]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/usb/host/xhci.c
xhci: detect stop endpoint race using pending timer instead of counter.
[karo-tx-linux.git] / drivers / usb / host / xhci.c
1 /*
2  * xHCI host controller driver
3  *
4  * Copyright (C) 2008 Intel Corp.
5  *
6  * Author: Sarah Sharp
7  * Some code borrowed from the Linux EHCI driver.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16  * for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software Foundation,
20  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22
23 #include <linux/pci.h>
24 #include <linux/irq.h>
25 #include <linux/log2.h>
26 #include <linux/module.h>
27 #include <linux/moduleparam.h>
28 #include <linux/slab.h>
29 #include <linux/dmi.h>
30 #include <linux/dma-mapping.h>
31
32 #include "xhci.h"
33 #include "xhci-trace.h"
34 #include "xhci-mtk.h"
35
36 #define DRIVER_AUTHOR "Sarah Sharp"
37 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
38
39 #define PORT_WAKE_BITS  (PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
40
41 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
42 static int link_quirk;
43 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
44 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
45
46 static unsigned int quirks;
47 module_param(quirks, uint, S_IRUGO);
48 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
49
50 /* TODO: copied from ehci-hcd.c - can this be refactored? */
51 /*
52  * xhci_handshake - spin reading hc until handshake completes or fails
53  * @ptr: address of hc register to be read
54  * @mask: bits to look at in result of read
55  * @done: value of those bits when handshake succeeds
56  * @usec: timeout in microseconds
57  *
58  * Returns negative errno, or zero on success
59  *
60  * Success happens when the "mask" bits have the specified value (hardware
61  * handshake done).  There are two failure modes:  "usec" have passed (major
62  * hardware flakeout), or the register reads as all-ones (hardware removed).
63  */
64 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, int usec)
65 {
66         u32     result;
67
68         do {
69                 result = readl(ptr);
70                 if (result == ~(u32)0)          /* card removed */
71                         return -ENODEV;
72                 result &= mask;
73                 if (result == done)
74                         return 0;
75                 udelay(1);
76                 usec--;
77         } while (usec > 0);
78         return -ETIMEDOUT;
79 }
80
81 /*
82  * Disable interrupts and begin the xHCI halting process.
83  */
84 void xhci_quiesce(struct xhci_hcd *xhci)
85 {
86         u32 halted;
87         u32 cmd;
88         u32 mask;
89
90         mask = ~(XHCI_IRQS);
91         halted = readl(&xhci->op_regs->status) & STS_HALT;
92         if (!halted)
93                 mask &= ~CMD_RUN;
94
95         cmd = readl(&xhci->op_regs->command);
96         cmd &= mask;
97         writel(cmd, &xhci->op_regs->command);
98 }
99
100 /*
101  * Force HC into halt state.
102  *
103  * Disable any IRQs and clear the run/stop bit.
104  * HC will complete any current and actively pipelined transactions, and
105  * should halt within 16 ms of the run/stop bit being cleared.
106  * Read HC Halted bit in the status register to see when the HC is finished.
107  */
108 int xhci_halt(struct xhci_hcd *xhci)
109 {
110         int ret;
111         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
112         xhci_quiesce(xhci);
113
114         ret = xhci_handshake(&xhci->op_regs->status,
115                         STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
116         if (ret) {
117                 xhci_warn(xhci, "Host halt failed, %d\n", ret);
118                 return ret;
119         }
120         xhci->xhc_state |= XHCI_STATE_HALTED;
121         xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
122         return ret;
123 }
124
125 /*
126  * Set the run bit and wait for the host to be running.
127  */
128 static int xhci_start(struct xhci_hcd *xhci)
129 {
130         u32 temp;
131         int ret;
132
133         temp = readl(&xhci->op_regs->command);
134         temp |= (CMD_RUN);
135         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
136                         temp);
137         writel(temp, &xhci->op_regs->command);
138
139         /*
140          * Wait for the HCHalted Status bit to be 0 to indicate the host is
141          * running.
142          */
143         ret = xhci_handshake(&xhci->op_regs->status,
144                         STS_HALT, 0, XHCI_MAX_HALT_USEC);
145         if (ret == -ETIMEDOUT)
146                 xhci_err(xhci, "Host took too long to start, "
147                                 "waited %u microseconds.\n",
148                                 XHCI_MAX_HALT_USEC);
149         if (!ret)
150                 /* clear state flags. Including dying, halted or removing */
151                 xhci->xhc_state = 0;
152
153         return ret;
154 }
155
156 /*
157  * Reset a halted HC.
158  *
159  * This resets pipelines, timers, counters, state machines, etc.
160  * Transactions will be terminated immediately, and operational registers
161  * will be set to their defaults.
162  */
163 int xhci_reset(struct xhci_hcd *xhci)
164 {
165         u32 command;
166         u32 state;
167         int ret, i;
168
169         state = readl(&xhci->op_regs->status);
170
171         if (state == ~(u32)0) {
172                 xhci_warn(xhci, "Host not accessible, reset failed.\n");
173                 return -ENODEV;
174         }
175
176         if ((state & STS_HALT) == 0) {
177                 xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
178                 return 0;
179         }
180
181         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
182         command = readl(&xhci->op_regs->command);
183         command |= CMD_RESET;
184         writel(command, &xhci->op_regs->command);
185
186         /* Existing Intel xHCI controllers require a delay of 1 mS,
187          * after setting the CMD_RESET bit, and before accessing any
188          * HC registers. This allows the HC to complete the
189          * reset operation and be ready for HC register access.
190          * Without this delay, the subsequent HC register access,
191          * may result in a system hang very rarely.
192          */
193         if (xhci->quirks & XHCI_INTEL_HOST)
194                 udelay(1000);
195
196         ret = xhci_handshake(&xhci->op_regs->command,
197                         CMD_RESET, 0, 10 * 1000 * 1000);
198         if (ret)
199                 return ret;
200
201         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
202                          "Wait for controller to be ready for doorbell rings");
203         /*
204          * xHCI cannot write to any doorbells or operational registers other
205          * than status until the "Controller Not Ready" flag is cleared.
206          */
207         ret = xhci_handshake(&xhci->op_regs->status,
208                         STS_CNR, 0, 10 * 1000 * 1000);
209
210         for (i = 0; i < 2; ++i) {
211                 xhci->bus_state[i].port_c_suspend = 0;
212                 xhci->bus_state[i].suspended_ports = 0;
213                 xhci->bus_state[i].resuming_ports = 0;
214         }
215
216         return ret;
217 }
218
219 #ifdef CONFIG_PCI
220 static int xhci_free_msi(struct xhci_hcd *xhci)
221 {
222         int i;
223
224         if (!xhci->msix_entries)
225                 return -EINVAL;
226
227         for (i = 0; i < xhci->msix_count; i++)
228                 if (xhci->msix_entries[i].vector)
229                         free_irq(xhci->msix_entries[i].vector,
230                                         xhci_to_hcd(xhci));
231         return 0;
232 }
233
234 /*
235  * Set up MSI
236  */
237 static int xhci_setup_msi(struct xhci_hcd *xhci)
238 {
239         int ret;
240         struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
241
242         ret = pci_enable_msi(pdev);
243         if (ret) {
244                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
245                                 "failed to allocate MSI entry");
246                 return ret;
247         }
248
249         ret = request_irq(pdev->irq, xhci_msi_irq,
250                                 0, "xhci_hcd", xhci_to_hcd(xhci));
251         if (ret) {
252                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
253                                 "disable MSI interrupt");
254                 pci_disable_msi(pdev);
255         }
256
257         return ret;
258 }
259
260 /*
261  * Free IRQs
262  * free all IRQs request
263  */
264 static void xhci_free_irq(struct xhci_hcd *xhci)
265 {
266         struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
267         int ret;
268
269         /* return if using legacy interrupt */
270         if (xhci_to_hcd(xhci)->irq > 0)
271                 return;
272
273         ret = xhci_free_msi(xhci);
274         if (!ret)
275                 return;
276         if (pdev->irq > 0)
277                 free_irq(pdev->irq, xhci_to_hcd(xhci));
278
279         return;
280 }
281
282 /*
283  * Set up MSI-X
284  */
285 static int xhci_setup_msix(struct xhci_hcd *xhci)
286 {
287         int i, ret = 0;
288         struct usb_hcd *hcd = xhci_to_hcd(xhci);
289         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
290
291         /*
292          * calculate number of msi-x vectors supported.
293          * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
294          *   with max number of interrupters based on the xhci HCSPARAMS1.
295          * - num_online_cpus: maximum msi-x vectors per CPUs core.
296          *   Add additional 1 vector to ensure always available interrupt.
297          */
298         xhci->msix_count = min(num_online_cpus() + 1,
299                                 HCS_MAX_INTRS(xhci->hcs_params1));
300
301         xhci->msix_entries =
302                 kmalloc((sizeof(struct msix_entry))*xhci->msix_count,
303                                 GFP_KERNEL);
304         if (!xhci->msix_entries)
305                 return -ENOMEM;
306
307         for (i = 0; i < xhci->msix_count; i++) {
308                 xhci->msix_entries[i].entry = i;
309                 xhci->msix_entries[i].vector = 0;
310         }
311
312         ret = pci_enable_msix_exact(pdev, xhci->msix_entries, xhci->msix_count);
313         if (ret) {
314                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
315                                 "Failed to enable MSI-X");
316                 goto free_entries;
317         }
318
319         for (i = 0; i < xhci->msix_count; i++) {
320                 ret = request_irq(xhci->msix_entries[i].vector,
321                                 xhci_msi_irq,
322                                 0, "xhci_hcd", xhci_to_hcd(xhci));
323                 if (ret)
324                         goto disable_msix;
325         }
326
327         hcd->msix_enabled = 1;
328         return ret;
329
330 disable_msix:
331         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
332         xhci_free_irq(xhci);
333         pci_disable_msix(pdev);
334 free_entries:
335         kfree(xhci->msix_entries);
336         xhci->msix_entries = NULL;
337         return ret;
338 }
339
340 /* Free any IRQs and disable MSI-X */
341 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
342 {
343         struct usb_hcd *hcd = xhci_to_hcd(xhci);
344         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
345
346         if (xhci->quirks & XHCI_PLAT)
347                 return;
348
349         xhci_free_irq(xhci);
350
351         if (xhci->msix_entries) {
352                 pci_disable_msix(pdev);
353                 kfree(xhci->msix_entries);
354                 xhci->msix_entries = NULL;
355         } else {
356                 pci_disable_msi(pdev);
357         }
358
359         hcd->msix_enabled = 0;
360         return;
361 }
362
363 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
364 {
365         int i;
366
367         if (xhci->msix_entries) {
368                 for (i = 0; i < xhci->msix_count; i++)
369                         synchronize_irq(xhci->msix_entries[i].vector);
370         }
371 }
372
373 static int xhci_try_enable_msi(struct usb_hcd *hcd)
374 {
375         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
376         struct pci_dev  *pdev;
377         int ret;
378
379         /* The xhci platform device has set up IRQs through usb_add_hcd. */
380         if (xhci->quirks & XHCI_PLAT)
381                 return 0;
382
383         pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
384         /*
385          * Some Fresco Logic host controllers advertise MSI, but fail to
386          * generate interrupts.  Don't even try to enable MSI.
387          */
388         if (xhci->quirks & XHCI_BROKEN_MSI)
389                 goto legacy_irq;
390
391         /* unregister the legacy interrupt */
392         if (hcd->irq)
393                 free_irq(hcd->irq, hcd);
394         hcd->irq = 0;
395
396         ret = xhci_setup_msix(xhci);
397         if (ret)
398                 /* fall back to msi*/
399                 ret = xhci_setup_msi(xhci);
400
401         if (!ret)
402                 /* hcd->irq is 0, we have MSI */
403                 return 0;
404
405         if (!pdev->irq) {
406                 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
407                 return -EINVAL;
408         }
409
410  legacy_irq:
411         if (!strlen(hcd->irq_descr))
412                 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
413                          hcd->driver->description, hcd->self.busnum);
414
415         /* fall back to legacy interrupt*/
416         ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
417                         hcd->irq_descr, hcd);
418         if (ret) {
419                 xhci_err(xhci, "request interrupt %d failed\n",
420                                 pdev->irq);
421                 return ret;
422         }
423         hcd->irq = pdev->irq;
424         return 0;
425 }
426
427 #else
428
429 static inline int xhci_try_enable_msi(struct usb_hcd *hcd)
430 {
431         return 0;
432 }
433
434 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci)
435 {
436 }
437
438 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
439 {
440 }
441
442 #endif
443
444 static void compliance_mode_recovery(unsigned long arg)
445 {
446         struct xhci_hcd *xhci;
447         struct usb_hcd *hcd;
448         u32 temp;
449         int i;
450
451         xhci = (struct xhci_hcd *)arg;
452
453         for (i = 0; i < xhci->num_usb3_ports; i++) {
454                 temp = readl(xhci->usb3_ports[i]);
455                 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
456                         /*
457                          * Compliance Mode Detected. Letting USB Core
458                          * handle the Warm Reset
459                          */
460                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
461                                         "Compliance mode detected->port %d",
462                                         i + 1);
463                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
464                                         "Attempting compliance mode recovery");
465                         hcd = xhci->shared_hcd;
466
467                         if (hcd->state == HC_STATE_SUSPENDED)
468                                 usb_hcd_resume_root_hub(hcd);
469
470                         usb_hcd_poll_rh_status(hcd);
471                 }
472         }
473
474         if (xhci->port_status_u0 != ((1 << xhci->num_usb3_ports)-1))
475                 mod_timer(&xhci->comp_mode_recovery_timer,
476                         jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
477 }
478
479 /*
480  * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
481  * that causes ports behind that hardware to enter compliance mode sometimes.
482  * The quirk creates a timer that polls every 2 seconds the link state of
483  * each host controller's port and recovers it by issuing a Warm reset
484  * if Compliance mode is detected, otherwise the port will become "dead" (no
485  * device connections or disconnections will be detected anymore). Becasue no
486  * status event is generated when entering compliance mode (per xhci spec),
487  * this quirk is needed on systems that have the failing hardware installed.
488  */
489 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
490 {
491         xhci->port_status_u0 = 0;
492         setup_timer(&xhci->comp_mode_recovery_timer,
493                     compliance_mode_recovery, (unsigned long)xhci);
494         xhci->comp_mode_recovery_timer.expires = jiffies +
495                         msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
496
497         add_timer(&xhci->comp_mode_recovery_timer);
498         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
499                         "Compliance mode recovery timer initialized");
500 }
501
502 /*
503  * This function identifies the systems that have installed the SN65LVPE502CP
504  * USB3.0 re-driver and that need the Compliance Mode Quirk.
505  * Systems:
506  * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
507  */
508 static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
509 {
510         const char *dmi_product_name, *dmi_sys_vendor;
511
512         dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
513         dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
514         if (!dmi_product_name || !dmi_sys_vendor)
515                 return false;
516
517         if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
518                 return false;
519
520         if (strstr(dmi_product_name, "Z420") ||
521                         strstr(dmi_product_name, "Z620") ||
522                         strstr(dmi_product_name, "Z820") ||
523                         strstr(dmi_product_name, "Z1 Workstation"))
524                 return true;
525
526         return false;
527 }
528
529 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
530 {
531         return (xhci->port_status_u0 == ((1 << xhci->num_usb3_ports)-1));
532 }
533
534
535 /*
536  * Initialize memory for HCD and xHC (one-time init).
537  *
538  * Program the PAGESIZE register, initialize the device context array, create
539  * device contexts (?), set up a command ring segment (or two?), create event
540  * ring (one for now).
541  */
542 int xhci_init(struct usb_hcd *hcd)
543 {
544         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
545         int retval = 0;
546
547         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
548         spin_lock_init(&xhci->lock);
549         if (xhci->hci_version == 0x95 && link_quirk) {
550                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
551                                 "QUIRK: Not clearing Link TRB chain bits.");
552                 xhci->quirks |= XHCI_LINK_TRB_QUIRK;
553         } else {
554                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
555                                 "xHCI doesn't need link TRB QUIRK");
556         }
557         retval = xhci_mem_init(xhci, GFP_KERNEL);
558         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
559
560         /* Initializing Compliance Mode Recovery Data If Needed */
561         if (xhci_compliance_mode_recovery_timer_quirk_check()) {
562                 xhci->quirks |= XHCI_COMP_MODE_QUIRK;
563                 compliance_mode_recovery_timer_init(xhci);
564         }
565
566         return retval;
567 }
568
569 /*-------------------------------------------------------------------------*/
570
571
572 static int xhci_run_finished(struct xhci_hcd *xhci)
573 {
574         if (xhci_start(xhci)) {
575                 xhci_halt(xhci);
576                 return -ENODEV;
577         }
578         xhci->shared_hcd->state = HC_STATE_RUNNING;
579         xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
580
581         if (xhci->quirks & XHCI_NEC_HOST)
582                 xhci_ring_cmd_db(xhci);
583
584         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
585                         "Finished xhci_run for USB3 roothub");
586         return 0;
587 }
588
589 /*
590  * Start the HC after it was halted.
591  *
592  * This function is called by the USB core when the HC driver is added.
593  * Its opposite is xhci_stop().
594  *
595  * xhci_init() must be called once before this function can be called.
596  * Reset the HC, enable device slot contexts, program DCBAAP, and
597  * set command ring pointer and event ring pointer.
598  *
599  * Setup MSI-X vectors and enable interrupts.
600  */
601 int xhci_run(struct usb_hcd *hcd)
602 {
603         u32 temp;
604         u64 temp_64;
605         int ret;
606         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
607
608         /* Start the xHCI host controller running only after the USB 2.0 roothub
609          * is setup.
610          */
611
612         hcd->uses_new_polling = 1;
613         if (!usb_hcd_is_primary_hcd(hcd))
614                 return xhci_run_finished(xhci);
615
616         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
617
618         ret = xhci_try_enable_msi(hcd);
619         if (ret)
620                 return ret;
621
622         xhci_dbg(xhci, "Command ring memory map follows:\n");
623         xhci_debug_ring(xhci, xhci->cmd_ring);
624         xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
625         xhci_dbg_cmd_ptrs(xhci);
626
627         xhci_dbg(xhci, "ERST memory map follows:\n");
628         xhci_dbg_erst(xhci, &xhci->erst);
629         xhci_dbg(xhci, "Event ring:\n");
630         xhci_debug_ring(xhci, xhci->event_ring);
631         xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
632         temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
633         temp_64 &= ~ERST_PTR_MASK;
634         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
635                         "ERST deq = 64'h%0lx", (long unsigned int) temp_64);
636
637         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
638                         "// Set the interrupt modulation register");
639         temp = readl(&xhci->ir_set->irq_control);
640         temp &= ~ER_IRQ_INTERVAL_MASK;
641         /*
642          * the increment interval is 8 times as much as that defined
643          * in xHCI spec on MTK's controller
644          */
645         temp |= (u32) ((xhci->quirks & XHCI_MTK_HOST) ? 20 : 160);
646         writel(temp, &xhci->ir_set->irq_control);
647
648         /* Set the HCD state before we enable the irqs */
649         temp = readl(&xhci->op_regs->command);
650         temp |= (CMD_EIE);
651         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
652                         "// Enable interrupts, cmd = 0x%x.", temp);
653         writel(temp, &xhci->op_regs->command);
654
655         temp = readl(&xhci->ir_set->irq_pending);
656         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
657                         "// Enabling event ring interrupter %p by writing 0x%x to irq_pending",
658                         xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
659         writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending);
660         xhci_print_ir_set(xhci, 0);
661
662         if (xhci->quirks & XHCI_NEC_HOST) {
663                 struct xhci_command *command;
664                 command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
665                 if (!command)
666                         return -ENOMEM;
667                 xhci_queue_vendor_command(xhci, command, 0, 0, 0,
668                                 TRB_TYPE(TRB_NEC_GET_FW));
669         }
670         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
671                         "Finished xhci_run for USB2 roothub");
672         return 0;
673 }
674 EXPORT_SYMBOL_GPL(xhci_run);
675
676 /*
677  * Stop xHCI driver.
678  *
679  * This function is called by the USB core when the HC driver is removed.
680  * Its opposite is xhci_run().
681  *
682  * Disable device contexts, disable IRQs, and quiesce the HC.
683  * Reset the HC, finish any completed transactions, and cleanup memory.
684  */
685 void xhci_stop(struct usb_hcd *hcd)
686 {
687         u32 temp;
688         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
689
690         mutex_lock(&xhci->mutex);
691
692         if (!(xhci->xhc_state & XHCI_STATE_HALTED)) {
693                 spin_lock_irq(&xhci->lock);
694
695                 xhci->xhc_state |= XHCI_STATE_HALTED;
696                 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
697                 xhci_halt(xhci);
698                 xhci_reset(xhci);
699                 spin_unlock_irq(&xhci->lock);
700         }
701
702         if (!usb_hcd_is_primary_hcd(hcd)) {
703                 mutex_unlock(&xhci->mutex);
704                 return;
705         }
706
707         xhci_cleanup_msix(xhci);
708
709         /* Deleting Compliance Mode Recovery Timer */
710         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
711                         (!(xhci_all_ports_seen_u0(xhci)))) {
712                 del_timer_sync(&xhci->comp_mode_recovery_timer);
713                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
714                                 "%s: compliance mode recovery timer deleted",
715                                 __func__);
716         }
717
718         if (xhci->quirks & XHCI_AMD_PLL_FIX)
719                 usb_amd_dev_put();
720
721         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
722                         "// Disabling event ring interrupts");
723         temp = readl(&xhci->op_regs->status);
724         writel(temp & ~STS_EINT, &xhci->op_regs->status);
725         temp = readl(&xhci->ir_set->irq_pending);
726         writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
727         xhci_print_ir_set(xhci, 0);
728
729         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
730         xhci_mem_cleanup(xhci);
731         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
732                         "xhci_stop completed - status = %x",
733                         readl(&xhci->op_regs->status));
734         mutex_unlock(&xhci->mutex);
735 }
736
737 /*
738  * Shutdown HC (not bus-specific)
739  *
740  * This is called when the machine is rebooting or halting.  We assume that the
741  * machine will be powered off, and the HC's internal state will be reset.
742  * Don't bother to free memory.
743  *
744  * This will only ever be called with the main usb_hcd (the USB3 roothub).
745  */
746 void xhci_shutdown(struct usb_hcd *hcd)
747 {
748         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
749
750         if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
751                 usb_disable_xhci_ports(to_pci_dev(hcd->self.controller));
752
753         spin_lock_irq(&xhci->lock);
754         xhci_halt(xhci);
755         /* Workaround for spurious wakeups at shutdown with HSW */
756         if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
757                 xhci_reset(xhci);
758         spin_unlock_irq(&xhci->lock);
759
760         xhci_cleanup_msix(xhci);
761
762         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
763                         "xhci_shutdown completed - status = %x",
764                         readl(&xhci->op_regs->status));
765
766         /* Yet another workaround for spurious wakeups at shutdown with HSW */
767         if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
768                 pci_set_power_state(to_pci_dev(hcd->self.controller), PCI_D3hot);
769 }
770
771 #ifdef CONFIG_PM
772 static void xhci_save_registers(struct xhci_hcd *xhci)
773 {
774         xhci->s3.command = readl(&xhci->op_regs->command);
775         xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
776         xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
777         xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
778         xhci->s3.erst_size = readl(&xhci->ir_set->erst_size);
779         xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
780         xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
781         xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending);
782         xhci->s3.irq_control = readl(&xhci->ir_set->irq_control);
783 }
784
785 static void xhci_restore_registers(struct xhci_hcd *xhci)
786 {
787         writel(xhci->s3.command, &xhci->op_regs->command);
788         writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
789         xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
790         writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
791         writel(xhci->s3.erst_size, &xhci->ir_set->erst_size);
792         xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
793         xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
794         writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
795         writel(xhci->s3.irq_control, &xhci->ir_set->irq_control);
796 }
797
798 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
799 {
800         u64     val_64;
801
802         /* step 2: initialize command ring buffer */
803         val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
804         val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
805                 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
806                                       xhci->cmd_ring->dequeue) &
807                  (u64) ~CMD_RING_RSVD_BITS) |
808                 xhci->cmd_ring->cycle_state;
809         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
810                         "// Setting command ring address to 0x%llx",
811                         (long unsigned long) val_64);
812         xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
813 }
814
815 /*
816  * The whole command ring must be cleared to zero when we suspend the host.
817  *
818  * The host doesn't save the command ring pointer in the suspend well, so we
819  * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
820  * aligned, because of the reserved bits in the command ring dequeue pointer
821  * register.  Therefore, we can't just set the dequeue pointer back in the
822  * middle of the ring (TRBs are 16-byte aligned).
823  */
824 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
825 {
826         struct xhci_ring *ring;
827         struct xhci_segment *seg;
828
829         ring = xhci->cmd_ring;
830         seg = ring->deq_seg;
831         do {
832                 memset(seg->trbs, 0,
833                         sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
834                 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
835                         cpu_to_le32(~TRB_CYCLE);
836                 seg = seg->next;
837         } while (seg != ring->deq_seg);
838
839         /* Reset the software enqueue and dequeue pointers */
840         ring->deq_seg = ring->first_seg;
841         ring->dequeue = ring->first_seg->trbs;
842         ring->enq_seg = ring->deq_seg;
843         ring->enqueue = ring->dequeue;
844
845         ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
846         /*
847          * Ring is now zeroed, so the HW should look for change of ownership
848          * when the cycle bit is set to 1.
849          */
850         ring->cycle_state = 1;
851
852         /*
853          * Reset the hardware dequeue pointer.
854          * Yes, this will need to be re-written after resume, but we're paranoid
855          * and want to make sure the hardware doesn't access bogus memory
856          * because, say, the BIOS or an SMI started the host without changing
857          * the command ring pointers.
858          */
859         xhci_set_cmd_ring_deq(xhci);
860 }
861
862 static void xhci_disable_port_wake_on_bits(struct xhci_hcd *xhci)
863 {
864         int port_index;
865         __le32 __iomem **port_array;
866         unsigned long flags;
867         u32 t1, t2;
868
869         spin_lock_irqsave(&xhci->lock, flags);
870
871         /* disble usb3 ports Wake bits*/
872         port_index = xhci->num_usb3_ports;
873         port_array = xhci->usb3_ports;
874         while (port_index--) {
875                 t1 = readl(port_array[port_index]);
876                 t1 = xhci_port_state_to_neutral(t1);
877                 t2 = t1 & ~PORT_WAKE_BITS;
878                 if (t1 != t2)
879                         writel(t2, port_array[port_index]);
880         }
881
882         /* disble usb2 ports Wake bits*/
883         port_index = xhci->num_usb2_ports;
884         port_array = xhci->usb2_ports;
885         while (port_index--) {
886                 t1 = readl(port_array[port_index]);
887                 t1 = xhci_port_state_to_neutral(t1);
888                 t2 = t1 & ~PORT_WAKE_BITS;
889                 if (t1 != t2)
890                         writel(t2, port_array[port_index]);
891         }
892
893         spin_unlock_irqrestore(&xhci->lock, flags);
894 }
895
896 /*
897  * Stop HC (not bus-specific)
898  *
899  * This is called when the machine transition into S3/S4 mode.
900  *
901  */
902 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
903 {
904         int                     rc = 0;
905         unsigned int            delay = XHCI_MAX_HALT_USEC;
906         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
907         u32                     command;
908
909         if (!hcd->state)
910                 return 0;
911
912         if (hcd->state != HC_STATE_SUSPENDED ||
913                         xhci->shared_hcd->state != HC_STATE_SUSPENDED)
914                 return -EINVAL;
915
916         /* Clear root port wake on bits if wakeup not allowed. */
917         if (!do_wakeup)
918                 xhci_disable_port_wake_on_bits(xhci);
919
920         /* Don't poll the roothubs on bus suspend. */
921         xhci_dbg(xhci, "%s: stopping port polling.\n", __func__);
922         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
923         del_timer_sync(&hcd->rh_timer);
924         clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
925         del_timer_sync(&xhci->shared_hcd->rh_timer);
926
927         spin_lock_irq(&xhci->lock);
928         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
929         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
930         /* step 1: stop endpoint */
931         /* skipped assuming that port suspend has done */
932
933         /* step 2: clear Run/Stop bit */
934         command = readl(&xhci->op_regs->command);
935         command &= ~CMD_RUN;
936         writel(command, &xhci->op_regs->command);
937
938         /* Some chips from Fresco Logic need an extraordinary delay */
939         delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
940
941         if (xhci_handshake(&xhci->op_regs->status,
942                       STS_HALT, STS_HALT, delay)) {
943                 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
944                 spin_unlock_irq(&xhci->lock);
945                 return -ETIMEDOUT;
946         }
947         xhci_clear_command_ring(xhci);
948
949         /* step 3: save registers */
950         xhci_save_registers(xhci);
951
952         /* step 4: set CSS flag */
953         command = readl(&xhci->op_regs->command);
954         command |= CMD_CSS;
955         writel(command, &xhci->op_regs->command);
956         if (xhci_handshake(&xhci->op_regs->status,
957                                 STS_SAVE, 0, 10 * 1000)) {
958                 xhci_warn(xhci, "WARN: xHC save state timeout\n");
959                 spin_unlock_irq(&xhci->lock);
960                 return -ETIMEDOUT;
961         }
962         spin_unlock_irq(&xhci->lock);
963
964         /*
965          * Deleting Compliance Mode Recovery Timer because the xHCI Host
966          * is about to be suspended.
967          */
968         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
969                         (!(xhci_all_ports_seen_u0(xhci)))) {
970                 del_timer_sync(&xhci->comp_mode_recovery_timer);
971                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
972                                 "%s: compliance mode recovery timer deleted",
973                                 __func__);
974         }
975
976         /* step 5: remove core well power */
977         /* synchronize irq when using MSI-X */
978         xhci_msix_sync_irqs(xhci);
979
980         return rc;
981 }
982 EXPORT_SYMBOL_GPL(xhci_suspend);
983
984 /*
985  * start xHC (not bus-specific)
986  *
987  * This is called when the machine transition from S3/S4 mode.
988  *
989  */
990 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
991 {
992         u32                     command, temp = 0, status;
993         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
994         struct usb_hcd          *secondary_hcd;
995         int                     retval = 0;
996         bool                    comp_timer_running = false;
997
998         if (!hcd->state)
999                 return 0;
1000
1001         /* Wait a bit if either of the roothubs need to settle from the
1002          * transition into bus suspend.
1003          */
1004         if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
1005                         time_before(jiffies,
1006                                 xhci->bus_state[1].next_statechange))
1007                 msleep(100);
1008
1009         set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1010         set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1011
1012         spin_lock_irq(&xhci->lock);
1013         if (xhci->quirks & XHCI_RESET_ON_RESUME)
1014                 hibernated = true;
1015
1016         if (!hibernated) {
1017                 /* step 1: restore register */
1018                 xhci_restore_registers(xhci);
1019                 /* step 2: initialize command ring buffer */
1020                 xhci_set_cmd_ring_deq(xhci);
1021                 /* step 3: restore state and start state*/
1022                 /* step 3: set CRS flag */
1023                 command = readl(&xhci->op_regs->command);
1024                 command |= CMD_CRS;
1025                 writel(command, &xhci->op_regs->command);
1026                 if (xhci_handshake(&xhci->op_regs->status,
1027                               STS_RESTORE, 0, 10 * 1000)) {
1028                         xhci_warn(xhci, "WARN: xHC restore state timeout\n");
1029                         spin_unlock_irq(&xhci->lock);
1030                         return -ETIMEDOUT;
1031                 }
1032                 temp = readl(&xhci->op_regs->status);
1033         }
1034
1035         /* If restore operation fails, re-initialize the HC during resume */
1036         if ((temp & STS_SRE) || hibernated) {
1037
1038                 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1039                                 !(xhci_all_ports_seen_u0(xhci))) {
1040                         del_timer_sync(&xhci->comp_mode_recovery_timer);
1041                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1042                                 "Compliance Mode Recovery Timer deleted!");
1043                 }
1044
1045                 /* Let the USB core know _both_ roothubs lost power. */
1046                 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1047                 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1048
1049                 xhci_dbg(xhci, "Stop HCD\n");
1050                 xhci_halt(xhci);
1051                 xhci_reset(xhci);
1052                 spin_unlock_irq(&xhci->lock);
1053                 xhci_cleanup_msix(xhci);
1054
1055                 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1056                 temp = readl(&xhci->op_regs->status);
1057                 writel(temp & ~STS_EINT, &xhci->op_regs->status);
1058                 temp = readl(&xhci->ir_set->irq_pending);
1059                 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
1060                 xhci_print_ir_set(xhci, 0);
1061
1062                 xhci_dbg(xhci, "cleaning up memory\n");
1063                 xhci_mem_cleanup(xhci);
1064                 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1065                             readl(&xhci->op_regs->status));
1066
1067                 /* USB core calls the PCI reinit and start functions twice:
1068                  * first with the primary HCD, and then with the secondary HCD.
1069                  * If we don't do the same, the host will never be started.
1070                  */
1071                 if (!usb_hcd_is_primary_hcd(hcd))
1072                         secondary_hcd = hcd;
1073                 else
1074                         secondary_hcd = xhci->shared_hcd;
1075
1076                 xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1077                 retval = xhci_init(hcd->primary_hcd);
1078                 if (retval)
1079                         return retval;
1080                 comp_timer_running = true;
1081
1082                 xhci_dbg(xhci, "Start the primary HCD\n");
1083                 retval = xhci_run(hcd->primary_hcd);
1084                 if (!retval) {
1085                         xhci_dbg(xhci, "Start the secondary HCD\n");
1086                         retval = xhci_run(secondary_hcd);
1087                 }
1088                 hcd->state = HC_STATE_SUSPENDED;
1089                 xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1090                 goto done;
1091         }
1092
1093         /* step 4: set Run/Stop bit */
1094         command = readl(&xhci->op_regs->command);
1095         command |= CMD_RUN;
1096         writel(command, &xhci->op_regs->command);
1097         xhci_handshake(&xhci->op_regs->status, STS_HALT,
1098                   0, 250 * 1000);
1099
1100         /* step 5: walk topology and initialize portsc,
1101          * portpmsc and portli
1102          */
1103         /* this is done in bus_resume */
1104
1105         /* step 6: restart each of the previously
1106          * Running endpoints by ringing their doorbells
1107          */
1108
1109         spin_unlock_irq(&xhci->lock);
1110
1111  done:
1112         if (retval == 0) {
1113                 /* Resume root hubs only when have pending events. */
1114                 status = readl(&xhci->op_regs->status);
1115                 if (status & STS_EINT) {
1116                         usb_hcd_resume_root_hub(xhci->shared_hcd);
1117                         usb_hcd_resume_root_hub(hcd);
1118                 }
1119         }
1120
1121         /*
1122          * If system is subject to the Quirk, Compliance Mode Timer needs to
1123          * be re-initialized Always after a system resume. Ports are subject
1124          * to suffer the Compliance Mode issue again. It doesn't matter if
1125          * ports have entered previously to U0 before system's suspension.
1126          */
1127         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1128                 compliance_mode_recovery_timer_init(xhci);
1129
1130         /* Re-enable port polling. */
1131         xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1132         set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1133         usb_hcd_poll_rh_status(xhci->shared_hcd);
1134         set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1135         usb_hcd_poll_rh_status(hcd);
1136
1137         return retval;
1138 }
1139 EXPORT_SYMBOL_GPL(xhci_resume);
1140 #endif  /* CONFIG_PM */
1141
1142 /*-------------------------------------------------------------------------*/
1143
1144 /**
1145  * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1146  * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1147  * value to right shift 1 for the bitmask.
1148  *
1149  * Index  = (epnum * 2) + direction - 1,
1150  * where direction = 0 for OUT, 1 for IN.
1151  * For control endpoints, the IN index is used (OUT index is unused), so
1152  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1153  */
1154 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1155 {
1156         unsigned int index;
1157         if (usb_endpoint_xfer_control(desc))
1158                 index = (unsigned int) (usb_endpoint_num(desc)*2);
1159         else
1160                 index = (unsigned int) (usb_endpoint_num(desc)*2) +
1161                         (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1162         return index;
1163 }
1164
1165 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1166  * address from the XHCI endpoint index.
1167  */
1168 unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1169 {
1170         unsigned int number = DIV_ROUND_UP(ep_index, 2);
1171         unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1172         return direction | number;
1173 }
1174
1175 /* Find the flag for this endpoint (for use in the control context).  Use the
1176  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1177  * bit 1, etc.
1178  */
1179 unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1180 {
1181         return 1 << (xhci_get_endpoint_index(desc) + 1);
1182 }
1183
1184 /* Find the flag for this endpoint (for use in the control context).  Use the
1185  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1186  * bit 1, etc.
1187  */
1188 unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
1189 {
1190         return 1 << (ep_index + 1);
1191 }
1192
1193 /* Compute the last valid endpoint context index.  Basically, this is the
1194  * endpoint index plus one.  For slot contexts with more than valid endpoint,
1195  * we find the most significant bit set in the added contexts flags.
1196  * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1197  * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1198  */
1199 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1200 {
1201         return fls(added_ctxs) - 1;
1202 }
1203
1204 /* Returns 1 if the arguments are OK;
1205  * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1206  */
1207 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1208                 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1209                 const char *func) {
1210         struct xhci_hcd *xhci;
1211         struct xhci_virt_device *virt_dev;
1212
1213         if (!hcd || (check_ep && !ep) || !udev) {
1214                 pr_debug("xHCI %s called with invalid args\n", func);
1215                 return -EINVAL;
1216         }
1217         if (!udev->parent) {
1218                 pr_debug("xHCI %s called for root hub\n", func);
1219                 return 0;
1220         }
1221
1222         xhci = hcd_to_xhci(hcd);
1223         if (check_virt_dev) {
1224                 if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1225                         xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1226                                         func);
1227                         return -EINVAL;
1228                 }
1229
1230                 virt_dev = xhci->devs[udev->slot_id];
1231                 if (virt_dev->udev != udev) {
1232                         xhci_dbg(xhci, "xHCI %s called with udev and "
1233                                           "virt_dev does not match\n", func);
1234                         return -EINVAL;
1235                 }
1236         }
1237
1238         if (xhci->xhc_state & XHCI_STATE_HALTED)
1239                 return -ENODEV;
1240
1241         return 1;
1242 }
1243
1244 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1245                 struct usb_device *udev, struct xhci_command *command,
1246                 bool ctx_change, bool must_succeed);
1247
1248 /*
1249  * Full speed devices may have a max packet size greater than 8 bytes, but the
1250  * USB core doesn't know that until it reads the first 8 bytes of the
1251  * descriptor.  If the usb_device's max packet size changes after that point,
1252  * we need to issue an evaluate context command and wait on it.
1253  */
1254 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1255                 unsigned int ep_index, struct urb *urb)
1256 {
1257         struct xhci_container_ctx *out_ctx;
1258         struct xhci_input_control_ctx *ctrl_ctx;
1259         struct xhci_ep_ctx *ep_ctx;
1260         struct xhci_command *command;
1261         int max_packet_size;
1262         int hw_max_packet_size;
1263         int ret = 0;
1264
1265         out_ctx = xhci->devs[slot_id]->out_ctx;
1266         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1267         hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1268         max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1269         if (hw_max_packet_size != max_packet_size) {
1270                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1271                                 "Max Packet Size for ep 0 changed.");
1272                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1273                                 "Max packet size in usb_device = %d",
1274                                 max_packet_size);
1275                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1276                                 "Max packet size in xHCI HW = %d",
1277                                 hw_max_packet_size);
1278                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1279                                 "Issuing evaluate context command.");
1280
1281                 /* Set up the input context flags for the command */
1282                 /* FIXME: This won't work if a non-default control endpoint
1283                  * changes max packet sizes.
1284                  */
1285
1286                 command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
1287                 if (!command)
1288                         return -ENOMEM;
1289
1290                 command->in_ctx = xhci->devs[slot_id]->in_ctx;
1291                 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1292                 if (!ctrl_ctx) {
1293                         xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1294                                         __func__);
1295                         ret = -ENOMEM;
1296                         goto command_cleanup;
1297                 }
1298                 /* Set up the modified control endpoint 0 */
1299                 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1300                                 xhci->devs[slot_id]->out_ctx, ep_index);
1301
1302                 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
1303                 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1304                 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1305
1306                 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1307                 ctrl_ctx->drop_flags = 0;
1308
1309                 xhci_dbg(xhci, "Slot %d input context\n", slot_id);
1310                 xhci_dbg_ctx(xhci, command->in_ctx, ep_index);
1311                 xhci_dbg(xhci, "Slot %d output context\n", slot_id);
1312                 xhci_dbg_ctx(xhci, out_ctx, ep_index);
1313
1314                 ret = xhci_configure_endpoint(xhci, urb->dev, command,
1315                                 true, false);
1316
1317                 /* Clean up the input context for later use by bandwidth
1318                  * functions.
1319                  */
1320                 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1321 command_cleanup:
1322                 kfree(command->completion);
1323                 kfree(command);
1324         }
1325         return ret;
1326 }
1327
1328 /*
1329  * non-error returns are a promise to giveback() the urb later
1330  * we drop ownership so next owner (or urb unlink) can get it
1331  */
1332 int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1333 {
1334         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1335         struct xhci_td *buffer;
1336         unsigned long flags;
1337         int ret = 0;
1338         unsigned int slot_id, ep_index;
1339         struct urb_priv *urb_priv;
1340         int size, i;
1341
1342         if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1343                                         true, true, __func__) <= 0)
1344                 return -EINVAL;
1345
1346         slot_id = urb->dev->slot_id;
1347         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1348
1349         if (!HCD_HW_ACCESSIBLE(hcd)) {
1350                 if (!in_interrupt())
1351                         xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1352                 ret = -ESHUTDOWN;
1353                 goto exit;
1354         }
1355
1356         if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1357                 size = urb->number_of_packets;
1358         else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1359             urb->transfer_buffer_length > 0 &&
1360             urb->transfer_flags & URB_ZERO_PACKET &&
1361             !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1362                 size = 2;
1363         else
1364                 size = 1;
1365
1366         urb_priv = kzalloc(sizeof(struct urb_priv) +
1367                                   size * sizeof(struct xhci_td *), mem_flags);
1368         if (!urb_priv)
1369                 return -ENOMEM;
1370
1371         buffer = kzalloc(size * sizeof(struct xhci_td), mem_flags);
1372         if (!buffer) {
1373                 kfree(urb_priv);
1374                 return -ENOMEM;
1375         }
1376
1377         for (i = 0; i < size; i++) {
1378                 urb_priv->td[i] = buffer;
1379                 buffer++;
1380         }
1381
1382         urb_priv->length = size;
1383         urb_priv->td_cnt = 0;
1384         urb->hcpriv = urb_priv;
1385
1386         if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1387                 /* Check to see if the max packet size for the default control
1388                  * endpoint changed during FS device enumeration
1389                  */
1390                 if (urb->dev->speed == USB_SPEED_FULL) {
1391                         ret = xhci_check_maxpacket(xhci, slot_id,
1392                                         ep_index, urb);
1393                         if (ret < 0) {
1394                                 xhci_urb_free_priv(urb_priv);
1395                                 urb->hcpriv = NULL;
1396                                 return ret;
1397                         }
1398                 }
1399
1400                 /* We have a spinlock and interrupts disabled, so we must pass
1401                  * atomic context to this function, which may allocate memory.
1402                  */
1403                 spin_lock_irqsave(&xhci->lock, flags);
1404                 if (xhci->xhc_state & XHCI_STATE_DYING)
1405                         goto dying;
1406                 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1407                                 slot_id, ep_index);
1408                 if (ret)
1409                         goto free_priv;
1410                 spin_unlock_irqrestore(&xhci->lock, flags);
1411         } else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) {
1412                 spin_lock_irqsave(&xhci->lock, flags);
1413                 if (xhci->xhc_state & XHCI_STATE_DYING)
1414                         goto dying;
1415                 if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1416                                 EP_GETTING_STREAMS) {
1417                         xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1418                                         "is transitioning to using streams.\n");
1419                         ret = -EINVAL;
1420                 } else if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1421                                 EP_GETTING_NO_STREAMS) {
1422                         xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1423                                         "is transitioning to "
1424                                         "not having streams.\n");
1425                         ret = -EINVAL;
1426                 } else {
1427                         ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1428                                         slot_id, ep_index);
1429                 }
1430                 if (ret)
1431                         goto free_priv;
1432                 spin_unlock_irqrestore(&xhci->lock, flags);
1433         } else if (usb_endpoint_xfer_int(&urb->ep->desc)) {
1434                 spin_lock_irqsave(&xhci->lock, flags);
1435                 if (xhci->xhc_state & XHCI_STATE_DYING)
1436                         goto dying;
1437                 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1438                                 slot_id, ep_index);
1439                 if (ret)
1440                         goto free_priv;
1441                 spin_unlock_irqrestore(&xhci->lock, flags);
1442         } else {
1443                 spin_lock_irqsave(&xhci->lock, flags);
1444                 if (xhci->xhc_state & XHCI_STATE_DYING)
1445                         goto dying;
1446                 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1447                                 slot_id, ep_index);
1448                 if (ret)
1449                         goto free_priv;
1450                 spin_unlock_irqrestore(&xhci->lock, flags);
1451         }
1452 exit:
1453         return ret;
1454 dying:
1455         xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for "
1456                         "non-responsive xHCI host.\n",
1457                         urb->ep->desc.bEndpointAddress, urb);
1458         ret = -ESHUTDOWN;
1459 free_priv:
1460         xhci_urb_free_priv(urb_priv);
1461         urb->hcpriv = NULL;
1462         spin_unlock_irqrestore(&xhci->lock, flags);
1463         return ret;
1464 }
1465
1466 /*
1467  * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1468  * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1469  * should pick up where it left off in the TD, unless a Set Transfer Ring
1470  * Dequeue Pointer is issued.
1471  *
1472  * The TRBs that make up the buffers for the canceled URB will be "removed" from
1473  * the ring.  Since the ring is a contiguous structure, they can't be physically
1474  * removed.  Instead, there are two options:
1475  *
1476  *  1) If the HC is in the middle of processing the URB to be canceled, we
1477  *     simply move the ring's dequeue pointer past those TRBs using the Set
1478  *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1479  *     when drivers timeout on the last submitted URB and attempt to cancel.
1480  *
1481  *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1482  *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1483  *     HC will need to invalidate the any TRBs it has cached after the stop
1484  *     endpoint command, as noted in the xHCI 0.95 errata.
1485  *
1486  *  3) The TD may have completed by the time the Stop Endpoint Command
1487  *     completes, so software needs to handle that case too.
1488  *
1489  * This function should protect against the TD enqueueing code ringing the
1490  * doorbell while this code is waiting for a Stop Endpoint command to complete.
1491  * It also needs to account for multiple cancellations on happening at the same
1492  * time for the same endpoint.
1493  *
1494  * Note that this function can be called in any context, or so says
1495  * usb_hcd_unlink_urb()
1496  */
1497 int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1498 {
1499         unsigned long flags;
1500         int ret, i;
1501         u32 temp;
1502         struct xhci_hcd *xhci;
1503         struct urb_priv *urb_priv;
1504         struct xhci_td *td;
1505         unsigned int ep_index;
1506         struct xhci_ring *ep_ring;
1507         struct xhci_virt_ep *ep;
1508         struct xhci_command *command;
1509
1510         xhci = hcd_to_xhci(hcd);
1511         spin_lock_irqsave(&xhci->lock, flags);
1512         /* Make sure the URB hasn't completed or been unlinked already */
1513         ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1514         if (ret || !urb->hcpriv)
1515                 goto done;
1516         temp = readl(&xhci->op_regs->status);
1517         if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_HALTED)) {
1518                 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1519                                 "HW died, freeing TD.");
1520                 urb_priv = urb->hcpriv;
1521                 for (i = urb_priv->td_cnt;
1522                      i < urb_priv->length && xhci->devs[urb->dev->slot_id];
1523                      i++) {
1524                         td = urb_priv->td[i];
1525                         if (!list_empty(&td->td_list))
1526                                 list_del_init(&td->td_list);
1527                         if (!list_empty(&td->cancelled_td_list))
1528                                 list_del_init(&td->cancelled_td_list);
1529                 }
1530
1531                 usb_hcd_unlink_urb_from_ep(hcd, urb);
1532                 spin_unlock_irqrestore(&xhci->lock, flags);
1533                 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1534                 xhci_urb_free_priv(urb_priv);
1535                 return ret;
1536         }
1537
1538         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1539         ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index];
1540         ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1541         if (!ep_ring) {
1542                 ret = -EINVAL;
1543                 goto done;
1544         }
1545
1546         urb_priv = urb->hcpriv;
1547         i = urb_priv->td_cnt;
1548         if (i < urb_priv->length)
1549                 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1550                                 "Cancel URB %p, dev %s, ep 0x%x, "
1551                                 "starting at offset 0x%llx",
1552                                 urb, urb->dev->devpath,
1553                                 urb->ep->desc.bEndpointAddress,
1554                                 (unsigned long long) xhci_trb_virt_to_dma(
1555                                         urb_priv->td[i]->start_seg,
1556                                         urb_priv->td[i]->first_trb));
1557
1558         for (; i < urb_priv->length; i++) {
1559                 td = urb_priv->td[i];
1560                 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1561         }
1562
1563         /* Queue a stop endpoint command, but only if this is
1564          * the first cancellation to be handled.
1565          */
1566         if (!(ep->ep_state & EP_STOP_CMD_PENDING)) {
1567                 command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC);
1568                 if (!command) {
1569                         ret = -ENOMEM;
1570                         goto done;
1571                 }
1572                 ep->ep_state |= EP_STOP_CMD_PENDING;
1573                 ep->stop_cmd_timer.expires = jiffies +
1574                         XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1575                 add_timer(&ep->stop_cmd_timer);
1576                 xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1577                                          ep_index, 0);
1578                 xhci_ring_cmd_db(xhci);
1579         }
1580 done:
1581         spin_unlock_irqrestore(&xhci->lock, flags);
1582         return ret;
1583 }
1584
1585 /* Drop an endpoint from a new bandwidth configuration for this device.
1586  * Only one call to this function is allowed per endpoint before
1587  * check_bandwidth() or reset_bandwidth() must be called.
1588  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1589  * add the endpoint to the schedule with possibly new parameters denoted by a
1590  * different endpoint descriptor in usb_host_endpoint.
1591  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1592  * not allowed.
1593  *
1594  * The USB core will not allow URBs to be queued to an endpoint that is being
1595  * disabled, so there's no need for mutual exclusion to protect
1596  * the xhci->devs[slot_id] structure.
1597  */
1598 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1599                 struct usb_host_endpoint *ep)
1600 {
1601         struct xhci_hcd *xhci;
1602         struct xhci_container_ctx *in_ctx, *out_ctx;
1603         struct xhci_input_control_ctx *ctrl_ctx;
1604         unsigned int ep_index;
1605         struct xhci_ep_ctx *ep_ctx;
1606         u32 drop_flag;
1607         u32 new_add_flags, new_drop_flags;
1608         int ret;
1609
1610         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1611         if (ret <= 0)
1612                 return ret;
1613         xhci = hcd_to_xhci(hcd);
1614         if (xhci->xhc_state & XHCI_STATE_DYING)
1615                 return -ENODEV;
1616
1617         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1618         drop_flag = xhci_get_endpoint_flag(&ep->desc);
1619         if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1620                 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1621                                 __func__, drop_flag);
1622                 return 0;
1623         }
1624
1625         in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1626         out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1627         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1628         if (!ctrl_ctx) {
1629                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1630                                 __func__);
1631                 return 0;
1632         }
1633
1634         ep_index = xhci_get_endpoint_index(&ep->desc);
1635         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1636         /* If the HC already knows the endpoint is disabled,
1637          * or the HCD has noted it is disabled, ignore this request
1638          */
1639         if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) ||
1640             le32_to_cpu(ctrl_ctx->drop_flags) &
1641             xhci_get_endpoint_flag(&ep->desc)) {
1642                 /* Do not warn when called after a usb_device_reset */
1643                 if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1644                         xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1645                                   __func__, ep);
1646                 return 0;
1647         }
1648
1649         ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1650         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1651
1652         ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1653         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1654
1655         xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1656
1657         if (xhci->quirks & XHCI_MTK_HOST)
1658                 xhci_mtk_drop_ep_quirk(hcd, udev, ep);
1659
1660         xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1661                         (unsigned int) ep->desc.bEndpointAddress,
1662                         udev->slot_id,
1663                         (unsigned int) new_drop_flags,
1664                         (unsigned int) new_add_flags);
1665         return 0;
1666 }
1667
1668 /* Add an endpoint to a new possible bandwidth configuration for this device.
1669  * Only one call to this function is allowed per endpoint before
1670  * check_bandwidth() or reset_bandwidth() must be called.
1671  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1672  * add the endpoint to the schedule with possibly new parameters denoted by a
1673  * different endpoint descriptor in usb_host_endpoint.
1674  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1675  * not allowed.
1676  *
1677  * The USB core will not allow URBs to be queued to an endpoint until the
1678  * configuration or alt setting is installed in the device, so there's no need
1679  * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1680  */
1681 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1682                 struct usb_host_endpoint *ep)
1683 {
1684         struct xhci_hcd *xhci;
1685         struct xhci_container_ctx *in_ctx;
1686         unsigned int ep_index;
1687         struct xhci_input_control_ctx *ctrl_ctx;
1688         u32 added_ctxs;
1689         u32 new_add_flags, new_drop_flags;
1690         struct xhci_virt_device *virt_dev;
1691         int ret = 0;
1692
1693         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1694         if (ret <= 0) {
1695                 /* So we won't queue a reset ep command for a root hub */
1696                 ep->hcpriv = NULL;
1697                 return ret;
1698         }
1699         xhci = hcd_to_xhci(hcd);
1700         if (xhci->xhc_state & XHCI_STATE_DYING)
1701                 return -ENODEV;
1702
1703         added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1704         if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1705                 /* FIXME when we have to issue an evaluate endpoint command to
1706                  * deal with ep0 max packet size changing once we get the
1707                  * descriptors
1708                  */
1709                 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1710                                 __func__, added_ctxs);
1711                 return 0;
1712         }
1713
1714         virt_dev = xhci->devs[udev->slot_id];
1715         in_ctx = virt_dev->in_ctx;
1716         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1717         if (!ctrl_ctx) {
1718                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1719                                 __func__);
1720                 return 0;
1721         }
1722
1723         ep_index = xhci_get_endpoint_index(&ep->desc);
1724         /* If this endpoint is already in use, and the upper layers are trying
1725          * to add it again without dropping it, reject the addition.
1726          */
1727         if (virt_dev->eps[ep_index].ring &&
1728                         !(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
1729                 xhci_warn(xhci, "Trying to add endpoint 0x%x "
1730                                 "without dropping it.\n",
1731                                 (unsigned int) ep->desc.bEndpointAddress);
1732                 return -EINVAL;
1733         }
1734
1735         /* If the HCD has already noted the endpoint is enabled,
1736          * ignore this request.
1737          */
1738         if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
1739                 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1740                                 __func__, ep);
1741                 return 0;
1742         }
1743
1744         /*
1745          * Configuration and alternate setting changes must be done in
1746          * process context, not interrupt context (or so documenation
1747          * for usb_set_interface() and usb_set_configuration() claim).
1748          */
1749         if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1750                 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1751                                 __func__, ep->desc.bEndpointAddress);
1752                 return -ENOMEM;
1753         }
1754
1755         if (xhci->quirks & XHCI_MTK_HOST) {
1756                 ret = xhci_mtk_add_ep_quirk(hcd, udev, ep);
1757                 if (ret < 0) {
1758                         xhci_free_or_cache_endpoint_ring(xhci,
1759                                 virt_dev, ep_index);
1760                         return ret;
1761                 }
1762         }
1763
1764         ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1765         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1766
1767         /* If xhci_endpoint_disable() was called for this endpoint, but the
1768          * xHC hasn't been notified yet through the check_bandwidth() call,
1769          * this re-adds a new state for the endpoint from the new endpoint
1770          * descriptors.  We must drop and re-add this endpoint, so we leave the
1771          * drop flags alone.
1772          */
1773         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1774
1775         /* Store the usb_device pointer for later use */
1776         ep->hcpriv = udev;
1777
1778         xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1779                         (unsigned int) ep->desc.bEndpointAddress,
1780                         udev->slot_id,
1781                         (unsigned int) new_drop_flags,
1782                         (unsigned int) new_add_flags);
1783         return 0;
1784 }
1785
1786 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1787 {
1788         struct xhci_input_control_ctx *ctrl_ctx;
1789         struct xhci_ep_ctx *ep_ctx;
1790         struct xhci_slot_ctx *slot_ctx;
1791         int i;
1792
1793         ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
1794         if (!ctrl_ctx) {
1795                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1796                                 __func__);
1797                 return;
1798         }
1799
1800         /* When a device's add flag and drop flag are zero, any subsequent
1801          * configure endpoint command will leave that endpoint's state
1802          * untouched.  Make sure we don't leave any old state in the input
1803          * endpoint contexts.
1804          */
1805         ctrl_ctx->drop_flags = 0;
1806         ctrl_ctx->add_flags = 0;
1807         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1808         slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1809         /* Endpoint 0 is always valid */
1810         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1811         for (i = 1; i < 31; ++i) {
1812                 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1813                 ep_ctx->ep_info = 0;
1814                 ep_ctx->ep_info2 = 0;
1815                 ep_ctx->deq = 0;
1816                 ep_ctx->tx_info = 0;
1817         }
1818 }
1819
1820 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1821                 struct usb_device *udev, u32 *cmd_status)
1822 {
1823         int ret;
1824
1825         switch (*cmd_status) {
1826         case COMP_CMD_ABORT:
1827         case COMP_CMD_STOP:
1828                 xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
1829                 ret = -ETIME;
1830                 break;
1831         case COMP_ENOMEM:
1832                 dev_warn(&udev->dev,
1833                          "Not enough host controller resources for new device state.\n");
1834                 ret = -ENOMEM;
1835                 /* FIXME: can we allocate more resources for the HC? */
1836                 break;
1837         case COMP_BW_ERR:
1838         case COMP_2ND_BW_ERR:
1839                 dev_warn(&udev->dev,
1840                          "Not enough bandwidth for new device state.\n");
1841                 ret = -ENOSPC;
1842                 /* FIXME: can we go back to the old state? */
1843                 break;
1844         case COMP_TRB_ERR:
1845                 /* the HCD set up something wrong */
1846                 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1847                                 "add flag = 1, "
1848                                 "and endpoint is not disabled.\n");
1849                 ret = -EINVAL;
1850                 break;
1851         case COMP_DEV_ERR:
1852                 dev_warn(&udev->dev,
1853                          "ERROR: Incompatible device for endpoint configure command.\n");
1854                 ret = -ENODEV;
1855                 break;
1856         case COMP_SUCCESS:
1857                 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1858                                 "Successful Endpoint Configure command");
1859                 ret = 0;
1860                 break;
1861         default:
1862                 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1863                                 *cmd_status);
1864                 ret = -EINVAL;
1865                 break;
1866         }
1867         return ret;
1868 }
1869
1870 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1871                 struct usb_device *udev, u32 *cmd_status)
1872 {
1873         int ret;
1874         struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id];
1875
1876         switch (*cmd_status) {
1877         case COMP_CMD_ABORT:
1878         case COMP_CMD_STOP:
1879                 xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
1880                 ret = -ETIME;
1881                 break;
1882         case COMP_EINVAL:
1883                 dev_warn(&udev->dev,
1884                          "WARN: xHCI driver setup invalid evaluate context command.\n");
1885                 ret = -EINVAL;
1886                 break;
1887         case COMP_EBADSLT:
1888                 dev_warn(&udev->dev,
1889                         "WARN: slot not enabled for evaluate context command.\n");
1890                 ret = -EINVAL;
1891                 break;
1892         case COMP_CTX_STATE:
1893                 dev_warn(&udev->dev,
1894                         "WARN: invalid context state for evaluate context command.\n");
1895                 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1);
1896                 ret = -EINVAL;
1897                 break;
1898         case COMP_DEV_ERR:
1899                 dev_warn(&udev->dev,
1900                         "ERROR: Incompatible device for evaluate context command.\n");
1901                 ret = -ENODEV;
1902                 break;
1903         case COMP_MEL_ERR:
1904                 /* Max Exit Latency too large error */
1905                 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
1906                 ret = -EINVAL;
1907                 break;
1908         case COMP_SUCCESS:
1909                 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1910                                 "Successful evaluate context command");
1911                 ret = 0;
1912                 break;
1913         default:
1914                 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1915                         *cmd_status);
1916                 ret = -EINVAL;
1917                 break;
1918         }
1919         return ret;
1920 }
1921
1922 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
1923                 struct xhci_input_control_ctx *ctrl_ctx)
1924 {
1925         u32 valid_add_flags;
1926         u32 valid_drop_flags;
1927
1928         /* Ignore the slot flag (bit 0), and the default control endpoint flag
1929          * (bit 1).  The default control endpoint is added during the Address
1930          * Device command and is never removed until the slot is disabled.
1931          */
1932         valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
1933         valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
1934
1935         /* Use hweight32 to count the number of ones in the add flags, or
1936          * number of endpoints added.  Don't count endpoints that are changed
1937          * (both added and dropped).
1938          */
1939         return hweight32(valid_add_flags) -
1940                 hweight32(valid_add_flags & valid_drop_flags);
1941 }
1942
1943 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
1944                 struct xhci_input_control_ctx *ctrl_ctx)
1945 {
1946         u32 valid_add_flags;
1947         u32 valid_drop_flags;
1948
1949         valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
1950         valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
1951
1952         return hweight32(valid_drop_flags) -
1953                 hweight32(valid_add_flags & valid_drop_flags);
1954 }
1955
1956 /*
1957  * We need to reserve the new number of endpoints before the configure endpoint
1958  * command completes.  We can't subtract the dropped endpoints from the number
1959  * of active endpoints until the command completes because we can oversubscribe
1960  * the host in this case:
1961  *
1962  *  - the first configure endpoint command drops more endpoints than it adds
1963  *  - a second configure endpoint command that adds more endpoints is queued
1964  *  - the first configure endpoint command fails, so the config is unchanged
1965  *  - the second command may succeed, even though there isn't enough resources
1966  *
1967  * Must be called with xhci->lock held.
1968  */
1969 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
1970                 struct xhci_input_control_ctx *ctrl_ctx)
1971 {
1972         u32 added_eps;
1973
1974         added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
1975         if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
1976                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1977                                 "Not enough ep ctxs: "
1978                                 "%u active, need to add %u, limit is %u.",
1979                                 xhci->num_active_eps, added_eps,
1980                                 xhci->limit_active_eps);
1981                 return -ENOMEM;
1982         }
1983         xhci->num_active_eps += added_eps;
1984         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1985                         "Adding %u ep ctxs, %u now active.", added_eps,
1986                         xhci->num_active_eps);
1987         return 0;
1988 }
1989
1990 /*
1991  * The configure endpoint was failed by the xHC for some other reason, so we
1992  * need to revert the resources that failed configuration would have used.
1993  *
1994  * Must be called with xhci->lock held.
1995  */
1996 static void xhci_free_host_resources(struct xhci_hcd *xhci,
1997                 struct xhci_input_control_ctx *ctrl_ctx)
1998 {
1999         u32 num_failed_eps;
2000
2001         num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2002         xhci->num_active_eps -= num_failed_eps;
2003         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2004                         "Removing %u failed ep ctxs, %u now active.",
2005                         num_failed_eps,
2006                         xhci->num_active_eps);
2007 }
2008
2009 /*
2010  * Now that the command has completed, clean up the active endpoint count by
2011  * subtracting out the endpoints that were dropped (but not changed).
2012  *
2013  * Must be called with xhci->lock held.
2014  */
2015 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
2016                 struct xhci_input_control_ctx *ctrl_ctx)
2017 {
2018         u32 num_dropped_eps;
2019
2020         num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
2021         xhci->num_active_eps -= num_dropped_eps;
2022         if (num_dropped_eps)
2023                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2024                                 "Removing %u dropped ep ctxs, %u now active.",
2025                                 num_dropped_eps,
2026                                 xhci->num_active_eps);
2027 }
2028
2029 static unsigned int xhci_get_block_size(struct usb_device *udev)
2030 {
2031         switch (udev->speed) {
2032         case USB_SPEED_LOW:
2033         case USB_SPEED_FULL:
2034                 return FS_BLOCK;
2035         case USB_SPEED_HIGH:
2036                 return HS_BLOCK;
2037         case USB_SPEED_SUPER:
2038         case USB_SPEED_SUPER_PLUS:
2039                 return SS_BLOCK;
2040         case USB_SPEED_UNKNOWN:
2041         case USB_SPEED_WIRELESS:
2042         default:
2043                 /* Should never happen */
2044                 return 1;
2045         }
2046 }
2047
2048 static unsigned int
2049 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2050 {
2051         if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2052                 return LS_OVERHEAD;
2053         if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2054                 return FS_OVERHEAD;
2055         return HS_OVERHEAD;
2056 }
2057
2058 /* If we are changing a LS/FS device under a HS hub,
2059  * make sure (if we are activating a new TT) that the HS bus has enough
2060  * bandwidth for this new TT.
2061  */
2062 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2063                 struct xhci_virt_device *virt_dev,
2064                 int old_active_eps)
2065 {
2066         struct xhci_interval_bw_table *bw_table;
2067         struct xhci_tt_bw_info *tt_info;
2068
2069         /* Find the bandwidth table for the root port this TT is attached to. */
2070         bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2071         tt_info = virt_dev->tt_info;
2072         /* If this TT already had active endpoints, the bandwidth for this TT
2073          * has already been added.  Removing all periodic endpoints (and thus
2074          * making the TT enactive) will only decrease the bandwidth used.
2075          */
2076         if (old_active_eps)
2077                 return 0;
2078         if (old_active_eps == 0 && tt_info->active_eps != 0) {
2079                 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2080                         return -ENOMEM;
2081                 return 0;
2082         }
2083         /* Not sure why we would have no new active endpoints...
2084          *
2085          * Maybe because of an Evaluate Context change for a hub update or a
2086          * control endpoint 0 max packet size change?
2087          * FIXME: skip the bandwidth calculation in that case.
2088          */
2089         return 0;
2090 }
2091
2092 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2093                 struct xhci_virt_device *virt_dev)
2094 {
2095         unsigned int bw_reserved;
2096
2097         bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2098         if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2099                 return -ENOMEM;
2100
2101         bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2102         if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2103                 return -ENOMEM;
2104
2105         return 0;
2106 }
2107
2108 /*
2109  * This algorithm is a very conservative estimate of the worst-case scheduling
2110  * scenario for any one interval.  The hardware dynamically schedules the
2111  * packets, so we can't tell which microframe could be the limiting factor in
2112  * the bandwidth scheduling.  This only takes into account periodic endpoints.
2113  *
2114  * Obviously, we can't solve an NP complete problem to find the minimum worst
2115  * case scenario.  Instead, we come up with an estimate that is no less than
2116  * the worst case bandwidth used for any one microframe, but may be an
2117  * over-estimate.
2118  *
2119  * We walk the requirements for each endpoint by interval, starting with the
2120  * smallest interval, and place packets in the schedule where there is only one
2121  * possible way to schedule packets for that interval.  In order to simplify
2122  * this algorithm, we record the largest max packet size for each interval, and
2123  * assume all packets will be that size.
2124  *
2125  * For interval 0, we obviously must schedule all packets for each interval.
2126  * The bandwidth for interval 0 is just the amount of data to be transmitted
2127  * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2128  * the number of packets).
2129  *
2130  * For interval 1, we have two possible microframes to schedule those packets
2131  * in.  For this algorithm, if we can schedule the same number of packets for
2132  * each possible scheduling opportunity (each microframe), we will do so.  The
2133  * remaining number of packets will be saved to be transmitted in the gaps in
2134  * the next interval's scheduling sequence.
2135  *
2136  * As we move those remaining packets to be scheduled with interval 2 packets,
2137  * we have to double the number of remaining packets to transmit.  This is
2138  * because the intervals are actually powers of 2, and we would be transmitting
2139  * the previous interval's packets twice in this interval.  We also have to be
2140  * sure that when we look at the largest max packet size for this interval, we
2141  * also look at the largest max packet size for the remaining packets and take
2142  * the greater of the two.
2143  *
2144  * The algorithm continues to evenly distribute packets in each scheduling
2145  * opportunity, and push the remaining packets out, until we get to the last
2146  * interval.  Then those packets and their associated overhead are just added
2147  * to the bandwidth used.
2148  */
2149 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2150                 struct xhci_virt_device *virt_dev,
2151                 int old_active_eps)
2152 {
2153         unsigned int bw_reserved;
2154         unsigned int max_bandwidth;
2155         unsigned int bw_used;
2156         unsigned int block_size;
2157         struct xhci_interval_bw_table *bw_table;
2158         unsigned int packet_size = 0;
2159         unsigned int overhead = 0;
2160         unsigned int packets_transmitted = 0;
2161         unsigned int packets_remaining = 0;
2162         unsigned int i;
2163
2164         if (virt_dev->udev->speed >= USB_SPEED_SUPER)
2165                 return xhci_check_ss_bw(xhci, virt_dev);
2166
2167         if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2168                 max_bandwidth = HS_BW_LIMIT;
2169                 /* Convert percent of bus BW reserved to blocks reserved */
2170                 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2171         } else {
2172                 max_bandwidth = FS_BW_LIMIT;
2173                 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2174         }
2175
2176         bw_table = virt_dev->bw_table;
2177         /* We need to translate the max packet size and max ESIT payloads into
2178          * the units the hardware uses.
2179          */
2180         block_size = xhci_get_block_size(virt_dev->udev);
2181
2182         /* If we are manipulating a LS/FS device under a HS hub, double check
2183          * that the HS bus has enough bandwidth if we are activing a new TT.
2184          */
2185         if (virt_dev->tt_info) {
2186                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2187                                 "Recalculating BW for rootport %u",
2188                                 virt_dev->real_port);
2189                 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2190                         xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2191                                         "newly activated TT.\n");
2192                         return -ENOMEM;
2193                 }
2194                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2195                                 "Recalculating BW for TT slot %u port %u",
2196                                 virt_dev->tt_info->slot_id,
2197                                 virt_dev->tt_info->ttport);
2198         } else {
2199                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2200                                 "Recalculating BW for rootport %u",
2201                                 virt_dev->real_port);
2202         }
2203
2204         /* Add in how much bandwidth will be used for interval zero, or the
2205          * rounded max ESIT payload + number of packets * largest overhead.
2206          */
2207         bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2208                 bw_table->interval_bw[0].num_packets *
2209                 xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2210
2211         for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2212                 unsigned int bw_added;
2213                 unsigned int largest_mps;
2214                 unsigned int interval_overhead;
2215
2216                 /*
2217                  * How many packets could we transmit in this interval?
2218                  * If packets didn't fit in the previous interval, we will need
2219                  * to transmit that many packets twice within this interval.
2220                  */
2221                 packets_remaining = 2 * packets_remaining +
2222                         bw_table->interval_bw[i].num_packets;
2223
2224                 /* Find the largest max packet size of this or the previous
2225                  * interval.
2226                  */
2227                 if (list_empty(&bw_table->interval_bw[i].endpoints))
2228                         largest_mps = 0;
2229                 else {
2230                         struct xhci_virt_ep *virt_ep;
2231                         struct list_head *ep_entry;
2232
2233                         ep_entry = bw_table->interval_bw[i].endpoints.next;
2234                         virt_ep = list_entry(ep_entry,
2235                                         struct xhci_virt_ep, bw_endpoint_list);
2236                         /* Convert to blocks, rounding up */
2237                         largest_mps = DIV_ROUND_UP(
2238                                         virt_ep->bw_info.max_packet_size,
2239                                         block_size);
2240                 }
2241                 if (largest_mps > packet_size)
2242                         packet_size = largest_mps;
2243
2244                 /* Use the larger overhead of this or the previous interval. */
2245                 interval_overhead = xhci_get_largest_overhead(
2246                                 &bw_table->interval_bw[i]);
2247                 if (interval_overhead > overhead)
2248                         overhead = interval_overhead;
2249
2250                 /* How many packets can we evenly distribute across
2251                  * (1 << (i + 1)) possible scheduling opportunities?
2252                  */
2253                 packets_transmitted = packets_remaining >> (i + 1);
2254
2255                 /* Add in the bandwidth used for those scheduled packets */
2256                 bw_added = packets_transmitted * (overhead + packet_size);
2257
2258                 /* How many packets do we have remaining to transmit? */
2259                 packets_remaining = packets_remaining % (1 << (i + 1));
2260
2261                 /* What largest max packet size should those packets have? */
2262                 /* If we've transmitted all packets, don't carry over the
2263                  * largest packet size.
2264                  */
2265                 if (packets_remaining == 0) {
2266                         packet_size = 0;
2267                         overhead = 0;
2268                 } else if (packets_transmitted > 0) {
2269                         /* Otherwise if we do have remaining packets, and we've
2270                          * scheduled some packets in this interval, take the
2271                          * largest max packet size from endpoints with this
2272                          * interval.
2273                          */
2274                         packet_size = largest_mps;
2275                         overhead = interval_overhead;
2276                 }
2277                 /* Otherwise carry over packet_size and overhead from the last
2278                  * time we had a remainder.
2279                  */
2280                 bw_used += bw_added;
2281                 if (bw_used > max_bandwidth) {
2282                         xhci_warn(xhci, "Not enough bandwidth. "
2283                                         "Proposed: %u, Max: %u\n",
2284                                 bw_used, max_bandwidth);
2285                         return -ENOMEM;
2286                 }
2287         }
2288         /*
2289          * Ok, we know we have some packets left over after even-handedly
2290          * scheduling interval 15.  We don't know which microframes they will
2291          * fit into, so we over-schedule and say they will be scheduled every
2292          * microframe.
2293          */
2294         if (packets_remaining > 0)
2295                 bw_used += overhead + packet_size;
2296
2297         if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2298                 unsigned int port_index = virt_dev->real_port - 1;
2299
2300                 /* OK, we're manipulating a HS device attached to a
2301                  * root port bandwidth domain.  Include the number of active TTs
2302                  * in the bandwidth used.
2303                  */
2304                 bw_used += TT_HS_OVERHEAD *
2305                         xhci->rh_bw[port_index].num_active_tts;
2306         }
2307
2308         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2309                 "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2310                 "Available: %u " "percent",
2311                 bw_used, max_bandwidth, bw_reserved,
2312                 (max_bandwidth - bw_used - bw_reserved) * 100 /
2313                 max_bandwidth);
2314
2315         bw_used += bw_reserved;
2316         if (bw_used > max_bandwidth) {
2317                 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2318                                 bw_used, max_bandwidth);
2319                 return -ENOMEM;
2320         }
2321
2322         bw_table->bw_used = bw_used;
2323         return 0;
2324 }
2325
2326 static bool xhci_is_async_ep(unsigned int ep_type)
2327 {
2328         return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2329                                         ep_type != ISOC_IN_EP &&
2330                                         ep_type != INT_IN_EP);
2331 }
2332
2333 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2334 {
2335         return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2336 }
2337
2338 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2339 {
2340         unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2341
2342         if (ep_bw->ep_interval == 0)
2343                 return SS_OVERHEAD_BURST +
2344                         (ep_bw->mult * ep_bw->num_packets *
2345                                         (SS_OVERHEAD + mps));
2346         return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2347                                 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2348                                 1 << ep_bw->ep_interval);
2349
2350 }
2351
2352 void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2353                 struct xhci_bw_info *ep_bw,
2354                 struct xhci_interval_bw_table *bw_table,
2355                 struct usb_device *udev,
2356                 struct xhci_virt_ep *virt_ep,
2357                 struct xhci_tt_bw_info *tt_info)
2358 {
2359         struct xhci_interval_bw *interval_bw;
2360         int normalized_interval;
2361
2362         if (xhci_is_async_ep(ep_bw->type))
2363                 return;
2364
2365         if (udev->speed >= USB_SPEED_SUPER) {
2366                 if (xhci_is_sync_in_ep(ep_bw->type))
2367                         xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2368                                 xhci_get_ss_bw_consumed(ep_bw);
2369                 else
2370                         xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2371                                 xhci_get_ss_bw_consumed(ep_bw);
2372                 return;
2373         }
2374
2375         /* SuperSpeed endpoints never get added to intervals in the table, so
2376          * this check is only valid for HS/FS/LS devices.
2377          */
2378         if (list_empty(&virt_ep->bw_endpoint_list))
2379                 return;
2380         /* For LS/FS devices, we need to translate the interval expressed in
2381          * microframes to frames.
2382          */
2383         if (udev->speed == USB_SPEED_HIGH)
2384                 normalized_interval = ep_bw->ep_interval;
2385         else
2386                 normalized_interval = ep_bw->ep_interval - 3;
2387
2388         if (normalized_interval == 0)
2389                 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2390         interval_bw = &bw_table->interval_bw[normalized_interval];
2391         interval_bw->num_packets -= ep_bw->num_packets;
2392         switch (udev->speed) {
2393         case USB_SPEED_LOW:
2394                 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2395                 break;
2396         case USB_SPEED_FULL:
2397                 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2398                 break;
2399         case USB_SPEED_HIGH:
2400                 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2401                 break;
2402         case USB_SPEED_SUPER:
2403         case USB_SPEED_SUPER_PLUS:
2404         case USB_SPEED_UNKNOWN:
2405         case USB_SPEED_WIRELESS:
2406                 /* Should never happen because only LS/FS/HS endpoints will get
2407                  * added to the endpoint list.
2408                  */
2409                 return;
2410         }
2411         if (tt_info)
2412                 tt_info->active_eps -= 1;
2413         list_del_init(&virt_ep->bw_endpoint_list);
2414 }
2415
2416 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2417                 struct xhci_bw_info *ep_bw,
2418                 struct xhci_interval_bw_table *bw_table,
2419                 struct usb_device *udev,
2420                 struct xhci_virt_ep *virt_ep,
2421                 struct xhci_tt_bw_info *tt_info)
2422 {
2423         struct xhci_interval_bw *interval_bw;
2424         struct xhci_virt_ep *smaller_ep;
2425         int normalized_interval;
2426
2427         if (xhci_is_async_ep(ep_bw->type))
2428                 return;
2429
2430         if (udev->speed == USB_SPEED_SUPER) {
2431                 if (xhci_is_sync_in_ep(ep_bw->type))
2432                         xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2433                                 xhci_get_ss_bw_consumed(ep_bw);
2434                 else
2435                         xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2436                                 xhci_get_ss_bw_consumed(ep_bw);
2437                 return;
2438         }
2439
2440         /* For LS/FS devices, we need to translate the interval expressed in
2441          * microframes to frames.
2442          */
2443         if (udev->speed == USB_SPEED_HIGH)
2444                 normalized_interval = ep_bw->ep_interval;
2445         else
2446                 normalized_interval = ep_bw->ep_interval - 3;
2447
2448         if (normalized_interval == 0)
2449                 bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2450         interval_bw = &bw_table->interval_bw[normalized_interval];
2451         interval_bw->num_packets += ep_bw->num_packets;
2452         switch (udev->speed) {
2453         case USB_SPEED_LOW:
2454                 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2455                 break;
2456         case USB_SPEED_FULL:
2457                 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2458                 break;
2459         case USB_SPEED_HIGH:
2460                 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2461                 break;
2462         case USB_SPEED_SUPER:
2463         case USB_SPEED_SUPER_PLUS:
2464         case USB_SPEED_UNKNOWN:
2465         case USB_SPEED_WIRELESS:
2466                 /* Should never happen because only LS/FS/HS endpoints will get
2467                  * added to the endpoint list.
2468                  */
2469                 return;
2470         }
2471
2472         if (tt_info)
2473                 tt_info->active_eps += 1;
2474         /* Insert the endpoint into the list, largest max packet size first. */
2475         list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2476                         bw_endpoint_list) {
2477                 if (ep_bw->max_packet_size >=
2478                                 smaller_ep->bw_info.max_packet_size) {
2479                         /* Add the new ep before the smaller endpoint */
2480                         list_add_tail(&virt_ep->bw_endpoint_list,
2481                                         &smaller_ep->bw_endpoint_list);
2482                         return;
2483                 }
2484         }
2485         /* Add the new endpoint at the end of the list. */
2486         list_add_tail(&virt_ep->bw_endpoint_list,
2487                         &interval_bw->endpoints);
2488 }
2489
2490 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2491                 struct xhci_virt_device *virt_dev,
2492                 int old_active_eps)
2493 {
2494         struct xhci_root_port_bw_info *rh_bw_info;
2495         if (!virt_dev->tt_info)
2496                 return;
2497
2498         rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2499         if (old_active_eps == 0 &&
2500                                 virt_dev->tt_info->active_eps != 0) {
2501                 rh_bw_info->num_active_tts += 1;
2502                 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2503         } else if (old_active_eps != 0 &&
2504                                 virt_dev->tt_info->active_eps == 0) {
2505                 rh_bw_info->num_active_tts -= 1;
2506                 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2507         }
2508 }
2509
2510 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2511                 struct xhci_virt_device *virt_dev,
2512                 struct xhci_container_ctx *in_ctx)
2513 {
2514         struct xhci_bw_info ep_bw_info[31];
2515         int i;
2516         struct xhci_input_control_ctx *ctrl_ctx;
2517         int old_active_eps = 0;
2518
2519         if (virt_dev->tt_info)
2520                 old_active_eps = virt_dev->tt_info->active_eps;
2521
2522         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2523         if (!ctrl_ctx) {
2524                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2525                                 __func__);
2526                 return -ENOMEM;
2527         }
2528
2529         for (i = 0; i < 31; i++) {
2530                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2531                         continue;
2532
2533                 /* Make a copy of the BW info in case we need to revert this */
2534                 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2535                                 sizeof(ep_bw_info[i]));
2536                 /* Drop the endpoint from the interval table if the endpoint is
2537                  * being dropped or changed.
2538                  */
2539                 if (EP_IS_DROPPED(ctrl_ctx, i))
2540                         xhci_drop_ep_from_interval_table(xhci,
2541                                         &virt_dev->eps[i].bw_info,
2542                                         virt_dev->bw_table,
2543                                         virt_dev->udev,
2544                                         &virt_dev->eps[i],
2545                                         virt_dev->tt_info);
2546         }
2547         /* Overwrite the information stored in the endpoints' bw_info */
2548         xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2549         for (i = 0; i < 31; i++) {
2550                 /* Add any changed or added endpoints to the interval table */
2551                 if (EP_IS_ADDED(ctrl_ctx, i))
2552                         xhci_add_ep_to_interval_table(xhci,
2553                                         &virt_dev->eps[i].bw_info,
2554                                         virt_dev->bw_table,
2555                                         virt_dev->udev,
2556                                         &virt_dev->eps[i],
2557                                         virt_dev->tt_info);
2558         }
2559
2560         if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2561                 /* Ok, this fits in the bandwidth we have.
2562                  * Update the number of active TTs.
2563                  */
2564                 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2565                 return 0;
2566         }
2567
2568         /* We don't have enough bandwidth for this, revert the stored info. */
2569         for (i = 0; i < 31; i++) {
2570                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2571                         continue;
2572
2573                 /* Drop the new copies of any added or changed endpoints from
2574                  * the interval table.
2575                  */
2576                 if (EP_IS_ADDED(ctrl_ctx, i)) {
2577                         xhci_drop_ep_from_interval_table(xhci,
2578                                         &virt_dev->eps[i].bw_info,
2579                                         virt_dev->bw_table,
2580                                         virt_dev->udev,
2581                                         &virt_dev->eps[i],
2582                                         virt_dev->tt_info);
2583                 }
2584                 /* Revert the endpoint back to its old information */
2585                 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2586                                 sizeof(ep_bw_info[i]));
2587                 /* Add any changed or dropped endpoints back into the table */
2588                 if (EP_IS_DROPPED(ctrl_ctx, i))
2589                         xhci_add_ep_to_interval_table(xhci,
2590                                         &virt_dev->eps[i].bw_info,
2591                                         virt_dev->bw_table,
2592                                         virt_dev->udev,
2593                                         &virt_dev->eps[i],
2594                                         virt_dev->tt_info);
2595         }
2596         return -ENOMEM;
2597 }
2598
2599
2600 /* Issue a configure endpoint command or evaluate context command
2601  * and wait for it to finish.
2602  */
2603 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2604                 struct usb_device *udev,
2605                 struct xhci_command *command,
2606                 bool ctx_change, bool must_succeed)
2607 {
2608         int ret;
2609         unsigned long flags;
2610         struct xhci_input_control_ctx *ctrl_ctx;
2611         struct xhci_virt_device *virt_dev;
2612
2613         if (!command)
2614                 return -EINVAL;
2615
2616         spin_lock_irqsave(&xhci->lock, flags);
2617         virt_dev = xhci->devs[udev->slot_id];
2618
2619         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2620         if (!ctrl_ctx) {
2621                 spin_unlock_irqrestore(&xhci->lock, flags);
2622                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2623                                 __func__);
2624                 return -ENOMEM;
2625         }
2626
2627         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2628                         xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2629                 spin_unlock_irqrestore(&xhci->lock, flags);
2630                 xhci_warn(xhci, "Not enough host resources, "
2631                                 "active endpoint contexts = %u\n",
2632                                 xhci->num_active_eps);
2633                 return -ENOMEM;
2634         }
2635         if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2636             xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2637                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2638                         xhci_free_host_resources(xhci, ctrl_ctx);
2639                 spin_unlock_irqrestore(&xhci->lock, flags);
2640                 xhci_warn(xhci, "Not enough bandwidth\n");
2641                 return -ENOMEM;
2642         }
2643
2644         if (!ctx_change)
2645                 ret = xhci_queue_configure_endpoint(xhci, command,
2646                                 command->in_ctx->dma,
2647                                 udev->slot_id, must_succeed);
2648         else
2649                 ret = xhci_queue_evaluate_context(xhci, command,
2650                                 command->in_ctx->dma,
2651                                 udev->slot_id, must_succeed);
2652         if (ret < 0) {
2653                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2654                         xhci_free_host_resources(xhci, ctrl_ctx);
2655                 spin_unlock_irqrestore(&xhci->lock, flags);
2656                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
2657                                 "FIXME allocate a new ring segment");
2658                 return -ENOMEM;
2659         }
2660         xhci_ring_cmd_db(xhci);
2661         spin_unlock_irqrestore(&xhci->lock, flags);
2662
2663         /* Wait for the configure endpoint command to complete */
2664         wait_for_completion(command->completion);
2665
2666         if (!ctx_change)
2667                 ret = xhci_configure_endpoint_result(xhci, udev,
2668                                                      &command->status);
2669         else
2670                 ret = xhci_evaluate_context_result(xhci, udev,
2671                                                    &command->status);
2672
2673         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2674                 spin_lock_irqsave(&xhci->lock, flags);
2675                 /* If the command failed, remove the reserved resources.
2676                  * Otherwise, clean up the estimate to include dropped eps.
2677                  */
2678                 if (ret)
2679                         xhci_free_host_resources(xhci, ctrl_ctx);
2680                 else
2681                         xhci_finish_resource_reservation(xhci, ctrl_ctx);
2682                 spin_unlock_irqrestore(&xhci->lock, flags);
2683         }
2684         return ret;
2685 }
2686
2687 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
2688         struct xhci_virt_device *vdev, int i)
2689 {
2690         struct xhci_virt_ep *ep = &vdev->eps[i];
2691
2692         if (ep->ep_state & EP_HAS_STREAMS) {
2693                 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2694                                 xhci_get_endpoint_address(i));
2695                 xhci_free_stream_info(xhci, ep->stream_info);
2696                 ep->stream_info = NULL;
2697                 ep->ep_state &= ~EP_HAS_STREAMS;
2698         }
2699 }
2700
2701 /* Called after one or more calls to xhci_add_endpoint() or
2702  * xhci_drop_endpoint().  If this call fails, the USB core is expected
2703  * to call xhci_reset_bandwidth().
2704  *
2705  * Since we are in the middle of changing either configuration or
2706  * installing a new alt setting, the USB core won't allow URBs to be
2707  * enqueued for any endpoint on the old config or interface.  Nothing
2708  * else should be touching the xhci->devs[slot_id] structure, so we
2709  * don't need to take the xhci->lock for manipulating that.
2710  */
2711 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2712 {
2713         int i;
2714         int ret = 0;
2715         struct xhci_hcd *xhci;
2716         struct xhci_virt_device *virt_dev;
2717         struct xhci_input_control_ctx *ctrl_ctx;
2718         struct xhci_slot_ctx *slot_ctx;
2719         struct xhci_command *command;
2720
2721         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2722         if (ret <= 0)
2723                 return ret;
2724         xhci = hcd_to_xhci(hcd);
2725         if ((xhci->xhc_state & XHCI_STATE_DYING) ||
2726                 (xhci->xhc_state & XHCI_STATE_REMOVING))
2727                 return -ENODEV;
2728
2729         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2730         virt_dev = xhci->devs[udev->slot_id];
2731
2732         command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
2733         if (!command)
2734                 return -ENOMEM;
2735
2736         command->in_ctx = virt_dev->in_ctx;
2737
2738         /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2739         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2740         if (!ctrl_ctx) {
2741                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2742                                 __func__);
2743                 ret = -ENOMEM;
2744                 goto command_cleanup;
2745         }
2746         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2747         ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2748         ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2749
2750         /* Don't issue the command if there's no endpoints to update. */
2751         if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2752             ctrl_ctx->drop_flags == 0) {
2753                 ret = 0;
2754                 goto command_cleanup;
2755         }
2756         /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
2757         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2758         for (i = 31; i >= 1; i--) {
2759                 __le32 le32 = cpu_to_le32(BIT(i));
2760
2761                 if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
2762                     || (ctrl_ctx->add_flags & le32) || i == 1) {
2763                         slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2764                         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
2765                         break;
2766                 }
2767         }
2768         xhci_dbg(xhci, "New Input Control Context:\n");
2769         xhci_dbg_ctx(xhci, virt_dev->in_ctx,
2770                      LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2771
2772         ret = xhci_configure_endpoint(xhci, udev, command,
2773                         false, false);
2774         if (ret)
2775                 /* Callee should call reset_bandwidth() */
2776                 goto command_cleanup;
2777
2778         xhci_dbg(xhci, "Output context after successful config ep cmd:\n");
2779         xhci_dbg_ctx(xhci, virt_dev->out_ctx,
2780                      LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2781
2782         /* Free any rings that were dropped, but not changed. */
2783         for (i = 1; i < 31; ++i) {
2784                 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2785                     !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
2786                         xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2787                         xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2788                 }
2789         }
2790         xhci_zero_in_ctx(xhci, virt_dev);
2791         /*
2792          * Install any rings for completely new endpoints or changed endpoints,
2793          * and free or cache any old rings from changed endpoints.
2794          */
2795         for (i = 1; i < 31; ++i) {
2796                 if (!virt_dev->eps[i].new_ring)
2797                         continue;
2798                 /* Only cache or free the old ring if it exists.
2799                  * It may not if this is the first add of an endpoint.
2800                  */
2801                 if (virt_dev->eps[i].ring) {
2802                         xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2803                 }
2804                 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2805                 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2806                 virt_dev->eps[i].new_ring = NULL;
2807         }
2808 command_cleanup:
2809         kfree(command->completion);
2810         kfree(command);
2811
2812         return ret;
2813 }
2814
2815 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2816 {
2817         struct xhci_hcd *xhci;
2818         struct xhci_virt_device *virt_dev;
2819         int i, ret;
2820
2821         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2822         if (ret <= 0)
2823                 return;
2824         xhci = hcd_to_xhci(hcd);
2825
2826         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2827         virt_dev = xhci->devs[udev->slot_id];
2828         /* Free any rings allocated for added endpoints */
2829         for (i = 0; i < 31; ++i) {
2830                 if (virt_dev->eps[i].new_ring) {
2831                         xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2832                         virt_dev->eps[i].new_ring = NULL;
2833                 }
2834         }
2835         xhci_zero_in_ctx(xhci, virt_dev);
2836 }
2837
2838 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2839                 struct xhci_container_ctx *in_ctx,
2840                 struct xhci_container_ctx *out_ctx,
2841                 struct xhci_input_control_ctx *ctrl_ctx,
2842                 u32 add_flags, u32 drop_flags)
2843 {
2844         ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2845         ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2846         xhci_slot_copy(xhci, in_ctx, out_ctx);
2847         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2848
2849         xhci_dbg(xhci, "Input Context:\n");
2850         xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags));
2851 }
2852
2853 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2854                 unsigned int slot_id, unsigned int ep_index,
2855                 struct xhci_dequeue_state *deq_state)
2856 {
2857         struct xhci_input_control_ctx *ctrl_ctx;
2858         struct xhci_container_ctx *in_ctx;
2859         struct xhci_ep_ctx *ep_ctx;
2860         u32 added_ctxs;
2861         dma_addr_t addr;
2862
2863         in_ctx = xhci->devs[slot_id]->in_ctx;
2864         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2865         if (!ctrl_ctx) {
2866                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2867                                 __func__);
2868                 return;
2869         }
2870
2871         xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
2872                         xhci->devs[slot_id]->out_ctx, ep_index);
2873         ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
2874         addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
2875                         deq_state->new_deq_ptr);
2876         if (addr == 0) {
2877                 xhci_warn(xhci, "WARN Cannot submit config ep after "
2878                                 "reset ep command\n");
2879                 xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
2880                                 deq_state->new_deq_seg,
2881                                 deq_state->new_deq_ptr);
2882                 return;
2883         }
2884         ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
2885
2886         added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
2887         xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
2888                         xhci->devs[slot_id]->out_ctx, ctrl_ctx,
2889                         added_ctxs, added_ctxs);
2890 }
2891
2892 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci,
2893                         unsigned int ep_index, struct xhci_td *td)
2894 {
2895         struct xhci_dequeue_state deq_state;
2896         struct xhci_virt_ep *ep;
2897         struct usb_device *udev = td->urb->dev;
2898
2899         xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2900                         "Cleaning up stalled endpoint ring");
2901         ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2902         /* We need to move the HW's dequeue pointer past this TD,
2903          * or it will attempt to resend it on the next doorbell ring.
2904          */
2905         xhci_find_new_dequeue_state(xhci, udev->slot_id,
2906                         ep_index, ep->stopped_stream, td, &deq_state);
2907
2908         if (!deq_state.new_deq_ptr || !deq_state.new_deq_seg)
2909                 return;
2910
2911         /* HW with the reset endpoint quirk will use the saved dequeue state to
2912          * issue a configure endpoint command later.
2913          */
2914         if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
2915                 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2916                                 "Queueing new dequeue state");
2917                 xhci_queue_new_dequeue_state(xhci, udev->slot_id,
2918                                 ep_index, ep->stopped_stream, &deq_state);
2919         } else {
2920                 /* Better hope no one uses the input context between now and the
2921                  * reset endpoint completion!
2922                  * XXX: No idea how this hardware will react when stream rings
2923                  * are enabled.
2924                  */
2925                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2926                                 "Setting up input context for "
2927                                 "configure endpoint command");
2928                 xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
2929                                 ep_index, &deq_state);
2930         }
2931 }
2932
2933 /* Called when clearing halted device. The core should have sent the control
2934  * message to clear the device halt condition. The host side of the halt should
2935  * already be cleared with a reset endpoint command issued when the STALL tx
2936  * event was received.
2937  *
2938  * Context: in_interrupt
2939  */
2940
2941 void xhci_endpoint_reset(struct usb_hcd *hcd,
2942                 struct usb_host_endpoint *ep)
2943 {
2944         struct xhci_hcd *xhci;
2945
2946         xhci = hcd_to_xhci(hcd);
2947
2948         /*
2949          * We might need to implement the config ep cmd in xhci 4.8.1 note:
2950          * The Reset Endpoint Command may only be issued to endpoints in the
2951          * Halted state. If software wishes reset the Data Toggle or Sequence
2952          * Number of an endpoint that isn't in the Halted state, then software
2953          * may issue a Configure Endpoint Command with the Drop and Add bits set
2954          * for the target endpoint. that is in the Stopped state.
2955          */
2956
2957         /* For now just print debug to follow the situation */
2958         xhci_dbg(xhci, "Endpoint 0x%x ep reset callback called\n",
2959                  ep->desc.bEndpointAddress);
2960 }
2961
2962 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
2963                 struct usb_device *udev, struct usb_host_endpoint *ep,
2964                 unsigned int slot_id)
2965 {
2966         int ret;
2967         unsigned int ep_index;
2968         unsigned int ep_state;
2969
2970         if (!ep)
2971                 return -EINVAL;
2972         ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
2973         if (ret <= 0)
2974                 return -EINVAL;
2975         if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
2976                 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
2977                                 " descriptor for ep 0x%x does not support streams\n",
2978                                 ep->desc.bEndpointAddress);
2979                 return -EINVAL;
2980         }
2981
2982         ep_index = xhci_get_endpoint_index(&ep->desc);
2983         ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
2984         if (ep_state & EP_HAS_STREAMS ||
2985                         ep_state & EP_GETTING_STREAMS) {
2986                 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
2987                                 "already has streams set up.\n",
2988                                 ep->desc.bEndpointAddress);
2989                 xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
2990                                 "dynamic stream context array reallocation.\n");
2991                 return -EINVAL;
2992         }
2993         if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
2994                 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
2995                                 "endpoint 0x%x; URBs are pending.\n",
2996                                 ep->desc.bEndpointAddress);
2997                 return -EINVAL;
2998         }
2999         return 0;
3000 }
3001
3002 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3003                 unsigned int *num_streams, unsigned int *num_stream_ctxs)
3004 {
3005         unsigned int max_streams;
3006
3007         /* The stream context array size must be a power of two */
3008         *num_stream_ctxs = roundup_pow_of_two(*num_streams);
3009         /*
3010          * Find out how many primary stream array entries the host controller
3011          * supports.  Later we may use secondary stream arrays (similar to 2nd
3012          * level page entries), but that's an optional feature for xHCI host
3013          * controllers. xHCs must support at least 4 stream IDs.
3014          */
3015         max_streams = HCC_MAX_PSA(xhci->hcc_params);
3016         if (*num_stream_ctxs > max_streams) {
3017                 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3018                                 max_streams);
3019                 *num_stream_ctxs = max_streams;
3020                 *num_streams = max_streams;
3021         }
3022 }
3023
3024 /* Returns an error code if one of the endpoint already has streams.
3025  * This does not change any data structures, it only checks and gathers
3026  * information.
3027  */
3028 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3029                 struct usb_device *udev,
3030                 struct usb_host_endpoint **eps, unsigned int num_eps,
3031                 unsigned int *num_streams, u32 *changed_ep_bitmask)
3032 {
3033         unsigned int max_streams;
3034         unsigned int endpoint_flag;
3035         int i;
3036         int ret;
3037
3038         for (i = 0; i < num_eps; i++) {
3039                 ret = xhci_check_streams_endpoint(xhci, udev,
3040                                 eps[i], udev->slot_id);
3041                 if (ret < 0)
3042                         return ret;
3043
3044                 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3045                 if (max_streams < (*num_streams - 1)) {
3046                         xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3047                                         eps[i]->desc.bEndpointAddress,
3048                                         max_streams);
3049                         *num_streams = max_streams+1;
3050                 }
3051
3052                 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3053                 if (*changed_ep_bitmask & endpoint_flag)
3054                         return -EINVAL;
3055                 *changed_ep_bitmask |= endpoint_flag;
3056         }
3057         return 0;
3058 }
3059
3060 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3061                 struct usb_device *udev,
3062                 struct usb_host_endpoint **eps, unsigned int num_eps)
3063 {
3064         u32 changed_ep_bitmask = 0;
3065         unsigned int slot_id;
3066         unsigned int ep_index;
3067         unsigned int ep_state;
3068         int i;
3069
3070         slot_id = udev->slot_id;
3071         if (!xhci->devs[slot_id])
3072                 return 0;
3073
3074         for (i = 0; i < num_eps; i++) {
3075                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3076                 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3077                 /* Are streams already being freed for the endpoint? */
3078                 if (ep_state & EP_GETTING_NO_STREAMS) {
3079                         xhci_warn(xhci, "WARN Can't disable streams for "
3080                                         "endpoint 0x%x, "
3081                                         "streams are being disabled already\n",
3082                                         eps[i]->desc.bEndpointAddress);
3083                         return 0;
3084                 }
3085                 /* Are there actually any streams to free? */
3086                 if (!(ep_state & EP_HAS_STREAMS) &&
3087                                 !(ep_state & EP_GETTING_STREAMS)) {
3088                         xhci_warn(xhci, "WARN Can't disable streams for "
3089                                         "endpoint 0x%x, "
3090                                         "streams are already disabled!\n",
3091                                         eps[i]->desc.bEndpointAddress);
3092                         xhci_warn(xhci, "WARN xhci_free_streams() called "
3093                                         "with non-streams endpoint\n");
3094                         return 0;
3095                 }
3096                 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3097         }
3098         return changed_ep_bitmask;
3099 }
3100
3101 /*
3102  * The USB device drivers use this function (through the HCD interface in USB
3103  * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3104  * coordinate mass storage command queueing across multiple endpoints (basically
3105  * a stream ID == a task ID).
3106  *
3107  * Setting up streams involves allocating the same size stream context array
3108  * for each endpoint and issuing a configure endpoint command for all endpoints.
3109  *
3110  * Don't allow the call to succeed if one endpoint only supports one stream
3111  * (which means it doesn't support streams at all).
3112  *
3113  * Drivers may get less stream IDs than they asked for, if the host controller
3114  * hardware or endpoints claim they can't support the number of requested
3115  * stream IDs.
3116  */
3117 int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3118                 struct usb_host_endpoint **eps, unsigned int num_eps,
3119                 unsigned int num_streams, gfp_t mem_flags)
3120 {
3121         int i, ret;
3122         struct xhci_hcd *xhci;
3123         struct xhci_virt_device *vdev;
3124         struct xhci_command *config_cmd;
3125         struct xhci_input_control_ctx *ctrl_ctx;
3126         unsigned int ep_index;
3127         unsigned int num_stream_ctxs;
3128         unsigned int max_packet;
3129         unsigned long flags;
3130         u32 changed_ep_bitmask = 0;
3131
3132         if (!eps)
3133                 return -EINVAL;
3134
3135         /* Add one to the number of streams requested to account for
3136          * stream 0 that is reserved for xHCI usage.
3137          */
3138         num_streams += 1;
3139         xhci = hcd_to_xhci(hcd);
3140         xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3141                         num_streams);
3142
3143         /* MaxPSASize value 0 (2 streams) means streams are not supported */
3144         if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3145                         HCC_MAX_PSA(xhci->hcc_params) < 4) {
3146                 xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3147                 return -ENOSYS;
3148         }
3149
3150         config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
3151         if (!config_cmd) {
3152                 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
3153                 return -ENOMEM;
3154         }
3155         ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3156         if (!ctrl_ctx) {
3157                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3158                                 __func__);
3159                 xhci_free_command(xhci, config_cmd);
3160                 return -ENOMEM;
3161         }
3162
3163         /* Check to make sure all endpoints are not already configured for
3164          * streams.  While we're at it, find the maximum number of streams that
3165          * all the endpoints will support and check for duplicate endpoints.
3166          */
3167         spin_lock_irqsave(&xhci->lock, flags);
3168         ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3169                         num_eps, &num_streams, &changed_ep_bitmask);
3170         if (ret < 0) {
3171                 xhci_free_command(xhci, config_cmd);
3172                 spin_unlock_irqrestore(&xhci->lock, flags);
3173                 return ret;
3174         }
3175         if (num_streams <= 1) {
3176                 xhci_warn(xhci, "WARN: endpoints can't handle "
3177                                 "more than one stream.\n");
3178                 xhci_free_command(xhci, config_cmd);
3179                 spin_unlock_irqrestore(&xhci->lock, flags);
3180                 return -EINVAL;
3181         }
3182         vdev = xhci->devs[udev->slot_id];
3183         /* Mark each endpoint as being in transition, so
3184          * xhci_urb_enqueue() will reject all URBs.
3185          */
3186         for (i = 0; i < num_eps; i++) {
3187                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3188                 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3189         }
3190         spin_unlock_irqrestore(&xhci->lock, flags);
3191
3192         /* Setup internal data structures and allocate HW data structures for
3193          * streams (but don't install the HW structures in the input context
3194          * until we're sure all memory allocation succeeded).
3195          */
3196         xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3197         xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3198                         num_stream_ctxs, num_streams);
3199
3200         for (i = 0; i < num_eps; i++) {
3201                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3202                 max_packet = usb_endpoint_maxp(&eps[i]->desc);
3203                 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3204                                 num_stream_ctxs,
3205                                 num_streams,
3206                                 max_packet, mem_flags);
3207                 if (!vdev->eps[ep_index].stream_info)
3208                         goto cleanup;
3209                 /* Set maxPstreams in endpoint context and update deq ptr to
3210                  * point to stream context array. FIXME
3211                  */
3212         }
3213
3214         /* Set up the input context for a configure endpoint command. */
3215         for (i = 0; i < num_eps; i++) {
3216                 struct xhci_ep_ctx *ep_ctx;
3217
3218                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3219                 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3220
3221                 xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3222                                 vdev->out_ctx, ep_index);
3223                 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3224                                 vdev->eps[ep_index].stream_info);
3225         }
3226         /* Tell the HW to drop its old copy of the endpoint context info
3227          * and add the updated copy from the input context.
3228          */
3229         xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3230                         vdev->out_ctx, ctrl_ctx,
3231                         changed_ep_bitmask, changed_ep_bitmask);
3232
3233         /* Issue and wait for the configure endpoint command */
3234         ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3235                         false, false);
3236
3237         /* xHC rejected the configure endpoint command for some reason, so we
3238          * leave the old ring intact and free our internal streams data
3239          * structure.
3240          */
3241         if (ret < 0)
3242                 goto cleanup;
3243
3244         spin_lock_irqsave(&xhci->lock, flags);
3245         for (i = 0; i < num_eps; i++) {
3246                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3247                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3248                 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3249                          udev->slot_id, ep_index);
3250                 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3251         }
3252         xhci_free_command(xhci, config_cmd);
3253         spin_unlock_irqrestore(&xhci->lock, flags);
3254
3255         /* Subtract 1 for stream 0, which drivers can't use */
3256         return num_streams - 1;
3257
3258 cleanup:
3259         /* If it didn't work, free the streams! */
3260         for (i = 0; i < num_eps; i++) {
3261                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3262                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3263                 vdev->eps[ep_index].stream_info = NULL;
3264                 /* FIXME Unset maxPstreams in endpoint context and
3265                  * update deq ptr to point to normal string ring.
3266                  */
3267                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3268                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3269                 xhci_endpoint_zero(xhci, vdev, eps[i]);
3270         }
3271         xhci_free_command(xhci, config_cmd);
3272         return -ENOMEM;
3273 }
3274
3275 /* Transition the endpoint from using streams to being a "normal" endpoint
3276  * without streams.
3277  *
3278  * Modify the endpoint context state, submit a configure endpoint command,
3279  * and free all endpoint rings for streams if that completes successfully.
3280  */
3281 int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3282                 struct usb_host_endpoint **eps, unsigned int num_eps,
3283                 gfp_t mem_flags)
3284 {
3285         int i, ret;
3286         struct xhci_hcd *xhci;
3287         struct xhci_virt_device *vdev;
3288         struct xhci_command *command;
3289         struct xhci_input_control_ctx *ctrl_ctx;
3290         unsigned int ep_index;
3291         unsigned long flags;
3292         u32 changed_ep_bitmask;
3293
3294         xhci = hcd_to_xhci(hcd);
3295         vdev = xhci->devs[udev->slot_id];
3296
3297         /* Set up a configure endpoint command to remove the streams rings */
3298         spin_lock_irqsave(&xhci->lock, flags);
3299         changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3300                         udev, eps, num_eps);
3301         if (changed_ep_bitmask == 0) {
3302                 spin_unlock_irqrestore(&xhci->lock, flags);
3303                 return -EINVAL;
3304         }
3305
3306         /* Use the xhci_command structure from the first endpoint.  We may have
3307          * allocated too many, but the driver may call xhci_free_streams() for
3308          * each endpoint it grouped into one call to xhci_alloc_streams().
3309          */
3310         ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3311         command = vdev->eps[ep_index].stream_info->free_streams_command;
3312         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3313         if (!ctrl_ctx) {
3314                 spin_unlock_irqrestore(&xhci->lock, flags);
3315                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3316                                 __func__);
3317                 return -EINVAL;
3318         }
3319
3320         for (i = 0; i < num_eps; i++) {
3321                 struct xhci_ep_ctx *ep_ctx;
3322
3323                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3324                 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3325                 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3326                         EP_GETTING_NO_STREAMS;
3327
3328                 xhci_endpoint_copy(xhci, command->in_ctx,
3329                                 vdev->out_ctx, ep_index);
3330                 xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3331                                 &vdev->eps[ep_index]);
3332         }
3333         xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3334                         vdev->out_ctx, ctrl_ctx,
3335                         changed_ep_bitmask, changed_ep_bitmask);
3336         spin_unlock_irqrestore(&xhci->lock, flags);
3337
3338         /* Issue and wait for the configure endpoint command,
3339          * which must succeed.
3340          */
3341         ret = xhci_configure_endpoint(xhci, udev, command,
3342                         false, true);
3343
3344         /* xHC rejected the configure endpoint command for some reason, so we
3345          * leave the streams rings intact.
3346          */
3347         if (ret < 0)
3348                 return ret;
3349
3350         spin_lock_irqsave(&xhci->lock, flags);
3351         for (i = 0; i < num_eps; i++) {
3352                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3353                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3354                 vdev->eps[ep_index].stream_info = NULL;
3355                 /* FIXME Unset maxPstreams in endpoint context and
3356                  * update deq ptr to point to normal string ring.
3357                  */
3358                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3359                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3360         }
3361         spin_unlock_irqrestore(&xhci->lock, flags);
3362
3363         return 0;
3364 }
3365
3366 /*
3367  * Deletes endpoint resources for endpoints that were active before a Reset
3368  * Device command, or a Disable Slot command.  The Reset Device command leaves
3369  * the control endpoint intact, whereas the Disable Slot command deletes it.
3370  *
3371  * Must be called with xhci->lock held.
3372  */
3373 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3374         struct xhci_virt_device *virt_dev, bool drop_control_ep)
3375 {
3376         int i;
3377         unsigned int num_dropped_eps = 0;
3378         unsigned int drop_flags = 0;
3379
3380         for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3381                 if (virt_dev->eps[i].ring) {
3382                         drop_flags |= 1 << i;
3383                         num_dropped_eps++;
3384                 }
3385         }
3386         xhci->num_active_eps -= num_dropped_eps;
3387         if (num_dropped_eps)
3388                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3389                                 "Dropped %u ep ctxs, flags = 0x%x, "
3390                                 "%u now active.",
3391                                 num_dropped_eps, drop_flags,
3392                                 xhci->num_active_eps);
3393 }
3394
3395 /*
3396  * This submits a Reset Device Command, which will set the device state to 0,
3397  * set the device address to 0, and disable all the endpoints except the default
3398  * control endpoint.  The USB core should come back and call
3399  * xhci_address_device(), and then re-set up the configuration.  If this is
3400  * called because of a usb_reset_and_verify_device(), then the old alternate
3401  * settings will be re-installed through the normal bandwidth allocation
3402  * functions.
3403  *
3404  * Wait for the Reset Device command to finish.  Remove all structures
3405  * associated with the endpoints that were disabled.  Clear the input device
3406  * structure?  Cache the rings?  Reset the control endpoint 0 max packet size?
3407  *
3408  * If the virt_dev to be reset does not exist or does not match the udev,
3409  * it means the device is lost, possibly due to the xHC restore error and
3410  * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3411  * re-allocate the device.
3412  */
3413 int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
3414 {
3415         int ret, i;
3416         unsigned long flags;
3417         struct xhci_hcd *xhci;
3418         unsigned int slot_id;
3419         struct xhci_virt_device *virt_dev;
3420         struct xhci_command *reset_device_cmd;
3421         int last_freed_endpoint;
3422         struct xhci_slot_ctx *slot_ctx;
3423         int old_active_eps = 0;
3424
3425         ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3426         if (ret <= 0)
3427                 return ret;
3428         xhci = hcd_to_xhci(hcd);
3429         slot_id = udev->slot_id;
3430         virt_dev = xhci->devs[slot_id];
3431         if (!virt_dev) {
3432                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3433                                 "not exist. Re-allocate the device\n", slot_id);
3434                 ret = xhci_alloc_dev(hcd, udev);
3435                 if (ret == 1)
3436                         return 0;
3437                 else
3438                         return -EINVAL;
3439         }
3440
3441         if (virt_dev->tt_info)
3442                 old_active_eps = virt_dev->tt_info->active_eps;
3443
3444         if (virt_dev->udev != udev) {
3445                 /* If the virt_dev and the udev does not match, this virt_dev
3446                  * may belong to another udev.
3447                  * Re-allocate the device.
3448                  */
3449                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3450                                 "not match the udev. Re-allocate the device\n",
3451                                 slot_id);
3452                 ret = xhci_alloc_dev(hcd, udev);
3453                 if (ret == 1)
3454                         return 0;
3455                 else
3456                         return -EINVAL;
3457         }
3458
3459         /* If device is not setup, there is no point in resetting it */
3460         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3461         if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3462                                                 SLOT_STATE_DISABLED)
3463                 return 0;
3464
3465         xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3466         /* Allocate the command structure that holds the struct completion.
3467          * Assume we're in process context, since the normal device reset
3468          * process has to wait for the device anyway.  Storage devices are
3469          * reset as part of error handling, so use GFP_NOIO instead of
3470          * GFP_KERNEL.
3471          */
3472         reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO);
3473         if (!reset_device_cmd) {
3474                 xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3475                 return -ENOMEM;
3476         }
3477
3478         /* Attempt to submit the Reset Device command to the command ring */
3479         spin_lock_irqsave(&xhci->lock, flags);
3480
3481         ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3482         if (ret) {
3483                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3484                 spin_unlock_irqrestore(&xhci->lock, flags);
3485                 goto command_cleanup;
3486         }
3487         xhci_ring_cmd_db(xhci);
3488         spin_unlock_irqrestore(&xhci->lock, flags);
3489
3490         /* Wait for the Reset Device command to finish */
3491         wait_for_completion(reset_device_cmd->completion);
3492
3493         /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3494          * unless we tried to reset a slot ID that wasn't enabled,
3495          * or the device wasn't in the addressed or configured state.
3496          */
3497         ret = reset_device_cmd->status;
3498         switch (ret) {
3499         case COMP_CMD_ABORT:
3500         case COMP_CMD_STOP:
3501                 xhci_warn(xhci, "Timeout waiting for reset device command\n");
3502                 ret = -ETIME;
3503                 goto command_cleanup;
3504         case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */
3505         case COMP_CTX_STATE: /* 0.96 completion code for same thing */
3506                 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3507                                 slot_id,
3508                                 xhci_get_slot_state(xhci, virt_dev->out_ctx));
3509                 xhci_dbg(xhci, "Not freeing device rings.\n");
3510                 /* Don't treat this as an error.  May change my mind later. */
3511                 ret = 0;
3512                 goto command_cleanup;
3513         case COMP_SUCCESS:
3514                 xhci_dbg(xhci, "Successful reset device command.\n");
3515                 break;
3516         default:
3517                 if (xhci_is_vendor_info_code(xhci, ret))
3518                         break;
3519                 xhci_warn(xhci, "Unknown completion code %u for "
3520                                 "reset device command.\n", ret);
3521                 ret = -EINVAL;
3522                 goto command_cleanup;
3523         }
3524
3525         /* Free up host controller endpoint resources */
3526         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3527                 spin_lock_irqsave(&xhci->lock, flags);
3528                 /* Don't delete the default control endpoint resources */
3529                 xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3530                 spin_unlock_irqrestore(&xhci->lock, flags);
3531         }
3532
3533         /* Everything but endpoint 0 is disabled, so free or cache the rings. */
3534         last_freed_endpoint = 1;
3535         for (i = 1; i < 31; ++i) {
3536                 struct xhci_virt_ep *ep = &virt_dev->eps[i];
3537
3538                 if (ep->ep_state & EP_HAS_STREAMS) {
3539                         xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3540                                         xhci_get_endpoint_address(i));
3541                         xhci_free_stream_info(xhci, ep->stream_info);
3542                         ep->stream_info = NULL;
3543                         ep->ep_state &= ~EP_HAS_STREAMS;
3544                 }
3545
3546                 if (ep->ring) {
3547                         xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
3548                         last_freed_endpoint = i;
3549                 }
3550                 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3551                         xhci_drop_ep_from_interval_table(xhci,
3552                                         &virt_dev->eps[i].bw_info,
3553                                         virt_dev->bw_table,
3554                                         udev,
3555                                         &virt_dev->eps[i],
3556                                         virt_dev->tt_info);
3557                 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3558         }
3559         /* If necessary, update the number of active TTs on this root port */
3560         xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3561
3562         xhci_dbg(xhci, "Output context after successful reset device cmd:\n");
3563         xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint);
3564         ret = 0;
3565
3566 command_cleanup:
3567         xhci_free_command(xhci, reset_device_cmd);
3568         return ret;
3569 }
3570
3571 /*
3572  * At this point, the struct usb_device is about to go away, the device has
3573  * disconnected, and all traffic has been stopped and the endpoints have been
3574  * disabled.  Free any HC data structures associated with that device.
3575  */
3576 void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3577 {
3578         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3579         struct xhci_virt_device *virt_dev;
3580         unsigned long flags;
3581         u32 state;
3582         int i, ret;
3583         struct xhci_command *command;
3584
3585         command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3586         if (!command)
3587                 return;
3588
3589 #ifndef CONFIG_USB_DEFAULT_PERSIST
3590         /*
3591          * We called pm_runtime_get_noresume when the device was attached.
3592          * Decrement the counter here to allow controller to runtime suspend
3593          * if no devices remain.
3594          */
3595         if (xhci->quirks & XHCI_RESET_ON_RESUME)
3596                 pm_runtime_put_noidle(hcd->self.controller);
3597 #endif
3598
3599         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3600         /* If the host is halted due to driver unload, we still need to free the
3601          * device.
3602          */
3603         if (ret <= 0 && ret != -ENODEV) {
3604                 kfree(command);
3605                 return;
3606         }
3607
3608         virt_dev = xhci->devs[udev->slot_id];
3609
3610         /* Stop any wayward timer functions (which may grab the lock) */
3611         for (i = 0; i < 31; ++i) {
3612                 virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING;
3613                 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3614         }
3615
3616         spin_lock_irqsave(&xhci->lock, flags);
3617         /* Don't disable the slot if the host controller is dead. */
3618         state = readl(&xhci->op_regs->status);
3619         if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3620                         (xhci->xhc_state & XHCI_STATE_HALTED)) {
3621                 xhci_free_virt_device(xhci, udev->slot_id);
3622                 spin_unlock_irqrestore(&xhci->lock, flags);
3623                 kfree(command);
3624                 return;
3625         }
3626
3627         if (xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3628                                     udev->slot_id)) {
3629                 spin_unlock_irqrestore(&xhci->lock, flags);
3630                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3631                 return;
3632         }
3633         xhci_ring_cmd_db(xhci);
3634         spin_unlock_irqrestore(&xhci->lock, flags);
3635
3636         /*
3637          * Event command completion handler will free any data structures
3638          * associated with the slot.  XXX Can free sleep?
3639          */
3640 }
3641
3642 /*
3643  * Checks if we have enough host controller resources for the default control
3644  * endpoint.
3645  *
3646  * Must be called with xhci->lock held.
3647  */
3648 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3649 {
3650         if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3651                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3652                                 "Not enough ep ctxs: "
3653                                 "%u active, need to add 1, limit is %u.",
3654                                 xhci->num_active_eps, xhci->limit_active_eps);
3655                 return -ENOMEM;
3656         }
3657         xhci->num_active_eps += 1;
3658         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3659                         "Adding 1 ep ctx, %u now active.",
3660                         xhci->num_active_eps);
3661         return 0;
3662 }
3663
3664
3665 /*
3666  * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3667  * timed out, or allocating memory failed.  Returns 1 on success.
3668  */
3669 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3670 {
3671         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3672         unsigned long flags;
3673         int ret, slot_id;
3674         struct xhci_command *command;
3675
3676         command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
3677         if (!command)
3678                 return 0;
3679
3680         /* xhci->slot_id and xhci->addr_dev are not thread-safe */
3681         mutex_lock(&xhci->mutex);
3682         spin_lock_irqsave(&xhci->lock, flags);
3683         ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
3684         if (ret) {
3685                 spin_unlock_irqrestore(&xhci->lock, flags);
3686                 mutex_unlock(&xhci->mutex);
3687                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3688                 xhci_free_command(xhci, command);
3689                 return 0;
3690         }
3691         xhci_ring_cmd_db(xhci);
3692         spin_unlock_irqrestore(&xhci->lock, flags);
3693
3694         wait_for_completion(command->completion);
3695         slot_id = command->slot_id;
3696         mutex_unlock(&xhci->mutex);
3697
3698         if (!slot_id || command->status != COMP_SUCCESS) {
3699                 xhci_err(xhci, "Error while assigning device slot ID\n");
3700                 xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
3701                                 HCS_MAX_SLOTS(
3702                                         readl(&xhci->cap_regs->hcs_params1)));
3703                 xhci_free_command(xhci, command);
3704                 return 0;
3705         }
3706
3707         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3708                 spin_lock_irqsave(&xhci->lock, flags);
3709                 ret = xhci_reserve_host_control_ep_resources(xhci);
3710                 if (ret) {
3711                         spin_unlock_irqrestore(&xhci->lock, flags);
3712                         xhci_warn(xhci, "Not enough host resources, "
3713                                         "active endpoint contexts = %u\n",
3714                                         xhci->num_active_eps);
3715                         goto disable_slot;
3716                 }
3717                 spin_unlock_irqrestore(&xhci->lock, flags);
3718         }
3719         /* Use GFP_NOIO, since this function can be called from
3720          * xhci_discover_or_reset_device(), which may be called as part of
3721          * mass storage driver error handling.
3722          */
3723         if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
3724                 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
3725                 goto disable_slot;
3726         }
3727         udev->slot_id = slot_id;
3728
3729 #ifndef CONFIG_USB_DEFAULT_PERSIST
3730         /*
3731          * If resetting upon resume, we can't put the controller into runtime
3732          * suspend if there is a device attached.
3733          */
3734         if (xhci->quirks & XHCI_RESET_ON_RESUME)
3735                 pm_runtime_get_noresume(hcd->self.controller);
3736 #endif
3737
3738
3739         xhci_free_command(xhci, command);
3740         /* Is this a LS or FS device under a HS hub? */
3741         /* Hub or peripherial? */
3742         return 1;
3743
3744 disable_slot:
3745         /* Disable slot, if we can do it without mem alloc */
3746         spin_lock_irqsave(&xhci->lock, flags);
3747         kfree(command->completion);
3748         command->completion = NULL;
3749         command->status = 0;
3750         if (!xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3751                                      udev->slot_id))
3752                 xhci_ring_cmd_db(xhci);
3753         spin_unlock_irqrestore(&xhci->lock, flags);
3754         return 0;
3755 }
3756
3757 /*
3758  * Issue an Address Device command and optionally send a corresponding
3759  * SetAddress request to the device.
3760  */
3761 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
3762                              enum xhci_setup_dev setup)
3763 {
3764         const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
3765         unsigned long flags;
3766         struct xhci_virt_device *virt_dev;
3767         int ret = 0;
3768         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3769         struct xhci_slot_ctx *slot_ctx;
3770         struct xhci_input_control_ctx *ctrl_ctx;
3771         u64 temp_64;
3772         struct xhci_command *command = NULL;
3773
3774         mutex_lock(&xhci->mutex);
3775
3776         if (xhci->xhc_state) {  /* dying, removing or halted */
3777                 ret = -ESHUTDOWN;
3778                 goto out;
3779         }
3780
3781         if (!udev->slot_id) {
3782                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3783                                 "Bad Slot ID %d", udev->slot_id);
3784                 ret = -EINVAL;
3785                 goto out;
3786         }
3787
3788         virt_dev = xhci->devs[udev->slot_id];
3789
3790         if (WARN_ON(!virt_dev)) {
3791                 /*
3792                  * In plug/unplug torture test with an NEC controller,
3793                  * a zero-dereference was observed once due to virt_dev = 0.
3794                  * Print useful debug rather than crash if it is observed again!
3795                  */
3796                 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
3797                         udev->slot_id);
3798                 ret = -EINVAL;
3799                 goto out;
3800         }
3801
3802         if (setup == SETUP_CONTEXT_ONLY) {
3803                 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3804                 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3805                     SLOT_STATE_DEFAULT) {
3806                         xhci_dbg(xhci, "Slot already in default state\n");
3807                         goto out;
3808                 }
3809         }
3810
3811         command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
3812         if (!command) {
3813                 ret = -ENOMEM;
3814                 goto out;
3815         }
3816
3817         command->in_ctx = virt_dev->in_ctx;
3818
3819         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3820         ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
3821         if (!ctrl_ctx) {
3822                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3823                                 __func__);
3824                 ret = -EINVAL;
3825                 goto out;
3826         }
3827         /*
3828          * If this is the first Set Address since device plug-in or
3829          * virt_device realloaction after a resume with an xHCI power loss,
3830          * then set up the slot context.
3831          */
3832         if (!slot_ctx->dev_info)
3833                 xhci_setup_addressable_virt_dev(xhci, udev);
3834         /* Otherwise, update the control endpoint ring enqueue pointer. */
3835         else
3836                 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
3837         ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
3838         ctrl_ctx->drop_flags = 0;
3839
3840         xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3841         xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3842         trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3843                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
3844
3845         spin_lock_irqsave(&xhci->lock, flags);
3846         ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
3847                                         udev->slot_id, setup);
3848         if (ret) {
3849                 spin_unlock_irqrestore(&xhci->lock, flags);
3850                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3851                                 "FIXME: allocate a command ring segment");
3852                 goto out;
3853         }
3854         xhci_ring_cmd_db(xhci);
3855         spin_unlock_irqrestore(&xhci->lock, flags);
3856
3857         /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
3858         wait_for_completion(command->completion);
3859
3860         /* FIXME: From section 4.3.4: "Software shall be responsible for timing
3861          * the SetAddress() "recovery interval" required by USB and aborting the
3862          * command on a timeout.
3863          */
3864         switch (command->status) {
3865         case COMP_CMD_ABORT:
3866         case COMP_CMD_STOP:
3867                 xhci_warn(xhci, "Timeout while waiting for setup device command\n");
3868                 ret = -ETIME;
3869                 break;
3870         case COMP_CTX_STATE:
3871         case COMP_EBADSLT:
3872                 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
3873                          act, udev->slot_id);
3874                 ret = -EINVAL;
3875                 break;
3876         case COMP_TX_ERR:
3877                 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
3878                 ret = -EPROTO;
3879                 break;
3880         case COMP_DEV_ERR:
3881                 dev_warn(&udev->dev,
3882                          "ERROR: Incompatible device for setup %s command\n", act);
3883                 ret = -ENODEV;
3884                 break;
3885         case COMP_SUCCESS:
3886                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3887                                "Successful setup %s command", act);
3888                 break;
3889         default:
3890                 xhci_err(xhci,
3891                          "ERROR: unexpected setup %s command completion code 0x%x.\n",
3892                          act, command->status);
3893                 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3894                 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3895                 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
3896                 ret = -EINVAL;
3897                 break;
3898         }
3899         if (ret)
3900                 goto out;
3901         temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
3902         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3903                         "Op regs DCBAA ptr = %#016llx", temp_64);
3904         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3905                 "Slot ID %d dcbaa entry @%p = %#016llx",
3906                 udev->slot_id,
3907                 &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
3908                 (unsigned long long)
3909                 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
3910         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3911                         "Output Context DMA address = %#08llx",
3912                         (unsigned long long)virt_dev->out_ctx->dma);
3913         xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3914         xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3915         trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3916                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
3917         xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3918         xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3919         /*
3920          * USB core uses address 1 for the roothubs, so we add one to the
3921          * address given back to us by the HC.
3922          */
3923         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3924         trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
3925                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
3926         /* Zero the input context control for later use */
3927         ctrl_ctx->add_flags = 0;
3928         ctrl_ctx->drop_flags = 0;
3929
3930         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3931                        "Internal device address = %d",
3932                        le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
3933 out:
3934         mutex_unlock(&xhci->mutex);
3935         if (command) {
3936                 kfree(command->completion);
3937                 kfree(command);
3938         }
3939         return ret;
3940 }
3941
3942 int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
3943 {
3944         return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS);
3945 }
3946
3947 int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
3948 {
3949         return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY);
3950 }
3951
3952 /*
3953  * Transfer the port index into real index in the HW port status
3954  * registers. Caculate offset between the port's PORTSC register
3955  * and port status base. Divide the number of per port register
3956  * to get the real index. The raw port number bases 1.
3957  */
3958 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
3959 {
3960         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3961         __le32 __iomem *base_addr = &xhci->op_regs->port_status_base;
3962         __le32 __iomem *addr;
3963         int raw_port;
3964
3965         if (hcd->speed < HCD_USB3)
3966                 addr = xhci->usb2_ports[port1 - 1];
3967         else
3968                 addr = xhci->usb3_ports[port1 - 1];
3969
3970         raw_port = (addr - base_addr)/NUM_PORT_REGS + 1;
3971         return raw_port;
3972 }
3973
3974 /*
3975  * Issue an Evaluate Context command to change the Maximum Exit Latency in the
3976  * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
3977  */
3978 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
3979                         struct usb_device *udev, u16 max_exit_latency)
3980 {
3981         struct xhci_virt_device *virt_dev;
3982         struct xhci_command *command;
3983         struct xhci_input_control_ctx *ctrl_ctx;
3984         struct xhci_slot_ctx *slot_ctx;
3985         unsigned long flags;
3986         int ret;
3987
3988         spin_lock_irqsave(&xhci->lock, flags);
3989
3990         virt_dev = xhci->devs[udev->slot_id];
3991
3992         /*
3993          * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
3994          * xHC was re-initialized. Exit latency will be set later after
3995          * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
3996          */
3997
3998         if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
3999                 spin_unlock_irqrestore(&xhci->lock, flags);
4000                 return 0;
4001         }
4002
4003         /* Attempt to issue an Evaluate Context command to change the MEL. */
4004         command = xhci->lpm_command;
4005         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
4006         if (!ctrl_ctx) {
4007                 spin_unlock_irqrestore(&xhci->lock, flags);
4008                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4009                                 __func__);
4010                 return -ENOMEM;
4011         }
4012
4013         xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4014         spin_unlock_irqrestore(&xhci->lock, flags);
4015
4016         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4017         slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4018         slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4019         slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4020         slot_ctx->dev_state = 0;
4021
4022         xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
4023                         "Set up evaluate context for LPM MEL change.");
4024         xhci_dbg(xhci, "Slot %u Input Context:\n", udev->slot_id);
4025         xhci_dbg_ctx(xhci, command->in_ctx, 0);
4026
4027         /* Issue and wait for the evaluate context command. */
4028         ret = xhci_configure_endpoint(xhci, udev, command,
4029                         true, true);
4030         xhci_dbg(xhci, "Slot %u Output Context:\n", udev->slot_id);
4031         xhci_dbg_ctx(xhci, virt_dev->out_ctx, 0);
4032
4033         if (!ret) {
4034                 spin_lock_irqsave(&xhci->lock, flags);
4035                 virt_dev->current_mel = max_exit_latency;
4036                 spin_unlock_irqrestore(&xhci->lock, flags);
4037         }
4038         return ret;
4039 }
4040
4041 #ifdef CONFIG_PM
4042
4043 /* BESL to HIRD Encoding array for USB2 LPM */
4044 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4045         3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4046
4047 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
4048 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4049                                         struct usb_device *udev)
4050 {
4051         int u2del, besl, besl_host;
4052         int besl_device = 0;
4053         u32 field;
4054
4055         u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4056         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4057
4058         if (field & USB_BESL_SUPPORT) {
4059                 for (besl_host = 0; besl_host < 16; besl_host++) {
4060                         if (xhci_besl_encoding[besl_host] >= u2del)
4061                                 break;
4062                 }
4063                 /* Use baseline BESL value as default */
4064                 if (field & USB_BESL_BASELINE_VALID)
4065                         besl_device = USB_GET_BESL_BASELINE(field);
4066                 else if (field & USB_BESL_DEEP_VALID)
4067                         besl_device = USB_GET_BESL_DEEP(field);
4068         } else {
4069                 if (u2del <= 50)
4070                         besl_host = 0;
4071                 else
4072                         besl_host = (u2del - 51) / 75 + 1;
4073         }
4074
4075         besl = besl_host + besl_device;
4076         if (besl > 15)
4077                 besl = 15;
4078
4079         return besl;
4080 }
4081
4082 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4083 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4084 {
4085         u32 field;
4086         int l1;
4087         int besld = 0;
4088         int hirdm = 0;
4089
4090         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4091
4092         /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4093         l1 = udev->l1_params.timeout / 256;
4094
4095         /* device has preferred BESLD */
4096         if (field & USB_BESL_DEEP_VALID) {
4097                 besld = USB_GET_BESL_DEEP(field);
4098                 hirdm = 1;
4099         }
4100
4101         return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4102 }
4103
4104 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4105                         struct usb_device *udev, int enable)
4106 {
4107         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4108         __le32 __iomem  **port_array;
4109         __le32 __iomem  *pm_addr, *hlpm_addr;
4110         u32             pm_val, hlpm_val, field;
4111         unsigned int    port_num;
4112         unsigned long   flags;
4113         int             hird, exit_latency;
4114         int             ret;
4115
4116         if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4117                         !udev->lpm_capable)
4118                 return -EPERM;
4119
4120         if (!udev->parent || udev->parent->parent ||
4121                         udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4122                 return -EPERM;
4123
4124         if (udev->usb2_hw_lpm_capable != 1)
4125                 return -EPERM;
4126
4127         spin_lock_irqsave(&xhci->lock, flags);
4128
4129         port_array = xhci->usb2_ports;
4130         port_num = udev->portnum - 1;
4131         pm_addr = port_array[port_num] + PORTPMSC;
4132         pm_val = readl(pm_addr);
4133         hlpm_addr = port_array[port_num] + PORTHLPMC;
4134         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4135
4136         xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4137                         enable ? "enable" : "disable", port_num + 1);
4138
4139         if (enable) {
4140                 /* Host supports BESL timeout instead of HIRD */
4141                 if (udev->usb2_hw_lpm_besl_capable) {
4142                         /* if device doesn't have a preferred BESL value use a
4143                          * default one which works with mixed HIRD and BESL
4144                          * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4145                          */
4146                         if ((field & USB_BESL_SUPPORT) &&
4147                             (field & USB_BESL_BASELINE_VALID))
4148                                 hird = USB_GET_BESL_BASELINE(field);
4149                         else
4150                                 hird = udev->l1_params.besl;
4151
4152                         exit_latency = xhci_besl_encoding[hird];
4153                         spin_unlock_irqrestore(&xhci->lock, flags);
4154
4155                         /* USB 3.0 code dedicate one xhci->lpm_command->in_ctx
4156                          * input context for link powermanagement evaluate
4157                          * context commands. It is protected by hcd->bandwidth
4158                          * mutex and is shared by all devices. We need to set
4159                          * the max ext latency in USB 2 BESL LPM as well, so
4160                          * use the same mutex and xhci_change_max_exit_latency()
4161                          */
4162                         mutex_lock(hcd->bandwidth_mutex);
4163                         ret = xhci_change_max_exit_latency(xhci, udev,
4164                                                            exit_latency);
4165                         mutex_unlock(hcd->bandwidth_mutex);
4166
4167                         if (ret < 0)
4168                                 return ret;
4169                         spin_lock_irqsave(&xhci->lock, flags);
4170
4171                         hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4172                         writel(hlpm_val, hlpm_addr);
4173                         /* flush write */
4174                         readl(hlpm_addr);
4175                 } else {
4176                         hird = xhci_calculate_hird_besl(xhci, udev);
4177                 }
4178
4179                 pm_val &= ~PORT_HIRD_MASK;
4180                 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4181                 writel(pm_val, pm_addr);
4182                 pm_val = readl(pm_addr);
4183                 pm_val |= PORT_HLE;
4184                 writel(pm_val, pm_addr);
4185                 /* flush write */
4186                 readl(pm_addr);
4187         } else {
4188                 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4189                 writel(pm_val, pm_addr);
4190                 /* flush write */
4191                 readl(pm_addr);
4192                 if (udev->usb2_hw_lpm_besl_capable) {
4193                         spin_unlock_irqrestore(&xhci->lock, flags);
4194                         mutex_lock(hcd->bandwidth_mutex);
4195                         xhci_change_max_exit_latency(xhci, udev, 0);
4196                         mutex_unlock(hcd->bandwidth_mutex);
4197                         return 0;
4198                 }
4199         }
4200
4201         spin_unlock_irqrestore(&xhci->lock, flags);
4202         return 0;
4203 }
4204
4205 /* check if a usb2 port supports a given extened capability protocol
4206  * only USB2 ports extended protocol capability values are cached.
4207  * Return 1 if capability is supported
4208  */
4209 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4210                                            unsigned capability)
4211 {
4212         u32 port_offset, port_count;
4213         int i;
4214
4215         for (i = 0; i < xhci->num_ext_caps; i++) {
4216                 if (xhci->ext_caps[i] & capability) {
4217                         /* port offsets starts at 1 */
4218                         port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4219                         port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4220                         if (port >= port_offset &&
4221                             port < port_offset + port_count)
4222                                 return 1;
4223                 }
4224         }
4225         return 0;
4226 }
4227
4228 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4229 {
4230         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4231         int             portnum = udev->portnum - 1;
4232
4233         if (hcd->speed >= HCD_USB3 || !xhci->sw_lpm_support ||
4234                         !udev->lpm_capable)
4235                 return 0;
4236
4237         /* we only support lpm for non-hub device connected to root hub yet */
4238         if (!udev->parent || udev->parent->parent ||
4239                         udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4240                 return 0;
4241
4242         if (xhci->hw_lpm_support == 1 &&
4243                         xhci_check_usb2_port_capability(
4244                                 xhci, portnum, XHCI_HLC)) {
4245                 udev->usb2_hw_lpm_capable = 1;
4246                 udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4247                 udev->l1_params.besl = XHCI_DEFAULT_BESL;
4248                 if (xhci_check_usb2_port_capability(xhci, portnum,
4249                                         XHCI_BLC))
4250                         udev->usb2_hw_lpm_besl_capable = 1;
4251         }
4252
4253         return 0;
4254 }
4255
4256 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4257
4258 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4259 static unsigned long long xhci_service_interval_to_ns(
4260                 struct usb_endpoint_descriptor *desc)
4261 {
4262         return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4263 }
4264
4265 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4266                 enum usb3_link_state state)
4267 {
4268         unsigned long long sel;
4269         unsigned long long pel;
4270         unsigned int max_sel_pel;
4271         char *state_name;
4272
4273         switch (state) {
4274         case USB3_LPM_U1:
4275                 /* Convert SEL and PEL stored in nanoseconds to microseconds */
4276                 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4277                 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4278                 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4279                 state_name = "U1";
4280                 break;
4281         case USB3_LPM_U2:
4282                 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4283                 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4284                 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4285                 state_name = "U2";
4286                 break;
4287         default:
4288                 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4289                                 __func__);
4290                 return USB3_LPM_DISABLED;
4291         }
4292
4293         if (sel <= max_sel_pel && pel <= max_sel_pel)
4294                 return USB3_LPM_DEVICE_INITIATED;
4295
4296         if (sel > max_sel_pel)
4297                 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4298                                 "due to long SEL %llu ms\n",
4299                                 state_name, sel);
4300         else
4301                 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4302                                 "due to long PEL %llu ms\n",
4303                                 state_name, pel);
4304         return USB3_LPM_DISABLED;
4305 }
4306
4307 /* The U1 timeout should be the maximum of the following values:
4308  *  - For control endpoints, U1 system exit latency (SEL) * 3
4309  *  - For bulk endpoints, U1 SEL * 5
4310  *  - For interrupt endpoints:
4311  *    - Notification EPs, U1 SEL * 3
4312  *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4313  *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4314  */
4315 static unsigned long long xhci_calculate_intel_u1_timeout(
4316                 struct usb_device *udev,
4317                 struct usb_endpoint_descriptor *desc)
4318 {
4319         unsigned long long timeout_ns;
4320         int ep_type;
4321         int intr_type;
4322
4323         ep_type = usb_endpoint_type(desc);
4324         switch (ep_type) {
4325         case USB_ENDPOINT_XFER_CONTROL:
4326                 timeout_ns = udev->u1_params.sel * 3;
4327                 break;
4328         case USB_ENDPOINT_XFER_BULK:
4329                 timeout_ns = udev->u1_params.sel * 5;
4330                 break;
4331         case USB_ENDPOINT_XFER_INT:
4332                 intr_type = usb_endpoint_interrupt_type(desc);
4333                 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4334                         timeout_ns = udev->u1_params.sel * 3;
4335                         break;
4336                 }
4337                 /* Otherwise the calculation is the same as isoc eps */
4338         case USB_ENDPOINT_XFER_ISOC:
4339                 timeout_ns = xhci_service_interval_to_ns(desc);
4340                 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4341                 if (timeout_ns < udev->u1_params.sel * 2)
4342                         timeout_ns = udev->u1_params.sel * 2;
4343                 break;
4344         default:
4345                 return 0;
4346         }
4347
4348         return timeout_ns;
4349 }
4350
4351 /* Returns the hub-encoded U1 timeout value. */
4352 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4353                 struct usb_device *udev,
4354                 struct usb_endpoint_descriptor *desc)
4355 {
4356         unsigned long long timeout_ns;
4357
4358         if (xhci->quirks & XHCI_INTEL_HOST)
4359                 timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4360         else
4361                 timeout_ns = udev->u1_params.sel;
4362
4363         /* The U1 timeout is encoded in 1us intervals.
4364          * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4365          */
4366         if (timeout_ns == USB3_LPM_DISABLED)
4367                 timeout_ns = 1;
4368         else
4369                 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4370
4371         /* If the necessary timeout value is bigger than what we can set in the
4372          * USB 3.0 hub, we have to disable hub-initiated U1.
4373          */
4374         if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4375                 return timeout_ns;
4376         dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4377                         "due to long timeout %llu ms\n", timeout_ns);
4378         return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4379 }
4380
4381 /* The U2 timeout should be the maximum of:
4382  *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4383  *  - largest bInterval of any active periodic endpoint (to avoid going
4384  *    into lower power link states between intervals).
4385  *  - the U2 Exit Latency of the device
4386  */
4387 static unsigned long long xhci_calculate_intel_u2_timeout(
4388                 struct usb_device *udev,
4389                 struct usb_endpoint_descriptor *desc)
4390 {
4391         unsigned long long timeout_ns;
4392         unsigned long long u2_del_ns;
4393
4394         timeout_ns = 10 * 1000 * 1000;
4395
4396         if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4397                         (xhci_service_interval_to_ns(desc) > timeout_ns))
4398                 timeout_ns = xhci_service_interval_to_ns(desc);
4399
4400         u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4401         if (u2_del_ns > timeout_ns)
4402                 timeout_ns = u2_del_ns;
4403
4404         return timeout_ns;
4405 }
4406
4407 /* Returns the hub-encoded U2 timeout value. */
4408 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4409                 struct usb_device *udev,
4410                 struct usb_endpoint_descriptor *desc)
4411 {
4412         unsigned long long timeout_ns;
4413
4414         if (xhci->quirks & XHCI_INTEL_HOST)
4415                 timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4416         else
4417                 timeout_ns = udev->u2_params.sel;
4418
4419         /* The U2 timeout is encoded in 256us intervals */
4420         timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4421         /* If the necessary timeout value is bigger than what we can set in the
4422          * USB 3.0 hub, we have to disable hub-initiated U2.
4423          */
4424         if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4425                 return timeout_ns;
4426         dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4427                         "due to long timeout %llu ms\n", timeout_ns);
4428         return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4429 }
4430
4431 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4432                 struct usb_device *udev,
4433                 struct usb_endpoint_descriptor *desc,
4434                 enum usb3_link_state state,
4435                 u16 *timeout)
4436 {
4437         if (state == USB3_LPM_U1)
4438                 return xhci_calculate_u1_timeout(xhci, udev, desc);
4439         else if (state == USB3_LPM_U2)
4440                 return xhci_calculate_u2_timeout(xhci, udev, desc);
4441
4442         return USB3_LPM_DISABLED;
4443 }
4444
4445 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4446                 struct usb_device *udev,
4447                 struct usb_endpoint_descriptor *desc,
4448                 enum usb3_link_state state,
4449                 u16 *timeout)
4450 {
4451         u16 alt_timeout;
4452
4453         alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4454                 desc, state, timeout);
4455
4456         /* If we found we can't enable hub-initiated LPM, or
4457          * the U1 or U2 exit latency was too high to allow
4458          * device-initiated LPM as well, just stop searching.
4459          */
4460         if (alt_timeout == USB3_LPM_DISABLED ||
4461                         alt_timeout == USB3_LPM_DEVICE_INITIATED) {
4462                 *timeout = alt_timeout;
4463                 return -E2BIG;
4464         }
4465         if (alt_timeout > *timeout)
4466                 *timeout = alt_timeout;
4467         return 0;
4468 }
4469
4470 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4471                 struct usb_device *udev,
4472                 struct usb_host_interface *alt,
4473                 enum usb3_link_state state,
4474                 u16 *timeout)
4475 {
4476         int j;
4477
4478         for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4479                 if (xhci_update_timeout_for_endpoint(xhci, udev,
4480                                         &alt->endpoint[j].desc, state, timeout))
4481                         return -E2BIG;
4482                 continue;
4483         }
4484         return 0;
4485 }
4486
4487 static int xhci_check_intel_tier_policy(struct usb_device *udev,
4488                 enum usb3_link_state state)
4489 {
4490         struct usb_device *parent;
4491         unsigned int num_hubs;
4492
4493         if (state == USB3_LPM_U2)
4494                 return 0;
4495
4496         /* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4497         for (parent = udev->parent, num_hubs = 0; parent->parent;
4498                         parent = parent->parent)
4499                 num_hubs++;
4500
4501         if (num_hubs < 2)
4502                 return 0;
4503
4504         dev_dbg(&udev->dev, "Disabling U1 link state for device"
4505                         " below second-tier hub.\n");
4506         dev_dbg(&udev->dev, "Plug device into first-tier hub "
4507                         "to decrease power consumption.\n");
4508         return -E2BIG;
4509 }
4510
4511 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4512                 struct usb_device *udev,
4513                 enum usb3_link_state state)
4514 {
4515         if (xhci->quirks & XHCI_INTEL_HOST)
4516                 return xhci_check_intel_tier_policy(udev, state);
4517         else
4518                 return 0;
4519 }
4520
4521 /* Returns the U1 or U2 timeout that should be enabled.
4522  * If the tier check or timeout setting functions return with a non-zero exit
4523  * code, that means the timeout value has been finalized and we shouldn't look
4524  * at any more endpoints.
4525  */
4526 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4527                         struct usb_device *udev, enum usb3_link_state state)
4528 {
4529         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4530         struct usb_host_config *config;
4531         char *state_name;
4532         int i;
4533         u16 timeout = USB3_LPM_DISABLED;
4534
4535         if (state == USB3_LPM_U1)
4536                 state_name = "U1";
4537         else if (state == USB3_LPM_U2)
4538                 state_name = "U2";
4539         else {
4540                 dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4541                                 state);
4542                 return timeout;
4543         }
4544
4545         if (xhci_check_tier_policy(xhci, udev, state) < 0)
4546                 return timeout;
4547
4548         /* Gather some information about the currently installed configuration
4549          * and alternate interface settings.
4550          */
4551         if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4552                         state, &timeout))
4553                 return timeout;
4554
4555         config = udev->actconfig;
4556         if (!config)
4557                 return timeout;
4558
4559         for (i = 0; i < config->desc.bNumInterfaces; i++) {
4560                 struct usb_driver *driver;
4561                 struct usb_interface *intf = config->interface[i];
4562
4563                 if (!intf)
4564                         continue;
4565
4566                 /* Check if any currently bound drivers want hub-initiated LPM
4567                  * disabled.
4568                  */
4569                 if (intf->dev.driver) {
4570                         driver = to_usb_driver(intf->dev.driver);
4571                         if (driver && driver->disable_hub_initiated_lpm) {
4572                                 dev_dbg(&udev->dev, "Hub-initiated %s disabled "
4573                                                 "at request of driver %s\n",
4574                                                 state_name, driver->name);
4575                                 return xhci_get_timeout_no_hub_lpm(udev, state);
4576                         }
4577                 }
4578
4579                 /* Not sure how this could happen... */
4580                 if (!intf->cur_altsetting)
4581                         continue;
4582
4583                 if (xhci_update_timeout_for_interface(xhci, udev,
4584                                         intf->cur_altsetting,
4585                                         state, &timeout))
4586                         return timeout;
4587         }
4588         return timeout;
4589 }
4590
4591 static int calculate_max_exit_latency(struct usb_device *udev,
4592                 enum usb3_link_state state_changed,
4593                 u16 hub_encoded_timeout)
4594 {
4595         unsigned long long u1_mel_us = 0;
4596         unsigned long long u2_mel_us = 0;
4597         unsigned long long mel_us = 0;
4598         bool disabling_u1;
4599         bool disabling_u2;
4600         bool enabling_u1;
4601         bool enabling_u2;
4602
4603         disabling_u1 = (state_changed == USB3_LPM_U1 &&
4604                         hub_encoded_timeout == USB3_LPM_DISABLED);
4605         disabling_u2 = (state_changed == USB3_LPM_U2 &&
4606                         hub_encoded_timeout == USB3_LPM_DISABLED);
4607
4608         enabling_u1 = (state_changed == USB3_LPM_U1 &&
4609                         hub_encoded_timeout != USB3_LPM_DISABLED);
4610         enabling_u2 = (state_changed == USB3_LPM_U2 &&
4611                         hub_encoded_timeout != USB3_LPM_DISABLED);
4612
4613         /* If U1 was already enabled and we're not disabling it,
4614          * or we're going to enable U1, account for the U1 max exit latency.
4615          */
4616         if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4617                         enabling_u1)
4618                 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4619         if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4620                         enabling_u2)
4621                 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4622
4623         if (u1_mel_us > u2_mel_us)
4624                 mel_us = u1_mel_us;
4625         else
4626                 mel_us = u2_mel_us;
4627         /* xHCI host controller max exit latency field is only 16 bits wide. */
4628         if (mel_us > MAX_EXIT) {
4629                 dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4630                                 "is too big.\n", mel_us);
4631                 return -E2BIG;
4632         }
4633         return mel_us;
4634 }
4635
4636 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
4637 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4638                         struct usb_device *udev, enum usb3_link_state state)
4639 {
4640         struct xhci_hcd *xhci;
4641         u16 hub_encoded_timeout;
4642         int mel;
4643         int ret;
4644
4645         xhci = hcd_to_xhci(hcd);
4646         /* The LPM timeout values are pretty host-controller specific, so don't
4647          * enable hub-initiated timeouts unless the vendor has provided
4648          * information about their timeout algorithm.
4649          */
4650         if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4651                         !xhci->devs[udev->slot_id])
4652                 return USB3_LPM_DISABLED;
4653
4654         hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4655         mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4656         if (mel < 0) {
4657                 /* Max Exit Latency is too big, disable LPM. */
4658                 hub_encoded_timeout = USB3_LPM_DISABLED;
4659                 mel = 0;
4660         }
4661
4662         ret = xhci_change_max_exit_latency(xhci, udev, mel);
4663         if (ret)
4664                 return ret;
4665         return hub_encoded_timeout;
4666 }
4667
4668 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4669                         struct usb_device *udev, enum usb3_link_state state)
4670 {
4671         struct xhci_hcd *xhci;
4672         u16 mel;
4673
4674         xhci = hcd_to_xhci(hcd);
4675         if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4676                         !xhci->devs[udev->slot_id])
4677                 return 0;
4678
4679         mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
4680         return xhci_change_max_exit_latency(xhci, udev, mel);
4681 }
4682 #else /* CONFIG_PM */
4683
4684 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4685                                 struct usb_device *udev, int enable)
4686 {
4687         return 0;
4688 }
4689
4690 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4691 {
4692         return 0;
4693 }
4694
4695 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4696                         struct usb_device *udev, enum usb3_link_state state)
4697 {
4698         return USB3_LPM_DISABLED;
4699 }
4700
4701 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4702                         struct usb_device *udev, enum usb3_link_state state)
4703 {
4704         return 0;
4705 }
4706 #endif  /* CONFIG_PM */
4707
4708 /*-------------------------------------------------------------------------*/
4709
4710 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
4711  * internal data structures for the device.
4712  */
4713 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
4714                         struct usb_tt *tt, gfp_t mem_flags)
4715 {
4716         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4717         struct xhci_virt_device *vdev;
4718         struct xhci_command *config_cmd;
4719         struct xhci_input_control_ctx *ctrl_ctx;
4720         struct xhci_slot_ctx *slot_ctx;
4721         unsigned long flags;
4722         unsigned think_time;
4723         int ret;
4724
4725         /* Ignore root hubs */
4726         if (!hdev->parent)
4727                 return 0;
4728
4729         vdev = xhci->devs[hdev->slot_id];
4730         if (!vdev) {
4731                 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
4732                 return -EINVAL;
4733         }
4734         config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
4735         if (!config_cmd) {
4736                 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
4737                 return -ENOMEM;
4738         }
4739         ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
4740         if (!ctrl_ctx) {
4741                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4742                                 __func__);
4743                 xhci_free_command(xhci, config_cmd);
4744                 return -ENOMEM;
4745         }
4746
4747         spin_lock_irqsave(&xhci->lock, flags);
4748         if (hdev->speed == USB_SPEED_HIGH &&
4749                         xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
4750                 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
4751                 xhci_free_command(xhci, config_cmd);
4752                 spin_unlock_irqrestore(&xhci->lock, flags);
4753                 return -ENOMEM;
4754         }
4755
4756         xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
4757         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4758         slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
4759         slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
4760         /*
4761          * refer to section 6.2.2: MTT should be 0 for full speed hub,
4762          * but it may be already set to 1 when setup an xHCI virtual
4763          * device, so clear it anyway.
4764          */
4765         if (tt->multi)
4766                 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
4767         else if (hdev->speed == USB_SPEED_FULL)
4768                 slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
4769
4770         if (xhci->hci_version > 0x95) {
4771                 xhci_dbg(xhci, "xHCI version %x needs hub "
4772                                 "TT think time and number of ports\n",
4773                                 (unsigned int) xhci->hci_version);
4774                 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
4775                 /* Set TT think time - convert from ns to FS bit times.
4776                  * 0 = 8 FS bit times, 1 = 16 FS bit times,
4777                  * 2 = 24 FS bit times, 3 = 32 FS bit times.
4778                  *
4779                  * xHCI 1.0: this field shall be 0 if the device is not a
4780                  * High-spped hub.
4781                  */
4782                 think_time = tt->think_time;
4783                 if (think_time != 0)
4784                         think_time = (think_time / 666) - 1;
4785                 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
4786                         slot_ctx->tt_info |=
4787                                 cpu_to_le32(TT_THINK_TIME(think_time));
4788         } else {
4789                 xhci_dbg(xhci, "xHCI version %x doesn't need hub "
4790                                 "TT think time or number of ports\n",
4791                                 (unsigned int) xhci->hci_version);
4792         }
4793         slot_ctx->dev_state = 0;
4794         spin_unlock_irqrestore(&xhci->lock, flags);
4795
4796         xhci_dbg(xhci, "Set up %s for hub device.\n",
4797                         (xhci->hci_version > 0x95) ?
4798                         "configure endpoint" : "evaluate context");
4799         xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id);
4800         xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0);
4801
4802         /* Issue and wait for the configure endpoint or
4803          * evaluate context command.
4804          */
4805         if (xhci->hci_version > 0x95)
4806                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4807                                 false, false);
4808         else
4809                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4810                                 true, false);
4811
4812         xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id);
4813         xhci_dbg_ctx(xhci, vdev->out_ctx, 0);
4814
4815         xhci_free_command(xhci, config_cmd);
4816         return ret;
4817 }
4818
4819 int xhci_get_frame(struct usb_hcd *hcd)
4820 {
4821         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4822         /* EHCI mods by the periodic size.  Why? */
4823         return readl(&xhci->run_regs->microframe_index) >> 3;
4824 }
4825
4826 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
4827 {
4828         struct xhci_hcd         *xhci;
4829         struct device           *dev = hcd->self.controller;
4830         int                     retval;
4831
4832         /* Accept arbitrarily long scatter-gather lists */
4833         hcd->self.sg_tablesize = ~0;
4834
4835         /* support to build packet from discontinuous buffers */
4836         hcd->self.no_sg_constraint = 1;
4837
4838         /* XHCI controllers don't stop the ep queue on short packets :| */
4839         hcd->self.no_stop_on_short = 1;
4840
4841         xhci = hcd_to_xhci(hcd);
4842
4843         if (usb_hcd_is_primary_hcd(hcd)) {
4844                 xhci->main_hcd = hcd;
4845                 /* Mark the first roothub as being USB 2.0.
4846                  * The xHCI driver will register the USB 3.0 roothub.
4847                  */
4848                 hcd->speed = HCD_USB2;
4849                 hcd->self.root_hub->speed = USB_SPEED_HIGH;
4850                 /*
4851                  * USB 2.0 roothub under xHCI has an integrated TT,
4852                  * (rate matching hub) as opposed to having an OHCI/UHCI
4853                  * companion controller.
4854                  */
4855                 hcd->has_tt = 1;
4856         } else {
4857                 if (xhci->sbrn == 0x31) {
4858                         xhci_info(xhci, "Host supports USB 3.1 Enhanced SuperSpeed\n");
4859                         hcd->speed = HCD_USB31;
4860                         hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
4861                 }
4862                 /* xHCI private pointer was set in xhci_pci_probe for the second
4863                  * registered roothub.
4864                  */
4865                 return 0;
4866         }
4867
4868         mutex_init(&xhci->mutex);
4869         xhci->cap_regs = hcd->regs;
4870         xhci->op_regs = hcd->regs +
4871                 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
4872         xhci->run_regs = hcd->regs +
4873                 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
4874         /* Cache read-only capability registers */
4875         xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
4876         xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
4877         xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
4878         xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase);
4879         xhci->hci_version = HC_VERSION(xhci->hcc_params);
4880         xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
4881         if (xhci->hci_version > 0x100)
4882                 xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
4883         xhci_print_registers(xhci);
4884
4885         xhci->quirks |= quirks;
4886
4887         get_quirks(dev, xhci);
4888
4889         /* In xhci controllers which follow xhci 1.0 spec gives a spurious
4890          * success event after a short transfer. This quirk will ignore such
4891          * spurious event.
4892          */
4893         if (xhci->hci_version > 0x96)
4894                 xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
4895
4896         /* Make sure the HC is halted. */
4897         retval = xhci_halt(xhci);
4898         if (retval)
4899                 return retval;
4900
4901         xhci_dbg(xhci, "Resetting HCD\n");
4902         /* Reset the internal HC memory state and registers. */
4903         retval = xhci_reset(xhci);
4904         if (retval)
4905                 return retval;
4906         xhci_dbg(xhci, "Reset complete\n");
4907
4908         /*
4909          * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0)
4910          * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit
4911          * address memory pointers actually. So, this driver clears the AC64
4912          * bit of xhci->hcc_params to call dma_set_coherent_mask(dev,
4913          * DMA_BIT_MASK(32)) in this xhci_gen_setup().
4914          */
4915         if (xhci->quirks & XHCI_NO_64BIT_SUPPORT)
4916                 xhci->hcc_params &= ~BIT(0);
4917
4918         /* Set dma_mask and coherent_dma_mask to 64-bits,
4919          * if xHC supports 64-bit addressing */
4920         if (HCC_64BIT_ADDR(xhci->hcc_params) &&
4921                         !dma_set_mask(dev, DMA_BIT_MASK(64))) {
4922                 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4923                 dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
4924         } else {
4925                 /*
4926                  * This is to avoid error in cases where a 32-bit USB
4927                  * controller is used on a 64-bit capable system.
4928                  */
4929                 retval = dma_set_mask(dev, DMA_BIT_MASK(32));
4930                 if (retval)
4931                         return retval;
4932                 xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
4933                 dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
4934         }
4935
4936         xhci_dbg(xhci, "Calling HCD init\n");
4937         /* Initialize HCD and host controller data structures. */
4938         retval = xhci_init(hcd);
4939         if (retval)
4940                 return retval;
4941         xhci_dbg(xhci, "Called HCD init\n");
4942
4943         xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%08x\n",
4944                   xhci->hcc_params, xhci->hci_version, xhci->quirks);
4945
4946         return 0;
4947 }
4948 EXPORT_SYMBOL_GPL(xhci_gen_setup);
4949
4950 static const struct hc_driver xhci_hc_driver = {
4951         .description =          "xhci-hcd",
4952         .product_desc =         "xHCI Host Controller",
4953         .hcd_priv_size =        sizeof(struct xhci_hcd),
4954
4955         /*
4956          * generic hardware linkage
4957          */
4958         .irq =                  xhci_irq,
4959         .flags =                HCD_MEMORY | HCD_USB3 | HCD_SHARED,
4960
4961         /*
4962          * basic lifecycle operations
4963          */
4964         .reset =                NULL, /* set in xhci_init_driver() */
4965         .start =                xhci_run,
4966         .stop =                 xhci_stop,
4967         .shutdown =             xhci_shutdown,
4968
4969         /*
4970          * managing i/o requests and associated device resources
4971          */
4972         .urb_enqueue =          xhci_urb_enqueue,
4973         .urb_dequeue =          xhci_urb_dequeue,
4974         .alloc_dev =            xhci_alloc_dev,
4975         .free_dev =             xhci_free_dev,
4976         .alloc_streams =        xhci_alloc_streams,
4977         .free_streams =         xhci_free_streams,
4978         .add_endpoint =         xhci_add_endpoint,
4979         .drop_endpoint =        xhci_drop_endpoint,
4980         .endpoint_reset =       xhci_endpoint_reset,
4981         .check_bandwidth =      xhci_check_bandwidth,
4982         .reset_bandwidth =      xhci_reset_bandwidth,
4983         .address_device =       xhci_address_device,
4984         .enable_device =        xhci_enable_device,
4985         .update_hub_device =    xhci_update_hub_device,
4986         .reset_device =         xhci_discover_or_reset_device,
4987
4988         /*
4989          * scheduling support
4990          */
4991         .get_frame_number =     xhci_get_frame,
4992
4993         /*
4994          * root hub support
4995          */
4996         .hub_control =          xhci_hub_control,
4997         .hub_status_data =      xhci_hub_status_data,
4998         .bus_suspend =          xhci_bus_suspend,
4999         .bus_resume =           xhci_bus_resume,
5000
5001         /*
5002          * call back when device connected and addressed
5003          */
5004         .update_device =        xhci_update_device,
5005         .set_usb2_hw_lpm =      xhci_set_usb2_hardware_lpm,
5006         .enable_usb3_lpm_timeout =      xhci_enable_usb3_lpm_timeout,
5007         .disable_usb3_lpm_timeout =     xhci_disable_usb3_lpm_timeout,
5008         .find_raw_port_number = xhci_find_raw_port_number,
5009 };
5010
5011 void xhci_init_driver(struct hc_driver *drv,
5012                       const struct xhci_driver_overrides *over)
5013 {
5014         BUG_ON(!over);
5015
5016         /* Copy the generic table to drv then apply the overrides */
5017         *drv = xhci_hc_driver;
5018
5019         if (over) {
5020                 drv->hcd_priv_size += over->extra_priv_size;
5021                 if (over->reset)
5022                         drv->reset = over->reset;
5023                 if (over->start)
5024                         drv->start = over->start;
5025         }
5026 }
5027 EXPORT_SYMBOL_GPL(xhci_init_driver);
5028
5029 MODULE_DESCRIPTION(DRIVER_DESC);
5030 MODULE_AUTHOR(DRIVER_AUTHOR);
5031 MODULE_LICENSE("GPL");
5032
5033 static int __init xhci_hcd_init(void)
5034 {
5035         /*
5036          * Check the compiler generated sizes of structures that must be laid
5037          * out in specific ways for hardware access.
5038          */
5039         BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
5040         BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
5041         BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
5042         /* xhci_device_control has eight fields, and also
5043          * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
5044          */
5045         BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
5046         BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
5047         BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
5048         BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
5049         BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5050         /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5051         BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5052
5053         if (usb_disabled())
5054                 return -ENODEV;
5055
5056         return 0;
5057 }
5058
5059 /*
5060  * If an init function is provided, an exit function must also be provided
5061  * to allow module unload.
5062  */
5063 static void __exit xhci_hcd_fini(void) { }
5064
5065 module_init(xhci_hcd_init);
5066 module_exit(xhci_hcd_fini);