]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/usb/host/xhci.c
df5e881e3bc5d35ba0a1be969255d29acce35132
[karo-tx-linux.git] / drivers / usb / host / xhci.c
1 /*
2  * xHCI host controller driver
3  *
4  * Copyright (C) 2008 Intel Corp.
5  *
6  * Author: Sarah Sharp
7  * Some code borrowed from the Linux EHCI driver.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16  * for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software Foundation,
20  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22
23 #include <linux/pci.h>
24 #include <linux/irq.h>
25 #include <linux/log2.h>
26 #include <linux/module.h>
27 #include <linux/moduleparam.h>
28 #include <linux/slab.h>
29 #include <linux/dmi.h>
30
31 #include "xhci.h"
32
33 #define DRIVER_AUTHOR "Sarah Sharp"
34 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
35
36 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
37 static int link_quirk;
38 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
39 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
40
41 /* TODO: copied from ehci-hcd.c - can this be refactored? */
42 /*
43  * xhci_handshake - spin reading hc until handshake completes or fails
44  * @ptr: address of hc register to be read
45  * @mask: bits to look at in result of read
46  * @done: value of those bits when handshake succeeds
47  * @usec: timeout in microseconds
48  *
49  * Returns negative errno, or zero on success
50  *
51  * Success happens when the "mask" bits have the specified value (hardware
52  * handshake done).  There are two failure modes:  "usec" have passed (major
53  * hardware flakeout), or the register reads as all-ones (hardware removed).
54  */
55 int xhci_handshake(struct xhci_hcd *xhci, void __iomem *ptr,
56                       u32 mask, u32 done, int usec)
57 {
58         u32     result;
59
60         do {
61                 result = xhci_readl(xhci, ptr);
62                 if (result == ~(u32)0)          /* card removed */
63                         return -ENODEV;
64                 result &= mask;
65                 if (result == done)
66                         return 0;
67                 udelay(1);
68                 usec--;
69         } while (usec > 0);
70         return -ETIMEDOUT;
71 }
72
73 /*
74  * Disable interrupts and begin the xHCI halting process.
75  */
76 void xhci_quiesce(struct xhci_hcd *xhci)
77 {
78         u32 halted;
79         u32 cmd;
80         u32 mask;
81
82         mask = ~(XHCI_IRQS);
83         halted = xhci_readl(xhci, &xhci->op_regs->status) & STS_HALT;
84         if (!halted)
85                 mask &= ~CMD_RUN;
86
87         cmd = xhci_readl(xhci, &xhci->op_regs->command);
88         cmd &= mask;
89         xhci_writel(xhci, cmd, &xhci->op_regs->command);
90 }
91
92 /*
93  * Force HC into halt state.
94  *
95  * Disable any IRQs and clear the run/stop bit.
96  * HC will complete any current and actively pipelined transactions, and
97  * should halt within 16 ms of the run/stop bit being cleared.
98  * Read HC Halted bit in the status register to see when the HC is finished.
99  */
100 int xhci_halt(struct xhci_hcd *xhci)
101 {
102         int ret;
103         xhci_dbg(xhci, "// Halt the HC\n");
104         xhci_quiesce(xhci);
105
106         ret = xhci_handshake(xhci, &xhci->op_regs->status,
107                         STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
108         if (!ret) {
109                 xhci->xhc_state |= XHCI_STATE_HALTED;
110                 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
111         } else
112                 xhci_warn(xhci, "Host not halted after %u microseconds.\n",
113                                 XHCI_MAX_HALT_USEC);
114         return ret;
115 }
116
117 /*
118  * Set the run bit and wait for the host to be running.
119  */
120 static int xhci_start(struct xhci_hcd *xhci)
121 {
122         u32 temp;
123         int ret;
124
125         temp = xhci_readl(xhci, &xhci->op_regs->command);
126         temp |= (CMD_RUN);
127         xhci_dbg(xhci, "// Turn on HC, cmd = 0x%x.\n",
128                         temp);
129         xhci_writel(xhci, temp, &xhci->op_regs->command);
130
131         /*
132          * Wait for the HCHalted Status bit to be 0 to indicate the host is
133          * running.
134          */
135         ret = xhci_handshake(xhci, &xhci->op_regs->status,
136                         STS_HALT, 0, XHCI_MAX_HALT_USEC);
137         if (ret == -ETIMEDOUT)
138                 xhci_err(xhci, "Host took too long to start, "
139                                 "waited %u microseconds.\n",
140                                 XHCI_MAX_HALT_USEC);
141         if (!ret)
142                 xhci->xhc_state &= ~XHCI_STATE_HALTED;
143         return ret;
144 }
145
146 /*
147  * Reset a halted HC.
148  *
149  * This resets pipelines, timers, counters, state machines, etc.
150  * Transactions will be terminated immediately, and operational registers
151  * will be set to their defaults.
152  */
153 int xhci_reset(struct xhci_hcd *xhci)
154 {
155         u32 command;
156         u32 state;
157         int ret, i;
158
159         state = xhci_readl(xhci, &xhci->op_regs->status);
160         if ((state & STS_HALT) == 0) {
161                 xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
162                 return 0;
163         }
164
165         xhci_dbg(xhci, "// Reset the HC\n");
166         command = xhci_readl(xhci, &xhci->op_regs->command);
167         command |= CMD_RESET;
168         xhci_writel(xhci, command, &xhci->op_regs->command);
169
170         ret = xhci_handshake(xhci, &xhci->op_regs->command,
171                         CMD_RESET, 0, 10 * 1000 * 1000);
172         if (ret)
173                 return ret;
174
175         xhci_dbg(xhci, "Wait for controller to be ready for doorbell rings\n");
176         /*
177          * xHCI cannot write to any doorbells or operational registers other
178          * than status until the "Controller Not Ready" flag is cleared.
179          */
180         ret = xhci_handshake(xhci, &xhci->op_regs->status,
181                         STS_CNR, 0, 10 * 1000 * 1000);
182
183         for (i = 0; i < 2; ++i) {
184                 xhci->bus_state[i].port_c_suspend = 0;
185                 xhci->bus_state[i].suspended_ports = 0;
186                 xhci->bus_state[i].resuming_ports = 0;
187         }
188
189         return ret;
190 }
191
192 #ifdef CONFIG_PCI
193 static int xhci_free_msi(struct xhci_hcd *xhci)
194 {
195         int i;
196
197         if (!xhci->msix_entries)
198                 return -EINVAL;
199
200         for (i = 0; i < xhci->msix_count; i++)
201                 if (xhci->msix_entries[i].vector)
202                         free_irq(xhci->msix_entries[i].vector,
203                                         xhci_to_hcd(xhci));
204         return 0;
205 }
206
207 /*
208  * Set up MSI
209  */
210 static int xhci_setup_msi(struct xhci_hcd *xhci)
211 {
212         int ret;
213         struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
214
215         ret = pci_enable_msi(pdev);
216         if (ret) {
217                 xhci_dbg(xhci, "failed to allocate MSI entry\n");
218                 return ret;
219         }
220
221         ret = request_irq(pdev->irq, xhci_msi_irq,
222                                 0, "xhci_hcd", xhci_to_hcd(xhci));
223         if (ret) {
224                 xhci_dbg(xhci, "disable MSI interrupt\n");
225                 pci_disable_msi(pdev);
226         }
227
228         return ret;
229 }
230
231 /*
232  * Free IRQs
233  * free all IRQs request
234  */
235 static void xhci_free_irq(struct xhci_hcd *xhci)
236 {
237         struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
238         int ret;
239
240         /* return if using legacy interrupt */
241         if (xhci_to_hcd(xhci)->irq > 0)
242                 return;
243
244         ret = xhci_free_msi(xhci);
245         if (!ret)
246                 return;
247         if (pdev->irq > 0)
248                 free_irq(pdev->irq, xhci_to_hcd(xhci));
249
250         return;
251 }
252
253 /*
254  * Set up MSI-X
255  */
256 static int xhci_setup_msix(struct xhci_hcd *xhci)
257 {
258         int i, ret = 0;
259         struct usb_hcd *hcd = xhci_to_hcd(xhci);
260         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
261
262         /*
263          * calculate number of msi-x vectors supported.
264          * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
265          *   with max number of interrupters based on the xhci HCSPARAMS1.
266          * - num_online_cpus: maximum msi-x vectors per CPUs core.
267          *   Add additional 1 vector to ensure always available interrupt.
268          */
269         xhci->msix_count = min(num_online_cpus() + 1,
270                                 HCS_MAX_INTRS(xhci->hcs_params1));
271
272         xhci->msix_entries =
273                 kmalloc((sizeof(struct msix_entry))*xhci->msix_count,
274                                 GFP_KERNEL);
275         if (!xhci->msix_entries) {
276                 xhci_err(xhci, "Failed to allocate MSI-X entries\n");
277                 return -ENOMEM;
278         }
279
280         for (i = 0; i < xhci->msix_count; i++) {
281                 xhci->msix_entries[i].entry = i;
282                 xhci->msix_entries[i].vector = 0;
283         }
284
285         ret = pci_enable_msix(pdev, xhci->msix_entries, xhci->msix_count);
286         if (ret) {
287                 xhci_dbg(xhci, "Failed to enable MSI-X\n");
288                 goto free_entries;
289         }
290
291         for (i = 0; i < xhci->msix_count; i++) {
292                 ret = request_irq(xhci->msix_entries[i].vector,
293                                 xhci_msi_irq,
294                                 0, "xhci_hcd", xhci_to_hcd(xhci));
295                 if (ret)
296                         goto disable_msix;
297         }
298
299         hcd->msix_enabled = 1;
300         return ret;
301
302 disable_msix:
303         xhci_dbg(xhci, "disable MSI-X interrupt\n");
304         xhci_free_irq(xhci);
305         pci_disable_msix(pdev);
306 free_entries:
307         kfree(xhci->msix_entries);
308         xhci->msix_entries = NULL;
309         return ret;
310 }
311
312 /* Free any IRQs and disable MSI-X */
313 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
314 {
315         struct usb_hcd *hcd = xhci_to_hcd(xhci);
316         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
317
318         xhci_free_irq(xhci);
319
320         if (xhci->msix_entries) {
321                 pci_disable_msix(pdev);
322                 kfree(xhci->msix_entries);
323                 xhci->msix_entries = NULL;
324         } else {
325                 pci_disable_msi(pdev);
326         }
327
328         hcd->msix_enabled = 0;
329         return;
330 }
331
332 static void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
333 {
334         int i;
335
336         if (xhci->msix_entries) {
337                 for (i = 0; i < xhci->msix_count; i++)
338                         synchronize_irq(xhci->msix_entries[i].vector);
339         }
340 }
341
342 static int xhci_try_enable_msi(struct usb_hcd *hcd)
343 {
344         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
345         struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
346         int ret;
347
348         /*
349          * Some Fresco Logic host controllers advertise MSI, but fail to
350          * generate interrupts.  Don't even try to enable MSI.
351          */
352         if (xhci->quirks & XHCI_BROKEN_MSI)
353                 goto legacy_irq;
354
355         /* unregister the legacy interrupt */
356         if (hcd->irq)
357                 free_irq(hcd->irq, hcd);
358         hcd->irq = 0;
359
360         ret = xhci_setup_msix(xhci);
361         if (ret)
362                 /* fall back to msi*/
363                 ret = xhci_setup_msi(xhci);
364
365         if (!ret)
366                 /* hcd->irq is 0, we have MSI */
367                 return 0;
368
369         if (!pdev->irq) {
370                 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
371                 return -EINVAL;
372         }
373
374  legacy_irq:
375         /* fall back to legacy interrupt*/
376         ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
377                         hcd->irq_descr, hcd);
378         if (ret) {
379                 xhci_err(xhci, "request interrupt %d failed\n",
380                                 pdev->irq);
381                 return ret;
382         }
383         hcd->irq = pdev->irq;
384         return 0;
385 }
386
387 #else
388
389 static int xhci_try_enable_msi(struct usb_hcd *hcd)
390 {
391         return 0;
392 }
393
394 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
395 {
396 }
397
398 static void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
399 {
400 }
401
402 #endif
403
404 static void compliance_mode_recovery(unsigned long arg)
405 {
406         struct xhci_hcd *xhci;
407         struct usb_hcd *hcd;
408         u32 temp;
409         int i;
410
411         xhci = (struct xhci_hcd *)arg;
412
413         for (i = 0; i < xhci->num_usb3_ports; i++) {
414                 temp = xhci_readl(xhci, xhci->usb3_ports[i]);
415                 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
416                         /*
417                          * Compliance Mode Detected. Letting USB Core
418                          * handle the Warm Reset
419                          */
420                         xhci_dbg(xhci, "Compliance mode detected->port %d\n",
421                                         i + 1);
422                         xhci_dbg(xhci, "Attempting compliance mode recovery\n");
423                         hcd = xhci->shared_hcd;
424
425                         if (hcd->state == HC_STATE_SUSPENDED)
426                                 usb_hcd_resume_root_hub(hcd);
427
428                         usb_hcd_poll_rh_status(hcd);
429                 }
430         }
431
432         if (xhci->port_status_u0 != ((1 << xhci->num_usb3_ports)-1))
433                 mod_timer(&xhci->comp_mode_recovery_timer,
434                         jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
435 }
436
437 /*
438  * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
439  * that causes ports behind that hardware to enter compliance mode sometimes.
440  * The quirk creates a timer that polls every 2 seconds the link state of
441  * each host controller's port and recovers it by issuing a Warm reset
442  * if Compliance mode is detected, otherwise the port will become "dead" (no
443  * device connections or disconnections will be detected anymore). Becasue no
444  * status event is generated when entering compliance mode (per xhci spec),
445  * this quirk is needed on systems that have the failing hardware installed.
446  */
447 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
448 {
449         xhci->port_status_u0 = 0;
450         init_timer(&xhci->comp_mode_recovery_timer);
451
452         xhci->comp_mode_recovery_timer.data = (unsigned long) xhci;
453         xhci->comp_mode_recovery_timer.function = compliance_mode_recovery;
454         xhci->comp_mode_recovery_timer.expires = jiffies +
455                         msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
456
457         set_timer_slack(&xhci->comp_mode_recovery_timer,
458                         msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
459         add_timer(&xhci->comp_mode_recovery_timer);
460         xhci_dbg(xhci, "Compliance mode recovery timer initialized\n");
461 }
462
463 /*
464  * This function identifies the systems that have installed the SN65LVPE502CP
465  * USB3.0 re-driver and that need the Compliance Mode Quirk.
466  * Systems:
467  * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
468  */
469 static bool compliance_mode_recovery_timer_quirk_check(void)
470 {
471         const char *dmi_product_name, *dmi_sys_vendor;
472
473         dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
474         dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
475         if (!dmi_product_name || !dmi_sys_vendor)
476                 return false;
477
478         if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
479                 return false;
480
481         if (strstr(dmi_product_name, "Z420") ||
482                         strstr(dmi_product_name, "Z620") ||
483                         strstr(dmi_product_name, "Z820") ||
484                         strstr(dmi_product_name, "Z1 Workstation"))
485                 return true;
486
487         return false;
488 }
489
490 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
491 {
492         return (xhci->port_status_u0 == ((1 << xhci->num_usb3_ports)-1));
493 }
494
495
496 /*
497  * Initialize memory for HCD and xHC (one-time init).
498  *
499  * Program the PAGESIZE register, initialize the device context array, create
500  * device contexts (?), set up a command ring segment (or two?), create event
501  * ring (one for now).
502  */
503 int xhci_init(struct usb_hcd *hcd)
504 {
505         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
506         int retval = 0;
507
508         xhci_dbg(xhci, "xhci_init\n");
509         spin_lock_init(&xhci->lock);
510         if (xhci->hci_version == 0x95 && link_quirk) {
511                 xhci_dbg(xhci, "QUIRK: Not clearing Link TRB chain bits.\n");
512                 xhci->quirks |= XHCI_LINK_TRB_QUIRK;
513         } else {
514                 xhci_dbg(xhci, "xHCI doesn't need link TRB QUIRK\n");
515         }
516         retval = xhci_mem_init(xhci, GFP_KERNEL);
517         xhci_dbg(xhci, "Finished xhci_init\n");
518
519         /* Initializing Compliance Mode Recovery Data If Needed */
520         if (compliance_mode_recovery_timer_quirk_check()) {
521                 xhci->quirks |= XHCI_COMP_MODE_QUIRK;
522                 compliance_mode_recovery_timer_init(xhci);
523         }
524
525         return retval;
526 }
527
528 /*-------------------------------------------------------------------------*/
529
530
531 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
532 static void xhci_event_ring_work(unsigned long arg)
533 {
534         unsigned long flags;
535         int temp;
536         u64 temp_64;
537         struct xhci_hcd *xhci = (struct xhci_hcd *) arg;
538         int i, j;
539
540         xhci_dbg(xhci, "Poll event ring: %lu\n", jiffies);
541
542         spin_lock_irqsave(&xhci->lock, flags);
543         temp = xhci_readl(xhci, &xhci->op_regs->status);
544         xhci_dbg(xhci, "op reg status = 0x%x\n", temp);
545         if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
546                         (xhci->xhc_state & XHCI_STATE_HALTED)) {
547                 xhci_dbg(xhci, "HW died, polling stopped.\n");
548                 spin_unlock_irqrestore(&xhci->lock, flags);
549                 return;
550         }
551
552         temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
553         xhci_dbg(xhci, "ir_set 0 pending = 0x%x\n", temp);
554         xhci_dbg(xhci, "HC error bitmask = 0x%x\n", xhci->error_bitmask);
555         xhci->error_bitmask = 0;
556         xhci_dbg(xhci, "Event ring:\n");
557         xhci_debug_segment(xhci, xhci->event_ring->deq_seg);
558         xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
559         temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
560         temp_64 &= ~ERST_PTR_MASK;
561         xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64);
562         xhci_dbg(xhci, "Command ring:\n");
563         xhci_debug_segment(xhci, xhci->cmd_ring->deq_seg);
564         xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
565         xhci_dbg_cmd_ptrs(xhci);
566         for (i = 0; i < MAX_HC_SLOTS; ++i) {
567                 if (!xhci->devs[i])
568                         continue;
569                 for (j = 0; j < 31; ++j) {
570                         xhci_dbg_ep_rings(xhci, i, j, &xhci->devs[i]->eps[j]);
571                 }
572         }
573         spin_unlock_irqrestore(&xhci->lock, flags);
574
575         if (!xhci->zombie)
576                 mod_timer(&xhci->event_ring_timer, jiffies + POLL_TIMEOUT * HZ);
577         else
578                 xhci_dbg(xhci, "Quit polling the event ring.\n");
579 }
580 #endif
581
582 static int xhci_run_finished(struct xhci_hcd *xhci)
583 {
584         if (xhci_start(xhci)) {
585                 xhci_halt(xhci);
586                 return -ENODEV;
587         }
588         xhci->shared_hcd->state = HC_STATE_RUNNING;
589         xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
590
591         if (xhci->quirks & XHCI_NEC_HOST)
592                 xhci_ring_cmd_db(xhci);
593
594         xhci_dbg(xhci, "Finished xhci_run for USB3 roothub\n");
595         return 0;
596 }
597
598 /*
599  * Start the HC after it was halted.
600  *
601  * This function is called by the USB core when the HC driver is added.
602  * Its opposite is xhci_stop().
603  *
604  * xhci_init() must be called once before this function can be called.
605  * Reset the HC, enable device slot contexts, program DCBAAP, and
606  * set command ring pointer and event ring pointer.
607  *
608  * Setup MSI-X vectors and enable interrupts.
609  */
610 int xhci_run(struct usb_hcd *hcd)
611 {
612         u32 temp;
613         u64 temp_64;
614         int ret;
615         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
616
617         /* Start the xHCI host controller running only after the USB 2.0 roothub
618          * is setup.
619          */
620
621         hcd->uses_new_polling = 1;
622         if (!usb_hcd_is_primary_hcd(hcd))
623                 return xhci_run_finished(xhci);
624
625         xhci_dbg(xhci, "xhci_run\n");
626
627         ret = xhci_try_enable_msi(hcd);
628         if (ret)
629                 return ret;
630
631 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
632         init_timer(&xhci->event_ring_timer);
633         xhci->event_ring_timer.data = (unsigned long) xhci;
634         xhci->event_ring_timer.function = xhci_event_ring_work;
635         /* Poll the event ring */
636         xhci->event_ring_timer.expires = jiffies + POLL_TIMEOUT * HZ;
637         xhci->zombie = 0;
638         xhci_dbg(xhci, "Setting event ring polling timer\n");
639         add_timer(&xhci->event_ring_timer);
640 #endif
641
642         xhci_dbg(xhci, "Command ring memory map follows:\n");
643         xhci_debug_ring(xhci, xhci->cmd_ring);
644         xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
645         xhci_dbg_cmd_ptrs(xhci);
646
647         xhci_dbg(xhci, "ERST memory map follows:\n");
648         xhci_dbg_erst(xhci, &xhci->erst);
649         xhci_dbg(xhci, "Event ring:\n");
650         xhci_debug_ring(xhci, xhci->event_ring);
651         xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
652         temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
653         temp_64 &= ~ERST_PTR_MASK;
654         xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64);
655
656         xhci_dbg(xhci, "// Set the interrupt modulation register\n");
657         temp = xhci_readl(xhci, &xhci->ir_set->irq_control);
658         temp &= ~ER_IRQ_INTERVAL_MASK;
659         temp |= (u32) 160;
660         xhci_writel(xhci, temp, &xhci->ir_set->irq_control);
661
662         /* Set the HCD state before we enable the irqs */
663         temp = xhci_readl(xhci, &xhci->op_regs->command);
664         temp |= (CMD_EIE);
665         xhci_dbg(xhci, "// Enable interrupts, cmd = 0x%x.\n",
666                         temp);
667         xhci_writel(xhci, temp, &xhci->op_regs->command);
668
669         temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
670         xhci_dbg(xhci, "// Enabling event ring interrupter %p by writing 0x%x to irq_pending\n",
671                         xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
672         xhci_writel(xhci, ER_IRQ_ENABLE(temp),
673                         &xhci->ir_set->irq_pending);
674         xhci_print_ir_set(xhci, 0);
675
676         if (xhci->quirks & XHCI_NEC_HOST)
677                 xhci_queue_vendor_command(xhci, 0, 0, 0,
678                                 TRB_TYPE(TRB_NEC_GET_FW));
679
680         xhci_dbg(xhci, "Finished xhci_run for USB2 roothub\n");
681         return 0;
682 }
683
684 static void xhci_only_stop_hcd(struct usb_hcd *hcd)
685 {
686         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
687
688         spin_lock_irq(&xhci->lock);
689         xhci_halt(xhci);
690
691         /* The shared_hcd is going to be deallocated shortly (the USB core only
692          * calls this function when allocation fails in usb_add_hcd(), or
693          * usb_remove_hcd() is called).  So we need to unset xHCI's pointer.
694          */
695         xhci->shared_hcd = NULL;
696         spin_unlock_irq(&xhci->lock);
697 }
698
699 /*
700  * Stop xHCI driver.
701  *
702  * This function is called by the USB core when the HC driver is removed.
703  * Its opposite is xhci_run().
704  *
705  * Disable device contexts, disable IRQs, and quiesce the HC.
706  * Reset the HC, finish any completed transactions, and cleanup memory.
707  */
708 void xhci_stop(struct usb_hcd *hcd)
709 {
710         u32 temp;
711         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
712
713         if (!usb_hcd_is_primary_hcd(hcd)) {
714                 xhci_only_stop_hcd(xhci->shared_hcd);
715                 return;
716         }
717
718         spin_lock_irq(&xhci->lock);
719         /* Make sure the xHC is halted for a USB3 roothub
720          * (xhci_stop() could be called as part of failed init).
721          */
722         xhci_halt(xhci);
723         xhci_reset(xhci);
724         spin_unlock_irq(&xhci->lock);
725
726         xhci_cleanup_msix(xhci);
727
728 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
729         /* Tell the event ring poll function not to reschedule */
730         xhci->zombie = 1;
731         del_timer_sync(&xhci->event_ring_timer);
732 #endif
733
734         /* Deleting Compliance Mode Recovery Timer */
735         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
736                         (!(xhci_all_ports_seen_u0(xhci)))) {
737                 del_timer_sync(&xhci->comp_mode_recovery_timer);
738                 xhci_dbg(xhci, "%s: compliance mode recovery timer deleted\n",
739                                 __func__);
740         }
741
742         if (xhci->quirks & XHCI_AMD_PLL_FIX)
743                 usb_amd_dev_put();
744
745         xhci_dbg(xhci, "// Disabling event ring interrupts\n");
746         temp = xhci_readl(xhci, &xhci->op_regs->status);
747         xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status);
748         temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
749         xhci_writel(xhci, ER_IRQ_DISABLE(temp),
750                         &xhci->ir_set->irq_pending);
751         xhci_print_ir_set(xhci, 0);
752
753         xhci_dbg(xhci, "cleaning up memory\n");
754         xhci_mem_cleanup(xhci);
755         xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
756                     xhci_readl(xhci, &xhci->op_regs->status));
757 }
758
759 /*
760  * Shutdown HC (not bus-specific)
761  *
762  * This is called when the machine is rebooting or halting.  We assume that the
763  * machine will be powered off, and the HC's internal state will be reset.
764  * Don't bother to free memory.
765  *
766  * This will only ever be called with the main usb_hcd (the USB3 roothub).
767  */
768 void xhci_shutdown(struct usb_hcd *hcd)
769 {
770         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
771
772         if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
773                 usb_disable_xhci_ports(to_pci_dev(hcd->self.controller));
774
775         spin_lock_irq(&xhci->lock);
776         xhci_halt(xhci);
777         spin_unlock_irq(&xhci->lock);
778
779         xhci_cleanup_msix(xhci);
780
781         xhci_dbg(xhci, "xhci_shutdown completed - status = %x\n",
782                     xhci_readl(xhci, &xhci->op_regs->status));
783 }
784
785 #ifdef CONFIG_PM
786 static void xhci_save_registers(struct xhci_hcd *xhci)
787 {
788         xhci->s3.command = xhci_readl(xhci, &xhci->op_regs->command);
789         xhci->s3.dev_nt = xhci_readl(xhci, &xhci->op_regs->dev_notification);
790         xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
791         xhci->s3.config_reg = xhci_readl(xhci, &xhci->op_regs->config_reg);
792         xhci->s3.erst_size = xhci_readl(xhci, &xhci->ir_set->erst_size);
793         xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
794         xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
795         xhci->s3.irq_pending = xhci_readl(xhci, &xhci->ir_set->irq_pending);
796         xhci->s3.irq_control = xhci_readl(xhci, &xhci->ir_set->irq_control);
797 }
798
799 static void xhci_restore_registers(struct xhci_hcd *xhci)
800 {
801         xhci_writel(xhci, xhci->s3.command, &xhci->op_regs->command);
802         xhci_writel(xhci, xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
803         xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
804         xhci_writel(xhci, xhci->s3.config_reg, &xhci->op_regs->config_reg);
805         xhci_writel(xhci, xhci->s3.erst_size, &xhci->ir_set->erst_size);
806         xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
807         xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
808         xhci_writel(xhci, xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
809         xhci_writel(xhci, xhci->s3.irq_control, &xhci->ir_set->irq_control);
810 }
811
812 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
813 {
814         u64     val_64;
815
816         /* step 2: initialize command ring buffer */
817         val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
818         val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
819                 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
820                                       xhci->cmd_ring->dequeue) &
821                  (u64) ~CMD_RING_RSVD_BITS) |
822                 xhci->cmd_ring->cycle_state;
823         xhci_dbg(xhci, "// Setting command ring address to 0x%llx\n",
824                         (long unsigned long) val_64);
825         xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
826 }
827
828 /*
829  * The whole command ring must be cleared to zero when we suspend the host.
830  *
831  * The host doesn't save the command ring pointer in the suspend well, so we
832  * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
833  * aligned, because of the reserved bits in the command ring dequeue pointer
834  * register.  Therefore, we can't just set the dequeue pointer back in the
835  * middle of the ring (TRBs are 16-byte aligned).
836  */
837 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
838 {
839         struct xhci_ring *ring;
840         struct xhci_segment *seg;
841
842         ring = xhci->cmd_ring;
843         seg = ring->deq_seg;
844         do {
845                 memset(seg->trbs, 0,
846                         sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
847                 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
848                         cpu_to_le32(~TRB_CYCLE);
849                 seg = seg->next;
850         } while (seg != ring->deq_seg);
851
852         /* Reset the software enqueue and dequeue pointers */
853         ring->deq_seg = ring->first_seg;
854         ring->dequeue = ring->first_seg->trbs;
855         ring->enq_seg = ring->deq_seg;
856         ring->enqueue = ring->dequeue;
857
858         ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
859         /*
860          * Ring is now zeroed, so the HW should look for change of ownership
861          * when the cycle bit is set to 1.
862          */
863         ring->cycle_state = 1;
864
865         /*
866          * Reset the hardware dequeue pointer.
867          * Yes, this will need to be re-written after resume, but we're paranoid
868          * and want to make sure the hardware doesn't access bogus memory
869          * because, say, the BIOS or an SMI started the host without changing
870          * the command ring pointers.
871          */
872         xhci_set_cmd_ring_deq(xhci);
873 }
874
875 /*
876  * Stop HC (not bus-specific)
877  *
878  * This is called when the machine transition into S3/S4 mode.
879  *
880  */
881 int xhci_suspend(struct xhci_hcd *xhci)
882 {
883         int                     rc = 0;
884         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
885         u32                     command;
886
887         if (hcd->state != HC_STATE_SUSPENDED ||
888                         xhci->shared_hcd->state != HC_STATE_SUSPENDED)
889                 return -EINVAL;
890
891         /* Don't poll the roothubs on bus suspend. */
892         xhci_dbg(xhci, "%s: stopping port polling.\n", __func__);
893         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
894         del_timer_sync(&hcd->rh_timer);
895
896         spin_lock_irq(&xhci->lock);
897         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
898         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
899         /* step 1: stop endpoint */
900         /* skipped assuming that port suspend has done */
901
902         /* step 2: clear Run/Stop bit */
903         command = xhci_readl(xhci, &xhci->op_regs->command);
904         command &= ~CMD_RUN;
905         xhci_writel(xhci, command, &xhci->op_regs->command);
906         if (xhci_handshake(xhci, &xhci->op_regs->status,
907                       STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC)) {
908                 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
909                 spin_unlock_irq(&xhci->lock);
910                 return -ETIMEDOUT;
911         }
912         xhci_clear_command_ring(xhci);
913
914         /* step 3: save registers */
915         xhci_save_registers(xhci);
916
917         /* step 4: set CSS flag */
918         command = xhci_readl(xhci, &xhci->op_regs->command);
919         command |= CMD_CSS;
920         xhci_writel(xhci, command, &xhci->op_regs->command);
921         if (xhci_handshake(xhci, &xhci->op_regs->status,
922                                 STS_SAVE, 0, 10 * 1000)) {
923                 xhci_warn(xhci, "WARN: xHC save state timeout\n");
924                 spin_unlock_irq(&xhci->lock);
925                 return -ETIMEDOUT;
926         }
927         spin_unlock_irq(&xhci->lock);
928
929         /*
930          * Deleting Compliance Mode Recovery Timer because the xHCI Host
931          * is about to be suspended.
932          */
933         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
934                         (!(xhci_all_ports_seen_u0(xhci)))) {
935                 del_timer_sync(&xhci->comp_mode_recovery_timer);
936                 xhci_dbg(xhci, "%s: compliance mode recovery timer deleted\n",
937                                 __func__);
938         }
939
940         /* step 5: remove core well power */
941         /* synchronize irq when using MSI-X */
942         xhci_msix_sync_irqs(xhci);
943
944         return rc;
945 }
946
947 /*
948  * start xHC (not bus-specific)
949  *
950  * This is called when the machine transition from S3/S4 mode.
951  *
952  */
953 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
954 {
955         u32                     command, temp = 0;
956         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
957         struct usb_hcd          *secondary_hcd;
958         int                     retval = 0;
959
960         /* Wait a bit if either of the roothubs need to settle from the
961          * transition into bus suspend.
962          */
963         if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
964                         time_before(jiffies,
965                                 xhci->bus_state[1].next_statechange))
966                 msleep(100);
967
968         set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
969         set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
970
971         spin_lock_irq(&xhci->lock);
972         if (xhci->quirks & XHCI_RESET_ON_RESUME)
973                 hibernated = true;
974
975         if (!hibernated) {
976                 /* step 1: restore register */
977                 xhci_restore_registers(xhci);
978                 /* step 2: initialize command ring buffer */
979                 xhci_set_cmd_ring_deq(xhci);
980                 /* step 3: restore state and start state*/
981                 /* step 3: set CRS flag */
982                 command = xhci_readl(xhci, &xhci->op_regs->command);
983                 command |= CMD_CRS;
984                 xhci_writel(xhci, command, &xhci->op_regs->command);
985                 if (xhci_handshake(xhci, &xhci->op_regs->status,
986                               STS_RESTORE, 0, 10 * 1000)) {
987                         xhci_warn(xhci, "WARN: xHC restore state timeout\n");
988                         spin_unlock_irq(&xhci->lock);
989                         return -ETIMEDOUT;
990                 }
991                 temp = xhci_readl(xhci, &xhci->op_regs->status);
992         }
993
994         /* If restore operation fails, re-initialize the HC during resume */
995         if ((temp & STS_SRE) || hibernated) {
996                 /* Let the USB core know _both_ roothubs lost power. */
997                 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
998                 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
999
1000                 xhci_dbg(xhci, "Stop HCD\n");
1001                 xhci_halt(xhci);
1002                 xhci_reset(xhci);
1003                 spin_unlock_irq(&xhci->lock);
1004                 xhci_cleanup_msix(xhci);
1005
1006 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
1007                 /* Tell the event ring poll function not to reschedule */
1008                 xhci->zombie = 1;
1009                 del_timer_sync(&xhci->event_ring_timer);
1010 #endif
1011
1012                 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1013                 temp = xhci_readl(xhci, &xhci->op_regs->status);
1014                 xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status);
1015                 temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
1016                 xhci_writel(xhci, ER_IRQ_DISABLE(temp),
1017                                 &xhci->ir_set->irq_pending);
1018                 xhci_print_ir_set(xhci, 0);
1019
1020                 xhci_dbg(xhci, "cleaning up memory\n");
1021                 xhci_mem_cleanup(xhci);
1022                 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1023                             xhci_readl(xhci, &xhci->op_regs->status));
1024
1025                 /* USB core calls the PCI reinit and start functions twice:
1026                  * first with the primary HCD, and then with the secondary HCD.
1027                  * If we don't do the same, the host will never be started.
1028                  */
1029                 if (!usb_hcd_is_primary_hcd(hcd))
1030                         secondary_hcd = hcd;
1031                 else
1032                         secondary_hcd = xhci->shared_hcd;
1033
1034                 xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1035                 retval = xhci_init(hcd->primary_hcd);
1036                 if (retval)
1037                         return retval;
1038                 xhci_dbg(xhci, "Start the primary HCD\n");
1039                 retval = xhci_run(hcd->primary_hcd);
1040                 if (!retval) {
1041                         xhci_dbg(xhci, "Start the secondary HCD\n");
1042                         retval = xhci_run(secondary_hcd);
1043                 }
1044                 hcd->state = HC_STATE_SUSPENDED;
1045                 xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1046                 goto done;
1047         }
1048
1049         /* step 4: set Run/Stop bit */
1050         command = xhci_readl(xhci, &xhci->op_regs->command);
1051         command |= CMD_RUN;
1052         xhci_writel(xhci, command, &xhci->op_regs->command);
1053         xhci_handshake(xhci, &xhci->op_regs->status, STS_HALT,
1054                   0, 250 * 1000);
1055
1056         /* step 5: walk topology and initialize portsc,
1057          * portpmsc and portli
1058          */
1059         /* this is done in bus_resume */
1060
1061         /* step 6: restart each of the previously
1062          * Running endpoints by ringing their doorbells
1063          */
1064
1065         spin_unlock_irq(&xhci->lock);
1066
1067  done:
1068         if (retval == 0) {
1069                 usb_hcd_resume_root_hub(hcd);
1070                 usb_hcd_resume_root_hub(xhci->shared_hcd);
1071         }
1072
1073         /*
1074          * If system is subject to the Quirk, Compliance Mode Timer needs to
1075          * be re-initialized Always after a system resume. Ports are subject
1076          * to suffer the Compliance Mode issue again. It doesn't matter if
1077          * ports have entered previously to U0 before system's suspension.
1078          */
1079         if (xhci->quirks & XHCI_COMP_MODE_QUIRK)
1080                 compliance_mode_recovery_timer_init(xhci);
1081
1082         /* Re-enable port polling. */
1083         xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1084         set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1085         usb_hcd_poll_rh_status(hcd);
1086
1087         return retval;
1088 }
1089 #endif  /* CONFIG_PM */
1090
1091 /*-------------------------------------------------------------------------*/
1092
1093 /**
1094  * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1095  * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1096  * value to right shift 1 for the bitmask.
1097  *
1098  * Index  = (epnum * 2) + direction - 1,
1099  * where direction = 0 for OUT, 1 for IN.
1100  * For control endpoints, the IN index is used (OUT index is unused), so
1101  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1102  */
1103 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1104 {
1105         unsigned int index;
1106         if (usb_endpoint_xfer_control(desc))
1107                 index = (unsigned int) (usb_endpoint_num(desc)*2);
1108         else
1109                 index = (unsigned int) (usb_endpoint_num(desc)*2) +
1110                         (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1111         return index;
1112 }
1113
1114 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1115  * address from the XHCI endpoint index.
1116  */
1117 unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1118 {
1119         unsigned int number = DIV_ROUND_UP(ep_index, 2);
1120         unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1121         return direction | number;
1122 }
1123
1124 /* Find the flag for this endpoint (for use in the control context).  Use the
1125  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1126  * bit 1, etc.
1127  */
1128 unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1129 {
1130         return 1 << (xhci_get_endpoint_index(desc) + 1);
1131 }
1132
1133 /* Find the flag for this endpoint (for use in the control context).  Use the
1134  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1135  * bit 1, etc.
1136  */
1137 unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
1138 {
1139         return 1 << (ep_index + 1);
1140 }
1141
1142 /* Compute the last valid endpoint context index.  Basically, this is the
1143  * endpoint index plus one.  For slot contexts with more than valid endpoint,
1144  * we find the most significant bit set in the added contexts flags.
1145  * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1146  * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1147  */
1148 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1149 {
1150         return fls(added_ctxs) - 1;
1151 }
1152
1153 /* Returns 1 if the arguments are OK;
1154  * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1155  */
1156 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1157                 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1158                 const char *func) {
1159         struct xhci_hcd *xhci;
1160         struct xhci_virt_device *virt_dev;
1161
1162         if (!hcd || (check_ep && !ep) || !udev) {
1163                 printk(KERN_DEBUG "xHCI %s called with invalid args\n",
1164                                 func);
1165                 return -EINVAL;
1166         }
1167         if (!udev->parent) {
1168                 printk(KERN_DEBUG "xHCI %s called for root hub\n",
1169                                 func);
1170                 return 0;
1171         }
1172
1173         xhci = hcd_to_xhci(hcd);
1174         if (xhci->xhc_state & XHCI_STATE_HALTED)
1175                 return -ENODEV;
1176
1177         if (check_virt_dev) {
1178                 if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1179                         printk(KERN_DEBUG "xHCI %s called with unaddressed "
1180                                                 "device\n", func);
1181                         return -EINVAL;
1182                 }
1183
1184                 virt_dev = xhci->devs[udev->slot_id];
1185                 if (virt_dev->udev != udev) {
1186                         printk(KERN_DEBUG "xHCI %s called with udev and "
1187                                           "virt_dev does not match\n", func);
1188                         return -EINVAL;
1189                 }
1190         }
1191
1192         return 1;
1193 }
1194
1195 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1196                 struct usb_device *udev, struct xhci_command *command,
1197                 bool ctx_change, bool must_succeed);
1198
1199 /*
1200  * Full speed devices may have a max packet size greater than 8 bytes, but the
1201  * USB core doesn't know that until it reads the first 8 bytes of the
1202  * descriptor.  If the usb_device's max packet size changes after that point,
1203  * we need to issue an evaluate context command and wait on it.
1204  */
1205 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1206                 unsigned int ep_index, struct urb *urb)
1207 {
1208         struct xhci_container_ctx *in_ctx;
1209         struct xhci_container_ctx *out_ctx;
1210         struct xhci_input_control_ctx *ctrl_ctx;
1211         struct xhci_ep_ctx *ep_ctx;
1212         int max_packet_size;
1213         int hw_max_packet_size;
1214         int ret = 0;
1215
1216         out_ctx = xhci->devs[slot_id]->out_ctx;
1217         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1218         hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1219         max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1220         if (hw_max_packet_size != max_packet_size) {
1221                 xhci_dbg(xhci, "Max Packet Size for ep 0 changed.\n");
1222                 xhci_dbg(xhci, "Max packet size in usb_device = %d\n",
1223                                 max_packet_size);
1224                 xhci_dbg(xhci, "Max packet size in xHCI HW = %d\n",
1225                                 hw_max_packet_size);
1226                 xhci_dbg(xhci, "Issuing evaluate context command.\n");
1227
1228                 /* Set up the modified control endpoint 0 */
1229                 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1230                                 xhci->devs[slot_id]->out_ctx, ep_index);
1231                 in_ctx = xhci->devs[slot_id]->in_ctx;
1232                 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1233                 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1234                 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1235
1236                 /* Set up the input context flags for the command */
1237                 /* FIXME: This won't work if a non-default control endpoint
1238                  * changes max packet sizes.
1239                  */
1240                 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1241                 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1242                 ctrl_ctx->drop_flags = 0;
1243
1244                 xhci_dbg(xhci, "Slot %d input context\n", slot_id);
1245                 xhci_dbg_ctx(xhci, in_ctx, ep_index);
1246                 xhci_dbg(xhci, "Slot %d output context\n", slot_id);
1247                 xhci_dbg_ctx(xhci, out_ctx, ep_index);
1248
1249                 ret = xhci_configure_endpoint(xhci, urb->dev, NULL,
1250                                 true, false);
1251
1252                 /* Clean up the input context for later use by bandwidth
1253                  * functions.
1254                  */
1255                 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1256         }
1257         return ret;
1258 }
1259
1260 /*
1261  * non-error returns are a promise to giveback() the urb later
1262  * we drop ownership so next owner (or urb unlink) can get it
1263  */
1264 int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1265 {
1266         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1267         struct xhci_td *buffer;
1268         unsigned long flags;
1269         int ret = 0;
1270         unsigned int slot_id, ep_index;
1271         struct urb_priv *urb_priv;
1272         int size, i;
1273
1274         if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1275                                         true, true, __func__) <= 0)
1276                 return -EINVAL;
1277
1278         slot_id = urb->dev->slot_id;
1279         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1280
1281         if (!HCD_HW_ACCESSIBLE(hcd)) {
1282                 if (!in_interrupt())
1283                         xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1284                 ret = -ESHUTDOWN;
1285                 goto exit;
1286         }
1287
1288         if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1289                 size = urb->number_of_packets;
1290         else
1291                 size = 1;
1292
1293         urb_priv = kzalloc(sizeof(struct urb_priv) +
1294                                   size * sizeof(struct xhci_td *), mem_flags);
1295         if (!urb_priv)
1296                 return -ENOMEM;
1297
1298         buffer = kzalloc(size * sizeof(struct xhci_td), mem_flags);
1299         if (!buffer) {
1300                 kfree(urb_priv);
1301                 return -ENOMEM;
1302         }
1303
1304         for (i = 0; i < size; i++) {
1305                 urb_priv->td[i] = buffer;
1306                 buffer++;
1307         }
1308
1309         urb_priv->length = size;
1310         urb_priv->td_cnt = 0;
1311         urb->hcpriv = urb_priv;
1312
1313         if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1314                 /* Check to see if the max packet size for the default control
1315                  * endpoint changed during FS device enumeration
1316                  */
1317                 if (urb->dev->speed == USB_SPEED_FULL) {
1318                         ret = xhci_check_maxpacket(xhci, slot_id,
1319                                         ep_index, urb);
1320                         if (ret < 0) {
1321                                 xhci_urb_free_priv(xhci, urb_priv);
1322                                 urb->hcpriv = NULL;
1323                                 return ret;
1324                         }
1325                 }
1326
1327                 /* We have a spinlock and interrupts disabled, so we must pass
1328                  * atomic context to this function, which may allocate memory.
1329                  */
1330                 spin_lock_irqsave(&xhci->lock, flags);
1331                 if (xhci->xhc_state & XHCI_STATE_DYING)
1332                         goto dying;
1333                 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1334                                 slot_id, ep_index);
1335                 if (ret)
1336                         goto free_priv;
1337                 spin_unlock_irqrestore(&xhci->lock, flags);
1338         } else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) {
1339                 spin_lock_irqsave(&xhci->lock, flags);
1340                 if (xhci->xhc_state & XHCI_STATE_DYING)
1341                         goto dying;
1342                 if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1343                                 EP_GETTING_STREAMS) {
1344                         xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1345                                         "is transitioning to using streams.\n");
1346                         ret = -EINVAL;
1347                 } else if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1348                                 EP_GETTING_NO_STREAMS) {
1349                         xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1350                                         "is transitioning to "
1351                                         "not having streams.\n");
1352                         ret = -EINVAL;
1353                 } else {
1354                         ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1355                                         slot_id, ep_index);
1356                 }
1357                 if (ret)
1358                         goto free_priv;
1359                 spin_unlock_irqrestore(&xhci->lock, flags);
1360         } else if (usb_endpoint_xfer_int(&urb->ep->desc)) {
1361                 spin_lock_irqsave(&xhci->lock, flags);
1362                 if (xhci->xhc_state & XHCI_STATE_DYING)
1363                         goto dying;
1364                 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1365                                 slot_id, ep_index);
1366                 if (ret)
1367                         goto free_priv;
1368                 spin_unlock_irqrestore(&xhci->lock, flags);
1369         } else {
1370                 spin_lock_irqsave(&xhci->lock, flags);
1371                 if (xhci->xhc_state & XHCI_STATE_DYING)
1372                         goto dying;
1373                 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1374                                 slot_id, ep_index);
1375                 if (ret)
1376                         goto free_priv;
1377                 spin_unlock_irqrestore(&xhci->lock, flags);
1378         }
1379 exit:
1380         return ret;
1381 dying:
1382         xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for "
1383                         "non-responsive xHCI host.\n",
1384                         urb->ep->desc.bEndpointAddress, urb);
1385         ret = -ESHUTDOWN;
1386 free_priv:
1387         xhci_urb_free_priv(xhci, urb_priv);
1388         urb->hcpriv = NULL;
1389         spin_unlock_irqrestore(&xhci->lock, flags);
1390         return ret;
1391 }
1392
1393 /* Get the right ring for the given URB.
1394  * If the endpoint supports streams, boundary check the URB's stream ID.
1395  * If the endpoint doesn't support streams, return the singular endpoint ring.
1396  */
1397 static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci,
1398                 struct urb *urb)
1399 {
1400         unsigned int slot_id;
1401         unsigned int ep_index;
1402         unsigned int stream_id;
1403         struct xhci_virt_ep *ep;
1404
1405         slot_id = urb->dev->slot_id;
1406         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1407         stream_id = urb->stream_id;
1408         ep = &xhci->devs[slot_id]->eps[ep_index];
1409         /* Common case: no streams */
1410         if (!(ep->ep_state & EP_HAS_STREAMS))
1411                 return ep->ring;
1412
1413         if (stream_id == 0) {
1414                 xhci_warn(xhci,
1415                                 "WARN: Slot ID %u, ep index %u has streams, "
1416                                 "but URB has no stream ID.\n",
1417                                 slot_id, ep_index);
1418                 return NULL;
1419         }
1420
1421         if (stream_id < ep->stream_info->num_streams)
1422                 return ep->stream_info->stream_rings[stream_id];
1423
1424         xhci_warn(xhci,
1425                         "WARN: Slot ID %u, ep index %u has "
1426                         "stream IDs 1 to %u allocated, "
1427                         "but stream ID %u is requested.\n",
1428                         slot_id, ep_index,
1429                         ep->stream_info->num_streams - 1,
1430                         stream_id);
1431         return NULL;
1432 }
1433
1434 /*
1435  * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1436  * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1437  * should pick up where it left off in the TD, unless a Set Transfer Ring
1438  * Dequeue Pointer is issued.
1439  *
1440  * The TRBs that make up the buffers for the canceled URB will be "removed" from
1441  * the ring.  Since the ring is a contiguous structure, they can't be physically
1442  * removed.  Instead, there are two options:
1443  *
1444  *  1) If the HC is in the middle of processing the URB to be canceled, we
1445  *     simply move the ring's dequeue pointer past those TRBs using the Set
1446  *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1447  *     when drivers timeout on the last submitted URB and attempt to cancel.
1448  *
1449  *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1450  *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1451  *     HC will need to invalidate the any TRBs it has cached after the stop
1452  *     endpoint command, as noted in the xHCI 0.95 errata.
1453  *
1454  *  3) The TD may have completed by the time the Stop Endpoint Command
1455  *     completes, so software needs to handle that case too.
1456  *
1457  * This function should protect against the TD enqueueing code ringing the
1458  * doorbell while this code is waiting for a Stop Endpoint command to complete.
1459  * It also needs to account for multiple cancellations on happening at the same
1460  * time for the same endpoint.
1461  *
1462  * Note that this function can be called in any context, or so says
1463  * usb_hcd_unlink_urb()
1464  */
1465 int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1466 {
1467         unsigned long flags;
1468         int ret, i;
1469         u32 temp;
1470         struct xhci_hcd *xhci;
1471         struct urb_priv *urb_priv;
1472         struct xhci_td *td;
1473         unsigned int ep_index;
1474         struct xhci_ring *ep_ring;
1475         struct xhci_virt_ep *ep;
1476
1477         xhci = hcd_to_xhci(hcd);
1478         spin_lock_irqsave(&xhci->lock, flags);
1479         /* Make sure the URB hasn't completed or been unlinked already */
1480         ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1481         if (ret || !urb->hcpriv)
1482                 goto done;
1483         temp = xhci_readl(xhci, &xhci->op_regs->status);
1484         if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_HALTED)) {
1485                 xhci_dbg(xhci, "HW died, freeing TD.\n");
1486                 urb_priv = urb->hcpriv;
1487                 for (i = urb_priv->td_cnt; i < urb_priv->length; i++) {
1488                         td = urb_priv->td[i];
1489                         if (!list_empty(&td->td_list))
1490                                 list_del_init(&td->td_list);
1491                         if (!list_empty(&td->cancelled_td_list))
1492                                 list_del_init(&td->cancelled_td_list);
1493                 }
1494
1495                 usb_hcd_unlink_urb_from_ep(hcd, urb);
1496                 spin_unlock_irqrestore(&xhci->lock, flags);
1497                 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1498                 xhci_urb_free_priv(xhci, urb_priv);
1499                 return ret;
1500         }
1501         if ((xhci->xhc_state & XHCI_STATE_DYING) ||
1502                         (xhci->xhc_state & XHCI_STATE_HALTED)) {
1503                 xhci_dbg(xhci, "Ep 0x%x: URB %p to be canceled on "
1504                                 "non-responsive xHCI host.\n",
1505                                 urb->ep->desc.bEndpointAddress, urb);
1506                 /* Let the stop endpoint command watchdog timer (which set this
1507                  * state) finish cleaning up the endpoint TD lists.  We must
1508                  * have caught it in the middle of dropping a lock and giving
1509                  * back an URB.
1510                  */
1511                 goto done;
1512         }
1513
1514         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1515         ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index];
1516         ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1517         if (!ep_ring) {
1518                 ret = -EINVAL;
1519                 goto done;
1520         }
1521
1522         urb_priv = urb->hcpriv;
1523         i = urb_priv->td_cnt;
1524         if (i < urb_priv->length)
1525                 xhci_dbg(xhci, "Cancel URB %p, dev %s, ep 0x%x, "
1526                                 "starting at offset 0x%llx\n",
1527                                 urb, urb->dev->devpath,
1528                                 urb->ep->desc.bEndpointAddress,
1529                                 (unsigned long long) xhci_trb_virt_to_dma(
1530                                         urb_priv->td[i]->start_seg,
1531                                         urb_priv->td[i]->first_trb));
1532
1533         for (; i < urb_priv->length; i++) {
1534                 td = urb_priv->td[i];
1535                 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1536         }
1537
1538         /* Queue a stop endpoint command, but only if this is
1539          * the first cancellation to be handled.
1540          */
1541         if (!(ep->ep_state & EP_HALT_PENDING)) {
1542                 ep->ep_state |= EP_HALT_PENDING;
1543                 ep->stop_cmds_pending++;
1544                 ep->stop_cmd_timer.expires = jiffies +
1545                         XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1546                 add_timer(&ep->stop_cmd_timer);
1547                 xhci_queue_stop_endpoint(xhci, urb->dev->slot_id, ep_index, 0);
1548                 xhci_ring_cmd_db(xhci);
1549         }
1550 done:
1551         spin_unlock_irqrestore(&xhci->lock, flags);
1552         return ret;
1553 }
1554
1555 /* Drop an endpoint from a new bandwidth configuration for this device.
1556  * Only one call to this function is allowed per endpoint before
1557  * check_bandwidth() or reset_bandwidth() must be called.
1558  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1559  * add the endpoint to the schedule with possibly new parameters denoted by a
1560  * different endpoint descriptor in usb_host_endpoint.
1561  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1562  * not allowed.
1563  *
1564  * The USB core will not allow URBs to be queued to an endpoint that is being
1565  * disabled, so there's no need for mutual exclusion to protect
1566  * the xhci->devs[slot_id] structure.
1567  */
1568 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1569                 struct usb_host_endpoint *ep)
1570 {
1571         struct xhci_hcd *xhci;
1572         struct xhci_container_ctx *in_ctx, *out_ctx;
1573         struct xhci_input_control_ctx *ctrl_ctx;
1574         struct xhci_slot_ctx *slot_ctx;
1575         unsigned int last_ctx;
1576         unsigned int ep_index;
1577         struct xhci_ep_ctx *ep_ctx;
1578         u32 drop_flag;
1579         u32 new_add_flags, new_drop_flags, new_slot_info;
1580         int ret;
1581
1582         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1583         if (ret <= 0)
1584                 return ret;
1585         xhci = hcd_to_xhci(hcd);
1586         if (xhci->xhc_state & XHCI_STATE_DYING)
1587                 return -ENODEV;
1588
1589         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1590         drop_flag = xhci_get_endpoint_flag(&ep->desc);
1591         if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1592                 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1593                                 __func__, drop_flag);
1594                 return 0;
1595         }
1596
1597         in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1598         out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1599         ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1600         ep_index = xhci_get_endpoint_index(&ep->desc);
1601         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1602         /* If the HC already knows the endpoint is disabled,
1603          * or the HCD has noted it is disabled, ignore this request
1604          */
1605         if (((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) ==
1606              cpu_to_le32(EP_STATE_DISABLED)) ||
1607             le32_to_cpu(ctrl_ctx->drop_flags) &
1608             xhci_get_endpoint_flag(&ep->desc)) {
1609                 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1610                                 __func__, ep);
1611                 return 0;
1612         }
1613
1614         ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1615         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1616
1617         ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1618         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1619
1620         last_ctx = xhci_last_valid_endpoint(le32_to_cpu(ctrl_ctx->add_flags));
1621         slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1622         /* Update the last valid endpoint context, if we deleted the last one */
1623         if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) >
1624             LAST_CTX(last_ctx)) {
1625                 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1626                 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx));
1627         }
1628         new_slot_info = le32_to_cpu(slot_ctx->dev_info);
1629
1630         xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1631
1632         xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1633                         (unsigned int) ep->desc.bEndpointAddress,
1634                         udev->slot_id,
1635                         (unsigned int) new_drop_flags,
1636                         (unsigned int) new_add_flags,
1637                         (unsigned int) new_slot_info);
1638         return 0;
1639 }
1640
1641 /* Add an endpoint to a new possible bandwidth configuration for this device.
1642  * Only one call to this function is allowed per endpoint before
1643  * check_bandwidth() or reset_bandwidth() must be called.
1644  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1645  * add the endpoint to the schedule with possibly new parameters denoted by a
1646  * different endpoint descriptor in usb_host_endpoint.
1647  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1648  * not allowed.
1649  *
1650  * The USB core will not allow URBs to be queued to an endpoint until the
1651  * configuration or alt setting is installed in the device, so there's no need
1652  * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1653  */
1654 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1655                 struct usb_host_endpoint *ep)
1656 {
1657         struct xhci_hcd *xhci;
1658         struct xhci_container_ctx *in_ctx, *out_ctx;
1659         unsigned int ep_index;
1660         struct xhci_slot_ctx *slot_ctx;
1661         struct xhci_input_control_ctx *ctrl_ctx;
1662         u32 added_ctxs;
1663         unsigned int last_ctx;
1664         u32 new_add_flags, new_drop_flags, new_slot_info;
1665         struct xhci_virt_device *virt_dev;
1666         int ret = 0;
1667
1668         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1669         if (ret <= 0) {
1670                 /* So we won't queue a reset ep command for a root hub */
1671                 ep->hcpriv = NULL;
1672                 return ret;
1673         }
1674         xhci = hcd_to_xhci(hcd);
1675         if (xhci->xhc_state & XHCI_STATE_DYING)
1676                 return -ENODEV;
1677
1678         added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1679         last_ctx = xhci_last_valid_endpoint(added_ctxs);
1680         if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1681                 /* FIXME when we have to issue an evaluate endpoint command to
1682                  * deal with ep0 max packet size changing once we get the
1683                  * descriptors
1684                  */
1685                 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1686                                 __func__, added_ctxs);
1687                 return 0;
1688         }
1689
1690         virt_dev = xhci->devs[udev->slot_id];
1691         in_ctx = virt_dev->in_ctx;
1692         out_ctx = virt_dev->out_ctx;
1693         ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1694         ep_index = xhci_get_endpoint_index(&ep->desc);
1695
1696         /* If this endpoint is already in use, and the upper layers are trying
1697          * to add it again without dropping it, reject the addition.
1698          */
1699         if (virt_dev->eps[ep_index].ring &&
1700                         !(le32_to_cpu(ctrl_ctx->drop_flags) &
1701                                 xhci_get_endpoint_flag(&ep->desc))) {
1702                 xhci_warn(xhci, "Trying to add endpoint 0x%x "
1703                                 "without dropping it.\n",
1704                                 (unsigned int) ep->desc.bEndpointAddress);
1705                 return -EINVAL;
1706         }
1707
1708         /* If the HCD has already noted the endpoint is enabled,
1709          * ignore this request.
1710          */
1711         if (le32_to_cpu(ctrl_ctx->add_flags) &
1712             xhci_get_endpoint_flag(&ep->desc)) {
1713                 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1714                                 __func__, ep);
1715                 return 0;
1716         }
1717
1718         /*
1719          * Configuration and alternate setting changes must be done in
1720          * process context, not interrupt context (or so documenation
1721          * for usb_set_interface() and usb_set_configuration() claim).
1722          */
1723         if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1724                 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1725                                 __func__, ep->desc.bEndpointAddress);
1726                 return -ENOMEM;
1727         }
1728
1729         ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1730         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1731
1732         /* If xhci_endpoint_disable() was called for this endpoint, but the
1733          * xHC hasn't been notified yet through the check_bandwidth() call,
1734          * this re-adds a new state for the endpoint from the new endpoint
1735          * descriptors.  We must drop and re-add this endpoint, so we leave the
1736          * drop flags alone.
1737          */
1738         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1739
1740         slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1741         /* Update the last valid endpoint context, if we just added one past */
1742         if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) <
1743             LAST_CTX(last_ctx)) {
1744                 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1745                 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx));
1746         }
1747         new_slot_info = le32_to_cpu(slot_ctx->dev_info);
1748
1749         /* Store the usb_device pointer for later use */
1750         ep->hcpriv = udev;
1751
1752         xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1753                         (unsigned int) ep->desc.bEndpointAddress,
1754                         udev->slot_id,
1755                         (unsigned int) new_drop_flags,
1756                         (unsigned int) new_add_flags,
1757                         (unsigned int) new_slot_info);
1758         return 0;
1759 }
1760
1761 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1762 {
1763         struct xhci_input_control_ctx *ctrl_ctx;
1764         struct xhci_ep_ctx *ep_ctx;
1765         struct xhci_slot_ctx *slot_ctx;
1766         int i;
1767
1768         /* When a device's add flag and drop flag are zero, any subsequent
1769          * configure endpoint command will leave that endpoint's state
1770          * untouched.  Make sure we don't leave any old state in the input
1771          * endpoint contexts.
1772          */
1773         ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
1774         ctrl_ctx->drop_flags = 0;
1775         ctrl_ctx->add_flags = 0;
1776         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1777         slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1778         /* Endpoint 0 is always valid */
1779         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1780         for (i = 1; i < 31; ++i) {
1781                 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1782                 ep_ctx->ep_info = 0;
1783                 ep_ctx->ep_info2 = 0;
1784                 ep_ctx->deq = 0;
1785                 ep_ctx->tx_info = 0;
1786         }
1787 }
1788
1789 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1790                 struct usb_device *udev, u32 *cmd_status)
1791 {
1792         int ret;
1793
1794         switch (*cmd_status) {
1795         case COMP_ENOMEM:
1796                 dev_warn(&udev->dev, "Not enough host controller resources "
1797                                 "for new device state.\n");
1798                 ret = -ENOMEM;
1799                 /* FIXME: can we allocate more resources for the HC? */
1800                 break;
1801         case COMP_BW_ERR:
1802         case COMP_2ND_BW_ERR:
1803                 dev_warn(&udev->dev, "Not enough bandwidth "
1804                                 "for new device state.\n");
1805                 ret = -ENOSPC;
1806                 /* FIXME: can we go back to the old state? */
1807                 break;
1808         case COMP_TRB_ERR:
1809                 /* the HCD set up something wrong */
1810                 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1811                                 "add flag = 1, "
1812                                 "and endpoint is not disabled.\n");
1813                 ret = -EINVAL;
1814                 break;
1815         case COMP_DEV_ERR:
1816                 dev_warn(&udev->dev, "ERROR: Incompatible device for endpoint "
1817                                 "configure command.\n");
1818                 ret = -ENODEV;
1819                 break;
1820         case COMP_SUCCESS:
1821                 dev_dbg(&udev->dev, "Successful Endpoint Configure command\n");
1822                 ret = 0;
1823                 break;
1824         default:
1825                 xhci_err(xhci, "ERROR: unexpected command completion "
1826                                 "code 0x%x.\n", *cmd_status);
1827                 ret = -EINVAL;
1828                 break;
1829         }
1830         return ret;
1831 }
1832
1833 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1834                 struct usb_device *udev, u32 *cmd_status)
1835 {
1836         int ret;
1837         struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id];
1838
1839         switch (*cmd_status) {
1840         case COMP_EINVAL:
1841                 dev_warn(&udev->dev, "WARN: xHCI driver setup invalid evaluate "
1842                                 "context command.\n");
1843                 ret = -EINVAL;
1844                 break;
1845         case COMP_EBADSLT:
1846                 dev_warn(&udev->dev, "WARN: slot not enabled for"
1847                                 "evaluate context command.\n");
1848                 ret = -EINVAL;
1849                 break;
1850         case COMP_CTX_STATE:
1851                 dev_warn(&udev->dev, "WARN: invalid context state for "
1852                                 "evaluate context command.\n");
1853                 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1);
1854                 ret = -EINVAL;
1855                 break;
1856         case COMP_DEV_ERR:
1857                 dev_warn(&udev->dev, "ERROR: Incompatible device for evaluate "
1858                                 "context command.\n");
1859                 ret = -ENODEV;
1860                 break;
1861         case COMP_MEL_ERR:
1862                 /* Max Exit Latency too large error */
1863                 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
1864                 ret = -EINVAL;
1865                 break;
1866         case COMP_SUCCESS:
1867                 dev_dbg(&udev->dev, "Successful evaluate context command\n");
1868                 ret = 0;
1869                 break;
1870         default:
1871                 xhci_err(xhci, "ERROR: unexpected command completion "
1872                                 "code 0x%x.\n", *cmd_status);
1873                 ret = -EINVAL;
1874                 break;
1875         }
1876         return ret;
1877 }
1878
1879 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
1880                 struct xhci_container_ctx *in_ctx)
1881 {
1882         struct xhci_input_control_ctx *ctrl_ctx;
1883         u32 valid_add_flags;
1884         u32 valid_drop_flags;
1885
1886         ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1887         /* Ignore the slot flag (bit 0), and the default control endpoint flag
1888          * (bit 1).  The default control endpoint is added during the Address
1889          * Device command and is never removed until the slot is disabled.
1890          */
1891         valid_add_flags = ctrl_ctx->add_flags >> 2;
1892         valid_drop_flags = ctrl_ctx->drop_flags >> 2;
1893
1894         /* Use hweight32 to count the number of ones in the add flags, or
1895          * number of endpoints added.  Don't count endpoints that are changed
1896          * (both added and dropped).
1897          */
1898         return hweight32(valid_add_flags) -
1899                 hweight32(valid_add_flags & valid_drop_flags);
1900 }
1901
1902 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
1903                 struct xhci_container_ctx *in_ctx)
1904 {
1905         struct xhci_input_control_ctx *ctrl_ctx;
1906         u32 valid_add_flags;
1907         u32 valid_drop_flags;
1908
1909         ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1910         valid_add_flags = ctrl_ctx->add_flags >> 2;
1911         valid_drop_flags = ctrl_ctx->drop_flags >> 2;
1912
1913         return hweight32(valid_drop_flags) -
1914                 hweight32(valid_add_flags & valid_drop_flags);
1915 }
1916
1917 /*
1918  * We need to reserve the new number of endpoints before the configure endpoint
1919  * command completes.  We can't subtract the dropped endpoints from the number
1920  * of active endpoints until the command completes because we can oversubscribe
1921  * the host in this case:
1922  *
1923  *  - the first configure endpoint command drops more endpoints than it adds
1924  *  - a second configure endpoint command that adds more endpoints is queued
1925  *  - the first configure endpoint command fails, so the config is unchanged
1926  *  - the second command may succeed, even though there isn't enough resources
1927  *
1928  * Must be called with xhci->lock held.
1929  */
1930 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
1931                 struct xhci_container_ctx *in_ctx)
1932 {
1933         u32 added_eps;
1934
1935         added_eps = xhci_count_num_new_endpoints(xhci, in_ctx);
1936         if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
1937                 xhci_dbg(xhci, "Not enough ep ctxs: "
1938                                 "%u active, need to add %u, limit is %u.\n",
1939                                 xhci->num_active_eps, added_eps,
1940                                 xhci->limit_active_eps);
1941                 return -ENOMEM;
1942         }
1943         xhci->num_active_eps += added_eps;
1944         xhci_dbg(xhci, "Adding %u ep ctxs, %u now active.\n", added_eps,
1945                         xhci->num_active_eps);
1946         return 0;
1947 }
1948
1949 /*
1950  * The configure endpoint was failed by the xHC for some other reason, so we
1951  * need to revert the resources that failed configuration would have used.
1952  *
1953  * Must be called with xhci->lock held.
1954  */
1955 static void xhci_free_host_resources(struct xhci_hcd *xhci,
1956                 struct xhci_container_ctx *in_ctx)
1957 {
1958         u32 num_failed_eps;
1959
1960         num_failed_eps = xhci_count_num_new_endpoints(xhci, in_ctx);
1961         xhci->num_active_eps -= num_failed_eps;
1962         xhci_dbg(xhci, "Removing %u failed ep ctxs, %u now active.\n",
1963                         num_failed_eps,
1964                         xhci->num_active_eps);
1965 }
1966
1967 /*
1968  * Now that the command has completed, clean up the active endpoint count by
1969  * subtracting out the endpoints that were dropped (but not changed).
1970  *
1971  * Must be called with xhci->lock held.
1972  */
1973 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
1974                 struct xhci_container_ctx *in_ctx)
1975 {
1976         u32 num_dropped_eps;
1977
1978         num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, in_ctx);
1979         xhci->num_active_eps -= num_dropped_eps;
1980         if (num_dropped_eps)
1981                 xhci_dbg(xhci, "Removing %u dropped ep ctxs, %u now active.\n",
1982                                 num_dropped_eps,
1983                                 xhci->num_active_eps);
1984 }
1985
1986 static unsigned int xhci_get_block_size(struct usb_device *udev)
1987 {
1988         switch (udev->speed) {
1989         case USB_SPEED_LOW:
1990         case USB_SPEED_FULL:
1991                 return FS_BLOCK;
1992         case USB_SPEED_HIGH:
1993                 return HS_BLOCK;
1994         case USB_SPEED_SUPER:
1995                 return SS_BLOCK;
1996         case USB_SPEED_UNKNOWN:
1997         case USB_SPEED_WIRELESS:
1998         default:
1999                 /* Should never happen */
2000                 return 1;
2001         }
2002 }
2003
2004 static unsigned int
2005 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2006 {
2007         if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2008                 return LS_OVERHEAD;
2009         if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2010                 return FS_OVERHEAD;
2011         return HS_OVERHEAD;
2012 }
2013
2014 /* If we are changing a LS/FS device under a HS hub,
2015  * make sure (if we are activating a new TT) that the HS bus has enough
2016  * bandwidth for this new TT.
2017  */
2018 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2019                 struct xhci_virt_device *virt_dev,
2020                 int old_active_eps)
2021 {
2022         struct xhci_interval_bw_table *bw_table;
2023         struct xhci_tt_bw_info *tt_info;
2024
2025         /* Find the bandwidth table for the root port this TT is attached to. */
2026         bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2027         tt_info = virt_dev->tt_info;
2028         /* If this TT already had active endpoints, the bandwidth for this TT
2029          * has already been added.  Removing all periodic endpoints (and thus
2030          * making the TT enactive) will only decrease the bandwidth used.
2031          */
2032         if (old_active_eps)
2033                 return 0;
2034         if (old_active_eps == 0 && tt_info->active_eps != 0) {
2035                 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2036                         return -ENOMEM;
2037                 return 0;
2038         }
2039         /* Not sure why we would have no new active endpoints...
2040          *
2041          * Maybe because of an Evaluate Context change for a hub update or a
2042          * control endpoint 0 max packet size change?
2043          * FIXME: skip the bandwidth calculation in that case.
2044          */
2045         return 0;
2046 }
2047
2048 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2049                 struct xhci_virt_device *virt_dev)
2050 {
2051         unsigned int bw_reserved;
2052
2053         bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2054         if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2055                 return -ENOMEM;
2056
2057         bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2058         if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2059                 return -ENOMEM;
2060
2061         return 0;
2062 }
2063
2064 /*
2065  * This algorithm is a very conservative estimate of the worst-case scheduling
2066  * scenario for any one interval.  The hardware dynamically schedules the
2067  * packets, so we can't tell which microframe could be the limiting factor in
2068  * the bandwidth scheduling.  This only takes into account periodic endpoints.
2069  *
2070  * Obviously, we can't solve an NP complete problem to find the minimum worst
2071  * case scenario.  Instead, we come up with an estimate that is no less than
2072  * the worst case bandwidth used for any one microframe, but may be an
2073  * over-estimate.
2074  *
2075  * We walk the requirements for each endpoint by interval, starting with the
2076  * smallest interval, and place packets in the schedule where there is only one
2077  * possible way to schedule packets for that interval.  In order to simplify
2078  * this algorithm, we record the largest max packet size for each interval, and
2079  * assume all packets will be that size.
2080  *
2081  * For interval 0, we obviously must schedule all packets for each interval.
2082  * The bandwidth for interval 0 is just the amount of data to be transmitted
2083  * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2084  * the number of packets).
2085  *
2086  * For interval 1, we have two possible microframes to schedule those packets
2087  * in.  For this algorithm, if we can schedule the same number of packets for
2088  * each possible scheduling opportunity (each microframe), we will do so.  The
2089  * remaining number of packets will be saved to be transmitted in the gaps in
2090  * the next interval's scheduling sequence.
2091  *
2092  * As we move those remaining packets to be scheduled with interval 2 packets,
2093  * we have to double the number of remaining packets to transmit.  This is
2094  * because the intervals are actually powers of 2, and we would be transmitting
2095  * the previous interval's packets twice in this interval.  We also have to be
2096  * sure that when we look at the largest max packet size for this interval, we
2097  * also look at the largest max packet size for the remaining packets and take
2098  * the greater of the two.
2099  *
2100  * The algorithm continues to evenly distribute packets in each scheduling
2101  * opportunity, and push the remaining packets out, until we get to the last
2102  * interval.  Then those packets and their associated overhead are just added
2103  * to the bandwidth used.
2104  */
2105 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2106                 struct xhci_virt_device *virt_dev,
2107                 int old_active_eps)
2108 {
2109         unsigned int bw_reserved;
2110         unsigned int max_bandwidth;
2111         unsigned int bw_used;
2112         unsigned int block_size;
2113         struct xhci_interval_bw_table *bw_table;
2114         unsigned int packet_size = 0;
2115         unsigned int overhead = 0;
2116         unsigned int packets_transmitted = 0;
2117         unsigned int packets_remaining = 0;
2118         unsigned int i;
2119
2120         if (virt_dev->udev->speed == USB_SPEED_SUPER)
2121                 return xhci_check_ss_bw(xhci, virt_dev);
2122
2123         if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2124                 max_bandwidth = HS_BW_LIMIT;
2125                 /* Convert percent of bus BW reserved to blocks reserved */
2126                 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2127         } else {
2128                 max_bandwidth = FS_BW_LIMIT;
2129                 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2130         }
2131
2132         bw_table = virt_dev->bw_table;
2133         /* We need to translate the max packet size and max ESIT payloads into
2134          * the units the hardware uses.
2135          */
2136         block_size = xhci_get_block_size(virt_dev->udev);
2137
2138         /* If we are manipulating a LS/FS device under a HS hub, double check
2139          * that the HS bus has enough bandwidth if we are activing a new TT.
2140          */
2141         if (virt_dev->tt_info) {
2142                 xhci_dbg(xhci, "Recalculating BW for rootport %u\n",
2143                                 virt_dev->real_port);
2144                 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2145                         xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2146                                         "newly activated TT.\n");
2147                         return -ENOMEM;
2148                 }
2149                 xhci_dbg(xhci, "Recalculating BW for TT slot %u port %u\n",
2150                                 virt_dev->tt_info->slot_id,
2151                                 virt_dev->tt_info->ttport);
2152         } else {
2153                 xhci_dbg(xhci, "Recalculating BW for rootport %u\n",
2154                                 virt_dev->real_port);
2155         }
2156
2157         /* Add in how much bandwidth will be used for interval zero, or the
2158          * rounded max ESIT payload + number of packets * largest overhead.
2159          */
2160         bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2161                 bw_table->interval_bw[0].num_packets *
2162                 xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2163
2164         for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2165                 unsigned int bw_added;
2166                 unsigned int largest_mps;
2167                 unsigned int interval_overhead;
2168
2169                 /*
2170                  * How many packets could we transmit in this interval?
2171                  * If packets didn't fit in the previous interval, we will need
2172                  * to transmit that many packets twice within this interval.
2173                  */
2174                 packets_remaining = 2 * packets_remaining +
2175                         bw_table->interval_bw[i].num_packets;
2176
2177                 /* Find the largest max packet size of this or the previous
2178                  * interval.
2179                  */
2180                 if (list_empty(&bw_table->interval_bw[i].endpoints))
2181                         largest_mps = 0;
2182                 else {
2183                         struct xhci_virt_ep *virt_ep;
2184                         struct list_head *ep_entry;
2185
2186                         ep_entry = bw_table->interval_bw[i].endpoints.next;
2187                         virt_ep = list_entry(ep_entry,
2188                                         struct xhci_virt_ep, bw_endpoint_list);
2189                         /* Convert to blocks, rounding up */
2190                         largest_mps = DIV_ROUND_UP(
2191                                         virt_ep->bw_info.max_packet_size,
2192                                         block_size);
2193                 }
2194                 if (largest_mps > packet_size)
2195                         packet_size = largest_mps;
2196
2197                 /* Use the larger overhead of this or the previous interval. */
2198                 interval_overhead = xhci_get_largest_overhead(
2199                                 &bw_table->interval_bw[i]);
2200                 if (interval_overhead > overhead)
2201                         overhead = interval_overhead;
2202
2203                 /* How many packets can we evenly distribute across
2204                  * (1 << (i + 1)) possible scheduling opportunities?
2205                  */
2206                 packets_transmitted = packets_remaining >> (i + 1);
2207
2208                 /* Add in the bandwidth used for those scheduled packets */
2209                 bw_added = packets_transmitted * (overhead + packet_size);
2210
2211                 /* How many packets do we have remaining to transmit? */
2212                 packets_remaining = packets_remaining % (1 << (i + 1));
2213
2214                 /* What largest max packet size should those packets have? */
2215                 /* If we've transmitted all packets, don't carry over the
2216                  * largest packet size.
2217                  */
2218                 if (packets_remaining == 0) {
2219                         packet_size = 0;
2220                         overhead = 0;
2221                 } else if (packets_transmitted > 0) {
2222                         /* Otherwise if we do have remaining packets, and we've
2223                          * scheduled some packets in this interval, take the
2224                          * largest max packet size from endpoints with this
2225                          * interval.
2226                          */
2227                         packet_size = largest_mps;
2228                         overhead = interval_overhead;
2229                 }
2230                 /* Otherwise carry over packet_size and overhead from the last
2231                  * time we had a remainder.
2232                  */
2233                 bw_used += bw_added;
2234                 if (bw_used > max_bandwidth) {
2235                         xhci_warn(xhci, "Not enough bandwidth. "
2236                                         "Proposed: %u, Max: %u\n",
2237                                 bw_used, max_bandwidth);
2238                         return -ENOMEM;
2239                 }
2240         }
2241         /*
2242          * Ok, we know we have some packets left over after even-handedly
2243          * scheduling interval 15.  We don't know which microframes they will
2244          * fit into, so we over-schedule and say they will be scheduled every
2245          * microframe.
2246          */
2247         if (packets_remaining > 0)
2248                 bw_used += overhead + packet_size;
2249
2250         if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2251                 unsigned int port_index = virt_dev->real_port - 1;
2252
2253                 /* OK, we're manipulating a HS device attached to a
2254                  * root port bandwidth domain.  Include the number of active TTs
2255                  * in the bandwidth used.
2256                  */
2257                 bw_used += TT_HS_OVERHEAD *
2258                         xhci->rh_bw[port_index].num_active_tts;
2259         }
2260
2261         xhci_dbg(xhci, "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2262                 "Available: %u " "percent\n",
2263                 bw_used, max_bandwidth, bw_reserved,
2264                 (max_bandwidth - bw_used - bw_reserved) * 100 /
2265                 max_bandwidth);
2266
2267         bw_used += bw_reserved;
2268         if (bw_used > max_bandwidth) {
2269                 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2270                                 bw_used, max_bandwidth);
2271                 return -ENOMEM;
2272         }
2273
2274         bw_table->bw_used = bw_used;
2275         return 0;
2276 }
2277
2278 static bool xhci_is_async_ep(unsigned int ep_type)
2279 {
2280         return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2281                                         ep_type != ISOC_IN_EP &&
2282                                         ep_type != INT_IN_EP);
2283 }
2284
2285 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2286 {
2287         return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2288 }
2289
2290 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2291 {
2292         unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2293
2294         if (ep_bw->ep_interval == 0)
2295                 return SS_OVERHEAD_BURST +
2296                         (ep_bw->mult * ep_bw->num_packets *
2297                                         (SS_OVERHEAD + mps));
2298         return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2299                                 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2300                                 1 << ep_bw->ep_interval);
2301
2302 }
2303
2304 void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2305                 struct xhci_bw_info *ep_bw,
2306                 struct xhci_interval_bw_table *bw_table,
2307                 struct usb_device *udev,
2308                 struct xhci_virt_ep *virt_ep,
2309                 struct xhci_tt_bw_info *tt_info)
2310 {
2311         struct xhci_interval_bw *interval_bw;
2312         int normalized_interval;
2313
2314         if (xhci_is_async_ep(ep_bw->type))
2315                 return;
2316
2317         if (udev->speed == USB_SPEED_SUPER) {
2318                 if (xhci_is_sync_in_ep(ep_bw->type))
2319                         xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2320                                 xhci_get_ss_bw_consumed(ep_bw);
2321                 else
2322                         xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2323                                 xhci_get_ss_bw_consumed(ep_bw);
2324                 return;
2325         }
2326
2327         /* SuperSpeed endpoints never get added to intervals in the table, so
2328          * this check is only valid for HS/FS/LS devices.
2329          */
2330         if (list_empty(&virt_ep->bw_endpoint_list))
2331                 return;
2332         /* For LS/FS devices, we need to translate the interval expressed in
2333          * microframes to frames.
2334          */
2335         if (udev->speed == USB_SPEED_HIGH)
2336                 normalized_interval = ep_bw->ep_interval;
2337         else
2338                 normalized_interval = ep_bw->ep_interval - 3;
2339
2340         if (normalized_interval == 0)
2341                 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2342         interval_bw = &bw_table->interval_bw[normalized_interval];
2343         interval_bw->num_packets -= ep_bw->num_packets;
2344         switch (udev->speed) {
2345         case USB_SPEED_LOW:
2346                 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2347                 break;
2348         case USB_SPEED_FULL:
2349                 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2350                 break;
2351         case USB_SPEED_HIGH:
2352                 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2353                 break;
2354         case USB_SPEED_SUPER:
2355         case USB_SPEED_UNKNOWN:
2356         case USB_SPEED_WIRELESS:
2357                 /* Should never happen because only LS/FS/HS endpoints will get
2358                  * added to the endpoint list.
2359                  */
2360                 return;
2361         }
2362         if (tt_info)
2363                 tt_info->active_eps -= 1;
2364         list_del_init(&virt_ep->bw_endpoint_list);
2365 }
2366
2367 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2368                 struct xhci_bw_info *ep_bw,
2369                 struct xhci_interval_bw_table *bw_table,
2370                 struct usb_device *udev,
2371                 struct xhci_virt_ep *virt_ep,
2372                 struct xhci_tt_bw_info *tt_info)
2373 {
2374         struct xhci_interval_bw *interval_bw;
2375         struct xhci_virt_ep *smaller_ep;
2376         int normalized_interval;
2377
2378         if (xhci_is_async_ep(ep_bw->type))
2379                 return;
2380
2381         if (udev->speed == USB_SPEED_SUPER) {
2382                 if (xhci_is_sync_in_ep(ep_bw->type))
2383                         xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2384                                 xhci_get_ss_bw_consumed(ep_bw);
2385                 else
2386                         xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2387                                 xhci_get_ss_bw_consumed(ep_bw);
2388                 return;
2389         }
2390
2391         /* For LS/FS devices, we need to translate the interval expressed in
2392          * microframes to frames.
2393          */
2394         if (udev->speed == USB_SPEED_HIGH)
2395                 normalized_interval = ep_bw->ep_interval;
2396         else
2397                 normalized_interval = ep_bw->ep_interval - 3;
2398
2399         if (normalized_interval == 0)
2400                 bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2401         interval_bw = &bw_table->interval_bw[normalized_interval];
2402         interval_bw->num_packets += ep_bw->num_packets;
2403         switch (udev->speed) {
2404         case USB_SPEED_LOW:
2405                 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2406                 break;
2407         case USB_SPEED_FULL:
2408                 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2409                 break;
2410         case USB_SPEED_HIGH:
2411                 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2412                 break;
2413         case USB_SPEED_SUPER:
2414         case USB_SPEED_UNKNOWN:
2415         case USB_SPEED_WIRELESS:
2416                 /* Should never happen because only LS/FS/HS endpoints will get
2417                  * added to the endpoint list.
2418                  */
2419                 return;
2420         }
2421
2422         if (tt_info)
2423                 tt_info->active_eps += 1;
2424         /* Insert the endpoint into the list, largest max packet size first. */
2425         list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2426                         bw_endpoint_list) {
2427                 if (ep_bw->max_packet_size >=
2428                                 smaller_ep->bw_info.max_packet_size) {
2429                         /* Add the new ep before the smaller endpoint */
2430                         list_add_tail(&virt_ep->bw_endpoint_list,
2431                                         &smaller_ep->bw_endpoint_list);
2432                         return;
2433                 }
2434         }
2435         /* Add the new endpoint at the end of the list. */
2436         list_add_tail(&virt_ep->bw_endpoint_list,
2437                         &interval_bw->endpoints);
2438 }
2439
2440 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2441                 struct xhci_virt_device *virt_dev,
2442                 int old_active_eps)
2443 {
2444         struct xhci_root_port_bw_info *rh_bw_info;
2445         if (!virt_dev->tt_info)
2446                 return;
2447
2448         rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2449         if (old_active_eps == 0 &&
2450                                 virt_dev->tt_info->active_eps != 0) {
2451                 rh_bw_info->num_active_tts += 1;
2452                 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2453         } else if (old_active_eps != 0 &&
2454                                 virt_dev->tt_info->active_eps == 0) {
2455                 rh_bw_info->num_active_tts -= 1;
2456                 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2457         }
2458 }
2459
2460 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2461                 struct xhci_virt_device *virt_dev,
2462                 struct xhci_container_ctx *in_ctx)
2463 {
2464         struct xhci_bw_info ep_bw_info[31];
2465         int i;
2466         struct xhci_input_control_ctx *ctrl_ctx;
2467         int old_active_eps = 0;
2468
2469         if (virt_dev->tt_info)
2470                 old_active_eps = virt_dev->tt_info->active_eps;
2471
2472         ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
2473
2474         for (i = 0; i < 31; i++) {
2475                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2476                         continue;
2477
2478                 /* Make a copy of the BW info in case we need to revert this */
2479                 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2480                                 sizeof(ep_bw_info[i]));
2481                 /* Drop the endpoint from the interval table if the endpoint is
2482                  * being dropped or changed.
2483                  */
2484                 if (EP_IS_DROPPED(ctrl_ctx, i))
2485                         xhci_drop_ep_from_interval_table(xhci,
2486                                         &virt_dev->eps[i].bw_info,
2487                                         virt_dev->bw_table,
2488                                         virt_dev->udev,
2489                                         &virt_dev->eps[i],
2490                                         virt_dev->tt_info);
2491         }
2492         /* Overwrite the information stored in the endpoints' bw_info */
2493         xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2494         for (i = 0; i < 31; i++) {
2495                 /* Add any changed or added endpoints to the interval table */
2496                 if (EP_IS_ADDED(ctrl_ctx, i))
2497                         xhci_add_ep_to_interval_table(xhci,
2498                                         &virt_dev->eps[i].bw_info,
2499                                         virt_dev->bw_table,
2500                                         virt_dev->udev,
2501                                         &virt_dev->eps[i],
2502                                         virt_dev->tt_info);
2503         }
2504
2505         if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2506                 /* Ok, this fits in the bandwidth we have.
2507                  * Update the number of active TTs.
2508                  */
2509                 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2510                 return 0;
2511         }
2512
2513         /* We don't have enough bandwidth for this, revert the stored info. */
2514         for (i = 0; i < 31; i++) {
2515                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2516                         continue;
2517
2518                 /* Drop the new copies of any added or changed endpoints from
2519                  * the interval table.
2520                  */
2521                 if (EP_IS_ADDED(ctrl_ctx, i)) {
2522                         xhci_drop_ep_from_interval_table(xhci,
2523                                         &virt_dev->eps[i].bw_info,
2524                                         virt_dev->bw_table,
2525                                         virt_dev->udev,
2526                                         &virt_dev->eps[i],
2527                                         virt_dev->tt_info);
2528                 }
2529                 /* Revert the endpoint back to its old information */
2530                 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2531                                 sizeof(ep_bw_info[i]));
2532                 /* Add any changed or dropped endpoints back into the table */
2533                 if (EP_IS_DROPPED(ctrl_ctx, i))
2534                         xhci_add_ep_to_interval_table(xhci,
2535                                         &virt_dev->eps[i].bw_info,
2536                                         virt_dev->bw_table,
2537                                         virt_dev->udev,
2538                                         &virt_dev->eps[i],
2539                                         virt_dev->tt_info);
2540         }
2541         return -ENOMEM;
2542 }
2543
2544
2545 /* Issue a configure endpoint command or evaluate context command
2546  * and wait for it to finish.
2547  */
2548 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2549                 struct usb_device *udev,
2550                 struct xhci_command *command,
2551                 bool ctx_change, bool must_succeed)
2552 {
2553         int ret;
2554         int timeleft;
2555         unsigned long flags;
2556         struct xhci_container_ctx *in_ctx;
2557         struct completion *cmd_completion;
2558         u32 *cmd_status;
2559         struct xhci_virt_device *virt_dev;
2560         union xhci_trb *cmd_trb;
2561
2562         spin_lock_irqsave(&xhci->lock, flags);
2563         virt_dev = xhci->devs[udev->slot_id];
2564
2565         if (command)
2566                 in_ctx = command->in_ctx;
2567         else
2568                 in_ctx = virt_dev->in_ctx;
2569
2570         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2571                         xhci_reserve_host_resources(xhci, in_ctx)) {
2572                 spin_unlock_irqrestore(&xhci->lock, flags);
2573                 xhci_warn(xhci, "Not enough host resources, "
2574                                 "active endpoint contexts = %u\n",
2575                                 xhci->num_active_eps);
2576                 return -ENOMEM;
2577         }
2578         if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2579                         xhci_reserve_bandwidth(xhci, virt_dev, in_ctx)) {
2580                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2581                         xhci_free_host_resources(xhci, in_ctx);
2582                 spin_unlock_irqrestore(&xhci->lock, flags);
2583                 xhci_warn(xhci, "Not enough bandwidth\n");
2584                 return -ENOMEM;
2585         }
2586
2587         if (command) {
2588                 cmd_completion = command->completion;
2589                 cmd_status = &command->status;
2590                 command->command_trb = xhci->cmd_ring->enqueue;
2591
2592                 /* Enqueue pointer can be left pointing to the link TRB,
2593                  * we must handle that
2594                  */
2595                 if (TRB_TYPE_LINK_LE32(command->command_trb->link.control))
2596                         command->command_trb =
2597                                 xhci->cmd_ring->enq_seg->next->trbs;
2598
2599                 list_add_tail(&command->cmd_list, &virt_dev->cmd_list);
2600         } else {
2601                 cmd_completion = &virt_dev->cmd_completion;
2602                 cmd_status = &virt_dev->cmd_status;
2603         }
2604         init_completion(cmd_completion);
2605
2606         cmd_trb = xhci->cmd_ring->dequeue;
2607         if (!ctx_change)
2608                 ret = xhci_queue_configure_endpoint(xhci, in_ctx->dma,
2609                                 udev->slot_id, must_succeed);
2610         else
2611                 ret = xhci_queue_evaluate_context(xhci, in_ctx->dma,
2612                                 udev->slot_id, must_succeed);
2613         if (ret < 0) {
2614                 if (command)
2615                         list_del(&command->cmd_list);
2616                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2617                         xhci_free_host_resources(xhci, in_ctx);
2618                 spin_unlock_irqrestore(&xhci->lock, flags);
2619                 xhci_dbg(xhci, "FIXME allocate a new ring segment\n");
2620                 return -ENOMEM;
2621         }
2622         xhci_ring_cmd_db(xhci);
2623         spin_unlock_irqrestore(&xhci->lock, flags);
2624
2625         /* Wait for the configure endpoint command to complete */
2626         timeleft = wait_for_completion_interruptible_timeout(
2627                         cmd_completion,
2628                         XHCI_CMD_DEFAULT_TIMEOUT);
2629         if (timeleft <= 0) {
2630                 xhci_warn(xhci, "%s while waiting for %s command\n",
2631                                 timeleft == 0 ? "Timeout" : "Signal",
2632                                 ctx_change == 0 ?
2633                                         "configure endpoint" :
2634                                         "evaluate context");
2635                 /* cancel the configure endpoint command */
2636                 ret = xhci_cancel_cmd(xhci, command, cmd_trb);
2637                 if (ret < 0)
2638                         return ret;
2639                 return -ETIME;
2640         }
2641
2642         if (!ctx_change)
2643                 ret = xhci_configure_endpoint_result(xhci, udev, cmd_status);
2644         else
2645                 ret = xhci_evaluate_context_result(xhci, udev, cmd_status);
2646
2647         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2648                 spin_lock_irqsave(&xhci->lock, flags);
2649                 /* If the command failed, remove the reserved resources.
2650                  * Otherwise, clean up the estimate to include dropped eps.
2651                  */
2652                 if (ret)
2653                         xhci_free_host_resources(xhci, in_ctx);
2654                 else
2655                         xhci_finish_resource_reservation(xhci, in_ctx);
2656                 spin_unlock_irqrestore(&xhci->lock, flags);
2657         }
2658         return ret;
2659 }
2660
2661 /* Called after one or more calls to xhci_add_endpoint() or
2662  * xhci_drop_endpoint().  If this call fails, the USB core is expected
2663  * to call xhci_reset_bandwidth().
2664  *
2665  * Since we are in the middle of changing either configuration or
2666  * installing a new alt setting, the USB core won't allow URBs to be
2667  * enqueued for any endpoint on the old config or interface.  Nothing
2668  * else should be touching the xhci->devs[slot_id] structure, so we
2669  * don't need to take the xhci->lock for manipulating that.
2670  */
2671 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2672 {
2673         int i;
2674         int ret = 0;
2675         struct xhci_hcd *xhci;
2676         struct xhci_virt_device *virt_dev;
2677         struct xhci_input_control_ctx *ctrl_ctx;
2678         struct xhci_slot_ctx *slot_ctx;
2679
2680         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2681         if (ret <= 0)
2682                 return ret;
2683         xhci = hcd_to_xhci(hcd);
2684         if (xhci->xhc_state & XHCI_STATE_DYING)
2685                 return -ENODEV;
2686
2687         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2688         virt_dev = xhci->devs[udev->slot_id];
2689
2690         /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2691         ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
2692         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2693         ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2694         ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2695
2696         /* Don't issue the command if there's no endpoints to update. */
2697         if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2698                         ctrl_ctx->drop_flags == 0)
2699                 return 0;
2700
2701         xhci_dbg(xhci, "New Input Control Context:\n");
2702         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2703         xhci_dbg_ctx(xhci, virt_dev->in_ctx,
2704                      LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2705
2706         ret = xhci_configure_endpoint(xhci, udev, NULL,
2707                         false, false);
2708         if (ret) {
2709                 /* Callee should call reset_bandwidth() */
2710                 return ret;
2711         }
2712
2713         xhci_dbg(xhci, "Output context after successful config ep cmd:\n");
2714         xhci_dbg_ctx(xhci, virt_dev->out_ctx,
2715                      LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2716
2717         /* Free any rings that were dropped, but not changed. */
2718         for (i = 1; i < 31; ++i) {
2719                 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2720                     !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1))))
2721                         xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2722         }
2723         xhci_zero_in_ctx(xhci, virt_dev);
2724         /*
2725          * Install any rings for completely new endpoints or changed endpoints,
2726          * and free or cache any old rings from changed endpoints.
2727          */
2728         for (i = 1; i < 31; ++i) {
2729                 if (!virt_dev->eps[i].new_ring)
2730                         continue;
2731                 /* Only cache or free the old ring if it exists.
2732                  * It may not if this is the first add of an endpoint.
2733                  */
2734                 if (virt_dev->eps[i].ring) {
2735                         xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2736                 }
2737                 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2738                 virt_dev->eps[i].new_ring = NULL;
2739         }
2740
2741         return ret;
2742 }
2743
2744 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2745 {
2746         struct xhci_hcd *xhci;
2747         struct xhci_virt_device *virt_dev;
2748         int i, ret;
2749
2750         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2751         if (ret <= 0)
2752                 return;
2753         xhci = hcd_to_xhci(hcd);
2754
2755         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2756         virt_dev = xhci->devs[udev->slot_id];
2757         /* Free any rings allocated for added endpoints */
2758         for (i = 0; i < 31; ++i) {
2759                 if (virt_dev->eps[i].new_ring) {
2760                         xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2761                         virt_dev->eps[i].new_ring = NULL;
2762                 }
2763         }
2764         xhci_zero_in_ctx(xhci, virt_dev);
2765 }
2766
2767 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2768                 struct xhci_container_ctx *in_ctx,
2769                 struct xhci_container_ctx *out_ctx,
2770                 u32 add_flags, u32 drop_flags)
2771 {
2772         struct xhci_input_control_ctx *ctrl_ctx;
2773         ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
2774         ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2775         ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2776         xhci_slot_copy(xhci, in_ctx, out_ctx);
2777         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2778
2779         xhci_dbg(xhci, "Input Context:\n");
2780         xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags));
2781 }
2782
2783 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2784                 unsigned int slot_id, unsigned int ep_index,
2785                 struct xhci_dequeue_state *deq_state)
2786 {
2787         struct xhci_container_ctx *in_ctx;
2788         struct xhci_ep_ctx *ep_ctx;
2789         u32 added_ctxs;
2790         dma_addr_t addr;
2791
2792         xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
2793                         xhci->devs[slot_id]->out_ctx, ep_index);
2794         in_ctx = xhci->devs[slot_id]->in_ctx;
2795         ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
2796         addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
2797                         deq_state->new_deq_ptr);
2798         if (addr == 0) {
2799                 xhci_warn(xhci, "WARN Cannot submit config ep after "
2800                                 "reset ep command\n");
2801                 xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
2802                                 deq_state->new_deq_seg,
2803                                 deq_state->new_deq_ptr);
2804                 return;
2805         }
2806         ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
2807
2808         added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
2809         xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
2810                         xhci->devs[slot_id]->out_ctx, added_ctxs, added_ctxs);
2811 }
2812
2813 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci,
2814                 struct usb_device *udev, unsigned int ep_index)
2815 {
2816         struct xhci_dequeue_state deq_state;
2817         struct xhci_virt_ep *ep;
2818
2819         xhci_dbg(xhci, "Cleaning up stalled endpoint ring\n");
2820         ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2821         /* We need to move the HW's dequeue pointer past this TD,
2822          * or it will attempt to resend it on the next doorbell ring.
2823          */
2824         xhci_find_new_dequeue_state(xhci, udev->slot_id,
2825                         ep_index, ep->stopped_stream, ep->stopped_td,
2826                         &deq_state);
2827
2828         /* HW with the reset endpoint quirk will use the saved dequeue state to
2829          * issue a configure endpoint command later.
2830          */
2831         if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
2832                 xhci_dbg(xhci, "Queueing new dequeue state\n");
2833                 xhci_queue_new_dequeue_state(xhci, udev->slot_id,
2834                                 ep_index, ep->stopped_stream, &deq_state);
2835         } else {
2836                 /* Better hope no one uses the input context between now and the
2837                  * reset endpoint completion!
2838                  * XXX: No idea how this hardware will react when stream rings
2839                  * are enabled.
2840                  */
2841                 xhci_dbg(xhci, "Setting up input context for "
2842                                 "configure endpoint command\n");
2843                 xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
2844                                 ep_index, &deq_state);
2845         }
2846 }
2847
2848 /* Deal with stalled endpoints.  The core should have sent the control message
2849  * to clear the halt condition.  However, we need to make the xHCI hardware
2850  * reset its sequence number, since a device will expect a sequence number of
2851  * zero after the halt condition is cleared.
2852  * Context: in_interrupt
2853  */
2854 void xhci_endpoint_reset(struct usb_hcd *hcd,
2855                 struct usb_host_endpoint *ep)
2856 {
2857         struct xhci_hcd *xhci;
2858         struct usb_device *udev;
2859         unsigned int ep_index;
2860         unsigned long flags;
2861         int ret;
2862         struct xhci_virt_ep *virt_ep;
2863
2864         xhci = hcd_to_xhci(hcd);
2865         udev = (struct usb_device *) ep->hcpriv;
2866         /* Called with a root hub endpoint (or an endpoint that wasn't added
2867          * with xhci_add_endpoint()
2868          */
2869         if (!ep->hcpriv)
2870                 return;
2871         ep_index = xhci_get_endpoint_index(&ep->desc);
2872         virt_ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2873         if (!virt_ep->stopped_td) {
2874                 xhci_dbg(xhci, "Endpoint 0x%x not halted, refusing to reset.\n",
2875                                 ep->desc.bEndpointAddress);
2876                 return;
2877         }
2878         if (usb_endpoint_xfer_control(&ep->desc)) {
2879                 xhci_dbg(xhci, "Control endpoint stall already handled.\n");
2880                 return;
2881         }
2882
2883         xhci_dbg(xhci, "Queueing reset endpoint command\n");
2884         spin_lock_irqsave(&xhci->lock, flags);
2885         ret = xhci_queue_reset_ep(xhci, udev->slot_id, ep_index);
2886         /*
2887          * Can't change the ring dequeue pointer until it's transitioned to the
2888          * stopped state, which is only upon a successful reset endpoint
2889          * command.  Better hope that last command worked!
2890          */
2891         if (!ret) {
2892                 xhci_cleanup_stalled_ring(xhci, udev, ep_index);
2893                 kfree(virt_ep->stopped_td);
2894                 xhci_ring_cmd_db(xhci);
2895         }
2896         virt_ep->stopped_td = NULL;
2897         virt_ep->stopped_trb = NULL;
2898         virt_ep->stopped_stream = 0;
2899         spin_unlock_irqrestore(&xhci->lock, flags);
2900
2901         if (ret)
2902                 xhci_warn(xhci, "FIXME allocate a new ring segment\n");
2903 }
2904
2905 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
2906                 struct usb_device *udev, struct usb_host_endpoint *ep,
2907                 unsigned int slot_id)
2908 {
2909         int ret;
2910         unsigned int ep_index;
2911         unsigned int ep_state;
2912
2913         if (!ep)
2914                 return -EINVAL;
2915         ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
2916         if (ret <= 0)
2917                 return -EINVAL;
2918         if (ep->ss_ep_comp.bmAttributes == 0) {
2919                 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
2920                                 " descriptor for ep 0x%x does not support streams\n",
2921                                 ep->desc.bEndpointAddress);
2922                 return -EINVAL;
2923         }
2924
2925         ep_index = xhci_get_endpoint_index(&ep->desc);
2926         ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
2927         if (ep_state & EP_HAS_STREAMS ||
2928                         ep_state & EP_GETTING_STREAMS) {
2929                 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
2930                                 "already has streams set up.\n",
2931                                 ep->desc.bEndpointAddress);
2932                 xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
2933                                 "dynamic stream context array reallocation.\n");
2934                 return -EINVAL;
2935         }
2936         if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
2937                 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
2938                                 "endpoint 0x%x; URBs are pending.\n",
2939                                 ep->desc.bEndpointAddress);
2940                 return -EINVAL;
2941         }
2942         return 0;
2943 }
2944
2945 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
2946                 unsigned int *num_streams, unsigned int *num_stream_ctxs)
2947 {
2948         unsigned int max_streams;
2949
2950         /* The stream context array size must be a power of two */
2951         *num_stream_ctxs = roundup_pow_of_two(*num_streams);
2952         /*
2953          * Find out how many primary stream array entries the host controller
2954          * supports.  Later we may use secondary stream arrays (similar to 2nd
2955          * level page entries), but that's an optional feature for xHCI host
2956          * controllers. xHCs must support at least 4 stream IDs.
2957          */
2958         max_streams = HCC_MAX_PSA(xhci->hcc_params);
2959         if (*num_stream_ctxs > max_streams) {
2960                 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
2961                                 max_streams);
2962                 *num_stream_ctxs = max_streams;
2963                 *num_streams = max_streams;
2964         }
2965 }
2966
2967 /* Returns an error code if one of the endpoint already has streams.
2968  * This does not change any data structures, it only checks and gathers
2969  * information.
2970  */
2971 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
2972                 struct usb_device *udev,
2973                 struct usb_host_endpoint **eps, unsigned int num_eps,
2974                 unsigned int *num_streams, u32 *changed_ep_bitmask)
2975 {
2976         unsigned int max_streams;
2977         unsigned int endpoint_flag;
2978         int i;
2979         int ret;
2980
2981         for (i = 0; i < num_eps; i++) {
2982                 ret = xhci_check_streams_endpoint(xhci, udev,
2983                                 eps[i], udev->slot_id);
2984                 if (ret < 0)
2985                         return ret;
2986
2987                 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
2988                 if (max_streams < (*num_streams - 1)) {
2989                         xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
2990                                         eps[i]->desc.bEndpointAddress,
2991                                         max_streams);
2992                         *num_streams = max_streams+1;
2993                 }
2994
2995                 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
2996                 if (*changed_ep_bitmask & endpoint_flag)
2997                         return -EINVAL;
2998                 *changed_ep_bitmask |= endpoint_flag;
2999         }
3000         return 0;
3001 }
3002
3003 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3004                 struct usb_device *udev,
3005                 struct usb_host_endpoint **eps, unsigned int num_eps)
3006 {
3007         u32 changed_ep_bitmask = 0;
3008         unsigned int slot_id;
3009         unsigned int ep_index;
3010         unsigned int ep_state;
3011         int i;
3012
3013         slot_id = udev->slot_id;
3014         if (!xhci->devs[slot_id])
3015                 return 0;
3016
3017         for (i = 0; i < num_eps; i++) {
3018                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3019                 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3020                 /* Are streams already being freed for the endpoint? */
3021                 if (ep_state & EP_GETTING_NO_STREAMS) {
3022                         xhci_warn(xhci, "WARN Can't disable streams for "
3023                                         "endpoint 0x%x\n, "
3024                                         "streams are being disabled already.",
3025                                         eps[i]->desc.bEndpointAddress);
3026                         return 0;
3027                 }
3028                 /* Are there actually any streams to free? */
3029                 if (!(ep_state & EP_HAS_STREAMS) &&
3030                                 !(ep_state & EP_GETTING_STREAMS)) {
3031                         xhci_warn(xhci, "WARN Can't disable streams for "
3032                                         "endpoint 0x%x\n, "
3033                                         "streams are already disabled!",
3034                                         eps[i]->desc.bEndpointAddress);
3035                         xhci_warn(xhci, "WARN xhci_free_streams() called "
3036                                         "with non-streams endpoint\n");
3037                         return 0;
3038                 }
3039                 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3040         }
3041         return changed_ep_bitmask;
3042 }
3043
3044 /*
3045  * The USB device drivers use this function (though the HCD interface in USB
3046  * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3047  * coordinate mass storage command queueing across multiple endpoints (basically
3048  * a stream ID == a task ID).
3049  *
3050  * Setting up streams involves allocating the same size stream context array
3051  * for each endpoint and issuing a configure endpoint command for all endpoints.
3052  *
3053  * Don't allow the call to succeed if one endpoint only supports one stream
3054  * (which means it doesn't support streams at all).
3055  *
3056  * Drivers may get less stream IDs than they asked for, if the host controller
3057  * hardware or endpoints claim they can't support the number of requested
3058  * stream IDs.
3059  */
3060 int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3061                 struct usb_host_endpoint **eps, unsigned int num_eps,
3062                 unsigned int num_streams, gfp_t mem_flags)
3063 {
3064         int i, ret;
3065         struct xhci_hcd *xhci;
3066         struct xhci_virt_device *vdev;
3067         struct xhci_command *config_cmd;
3068         unsigned int ep_index;
3069         unsigned int num_stream_ctxs;
3070         unsigned long flags;
3071         u32 changed_ep_bitmask = 0;
3072
3073         if (!eps)
3074                 return -EINVAL;
3075
3076         /* Add one to the number of streams requested to account for
3077          * stream 0 that is reserved for xHCI usage.
3078          */
3079         num_streams += 1;
3080         xhci = hcd_to_xhci(hcd);
3081         xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3082                         num_streams);
3083
3084         config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
3085         if (!config_cmd) {
3086                 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
3087                 return -ENOMEM;
3088         }
3089
3090         /* Check to make sure all endpoints are not already configured for
3091          * streams.  While we're at it, find the maximum number of streams that
3092          * all the endpoints will support and check for duplicate endpoints.
3093          */
3094         spin_lock_irqsave(&xhci->lock, flags);
3095         ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3096                         num_eps, &num_streams, &changed_ep_bitmask);
3097         if (ret < 0) {
3098                 xhci_free_command(xhci, config_cmd);
3099                 spin_unlock_irqrestore(&xhci->lock, flags);
3100                 return ret;
3101         }
3102         if (num_streams <= 1) {
3103                 xhci_warn(xhci, "WARN: endpoints can't handle "
3104                                 "more than one stream.\n");
3105                 xhci_free_command(xhci, config_cmd);
3106                 spin_unlock_irqrestore(&xhci->lock, flags);
3107                 return -EINVAL;
3108         }
3109         vdev = xhci->devs[udev->slot_id];
3110         /* Mark each endpoint as being in transition, so
3111          * xhci_urb_enqueue() will reject all URBs.
3112          */
3113         for (i = 0; i < num_eps; i++) {
3114                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3115                 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3116         }
3117         spin_unlock_irqrestore(&xhci->lock, flags);
3118
3119         /* Setup internal data structures and allocate HW data structures for
3120          * streams (but don't install the HW structures in the input context
3121          * until we're sure all memory allocation succeeded).
3122          */
3123         xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3124         xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3125                         num_stream_ctxs, num_streams);
3126
3127         for (i = 0; i < num_eps; i++) {
3128                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3129                 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3130                                 num_stream_ctxs,
3131                                 num_streams, mem_flags);
3132                 if (!vdev->eps[ep_index].stream_info)
3133                         goto cleanup;
3134                 /* Set maxPstreams in endpoint context and update deq ptr to
3135                  * point to stream context array. FIXME
3136                  */
3137         }
3138
3139         /* Set up the input context for a configure endpoint command. */
3140         for (i = 0; i < num_eps; i++) {
3141                 struct xhci_ep_ctx *ep_ctx;
3142
3143                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3144                 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3145
3146                 xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3147                                 vdev->out_ctx, ep_index);
3148                 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3149                                 vdev->eps[ep_index].stream_info);
3150         }
3151         /* Tell the HW to drop its old copy of the endpoint context info
3152          * and add the updated copy from the input context.
3153          */
3154         xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3155                         vdev->out_ctx, changed_ep_bitmask, changed_ep_bitmask);
3156
3157         /* Issue and wait for the configure endpoint command */
3158         ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3159                         false, false);
3160
3161         /* xHC rejected the configure endpoint command for some reason, so we
3162          * leave the old ring intact and free our internal streams data
3163          * structure.
3164          */
3165         if (ret < 0)
3166                 goto cleanup;
3167
3168         spin_lock_irqsave(&xhci->lock, flags);
3169         for (i = 0; i < num_eps; i++) {
3170                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3171                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3172                 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3173                          udev->slot_id, ep_index);
3174                 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3175         }
3176         xhci_free_command(xhci, config_cmd);
3177         spin_unlock_irqrestore(&xhci->lock, flags);
3178
3179         /* Subtract 1 for stream 0, which drivers can't use */
3180         return num_streams - 1;
3181
3182 cleanup:
3183         /* If it didn't work, free the streams! */
3184         for (i = 0; i < num_eps; i++) {
3185                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3186                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3187                 vdev->eps[ep_index].stream_info = NULL;
3188                 /* FIXME Unset maxPstreams in endpoint context and
3189                  * update deq ptr to point to normal string ring.
3190                  */
3191                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3192                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3193                 xhci_endpoint_zero(xhci, vdev, eps[i]);
3194         }
3195         xhci_free_command(xhci, config_cmd);
3196         return -ENOMEM;
3197 }
3198
3199 /* Transition the endpoint from using streams to being a "normal" endpoint
3200  * without streams.
3201  *
3202  * Modify the endpoint context state, submit a configure endpoint command,
3203  * and free all endpoint rings for streams if that completes successfully.
3204  */
3205 int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3206                 struct usb_host_endpoint **eps, unsigned int num_eps,
3207                 gfp_t mem_flags)
3208 {
3209         int i, ret;
3210         struct xhci_hcd *xhci;
3211         struct xhci_virt_device *vdev;
3212         struct xhci_command *command;
3213         unsigned int ep_index;
3214         unsigned long flags;
3215         u32 changed_ep_bitmask;
3216
3217         xhci = hcd_to_xhci(hcd);
3218         vdev = xhci->devs[udev->slot_id];
3219
3220         /* Set up a configure endpoint command to remove the streams rings */
3221         spin_lock_irqsave(&xhci->lock, flags);
3222         changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3223                         udev, eps, num_eps);
3224         if (changed_ep_bitmask == 0) {
3225                 spin_unlock_irqrestore(&xhci->lock, flags);
3226                 return -EINVAL;
3227         }
3228
3229         /* Use the xhci_command structure from the first endpoint.  We may have
3230          * allocated too many, but the driver may call xhci_free_streams() for
3231          * each endpoint it grouped into one call to xhci_alloc_streams().
3232          */
3233         ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3234         command = vdev->eps[ep_index].stream_info->free_streams_command;
3235         for (i = 0; i < num_eps; i++) {
3236                 struct xhci_ep_ctx *ep_ctx;
3237
3238                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3239                 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3240                 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3241                         EP_GETTING_NO_STREAMS;
3242
3243                 xhci_endpoint_copy(xhci, command->in_ctx,
3244                                 vdev->out_ctx, ep_index);
3245                 xhci_setup_no_streams_ep_input_ctx(xhci, ep_ctx,
3246                                 &vdev->eps[ep_index]);
3247         }
3248         xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3249                         vdev->out_ctx, changed_ep_bitmask, changed_ep_bitmask);
3250         spin_unlock_irqrestore(&xhci->lock, flags);
3251
3252         /* Issue and wait for the configure endpoint command,
3253          * which must succeed.
3254          */
3255         ret = xhci_configure_endpoint(xhci, udev, command,
3256                         false, true);
3257
3258         /* xHC rejected the configure endpoint command for some reason, so we
3259          * leave the streams rings intact.
3260          */
3261         if (ret < 0)
3262                 return ret;
3263
3264         spin_lock_irqsave(&xhci->lock, flags);
3265         for (i = 0; i < num_eps; i++) {
3266                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3267                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3268                 vdev->eps[ep_index].stream_info = NULL;
3269                 /* FIXME Unset maxPstreams in endpoint context and
3270                  * update deq ptr to point to normal string ring.
3271                  */
3272                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3273                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3274         }
3275         spin_unlock_irqrestore(&xhci->lock, flags);
3276
3277         return 0;
3278 }
3279
3280 /*
3281  * Deletes endpoint resources for endpoints that were active before a Reset
3282  * Device command, or a Disable Slot command.  The Reset Device command leaves
3283  * the control endpoint intact, whereas the Disable Slot command deletes it.
3284  *
3285  * Must be called with xhci->lock held.
3286  */
3287 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3288         struct xhci_virt_device *virt_dev, bool drop_control_ep)
3289 {
3290         int i;
3291         unsigned int num_dropped_eps = 0;
3292         unsigned int drop_flags = 0;
3293
3294         for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3295                 if (virt_dev->eps[i].ring) {
3296                         drop_flags |= 1 << i;
3297                         num_dropped_eps++;
3298                 }
3299         }
3300         xhci->num_active_eps -= num_dropped_eps;
3301         if (num_dropped_eps)
3302                 xhci_dbg(xhci, "Dropped %u ep ctxs, flags = 0x%x, "
3303                                 "%u now active.\n",
3304                                 num_dropped_eps, drop_flags,
3305                                 xhci->num_active_eps);
3306 }
3307
3308 /*
3309  * This submits a Reset Device Command, which will set the device state to 0,
3310  * set the device address to 0, and disable all the endpoints except the default
3311  * control endpoint.  The USB core should come back and call
3312  * xhci_address_device(), and then re-set up the configuration.  If this is
3313  * called because of a usb_reset_and_verify_device(), then the old alternate
3314  * settings will be re-installed through the normal bandwidth allocation
3315  * functions.
3316  *
3317  * Wait for the Reset Device command to finish.  Remove all structures
3318  * associated with the endpoints that were disabled.  Clear the input device
3319  * structure?  Cache the rings?  Reset the control endpoint 0 max packet size?
3320  *
3321  * If the virt_dev to be reset does not exist or does not match the udev,
3322  * it means the device is lost, possibly due to the xHC restore error and
3323  * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3324  * re-allocate the device.
3325  */
3326 int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
3327 {
3328         int ret, i;
3329         unsigned long flags;
3330         struct xhci_hcd *xhci;
3331         unsigned int slot_id;
3332         struct xhci_virt_device *virt_dev;
3333         struct xhci_command *reset_device_cmd;
3334         int timeleft;
3335         int last_freed_endpoint;
3336         struct xhci_slot_ctx *slot_ctx;
3337         int old_active_eps = 0;
3338
3339         ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3340         if (ret <= 0)
3341                 return ret;
3342         xhci = hcd_to_xhci(hcd);
3343         slot_id = udev->slot_id;
3344         virt_dev = xhci->devs[slot_id];
3345         if (!virt_dev) {
3346                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3347                                 "not exist. Re-allocate the device\n", slot_id);
3348                 ret = xhci_alloc_dev(hcd, udev);
3349                 if (ret == 1)
3350                         return 0;
3351                 else
3352                         return -EINVAL;
3353         }
3354
3355         if (virt_dev->udev != udev) {
3356                 /* If the virt_dev and the udev does not match, this virt_dev
3357                  * may belong to another udev.
3358                  * Re-allocate the device.
3359                  */
3360                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3361                                 "not match the udev. Re-allocate the device\n",
3362                                 slot_id);
3363                 ret = xhci_alloc_dev(hcd, udev);
3364                 if (ret == 1)
3365                         return 0;
3366                 else
3367                         return -EINVAL;
3368         }
3369
3370         /* If device is not setup, there is no point in resetting it */
3371         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3372         if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3373                                                 SLOT_STATE_DISABLED)
3374                 return 0;
3375
3376         xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3377         /* Allocate the command structure that holds the struct completion.
3378          * Assume we're in process context, since the normal device reset
3379          * process has to wait for the device anyway.  Storage devices are
3380          * reset as part of error handling, so use GFP_NOIO instead of
3381          * GFP_KERNEL.
3382          */
3383         reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO);
3384         if (!reset_device_cmd) {
3385                 xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3386                 return -ENOMEM;
3387         }
3388
3389         /* Attempt to submit the Reset Device command to the command ring */
3390         spin_lock_irqsave(&xhci->lock, flags);
3391         reset_device_cmd->command_trb = xhci->cmd_ring->enqueue;
3392
3393         /* Enqueue pointer can be left pointing to the link TRB,
3394          * we must handle that
3395          */
3396         if (TRB_TYPE_LINK_LE32(reset_device_cmd->command_trb->link.control))
3397                 reset_device_cmd->command_trb =
3398                         xhci->cmd_ring->enq_seg->next->trbs;
3399
3400         list_add_tail(&reset_device_cmd->cmd_list, &virt_dev->cmd_list);
3401         ret = xhci_queue_reset_device(xhci, slot_id);
3402         if (ret) {
3403                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3404                 list_del(&reset_device_cmd->cmd_list);
3405                 spin_unlock_irqrestore(&xhci->lock, flags);
3406                 goto command_cleanup;
3407         }
3408         xhci_ring_cmd_db(xhci);
3409         spin_unlock_irqrestore(&xhci->lock, flags);
3410
3411         /* Wait for the Reset Device command to finish */
3412         timeleft = wait_for_completion_interruptible_timeout(
3413                         reset_device_cmd->completion,
3414                         USB_CTRL_SET_TIMEOUT);
3415         if (timeleft <= 0) {
3416                 xhci_warn(xhci, "%s while waiting for reset device command\n",
3417                                 timeleft == 0 ? "Timeout" : "Signal");
3418                 spin_lock_irqsave(&xhci->lock, flags);
3419                 /* The timeout might have raced with the event ring handler, so
3420                  * only delete from the list if the item isn't poisoned.
3421                  */
3422                 if (reset_device_cmd->cmd_list.next != LIST_POISON1)
3423                         list_del(&reset_device_cmd->cmd_list);
3424                 spin_unlock_irqrestore(&xhci->lock, flags);
3425                 ret = -ETIME;
3426                 goto command_cleanup;
3427         }
3428
3429         /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3430          * unless we tried to reset a slot ID that wasn't enabled,
3431          * or the device wasn't in the addressed or configured state.
3432          */
3433         ret = reset_device_cmd->status;
3434         switch (ret) {
3435         case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */
3436         case COMP_CTX_STATE: /* 0.96 completion code for same thing */
3437                 xhci_info(xhci, "Can't reset device (slot ID %u) in %s state\n",
3438                                 slot_id,
3439                                 xhci_get_slot_state(xhci, virt_dev->out_ctx));
3440                 xhci_info(xhci, "Not freeing device rings.\n");
3441                 /* Don't treat this as an error.  May change my mind later. */
3442                 ret = 0;
3443                 goto command_cleanup;
3444         case COMP_SUCCESS:
3445                 xhci_dbg(xhci, "Successful reset device command.\n");
3446                 break;
3447         default:
3448                 if (xhci_is_vendor_info_code(xhci, ret))
3449                         break;
3450                 xhci_warn(xhci, "Unknown completion code %u for "
3451                                 "reset device command.\n", ret);
3452                 ret = -EINVAL;
3453                 goto command_cleanup;
3454         }
3455
3456         /* Free up host controller endpoint resources */
3457         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3458                 spin_lock_irqsave(&xhci->lock, flags);
3459                 /* Don't delete the default control endpoint resources */
3460                 xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3461                 spin_unlock_irqrestore(&xhci->lock, flags);
3462         }
3463
3464         /* Everything but endpoint 0 is disabled, so free or cache the rings. */
3465         last_freed_endpoint = 1;
3466         for (i = 1; i < 31; ++i) {
3467                 struct xhci_virt_ep *ep = &virt_dev->eps[i];
3468
3469                 if (ep->ep_state & EP_HAS_STREAMS) {
3470                         xhci_free_stream_info(xhci, ep->stream_info);
3471                         ep->stream_info = NULL;
3472                         ep->ep_state &= ~EP_HAS_STREAMS;
3473                 }
3474
3475                 if (ep->ring) {
3476                         xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
3477                         last_freed_endpoint = i;
3478                 }
3479                 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3480                         xhci_drop_ep_from_interval_table(xhci,
3481                                         &virt_dev->eps[i].bw_info,
3482                                         virt_dev->bw_table,
3483                                         udev,
3484                                         &virt_dev->eps[i],
3485                                         virt_dev->tt_info);
3486                 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3487         }
3488         /* If necessary, update the number of active TTs on this root port */
3489         xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3490
3491         xhci_dbg(xhci, "Output context after successful reset device cmd:\n");
3492         xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint);
3493         ret = 0;
3494
3495 command_cleanup:
3496         xhci_free_command(xhci, reset_device_cmd);
3497         return ret;
3498 }
3499
3500 /*
3501  * At this point, the struct usb_device is about to go away, the device has
3502  * disconnected, and all traffic has been stopped and the endpoints have been
3503  * disabled.  Free any HC data structures associated with that device.
3504  */
3505 void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3506 {
3507         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3508         struct xhci_virt_device *virt_dev;
3509         unsigned long flags;
3510         u32 state;
3511         int i, ret;
3512
3513         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3514         /* If the host is halted due to driver unload, we still need to free the
3515          * device.
3516          */
3517         if (ret <= 0 && ret != -ENODEV)
3518                 return;
3519
3520         virt_dev = xhci->devs[udev->slot_id];
3521
3522         /* Stop any wayward timer functions (which may grab the lock) */
3523         for (i = 0; i < 31; ++i) {
3524                 virt_dev->eps[i].ep_state &= ~EP_HALT_PENDING;
3525                 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3526         }
3527
3528         if (udev->usb2_hw_lpm_enabled) {
3529                 xhci_set_usb2_hardware_lpm(hcd, udev, 0);
3530                 udev->usb2_hw_lpm_enabled = 0;
3531         }
3532
3533         spin_lock_irqsave(&xhci->lock, flags);
3534         /* Don't disable the slot if the host controller is dead. */
3535         state = xhci_readl(xhci, &xhci->op_regs->status);
3536         if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3537                         (xhci->xhc_state & XHCI_STATE_HALTED)) {
3538                 xhci_free_virt_device(xhci, udev->slot_id);
3539                 spin_unlock_irqrestore(&xhci->lock, flags);
3540                 return;
3541         }
3542
3543         if (xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id)) {
3544                 spin_unlock_irqrestore(&xhci->lock, flags);
3545                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3546                 return;
3547         }
3548         xhci_ring_cmd_db(xhci);
3549         spin_unlock_irqrestore(&xhci->lock, flags);
3550         /*
3551          * Event command completion handler will free any data structures
3552          * associated with the slot.  XXX Can free sleep?
3553          */
3554 }
3555
3556 /*
3557  * Checks if we have enough host controller resources for the default control
3558  * endpoint.
3559  *
3560  * Must be called with xhci->lock held.
3561  */
3562 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3563 {
3564         if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3565                 xhci_dbg(xhci, "Not enough ep ctxs: "
3566                                 "%u active, need to add 1, limit is %u.\n",
3567                                 xhci->num_active_eps, xhci->limit_active_eps);
3568                 return -ENOMEM;
3569         }
3570         xhci->num_active_eps += 1;
3571         xhci_dbg(xhci, "Adding 1 ep ctx, %u now active.\n",
3572                         xhci->num_active_eps);
3573         return 0;
3574 }
3575
3576
3577 /*
3578  * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3579  * timed out, or allocating memory failed.  Returns 1 on success.
3580  */
3581 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3582 {
3583         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3584         unsigned long flags;
3585         int timeleft;
3586         int ret;
3587         union xhci_trb *cmd_trb;
3588
3589         spin_lock_irqsave(&xhci->lock, flags);
3590         cmd_trb = xhci->cmd_ring->dequeue;
3591         ret = xhci_queue_slot_control(xhci, TRB_ENABLE_SLOT, 0);
3592         if (ret) {
3593                 spin_unlock_irqrestore(&xhci->lock, flags);
3594                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3595                 return 0;
3596         }
3597         xhci_ring_cmd_db(xhci);
3598         spin_unlock_irqrestore(&xhci->lock, flags);
3599
3600         /* XXX: how much time for xHC slot assignment? */
3601         timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
3602                         XHCI_CMD_DEFAULT_TIMEOUT);
3603         if (timeleft <= 0) {
3604                 xhci_warn(xhci, "%s while waiting for a slot\n",
3605                                 timeleft == 0 ? "Timeout" : "Signal");
3606                 /* cancel the enable slot request */
3607                 return xhci_cancel_cmd(xhci, NULL, cmd_trb);
3608         }
3609
3610         if (!xhci->slot_id) {
3611                 xhci_err(xhci, "Error while assigning device slot ID\n");
3612                 return 0;
3613         }
3614
3615         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3616                 spin_lock_irqsave(&xhci->lock, flags);
3617                 ret = xhci_reserve_host_control_ep_resources(xhci);
3618                 if (ret) {
3619                         spin_unlock_irqrestore(&xhci->lock, flags);
3620                         xhci_warn(xhci, "Not enough host resources, "
3621                                         "active endpoint contexts = %u\n",
3622                                         xhci->num_active_eps);
3623                         goto disable_slot;
3624                 }
3625                 spin_unlock_irqrestore(&xhci->lock, flags);
3626         }
3627         /* Use GFP_NOIO, since this function can be called from
3628          * xhci_discover_or_reset_device(), which may be called as part of
3629          * mass storage driver error handling.
3630          */
3631         if (!xhci_alloc_virt_device(xhci, xhci->slot_id, udev, GFP_NOIO)) {
3632                 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
3633                 goto disable_slot;
3634         }
3635         udev->slot_id = xhci->slot_id;
3636         /* Is this a LS or FS device under a HS hub? */
3637         /* Hub or peripherial? */
3638         return 1;
3639
3640 disable_slot:
3641         /* Disable slot, if we can do it without mem alloc */
3642         spin_lock_irqsave(&xhci->lock, flags);
3643         if (!xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id))
3644                 xhci_ring_cmd_db(xhci);
3645         spin_unlock_irqrestore(&xhci->lock, flags);
3646         return 0;
3647 }
3648
3649 /*
3650  * Issue an Address Device command (which will issue a SetAddress request to
3651  * the device).
3652  * We should be protected by the usb_address0_mutex in khubd's hub_port_init, so
3653  * we should only issue and wait on one address command at the same time.
3654  *
3655  * We add one to the device address issued by the hardware because the USB core
3656  * uses address 1 for the root hubs (even though they're not really devices).
3657  */
3658 int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
3659 {
3660         unsigned long flags;
3661         int timeleft;
3662         struct xhci_virt_device *virt_dev;
3663         int ret = 0;
3664         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3665         struct xhci_slot_ctx *slot_ctx;
3666         struct xhci_input_control_ctx *ctrl_ctx;
3667         u64 temp_64;
3668         union xhci_trb *cmd_trb;
3669
3670         if (!udev->slot_id) {
3671                 xhci_dbg(xhci, "Bad Slot ID %d\n", udev->slot_id);
3672                 return -EINVAL;
3673         }
3674
3675         virt_dev = xhci->devs[udev->slot_id];
3676
3677         if (WARN_ON(!virt_dev)) {
3678                 /*
3679                  * In plug/unplug torture test with an NEC controller,
3680                  * a zero-dereference was observed once due to virt_dev = 0.
3681                  * Print useful debug rather than crash if it is observed again!
3682                  */
3683                 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
3684                         udev->slot_id);
3685                 return -EINVAL;
3686         }
3687
3688         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3689         /*
3690          * If this is the first Set Address since device plug-in or
3691          * virt_device realloaction after a resume with an xHCI power loss,
3692          * then set up the slot context.
3693          */
3694         if (!slot_ctx->dev_info)
3695                 xhci_setup_addressable_virt_dev(xhci, udev);
3696         /* Otherwise, update the control endpoint ring enqueue pointer. */
3697         else
3698                 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
3699         ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
3700         ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
3701         ctrl_ctx->drop_flags = 0;
3702
3703         xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3704         xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3705
3706         spin_lock_irqsave(&xhci->lock, flags);
3707         cmd_trb = xhci->cmd_ring->dequeue;
3708         ret = xhci_queue_address_device(xhci, virt_dev->in_ctx->dma,
3709                                         udev->slot_id);
3710         if (ret) {
3711                 spin_unlock_irqrestore(&xhci->lock, flags);
3712                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3713                 return ret;
3714         }
3715         xhci_ring_cmd_db(xhci);
3716         spin_unlock_irqrestore(&xhci->lock, flags);
3717
3718         /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
3719         timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
3720                         XHCI_CMD_DEFAULT_TIMEOUT);
3721         /* FIXME: From section 4.3.4: "Software shall be responsible for timing
3722          * the SetAddress() "recovery interval" required by USB and aborting the
3723          * command on a timeout.
3724          */
3725         if (timeleft <= 0) {
3726                 xhci_warn(xhci, "%s while waiting for address device command\n",
3727                                 timeleft == 0 ? "Timeout" : "Signal");
3728                 /* cancel the address device command */
3729                 ret = xhci_cancel_cmd(xhci, NULL, cmd_trb);
3730                 if (ret < 0)
3731                         return ret;
3732                 return -ETIME;
3733         }
3734
3735         switch (virt_dev->cmd_status) {
3736         case COMP_CTX_STATE:
3737         case COMP_EBADSLT:
3738                 xhci_err(xhci, "Setup ERROR: address device command for slot %d.\n",
3739                                 udev->slot_id);
3740                 ret = -EINVAL;
3741                 break;
3742         case COMP_TX_ERR:
3743                 dev_warn(&udev->dev, "Device not responding to set address.\n");
3744                 ret = -EPROTO;
3745                 break;
3746         case COMP_DEV_ERR:
3747                 dev_warn(&udev->dev, "ERROR: Incompatible device for address "
3748                                 "device command.\n");
3749                 ret = -ENODEV;
3750                 break;
3751         case COMP_SUCCESS:
3752                 xhci_dbg(xhci, "Successful Address Device command\n");
3753                 break;
3754         default:
3755                 xhci_err(xhci, "ERROR: unexpected command completion "
3756                                 "code 0x%x.\n", virt_dev->cmd_status);
3757                 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3758                 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3759                 ret = -EINVAL;
3760                 break;
3761         }
3762         if (ret) {
3763                 return ret;
3764         }
3765         temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
3766         xhci_dbg(xhci, "Op regs DCBAA ptr = %#016llx\n", temp_64);
3767         xhci_dbg(xhci, "Slot ID %d dcbaa entry @%p = %#016llx\n",
3768                  udev->slot_id,
3769                  &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
3770                  (unsigned long long)
3771                  le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
3772         xhci_dbg(xhci, "Output Context DMA address = %#08llx\n",
3773                         (unsigned long long)virt_dev->out_ctx->dma);
3774         xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3775         xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3776         xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3777         xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3778         /*
3779          * USB core uses address 1 for the roothubs, so we add one to the
3780          * address given back to us by the HC.
3781          */
3782         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3783         /* Use kernel assigned address for devices; store xHC assigned
3784          * address locally. */
3785         virt_dev->address = (le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK)
3786                 + 1;
3787         /* Zero the input context control for later use */
3788         ctrl_ctx->add_flags = 0;
3789         ctrl_ctx->drop_flags = 0;
3790
3791         xhci_dbg(xhci, "Internal device address = %d\n", virt_dev->address);
3792
3793         return 0;
3794 }
3795
3796 /*
3797  * Transfer the port index into real index in the HW port status
3798  * registers. Caculate offset between the port's PORTSC register
3799  * and port status base. Divide the number of per port register
3800  * to get the real index. The raw port number bases 1.
3801  */
3802 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
3803 {
3804         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3805         __le32 __iomem *base_addr = &xhci->op_regs->port_status_base;
3806         __le32 __iomem *addr;
3807         int raw_port;
3808
3809         if (hcd->speed != HCD_USB3)
3810                 addr = xhci->usb2_ports[port1 - 1];
3811         else
3812                 addr = xhci->usb3_ports[port1 - 1];
3813
3814         raw_port = (addr - base_addr)/NUM_PORT_REGS + 1;
3815         return raw_port;
3816 }
3817
3818 #ifdef CONFIG_PM_RUNTIME
3819
3820 /* BESL to HIRD Encoding array for USB2 LPM */
3821 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
3822         3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
3823
3824 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
3825 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
3826                                         struct usb_device *udev)
3827 {
3828         int u2del, besl, besl_host;
3829         int besl_device = 0;
3830         u32 field;
3831
3832         u2del = HCS_U2_LATENCY(xhci->hcs_params3);
3833         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
3834
3835         if (field & USB_BESL_SUPPORT) {
3836                 for (besl_host = 0; besl_host < 16; besl_host++) {
3837                         if (xhci_besl_encoding[besl_host] >= u2del)
3838                                 break;
3839                 }
3840                 /* Use baseline BESL value as default */
3841                 if (field & USB_BESL_BASELINE_VALID)
3842                         besl_device = USB_GET_BESL_BASELINE(field);
3843                 else if (field & USB_BESL_DEEP_VALID)
3844                         besl_device = USB_GET_BESL_DEEP(field);
3845         } else {
3846                 if (u2del <= 50)
3847                         besl_host = 0;
3848                 else
3849                         besl_host = (u2del - 51) / 75 + 1;
3850         }
3851
3852         besl = besl_host + besl_device;
3853         if (besl > 15)
3854                 besl = 15;
3855
3856         return besl;
3857 }
3858
3859 static int xhci_usb2_software_lpm_test(struct usb_hcd *hcd,
3860                                         struct usb_device *udev)
3861 {
3862         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3863         struct dev_info *dev_info;
3864         __le32 __iomem  **port_array;
3865         __le32 __iomem  *addr, *pm_addr;
3866         u32             temp, dev_id;
3867         unsigned int    port_num;
3868         unsigned long   flags;
3869         int             hird;
3870         int             ret;
3871
3872         if (hcd->speed == HCD_USB3 || !xhci->sw_lpm_support ||
3873                         !udev->lpm_capable)
3874                 return -EINVAL;
3875
3876         /* we only support lpm for non-hub device connected to root hub yet */
3877         if (!udev->parent || udev->parent->parent ||
3878                         udev->descriptor.bDeviceClass == USB_CLASS_HUB)
3879                 return -EINVAL;
3880
3881         spin_lock_irqsave(&xhci->lock, flags);
3882
3883         /* Look for devices in lpm_failed_devs list */
3884         dev_id = le16_to_cpu(udev->descriptor.idVendor) << 16 |
3885                         le16_to_cpu(udev->descriptor.idProduct);
3886         list_for_each_entry(dev_info, &xhci->lpm_failed_devs, list) {
3887                 if (dev_info->dev_id == dev_id) {
3888                         ret = -EINVAL;
3889                         goto finish;
3890                 }
3891         }
3892
3893         port_array = xhci->usb2_ports;
3894         port_num = udev->portnum - 1;
3895
3896         if (port_num > HCS_MAX_PORTS(xhci->hcs_params1)) {
3897                 xhci_dbg(xhci, "invalid port number %d\n", udev->portnum);
3898                 ret = -EINVAL;
3899                 goto finish;
3900         }
3901
3902         /*
3903          * Test USB 2.0 software LPM.
3904          * FIXME: some xHCI 1.0 hosts may implement a new register to set up
3905          * hardware-controlled USB 2.0 LPM. See section 5.4.11 and 4.23.5.1.1.1
3906          * in the June 2011 errata release.
3907          */
3908         xhci_dbg(xhci, "test port %d software LPM\n", port_num);
3909         /*
3910          * Set L1 Device Slot and HIRD/BESL.
3911          * Check device's USB 2.0 extension descriptor to determine whether
3912          * HIRD or BESL shoule be used. See USB2.0 LPM errata.
3913          */
3914         pm_addr = port_array[port_num] + 1;
3915         hird = xhci_calculate_hird_besl(xhci, udev);
3916         temp = PORT_L1DS(udev->slot_id) | PORT_HIRD(hird);
3917         xhci_writel(xhci, temp, pm_addr);
3918
3919         /* Set port link state to U2(L1) */
3920         addr = port_array[port_num];
3921         xhci_set_link_state(xhci, port_array, port_num, XDEV_U2);
3922
3923         /* wait for ACK */
3924         spin_unlock_irqrestore(&xhci->lock, flags);
3925         msleep(10);
3926         spin_lock_irqsave(&xhci->lock, flags);
3927
3928         /* Check L1 Status */
3929         ret = xhci_handshake(xhci, pm_addr,
3930                         PORT_L1S_MASK, PORT_L1S_SUCCESS, 125);
3931         if (ret != -ETIMEDOUT) {
3932                 /* enter L1 successfully */
3933                 temp = xhci_readl(xhci, addr);
3934                 xhci_dbg(xhci, "port %d entered L1 state, port status 0x%x\n",
3935                                 port_num, temp);
3936                 ret = 0;
3937         } else {
3938                 temp = xhci_readl(xhci, pm_addr);
3939                 xhci_dbg(xhci, "port %d software lpm failed, L1 status %d\n",
3940                                 port_num, temp & PORT_L1S_MASK);
3941                 ret = -EINVAL;
3942         }
3943
3944         /* Resume the port */
3945         xhci_set_link_state(xhci, port_array, port_num, XDEV_U0);
3946
3947         spin_unlock_irqrestore(&xhci->lock, flags);
3948         msleep(10);
3949         spin_lock_irqsave(&xhci->lock, flags);
3950
3951         /* Clear PLC */
3952         xhci_test_and_clear_bit(xhci, port_array, port_num, PORT_PLC);
3953
3954         /* Check PORTSC to make sure the device is in the right state */
3955         if (!ret) {
3956                 temp = xhci_readl(xhci, addr);
3957                 xhci_dbg(xhci, "resumed port %d status 0x%x\n", port_num, temp);
3958                 if (!(temp & PORT_CONNECT) || !(temp & PORT_PE) ||
3959                                 (temp & PORT_PLS_MASK) != XDEV_U0) {
3960                         xhci_dbg(xhci, "port L1 resume fail\n");
3961                         ret = -EINVAL;
3962                 }
3963         }
3964
3965         if (ret) {
3966                 /* Insert dev to lpm_failed_devs list */
3967                 xhci_warn(xhci, "device LPM test failed, may disconnect and "
3968                                 "re-enumerate\n");
3969                 dev_info = kzalloc(sizeof(struct dev_info), GFP_ATOMIC);
3970                 if (!dev_info) {
3971                         ret = -ENOMEM;
3972                         goto finish;
3973                 }
3974                 dev_info->dev_id = dev_id;
3975                 INIT_LIST_HEAD(&dev_info->list);
3976                 list_add(&dev_info->list, &xhci->lpm_failed_devs);
3977         } else {
3978                 xhci_ring_device(xhci, udev->slot_id);
3979         }
3980
3981 finish:
3982         spin_unlock_irqrestore(&xhci->lock, flags);
3983         return ret;
3984 }
3985
3986 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
3987                         struct usb_device *udev, int enable)
3988 {
3989         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3990         __le32 __iomem  **port_array;
3991         __le32 __iomem  *pm_addr;
3992         u32             temp;
3993         unsigned int    port_num;
3994         unsigned long   flags;
3995         int             hird;
3996
3997         if (hcd->speed == HCD_USB3 || !xhci->hw_lpm_support ||
3998                         !udev->lpm_capable)
3999                 return -EPERM;
4000
4001         if (!udev->parent || udev->parent->parent ||
4002                         udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4003                 return -EPERM;
4004
4005         if (udev->usb2_hw_lpm_capable != 1)
4006                 return -EPERM;
4007
4008         spin_lock_irqsave(&xhci->lock, flags);
4009
4010         port_array = xhci->usb2_ports;
4011         port_num = udev->portnum - 1;
4012         pm_addr = port_array[port_num] + 1;
4013         temp = xhci_readl(xhci, pm_addr);
4014
4015         xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4016                         enable ? "enable" : "disable", port_num);
4017
4018         hird = xhci_calculate_hird_besl(xhci, udev);
4019
4020         if (enable) {
4021                 temp &= ~PORT_HIRD_MASK;
4022                 temp |= PORT_HIRD(hird) | PORT_RWE;
4023                 xhci_writel(xhci, temp, pm_addr);
4024                 temp = xhci_readl(xhci, pm_addr);
4025                 temp |= PORT_HLE;
4026                 xhci_writel(xhci, temp, pm_addr);
4027         } else {
4028                 temp &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK);
4029                 xhci_writel(xhci, temp, pm_addr);
4030         }
4031
4032         spin_unlock_irqrestore(&xhci->lock, flags);
4033         return 0;
4034 }
4035
4036 /* check if a usb2 port supports a given extened capability protocol
4037  * only USB2 ports extended protocol capability values are cached.
4038  * Return 1 if capability is supported
4039  */
4040 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4041                                            unsigned capability)
4042 {
4043         u32 port_offset, port_count;
4044         int i;
4045
4046         for (i = 0; i < xhci->num_ext_caps; i++) {
4047                 if (xhci->ext_caps[i] & capability) {
4048                         /* port offsets starts at 1 */
4049                         port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4050                         port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4051                         if (port >= port_offset &&
4052                             port < port_offset + port_count)
4053                                 return 1;
4054                 }
4055         }
4056         return 0;
4057 }
4058
4059 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4060 {
4061         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4062         int             ret;
4063         int             portnum = udev->portnum - 1;
4064
4065         ret = xhci_usb2_software_lpm_test(hcd, udev);
4066         if (!ret) {
4067                 xhci_dbg(xhci, "software LPM test succeed\n");
4068                 if (xhci->hw_lpm_support == 1 &&
4069                     xhci_check_usb2_port_capability(xhci, portnum, XHCI_HLC)) {
4070                         udev->usb2_hw_lpm_capable = 1;
4071                         ret = xhci_set_usb2_hardware_lpm(hcd, udev, 1);
4072                         if (!ret)
4073                                 udev->usb2_hw_lpm_enabled = 1;
4074                 }
4075         }
4076
4077         return 0;
4078 }
4079
4080 #else
4081
4082 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4083                                 struct usb_device *udev, int enable)
4084 {
4085         return 0;
4086 }
4087
4088 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4089 {
4090         return 0;
4091 }
4092
4093 #endif /* CONFIG_PM_RUNTIME */
4094
4095 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4096
4097 #ifdef CONFIG_PM
4098 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4099 static unsigned long long xhci_service_interval_to_ns(
4100                 struct usb_endpoint_descriptor *desc)
4101 {
4102         return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4103 }
4104
4105 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4106                 enum usb3_link_state state)
4107 {
4108         unsigned long long sel;
4109         unsigned long long pel;
4110         unsigned int max_sel_pel;
4111         char *state_name;
4112
4113         switch (state) {
4114         case USB3_LPM_U1:
4115                 /* Convert SEL and PEL stored in nanoseconds to microseconds */
4116                 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4117                 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4118                 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4119                 state_name = "U1";
4120                 break;
4121         case USB3_LPM_U2:
4122                 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4123                 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4124                 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4125                 state_name = "U2";
4126                 break;
4127         default:
4128                 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4129                                 __func__);
4130                 return USB3_LPM_DISABLED;
4131         }
4132
4133         if (sel <= max_sel_pel && pel <= max_sel_pel)
4134                 return USB3_LPM_DEVICE_INITIATED;
4135
4136         if (sel > max_sel_pel)
4137                 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4138                                 "due to long SEL %llu ms\n",
4139                                 state_name, sel);
4140         else
4141                 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4142                                 "due to long PEL %llu\n ms",
4143                                 state_name, pel);
4144         return USB3_LPM_DISABLED;
4145 }
4146
4147 /* Returns the hub-encoded U1 timeout value.
4148  * The U1 timeout should be the maximum of the following values:
4149  *  - For control endpoints, U1 system exit latency (SEL) * 3
4150  *  - For bulk endpoints, U1 SEL * 5
4151  *  - For interrupt endpoints:
4152  *    - Notification EPs, U1 SEL * 3
4153  *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4154  *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4155  */
4156 static u16 xhci_calculate_intel_u1_timeout(struct usb_device *udev,
4157                 struct usb_endpoint_descriptor *desc)
4158 {
4159         unsigned long long timeout_ns;
4160         int ep_type;
4161         int intr_type;
4162
4163         ep_type = usb_endpoint_type(desc);
4164         switch (ep_type) {
4165         case USB_ENDPOINT_XFER_CONTROL:
4166                 timeout_ns = udev->u1_params.sel * 3;
4167                 break;
4168         case USB_ENDPOINT_XFER_BULK:
4169                 timeout_ns = udev->u1_params.sel * 5;
4170                 break;
4171         case USB_ENDPOINT_XFER_INT:
4172                 intr_type = usb_endpoint_interrupt_type(desc);
4173                 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4174                         timeout_ns = udev->u1_params.sel * 3;
4175                         break;
4176                 }
4177                 /* Otherwise the calculation is the same as isoc eps */
4178         case USB_ENDPOINT_XFER_ISOC:
4179                 timeout_ns = xhci_service_interval_to_ns(desc);
4180                 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4181                 if (timeout_ns < udev->u1_params.sel * 2)
4182                         timeout_ns = udev->u1_params.sel * 2;
4183                 break;
4184         default:
4185                 return 0;
4186         }
4187
4188         /* The U1 timeout is encoded in 1us intervals. */
4189         timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4190         /* Don't return a timeout of zero, because that's USB3_LPM_DISABLED. */
4191         if (timeout_ns == USB3_LPM_DISABLED)
4192                 timeout_ns++;
4193
4194         /* If the necessary timeout value is bigger than what we can set in the
4195          * USB 3.0 hub, we have to disable hub-initiated U1.
4196          */
4197         if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4198                 return timeout_ns;
4199         dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4200                         "due to long timeout %llu ms\n", timeout_ns);
4201         return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4202 }
4203
4204 /* Returns the hub-encoded U2 timeout value.
4205  * The U2 timeout should be the maximum of:
4206  *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4207  *  - largest bInterval of any active periodic endpoint (to avoid going
4208  *    into lower power link states between intervals).
4209  *  - the U2 Exit Latency of the device
4210  */
4211 static u16 xhci_calculate_intel_u2_timeout(struct usb_device *udev,
4212                 struct usb_endpoint_descriptor *desc)
4213 {
4214         unsigned long long timeout_ns;
4215         unsigned long long u2_del_ns;
4216
4217         timeout_ns = 10 * 1000 * 1000;
4218
4219         if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4220                         (xhci_service_interval_to_ns(desc) > timeout_ns))
4221                 timeout_ns = xhci_service_interval_to_ns(desc);
4222
4223         u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4224         if (u2_del_ns > timeout_ns)
4225                 timeout_ns = u2_del_ns;
4226
4227         /* The U2 timeout is encoded in 256us intervals */
4228         timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4229         /* If the necessary timeout value is bigger than what we can set in the
4230          * USB 3.0 hub, we have to disable hub-initiated U2.
4231          */
4232         if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4233                 return timeout_ns;
4234         dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4235                         "due to long timeout %llu ms\n", timeout_ns);
4236         return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4237 }
4238
4239 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4240                 struct usb_device *udev,
4241                 struct usb_endpoint_descriptor *desc,
4242                 enum usb3_link_state state,
4243                 u16 *timeout)
4244 {
4245         if (state == USB3_LPM_U1) {
4246                 if (xhci->quirks & XHCI_INTEL_HOST)
4247                         return xhci_calculate_intel_u1_timeout(udev, desc);
4248         } else {
4249                 if (xhci->quirks & XHCI_INTEL_HOST)
4250                         return xhci_calculate_intel_u2_timeout(udev, desc);
4251         }
4252
4253         return USB3_LPM_DISABLED;
4254 }
4255
4256 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4257                 struct usb_device *udev,
4258                 struct usb_endpoint_descriptor *desc,
4259                 enum usb3_link_state state,
4260                 u16 *timeout)
4261 {
4262         u16 alt_timeout;
4263
4264         alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4265                 desc, state, timeout);
4266
4267         /* If we found we can't enable hub-initiated LPM, or
4268          * the U1 or U2 exit latency was too high to allow
4269          * device-initiated LPM as well, just stop searching.
4270          */
4271         if (alt_timeout == USB3_LPM_DISABLED ||
4272                         alt_timeout == USB3_LPM_DEVICE_INITIATED) {
4273                 *timeout = alt_timeout;
4274                 return -E2BIG;
4275         }
4276         if (alt_timeout > *timeout)
4277                 *timeout = alt_timeout;
4278         return 0;
4279 }
4280
4281 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4282                 struct usb_device *udev,
4283                 struct usb_host_interface *alt,
4284                 enum usb3_link_state state,
4285                 u16 *timeout)
4286 {
4287         int j;
4288
4289         for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4290                 if (xhci_update_timeout_for_endpoint(xhci, udev,
4291                                         &alt->endpoint[j].desc, state, timeout))
4292                         return -E2BIG;
4293                 continue;
4294         }
4295         return 0;
4296 }
4297
4298 static int xhci_check_intel_tier_policy(struct usb_device *udev,
4299                 enum usb3_link_state state)
4300 {
4301         struct usb_device *parent;
4302         unsigned int num_hubs;
4303
4304         if (state == USB3_LPM_U2)
4305                 return 0;
4306
4307         /* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4308         for (parent = udev->parent, num_hubs = 0; parent->parent;
4309                         parent = parent->parent)
4310                 num_hubs++;
4311
4312         if (num_hubs < 2)
4313                 return 0;
4314
4315         dev_dbg(&udev->dev, "Disabling U1 link state for device"
4316                         " below second-tier hub.\n");
4317         dev_dbg(&udev->dev, "Plug device into first-tier hub "
4318                         "to decrease power consumption.\n");
4319         return -E2BIG;
4320 }
4321
4322 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4323                 struct usb_device *udev,
4324                 enum usb3_link_state state)
4325 {
4326         if (xhci->quirks & XHCI_INTEL_HOST)
4327                 return xhci_check_intel_tier_policy(udev, state);
4328         return -EINVAL;
4329 }
4330
4331 /* Returns the U1 or U2 timeout that should be enabled.
4332  * If the tier check or timeout setting functions return with a non-zero exit
4333  * code, that means the timeout value has been finalized and we shouldn't look
4334  * at any more endpoints.
4335  */
4336 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4337                         struct usb_device *udev, enum usb3_link_state state)
4338 {
4339         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4340         struct usb_host_config *config;
4341         char *state_name;
4342         int i;
4343         u16 timeout = USB3_LPM_DISABLED;
4344
4345         if (state == USB3_LPM_U1)
4346                 state_name = "U1";
4347         else if (state == USB3_LPM_U2)
4348                 state_name = "U2";
4349         else {
4350                 dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4351                                 state);
4352                 return timeout;
4353         }
4354
4355         if (xhci_check_tier_policy(xhci, udev, state) < 0)
4356                 return timeout;
4357
4358         /* Gather some information about the currently installed configuration
4359          * and alternate interface settings.
4360          */
4361         if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4362                         state, &timeout))
4363                 return timeout;
4364
4365         config = udev->actconfig;
4366         if (!config)
4367                 return timeout;
4368
4369         for (i = 0; i < USB_MAXINTERFACES; i++) {
4370                 struct usb_driver *driver;
4371                 struct usb_interface *intf = config->interface[i];
4372
4373                 if (!intf)
4374                         continue;
4375
4376                 /* Check if any currently bound drivers want hub-initiated LPM
4377                  * disabled.
4378                  */
4379                 if (intf->dev.driver) {
4380                         driver = to_usb_driver(intf->dev.driver);
4381                         if (driver && driver->disable_hub_initiated_lpm) {
4382                                 dev_dbg(&udev->dev, "Hub-initiated %s disabled "
4383                                                 "at request of driver %s\n",
4384                                                 state_name, driver->name);
4385                                 return xhci_get_timeout_no_hub_lpm(udev, state);
4386                         }
4387                 }
4388
4389                 /* Not sure how this could happen... */
4390                 if (!intf->cur_altsetting)
4391                         continue;
4392
4393                 if (xhci_update_timeout_for_interface(xhci, udev,
4394                                         intf->cur_altsetting,
4395                                         state, &timeout))
4396                         return timeout;
4397         }
4398         return timeout;
4399 }
4400
4401 /*
4402  * Issue an Evaluate Context command to change the Maximum Exit Latency in the
4403  * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
4404  */
4405 static int xhci_change_max_exit_latency(struct xhci_hcd *xhci,
4406                         struct usb_device *udev, u16 max_exit_latency)
4407 {
4408         struct xhci_virt_device *virt_dev;
4409         struct xhci_command *command;
4410         struct xhci_input_control_ctx *ctrl_ctx;
4411         struct xhci_slot_ctx *slot_ctx;
4412         unsigned long flags;
4413         int ret;
4414
4415         spin_lock_irqsave(&xhci->lock, flags);
4416         if (max_exit_latency == xhci->devs[udev->slot_id]->current_mel) {
4417                 spin_unlock_irqrestore(&xhci->lock, flags);
4418                 return 0;
4419         }
4420
4421         /* Attempt to issue an Evaluate Context command to change the MEL. */
4422         virt_dev = xhci->devs[udev->slot_id];
4423         command = xhci->lpm_command;
4424         xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4425         spin_unlock_irqrestore(&xhci->lock, flags);
4426
4427         ctrl_ctx = xhci_get_input_control_ctx(xhci, command->in_ctx);
4428         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4429         slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4430         slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4431         slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4432
4433         xhci_dbg(xhci, "Set up evaluate context for LPM MEL change.\n");
4434         xhci_dbg(xhci, "Slot %u Input Context:\n", udev->slot_id);
4435         xhci_dbg_ctx(xhci, command->in_ctx, 0);
4436
4437         /* Issue and wait for the evaluate context command. */
4438         ret = xhci_configure_endpoint(xhci, udev, command,
4439                         true, true);
4440         xhci_dbg(xhci, "Slot %u Output Context:\n", udev->slot_id);
4441         xhci_dbg_ctx(xhci, virt_dev->out_ctx, 0);
4442
4443         if (!ret) {
4444                 spin_lock_irqsave(&xhci->lock, flags);
4445                 virt_dev->current_mel = max_exit_latency;
4446                 spin_unlock_irqrestore(&xhci->lock, flags);
4447         }
4448         return ret;
4449 }
4450
4451 static int calculate_max_exit_latency(struct usb_device *udev,
4452                 enum usb3_link_state state_changed,
4453                 u16 hub_encoded_timeout)
4454 {
4455         unsigned long long u1_mel_us = 0;
4456         unsigned long long u2_mel_us = 0;
4457         unsigned long long mel_us = 0;
4458         bool disabling_u1;
4459         bool disabling_u2;
4460         bool enabling_u1;
4461         bool enabling_u2;
4462
4463         disabling_u1 = (state_changed == USB3_LPM_U1 &&
4464                         hub_encoded_timeout == USB3_LPM_DISABLED);
4465         disabling_u2 = (state_changed == USB3_LPM_U2 &&
4466                         hub_encoded_timeout == USB3_LPM_DISABLED);
4467
4468         enabling_u1 = (state_changed == USB3_LPM_U1 &&
4469                         hub_encoded_timeout != USB3_LPM_DISABLED);
4470         enabling_u2 = (state_changed == USB3_LPM_U2 &&
4471                         hub_encoded_timeout != USB3_LPM_DISABLED);
4472
4473         /* If U1 was already enabled and we're not disabling it,
4474          * or we're going to enable U1, account for the U1 max exit latency.
4475          */
4476         if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4477                         enabling_u1)
4478                 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4479         if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4480                         enabling_u2)
4481                 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4482
4483         if (u1_mel_us > u2_mel_us)
4484                 mel_us = u1_mel_us;
4485         else
4486                 mel_us = u2_mel_us;
4487         /* xHCI host controller max exit latency field is only 16 bits wide. */
4488         if (mel_us > MAX_EXIT) {
4489                 dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4490                                 "is too big.\n", mel_us);
4491                 return -E2BIG;
4492         }
4493         return mel_us;
4494 }
4495
4496 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
4497 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4498                         struct usb_device *udev, enum usb3_link_state state)
4499 {
4500         struct xhci_hcd *xhci;
4501         u16 hub_encoded_timeout;
4502         int mel;
4503         int ret;
4504
4505         xhci = hcd_to_xhci(hcd);
4506         /* The LPM timeout values are pretty host-controller specific, so don't
4507          * enable hub-initiated timeouts unless the vendor has provided
4508          * information about their timeout algorithm.
4509          */
4510         if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4511                         !xhci->devs[udev->slot_id])
4512                 return USB3_LPM_DISABLED;
4513
4514         hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4515         mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4516         if (mel < 0) {
4517                 /* Max Exit Latency is too big, disable LPM. */
4518                 hub_encoded_timeout = USB3_LPM_DISABLED;
4519                 mel = 0;
4520         }
4521
4522         ret = xhci_change_max_exit_latency(xhci, udev, mel);
4523         if (ret)
4524                 return ret;
4525         return hub_encoded_timeout;
4526 }
4527
4528 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4529                         struct usb_device *udev, enum usb3_link_state state)
4530 {
4531         struct xhci_hcd *xhci;
4532         u16 mel;
4533         int ret;
4534
4535         xhci = hcd_to_xhci(hcd);
4536         if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4537                         !xhci->devs[udev->slot_id])
4538                 return 0;
4539
4540         mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
4541         ret = xhci_change_max_exit_latency(xhci, udev, mel);
4542         if (ret)
4543                 return ret;
4544         return 0;
4545 }
4546 #else /* CONFIG_PM */
4547
4548 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4549                         struct usb_device *udev, enum usb3_link_state state)
4550 {
4551         return USB3_LPM_DISABLED;
4552 }
4553
4554 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4555                         struct usb_device *udev, enum usb3_link_state state)
4556 {
4557         return 0;
4558 }
4559 #endif  /* CONFIG_PM */
4560
4561 /*-------------------------------------------------------------------------*/
4562
4563 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
4564  * internal data structures for the device.
4565  */
4566 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
4567                         struct usb_tt *tt, gfp_t mem_flags)
4568 {
4569         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4570         struct xhci_virt_device *vdev;
4571         struct xhci_command *config_cmd;
4572         struct xhci_input_control_ctx *ctrl_ctx;
4573         struct xhci_slot_ctx *slot_ctx;
4574         unsigned long flags;
4575         unsigned think_time;
4576         int ret;
4577
4578         /* Ignore root hubs */
4579         if (!hdev->parent)
4580                 return 0;
4581
4582         vdev = xhci->devs[hdev->slot_id];
4583         if (!vdev) {
4584                 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
4585                 return -EINVAL;
4586         }
4587         config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
4588         if (!config_cmd) {
4589                 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
4590                 return -ENOMEM;
4591         }
4592
4593         spin_lock_irqsave(&xhci->lock, flags);
4594         if (hdev->speed == USB_SPEED_HIGH &&
4595                         xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
4596                 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
4597                 xhci_free_command(xhci, config_cmd);
4598                 spin_unlock_irqrestore(&xhci->lock, flags);
4599                 return -ENOMEM;
4600         }
4601
4602         xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
4603         ctrl_ctx = xhci_get_input_control_ctx(xhci, config_cmd->in_ctx);
4604         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4605         slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
4606         slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
4607         if (tt->multi)
4608                 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
4609         if (xhci->hci_version > 0x95) {
4610                 xhci_dbg(xhci, "xHCI version %x needs hub "
4611                                 "TT think time and number of ports\n",
4612                                 (unsigned int) xhci->hci_version);
4613                 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
4614                 /* Set TT think time - convert from ns to FS bit times.
4615                  * 0 = 8 FS bit times, 1 = 16 FS bit times,
4616                  * 2 = 24 FS bit times, 3 = 32 FS bit times.
4617                  *
4618                  * xHCI 1.0: this field shall be 0 if the device is not a
4619                  * High-spped hub.
4620                  */
4621                 think_time = tt->think_time;
4622                 if (think_time != 0)
4623                         think_time = (think_time / 666) - 1;
4624                 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
4625                         slot_ctx->tt_info |=
4626                                 cpu_to_le32(TT_THINK_TIME(think_time));
4627         } else {
4628                 xhci_dbg(xhci, "xHCI version %x doesn't need hub "
4629                                 "TT think time or number of ports\n",
4630                                 (unsigned int) xhci->hci_version);
4631         }
4632         slot_ctx->dev_state = 0;
4633         spin_unlock_irqrestore(&xhci->lock, flags);
4634
4635         xhci_dbg(xhci, "Set up %s for hub device.\n",
4636                         (xhci->hci_version > 0x95) ?
4637                         "configure endpoint" : "evaluate context");
4638         xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id);
4639         xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0);
4640
4641         /* Issue and wait for the configure endpoint or
4642          * evaluate context command.
4643          */
4644         if (xhci->hci_version > 0x95)
4645                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4646                                 false, false);
4647         else
4648                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4649                                 true, false);
4650
4651         xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id);
4652         xhci_dbg_ctx(xhci, vdev->out_ctx, 0);
4653
4654         xhci_free_command(xhci, config_cmd);
4655         return ret;
4656 }
4657
4658 int xhci_get_frame(struct usb_hcd *hcd)
4659 {
4660         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4661         /* EHCI mods by the periodic size.  Why? */
4662         return xhci_readl(xhci, &xhci->run_regs->microframe_index) >> 3;
4663 }
4664
4665 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
4666 {
4667         struct xhci_hcd         *xhci;
4668         struct device           *dev = hcd->self.controller;
4669         int                     retval;
4670         u32                     temp;
4671
4672         /* Accept arbitrarily long scatter-gather lists */
4673         hcd->self.sg_tablesize = ~0;
4674         /* XHCI controllers don't stop the ep queue on short packets :| */
4675         hcd->self.no_stop_on_short = 1;
4676
4677         if (usb_hcd_is_primary_hcd(hcd)) {
4678                 xhci = kzalloc(sizeof(struct xhci_hcd), GFP_KERNEL);
4679                 if (!xhci)
4680                         return -ENOMEM;
4681                 *((struct xhci_hcd **) hcd->hcd_priv) = xhci;
4682                 xhci->main_hcd = hcd;
4683                 /* Mark the first roothub as being USB 2.0.
4684                  * The xHCI driver will register the USB 3.0 roothub.
4685                  */
4686                 hcd->speed = HCD_USB2;
4687                 hcd->self.root_hub->speed = USB_SPEED_HIGH;
4688                 /*
4689                  * USB 2.0 roothub under xHCI has an integrated TT,
4690                  * (rate matching hub) as opposed to having an OHCI/UHCI
4691                  * companion controller.
4692                  */
4693                 hcd->has_tt = 1;
4694         } else {
4695                 /* xHCI private pointer was set in xhci_pci_probe for the second
4696                  * registered roothub.
4697                  */
4698                 xhci = hcd_to_xhci(hcd);
4699                 temp = xhci_readl(xhci, &xhci->cap_regs->hcc_params);
4700                 if (HCC_64BIT_ADDR(temp)) {
4701                         xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4702                         dma_set_mask(hcd->self.controller, DMA_BIT_MASK(64));
4703                 } else {
4704                         dma_set_mask(hcd->self.controller, DMA_BIT_MASK(32));
4705                 }
4706                 return 0;
4707         }
4708
4709         xhci->cap_regs = hcd->regs;
4710         xhci->op_regs = hcd->regs +
4711                 HC_LENGTH(xhci_readl(xhci, &xhci->cap_regs->hc_capbase));
4712         xhci->run_regs = hcd->regs +
4713                 (xhci_readl(xhci, &xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
4714         /* Cache read-only capability registers */
4715         xhci->hcs_params1 = xhci_readl(xhci, &xhci->cap_regs->hcs_params1);
4716         xhci->hcs_params2 = xhci_readl(xhci, &xhci->cap_regs->hcs_params2);
4717         xhci->hcs_params3 = xhci_readl(xhci, &xhci->cap_regs->hcs_params3);
4718         xhci->hcc_params = xhci_readl(xhci, &xhci->cap_regs->hc_capbase);
4719         xhci->hci_version = HC_VERSION(xhci->hcc_params);
4720         xhci->hcc_params = xhci_readl(xhci, &xhci->cap_regs->hcc_params);
4721         xhci_print_registers(xhci);
4722
4723         get_quirks(dev, xhci);
4724
4725         /* Make sure the HC is halted. */
4726         retval = xhci_halt(xhci);
4727         if (retval)
4728                 goto error;
4729
4730         xhci_dbg(xhci, "Resetting HCD\n");
4731         /* Reset the internal HC memory state and registers. */
4732         retval = xhci_reset(xhci);
4733         if (retval)
4734                 goto error;
4735         xhci_dbg(xhci, "Reset complete\n");
4736
4737         temp = xhci_readl(xhci, &xhci->cap_regs->hcc_params);
4738         if (HCC_64BIT_ADDR(temp)) {
4739                 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4740                 dma_set_mask(hcd->self.controller, DMA_BIT_MASK(64));
4741         } else {
4742                 dma_set_mask(hcd->self.controller, DMA_BIT_MASK(32));
4743         }
4744
4745         xhci_dbg(xhci, "Calling HCD init\n");
4746         /* Initialize HCD and host controller data structures. */
4747         retval = xhci_init(hcd);
4748         if (retval)
4749                 goto error;
4750         xhci_dbg(xhci, "Called HCD init\n");
4751         return 0;
4752 error:
4753         kfree(xhci);
4754         return retval;
4755 }
4756
4757 MODULE_DESCRIPTION(DRIVER_DESC);
4758 MODULE_AUTHOR(DRIVER_AUTHOR);
4759 MODULE_LICENSE("GPL");
4760
4761 static int __init xhci_hcd_init(void)
4762 {
4763         int retval;
4764
4765         retval = xhci_register_pci();
4766         if (retval < 0) {
4767                 printk(KERN_DEBUG "Problem registering PCI driver.");
4768                 return retval;
4769         }
4770         retval = xhci_register_plat();
4771         if (retval < 0) {
4772                 printk(KERN_DEBUG "Problem registering platform driver.");
4773                 goto unreg_pci;
4774         }
4775         /*
4776          * Check the compiler generated sizes of structures that must be laid
4777          * out in specific ways for hardware access.
4778          */
4779         BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
4780         BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
4781         BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
4782         /* xhci_device_control has eight fields, and also
4783          * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
4784          */
4785         BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
4786         BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
4787         BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
4788         BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 7*32/8);
4789         BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
4790         /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
4791         BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
4792         return 0;
4793 unreg_pci:
4794         xhci_unregister_pci();
4795         return retval;
4796 }
4797 module_init(xhci_hcd_init);
4798
4799 static void __exit xhci_hcd_cleanup(void)
4800 {
4801         xhci_unregister_pci();
4802         xhci_unregister_plat();
4803 }
4804 module_exit(xhci_hcd_cleanup);