]> git.karo-electronics.de Git - karo-tx-linux.git/blob - fs/btrfs/backref.c
Merge remote-tracking branch 'asoc/topic/rcar' into asoc-next
[karo-tx-linux.git] / fs / btrfs / backref.c
1 /*
2  * Copyright (C) 2011 STRATO.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/vmalloc.h>
20 #include <linux/rbtree.h>
21 #include "ctree.h"
22 #include "disk-io.h"
23 #include "backref.h"
24 #include "ulist.h"
25 #include "transaction.h"
26 #include "delayed-ref.h"
27 #include "locking.h"
28
29 /* Just an arbitrary number so we can be sure this happened */
30 #define BACKREF_FOUND_SHARED 6
31
32 struct extent_inode_elem {
33         u64 inum;
34         u64 offset;
35         struct extent_inode_elem *next;
36 };
37
38 /*
39  * ref_root is used as the root of the ref tree that hold a collection
40  * of unique references.
41  */
42 struct ref_root {
43         struct rb_root rb_root;
44
45         /*
46          * The unique_refs represents the number of ref_nodes with a positive
47          * count stored in the tree. Even if a ref_node (the count is greater
48          * than one) is added, the unique_refs will only increase by one.
49          */
50         unsigned int unique_refs;
51 };
52
53 /* ref_node is used to store a unique reference to the ref tree. */
54 struct ref_node {
55         struct rb_node rb_node;
56
57         /* For NORMAL_REF, otherwise all these fields should be set to 0 */
58         u64 root_id;
59         u64 object_id;
60         u64 offset;
61
62         /* For SHARED_REF, otherwise parent field should be set to 0 */
63         u64 parent;
64
65         /* Ref to the ref_mod of btrfs_delayed_ref_node */
66         int ref_mod;
67 };
68
69 /* Dynamically allocate and initialize a ref_root */
70 static struct ref_root *ref_root_alloc(void)
71 {
72         struct ref_root *ref_tree;
73
74         ref_tree = kmalloc(sizeof(*ref_tree), GFP_NOFS);
75         if (!ref_tree)
76                 return NULL;
77
78         ref_tree->rb_root = RB_ROOT;
79         ref_tree->unique_refs = 0;
80
81         return ref_tree;
82 }
83
84 /* Free all nodes in the ref tree, and reinit ref_root */
85 static void ref_root_fini(struct ref_root *ref_tree)
86 {
87         struct ref_node *node;
88         struct rb_node *next;
89
90         while ((next = rb_first(&ref_tree->rb_root)) != NULL) {
91                 node = rb_entry(next, struct ref_node, rb_node);
92                 rb_erase(next, &ref_tree->rb_root);
93                 kfree(node);
94         }
95
96         ref_tree->rb_root = RB_ROOT;
97         ref_tree->unique_refs = 0;
98 }
99
100 static void ref_root_free(struct ref_root *ref_tree)
101 {
102         if (!ref_tree)
103                 return;
104
105         ref_root_fini(ref_tree);
106         kfree(ref_tree);
107 }
108
109 /*
110  * Compare ref_node with (root_id, object_id, offset, parent)
111  *
112  * The function compares two ref_node a and b. It returns an integer less
113  * than, equal to, or greater than zero , respectively, to be less than, to
114  * equal, or be greater than b.
115  */
116 static int ref_node_cmp(struct ref_node *a, struct ref_node *b)
117 {
118         if (a->root_id < b->root_id)
119                 return -1;
120         else if (a->root_id > b->root_id)
121                 return 1;
122
123         if (a->object_id < b->object_id)
124                 return -1;
125         else if (a->object_id > b->object_id)
126                 return 1;
127
128         if (a->offset < b->offset)
129                 return -1;
130         else if (a->offset > b->offset)
131                 return 1;
132
133         if (a->parent < b->parent)
134                 return -1;
135         else if (a->parent > b->parent)
136                 return 1;
137
138         return 0;
139 }
140
141 /*
142  * Search ref_node with (root_id, object_id, offset, parent) in the tree
143  *
144  * if found, the pointer of the ref_node will be returned;
145  * if not found, NULL will be returned and pos will point to the rb_node for
146  * insert, pos_parent will point to pos'parent for insert;
147 */
148 static struct ref_node *__ref_tree_search(struct ref_root *ref_tree,
149                                           struct rb_node ***pos,
150                                           struct rb_node **pos_parent,
151                                           u64 root_id, u64 object_id,
152                                           u64 offset, u64 parent)
153 {
154         struct ref_node *cur = NULL;
155         struct ref_node entry;
156         int ret;
157
158         entry.root_id = root_id;
159         entry.object_id = object_id;
160         entry.offset = offset;
161         entry.parent = parent;
162
163         *pos = &ref_tree->rb_root.rb_node;
164
165         while (**pos) {
166                 *pos_parent = **pos;
167                 cur = rb_entry(*pos_parent, struct ref_node, rb_node);
168
169                 ret = ref_node_cmp(cur, &entry);
170                 if (ret > 0)
171                         *pos = &(**pos)->rb_left;
172                 else if (ret < 0)
173                         *pos = &(**pos)->rb_right;
174                 else
175                         return cur;
176         }
177
178         return NULL;
179 }
180
181 /*
182  * Insert a ref_node to the ref tree
183  * @pos used for specifiy the position to insert
184  * @pos_parent for specifiy pos's parent
185  *
186  * success, return 0;
187  * ref_node already exists, return -EEXIST;
188 */
189 static int ref_tree_insert(struct ref_root *ref_tree, struct rb_node **pos,
190                            struct rb_node *pos_parent, struct ref_node *ins)
191 {
192         struct rb_node **p = NULL;
193         struct rb_node *parent = NULL;
194         struct ref_node *cur = NULL;
195
196         if (!pos) {
197                 cur = __ref_tree_search(ref_tree, &p, &parent, ins->root_id,
198                                         ins->object_id, ins->offset,
199                                         ins->parent);
200                 if (cur)
201                         return -EEXIST;
202         } else {
203                 p = pos;
204                 parent = pos_parent;
205         }
206
207         rb_link_node(&ins->rb_node, parent, p);
208         rb_insert_color(&ins->rb_node, &ref_tree->rb_root);
209
210         return 0;
211 }
212
213 /* Erase and free ref_node, caller should update ref_root->unique_refs */
214 static void ref_tree_remove(struct ref_root *ref_tree, struct ref_node *node)
215 {
216         rb_erase(&node->rb_node, &ref_tree->rb_root);
217         kfree(node);
218 }
219
220 /*
221  * Update ref_root->unique_refs
222  *
223  * Call __ref_tree_search
224  *      1. if ref_node doesn't exist, ref_tree_insert this node, and update
225  *      ref_root->unique_refs:
226  *              if ref_node->ref_mod > 0, ref_root->unique_refs++;
227  *              if ref_node->ref_mod < 0, do noting;
228  *
229  *      2. if ref_node is found, then get origin ref_node->ref_mod, and update
230  *      ref_node->ref_mod.
231  *              if ref_node->ref_mod is equal to 0,then call ref_tree_remove
232  *
233  *              according to origin_mod and new_mod, update ref_root->items
234  *              +----------------+--------------+-------------+
235  *              |                |new_count <= 0|new_count > 0|
236  *              +----------------+--------------+-------------+
237  *              |origin_count < 0|       0      |      1      |
238  *              +----------------+--------------+-------------+
239  *              |origin_count > 0|      -1      |      0      |
240  *              +----------------+--------------+-------------+
241  *
242  * In case of allocation failure, -ENOMEM is returned and the ref_tree stays
243  * unaltered.
244  * Success, return 0
245  */
246 static int ref_tree_add(struct ref_root *ref_tree, u64 root_id, u64 object_id,
247                         u64 offset, u64 parent, int count)
248 {
249         struct ref_node *node = NULL;
250         struct rb_node **pos = NULL;
251         struct rb_node *pos_parent = NULL;
252         int origin_count;
253         int ret;
254
255         if (!count)
256                 return 0;
257
258         node = __ref_tree_search(ref_tree, &pos, &pos_parent, root_id,
259                                  object_id, offset, parent);
260         if (node == NULL) {
261                 node = kmalloc(sizeof(*node), GFP_NOFS);
262                 if (!node)
263                         return -ENOMEM;
264
265                 node->root_id = root_id;
266                 node->object_id = object_id;
267                 node->offset = offset;
268                 node->parent = parent;
269                 node->ref_mod = count;
270
271                 ret = ref_tree_insert(ref_tree, pos, pos_parent, node);
272                 ASSERT(!ret);
273                 if (ret) {
274                         kfree(node);
275                         return ret;
276                 }
277
278                 ref_tree->unique_refs += node->ref_mod > 0 ? 1 : 0;
279
280                 return 0;
281         }
282
283         origin_count = node->ref_mod;
284         node->ref_mod += count;
285
286         if (node->ref_mod > 0)
287                 ref_tree->unique_refs += origin_count > 0 ? 0 : 1;
288         else if (node->ref_mod <= 0)
289                 ref_tree->unique_refs += origin_count > 0 ? -1 : 0;
290
291         if (!node->ref_mod)
292                 ref_tree_remove(ref_tree, node);
293
294         return 0;
295 }
296
297 static int check_extent_in_eb(struct btrfs_key *key, struct extent_buffer *eb,
298                                 struct btrfs_file_extent_item *fi,
299                                 u64 extent_item_pos,
300                                 struct extent_inode_elem **eie)
301 {
302         u64 offset = 0;
303         struct extent_inode_elem *e;
304
305         if (!btrfs_file_extent_compression(eb, fi) &&
306             !btrfs_file_extent_encryption(eb, fi) &&
307             !btrfs_file_extent_other_encoding(eb, fi)) {
308                 u64 data_offset;
309                 u64 data_len;
310
311                 data_offset = btrfs_file_extent_offset(eb, fi);
312                 data_len = btrfs_file_extent_num_bytes(eb, fi);
313
314                 if (extent_item_pos < data_offset ||
315                     extent_item_pos >= data_offset + data_len)
316                         return 1;
317                 offset = extent_item_pos - data_offset;
318         }
319
320         e = kmalloc(sizeof(*e), GFP_NOFS);
321         if (!e)
322                 return -ENOMEM;
323
324         e->next = *eie;
325         e->inum = key->objectid;
326         e->offset = key->offset + offset;
327         *eie = e;
328
329         return 0;
330 }
331
332 static void free_inode_elem_list(struct extent_inode_elem *eie)
333 {
334         struct extent_inode_elem *eie_next;
335
336         for (; eie; eie = eie_next) {
337                 eie_next = eie->next;
338                 kfree(eie);
339         }
340 }
341
342 static int find_extent_in_eb(struct extent_buffer *eb, u64 wanted_disk_byte,
343                                 u64 extent_item_pos,
344                                 struct extent_inode_elem **eie)
345 {
346         u64 disk_byte;
347         struct btrfs_key key;
348         struct btrfs_file_extent_item *fi;
349         int slot;
350         int nritems;
351         int extent_type;
352         int ret;
353
354         /*
355          * from the shared data ref, we only have the leaf but we need
356          * the key. thus, we must look into all items and see that we
357          * find one (some) with a reference to our extent item.
358          */
359         nritems = btrfs_header_nritems(eb);
360         for (slot = 0; slot < nritems; ++slot) {
361                 btrfs_item_key_to_cpu(eb, &key, slot);
362                 if (key.type != BTRFS_EXTENT_DATA_KEY)
363                         continue;
364                 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
365                 extent_type = btrfs_file_extent_type(eb, fi);
366                 if (extent_type == BTRFS_FILE_EXTENT_INLINE)
367                         continue;
368                 /* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */
369                 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
370                 if (disk_byte != wanted_disk_byte)
371                         continue;
372
373                 ret = check_extent_in_eb(&key, eb, fi, extent_item_pos, eie);
374                 if (ret < 0)
375                         return ret;
376         }
377
378         return 0;
379 }
380
381 /*
382  * this structure records all encountered refs on the way up to the root
383  */
384 struct __prelim_ref {
385         struct list_head list;
386         u64 root_id;
387         struct btrfs_key key_for_search;
388         int level;
389         int count;
390         struct extent_inode_elem *inode_list;
391         u64 parent;
392         u64 wanted_disk_byte;
393 };
394
395 static struct kmem_cache *btrfs_prelim_ref_cache;
396
397 int __init btrfs_prelim_ref_init(void)
398 {
399         btrfs_prelim_ref_cache = kmem_cache_create("btrfs_prelim_ref",
400                                         sizeof(struct __prelim_ref),
401                                         0,
402                                         SLAB_MEM_SPREAD,
403                                         NULL);
404         if (!btrfs_prelim_ref_cache)
405                 return -ENOMEM;
406         return 0;
407 }
408
409 void btrfs_prelim_ref_exit(void)
410 {
411         kmem_cache_destroy(btrfs_prelim_ref_cache);
412 }
413
414 /*
415  * the rules for all callers of this function are:
416  * - obtaining the parent is the goal
417  * - if you add a key, you must know that it is a correct key
418  * - if you cannot add the parent or a correct key, then we will look into the
419  *   block later to set a correct key
420  *
421  * delayed refs
422  * ============
423  *        backref type | shared | indirect | shared | indirect
424  * information         |   tree |     tree |   data |     data
425  * --------------------+--------+----------+--------+----------
426  *      parent logical |    y   |     -    |    -   |     -
427  *      key to resolve |    -   |     y    |    y   |     y
428  *  tree block logical |    -   |     -    |    -   |     -
429  *  root for resolving |    y   |     y    |    y   |     y
430  *
431  * - column 1:       we've the parent -> done
432  * - column 2, 3, 4: we use the key to find the parent
433  *
434  * on disk refs (inline or keyed)
435  * ==============================
436  *        backref type | shared | indirect | shared | indirect
437  * information         |   tree |     tree |   data |     data
438  * --------------------+--------+----------+--------+----------
439  *      parent logical |    y   |     -    |    y   |     -
440  *      key to resolve |    -   |     -    |    -   |     y
441  *  tree block logical |    y   |     y    |    y   |     y
442  *  root for resolving |    -   |     y    |    y   |     y
443  *
444  * - column 1, 3: we've the parent -> done
445  * - column 2:    we take the first key from the block to find the parent
446  *                (see __add_missing_keys)
447  * - column 4:    we use the key to find the parent
448  *
449  * additional information that's available but not required to find the parent
450  * block might help in merging entries to gain some speed.
451  */
452
453 static int __add_prelim_ref(struct list_head *head, u64 root_id,
454                             struct btrfs_key *key, int level,
455                             u64 parent, u64 wanted_disk_byte, int count,
456                             gfp_t gfp_mask)
457 {
458         struct __prelim_ref *ref;
459
460         if (root_id == BTRFS_DATA_RELOC_TREE_OBJECTID)
461                 return 0;
462
463         ref = kmem_cache_alloc(btrfs_prelim_ref_cache, gfp_mask);
464         if (!ref)
465                 return -ENOMEM;
466
467         ref->root_id = root_id;
468         if (key) {
469                 ref->key_for_search = *key;
470                 /*
471                  * We can often find data backrefs with an offset that is too
472                  * large (>= LLONG_MAX, maximum allowed file offset) due to
473                  * underflows when subtracting a file's offset with the data
474                  * offset of its corresponding extent data item. This can
475                  * happen for example in the clone ioctl.
476                  * So if we detect such case we set the search key's offset to
477                  * zero to make sure we will find the matching file extent item
478                  * at add_all_parents(), otherwise we will miss it because the
479                  * offset taken form the backref is much larger then the offset
480                  * of the file extent item. This can make us scan a very large
481                  * number of file extent items, but at least it will not make
482                  * us miss any.
483                  * This is an ugly workaround for a behaviour that should have
484                  * never existed, but it does and a fix for the clone ioctl
485                  * would touch a lot of places, cause backwards incompatibility
486                  * and would not fix the problem for extents cloned with older
487                  * kernels.
488                  */
489                 if (ref->key_for_search.type == BTRFS_EXTENT_DATA_KEY &&
490                     ref->key_for_search.offset >= LLONG_MAX)
491                         ref->key_for_search.offset = 0;
492         } else {
493                 memset(&ref->key_for_search, 0, sizeof(ref->key_for_search));
494         }
495
496         ref->inode_list = NULL;
497         ref->level = level;
498         ref->count = count;
499         ref->parent = parent;
500         ref->wanted_disk_byte = wanted_disk_byte;
501         list_add_tail(&ref->list, head);
502
503         return 0;
504 }
505
506 static int add_all_parents(struct btrfs_root *root, struct btrfs_path *path,
507                            struct ulist *parents, struct __prelim_ref *ref,
508                            int level, u64 time_seq, const u64 *extent_item_pos,
509                            u64 total_refs)
510 {
511         int ret = 0;
512         int slot;
513         struct extent_buffer *eb;
514         struct btrfs_key key;
515         struct btrfs_key *key_for_search = &ref->key_for_search;
516         struct btrfs_file_extent_item *fi;
517         struct extent_inode_elem *eie = NULL, *old = NULL;
518         u64 disk_byte;
519         u64 wanted_disk_byte = ref->wanted_disk_byte;
520         u64 count = 0;
521
522         if (level != 0) {
523                 eb = path->nodes[level];
524                 ret = ulist_add(parents, eb->start, 0, GFP_NOFS);
525                 if (ret < 0)
526                         return ret;
527                 return 0;
528         }
529
530         /*
531          * We normally enter this function with the path already pointing to
532          * the first item to check. But sometimes, we may enter it with
533          * slot==nritems. In that case, go to the next leaf before we continue.
534          */
535         if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
536                 if (time_seq == (u64)-1)
537                         ret = btrfs_next_leaf(root, path);
538                 else
539                         ret = btrfs_next_old_leaf(root, path, time_seq);
540         }
541
542         while (!ret && count < total_refs) {
543                 eb = path->nodes[0];
544                 slot = path->slots[0];
545
546                 btrfs_item_key_to_cpu(eb, &key, slot);
547
548                 if (key.objectid != key_for_search->objectid ||
549                     key.type != BTRFS_EXTENT_DATA_KEY)
550                         break;
551
552                 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
553                 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
554
555                 if (disk_byte == wanted_disk_byte) {
556                         eie = NULL;
557                         old = NULL;
558                         count++;
559                         if (extent_item_pos) {
560                                 ret = check_extent_in_eb(&key, eb, fi,
561                                                 *extent_item_pos,
562                                                 &eie);
563                                 if (ret < 0)
564                                         break;
565                         }
566                         if (ret > 0)
567                                 goto next;
568                         ret = ulist_add_merge_ptr(parents, eb->start,
569                                                   eie, (void **)&old, GFP_NOFS);
570                         if (ret < 0)
571                                 break;
572                         if (!ret && extent_item_pos) {
573                                 while (old->next)
574                                         old = old->next;
575                                 old->next = eie;
576                         }
577                         eie = NULL;
578                 }
579 next:
580                 if (time_seq == (u64)-1)
581                         ret = btrfs_next_item(root, path);
582                 else
583                         ret = btrfs_next_old_item(root, path, time_seq);
584         }
585
586         if (ret > 0)
587                 ret = 0;
588         else if (ret < 0)
589                 free_inode_elem_list(eie);
590         return ret;
591 }
592
593 /*
594  * resolve an indirect backref in the form (root_id, key, level)
595  * to a logical address
596  */
597 static int __resolve_indirect_ref(struct btrfs_fs_info *fs_info,
598                                   struct btrfs_path *path, u64 time_seq,
599                                   struct __prelim_ref *ref,
600                                   struct ulist *parents,
601                                   const u64 *extent_item_pos, u64 total_refs)
602 {
603         struct btrfs_root *root;
604         struct btrfs_key root_key;
605         struct extent_buffer *eb;
606         int ret = 0;
607         int root_level;
608         int level = ref->level;
609         int index;
610
611         root_key.objectid = ref->root_id;
612         root_key.type = BTRFS_ROOT_ITEM_KEY;
613         root_key.offset = (u64)-1;
614
615         index = srcu_read_lock(&fs_info->subvol_srcu);
616
617         root = btrfs_get_fs_root(fs_info, &root_key, false);
618         if (IS_ERR(root)) {
619                 srcu_read_unlock(&fs_info->subvol_srcu, index);
620                 ret = PTR_ERR(root);
621                 goto out;
622         }
623
624         if (btrfs_is_testing(fs_info)) {
625                 srcu_read_unlock(&fs_info->subvol_srcu, index);
626                 ret = -ENOENT;
627                 goto out;
628         }
629
630         if (path->search_commit_root)
631                 root_level = btrfs_header_level(root->commit_root);
632         else if (time_seq == (u64)-1)
633                 root_level = btrfs_header_level(root->node);
634         else
635                 root_level = btrfs_old_root_level(root, time_seq);
636
637         if (root_level + 1 == level) {
638                 srcu_read_unlock(&fs_info->subvol_srcu, index);
639                 goto out;
640         }
641
642         path->lowest_level = level;
643         if (time_seq == (u64)-1)
644                 ret = btrfs_search_slot(NULL, root, &ref->key_for_search, path,
645                                         0, 0);
646         else
647                 ret = btrfs_search_old_slot(root, &ref->key_for_search, path,
648                                             time_seq);
649
650         /* root node has been locked, we can release @subvol_srcu safely here */
651         srcu_read_unlock(&fs_info->subvol_srcu, index);
652
653         btrfs_debug(fs_info,
654                 "search slot in root %llu (level %d, ref count %d) returned %d for key (%llu %u %llu)",
655                  ref->root_id, level, ref->count, ret,
656                  ref->key_for_search.objectid, ref->key_for_search.type,
657                  ref->key_for_search.offset);
658         if (ret < 0)
659                 goto out;
660
661         eb = path->nodes[level];
662         while (!eb) {
663                 if (WARN_ON(!level)) {
664                         ret = 1;
665                         goto out;
666                 }
667                 level--;
668                 eb = path->nodes[level];
669         }
670
671         ret = add_all_parents(root, path, parents, ref, level, time_seq,
672                               extent_item_pos, total_refs);
673 out:
674         path->lowest_level = 0;
675         btrfs_release_path(path);
676         return ret;
677 }
678
679 /*
680  * resolve all indirect backrefs from the list
681  */
682 static int __resolve_indirect_refs(struct btrfs_fs_info *fs_info,
683                                    struct btrfs_path *path, u64 time_seq,
684                                    struct list_head *head,
685                                    const u64 *extent_item_pos, u64 total_refs,
686                                    u64 root_objectid)
687 {
688         int err;
689         int ret = 0;
690         struct __prelim_ref *ref;
691         struct __prelim_ref *ref_safe;
692         struct __prelim_ref *new_ref;
693         struct ulist *parents;
694         struct ulist_node *node;
695         struct ulist_iterator uiter;
696
697         parents = ulist_alloc(GFP_NOFS);
698         if (!parents)
699                 return -ENOMEM;
700
701         /*
702          * _safe allows us to insert directly after the current item without
703          * iterating over the newly inserted items.
704          * we're also allowed to re-assign ref during iteration.
705          */
706         list_for_each_entry_safe(ref, ref_safe, head, list) {
707                 if (ref->parent)        /* already direct */
708                         continue;
709                 if (ref->count == 0)
710                         continue;
711                 if (root_objectid && ref->root_id != root_objectid) {
712                         ret = BACKREF_FOUND_SHARED;
713                         goto out;
714                 }
715                 err = __resolve_indirect_ref(fs_info, path, time_seq, ref,
716                                              parents, extent_item_pos,
717                                              total_refs);
718                 /*
719                  * we can only tolerate ENOENT,otherwise,we should catch error
720                  * and return directly.
721                  */
722                 if (err == -ENOENT) {
723                         continue;
724                 } else if (err) {
725                         ret = err;
726                         goto out;
727                 }
728
729                 /* we put the first parent into the ref at hand */
730                 ULIST_ITER_INIT(&uiter);
731                 node = ulist_next(parents, &uiter);
732                 ref->parent = node ? node->val : 0;
733                 ref->inode_list = node ?
734                         (struct extent_inode_elem *)(uintptr_t)node->aux : NULL;
735
736                 /* additional parents require new refs being added here */
737                 while ((node = ulist_next(parents, &uiter))) {
738                         new_ref = kmem_cache_alloc(btrfs_prelim_ref_cache,
739                                                    GFP_NOFS);
740                         if (!new_ref) {
741                                 ret = -ENOMEM;
742                                 goto out;
743                         }
744                         memcpy(new_ref, ref, sizeof(*ref));
745                         new_ref->parent = node->val;
746                         new_ref->inode_list = (struct extent_inode_elem *)
747                                                         (uintptr_t)node->aux;
748                         list_add(&new_ref->list, &ref->list);
749                 }
750                 ulist_reinit(parents);
751         }
752 out:
753         ulist_free(parents);
754         return ret;
755 }
756
757 static inline int ref_for_same_block(struct __prelim_ref *ref1,
758                                      struct __prelim_ref *ref2)
759 {
760         if (ref1->level != ref2->level)
761                 return 0;
762         if (ref1->root_id != ref2->root_id)
763                 return 0;
764         if (ref1->key_for_search.type != ref2->key_for_search.type)
765                 return 0;
766         if (ref1->key_for_search.objectid != ref2->key_for_search.objectid)
767                 return 0;
768         if (ref1->key_for_search.offset != ref2->key_for_search.offset)
769                 return 0;
770         if (ref1->parent != ref2->parent)
771                 return 0;
772
773         return 1;
774 }
775
776 /*
777  * read tree blocks and add keys where required.
778  */
779 static int __add_missing_keys(struct btrfs_fs_info *fs_info,
780                               struct list_head *head)
781 {
782         struct __prelim_ref *ref;
783         struct extent_buffer *eb;
784
785         list_for_each_entry(ref, head, list) {
786                 if (ref->parent)
787                         continue;
788                 if (ref->key_for_search.type)
789                         continue;
790                 BUG_ON(!ref->wanted_disk_byte);
791                 eb = read_tree_block(fs_info, ref->wanted_disk_byte, 0);
792                 if (IS_ERR(eb)) {
793                         return PTR_ERR(eb);
794                 } else if (!extent_buffer_uptodate(eb)) {
795                         free_extent_buffer(eb);
796                         return -EIO;
797                 }
798                 btrfs_tree_read_lock(eb);
799                 if (btrfs_header_level(eb) == 0)
800                         btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0);
801                 else
802                         btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0);
803                 btrfs_tree_read_unlock(eb);
804                 free_extent_buffer(eb);
805         }
806         return 0;
807 }
808
809 /*
810  * merge backrefs and adjust counts accordingly
811  *
812  * mode = 1: merge identical keys, if key is set
813  *    FIXME: if we add more keys in __add_prelim_ref, we can merge more here.
814  *           additionally, we could even add a key range for the blocks we
815  *           looked into to merge even more (-> replace unresolved refs by those
816  *           having a parent).
817  * mode = 2: merge identical parents
818  */
819 static void __merge_refs(struct list_head *head, int mode)
820 {
821         struct __prelim_ref *pos1;
822
823         list_for_each_entry(pos1, head, list) {
824                 struct __prelim_ref *pos2 = pos1, *tmp;
825
826                 list_for_each_entry_safe_continue(pos2, tmp, head, list) {
827                         struct __prelim_ref *ref1 = pos1, *ref2 = pos2;
828                         struct extent_inode_elem *eie;
829
830                         if (!ref_for_same_block(ref1, ref2))
831                                 continue;
832                         if (mode == 1) {
833                                 if (!ref1->parent && ref2->parent)
834                                         swap(ref1, ref2);
835                         } else {
836                                 if (ref1->parent != ref2->parent)
837                                         continue;
838                         }
839
840                         eie = ref1->inode_list;
841                         while (eie && eie->next)
842                                 eie = eie->next;
843                         if (eie)
844                                 eie->next = ref2->inode_list;
845                         else
846                                 ref1->inode_list = ref2->inode_list;
847                         ref1->count += ref2->count;
848
849                         list_del(&ref2->list);
850                         kmem_cache_free(btrfs_prelim_ref_cache, ref2);
851                         cond_resched();
852                 }
853
854         }
855 }
856
857 /*
858  * add all currently queued delayed refs from this head whose seq nr is
859  * smaller or equal that seq to the list
860  */
861 static int __add_delayed_refs(struct btrfs_delayed_ref_head *head, u64 seq,
862                               struct list_head *prefs, u64 *total_refs,
863                               u64 inum)
864 {
865         struct btrfs_delayed_ref_node *node;
866         struct btrfs_delayed_extent_op *extent_op = head->extent_op;
867         struct btrfs_key key;
868         struct btrfs_key op_key = {0};
869         int sgn;
870         int ret = 0;
871
872         if (extent_op && extent_op->update_key)
873                 btrfs_disk_key_to_cpu(&op_key, &extent_op->key);
874
875         spin_lock(&head->lock);
876         list_for_each_entry(node, &head->ref_list, list) {
877                 if (node->seq > seq)
878                         continue;
879
880                 switch (node->action) {
881                 case BTRFS_ADD_DELAYED_EXTENT:
882                 case BTRFS_UPDATE_DELAYED_HEAD:
883                         WARN_ON(1);
884                         continue;
885                 case BTRFS_ADD_DELAYED_REF:
886                         sgn = 1;
887                         break;
888                 case BTRFS_DROP_DELAYED_REF:
889                         sgn = -1;
890                         break;
891                 default:
892                         BUG_ON(1);
893                 }
894                 *total_refs += (node->ref_mod * sgn);
895                 switch (node->type) {
896                 case BTRFS_TREE_BLOCK_REF_KEY: {
897                         struct btrfs_delayed_tree_ref *ref;
898
899                         ref = btrfs_delayed_node_to_tree_ref(node);
900                         ret = __add_prelim_ref(prefs, ref->root, &op_key,
901                                                ref->level + 1, 0, node->bytenr,
902                                                node->ref_mod * sgn, GFP_ATOMIC);
903                         break;
904                 }
905                 case BTRFS_SHARED_BLOCK_REF_KEY: {
906                         struct btrfs_delayed_tree_ref *ref;
907
908                         ref = btrfs_delayed_node_to_tree_ref(node);
909                         ret = __add_prelim_ref(prefs, 0, NULL,
910                                                ref->level + 1, ref->parent,
911                                                node->bytenr,
912                                                node->ref_mod * sgn, GFP_ATOMIC);
913                         break;
914                 }
915                 case BTRFS_EXTENT_DATA_REF_KEY: {
916                         struct btrfs_delayed_data_ref *ref;
917                         ref = btrfs_delayed_node_to_data_ref(node);
918
919                         key.objectid = ref->objectid;
920                         key.type = BTRFS_EXTENT_DATA_KEY;
921                         key.offset = ref->offset;
922
923                         /*
924                          * Found a inum that doesn't match our known inum, we
925                          * know it's shared.
926                          */
927                         if (inum && ref->objectid != inum) {
928                                 ret = BACKREF_FOUND_SHARED;
929                                 break;
930                         }
931
932                         ret = __add_prelim_ref(prefs, ref->root, &key, 0, 0,
933                                                node->bytenr,
934                                                node->ref_mod * sgn, GFP_ATOMIC);
935                         break;
936                 }
937                 case BTRFS_SHARED_DATA_REF_KEY: {
938                         struct btrfs_delayed_data_ref *ref;
939
940                         ref = btrfs_delayed_node_to_data_ref(node);
941                         ret = __add_prelim_ref(prefs, 0, NULL, 0,
942                                                ref->parent, node->bytenr,
943                                                node->ref_mod * sgn, GFP_ATOMIC);
944                         break;
945                 }
946                 default:
947                         WARN_ON(1);
948                 }
949                 if (ret)
950                         break;
951         }
952         spin_unlock(&head->lock);
953         return ret;
954 }
955
956 /*
957  * add all inline backrefs for bytenr to the list
958  */
959 static int __add_inline_refs(struct btrfs_fs_info *fs_info,
960                              struct btrfs_path *path, u64 bytenr,
961                              int *info_level, struct list_head *prefs,
962                              struct ref_root *ref_tree,
963                              u64 *total_refs, u64 inum)
964 {
965         int ret = 0;
966         int slot;
967         struct extent_buffer *leaf;
968         struct btrfs_key key;
969         struct btrfs_key found_key;
970         unsigned long ptr;
971         unsigned long end;
972         struct btrfs_extent_item *ei;
973         u64 flags;
974         u64 item_size;
975
976         /*
977          * enumerate all inline refs
978          */
979         leaf = path->nodes[0];
980         slot = path->slots[0];
981
982         item_size = btrfs_item_size_nr(leaf, slot);
983         BUG_ON(item_size < sizeof(*ei));
984
985         ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
986         flags = btrfs_extent_flags(leaf, ei);
987         *total_refs += btrfs_extent_refs(leaf, ei);
988         btrfs_item_key_to_cpu(leaf, &found_key, slot);
989
990         ptr = (unsigned long)(ei + 1);
991         end = (unsigned long)ei + item_size;
992
993         if (found_key.type == BTRFS_EXTENT_ITEM_KEY &&
994             flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
995                 struct btrfs_tree_block_info *info;
996
997                 info = (struct btrfs_tree_block_info *)ptr;
998                 *info_level = btrfs_tree_block_level(leaf, info);
999                 ptr += sizeof(struct btrfs_tree_block_info);
1000                 BUG_ON(ptr > end);
1001         } else if (found_key.type == BTRFS_METADATA_ITEM_KEY) {
1002                 *info_level = found_key.offset;
1003         } else {
1004                 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
1005         }
1006
1007         while (ptr < end) {
1008                 struct btrfs_extent_inline_ref *iref;
1009                 u64 offset;
1010                 int type;
1011
1012                 iref = (struct btrfs_extent_inline_ref *)ptr;
1013                 type = btrfs_extent_inline_ref_type(leaf, iref);
1014                 offset = btrfs_extent_inline_ref_offset(leaf, iref);
1015
1016                 switch (type) {
1017                 case BTRFS_SHARED_BLOCK_REF_KEY:
1018                         ret = __add_prelim_ref(prefs, 0, NULL,
1019                                                 *info_level + 1, offset,
1020                                                 bytenr, 1, GFP_NOFS);
1021                         break;
1022                 case BTRFS_SHARED_DATA_REF_KEY: {
1023                         struct btrfs_shared_data_ref *sdref;
1024                         int count;
1025
1026                         sdref = (struct btrfs_shared_data_ref *)(iref + 1);
1027                         count = btrfs_shared_data_ref_count(leaf, sdref);
1028                         ret = __add_prelim_ref(prefs, 0, NULL, 0, offset,
1029                                                bytenr, count, GFP_NOFS);
1030                         if (ref_tree) {
1031                                 if (!ret)
1032                                         ret = ref_tree_add(ref_tree, 0, 0, 0,
1033                                                            bytenr, count);
1034                                 if (!ret && ref_tree->unique_refs > 1)
1035                                         ret = BACKREF_FOUND_SHARED;
1036                         }
1037                         break;
1038                 }
1039                 case BTRFS_TREE_BLOCK_REF_KEY:
1040                         ret = __add_prelim_ref(prefs, offset, NULL,
1041                                                *info_level + 1, 0,
1042                                                bytenr, 1, GFP_NOFS);
1043                         break;
1044                 case BTRFS_EXTENT_DATA_REF_KEY: {
1045                         struct btrfs_extent_data_ref *dref;
1046                         int count;
1047                         u64 root;
1048
1049                         dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1050                         count = btrfs_extent_data_ref_count(leaf, dref);
1051                         key.objectid = btrfs_extent_data_ref_objectid(leaf,
1052                                                                       dref);
1053                         key.type = BTRFS_EXTENT_DATA_KEY;
1054                         key.offset = btrfs_extent_data_ref_offset(leaf, dref);
1055
1056                         if (inum && key.objectid != inum) {
1057                                 ret = BACKREF_FOUND_SHARED;
1058                                 break;
1059                         }
1060
1061                         root = btrfs_extent_data_ref_root(leaf, dref);
1062                         ret = __add_prelim_ref(prefs, root, &key, 0, 0,
1063                                                bytenr, count, GFP_NOFS);
1064                         if (ref_tree) {
1065                                 if (!ret)
1066                                         ret = ref_tree_add(ref_tree, root,
1067                                                            key.objectid,
1068                                                            key.offset, 0,
1069                                                            count);
1070                                 if (!ret && ref_tree->unique_refs > 1)
1071                                         ret = BACKREF_FOUND_SHARED;
1072                         }
1073                         break;
1074                 }
1075                 default:
1076                         WARN_ON(1);
1077                 }
1078                 if (ret)
1079                         return ret;
1080                 ptr += btrfs_extent_inline_ref_size(type);
1081         }
1082
1083         return 0;
1084 }
1085
1086 /*
1087  * add all non-inline backrefs for bytenr to the list
1088  */
1089 static int __add_keyed_refs(struct btrfs_fs_info *fs_info,
1090                             struct btrfs_path *path, u64 bytenr,
1091                             int info_level, struct list_head *prefs,
1092                             struct ref_root *ref_tree, u64 inum)
1093 {
1094         struct btrfs_root *extent_root = fs_info->extent_root;
1095         int ret;
1096         int slot;
1097         struct extent_buffer *leaf;
1098         struct btrfs_key key;
1099
1100         while (1) {
1101                 ret = btrfs_next_item(extent_root, path);
1102                 if (ret < 0)
1103                         break;
1104                 if (ret) {
1105                         ret = 0;
1106                         break;
1107                 }
1108
1109                 slot = path->slots[0];
1110                 leaf = path->nodes[0];
1111                 btrfs_item_key_to_cpu(leaf, &key, slot);
1112
1113                 if (key.objectid != bytenr)
1114                         break;
1115                 if (key.type < BTRFS_TREE_BLOCK_REF_KEY)
1116                         continue;
1117                 if (key.type > BTRFS_SHARED_DATA_REF_KEY)
1118                         break;
1119
1120                 switch (key.type) {
1121                 case BTRFS_SHARED_BLOCK_REF_KEY:
1122                         ret = __add_prelim_ref(prefs, 0, NULL,
1123                                                 info_level + 1, key.offset,
1124                                                 bytenr, 1, GFP_NOFS);
1125                         break;
1126                 case BTRFS_SHARED_DATA_REF_KEY: {
1127                         struct btrfs_shared_data_ref *sdref;
1128                         int count;
1129
1130                         sdref = btrfs_item_ptr(leaf, slot,
1131                                               struct btrfs_shared_data_ref);
1132                         count = btrfs_shared_data_ref_count(leaf, sdref);
1133                         ret = __add_prelim_ref(prefs, 0, NULL, 0, key.offset,
1134                                                 bytenr, count, GFP_NOFS);
1135                         if (ref_tree) {
1136                                 if (!ret)
1137                                         ret = ref_tree_add(ref_tree, 0, 0, 0,
1138                                                            bytenr, count);
1139                                 if (!ret && ref_tree->unique_refs > 1)
1140                                         ret = BACKREF_FOUND_SHARED;
1141                         }
1142                         break;
1143                 }
1144                 case BTRFS_TREE_BLOCK_REF_KEY:
1145                         ret = __add_prelim_ref(prefs, key.offset, NULL,
1146                                                info_level + 1, 0,
1147                                                bytenr, 1, GFP_NOFS);
1148                         break;
1149                 case BTRFS_EXTENT_DATA_REF_KEY: {
1150                         struct btrfs_extent_data_ref *dref;
1151                         int count;
1152                         u64 root;
1153
1154                         dref = btrfs_item_ptr(leaf, slot,
1155                                               struct btrfs_extent_data_ref);
1156                         count = btrfs_extent_data_ref_count(leaf, dref);
1157                         key.objectid = btrfs_extent_data_ref_objectid(leaf,
1158                                                                       dref);
1159                         key.type = BTRFS_EXTENT_DATA_KEY;
1160                         key.offset = btrfs_extent_data_ref_offset(leaf, dref);
1161
1162                         if (inum && key.objectid != inum) {
1163                                 ret = BACKREF_FOUND_SHARED;
1164                                 break;
1165                         }
1166
1167                         root = btrfs_extent_data_ref_root(leaf, dref);
1168                         ret = __add_prelim_ref(prefs, root, &key, 0, 0,
1169                                                bytenr, count, GFP_NOFS);
1170                         if (ref_tree) {
1171                                 if (!ret)
1172                                         ret = ref_tree_add(ref_tree, root,
1173                                                            key.objectid,
1174                                                            key.offset, 0,
1175                                                            count);
1176                                 if (!ret && ref_tree->unique_refs > 1)
1177                                         ret = BACKREF_FOUND_SHARED;
1178                         }
1179                         break;
1180                 }
1181                 default:
1182                         WARN_ON(1);
1183                 }
1184                 if (ret)
1185                         return ret;
1186
1187         }
1188
1189         return ret;
1190 }
1191
1192 /*
1193  * this adds all existing backrefs (inline backrefs, backrefs and delayed
1194  * refs) for the given bytenr to the refs list, merges duplicates and resolves
1195  * indirect refs to their parent bytenr.
1196  * When roots are found, they're added to the roots list
1197  *
1198  * NOTE: This can return values > 0
1199  *
1200  * If time_seq is set to (u64)-1, it will not search delayed_refs, and behave
1201  * much like trans == NULL case, the difference only lies in it will not
1202  * commit root.
1203  * The special case is for qgroup to search roots in commit_transaction().
1204  *
1205  * If check_shared is set to 1, any extent has more than one ref item, will
1206  * be returned BACKREF_FOUND_SHARED immediately.
1207  *
1208  * FIXME some caching might speed things up
1209  */
1210 static int find_parent_nodes(struct btrfs_trans_handle *trans,
1211                              struct btrfs_fs_info *fs_info, u64 bytenr,
1212                              u64 time_seq, struct ulist *refs,
1213                              struct ulist *roots, const u64 *extent_item_pos,
1214                              u64 root_objectid, u64 inum, int check_shared)
1215 {
1216         struct btrfs_key key;
1217         struct btrfs_path *path;
1218         struct btrfs_delayed_ref_root *delayed_refs = NULL;
1219         struct btrfs_delayed_ref_head *head;
1220         int info_level = 0;
1221         int ret;
1222         struct list_head prefs_delayed;
1223         struct list_head prefs;
1224         struct __prelim_ref *ref;
1225         struct extent_inode_elem *eie = NULL;
1226         struct ref_root *ref_tree = NULL;
1227         u64 total_refs = 0;
1228
1229         INIT_LIST_HEAD(&prefs);
1230         INIT_LIST_HEAD(&prefs_delayed);
1231
1232         key.objectid = bytenr;
1233         key.offset = (u64)-1;
1234         if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1235                 key.type = BTRFS_METADATA_ITEM_KEY;
1236         else
1237                 key.type = BTRFS_EXTENT_ITEM_KEY;
1238
1239         path = btrfs_alloc_path();
1240         if (!path)
1241                 return -ENOMEM;
1242         if (!trans) {
1243                 path->search_commit_root = 1;
1244                 path->skip_locking = 1;
1245         }
1246
1247         if (time_seq == (u64)-1)
1248                 path->skip_locking = 1;
1249
1250         /*
1251          * grab both a lock on the path and a lock on the delayed ref head.
1252          * We need both to get a consistent picture of how the refs look
1253          * at a specified point in time
1254          */
1255 again:
1256         head = NULL;
1257
1258         if (check_shared) {
1259                 if (!ref_tree) {
1260                         ref_tree = ref_root_alloc();
1261                         if (!ref_tree) {
1262                                 ret = -ENOMEM;
1263                                 goto out;
1264                         }
1265                 } else {
1266                         ref_root_fini(ref_tree);
1267                 }
1268         }
1269
1270         ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
1271         if (ret < 0)
1272                 goto out;
1273         BUG_ON(ret == 0);
1274
1275 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1276         if (trans && likely(trans->type != __TRANS_DUMMY) &&
1277             time_seq != (u64)-1) {
1278 #else
1279         if (trans && time_seq != (u64)-1) {
1280 #endif
1281                 /*
1282                  * look if there are updates for this ref queued and lock the
1283                  * head
1284                  */
1285                 delayed_refs = &trans->transaction->delayed_refs;
1286                 spin_lock(&delayed_refs->lock);
1287                 head = btrfs_find_delayed_ref_head(trans, bytenr);
1288                 if (head) {
1289                         if (!mutex_trylock(&head->mutex)) {
1290                                 atomic_inc(&head->node.refs);
1291                                 spin_unlock(&delayed_refs->lock);
1292
1293                                 btrfs_release_path(path);
1294
1295                                 /*
1296                                  * Mutex was contended, block until it's
1297                                  * released and try again
1298                                  */
1299                                 mutex_lock(&head->mutex);
1300                                 mutex_unlock(&head->mutex);
1301                                 btrfs_put_delayed_ref(&head->node);
1302                                 goto again;
1303                         }
1304                         spin_unlock(&delayed_refs->lock);
1305                         ret = __add_delayed_refs(head, time_seq,
1306                                                  &prefs_delayed, &total_refs,
1307                                                  inum);
1308                         mutex_unlock(&head->mutex);
1309                         if (ret)
1310                                 goto out;
1311                 } else {
1312                         spin_unlock(&delayed_refs->lock);
1313                 }
1314
1315                 if (check_shared && !list_empty(&prefs_delayed)) {
1316                         /*
1317                          * Add all delay_ref to the ref_tree and check if there
1318                          * are multiple ref items added.
1319                          */
1320                         list_for_each_entry(ref, &prefs_delayed, list) {
1321                                 if (ref->key_for_search.type) {
1322                                         ret = ref_tree_add(ref_tree,
1323                                                 ref->root_id,
1324                                                 ref->key_for_search.objectid,
1325                                                 ref->key_for_search.offset,
1326                                                 0, ref->count);
1327                                         if (ret)
1328                                                 goto out;
1329                                 } else {
1330                                         ret = ref_tree_add(ref_tree, 0, 0, 0,
1331                                                      ref->parent, ref->count);
1332                                         if (ret)
1333                                                 goto out;
1334                                 }
1335
1336                         }
1337
1338                         if (ref_tree->unique_refs > 1) {
1339                                 ret = BACKREF_FOUND_SHARED;
1340                                 goto out;
1341                         }
1342
1343                 }
1344         }
1345
1346         if (path->slots[0]) {
1347                 struct extent_buffer *leaf;
1348                 int slot;
1349
1350                 path->slots[0]--;
1351                 leaf = path->nodes[0];
1352                 slot = path->slots[0];
1353                 btrfs_item_key_to_cpu(leaf, &key, slot);
1354                 if (key.objectid == bytenr &&
1355                     (key.type == BTRFS_EXTENT_ITEM_KEY ||
1356                      key.type == BTRFS_METADATA_ITEM_KEY)) {
1357                         ret = __add_inline_refs(fs_info, path, bytenr,
1358                                                 &info_level, &prefs,
1359                                                 ref_tree, &total_refs,
1360                                                 inum);
1361                         if (ret)
1362                                 goto out;
1363                         ret = __add_keyed_refs(fs_info, path, bytenr,
1364                                                info_level, &prefs,
1365                                                ref_tree, inum);
1366                         if (ret)
1367                                 goto out;
1368                 }
1369         }
1370         btrfs_release_path(path);
1371
1372         list_splice_init(&prefs_delayed, &prefs);
1373
1374         ret = __add_missing_keys(fs_info, &prefs);
1375         if (ret)
1376                 goto out;
1377
1378         __merge_refs(&prefs, 1);
1379
1380         ret = __resolve_indirect_refs(fs_info, path, time_seq, &prefs,
1381                                       extent_item_pos, total_refs,
1382                                       root_objectid);
1383         if (ret)
1384                 goto out;
1385
1386         __merge_refs(&prefs, 2);
1387
1388         while (!list_empty(&prefs)) {
1389                 ref = list_first_entry(&prefs, struct __prelim_ref, list);
1390                 WARN_ON(ref->count < 0);
1391                 if (roots && ref->count && ref->root_id && ref->parent == 0) {
1392                         if (root_objectid && ref->root_id != root_objectid) {
1393                                 ret = BACKREF_FOUND_SHARED;
1394                                 goto out;
1395                         }
1396
1397                         /* no parent == root of tree */
1398                         ret = ulist_add(roots, ref->root_id, 0, GFP_NOFS);
1399                         if (ret < 0)
1400                                 goto out;
1401                 }
1402                 if (ref->count && ref->parent) {
1403                         if (extent_item_pos && !ref->inode_list &&
1404                             ref->level == 0) {
1405                                 struct extent_buffer *eb;
1406
1407                                 eb = read_tree_block(fs_info, ref->parent, 0);
1408                                 if (IS_ERR(eb)) {
1409                                         ret = PTR_ERR(eb);
1410                                         goto out;
1411                                 } else if (!extent_buffer_uptodate(eb)) {
1412                                         free_extent_buffer(eb);
1413                                         ret = -EIO;
1414                                         goto out;
1415                                 }
1416                                 btrfs_tree_read_lock(eb);
1417                                 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1418                                 ret = find_extent_in_eb(eb, bytenr,
1419                                                         *extent_item_pos, &eie);
1420                                 btrfs_tree_read_unlock_blocking(eb);
1421                                 free_extent_buffer(eb);
1422                                 if (ret < 0)
1423                                         goto out;
1424                                 ref->inode_list = eie;
1425                         }
1426                         ret = ulist_add_merge_ptr(refs, ref->parent,
1427                                                   ref->inode_list,
1428                                                   (void **)&eie, GFP_NOFS);
1429                         if (ret < 0)
1430                                 goto out;
1431                         if (!ret && extent_item_pos) {
1432                                 /*
1433                                  * we've recorded that parent, so we must extend
1434                                  * its inode list here
1435                                  */
1436                                 BUG_ON(!eie);
1437                                 while (eie->next)
1438                                         eie = eie->next;
1439                                 eie->next = ref->inode_list;
1440                         }
1441                         eie = NULL;
1442                 }
1443                 list_del(&ref->list);
1444                 kmem_cache_free(btrfs_prelim_ref_cache, ref);
1445         }
1446
1447 out:
1448         btrfs_free_path(path);
1449         ref_root_free(ref_tree);
1450         while (!list_empty(&prefs)) {
1451                 ref = list_first_entry(&prefs, struct __prelim_ref, list);
1452                 list_del(&ref->list);
1453                 kmem_cache_free(btrfs_prelim_ref_cache, ref);
1454         }
1455         while (!list_empty(&prefs_delayed)) {
1456                 ref = list_first_entry(&prefs_delayed, struct __prelim_ref,
1457                                        list);
1458                 list_del(&ref->list);
1459                 kmem_cache_free(btrfs_prelim_ref_cache, ref);
1460         }
1461         if (ret < 0)
1462                 free_inode_elem_list(eie);
1463         return ret;
1464 }
1465
1466 static void free_leaf_list(struct ulist *blocks)
1467 {
1468         struct ulist_node *node = NULL;
1469         struct extent_inode_elem *eie;
1470         struct ulist_iterator uiter;
1471
1472         ULIST_ITER_INIT(&uiter);
1473         while ((node = ulist_next(blocks, &uiter))) {
1474                 if (!node->aux)
1475                         continue;
1476                 eie = (struct extent_inode_elem *)(uintptr_t)node->aux;
1477                 free_inode_elem_list(eie);
1478                 node->aux = 0;
1479         }
1480
1481         ulist_free(blocks);
1482 }
1483
1484 /*
1485  * Finds all leafs with a reference to the specified combination of bytenr and
1486  * offset. key_list_head will point to a list of corresponding keys (caller must
1487  * free each list element). The leafs will be stored in the leafs ulist, which
1488  * must be freed with ulist_free.
1489  *
1490  * returns 0 on success, <0 on error
1491  */
1492 static int btrfs_find_all_leafs(struct btrfs_trans_handle *trans,
1493                                 struct btrfs_fs_info *fs_info, u64 bytenr,
1494                                 u64 time_seq, struct ulist **leafs,
1495                                 const u64 *extent_item_pos)
1496 {
1497         int ret;
1498
1499         *leafs = ulist_alloc(GFP_NOFS);
1500         if (!*leafs)
1501                 return -ENOMEM;
1502
1503         ret = find_parent_nodes(trans, fs_info, bytenr, time_seq,
1504                                 *leafs, NULL, extent_item_pos, 0, 0, 0);
1505         if (ret < 0 && ret != -ENOENT) {
1506                 free_leaf_list(*leafs);
1507                 return ret;
1508         }
1509
1510         return 0;
1511 }
1512
1513 /*
1514  * walk all backrefs for a given extent to find all roots that reference this
1515  * extent. Walking a backref means finding all extents that reference this
1516  * extent and in turn walk the backrefs of those, too. Naturally this is a
1517  * recursive process, but here it is implemented in an iterative fashion: We
1518  * find all referencing extents for the extent in question and put them on a
1519  * list. In turn, we find all referencing extents for those, further appending
1520  * to the list. The way we iterate the list allows adding more elements after
1521  * the current while iterating. The process stops when we reach the end of the
1522  * list. Found roots are added to the roots list.
1523  *
1524  * returns 0 on success, < 0 on error.
1525  */
1526 static int __btrfs_find_all_roots(struct btrfs_trans_handle *trans,
1527                                   struct btrfs_fs_info *fs_info, u64 bytenr,
1528                                   u64 time_seq, struct ulist **roots)
1529 {
1530         struct ulist *tmp;
1531         struct ulist_node *node = NULL;
1532         struct ulist_iterator uiter;
1533         int ret;
1534
1535         tmp = ulist_alloc(GFP_NOFS);
1536         if (!tmp)
1537                 return -ENOMEM;
1538         *roots = ulist_alloc(GFP_NOFS);
1539         if (!*roots) {
1540                 ulist_free(tmp);
1541                 return -ENOMEM;
1542         }
1543
1544         ULIST_ITER_INIT(&uiter);
1545         while (1) {
1546                 ret = find_parent_nodes(trans, fs_info, bytenr, time_seq,
1547                                         tmp, *roots, NULL, 0, 0, 0);
1548                 if (ret < 0 && ret != -ENOENT) {
1549                         ulist_free(tmp);
1550                         ulist_free(*roots);
1551                         return ret;
1552                 }
1553                 node = ulist_next(tmp, &uiter);
1554                 if (!node)
1555                         break;
1556                 bytenr = node->val;
1557                 cond_resched();
1558         }
1559
1560         ulist_free(tmp);
1561         return 0;
1562 }
1563
1564 int btrfs_find_all_roots(struct btrfs_trans_handle *trans,
1565                          struct btrfs_fs_info *fs_info, u64 bytenr,
1566                          u64 time_seq, struct ulist **roots)
1567 {
1568         int ret;
1569
1570         if (!trans)
1571                 down_read(&fs_info->commit_root_sem);
1572         ret = __btrfs_find_all_roots(trans, fs_info, bytenr, time_seq, roots);
1573         if (!trans)
1574                 up_read(&fs_info->commit_root_sem);
1575         return ret;
1576 }
1577
1578 /**
1579  * btrfs_check_shared - tell us whether an extent is shared
1580  *
1581  * @trans: optional trans handle
1582  *
1583  * btrfs_check_shared uses the backref walking code but will short
1584  * circuit as soon as it finds a root or inode that doesn't match the
1585  * one passed in. This provides a significant performance benefit for
1586  * callers (such as fiemap) which want to know whether the extent is
1587  * shared but do not need a ref count.
1588  *
1589  * Return: 0 if extent is not shared, 1 if it is shared, < 0 on error.
1590  */
1591 int btrfs_check_shared(struct btrfs_trans_handle *trans,
1592                        struct btrfs_fs_info *fs_info, u64 root_objectid,
1593                        u64 inum, u64 bytenr)
1594 {
1595         struct ulist *tmp = NULL;
1596         struct ulist *roots = NULL;
1597         struct ulist_iterator uiter;
1598         struct ulist_node *node;
1599         struct seq_list elem = SEQ_LIST_INIT(elem);
1600         int ret = 0;
1601
1602         tmp = ulist_alloc(GFP_NOFS);
1603         roots = ulist_alloc(GFP_NOFS);
1604         if (!tmp || !roots) {
1605                 ulist_free(tmp);
1606                 ulist_free(roots);
1607                 return -ENOMEM;
1608         }
1609
1610         if (trans)
1611                 btrfs_get_tree_mod_seq(fs_info, &elem);
1612         else
1613                 down_read(&fs_info->commit_root_sem);
1614         ULIST_ITER_INIT(&uiter);
1615         while (1) {
1616                 ret = find_parent_nodes(trans, fs_info, bytenr, elem.seq, tmp,
1617                                         roots, NULL, root_objectid, inum, 1);
1618                 if (ret == BACKREF_FOUND_SHARED) {
1619                         /* this is the only condition under which we return 1 */
1620                         ret = 1;
1621                         break;
1622                 }
1623                 if (ret < 0 && ret != -ENOENT)
1624                         break;
1625                 ret = 0;
1626                 node = ulist_next(tmp, &uiter);
1627                 if (!node)
1628                         break;
1629                 bytenr = node->val;
1630                 cond_resched();
1631         }
1632         if (trans)
1633                 btrfs_put_tree_mod_seq(fs_info, &elem);
1634         else
1635                 up_read(&fs_info->commit_root_sem);
1636         ulist_free(tmp);
1637         ulist_free(roots);
1638         return ret;
1639 }
1640
1641 int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid,
1642                           u64 start_off, struct btrfs_path *path,
1643                           struct btrfs_inode_extref **ret_extref,
1644                           u64 *found_off)
1645 {
1646         int ret, slot;
1647         struct btrfs_key key;
1648         struct btrfs_key found_key;
1649         struct btrfs_inode_extref *extref;
1650         struct extent_buffer *leaf;
1651         unsigned long ptr;
1652
1653         key.objectid = inode_objectid;
1654         key.type = BTRFS_INODE_EXTREF_KEY;
1655         key.offset = start_off;
1656
1657         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1658         if (ret < 0)
1659                 return ret;
1660
1661         while (1) {
1662                 leaf = path->nodes[0];
1663                 slot = path->slots[0];
1664                 if (slot >= btrfs_header_nritems(leaf)) {
1665                         /*
1666                          * If the item at offset is not found,
1667                          * btrfs_search_slot will point us to the slot
1668                          * where it should be inserted. In our case
1669                          * that will be the slot directly before the
1670                          * next INODE_REF_KEY_V2 item. In the case
1671                          * that we're pointing to the last slot in a
1672                          * leaf, we must move one leaf over.
1673                          */
1674                         ret = btrfs_next_leaf(root, path);
1675                         if (ret) {
1676                                 if (ret >= 1)
1677                                         ret = -ENOENT;
1678                                 break;
1679                         }
1680                         continue;
1681                 }
1682
1683                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
1684
1685                 /*
1686                  * Check that we're still looking at an extended ref key for
1687                  * this particular objectid. If we have different
1688                  * objectid or type then there are no more to be found
1689                  * in the tree and we can exit.
1690                  */
1691                 ret = -ENOENT;
1692                 if (found_key.objectid != inode_objectid)
1693                         break;
1694                 if (found_key.type != BTRFS_INODE_EXTREF_KEY)
1695                         break;
1696
1697                 ret = 0;
1698                 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1699                 extref = (struct btrfs_inode_extref *)ptr;
1700                 *ret_extref = extref;
1701                 if (found_off)
1702                         *found_off = found_key.offset;
1703                 break;
1704         }
1705
1706         return ret;
1707 }
1708
1709 /*
1710  * this iterates to turn a name (from iref/extref) into a full filesystem path.
1711  * Elements of the path are separated by '/' and the path is guaranteed to be
1712  * 0-terminated. the path is only given within the current file system.
1713  * Therefore, it never starts with a '/'. the caller is responsible to provide
1714  * "size" bytes in "dest". the dest buffer will be filled backwards. finally,
1715  * the start point of the resulting string is returned. this pointer is within
1716  * dest, normally.
1717  * in case the path buffer would overflow, the pointer is decremented further
1718  * as if output was written to the buffer, though no more output is actually
1719  * generated. that way, the caller can determine how much space would be
1720  * required for the path to fit into the buffer. in that case, the returned
1721  * value will be smaller than dest. callers must check this!
1722  */
1723 char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path,
1724                         u32 name_len, unsigned long name_off,
1725                         struct extent_buffer *eb_in, u64 parent,
1726                         char *dest, u32 size)
1727 {
1728         int slot;
1729         u64 next_inum;
1730         int ret;
1731         s64 bytes_left = ((s64)size) - 1;
1732         struct extent_buffer *eb = eb_in;
1733         struct btrfs_key found_key;
1734         int leave_spinning = path->leave_spinning;
1735         struct btrfs_inode_ref *iref;
1736
1737         if (bytes_left >= 0)
1738                 dest[bytes_left] = '\0';
1739
1740         path->leave_spinning = 1;
1741         while (1) {
1742                 bytes_left -= name_len;
1743                 if (bytes_left >= 0)
1744                         read_extent_buffer(eb, dest + bytes_left,
1745                                            name_off, name_len);
1746                 if (eb != eb_in) {
1747                         if (!path->skip_locking)
1748                                 btrfs_tree_read_unlock_blocking(eb);
1749                         free_extent_buffer(eb);
1750                 }
1751                 ret = btrfs_find_item(fs_root, path, parent, 0,
1752                                 BTRFS_INODE_REF_KEY, &found_key);
1753                 if (ret > 0)
1754                         ret = -ENOENT;
1755                 if (ret)
1756                         break;
1757
1758                 next_inum = found_key.offset;
1759
1760                 /* regular exit ahead */
1761                 if (parent == next_inum)
1762                         break;
1763
1764                 slot = path->slots[0];
1765                 eb = path->nodes[0];
1766                 /* make sure we can use eb after releasing the path */
1767                 if (eb != eb_in) {
1768                         if (!path->skip_locking)
1769                                 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1770                         path->nodes[0] = NULL;
1771                         path->locks[0] = 0;
1772                 }
1773                 btrfs_release_path(path);
1774                 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
1775
1776                 name_len = btrfs_inode_ref_name_len(eb, iref);
1777                 name_off = (unsigned long)(iref + 1);
1778
1779                 parent = next_inum;
1780                 --bytes_left;
1781                 if (bytes_left >= 0)
1782                         dest[bytes_left] = '/';
1783         }
1784
1785         btrfs_release_path(path);
1786         path->leave_spinning = leave_spinning;
1787
1788         if (ret)
1789                 return ERR_PTR(ret);
1790
1791         return dest + bytes_left;
1792 }
1793
1794 /*
1795  * this makes the path point to (logical EXTENT_ITEM *)
1796  * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for
1797  * tree blocks and <0 on error.
1798  */
1799 int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical,
1800                         struct btrfs_path *path, struct btrfs_key *found_key,
1801                         u64 *flags_ret)
1802 {
1803         int ret;
1804         u64 flags;
1805         u64 size = 0;
1806         u32 item_size;
1807         struct extent_buffer *eb;
1808         struct btrfs_extent_item *ei;
1809         struct btrfs_key key;
1810
1811         if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1812                 key.type = BTRFS_METADATA_ITEM_KEY;
1813         else
1814                 key.type = BTRFS_EXTENT_ITEM_KEY;
1815         key.objectid = logical;
1816         key.offset = (u64)-1;
1817
1818         ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
1819         if (ret < 0)
1820                 return ret;
1821
1822         ret = btrfs_previous_extent_item(fs_info->extent_root, path, 0);
1823         if (ret) {
1824                 if (ret > 0)
1825                         ret = -ENOENT;
1826                 return ret;
1827         }
1828         btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]);
1829         if (found_key->type == BTRFS_METADATA_ITEM_KEY)
1830                 size = fs_info->nodesize;
1831         else if (found_key->type == BTRFS_EXTENT_ITEM_KEY)
1832                 size = found_key->offset;
1833
1834         if (found_key->objectid > logical ||
1835             found_key->objectid + size <= logical) {
1836                 btrfs_debug(fs_info,
1837                         "logical %llu is not within any extent", logical);
1838                 return -ENOENT;
1839         }
1840
1841         eb = path->nodes[0];
1842         item_size = btrfs_item_size_nr(eb, path->slots[0]);
1843         BUG_ON(item_size < sizeof(*ei));
1844
1845         ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
1846         flags = btrfs_extent_flags(eb, ei);
1847
1848         btrfs_debug(fs_info,
1849                 "logical %llu is at position %llu within the extent (%llu EXTENT_ITEM %llu) flags %#llx size %u",
1850                  logical, logical - found_key->objectid, found_key->objectid,
1851                  found_key->offset, flags, item_size);
1852
1853         WARN_ON(!flags_ret);
1854         if (flags_ret) {
1855                 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1856                         *flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK;
1857                 else if (flags & BTRFS_EXTENT_FLAG_DATA)
1858                         *flags_ret = BTRFS_EXTENT_FLAG_DATA;
1859                 else
1860                         BUG_ON(1);
1861                 return 0;
1862         }
1863
1864         return -EIO;
1865 }
1866
1867 /*
1868  * helper function to iterate extent inline refs. ptr must point to a 0 value
1869  * for the first call and may be modified. it is used to track state.
1870  * if more refs exist, 0 is returned and the next call to
1871  * __get_extent_inline_ref must pass the modified ptr parameter to get the
1872  * next ref. after the last ref was processed, 1 is returned.
1873  * returns <0 on error
1874  */
1875 static int __get_extent_inline_ref(unsigned long *ptr, struct extent_buffer *eb,
1876                                    struct btrfs_key *key,
1877                                    struct btrfs_extent_item *ei, u32 item_size,
1878                                    struct btrfs_extent_inline_ref **out_eiref,
1879                                    int *out_type)
1880 {
1881         unsigned long end;
1882         u64 flags;
1883         struct btrfs_tree_block_info *info;
1884
1885         if (!*ptr) {
1886                 /* first call */
1887                 flags = btrfs_extent_flags(eb, ei);
1888                 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1889                         if (key->type == BTRFS_METADATA_ITEM_KEY) {
1890                                 /* a skinny metadata extent */
1891                                 *out_eiref =
1892                                      (struct btrfs_extent_inline_ref *)(ei + 1);
1893                         } else {
1894                                 WARN_ON(key->type != BTRFS_EXTENT_ITEM_KEY);
1895                                 info = (struct btrfs_tree_block_info *)(ei + 1);
1896                                 *out_eiref =
1897                                    (struct btrfs_extent_inline_ref *)(info + 1);
1898                         }
1899                 } else {
1900                         *out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1);
1901                 }
1902                 *ptr = (unsigned long)*out_eiref;
1903                 if ((unsigned long)(*ptr) >= (unsigned long)ei + item_size)
1904                         return -ENOENT;
1905         }
1906
1907         end = (unsigned long)ei + item_size;
1908         *out_eiref = (struct btrfs_extent_inline_ref *)(*ptr);
1909         *out_type = btrfs_extent_inline_ref_type(eb, *out_eiref);
1910
1911         *ptr += btrfs_extent_inline_ref_size(*out_type);
1912         WARN_ON(*ptr > end);
1913         if (*ptr == end)
1914                 return 1; /* last */
1915
1916         return 0;
1917 }
1918
1919 /*
1920  * reads the tree block backref for an extent. tree level and root are returned
1921  * through out_level and out_root. ptr must point to a 0 value for the first
1922  * call and may be modified (see __get_extent_inline_ref comment).
1923  * returns 0 if data was provided, 1 if there was no more data to provide or
1924  * <0 on error.
1925  */
1926 int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb,
1927                             struct btrfs_key *key, struct btrfs_extent_item *ei,
1928                             u32 item_size, u64 *out_root, u8 *out_level)
1929 {
1930         int ret;
1931         int type;
1932         struct btrfs_extent_inline_ref *eiref;
1933
1934         if (*ptr == (unsigned long)-1)
1935                 return 1;
1936
1937         while (1) {
1938                 ret = __get_extent_inline_ref(ptr, eb, key, ei, item_size,
1939                                               &eiref, &type);
1940                 if (ret < 0)
1941                         return ret;
1942
1943                 if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1944                     type == BTRFS_SHARED_BLOCK_REF_KEY)
1945                         break;
1946
1947                 if (ret == 1)
1948                         return 1;
1949         }
1950
1951         /* we can treat both ref types equally here */
1952         *out_root = btrfs_extent_inline_ref_offset(eb, eiref);
1953
1954         if (key->type == BTRFS_EXTENT_ITEM_KEY) {
1955                 struct btrfs_tree_block_info *info;
1956
1957                 info = (struct btrfs_tree_block_info *)(ei + 1);
1958                 *out_level = btrfs_tree_block_level(eb, info);
1959         } else {
1960                 ASSERT(key->type == BTRFS_METADATA_ITEM_KEY);
1961                 *out_level = (u8)key->offset;
1962         }
1963
1964         if (ret == 1)
1965                 *ptr = (unsigned long)-1;
1966
1967         return 0;
1968 }
1969
1970 static int iterate_leaf_refs(struct btrfs_fs_info *fs_info,
1971                              struct extent_inode_elem *inode_list,
1972                              u64 root, u64 extent_item_objectid,
1973                              iterate_extent_inodes_t *iterate, void *ctx)
1974 {
1975         struct extent_inode_elem *eie;
1976         int ret = 0;
1977
1978         for (eie = inode_list; eie; eie = eie->next) {
1979                 btrfs_debug(fs_info,
1980                             "ref for %llu resolved, key (%llu EXTEND_DATA %llu), root %llu",
1981                             extent_item_objectid, eie->inum,
1982                             eie->offset, root);
1983                 ret = iterate(eie->inum, eie->offset, root, ctx);
1984                 if (ret) {
1985                         btrfs_debug(fs_info,
1986                                     "stopping iteration for %llu due to ret=%d",
1987                                     extent_item_objectid, ret);
1988                         break;
1989                 }
1990         }
1991
1992         return ret;
1993 }
1994
1995 /*
1996  * calls iterate() for every inode that references the extent identified by
1997  * the given parameters.
1998  * when the iterator function returns a non-zero value, iteration stops.
1999  */
2000 int iterate_extent_inodes(struct btrfs_fs_info *fs_info,
2001                                 u64 extent_item_objectid, u64 extent_item_pos,
2002                                 int search_commit_root,
2003                                 iterate_extent_inodes_t *iterate, void *ctx)
2004 {
2005         int ret;
2006         struct btrfs_trans_handle *trans = NULL;
2007         struct ulist *refs = NULL;
2008         struct ulist *roots = NULL;
2009         struct ulist_node *ref_node = NULL;
2010         struct ulist_node *root_node = NULL;
2011         struct seq_list tree_mod_seq_elem = SEQ_LIST_INIT(tree_mod_seq_elem);
2012         struct ulist_iterator ref_uiter;
2013         struct ulist_iterator root_uiter;
2014
2015         btrfs_debug(fs_info, "resolving all inodes for extent %llu",
2016                         extent_item_objectid);
2017
2018         if (!search_commit_root) {
2019                 trans = btrfs_join_transaction(fs_info->extent_root);
2020                 if (IS_ERR(trans))
2021                         return PTR_ERR(trans);
2022                 btrfs_get_tree_mod_seq(fs_info, &tree_mod_seq_elem);
2023         } else {
2024                 down_read(&fs_info->commit_root_sem);
2025         }
2026
2027         ret = btrfs_find_all_leafs(trans, fs_info, extent_item_objectid,
2028                                    tree_mod_seq_elem.seq, &refs,
2029                                    &extent_item_pos);
2030         if (ret)
2031                 goto out;
2032
2033         ULIST_ITER_INIT(&ref_uiter);
2034         while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) {
2035                 ret = __btrfs_find_all_roots(trans, fs_info, ref_node->val,
2036                                              tree_mod_seq_elem.seq, &roots);
2037                 if (ret)
2038                         break;
2039                 ULIST_ITER_INIT(&root_uiter);
2040                 while (!ret && (root_node = ulist_next(roots, &root_uiter))) {
2041                         btrfs_debug(fs_info,
2042                                     "root %llu references leaf %llu, data list %#llx",
2043                                     root_node->val, ref_node->val,
2044                                     ref_node->aux);
2045                         ret = iterate_leaf_refs(fs_info,
2046                                                 (struct extent_inode_elem *)
2047                                                 (uintptr_t)ref_node->aux,
2048                                                 root_node->val,
2049                                                 extent_item_objectid,
2050                                                 iterate, ctx);
2051                 }
2052                 ulist_free(roots);
2053         }
2054
2055         free_leaf_list(refs);
2056 out:
2057         if (!search_commit_root) {
2058                 btrfs_put_tree_mod_seq(fs_info, &tree_mod_seq_elem);
2059                 btrfs_end_transaction(trans);
2060         } else {
2061                 up_read(&fs_info->commit_root_sem);
2062         }
2063
2064         return ret;
2065 }
2066
2067 int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info,
2068                                 struct btrfs_path *path,
2069                                 iterate_extent_inodes_t *iterate, void *ctx)
2070 {
2071         int ret;
2072         u64 extent_item_pos;
2073         u64 flags = 0;
2074         struct btrfs_key found_key;
2075         int search_commit_root = path->search_commit_root;
2076
2077         ret = extent_from_logical(fs_info, logical, path, &found_key, &flags);
2078         btrfs_release_path(path);
2079         if (ret < 0)
2080                 return ret;
2081         if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
2082                 return -EINVAL;
2083
2084         extent_item_pos = logical - found_key.objectid;
2085         ret = iterate_extent_inodes(fs_info, found_key.objectid,
2086                                         extent_item_pos, search_commit_root,
2087                                         iterate, ctx);
2088
2089         return ret;
2090 }
2091
2092 typedef int (iterate_irefs_t)(u64 parent, u32 name_len, unsigned long name_off,
2093                               struct extent_buffer *eb, void *ctx);
2094
2095 static int iterate_inode_refs(u64 inum, struct btrfs_root *fs_root,
2096                               struct btrfs_path *path,
2097                               iterate_irefs_t *iterate, void *ctx)
2098 {
2099         int ret = 0;
2100         int slot;
2101         u32 cur;
2102         u32 len;
2103         u32 name_len;
2104         u64 parent = 0;
2105         int found = 0;
2106         struct extent_buffer *eb;
2107         struct btrfs_item *item;
2108         struct btrfs_inode_ref *iref;
2109         struct btrfs_key found_key;
2110
2111         while (!ret) {
2112                 ret = btrfs_find_item(fs_root, path, inum,
2113                                 parent ? parent + 1 : 0, BTRFS_INODE_REF_KEY,
2114                                 &found_key);
2115
2116                 if (ret < 0)
2117                         break;
2118                 if (ret) {
2119                         ret = found ? 0 : -ENOENT;
2120                         break;
2121                 }
2122                 ++found;
2123
2124                 parent = found_key.offset;
2125                 slot = path->slots[0];
2126                 eb = btrfs_clone_extent_buffer(path->nodes[0]);
2127                 if (!eb) {
2128                         ret = -ENOMEM;
2129                         break;
2130                 }
2131                 extent_buffer_get(eb);
2132                 btrfs_tree_read_lock(eb);
2133                 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
2134                 btrfs_release_path(path);
2135
2136                 item = btrfs_item_nr(slot);
2137                 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
2138
2139                 for (cur = 0; cur < btrfs_item_size(eb, item); cur += len) {
2140                         name_len = btrfs_inode_ref_name_len(eb, iref);
2141                         /* path must be released before calling iterate()! */
2142                         btrfs_debug(fs_root->fs_info,
2143                                 "following ref at offset %u for inode %llu in tree %llu",
2144                                 cur, found_key.objectid, fs_root->objectid);
2145                         ret = iterate(parent, name_len,
2146                                       (unsigned long)(iref + 1), eb, ctx);
2147                         if (ret)
2148                                 break;
2149                         len = sizeof(*iref) + name_len;
2150                         iref = (struct btrfs_inode_ref *)((char *)iref + len);
2151                 }
2152                 btrfs_tree_read_unlock_blocking(eb);
2153                 free_extent_buffer(eb);
2154         }
2155
2156         btrfs_release_path(path);
2157
2158         return ret;
2159 }
2160
2161 static int iterate_inode_extrefs(u64 inum, struct btrfs_root *fs_root,
2162                                  struct btrfs_path *path,
2163                                  iterate_irefs_t *iterate, void *ctx)
2164 {
2165         int ret;
2166         int slot;
2167         u64 offset = 0;
2168         u64 parent;
2169         int found = 0;
2170         struct extent_buffer *eb;
2171         struct btrfs_inode_extref *extref;
2172         u32 item_size;
2173         u32 cur_offset;
2174         unsigned long ptr;
2175
2176         while (1) {
2177                 ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref,
2178                                             &offset);
2179                 if (ret < 0)
2180                         break;
2181                 if (ret) {
2182                         ret = found ? 0 : -ENOENT;
2183                         break;
2184                 }
2185                 ++found;
2186
2187                 slot = path->slots[0];
2188                 eb = btrfs_clone_extent_buffer(path->nodes[0]);
2189                 if (!eb) {
2190                         ret = -ENOMEM;
2191                         break;
2192                 }
2193                 extent_buffer_get(eb);
2194
2195                 btrfs_tree_read_lock(eb);
2196                 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
2197                 btrfs_release_path(path);
2198
2199                 item_size = btrfs_item_size_nr(eb, slot);
2200                 ptr = btrfs_item_ptr_offset(eb, slot);
2201                 cur_offset = 0;
2202
2203                 while (cur_offset < item_size) {
2204                         u32 name_len;
2205
2206                         extref = (struct btrfs_inode_extref *)(ptr + cur_offset);
2207                         parent = btrfs_inode_extref_parent(eb, extref);
2208                         name_len = btrfs_inode_extref_name_len(eb, extref);
2209                         ret = iterate(parent, name_len,
2210                                       (unsigned long)&extref->name, eb, ctx);
2211                         if (ret)
2212                                 break;
2213
2214                         cur_offset += btrfs_inode_extref_name_len(eb, extref);
2215                         cur_offset += sizeof(*extref);
2216                 }
2217                 btrfs_tree_read_unlock_blocking(eb);
2218                 free_extent_buffer(eb);
2219
2220                 offset++;
2221         }
2222
2223         btrfs_release_path(path);
2224
2225         return ret;
2226 }
2227
2228 static int iterate_irefs(u64 inum, struct btrfs_root *fs_root,
2229                          struct btrfs_path *path, iterate_irefs_t *iterate,
2230                          void *ctx)
2231 {
2232         int ret;
2233         int found_refs = 0;
2234
2235         ret = iterate_inode_refs(inum, fs_root, path, iterate, ctx);
2236         if (!ret)
2237                 ++found_refs;
2238         else if (ret != -ENOENT)
2239                 return ret;
2240
2241         ret = iterate_inode_extrefs(inum, fs_root, path, iterate, ctx);
2242         if (ret == -ENOENT && found_refs)
2243                 return 0;
2244
2245         return ret;
2246 }
2247
2248 /*
2249  * returns 0 if the path could be dumped (probably truncated)
2250  * returns <0 in case of an error
2251  */
2252 static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off,
2253                          struct extent_buffer *eb, void *ctx)
2254 {
2255         struct inode_fs_paths *ipath = ctx;
2256         char *fspath;
2257         char *fspath_min;
2258         int i = ipath->fspath->elem_cnt;
2259         const int s_ptr = sizeof(char *);
2260         u32 bytes_left;
2261
2262         bytes_left = ipath->fspath->bytes_left > s_ptr ?
2263                                         ipath->fspath->bytes_left - s_ptr : 0;
2264
2265         fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr;
2266         fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len,
2267                                    name_off, eb, inum, fspath_min, bytes_left);
2268         if (IS_ERR(fspath))
2269                 return PTR_ERR(fspath);
2270
2271         if (fspath > fspath_min) {
2272                 ipath->fspath->val[i] = (u64)(unsigned long)fspath;
2273                 ++ipath->fspath->elem_cnt;
2274                 ipath->fspath->bytes_left = fspath - fspath_min;
2275         } else {
2276                 ++ipath->fspath->elem_missed;
2277                 ipath->fspath->bytes_missing += fspath_min - fspath;
2278                 ipath->fspath->bytes_left = 0;
2279         }
2280
2281         return 0;
2282 }
2283
2284 /*
2285  * this dumps all file system paths to the inode into the ipath struct, provided
2286  * is has been created large enough. each path is zero-terminated and accessed
2287  * from ipath->fspath->val[i].
2288  * when it returns, there are ipath->fspath->elem_cnt number of paths available
2289  * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the
2290  * number of missed paths is recorded in ipath->fspath->elem_missed, otherwise,
2291  * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would
2292  * have been needed to return all paths.
2293  */
2294 int paths_from_inode(u64 inum, struct inode_fs_paths *ipath)
2295 {
2296         return iterate_irefs(inum, ipath->fs_root, ipath->btrfs_path,
2297                              inode_to_path, ipath);
2298 }
2299
2300 struct btrfs_data_container *init_data_container(u32 total_bytes)
2301 {
2302         struct btrfs_data_container *data;
2303         size_t alloc_bytes;
2304
2305         alloc_bytes = max_t(size_t, total_bytes, sizeof(*data));
2306         data = vmalloc(alloc_bytes);
2307         if (!data)
2308                 return ERR_PTR(-ENOMEM);
2309
2310         if (total_bytes >= sizeof(*data)) {
2311                 data->bytes_left = total_bytes - sizeof(*data);
2312                 data->bytes_missing = 0;
2313         } else {
2314                 data->bytes_missing = sizeof(*data) - total_bytes;
2315                 data->bytes_left = 0;
2316         }
2317
2318         data->elem_cnt = 0;
2319         data->elem_missed = 0;
2320
2321         return data;
2322 }
2323
2324 /*
2325  * allocates space to return multiple file system paths for an inode.
2326  * total_bytes to allocate are passed, note that space usable for actual path
2327  * information will be total_bytes - sizeof(struct inode_fs_paths).
2328  * the returned pointer must be freed with free_ipath() in the end.
2329  */
2330 struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root,
2331                                         struct btrfs_path *path)
2332 {
2333         struct inode_fs_paths *ifp;
2334         struct btrfs_data_container *fspath;
2335
2336         fspath = init_data_container(total_bytes);
2337         if (IS_ERR(fspath))
2338                 return (void *)fspath;
2339
2340         ifp = kmalloc(sizeof(*ifp), GFP_NOFS);
2341         if (!ifp) {
2342                 vfree(fspath);
2343                 return ERR_PTR(-ENOMEM);
2344         }
2345
2346         ifp->btrfs_path = path;
2347         ifp->fspath = fspath;
2348         ifp->fs_root = fs_root;
2349
2350         return ifp;
2351 }
2352
2353 void free_ipath(struct inode_fs_paths *ipath)
2354 {
2355         if (!ipath)
2356                 return;
2357         vfree(ipath->fspath);
2358         kfree(ipath);
2359 }