2 * An async IO implementation for Linux
3 * Written by Benjamin LaHaise <bcrl@kvack.org>
5 * Implements an efficient asynchronous io interface.
7 * Copyright 2000, 2001, 2002 Red Hat, Inc. All Rights Reserved.
9 * See ../COPYING for licensing terms.
11 #include <linux/kernel.h>
12 #include <linux/init.h>
13 #include <linux/errno.h>
14 #include <linux/time.h>
15 #include <linux/aio_abi.h>
16 #include <linux/module.h>
17 #include <linux/syscalls.h>
21 #include <linux/sched.h>
23 #include <linux/file.h>
25 #include <linux/mman.h>
26 #include <linux/slab.h>
27 #include <linux/timer.h>
28 #include <linux/aio.h>
29 #include <linux/highmem.h>
30 #include <linux/workqueue.h>
31 #include <linux/security.h>
32 #include <linux/rcuref.h>
34 #include <asm/kmap_types.h>
35 #include <asm/uaccess.h>
36 #include <asm/mmu_context.h>
39 #define dprintk printk
41 #define dprintk(x...) do { ; } while (0)
44 /*------ sysctl variables----*/
45 atomic_t aio_nr = ATOMIC_INIT(0); /* current system wide number of aio requests */
46 unsigned aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
47 /*----end sysctl variables---*/
49 static kmem_cache_t *kiocb_cachep;
50 static kmem_cache_t *kioctx_cachep;
52 static struct workqueue_struct *aio_wq;
54 /* Used for rare fput completion. */
55 static void aio_fput_routine(void *);
56 static DECLARE_WORK(fput_work, aio_fput_routine, NULL);
58 static DEFINE_SPINLOCK(fput_lock);
59 static LIST_HEAD(fput_head);
61 static void aio_kick_handler(void *);
62 static void aio_queue_work(struct kioctx *);
65 * Creates the slab caches used by the aio routines, panic on
66 * failure as this is done early during the boot sequence.
68 static int __init aio_setup(void)
70 kiocb_cachep = kmem_cache_create("kiocb", sizeof(struct kiocb),
71 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
72 kioctx_cachep = kmem_cache_create("kioctx", sizeof(struct kioctx),
73 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
75 aio_wq = create_workqueue("aio");
77 pr_debug("aio_setup: sizeof(struct page) = %d\n", (int)sizeof(struct page));
82 static void aio_free_ring(struct kioctx *ctx)
84 struct aio_ring_info *info = &ctx->ring_info;
87 for (i=0; i<info->nr_pages; i++)
88 put_page(info->ring_pages[i]);
90 if (info->mmap_size) {
91 down_write(&ctx->mm->mmap_sem);
92 do_munmap(ctx->mm, info->mmap_base, info->mmap_size);
93 up_write(&ctx->mm->mmap_sem);
96 if (info->ring_pages && info->ring_pages != info->internal_pages)
97 kfree(info->ring_pages);
98 info->ring_pages = NULL;
102 static int aio_setup_ring(struct kioctx *ctx)
104 struct aio_ring *ring;
105 struct aio_ring_info *info = &ctx->ring_info;
106 unsigned nr_events = ctx->max_reqs;
110 /* Compensate for the ring buffer's head/tail overlap entry */
111 nr_events += 2; /* 1 is required, 2 for good luck */
113 size = sizeof(struct aio_ring);
114 size += sizeof(struct io_event) * nr_events;
115 nr_pages = (size + PAGE_SIZE-1) >> PAGE_SHIFT;
120 nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring)) / sizeof(struct io_event);
123 info->ring_pages = info->internal_pages;
124 if (nr_pages > AIO_RING_PAGES) {
125 info->ring_pages = kmalloc(sizeof(struct page *) * nr_pages, GFP_KERNEL);
126 if (!info->ring_pages)
128 memset(info->ring_pages, 0, sizeof(struct page *) * nr_pages);
131 info->mmap_size = nr_pages * PAGE_SIZE;
132 dprintk("attempting mmap of %lu bytes\n", info->mmap_size);
133 down_write(&ctx->mm->mmap_sem);
134 info->mmap_base = do_mmap(NULL, 0, info->mmap_size,
135 PROT_READ|PROT_WRITE, MAP_ANON|MAP_PRIVATE,
137 if (IS_ERR((void *)info->mmap_base)) {
138 up_write(&ctx->mm->mmap_sem);
139 printk("mmap err: %ld\n", -info->mmap_base);
145 dprintk("mmap address: 0x%08lx\n", info->mmap_base);
146 info->nr_pages = get_user_pages(current, ctx->mm,
147 info->mmap_base, nr_pages,
148 1, 0, info->ring_pages, NULL);
149 up_write(&ctx->mm->mmap_sem);
151 if (unlikely(info->nr_pages != nr_pages)) {
156 ctx->user_id = info->mmap_base;
158 info->nr = nr_events; /* trusted copy */
160 ring = kmap_atomic(info->ring_pages[0], KM_USER0);
161 ring->nr = nr_events; /* user copy */
162 ring->id = ctx->user_id;
163 ring->head = ring->tail = 0;
164 ring->magic = AIO_RING_MAGIC;
165 ring->compat_features = AIO_RING_COMPAT_FEATURES;
166 ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
167 ring->header_length = sizeof(struct aio_ring);
168 kunmap_atomic(ring, KM_USER0);
174 /* aio_ring_event: returns a pointer to the event at the given index from
175 * kmap_atomic(, km). Release the pointer with put_aio_ring_event();
177 #define AIO_EVENTS_PER_PAGE (PAGE_SIZE / sizeof(struct io_event))
178 #define AIO_EVENTS_FIRST_PAGE ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
179 #define AIO_EVENTS_OFFSET (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
181 #define aio_ring_event(info, nr, km) ({ \
182 unsigned pos = (nr) + AIO_EVENTS_OFFSET; \
183 struct io_event *__event; \
184 __event = kmap_atomic( \
185 (info)->ring_pages[pos / AIO_EVENTS_PER_PAGE], km); \
186 __event += pos % AIO_EVENTS_PER_PAGE; \
190 #define put_aio_ring_event(event, km) do { \
191 struct io_event *__event = (event); \
193 kunmap_atomic((void *)((unsigned long)__event & PAGE_MASK), km); \
197 * Allocates and initializes an ioctx. Returns an ERR_PTR if it failed.
199 static struct kioctx *ioctx_alloc(unsigned nr_events)
201 struct mm_struct *mm;
204 /* Prevent overflows */
205 if ((nr_events > (0x10000000U / sizeof(struct io_event))) ||
206 (nr_events > (0x10000000U / sizeof(struct kiocb)))) {
207 pr_debug("ENOMEM: nr_events too high\n");
208 return ERR_PTR(-EINVAL);
211 if (nr_events > aio_max_nr)
212 return ERR_PTR(-EAGAIN);
214 ctx = kmem_cache_alloc(kioctx_cachep, GFP_KERNEL);
216 return ERR_PTR(-ENOMEM);
218 memset(ctx, 0, sizeof(*ctx));
219 ctx->max_reqs = nr_events;
220 mm = ctx->mm = current->mm;
221 atomic_inc(&mm->mm_count);
223 atomic_set(&ctx->users, 1);
224 spin_lock_init(&ctx->ctx_lock);
225 spin_lock_init(&ctx->ring_info.ring_lock);
226 init_waitqueue_head(&ctx->wait);
228 INIT_LIST_HEAD(&ctx->active_reqs);
229 INIT_LIST_HEAD(&ctx->run_list);
230 INIT_WORK(&ctx->wq, aio_kick_handler, ctx);
232 if (aio_setup_ring(ctx) < 0)
235 /* limit the number of system wide aios */
236 atomic_add(ctx->max_reqs, &aio_nr); /* undone by __put_ioctx */
237 if (unlikely(atomic_read(&aio_nr) > aio_max_nr))
240 /* now link into global list. kludge. FIXME */
241 write_lock(&mm->ioctx_list_lock);
242 ctx->next = mm->ioctx_list;
243 mm->ioctx_list = ctx;
244 write_unlock(&mm->ioctx_list_lock);
246 dprintk("aio: allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
247 ctx, ctx->user_id, current->mm, ctx->ring_info.nr);
251 atomic_sub(ctx->max_reqs, &aio_nr);
252 ctx->max_reqs = 0; /* prevent __put_ioctx from sub'ing aio_nr */
254 return ERR_PTR(-EAGAIN);
258 kmem_cache_free(kioctx_cachep, ctx);
259 ctx = ERR_PTR(-ENOMEM);
261 dprintk("aio: error allocating ioctx %p\n", ctx);
266 * Cancels all outstanding aio requests on an aio context. Used
267 * when the processes owning a context have all exited to encourage
268 * the rapid destruction of the kioctx.
270 static void aio_cancel_all(struct kioctx *ctx)
272 int (*cancel)(struct kiocb *, struct io_event *);
274 spin_lock_irq(&ctx->ctx_lock);
276 while (!list_empty(&ctx->active_reqs)) {
277 struct list_head *pos = ctx->active_reqs.next;
278 struct kiocb *iocb = list_kiocb(pos);
279 list_del_init(&iocb->ki_list);
280 cancel = iocb->ki_cancel;
281 kiocbSetCancelled(iocb);
284 spin_unlock_irq(&ctx->ctx_lock);
286 spin_lock_irq(&ctx->ctx_lock);
289 spin_unlock_irq(&ctx->ctx_lock);
292 static void wait_for_all_aios(struct kioctx *ctx)
294 struct task_struct *tsk = current;
295 DECLARE_WAITQUEUE(wait, tsk);
297 if (!ctx->reqs_active)
300 add_wait_queue(&ctx->wait, &wait);
301 set_task_state(tsk, TASK_UNINTERRUPTIBLE);
302 while (ctx->reqs_active) {
304 set_task_state(tsk, TASK_UNINTERRUPTIBLE);
306 __set_task_state(tsk, TASK_RUNNING);
307 remove_wait_queue(&ctx->wait, &wait);
310 /* wait_on_sync_kiocb:
311 * Waits on the given sync kiocb to complete.
313 ssize_t fastcall wait_on_sync_kiocb(struct kiocb *iocb)
315 while (iocb->ki_users) {
316 set_current_state(TASK_UNINTERRUPTIBLE);
321 __set_current_state(TASK_RUNNING);
322 return iocb->ki_user_data;
325 /* exit_aio: called when the last user of mm goes away. At this point,
326 * there is no way for any new requests to be submited or any of the
327 * io_* syscalls to be called on the context. However, there may be
328 * outstanding requests which hold references to the context; as they
329 * go away, they will call put_ioctx and release any pinned memory
330 * associated with the request (held via struct page * references).
332 void fastcall exit_aio(struct mm_struct *mm)
334 struct kioctx *ctx = mm->ioctx_list;
335 mm->ioctx_list = NULL;
337 struct kioctx *next = ctx->next;
341 wait_for_all_aios(ctx);
343 * this is an overkill, but ensures we don't leave
344 * the ctx on the aio_wq
346 flush_workqueue(aio_wq);
348 if (1 != atomic_read(&ctx->users))
350 "exit_aio:ioctx still alive: %d %d %d\n",
351 atomic_read(&ctx->users), ctx->dead,
359 * Called when the last user of an aio context has gone away,
360 * and the struct needs to be freed.
362 void fastcall __put_ioctx(struct kioctx *ctx)
364 unsigned nr_events = ctx->max_reqs;
366 if (unlikely(ctx->reqs_active))
369 cancel_delayed_work(&ctx->wq);
370 flush_workqueue(aio_wq);
374 pr_debug("__put_ioctx: freeing %p\n", ctx);
375 kmem_cache_free(kioctx_cachep, ctx);
377 atomic_sub(nr_events, &aio_nr);
381 * Allocate a slot for an aio request. Increments the users count
382 * of the kioctx so that the kioctx stays around until all requests are
383 * complete. Returns NULL if no requests are free.
385 * Returns with kiocb->users set to 2. The io submit code path holds
386 * an extra reference while submitting the i/o.
387 * This prevents races between the aio code path referencing the
388 * req (after submitting it) and aio_complete() freeing the req.
390 static struct kiocb *FASTCALL(__aio_get_req(struct kioctx *ctx));
391 static struct kiocb fastcall *__aio_get_req(struct kioctx *ctx)
393 struct kiocb *req = NULL;
394 struct aio_ring *ring;
397 req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL);
401 req->ki_flags = 1 << KIF_LOCKED;
405 req->ki_cancel = NULL;
406 req->ki_retry = NULL;
409 INIT_LIST_HEAD(&req->ki_run_list);
411 /* Check if the completion queue has enough free space to
412 * accept an event from this io.
414 spin_lock_irq(&ctx->ctx_lock);
415 ring = kmap_atomic(ctx->ring_info.ring_pages[0], KM_USER0);
416 if (ctx->reqs_active < aio_ring_avail(&ctx->ring_info, ring)) {
417 list_add(&req->ki_list, &ctx->active_reqs);
422 kunmap_atomic(ring, KM_USER0);
423 spin_unlock_irq(&ctx->ctx_lock);
426 kmem_cache_free(kiocb_cachep, req);
433 static inline struct kiocb *aio_get_req(struct kioctx *ctx)
436 /* Handle a potential starvation case -- should be exceedingly rare as
437 * requests will be stuck on fput_head only if the aio_fput_routine is
438 * delayed and the requests were the last user of the struct file.
440 req = __aio_get_req(ctx);
441 if (unlikely(NULL == req)) {
442 aio_fput_routine(NULL);
443 req = __aio_get_req(ctx);
448 static inline void really_put_req(struct kioctx *ctx, struct kiocb *req)
452 kmem_cache_free(kiocb_cachep, req);
455 if (unlikely(!ctx->reqs_active && ctx->dead))
459 static void aio_fput_routine(void *data)
461 spin_lock_irq(&fput_lock);
462 while (likely(!list_empty(&fput_head))) {
463 struct kiocb *req = list_kiocb(fput_head.next);
464 struct kioctx *ctx = req->ki_ctx;
466 list_del(&req->ki_list);
467 spin_unlock_irq(&fput_lock);
469 /* Complete the fput */
470 __fput(req->ki_filp);
472 /* Link the iocb into the context's free list */
473 spin_lock_irq(&ctx->ctx_lock);
474 really_put_req(ctx, req);
475 spin_unlock_irq(&ctx->ctx_lock);
478 spin_lock_irq(&fput_lock);
480 spin_unlock_irq(&fput_lock);
484 * Returns true if this put was the last user of the request.
486 static int __aio_put_req(struct kioctx *ctx, struct kiocb *req)
488 dprintk(KERN_DEBUG "aio_put(%p): f_count=%d\n",
489 req, atomic_read(&req->ki_filp->f_count));
492 if (unlikely(req->ki_users < 0))
494 if (likely(req->ki_users))
496 list_del(&req->ki_list); /* remove from active_reqs */
497 req->ki_cancel = NULL;
498 req->ki_retry = NULL;
500 /* Must be done under the lock to serialise against cancellation.
501 * Call this aio_fput as it duplicates fput via the fput_work.
503 if (unlikely(rcuref_dec_and_test(&req->ki_filp->f_count))) {
505 spin_lock(&fput_lock);
506 list_add(&req->ki_list, &fput_head);
507 spin_unlock(&fput_lock);
508 queue_work(aio_wq, &fput_work);
510 really_put_req(ctx, req);
515 * Returns true if this put was the last user of the kiocb,
516 * false if the request is still in use.
518 int fastcall aio_put_req(struct kiocb *req)
520 struct kioctx *ctx = req->ki_ctx;
522 spin_lock_irq(&ctx->ctx_lock);
523 ret = __aio_put_req(ctx, req);
524 spin_unlock_irq(&ctx->ctx_lock);
530 /* Lookup an ioctx id. ioctx_list is lockless for reads.
531 * FIXME: this is O(n) and is only suitable for development.
533 struct kioctx *lookup_ioctx(unsigned long ctx_id)
535 struct kioctx *ioctx;
536 struct mm_struct *mm;
539 read_lock(&mm->ioctx_list_lock);
540 for (ioctx = mm->ioctx_list; ioctx; ioctx = ioctx->next)
541 if (likely(ioctx->user_id == ctx_id && !ioctx->dead)) {
545 read_unlock(&mm->ioctx_list_lock);
550 static int lock_kiocb_action(void *param)
556 static inline void lock_kiocb(struct kiocb *iocb)
558 wait_on_bit_lock(&iocb->ki_flags, KIF_LOCKED, lock_kiocb_action,
559 TASK_UNINTERRUPTIBLE);
562 static inline void unlock_kiocb(struct kiocb *iocb)
564 kiocbClearLocked(iocb);
565 smp_mb__after_clear_bit();
566 wake_up_bit(&iocb->ki_flags, KIF_LOCKED);
571 * Makes the calling kernel thread take on the specified
573 * Called by the retry thread execute retries within the
574 * iocb issuer's mm context, so that copy_from/to_user
575 * operations work seamlessly for aio.
576 * (Note: this routine is intended to be called only
577 * from a kernel thread context)
579 static void use_mm(struct mm_struct *mm)
581 struct mm_struct *active_mm;
582 struct task_struct *tsk = current;
585 tsk->flags |= PF_BORROWED_MM;
586 active_mm = tsk->active_mm;
587 atomic_inc(&mm->mm_count);
591 * Note that on UML this *requires* PF_BORROWED_MM to be set, otherwise
592 * it won't work. Update it accordingly if you change it here
594 activate_mm(active_mm, mm);
602 * Reverses the effect of use_mm, i.e. releases the
603 * specified mm context which was earlier taken on
604 * by the calling kernel thread
605 * (Note: this routine is intended to be called only
606 * from a kernel thread context)
608 * Comments: Called with ctx->ctx_lock held. This nests
609 * task_lock instead ctx_lock.
611 static void unuse_mm(struct mm_struct *mm)
613 struct task_struct *tsk = current;
616 tsk->flags &= ~PF_BORROWED_MM;
618 /* active_mm is still 'mm' */
619 enter_lazy_tlb(mm, tsk);
624 * Queue up a kiocb to be retried. Assumes that the kiocb
625 * has already been marked as kicked, and places it on
626 * the retry run list for the corresponding ioctx, if it
627 * isn't already queued. Returns 1 if it actually queued
628 * the kiocb (to tell the caller to activate the work
629 * queue to process it), or 0, if it found that it was
632 * Should be called with the spin lock iocb->ki_ctx->ctx_lock
635 static inline int __queue_kicked_iocb(struct kiocb *iocb)
637 struct kioctx *ctx = iocb->ki_ctx;
639 if (list_empty(&iocb->ki_run_list)) {
640 list_add_tail(&iocb->ki_run_list,
648 * This is the core aio execution routine. It is
649 * invoked both for initial i/o submission and
650 * subsequent retries via the aio_kick_handler.
651 * Expects to be invoked with iocb->ki_ctx->lock
652 * already held. The lock is released and reaquired
653 * as needed during processing.
655 * Calls the iocb retry method (already setup for the
656 * iocb on initial submission) for operation specific
657 * handling, but takes care of most of common retry
658 * execution details for a given iocb. The retry method
659 * needs to be non-blocking as far as possible, to avoid
660 * holding up other iocbs waiting to be serviced by the
661 * retry kernel thread.
663 * The trickier parts in this code have to do with
664 * ensuring that only one retry instance is in progress
665 * for a given iocb at any time. Providing that guarantee
666 * simplifies the coding of individual aio operations as
667 * it avoids various potential races.
669 static ssize_t aio_run_iocb(struct kiocb *iocb)
671 struct kioctx *ctx = iocb->ki_ctx;
672 ssize_t (*retry)(struct kiocb *);
675 if (iocb->ki_retried++ > 1024*1024) {
676 printk("Maximal retry count. Bytes done %Zd\n",
677 iocb->ki_nbytes - iocb->ki_left);
681 if (!(iocb->ki_retried & 0xff)) {
682 pr_debug("%ld retry: %d of %d\n", iocb->ki_retried,
683 iocb->ki_nbytes - iocb->ki_left, iocb->ki_nbytes);
686 if (!(retry = iocb->ki_retry)) {
687 printk("aio_run_iocb: iocb->ki_retry = NULL\n");
692 * We don't want the next retry iteration for this
693 * operation to start until this one has returned and
694 * updated the iocb state. However, wait_queue functions
695 * can trigger a kick_iocb from interrupt context in the
696 * meantime, indicating that data is available for the next
697 * iteration. We want to remember that and enable the
698 * next retry iteration _after_ we are through with
701 * So, in order to be able to register a "kick", but
702 * prevent it from being queued now, we clear the kick
703 * flag, but make the kick code *think* that the iocb is
704 * still on the run list until we are actually done.
705 * When we are done with this iteration, we check if
706 * the iocb was kicked in the meantime and if so, queue
710 kiocbClearKicked(iocb);
713 * This is so that aio_complete knows it doesn't need to
714 * pull the iocb off the run list (We can't just call
715 * INIT_LIST_HEAD because we don't want a kick_iocb to
716 * queue this on the run list yet)
718 iocb->ki_run_list.next = iocb->ki_run_list.prev = NULL;
719 spin_unlock_irq(&ctx->ctx_lock);
721 /* Quit retrying if the i/o has been cancelled */
722 if (kiocbIsCancelled(iocb)) {
724 aio_complete(iocb, ret, 0);
725 /* must not access the iocb after this */
730 * Now we are all set to call the retry method in async
731 * context. By setting this thread's io_wait context
732 * to point to the wait queue entry inside the currently
733 * running iocb for the duration of the retry, we ensure
734 * that async notification wakeups are queued by the
735 * operation instead of blocking waits, and when notified,
736 * cause the iocb to be kicked for continuation (through
737 * the aio_wake_function callback).
739 BUG_ON(current->io_wait != NULL);
740 current->io_wait = &iocb->ki_wait;
742 current->io_wait = NULL;
744 if (-EIOCBRETRY != ret) {
745 if (-EIOCBQUEUED != ret) {
746 BUG_ON(!list_empty(&iocb->ki_wait.task_list));
747 aio_complete(iocb, ret, 0);
748 /* must not access the iocb after this */
752 * Issue an additional retry to avoid waiting forever if
753 * no waits were queued (e.g. in case of a short read).
755 if (list_empty(&iocb->ki_wait.task_list))
756 kiocbSetKicked(iocb);
759 spin_lock_irq(&ctx->ctx_lock);
761 if (-EIOCBRETRY == ret) {
763 * OK, now that we are done with this iteration
764 * and know that there is more left to go,
765 * this is where we let go so that a subsequent
766 * "kick" can start the next iteration
769 /* will make __queue_kicked_iocb succeed from here on */
770 INIT_LIST_HEAD(&iocb->ki_run_list);
771 /* we must queue the next iteration ourselves, if it
772 * has already been kicked */
773 if (kiocbIsKicked(iocb)) {
774 __queue_kicked_iocb(iocb);
777 * __queue_kicked_iocb will always return 1 here, because
778 * iocb->ki_run_list is empty at this point so it should
779 * be safe to unconditionally queue the context into the
790 * Process all pending retries queued on the ioctx
792 * Assumes it is operating within the aio issuer's mm
793 * context. Expects to be called with ctx->ctx_lock held
795 static int __aio_run_iocbs(struct kioctx *ctx)
800 list_splice_init(&ctx->run_list, &run_list);
801 while (!list_empty(&run_list)) {
802 iocb = list_entry(run_list.next, struct kiocb,
804 list_del(&iocb->ki_run_list);
806 * Hold an extra reference while retrying i/o.
808 iocb->ki_users++; /* grab extra reference */
812 if (__aio_put_req(ctx, iocb)) /* drop extra ref */
815 if (!list_empty(&ctx->run_list))
820 static void aio_queue_work(struct kioctx * ctx)
822 unsigned long timeout;
824 * if someone is waiting, get the work started right
825 * away, otherwise, use a longer delay
828 if (waitqueue_active(&ctx->wait))
832 queue_delayed_work(aio_wq, &ctx->wq, timeout);
838 * Process all pending retries queued on the ioctx
840 * Assumes it is operating within the aio issuer's mm
843 static inline void aio_run_iocbs(struct kioctx *ctx)
847 spin_lock_irq(&ctx->ctx_lock);
849 requeue = __aio_run_iocbs(ctx);
850 spin_unlock_irq(&ctx->ctx_lock);
856 * just like aio_run_iocbs, but keeps running them until
857 * the list stays empty
859 static inline void aio_run_all_iocbs(struct kioctx *ctx)
861 spin_lock_irq(&ctx->ctx_lock);
862 while (__aio_run_iocbs(ctx))
864 spin_unlock_irq(&ctx->ctx_lock);
869 * Work queue handler triggered to process pending
870 * retries on an ioctx. Takes on the aio issuer's
871 * mm context before running the iocbs, so that
872 * copy_xxx_user operates on the issuer's address
874 * Run on aiod's context.
876 static void aio_kick_handler(void *data)
878 struct kioctx *ctx = data;
879 mm_segment_t oldfs = get_fs();
884 spin_lock_irq(&ctx->ctx_lock);
885 requeue =__aio_run_iocbs(ctx);
887 spin_unlock_irq(&ctx->ctx_lock);
890 * we're in a worker thread already, don't use queue_delayed_work,
893 queue_work(aio_wq, &ctx->wq);
898 * Called by kick_iocb to queue the kiocb for retry
899 * and if required activate the aio work queue to process
902 static void queue_kicked_iocb(struct kiocb *iocb)
904 struct kioctx *ctx = iocb->ki_ctx;
908 WARN_ON((!list_empty(&iocb->ki_wait.task_list)));
910 spin_lock_irqsave(&ctx->ctx_lock, flags);
911 run = __queue_kicked_iocb(iocb);
912 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
919 * Called typically from a wait queue callback context
920 * (aio_wake_function) to trigger a retry of the iocb.
921 * The retry is usually executed by aio workqueue
922 * threads (See aio_kick_handler).
924 void fastcall kick_iocb(struct kiocb *iocb)
926 /* sync iocbs are easy: they can only ever be executing from a
928 if (is_sync_kiocb(iocb)) {
929 kiocbSetKicked(iocb);
930 wake_up_process(iocb->ki_obj.tsk);
934 /* If its already kicked we shouldn't queue it again */
935 if (!kiocbTryKick(iocb)) {
936 queue_kicked_iocb(iocb);
939 EXPORT_SYMBOL(kick_iocb);
942 * Called when the io request on the given iocb is complete.
943 * Returns true if this is the last user of the request. The
944 * only other user of the request can be the cancellation code.
946 int fastcall aio_complete(struct kiocb *iocb, long res, long res2)
948 struct kioctx *ctx = iocb->ki_ctx;
949 struct aio_ring_info *info;
950 struct aio_ring *ring;
951 struct io_event *event;
956 /* Special case handling for sync iocbs: events go directly
957 * into the iocb for fast handling. Note that this will not
958 * work if we allow sync kiocbs to be cancelled. in which
959 * case the usage count checks will have to move under ctx_lock
962 if (is_sync_kiocb(iocb)) {
965 iocb->ki_user_data = res;
966 if (iocb->ki_users == 1) {
970 spin_lock_irq(&ctx->ctx_lock);
972 ret = (0 == iocb->ki_users);
973 spin_unlock_irq(&ctx->ctx_lock);
975 /* sync iocbs put the task here for us */
976 wake_up_process(iocb->ki_obj.tsk);
980 info = &ctx->ring_info;
982 /* add a completion event to the ring buffer.
983 * must be done holding ctx->ctx_lock to prevent
984 * other code from messing with the tail
985 * pointer since we might be called from irq
988 spin_lock_irqsave(&ctx->ctx_lock, flags);
990 if (iocb->ki_run_list.prev && !list_empty(&iocb->ki_run_list))
991 list_del_init(&iocb->ki_run_list);
994 * cancelled requests don't get events, userland was given one
995 * when the event got cancelled.
997 if (kiocbIsCancelled(iocb))
1000 ring = kmap_atomic(info->ring_pages[0], KM_IRQ1);
1003 event = aio_ring_event(info, tail, KM_IRQ0);
1004 if (++tail >= info->nr)
1007 event->obj = (u64)(unsigned long)iocb->ki_obj.user;
1008 event->data = iocb->ki_user_data;
1012 dprintk("aio_complete: %p[%lu]: %p: %p %Lx %lx %lx\n",
1013 ctx, tail, iocb, iocb->ki_obj.user, iocb->ki_user_data,
1016 /* after flagging the request as done, we
1017 * must never even look at it again
1019 smp_wmb(); /* make event visible before updating tail */
1024 put_aio_ring_event(event, KM_IRQ0);
1025 kunmap_atomic(ring, KM_IRQ1);
1027 pr_debug("added to ring %p at [%lu]\n", iocb, tail);
1029 pr_debug("%ld retries: %d of %d\n", iocb->ki_retried,
1030 iocb->ki_nbytes - iocb->ki_left, iocb->ki_nbytes);
1032 /* everything turned out well, dispose of the aiocb. */
1033 ret = __aio_put_req(ctx, iocb);
1035 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1037 if (waitqueue_active(&ctx->wait))
1038 wake_up(&ctx->wait);
1047 * Pull an event off of the ioctx's event ring. Returns the number of
1048 * events fetched (0 or 1 ;-)
1049 * FIXME: make this use cmpxchg.
1050 * TODO: make the ringbuffer user mmap()able (requires FIXME).
1052 static int aio_read_evt(struct kioctx *ioctx, struct io_event *ent)
1054 struct aio_ring_info *info = &ioctx->ring_info;
1055 struct aio_ring *ring;
1059 ring = kmap_atomic(info->ring_pages[0], KM_USER0);
1060 dprintk("in aio_read_evt h%lu t%lu m%lu\n",
1061 (unsigned long)ring->head, (unsigned long)ring->tail,
1062 (unsigned long)ring->nr);
1064 if (ring->head == ring->tail)
1067 spin_lock(&info->ring_lock);
1069 head = ring->head % info->nr;
1070 if (head != ring->tail) {
1071 struct io_event *evp = aio_ring_event(info, head, KM_USER1);
1073 head = (head + 1) % info->nr;
1074 smp_mb(); /* finish reading the event before updatng the head */
1077 put_aio_ring_event(evp, KM_USER1);
1079 spin_unlock(&info->ring_lock);
1082 kunmap_atomic(ring, KM_USER0);
1083 dprintk("leaving aio_read_evt: %d h%lu t%lu\n", ret,
1084 (unsigned long)ring->head, (unsigned long)ring->tail);
1088 struct aio_timeout {
1089 struct timer_list timer;
1091 struct task_struct *p;
1094 static void timeout_func(unsigned long data)
1096 struct aio_timeout *to = (struct aio_timeout *)data;
1099 wake_up_process(to->p);
1102 static inline void init_timeout(struct aio_timeout *to)
1104 init_timer(&to->timer);
1105 to->timer.data = (unsigned long)to;
1106 to->timer.function = timeout_func;
1111 static inline void set_timeout(long start_jiffies, struct aio_timeout *to,
1112 const struct timespec *ts)
1114 to->timer.expires = start_jiffies + timespec_to_jiffies(ts);
1115 if (time_after(to->timer.expires, jiffies))
1116 add_timer(&to->timer);
1121 static inline void clear_timeout(struct aio_timeout *to)
1123 del_singleshot_timer_sync(&to->timer);
1126 static int read_events(struct kioctx *ctx,
1127 long min_nr, long nr,
1128 struct io_event __user *event,
1129 struct timespec __user *timeout)
1131 long start_jiffies = jiffies;
1132 struct task_struct *tsk = current;
1133 DECLARE_WAITQUEUE(wait, tsk);
1136 struct io_event ent;
1137 struct aio_timeout to;
1140 /* needed to zero any padding within an entry (there shouldn't be
1141 * any, but C is fun!
1143 memset(&ent, 0, sizeof(ent));
1146 while (likely(i < nr)) {
1147 ret = aio_read_evt(ctx, &ent);
1148 if (unlikely(ret <= 0))
1151 dprintk("read event: %Lx %Lx %Lx %Lx\n",
1152 ent.data, ent.obj, ent.res, ent.res2);
1154 /* Could we split the check in two? */
1156 if (unlikely(copy_to_user(event, &ent, sizeof(ent)))) {
1157 dprintk("aio: lost an event due to EFAULT.\n");
1162 /* Good, event copied to userland, update counts. */
1174 /* racey check, but it gets redone */
1175 if (!retry && unlikely(!list_empty(&ctx->run_list))) {
1177 aio_run_all_iocbs(ctx);
1185 if (unlikely(copy_from_user(&ts, timeout, sizeof(ts))))
1188 set_timeout(start_jiffies, &to, &ts);
1191 while (likely(i < nr)) {
1192 add_wait_queue_exclusive(&ctx->wait, &wait);
1194 set_task_state(tsk, TASK_INTERRUPTIBLE);
1195 ret = aio_read_evt(ctx, &ent);
1201 if (to.timed_out) /* Only check after read evt */
1204 if (signal_pending(tsk)) {
1208 /*ret = aio_read_evt(ctx, &ent);*/
1211 set_task_state(tsk, TASK_RUNNING);
1212 remove_wait_queue(&ctx->wait, &wait);
1214 if (unlikely(ret <= 0))
1218 if (unlikely(copy_to_user(event, &ent, sizeof(ent)))) {
1219 dprintk("aio: lost an event due to EFAULT.\n");
1223 /* Good, event copied to userland, update counts. */
1234 /* Take an ioctx and remove it from the list of ioctx's. Protects
1235 * against races with itself via ->dead.
1237 static void io_destroy(struct kioctx *ioctx)
1239 struct mm_struct *mm = current->mm;
1240 struct kioctx **tmp;
1243 /* delete the entry from the list is someone else hasn't already */
1244 write_lock(&mm->ioctx_list_lock);
1245 was_dead = ioctx->dead;
1247 for (tmp = &mm->ioctx_list; *tmp && *tmp != ioctx;
1248 tmp = &(*tmp)->next)
1252 write_unlock(&mm->ioctx_list_lock);
1254 dprintk("aio_release(%p)\n", ioctx);
1255 if (likely(!was_dead))
1256 put_ioctx(ioctx); /* twice for the list */
1258 aio_cancel_all(ioctx);
1259 wait_for_all_aios(ioctx);
1260 put_ioctx(ioctx); /* once for the lookup */
1264 * Create an aio_context capable of receiving at least nr_events.
1265 * ctxp must not point to an aio_context that already exists, and
1266 * must be initialized to 0 prior to the call. On successful
1267 * creation of the aio_context, *ctxp is filled in with the resulting
1268 * handle. May fail with -EINVAL if *ctxp is not initialized,
1269 * if the specified nr_events exceeds internal limits. May fail
1270 * with -EAGAIN if the specified nr_events exceeds the user's limit
1271 * of available events. May fail with -ENOMEM if insufficient kernel
1272 * resources are available. May fail with -EFAULT if an invalid
1273 * pointer is passed for ctxp. Will fail with -ENOSYS if not
1276 asmlinkage long sys_io_setup(unsigned nr_events, aio_context_t __user *ctxp)
1278 struct kioctx *ioctx = NULL;
1282 ret = get_user(ctx, ctxp);
1287 if (unlikely(ctx || (int)nr_events <= 0)) {
1288 pr_debug("EINVAL: io_setup: ctx or nr_events > max\n");
1292 ioctx = ioctx_alloc(nr_events);
1293 ret = PTR_ERR(ioctx);
1294 if (!IS_ERR(ioctx)) {
1295 ret = put_user(ioctx->user_id, ctxp);
1299 get_ioctx(ioctx); /* io_destroy() expects us to hold a ref */
1308 * Destroy the aio_context specified. May cancel any outstanding
1309 * AIOs and block on completion. Will fail with -ENOSYS if not
1310 * implemented. May fail with -EFAULT if the context pointed to
1313 asmlinkage long sys_io_destroy(aio_context_t ctx)
1315 struct kioctx *ioctx = lookup_ioctx(ctx);
1316 if (likely(NULL != ioctx)) {
1320 pr_debug("EINVAL: io_destroy: invalid context id\n");
1325 * Default retry method for aio_read (also used for first time submit)
1326 * Responsible for updating iocb state as retries progress
1328 static ssize_t aio_pread(struct kiocb *iocb)
1330 struct file *file = iocb->ki_filp;
1331 struct address_space *mapping = file->f_mapping;
1332 struct inode *inode = mapping->host;
1335 ret = file->f_op->aio_read(iocb, iocb->ki_buf,
1336 iocb->ki_left, iocb->ki_pos);
1339 * Can't just depend on iocb->ki_left to determine
1340 * whether we are done. This may have been a short read.
1343 iocb->ki_buf += ret;
1344 iocb->ki_left -= ret;
1346 * For pipes and sockets we return once we have
1347 * some data; for regular files we retry till we
1348 * complete the entire read or find that we can't
1349 * read any more data (e.g short reads).
1351 if (!S_ISFIFO(inode->i_mode) && !S_ISSOCK(inode->i_mode))
1355 /* This means we must have transferred all that we could */
1356 /* No need to retry anymore */
1357 if ((ret == 0) || (iocb->ki_left == 0))
1358 ret = iocb->ki_nbytes - iocb->ki_left;
1364 * Default retry method for aio_write (also used for first time submit)
1365 * Responsible for updating iocb state as retries progress
1367 static ssize_t aio_pwrite(struct kiocb *iocb)
1369 struct file *file = iocb->ki_filp;
1372 ret = file->f_op->aio_write(iocb, iocb->ki_buf,
1373 iocb->ki_left, iocb->ki_pos);
1376 iocb->ki_buf += ret;
1377 iocb->ki_left -= ret;
1382 /* This means we must have transferred all that we could */
1383 /* No need to retry anymore */
1384 if ((ret == 0) || (iocb->ki_left == 0))
1385 ret = iocb->ki_nbytes - iocb->ki_left;
1390 static ssize_t aio_fdsync(struct kiocb *iocb)
1392 struct file *file = iocb->ki_filp;
1393 ssize_t ret = -EINVAL;
1395 if (file->f_op->aio_fsync)
1396 ret = file->f_op->aio_fsync(iocb, 1);
1400 static ssize_t aio_fsync(struct kiocb *iocb)
1402 struct file *file = iocb->ki_filp;
1403 ssize_t ret = -EINVAL;
1405 if (file->f_op->aio_fsync)
1406 ret = file->f_op->aio_fsync(iocb, 0);
1412 * Performs the initial checks and aio retry method
1413 * setup for the kiocb at the time of io submission.
1415 static ssize_t aio_setup_iocb(struct kiocb *kiocb)
1417 struct file *file = kiocb->ki_filp;
1420 switch (kiocb->ki_opcode) {
1421 case IOCB_CMD_PREAD:
1423 if (unlikely(!(file->f_mode & FMODE_READ)))
1426 if (unlikely(!access_ok(VERIFY_WRITE, kiocb->ki_buf,
1430 if (file->f_op->aio_read)
1431 kiocb->ki_retry = aio_pread;
1433 case IOCB_CMD_PWRITE:
1435 if (unlikely(!(file->f_mode & FMODE_WRITE)))
1438 if (unlikely(!access_ok(VERIFY_READ, kiocb->ki_buf,
1442 if (file->f_op->aio_write)
1443 kiocb->ki_retry = aio_pwrite;
1445 case IOCB_CMD_FDSYNC:
1447 if (file->f_op->aio_fsync)
1448 kiocb->ki_retry = aio_fdsync;
1450 case IOCB_CMD_FSYNC:
1452 if (file->f_op->aio_fsync)
1453 kiocb->ki_retry = aio_fsync;
1456 dprintk("EINVAL: io_submit: no operation provided\n");
1460 if (!kiocb->ki_retry)
1467 * aio_wake_function:
1468 * wait queue callback function for aio notification,
1469 * Simply triggers a retry of the operation via kick_iocb.
1471 * This callback is specified in the wait queue entry in
1472 * a kiocb (current->io_wait points to this wait queue
1473 * entry when an aio operation executes; it is used
1474 * instead of a synchronous wait when an i/o blocking
1475 * condition is encountered during aio).
1478 * This routine is executed with the wait queue lock held.
1479 * Since kick_iocb acquires iocb->ctx->ctx_lock, it nests
1480 * the ioctx lock inside the wait queue lock. This is safe
1481 * because this callback isn't used for wait queues which
1482 * are nested inside ioctx lock (i.e. ctx->wait)
1484 static int aio_wake_function(wait_queue_t *wait, unsigned mode,
1485 int sync, void *key)
1487 struct kiocb *iocb = container_of(wait, struct kiocb, ki_wait);
1489 list_del_init(&wait->task_list);
1494 int fastcall io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
1501 /* enforce forwards compatibility on users */
1502 if (unlikely(iocb->aio_reserved1 || iocb->aio_reserved2 ||
1503 iocb->aio_reserved3)) {
1504 pr_debug("EINVAL: io_submit: reserve field set\n");
1508 /* prevent overflows */
1510 (iocb->aio_buf != (unsigned long)iocb->aio_buf) ||
1511 (iocb->aio_nbytes != (size_t)iocb->aio_nbytes) ||
1512 ((ssize_t)iocb->aio_nbytes < 0)
1514 pr_debug("EINVAL: io_submit: overflow check\n");
1518 file = fget(iocb->aio_fildes);
1519 if (unlikely(!file))
1522 req = aio_get_req(ctx); /* returns with 2 references to req */
1523 if (unlikely(!req)) {
1528 req->ki_filp = file;
1529 ret = put_user(req->ki_key, &user_iocb->aio_key);
1530 if (unlikely(ret)) {
1531 dprintk("EFAULT: aio_key\n");
1535 req->ki_obj.user = user_iocb;
1536 req->ki_user_data = iocb->aio_data;
1537 req->ki_pos = iocb->aio_offset;
1539 req->ki_buf = (char __user *)(unsigned long)iocb->aio_buf;
1540 req->ki_left = req->ki_nbytes = iocb->aio_nbytes;
1541 req->ki_opcode = iocb->aio_lio_opcode;
1542 init_waitqueue_func_entry(&req->ki_wait, aio_wake_function);
1543 INIT_LIST_HEAD(&req->ki_wait.task_list);
1544 req->ki_retried = 0;
1546 ret = aio_setup_iocb(req);
1551 spin_lock_irq(&ctx->ctx_lock);
1554 if (!list_empty(&ctx->run_list)) {
1555 /* drain the run list */
1556 while (__aio_run_iocbs(ctx))
1559 spin_unlock_irq(&ctx->ctx_lock);
1560 aio_put_req(req); /* drop extra ref to req */
1564 aio_put_req(req); /* drop extra ref to req */
1565 aio_put_req(req); /* drop i/o ref to req */
1570 * Queue the nr iocbs pointed to by iocbpp for processing. Returns
1571 * the number of iocbs queued. May return -EINVAL if the aio_context
1572 * specified by ctx_id is invalid, if nr is < 0, if the iocb at
1573 * *iocbpp[0] is not properly initialized, if the operation specified
1574 * is invalid for the file descriptor in the iocb. May fail with
1575 * -EFAULT if any of the data structures point to invalid data. May
1576 * fail with -EBADF if the file descriptor specified in the first
1577 * iocb is invalid. May fail with -EAGAIN if insufficient resources
1578 * are available to queue any iocbs. Will return 0 if nr is 0. Will
1579 * fail with -ENOSYS if not implemented.
1581 asmlinkage long sys_io_submit(aio_context_t ctx_id, long nr,
1582 struct iocb __user * __user *iocbpp)
1588 if (unlikely(nr < 0))
1591 if (unlikely(!access_ok(VERIFY_READ, iocbpp, (nr*sizeof(*iocbpp)))))
1594 ctx = lookup_ioctx(ctx_id);
1595 if (unlikely(!ctx)) {
1596 pr_debug("EINVAL: io_submit: invalid context id\n");
1601 * AKPM: should this return a partial result if some of the IOs were
1602 * successfully submitted?
1604 for (i=0; i<nr; i++) {
1605 struct iocb __user *user_iocb;
1608 if (unlikely(__get_user(user_iocb, iocbpp + i))) {
1613 if (unlikely(copy_from_user(&tmp, user_iocb, sizeof(tmp)))) {
1618 ret = io_submit_one(ctx, user_iocb, &tmp);
1628 * Finds a given iocb for cancellation.
1629 * MUST be called with ctx->ctx_lock held.
1631 static struct kiocb *lookup_kiocb(struct kioctx *ctx, struct iocb __user *iocb,
1634 struct list_head *pos;
1635 /* TODO: use a hash or array, this sucks. */
1636 list_for_each(pos, &ctx->active_reqs) {
1637 struct kiocb *kiocb = list_kiocb(pos);
1638 if (kiocb->ki_obj.user == iocb && kiocb->ki_key == key)
1645 * Attempts to cancel an iocb previously passed to io_submit. If
1646 * the operation is successfully cancelled, the resulting event is
1647 * copied into the memory pointed to by result without being placed
1648 * into the completion queue and 0 is returned. May fail with
1649 * -EFAULT if any of the data structures pointed to are invalid.
1650 * May fail with -EINVAL if aio_context specified by ctx_id is
1651 * invalid. May fail with -EAGAIN if the iocb specified was not
1652 * cancelled. Will fail with -ENOSYS if not implemented.
1654 asmlinkage long sys_io_cancel(aio_context_t ctx_id, struct iocb __user *iocb,
1655 struct io_event __user *result)
1657 int (*cancel)(struct kiocb *iocb, struct io_event *res);
1659 struct kiocb *kiocb;
1663 ret = get_user(key, &iocb->aio_key);
1667 ctx = lookup_ioctx(ctx_id);
1671 spin_lock_irq(&ctx->ctx_lock);
1673 kiocb = lookup_kiocb(ctx, iocb, key);
1674 if (kiocb && kiocb->ki_cancel) {
1675 cancel = kiocb->ki_cancel;
1677 kiocbSetCancelled(kiocb);
1680 spin_unlock_irq(&ctx->ctx_lock);
1682 if (NULL != cancel) {
1683 struct io_event tmp;
1684 pr_debug("calling cancel\n");
1686 memset(&tmp, 0, sizeof(tmp));
1687 tmp.obj = (u64)(unsigned long)kiocb->ki_obj.user;
1688 tmp.data = kiocb->ki_user_data;
1689 ret = cancel(kiocb, &tmp);
1691 /* Cancellation succeeded -- copy the result
1692 * into the user's buffer.
1694 if (copy_to_user(result, &tmp, sizeof(tmp)))
1697 unlock_kiocb(kiocb);
1707 * Attempts to read at least min_nr events and up to nr events from
1708 * the completion queue for the aio_context specified by ctx_id. May
1709 * fail with -EINVAL if ctx_id is invalid, if min_nr is out of range,
1710 * if nr is out of range, if when is out of range. May fail with
1711 * -EFAULT if any of the memory specified to is invalid. May return
1712 * 0 or < min_nr if no events are available and the timeout specified
1713 * by when has elapsed, where when == NULL specifies an infinite
1714 * timeout. Note that the timeout pointed to by when is relative and
1715 * will be updated if not NULL and the operation blocks. Will fail
1716 * with -ENOSYS if not implemented.
1718 asmlinkage long sys_io_getevents(aio_context_t ctx_id,
1721 struct io_event __user *events,
1722 struct timespec __user *timeout)
1724 struct kioctx *ioctx = lookup_ioctx(ctx_id);
1727 if (likely(ioctx)) {
1728 if (likely(min_nr <= nr && min_nr >= 0 && nr >= 0))
1729 ret = read_events(ioctx, min_nr, nr, events, timeout);
1736 __initcall(aio_setup);
1738 EXPORT_SYMBOL(aio_complete);
1739 EXPORT_SYMBOL(aio_put_req);
1740 EXPORT_SYMBOL(wait_on_sync_kiocb);