id);
3414                 ret = xhci_alloc_dev(hcd, udev);
3415                 if (ret == 1)
3416                         return 0;
3417                 else
3418                         return -EINVAL;
3419         }
3420
3421         /* If device is not setup, there is no point in resetting it */
3422         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3423         if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3424                                                 SLOT_STATE_DISABLED)
3425                 return 0;
3426
3427         xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3428         /* Allocate the command structure that holds the struct completion.
3429          * Assume we're in process context, since the normal device reset
3430          * process has to wait for the device anyway.  Storage devices are
3431          * reset as part of error handling, so use GFP_NOIO instead of
3432          * GFP_KERNEL.
3433          */
3434         reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO);
3435         if (!reset_device_cmd) {
3436                 xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3437                 return -ENOMEM;
3438         }
3439
3440         /* Attempt to submit the Reset Device command to the command ring */
3441         spin_lock_irqsave(&xhci->lock, flags);
3442         reset_device_cmd->command_trb = xhci->cmd_ring->enqueue;
3443
3444         /* Enqueue pointer can be left pointing to the link TRB,
3445          * we must handle that
3446          */
3447         if (TRB_TYPE_LINK_LE32(reset_device_cmd->command_trb->link.control))
3448                 reset_device_cmd->command_trb =
3449                         xhci->cmd_ring->enq_seg->next->trbs;
3450
3451         list_add_tail(&reset_device_cmd->cmd_list, &virt_dev->cmd_list);
3452         ret = xhci_queue_reset_device(xhci, slot_id);
3453         if (ret) {
3454                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3455                 list_del(&reset_device_cmd->cmd_list);
3456                 spin_unlock_irqrestore(&xhci->lock, flags);
3457                 goto command_cleanup;
3458         }
3459         xhci_ring_cmd_db(xhci);
3460         spin_unlock_irqrestore(&xhci->lock, flags);
3461
3462         /* Wait for the Reset Device command to finish */
3463         timeleft = wait_for_completion_interruptible_timeout(
3464                         reset_device_cmd->completion,
3465                         USB_CTRL_SET_TIMEOUT);
3466         if (timeleft <= 0) {
3467                 xhci_warn(xhci, "%s while waiting for reset device command\n",
3468                                 timeleft == 0 ? "Timeout" : "Signal");
3469                 spin_lock_irqsave(&xhci->lock, flags);
3470                 /* The timeout might have raced with the event ring handler, so
3471                  * only delete from the list if the item isn't poisoned.
3472                  */
3473                 if (reset_device_cmd->cmd_list.next != LIST_POISON1)
3474                         list_del(&reset_device_cmd->cmd_list);
3475                 spin_unlock_irqrestore(&xhci->lock, flags);
3476                 ret = -ETIME;
3477                 goto command_cleanup;
3478         }
3479
3480         /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3481          * unless we tried to reset a slot ID that wasn't enabled,
3482          * or the device wasn't in the addressed or configured state.
3483          */
3484         ret = reset_device_cmd->status;
3485         switch (ret) {
3486         case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */
3487         case COMP_CTX_STATE: /* 0.96 completion code for same thing */
3488                 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3489                                 slot_id,
3490                                 xhci_get_slot_state(xhci, virt_dev->out_ctx));
3491                 xhci_dbg(xhci, "Not freeing device rings.\n");
3492                 /* Don't treat this as an error.  May change my mind later. */
3493                 ret = 0;
3494                 goto command_cleanup;
3495         case COMP_SUCCESS:
3496                 xhci_dbg(xhci, "Successful reset device command.\n");
3497                 break;
3498         default:
3499                 if (xhci_is_vendor_info_code(xhci, ret))
3500                         break;
3501                 xhci_warn(xhci, "Unknown completion code %u for "
3502                                 "reset device command.\n", ret);
3503                 ret = -EINVAL;
3504                 goto command_cleanup;
3505         }
3506
3507         /* Free up host controller endpoint resources */
3508         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3509                 spin_lock_irqsave(&xhci->lock, flags);
3510                 /* Don't delete the default control endpoint resources */
3511                 xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3512                 spin_unlock_irqrestore(&xhci->lock, flags);
3513         }
3514
3515         /* Everything but endpoint 0 is disabled, so free or cache the rings. */
3516         last_freed_endpoint = 1;
3517         for (i = 1; i < 31; ++i) {
3518                 struct xhci_virt_ep *ep = &virt_dev->eps[i];
3519
3520                 if (ep->ep_state & EP_HAS_STREAMS) {
3521                         xhci_free_stream_info(xhci, ep->stream_info);
3522                         ep->stream_info = NULL;
3523                         ep->ep_state &= ~EP_HAS_STREAMS;
3524                 }
3525
3526                 if (ep->ring) {
3527                         xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
3528                         last_freed_endpoint = i;
3529                 }
3530                 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3531                         xhci_drop_ep_from_interval_table(xhci,
3532                                         &virt_dev->eps[i].bw_info,
3533                                         virt_dev->bw_table,
3534                                         udev,
3535                                         &virt_dev->eps[i],
3536                                         virt_dev->tt_info);
3537                 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3538         }
3539         /* If necessary, update the number of active TTs on this root port */
3540         xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3541
3542         xhci_dbg(xhci, "Output context after successful reset device cmd:\n");
3543         xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint);
3544         ret = 0;
3545
3546 command_cleanup:
3547         xhci_free_command(xhci, reset_device_cmd);
3548         return ret;
3549 }
3550
3551 /*
3552  * At this point, the struct usb_device is about to go away, the device has
3553  * disconnected, and all traffic has been stopped and the endpoints have been
3554  * disabled.  Free any HC data structures associated with that device.
3555  */
3556 void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3557 {
3558         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3559         struct xhci_virt_device *virt_dev;
3560         unsigned long flags;
3561         u32 state;
3562         int i, ret;
3563
3564 #ifndef CONFIG_USB_DEFAULT_PERSIST
3565         /*
3566          * We called pm_runtime_get_noresume when the device was attached.
3567          * Decrement the counter here to allow controller to runtime suspend
3568          * if no devices remain.
3569          */
3570         if (xhci->quirks & XHCI_RESET_ON_RESUME)
3571                 pm_runtime_put_noidle(hcd->self.controller);
3572 #endif
3573
3574         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3575         /* If the host is halted due to driver unload, we still need to free the
3576          * device.
3577          */
3578         if (ret <= 0 && ret != -ENODEV)
3579                 return;
3580
3581         virt_dev = xhci->devs[udev->slot_id];
3582
3583         /* Stop any wayward timer functions (which may grab the lock) */
3584         for (i = 0; i < 31; ++i) {
3585                 virt_dev->eps[i].ep_state &= ~EP_HALT_PENDING;
3586                 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3587         }
3588
3589         if (udev->usb2_hw_lpm_enabled) {
3590                 xhci_set_usb2_hardware_lpm(hcd, udev, 0);
3591                 udev->usb2_hw_lpm_enabled = 0;
3592         }
3593
3594         spin_lock_irqsave(&xhci->lock, flags);
3595         /* Don't disable the slot if the host controller is dead. */
3596         state = xhci_readl(xhci, &xhci->op_regs->status);
3597         if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3598                         (xhci->xhc_state & XHCI_STATE_HALTED)) {
3599                 xhci_free_virt_device(xhci, udev->slot_id);
3600                 spin_unlock_irqrestore(&xhci->lock, flags);
3601                 return;
3602         }
3603
3604         if (xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id)) {
3605                 spin_unlock_irqrestore(&xhci->lock, flags);
3606                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3607                 return;
3608         }
3609         xhci_ring_cmd_db(xhci);
3610         spin_unlock_irqrestore(&xhci->lock, flags);
3611         /*
3612          * Event command completion handler will free any data structures
3613          * associated with the slot.  XXX Can free sleep?
3614          */
3615 }
3616
3617 /*
3618  * Checks if we have enough host controller resources for the default control
3619  * endpoint.
3620  *
3621  * Must be called with xhci->lock held.
3622  */
3623 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3624 {
3625         if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3626                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3627                                 "Not enough ep ctxs: "
3628                                 "%u active, need to add 1, limit is %u.",
3629                                 xhci->num_active_eps, xhci->limit_active_eps);
3630                 return -ENOMEM;
3631         }
3632         xhci->num_active_eps += 1;
3633         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3634                         "Adding 1 ep ctx, %u now active.",
3635                         xhci->num_active_eps);
3636         return 0;
3637 }
3638
3639
3640 /*
3641  * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3642  * timed out, or allocating memory failed.  Returns 1 on success.
3643  */
3644 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3645 {
3646         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3647         unsigned long flags;
3648         int timeleft;
3649         int ret;
3650         union xhci_trb *cmd_trb;
3651
3652         spin_lock_irqsave(&xhci->lock, flags);
3653         cmd_trb = xhci->cmd_ring->dequeue;
3654         ret = xhci_queue_slot_control(xhci, TRB_ENABLE_SLOT, 0);
3655         if (ret) {
3656                 spin_unlock_irqrestore(&xhci->lock, flags);
3657                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3658                 return 0;
3659         }
3660         xhci_ring_cmd_db(xhci);
3661         spin_unlock_irqrestore(&xhci->lock, flags);
3662
3663         /* XXX: how much time for xHC slot assignment? */
3664         timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
3665                         XHCI_CMD_DEFAULT_TIMEOUT);
3666         if (timeleft <= 0) {
3667                 xhci_warn(xhci, "%s while waiting for a slot\n",
3668                                 timeleft == 0 ? "Timeout" : "Signal");
3669                 /* cancel the enable slot request */
3670                 return xhci_cancel_cmd(xhci, NULL, cmd_trb);
3671         }
3672
3673         if (!xhci->slot_id) {
3674                 xhci_err(xhci, "Error while assigning device slot ID\n");
3675                 return 0;
3676         }
3677
3678         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3679                 spin_lock_irqsave(&xhci->lock, flags);
3680                 ret = xhci_reserve_host_control_ep_resources(xhci);
3681                 if (ret) {
3682                         spin_unlock_irqrestore(&xhci->lock, flags);
3683                         xhci_warn(xhci, "Not enough host resources, "
3684                                         "active endpoint contexts = %u\n",
3685                                         xhci->num_active_eps);
3686                         goto disable_slot;
3687                 }
3688                 spin_unlock_irqrestore(&xhci->lock, flags);
3689         }
3690         /* Use GFP_NOIO, since this function can be called from
3691          * xhci_discover_or_reset_device(), which may be called as part of
3692          * mass storage driver error handling.
3693          */
3694         if (!xhci_alloc_virt_device(xhci, xhci->slot_id, udev, GFP_NOIO)) {
3695                 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
3696                 goto disable_slot;
3697         }
3698         udev->slot_id = xhci->slot_id;
3699
3700 #ifndef CONFIG_USB_DEFAULT_PERSIST
3701         /*
3702          * If resetting upon resume, we can't put the controller into runtime
3703          * suspend if there is a device attached.
3704          */
3705         if (xhci->quirks & XHCI_RESET_ON_RESUME)
3706                 pm_runtime_get_noresume(hcd->self.controller);
3707 #endif
3708
3709         /* Is this a LS or FS device under a HS hub? */
3710         /* Hub or peripherial? */
3711         return 1;
3712
3713 disable_slot:
3714         /* Disable slot, if we can do it without mem alloc */
3715         spin_lock_irqsave(&xhci->lock, flags);
3716         if (!xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id))
3717                 xhci_ring_cmd_db(xhci);
3718         spin_unlock_irqrestore(&xhci->lock, flags);
3719         return 0;
3720 }
3721
3722 /*
3723  * Issue an Address Device command (which will issue a SetAddress request to
3724  * the device).
3725  * We should be protected by the usb_address0_mutex in khubd's hub_port_init, so
3726  * we should only issue and wait on one address command at the same time.
3727  *
3728  * We add one to the device address issued by the hardware because the USB core
3729  * uses address 1 for the root hubs (even though they're not really devices).
3730  */
3731 int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
3732 {
3733         unsigned long flags;
3734         int timeleft;
3735         struct xhci_virt_device *virt_dev;
3736         int ret = 0;
3737         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3738         struct xhci_slot_ctx *slot_ctx;
3739         struct xhci_input_control_ctx *ctrl_ctx;
3740         u64 temp_64;
3741         union xhci_trb *cmd_trb;
3742
3743         if (!udev->slot_id) {
3744                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3745                                 "Bad Slot ID %d", udev->slot_id);
3746                 return -EINVAL;
3747         }
3748
3749         virt_dev = xhci->devs[udev->slot_id];
3750
3751         if (WARN_ON(!virt_dev)) {
3752                 /*
3753                  * In plug/unplug torture test with an NEC controller,
3754                  * a zero-dereference was observed once due to virt_dev = 0.
3755                  * Print useful debug rather than crash if it is observed again!
3756                  */
3757                 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
3758                         udev->slot_id);
3759                 return -EINVAL;
3760         }
3761
3762         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3763         ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
3764         if (!ctrl_ctx) {
3765                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3766                                 __func__);
3767                 return -EINVAL;
3768         }
3769         /*
3770          * If this is the first Set Address since device plug-in or
3771          * virt_device realloaction after a resume with an xHCI power loss,
3772          * then set up the slot context.
3773          */
3774         if (!slot_ctx->dev_info)
3775                 xhci_setup_addressable_virt_dev(xhci, udev);
3776         /* Otherwise, update the control endpoint ring enqueue pointer. */
3777         else
3778                 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
3779         ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
3780         ctrl_ctx->drop_flags = 0;
3781
3782         xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3783         xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3784         trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3785                                 slot_ctx->dev_info >> 27);
3786
3787         spin_lock_irqsave(&xhci->lock, flags);
3788         cmd_trb = xhci->cmd_ring->dequeue;
3789         ret = xhci_queue_address_device(xhci, virt_dev->in_ctx->dma,
3790                                         udev->slot_id);
3791         if (ret) {
3792                 spin_unlock_irqrestore(&xhci->lock, flags);
3793                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3794                                 "FIXME: allocate a command ring segment");
3795                 return ret;
3796         }
3797         xhci_ring_cmd_db(xhci);
3798         spin_unlock_irqrestore(&xhci->lock, flags);
3799
3800         /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
3801         timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
3802                         XHCI_CMD_DEFAULT_TIMEOUT);
3803         /* FIXME: From section 4.3.4: "Software shall be responsible for timing
3804          * the SetAddress() "recovery interval" required by USB and aborting the
3805          * command on a timeout.
3806          */
3807         if (timeleft <= 0) {
3808                 xhci_warn(xhci, "%s while waiting for address device command\n",
3809                                 timeleft == 0 ? "Timeout" : "Signal");
3810                 /* cancel the address device command */
3811                 ret = xhci_cancel_cmd(xhci, NULL, cmd_trb);
3812                 if (ret < 0)
3813                         return ret;
3814                 return -ETIME;
3815         }
3816
3817         switch (virt_dev->cmd_status) {
3818         case COMP_CTX_STATE:
3819         case COMP_EBADSLT:
3820                 xhci_err(xhci, "Setup ERROR: address device command for slot %d.\n",
3821                                 udev->slot_id);
3822                 ret = -EINVAL;
3823                 break;
3824         case COMP_TX_ERR:
3825                 dev_warn(&udev->dev, "Device not responding to set address.\n");
3826                 ret = -EPROTO;
3827                 break;
3828         case COMP_DEV_ERR:
3829                 dev_warn(&udev->dev, "ERROR: Incompatible device for address "
3830                                 "device command.\n");
3831                 ret = -ENODEV;
3832                 break;
3833         case COMP_SUCCESS:
3834                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3835                                 "Successful Address Device command");
3836                 break;
3837         default:
3838                 xhci_err(xhci, "ERROR: unexpected command completion "
3839                                 "code 0x%x.\n", virt_dev->cmd_status);
3840                 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3841                 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3842                 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
3843                 ret = -EINVAL;
3844                 break;
3845         }
3846         if (ret) {
3847                 return ret;
3848         }
3849         temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
3850         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3851                         "Op regs DCBAA ptr = %#016llx", temp_64);
3852         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3853                 "Slot ID %d dcbaa entry @%p = %#016llx",
3854                 udev->slot_id,
3855                 &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
3856                 (unsigned long long)
3857                 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
3858         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3859                         "Output Context DMA address = %#08llx",
3860                         (unsigned long long)virt_dev->out_ctx->dma);
3861         xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3862         xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3863         trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3864                                 slot_ctx->dev_info >> 27);
3865         xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3866         xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3867         /*
3868          * USB core uses address 1 for the roothubs, so we add one to the
3869          * address given back to us by the HC.
3870          */
3871         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3872         trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
3873                                 slot_ctx->dev_info >> 27);
3874         /* Use kernel assigned address for devices; store xHC assigned
3875          * address locally. */
3876         virt_dev->address = (le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK)
3877                 + 1;
3878         /* Zero the input context control for later use */
3879         ctrl_ctx->add_flags = 0;
3880         ctrl_ctx->drop_flags = 0;
3881
3882         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3883                         "Internal device address = %d", virt_dev->address);
3884
3885         return 0;
3886 }
3887
3888 /*
3889  * Transfer the port index into real index in the HW port status
3890  * registers. Caculate offset between the port's PORTSC register
3891  * and port status base. Divide the number of per port register
3892  * to get the real index. The raw port number bases 1.
3893  */
3894 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
3895 {
3896         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3897         __le32 __iomem *base_addr = &xhci->op_regs->port_status_base;
3898         __le32 __iomem *addr;
3899         int raw_port;
3900
3901         if (hcd->speed != HCD_USB3)
3902                 addr = xhci->usb2_ports[port1 - 1];
3903         else
3904                 addr = xhci->usb3_ports[port1 - 1];
3905
3906         raw_port = (addr - base_addr)/NUM_PORT_REGS + 1;
3907         return raw_port;
3908 }
3909
3910 /*
3911  * Issue an Evaluate Context command to change the Maximum Exit Latency in the
3912  * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
3913  */
3914 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
3915                         struct usb_device *udev, u16 max_exit_latency)
3916 {
3917         struct xhci_virt_device *virt_dev;
3918         struct xhci_command *command;
3919         struct xhci_input_control_ctx *ctrl_ctx;
3920         struct xhci_slot_ctx *slot_ctx;
3921         unsigned long flags;
3922         int ret;
3923
3924         spin_lock_irqsave(&xhci->lock, flags);
3925         if (max_exit_latency == xhci->devs[udev->slot_id]->current_mel) {
3926                 spin_unlock_irqrestore(&xhci->lock, flags);
3927                 return 0;
3928         }
3929
3930         /* Attempt to issue an Evaluate Context command to change the MEL. */
3931         virt_dev = xhci->devs[udev->slot_id];
3932         command = xhci->lpm_command;
3933         ctrl_ctx = xhci_get_input_control_ctx(xhci, command->in_ctx);
3934         if (!ctrl_ctx) {
3935                 spin_unlock_irqrestore(&xhci->lock, flags);
3936                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3937                                 __func__);
3938                 return -ENOMEM;
3939         }
3940
3941         xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
3942         spin_unlock_irqrestore(&xhci->lock, flags);
3943
3944         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3945         slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
3946         slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
3947         slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
3948
3949         xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
3950                         "Set up evaluate context for LPM MEL change.");
3951         xhci_dbg(xhci, "Slot %u Input Context:\n", udev->slot_id);
3952         xhci_dbg_ctx(xhci, command->in_ctx, 0);
3953
3954         /* Issue and wait for the evaluate context command. */
3955         ret = xhci_configure_endpoint(xhci, udev, command,
3956                         true, true);
3957         xhci_dbg(xhci, "Slot %u Output Context:\n", udev->slot_id);
3958         xhci_dbg_ctx(xhci, virt_dev->out_ctx, 0);
3959
3960         if (!ret) {
3961                 spin_lock_irqsave(&xhci->lock, flags);
3962                 virt_dev->current_mel = max_exit_latency;
3963                 spin_unlock_irqrestore(&xhci->lock, flags);
3964         }
3965         return ret;
3966 }
3967
3968 #ifdef CONFIG_PM_RUNTIME
3969
3970 /* BESL to HIRD Encoding array for USB2 LPM */
3971 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
3972         3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
3973
3974 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
3975 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
3976                                         struct usb_device *udev)
3977 {
3978         int u2del, besl, besl_host;
3979         int besl_device = 0;
3980         u32 field;
3981
3982         u2del = HCS_U2_LATENCY(xhci->hcs_params3);
3983         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
3984
3985         if (field & USB_BESL_SUPPORT) {
3986                 for (besl_host = 0; besl_host < 16; besl_host++) {
3987                         if (xhci_besl_encoding[besl_host] >= u2del)
3988                                 break;
3989                 }
3990                 /* Use baseline BESL value as default */
3991                 if (field & USB_BESL_BASELINE_VALID)
3992                         besl_device = USB_GET_BESL_BASELINE(field);
3993                 else if (field & USB_BESL_DEEP_VALID)
3994                         besl_device = USB_GET_BESL_DEEP(field);
3995         } else {
3996                 if (u2del <= 50)
3997                         besl_host = 0;
3998                 else
3999                         besl_host = (u2del - 51) / 75 + 1;
4000         }
4001
4002         besl = besl_host + besl_device;
4003         if (besl > 15)
4004                 besl = 15;
4005
4006         return besl;
4007 }
4008
4009 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4010 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4011 {
4012         u32 field;
4013         int l1;
4014         int besld = 0;
4015         int hirdm = 0;
4016
4017         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4018
4019         /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4020         l1 = udev->l1_params.timeout / 256;
4021
4022         /* device has preferred BESLD */
4023         if (field & USB_BESL_DEEP_VALID) {
4024                 besld = USB_GET_BESL_DEEP(field);
4025                 hirdm = 1;
4026         }
4027
4028         return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4029 }
4030
4031 static int xhci_usb2_software_lpm_test(struct usb_hcd *hcd,
4032                                         struct usb_device *udev)
4033 {
4034         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4035         struct dev_info *dev_info;
4036         __le32 __iomem  **port_array;
4037         __le32 __iomem  *addr, *pm_addr;
4038         u32             temp, dev_id;
4039         unsigned int    port_num;
4040         unsigned long   flags;
4041         int             hird;
4042         int             ret;
4043
4044         if (hcd->speed == HCD_USB3 || !xhci->sw_lpm_support ||
4045                         !udev->lpm_capable)
4046                 return -EINVAL;
4047
4048         /* we only support lpm for non-hub device connected to root hub yet */
4049         if (!udev->parent || udev->parent->parent ||
4050                         udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4051                 return -EINVAL;
4052
4053         spin_lock_irqsave(&xhci->lock, flags);
4054
4055         /* Look for devices in lpm_failed_devs list */
4056         dev_id = le16_to_cpu(udev->descriptor.idVendor) << 16 |
4057                         le16_to_cpu(udev->descriptor.idProduct);
4058         list_for_each_entry(dev_info, &xhci->lpm_failed_devs, list) {
4059                 if (dev_info->dev_id == dev_id) {
4060                         ret = -EINVAL;
4061                         goto finish;
4062                 }
4063         }
4064
4065         port_array = xhci->usb2_ports;
4066         port_num = udev->portnum - 1;
4067
4068         if (port_num > HCS_MAX_PORTS(xhci->hcs_params1)) {
4069                 xhci_dbg(xhci, "invalid port number %d\n", udev->portnum);
4070                 ret = -EINVAL;
4071                 goto finish;
4072         }
4073
4074         /*
4075          * Test USB 2.0 software LPM.
4076          * FIXME: some xHCI 1.0 hosts may implement a new register to set up
4077          * hardware-controlled USB 2.0 LPM. See section 5.4.11 and 4.23.5.1.1.1
4078          * in the June 2011 errata release.
4079          */
4080         xhci_dbg(xhci, "test port %d software LPM\n", port_num);
4081         /*
4082          * Set L1 Device Slot and HIRD/BESL.
4083          * Check device's USB 2.0 extension descriptor to determine whether
4084          * HIRD or BESL shoule be used. See USB2.0 LPM errata.
4085          */
4086         pm_addr = port_array[port_num] + PORTPMSC;
4087         hird = xhci_calculate_hird_besl(xhci, udev);
4088         temp = PORT_L1DS(udev->slot_id) | PORT_HIRD(hird);
4089         xhci_writel(xhci, temp, pm_addr);
4090
4091         /* Set port link state to U2(L1) */
4092         addr = port_array[port_num];
4093         xhci_set_link_state(xhci, port_array, port_num, XDEV_U2);
4094
4095         /* wait for ACK */
4096         spin_unlock_irqrestore(&xhci->lock, flags);
4097         msleep(10);
4098         spin_lock_irqsave(&xhci->lock, flags);
4099
4100         /* Check L1 Status */
4101         ret = xhci_handshake(xhci, pm_addr,
4102                         PORT_L1S_MASK, PORT_L1S_SUCCESS, 125);
4103         if (ret != -ETIMEDOUT) {
4104                 /* enter L1 successfully */
4105                 temp = xhci_readl(xhci, addr);
4106                 xhci_dbg(xhci, "port %d entered L1 state, port status 0x%x\n",
4107                                 port_num, temp);
4108                 ret = 0;
4109         } else {
4110                 temp = xhci_readl(xhci, pm_addr);
4111                 xhci_dbg(xhci, "port %d software lpm failed, L1 status %d\n",
4112                                 port_num, temp & PORT_L1S_MASK);
4113                 ret = -EINVAL;
4114         }
4115
4116         /* Resume the port */
4117         xhci_set_link_state(xhci, port_array, port_num, XDEV_U0);
4118
4119         spin_unlock_irqrestore(&xhci->lock, flags);
4120         msleep(10);
4121         spin_lock_irqsave(&xhci->lock, flags);
4122
4123         /* Clear PLC */
4124         xhci_test_and_clear_bit(xhci, port_array, port_num, PORT_PLC);
4125
4126         /* Check PORTSC to make sure the device is in the right state */
4127         if (!ret) {
4128                 temp = xhci_readl(xhci, addr);
4129                 xhci_dbg(xhci, "resumed port %d status 0x%x\n", port_num, temp);
4130                 if (!(temp & PORT_CONNECT) || !(temp & PORT_PE) ||
4131                                 (temp & PORT_PLS_MASK) != XDEV_U0) {
4132                         xhci_dbg(xhci, "port L1 resume fail\n");
4133                         ret = -EINVAL;
4134                 }
4135         }
4136
4137         if (ret) {
4138                 /* Insert dev to lpm_failed_devs list */
4139                 xhci_warn(xhci, "device LPM test failed, may disconnect and "
4140                                 "re-enumerate\n");
4141                 dev_info = kzalloc(sizeof(struct dev_info), GFP_ATOMIC);
4142                 if (!dev_info) {
4143                         ret = -ENOMEM;
4144                         goto finish;
4145                 }
4146                 dev_info->dev_id = dev_id;
4147                 INIT_LIST_HEAD(&dev_info->list);
4148                 list_add(&dev_info->list, &xhci->lpm_failed_devs);
4149         } else {
4150                 xhci_ring_device(xhci, udev->slot_id);
4151         }
4152
4153 finish:
4154         spin_unlock_irqrestore(&xhci->lock, flags);
4155         return ret;
4156 }
4157
4158 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4159                         struct usb_device *udev, int enable)
4160 {
4161         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4162         __le32 __iomem  **port_array;
4163         __le32 __iomem  *pm_addr, *hlpm_addr;
4164         u32             pm_val, hlpm_val, field;
4165         unsigned int    port_num;
4166         unsigned long   flags;
4167         int             hird, exit_latency;
4168         int             ret;
4169
4170         if (hcd->speed == HCD_USB3 || !xhci->hw_lpm_support ||
4171                         !udev->lpm_capable)
4172                 return -EPERM;
4173
4174         if (!udev->parent || udev->parent->parent ||
4175                         udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4176                 return -EPERM;
4177
4178         if (udev->usb2_hw_lpm_capable != 1)
4179                 return -EPERM;
4180
4181         spin_lock_irqsave(&xhci->lock, flags);
4182
4183         port_array = xhci->usb2_ports;
4184         port_num = udev->portnum - 1;
4185         pm_addr = port_array[port_num] + PORTPMSC;
4186         pm_val = xhci_readl(xhci, pm_addr);
4187         hlpm_addr = port_array[port_num] + PORTHLPMC;
4188         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4189
4190         xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4191                         enable ? "enable" : "disable", port_num);
4192
4193         if (enable) {
4194                 /* Host supports BESL timeout instead of HIRD */
4195                 if (udev->usb2_hw_lpm_besl_capable) {
4196                         /* if device doesn't have a preferred BESL value use a
4197                          * default one which works with mixed HIRD and BESL
4198                          * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4199                          */
4200                         if ((field & USB_BESL_SUPPORT) &&
4201                             (field & USB_BESL_BASELINE_VALID))
4202                                 hird = USB_GET_BESL_BASELINE(field);
4203                         else
4204                                 hird = udev->l1_params.besl;
4205
4206                         exit_latency = xhci_besl_encoding[hird];
4207                         spin_unlock_irqrestore(&xhci->lock, flags);
4208
4209                         /* USB 3.0 code dedicate one xhci->lpm_command->in_ctx
4210                          * input context for link powermanagement evaluate
4211                          * context commands. It is protected by hcd->bandwidth
4212                          * mutex and is shared by all devices. We need to set
4213                          * the max ext latency in USB 2 BESL LPM as well, so
4214                          * use the same mutex and xhci_change_max_exit_latency()
4215                          */
4216                         mutex_lock(hcd->bandwidth_mutex);
4217                         ret = xhci_change_max_exit_latency(xhci, udev,
4218                                                            exit_latency);
4219                         mutex_unlock(hcd->bandwidth_mutex);
4220
4221                         if (ret < 0)
4222                                 return ret;
4223                         spin_lock_irqsave(&xhci->lock, flags);
4224
4225                         hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4226                         xhci_writel(xhci, hlpm_val, hlpm_addr);
4227                         /* flush write */
4228                         xhci_readl(xhci, hlpm_addr);
4229                 } else {
4230                         hird = xhci_calculate_hird_besl(xhci, udev);
4231                 }
4232
4233                 pm_val &= ~PORT_HIRD_MASK;
4234                 pm_val |= PORT_HIRD(hird) | PORT_RWE;
4235                 xhci_writel(xhci, pm_val, pm_addr);
4236                 pm_val = xhci_readl(xhci, pm_addr);
4237                 pm_val |= PORT_HLE;
4238                 xhci_writel(xhci, pm_val, pm_addr);
4239                 /* flush write */
4240                 xhci_readl(xhci, pm_addr);
4241         } else {
4242                 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK);
4243                 xhci_writel(xhci, pm_val, pm_addr);
4244                 /* flush write */
4245                 xhci_readl(xhci, pm_addr);
4246                 if (udev->usb2_hw_lpm_besl_capable) {
4247                         spin_unlock_irqrestore(&xhci->lock, flags);
4248                         mutex_lock(hcd->bandwidth_mutex);
4249                         xhci_change_max_exit_latency(xhci, udev, 0);
4250                         mutex_unlock(hcd->bandwidth_mutex);
4251                         return 0;
4252                 }
4253         }
4254
4255         spin_unlock_irqrestore(&xhci->lock, flags);
4256         return 0;
4257 }
4258
4259 /* check if a usb2 port supports a given extened capability protocol
4260  * only USB2 ports extended protocol capability values are cached.
4261  * Return 1 if capability is supported
4262  */
4263 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4264                                            unsigned capability)
4265 {
4266         u32 port_offset, port_count;
4267         int i;
4268
4269         for (i = 0; i < xhci->num_ext_caps; i++) {
4270                 if (xhci->ext_caps[i] & capability) {
4271                         /* port offsets starts at 1 */
4272                         port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4273                         port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4274                         if (port >= port_offset &&
4275                             port < port_offset + port_count)
4276                                 return 1;
4277                 }
4278         }
4279         return 0;
4280 }
4281
4282 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4283 {
4284         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4285         int             ret;
4286         int             portnum = udev->portnum - 1;
4287
4288         ret = xhci_usb2_software_lpm_test(hcd, udev);
4289         if (!ret) {
4290                 xhci_dbg(xhci, "software LPM test succeed\n");
4291                 if (xhci->hw_lpm_support == 1 &&
4292                     xhci_check_usb2_port_capability(xhci, portnum, XHCI_HLC)) {
4293                         udev->usb2_hw_lpm_capable = 1;
4294                         udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4295                         udev->l1_params.besl = XHCI_DEFAULT_BESL;
4296                         if (xhci_check_usb2_port_capability(xhci, portnum,
4297                                                             XHCI_BLC))
4298                                 udev->usb2_hw_lpm_besl_capable = 1;
4299                         ret = xhci_set_usb2_hardware_lpm(hcd, udev, 1);
4300                         if (!ret)
4301                                 udev->usb2_hw_lpm_enabled = 1;
4302                 }
4303         }
4304
4305         return 0;
4306 }
4307
4308 #else
4309
4310 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4311                                 struct usb_device *udev, int enable)
4312 {
4313         return 0;
4314 }
4315
4316 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4317 {
4318         return 0;
4319 }
4320
4321 #endif /* CONFIG_PM_RUNTIME */
4322
4323 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4324
4325 #ifdef CONFIG_PM
4326 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4327 static unsigned long long xhci_service_interval_to_ns(
4328                 struct usb_endpoint_descriptor *desc)
4329 {
4330         return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4331 }
4332
4333 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4334                 enum usb3_link_state state)
4335 {
4336         unsigned long long sel;
4337         unsigned long long pel;
4338         unsigned int max_sel_pel;
4339         char *state_name;
4340
4341         switch (state) {
4342         case USB3_LPM_U1:
4343                 /* Convert SEL and PEL stored in nanoseconds to microseconds */
4344                 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4345                 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4346                 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4347                 state_name = "U1";
4348                 break;
4349         case USB3_LPM_U2:
4350                 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4351                 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4352                 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4353                 state_name = "U2";
4354                 break;
4355         default:
4356                 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4357                                 __func__);
4358                 return USB3_LPM_DISABLED;
4359         }
4360
4361         if (sel <= max_sel_pel && pel <= max_sel_pel)
4362                 return USB3_LPM_DEVICE_INITIATED;
4363
4364         if (sel > max_sel_pel)
4365                 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4366                                 "due to long SEL %llu ms\n",
4367                                 state_name, sel);
4368         else
4369                 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4370                                 "due to long PEL %llu ms\n",
4371                                 state_name, pel);
4372         return USB3_LPM_DISABLED;
4373 }
4374
4375 /* Returns the hub-encoded U1 timeout value.
4376  * The U1 timeout should be the maximum of the following values:
4377  *  - For control endpoints, U1 system exit latency (SEL) * 3
4378  *  - For bulk endpoints, U1 SEL * 5
4379  *  - For interrupt endpoints:
4380  *    - Notification EPs, U1 SEL * 3
4381  *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4382  *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4383  */
4384 static u16 xhci_calculate_intel_u1_timeout(struct usb_device *udev,
4385                 struct usb_endpoint_descriptor *desc)
4386 {
4387         unsigned long long timeout_ns;
4388         int ep_type;
4389         int intr_type;
4390
4391         ep_type = usb_endpoint_type(desc);
4392         switch (ep_type) {
4393         case USB_ENDPOINT_XFER_CONTROL:
4394                 timeout_ns = udev->u1_params.sel * 3;
4395                 break;
4396         case USB_ENDPOINT_XFER_BULK:
4397                 timeout_ns = udev->u1_params.sel * 5;
4398                 break;
4399         case USB_ENDPOINT_XFER_INT:
4400                 intr_type = usb_endpoint_interrupt_type(desc);
4401                 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4402                         timeout_ns = udev->u1_params.sel * 3;
4403                         break;
4404                 }
4405                 /* Otherwise the calculation is the same as isoc eps */
4406         case USB_ENDPOINT_XFER_ISOC:
4407                 timeout_ns = xhci_service_interval_to_ns(desc);
4408                 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4409                 if (timeout_ns < udev->u1_params.sel * 2)
4410                         timeout_ns = udev->u1_params.sel * 2;
4411                 break;
4412         default:
4413                 return 0;
4414         }
4415
4416         /* The U1 timeout is encoded in 1us intervals. */
4417         timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4418         /* Don't return a timeout of zero, because that's USB3_LPM_DISABLED. */
4419         if (timeout_ns == USB3_LPM_DISABLED)
4420                 timeout_ns++;
4421
4422         /* If the necessary timeout value is bigger than what we can set in the
4423          * USB 3.0 hub, we have to disable hub-initiated U1.
4424          */
4425         if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4426                 return timeout_ns;
4427         dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4428                         "due to long timeout %llu ms\n", timeout_ns);
4429         return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4430 }
4431
4432 /* Returns the hub-encoded U2 timeout value.
4433  * The U2 timeout should be the maximum of:
4434  *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4435  *  - largest bInterval of any active periodic endpoint (to avoid going
4436  *    into lower power link states between intervals).
4437  *  - the U2 Exit Latency of the device
4438  */
4439 static u16 xhci_calculate_intel_u2_timeout(struct usb_device *udev,
4440                 struct usb_endpoint_descriptor *desc)
4441 {
4442         unsigned long long timeout_ns;
4443         unsigned long long u2_del_ns;
4444
4445         timeout_ns = 10 * 1000 * 1000;
4446
4447         if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4448                         (xhci_service_interval_to_ns(desc) > timeout_ns))
4449                 timeout_ns = xhci_service_interval_to_ns(desc);
4450
4451         u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4452         if (u2_del_ns > timeout_ns)
4453                 timeout_ns = u2_del_ns;
4454
4455         /* The U2 timeout is encoded in 256us intervals */
4456         timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4457         /* If the necessary timeout value is bigger than what we can set in the
4458          * USB 3.0 hub, we have to disable hub-initiated U2.
4459          */
4460         if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4461                 return timeout_ns;
4462         dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4463                         "due to long timeout %llu ms\n", timeout_ns);
4464         return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4465 }
4466
4467 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4468                 struct usb_device *udev,
4469                 struct usb_endpoint_descriptor *desc,
4470                 enum usb3_link_state state,
4471                 u16 *timeout)
4472 {
4473         if (state == USB3_LPM_U1) {
4474                 if (xhci->quirks & XHCI_INTEL_HOST)
4475                         return xhci_calculate_intel_u1_timeout(udev, desc);
4476         } else {
4477                 if (xhci->quirks & XHCI_INTEL_HOST)
4478                         return xhci_calculate_intel_u2_timeout(udev, desc);
4479         }
4480
4481         return USB3_LPM_DISABLED;
4482 }
4483
4484 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4485                 struct usb_device *udev,
4486                 struct usb_endpoint_descriptor *desc,
4487                 enum usb3_link_state state,
4488                 u16 *timeout)
4489 {
4490         u16 alt_timeout;
4491
4492         alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4493                 desc, state, timeout);
4494
4495         /* If we found we can't enable hub-initiated LPM, or
4496          * the U1 or U2 exit latency was too high to allow
4497          * device-initiated LPM as well, just stop searching.
4498          */
4499         if (alt_timeout == USB3_LPM_DISABLED ||
4500                         alt_timeout == USB3_LPM_DEVICE_INITIATED) {
4501                 *timeout = alt_timeout;
4502                 return -E2BIG;
4503         }
4504         if (alt_timeout > *timeout)
4505                 *timeout = alt_timeout;
4506         return 0;
4507 }
4508
4509 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4510                 struct usb_device *udev,
4511                 struct usb_host_interface *alt,
4512                 enum usb3_link_state state,
4513                 u16 *timeout)
4514 {
4515         int j;
4516
4517         for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4518                 if (xhci_update_timeout_for_endpoint(xhci, udev,
4519                                         &alt->endpoint[j].desc, state, timeout))
4520                         return -E2BIG;
4521                 continue;
4522         }
4523         return 0;
4524 }
4525
4526 static int xhci_check_intel_tier_policy(struct usb_device *udev,
4527                 enum usb3_link_state state)
4528 {
4529         struct usb_device *parent;
4530         unsigned int num_hubs;
4531
4532         if (state == USB3_LPM_U2)
4533                 return 0;
4534
4535         /* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4536         for (parent = udev->parent, num_hubs = 0; parent->parent;
4537                         parent = parent->parent)
4538                 num_hubs++;
4539
4540         if (num_hubs < 2)
4541                 return 0;
4542
4543         dev_dbg(&udev->dev, "Disabling U1 link state for device"
4544                         " below second-tier hub.\n");
4545         dev_dbg(&udev->dev, "Plug device into first-tier hub "
4546                         "to decrease power consumption.\n");
4547         return -E2BIG;
4548 }
4549
4550 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4551                 struct usb_device *udev,
4552                 enum usb3_link_state state)
4553 {
4554         if (xhci->quirks & XHCI_INTEL_HOST)
4555                 return xhci_check_intel_tier_policy(udev, state);
4556         return -EINVAL;
4557 }
4558
4559 /* Returns the U1 or U2 timeout that should be enabled.
4560  * If the tier check or timeout setting functions return with a non-zero exit
4561  * code, that means the timeout value has been finalized and we shouldn't look
4562  * at any more endpoints.
4563  */
4564 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4565                         struct usb_device *udev, enum usb3_link_state state)
4566 {
4567         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4568         struct usb_host_config *config;
4569         char *state_name;
4570         int i;
4571         u16 timeout = USB3_LPM_DISABLED;
4572
4573         if (state == USB3_LPM_U1)
4574                 state_name = "U1";
4575         else if (state == USB3_LPM_U2)
4576                 state_name = "U2";
4577         else {
4578                 dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4579                                 state);
4580                 return timeout;
4581         }
4582
4583         if (xhci_check_tier_policy(xhci, udev, state) < 0)
4584                 return timeout;
4585
4586         /* Gather some information about the currently installed configuration
4587          * and alternate interface settings.
4588          */
4589         if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4590                         state, &timeout))
4591                 return timeout;
4592
4593         config = udev->actconfig;
4594         if (!config)
4595                 return timeout;
4596
4597         for (i = 0; i < USB_MAXINTERFACES; i++) {
4598                 struct usb_driver *driver;
4599                 struct usb_interface *intf = config->interface[i];
4600
4601                 if (!intf)
4602                         continue;
4603
4604                 /* Check if any currently bound drivers want hub-initiated LPM
4605                  * disabled.
4606                  */
4607                 if (intf->dev.driver) {
4608                         driver = to_usb_driver(intf->dev.driver);
4609                         if (driver && driver->disable_hub_initiated_lpm) {
4610                                 dev_dbg(&udev->dev, "Hub-initiated %s disabled "
4611                                                 "at request of driver %s\n",
4612                                                 state_name, driver->name);
4613                                 return xhci_get_timeout_no_hub_lpm(udev, state);
4614                         }
4615                 }
4616
4617                 /* Not sure how this could happen... */
4618                 if (!intf->cur_altsetting)
4619                         continue;
4620
4621                 if (xhci_update_timeout_for_interface(xhci, udev,
4622                                         intf->cur_altsetting,
4623                                         state, &timeout))
4624                         return timeout;
4625         }
4626         return timeout;
4627 }
4628
4629 static int calculate_max_exit_latency(struct usb_device *udev,
4630                 enum usb3_link_state state_changed,
4631                 u16 hub_encoded_timeout)
4632 {
4633         unsigned long long u1_mel_us = 0;
4634         unsigned long long u2_mel_us = 0;
4635         unsigned long long mel_us = 0;
4636         bool disabling_u1;
4637         bool disabling_u2;
4638         bool enabling_u1;
4639         bool enabling_u2;
4640
4641         disabling_u1 = (state_changed == USB3_LPM_U1 &&
4642                         hub_encoded_timeout == USB3_LPM_DISABLED);
4643         disabling_u2 = (state_changed == USB3_LPM_U2 &&
4644                         hub_encoded_timeout == USB3_LPM_DISABLED);
4645
4646         enabling_u1 = (state_changed == USB3_LPM_U1 &&
4647                         hub_encoded_timeout != USB3_LPM_DISABLED);
4648         enabling_u2 = (state_changed == USB3_LPM_U2 &&
4649                         hub_encoded_timeout != USB3_LPM_DISABLED);
4650
4651         /* If U1 was already enabled and we're not disabling it,
4652          * or we're going to enable U1, account for the U1 max exit latency.
4653          */
4654         if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4655                         enabling_u1)
4656                 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4657         if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4658                         enabling_u2)
4659                 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4660
4661         if (u1_mel_us > u2_mel_us)
4662                 mel_us = u1_mel_us;
4663         else
4664                 mel_us = u2_mel_us;
4665         /* xHCI host controller max exit latency field is only 16 bits wide. */
4666         if (mel_us > MAX_EXIT) {
4667                 dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4668                                 "is too big.\n", mel_us);
4669                 return -E2BIG;
4670         }
4671         return mel_us;
4672 }
4673
4674 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
4675 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4676                         struct usb_device *udev, enum usb3_link_state state)
4677 {
4678         struct xhci_hcd *xhci;
4679         u16 hub_encoded_timeout;
4680         int mel;
4681         int ret;
4682
4683         xhci = hcd_to_xhci(hcd);
4684         /* The LPM timeout values are pretty host-controller specific, so don't
4685          * enable hub-initiated timeouts unless the vendor has provided
4686          * information about their timeout algorithm.
4687          */
4688         if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4689                         !xhci->devs[udev->slot_id])
4690                 return USB3_LPM_DISABLED;
4691
4692         hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4693         mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4694         if (mel < 0) {
4695                 /* Max Exit Latency is too big, disable LPM. */
4696                 hub_encoded_timeout = USB3_LPM_DISABLED;
4697                 mel = 0;
4698         }
4699
4700         ret = xhci_change_max_exit_latency(xhci, udev, mel);
4701         if (ret)
4702                 return ret;
4703         return hub_encoded_timeout;
4704 }
4705
4706 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4707                         struct usb_device *udev, enum usb3_link_state state)
4708 {
4709         struct xhci_hcd *xhci;
4710         u16 mel;
4711         int ret;
4712
4713         xhci = hcd_to_xhci(hcd);
4714         if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4715                         !xhci->devs[udev->slot_id])
4716                 return 0;
4717
4718         mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
4719         ret = xhci_change_max_exit_latency(xhci, udev, mel);
4720         if (ret)
4721                 return ret;
4722         return 0;
4723 }
4724 #else /* CONFIG_PM */
4725
4726 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4727                         struct usb_device *udev, enum usb3_link_state state)
4728 {
4729         return USB3_LPM_DISABLED;
4730 }
4731
4732 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4733                         struct usb_device *udev, enum usb3_link_state state)
4734 {
4735         return 0;
4736 }
4737 #endif  /* CONFIG_PM */
4738
4739 /*-------------------------------------------------------------------------*/
4740
4741 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
4742  * internal data structures for the device.
4743  */
4744 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
4745                         struct usb_tt *tt, gfp_t mem_flags)
4746 {
4747         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4748         struct xhci_virt_device *vdev;
4749         struct xhci_command *config_cmd;
4750         struct xhci_input_control_ctx *ctrl_ctx;
4751         struct xhci_slot_ctx *slot_ctx;
4752         unsigned long flags;
4753         unsigned think_time;
4754         int ret;
4755
4756         /* Ignore root hubs */
4757         if (!hdev->parent)
4758                 return 0;
4759
4760         vdev = xhci->devs[hdev->slot_id];
4761         if (!vdev) {
4762                 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
4763                 return -EINVAL;
4764         }
4765         config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
4766         if (!config_cmd) {
4767                 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
4768                 return -ENOMEM;
4769         }
4770         ctrl_ctx = xhci_get_input_control_ctx(xhci, config_cmd->in_ctx);
4771         if (!ctrl_ctx) {
4772                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4773                                 __func__);
4774                 xhci_free_command(xhci, config_cmd);
4775                 return -ENOMEM;
4776         }
4777
4778         spin_lock_irqsave(&xhci->lock, flags);
4779         if (hdev->speed == USB_SPEED_HIGH &&
4780                         xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
4781                 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
4782                 xhci_free_command(xhci, config_cmd);
4783                 spin_unlock_irqrestore(&xhci->lock, flags);
4784                 return -ENOMEM;
4785         }
4786
4787         xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
4788         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4789         slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
4790         slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
4791         if (tt->multi)
4792                 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
4793         if (xhci->hci_version > 0x95) {
4794                 xhci_dbg(xhci, "xHCI version %x needs hub "
4795                                 "TT think time and number of ports\n",
4796                                 (unsigned int) xhci->hci_version);
4797                 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
4798                 /* Set TT think time - convert from ns to FS bit times.
4799                  * 0 = 8 FS bit times, 1 = 16 FS bit times,
4800                  * 2 = 24 FS bit times, 3 = 32 FS bit times.
4801                  *
4802                  * xHCI 1.0: this field shall be 0 if the device is not a
4803                  * High-spped hub.
4804                  */
4805                 think_time = tt->think_time;
4806                 if (think_time != 0)
4807                         think_time = (think_time / 666) - 1;
4808                 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
4809                         slot_ctx->tt_info |=
4810                                 cpu_to_le32(TT_THINK_TIME(think_time));
4811         } else {
4812                 xhci_dbg(xhci, "xHCI version %x doesn't need hub "
4813                                 "TT think time or number of ports\n",
4814                                 (unsigned int) xhci->hci_version);
4815         }
4816         slot_ctx->dev_state = 0;
4817         spin_unlock_irqrestore(&xhci->lock, flags);
4818
4819         xhci_dbg(xhci, "Set up %s for hub device.\n",
4820                         (xhci->hci_version > 0x95) ?
4821                         "configure endpoint" : "evaluate context");
4822         xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id);
4823         xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0);
4824
4825         /* Issue and wait for the configure endpoint or
4826          * evaluate context command.
4827          */
4828         if (xhci->hci_version > 0x95)
4829                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4830                                 false, false);
4831         else
4832                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4833                                 true, false);
4834
4835         xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id);
4836         xhci_dbg_ctx(xhci, vdev->out_ctx, 0);
4837
4838         xhci_free_command(xhci, config_cmd);
4839         return ret;
4840 }
4841
4842 int xhci_get_frame(struct usb_hcd *hcd)
4843 {
4844         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4845         /* EHCI mods by the periodic size.  Why? */
4846         return xhci_readl(xhci, &xhci->run_regs->microframe_index) >> 3;
4847 }
4848
4849 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
4850 {
4851         struct xhci_hcd         *xhci;
4852         struct device           *dev = hcd->self.controller;
4853         int                     retval;
4854
4855         /* Accept arbitrarily long scatter-gather lists */
4856         hcd->self.sg_tablesize = ~0;
4857
4858         /* support to build packet from discontinuous buffers */
4859         hcd->self.no_sg_constraint = 1;
4860
4861         /* XHCI controllers don't stop the ep queue on short packets :| */
4862         hcd->self.no_stop_on_short = 1;
4863
4864         if (usb_hcd_is_primary_hcd(hcd)) {
4865                 xhci = kzalloc(sizeof(struct xhci_hcd), GFP_KERNEL);
4866                 if (!xhci)
4867                         return -ENOMEM;
4868                 *((struct xhci_hcd **) hcd->hcd_priv) = xhci;
4869                 xhci->main_hcd = hcd;
4870                 /* Mark the first roothub as being USB 2.0.
4871                  * The xHCI driver will register the USB 3.0 roothub.
4872                  */
4873                 hcd->speed = HCD_USB2;
4874                 hcd->self.root_hub->speed = USB_SPEED_HIGH;
4875                 /*
4876                  * USB 2.0 roothub under xHCI has an integrated TT,
4877                  * (rate matching hub) as opposed to having an OHCI/UHCI
4878                  * companion controller.
4879                  */
4880                 hcd->has_tt = 1;
4881         } else {
4882                 /* xHCI private pointer was set in xhci_pci_probe for the second
4883                  * registered roothub.
4884                  */
4885                 return 0;
4886         }
4887
4888         xhci->cap_regs = hcd->regs;
4889         xhci->op_regs = hcd->regs +
4890                 HC_LENGTH(xhci_readl(xhci, &xhci->cap_regs->hc_capbase));
4891         xhci->run_regs = hcd->regs +
4892                 (xhci_readl(xhci, &xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
4893         /* Cache read-only capability registers */
4894         xhci->hcs_params1 = xhci_readl(xhci, &xhci->cap_regs->hcs_params1);
4895         xhci->hcs_params2 = xhci_readl(xhci, &xhci->cap_regs->hcs_params2);
4896         xhci->hcs_params3 = xhci_readl(xhci, &xhci->cap_regs->hcs_params3);
4897         xhci->hcc_params = xhci_readl(xhci, &xhci->cap_regs->hc_capbase);
4898         xhci->hci_version = HC_VERSION(xhci->hcc_params);
4899         xhci->hcc_params = xhci_readl(xhci, &xhci->cap_regs->hcc_params);
4900         xhci_print_registers(xhci);
4901
4902         get_quirks(dev, xhci);
4903
4904         /* In xhci controllers which follow xhci 1.0 spec gives a spurious
4905          * success event after a short transfer. This quirk will ignore such
4906          * spurious event.
4907          */
4908         if (xhci->hci_version > 0x96)
4909                 xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
4910
4911         /* Make sure the HC is halted. */
4912         retval = xhci_halt(xhci);
4913         if (retval)
4914                 goto error;
4915
4916         xhci_dbg(xhci, "Resetting HCD\n");
4917         /* Reset the internal HC memory state and registers. */
4918         retval = xhci_reset(xhci);
4919         if (retval)
4920                 goto error;
4921         xhci_dbg(xhci, "Reset complete\n");
4922
4923         /* Set dma_mask and coherent_dma_mask to 64-bits,
4924          * if xHC supports 64-bit addressing */
4925         if (HCC_64BIT_ADDR(xhci->hcc_params) &&
4926                         !dma_set_mask(dev, DMA_BIT_MASK(64))) {
4927                 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4928                 dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
4929         }
4930
4931         xhci_dbg(xhci, "Calling HCD init\n");
4932         /* Initialize HCD and host controller data structures. */
4933         retval = xhci_init(hcd);
4934         if (retval)
4935                 goto error;
4936         xhci_dbg(xhci, "Called HCD init\n");
4937         return 0;
4938 error:
4939         kfree(xhci);
4940         return retval;
4941 }
4942
4943 MODULE_DESCRIPTION(DRIVER_DESC);
4944 MODULE_AUTHOR(DRIVER_AUTHOR);
4945 MODULE_LICENSE("GPL");
4946
4947 static int __init xhci_hcd_init(void)
4948 {
4949         int retval;
4950
4951         retval = xhci_register_pci();
4952         if (retval < 0) {
4953                 pr_debug("Problem registering PCI driver.\n");
4954                 return retval;
4955         }
4956         retval = xhci_register_plat();
4957         if (retval < 0) {
4958                 pr_debug("Problem registering platform driver.\n");
4959                 goto unreg_pci;
4960         }
4961         /*
4962          * Check the compiler generated sizes of structures that must be laid
4963          * out in specific ways for hardware access.
4964          */
4965         BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
4966         BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
4967         BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
4968         /* xhci_device_control has eight fields, and also
4969          * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
4970          */
4971         BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
4972         BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
4973         BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
4974         BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 7*32/8);
4975         BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
4976         /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
4977         BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
4978         return 0;
4979 unreg_pci:
4980         xhci_unregister_pci();
4981         return retval;
4982 }
4983 module_init(xhci_hcd_init);
4984
4985 static void __exit xhci_hcd_cleanup(void)
4986 {
4987         xhci_unregister_pci();
4988         xhci_unregister_plat();
4989 }
4990 module_exit(xhci_hcd_cleanup);