2 * Copyright (C) 2008 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/bit_spinlock.h>
34 #include <linux/slab.h>
38 #include "transaction.h"
39 #include "btrfs_inode.h"
41 #include "ordered-data.h"
42 #include "compression.h"
43 #include "extent_io.h"
44 #include "extent_map.h"
46 struct compressed_bio {
47 /* number of bios pending for this compressed extent */
48 atomic_t pending_bios;
50 /* the pages with the compressed data on them */
51 struct page **compressed_pages;
53 /* inode that owns this data */
56 /* starting offset in the inode for our pages */
59 /* number of bytes in the inode we're working on */
62 /* number of bytes on disk */
63 unsigned long compressed_len;
65 /* the compression algorithm for this bio */
68 /* number of compressed pages in the array */
69 unsigned long nr_pages;
75 /* for reads, this is the bio we are copying the data into */
79 * the start of a variable length array of checksums only
85 static inline int compressed_bio_size(struct btrfs_root *root,
86 unsigned long disk_size)
88 u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
90 return sizeof(struct compressed_bio) +
91 ((disk_size + root->sectorsize - 1) / root->sectorsize) *
95 static struct bio *compressed_bio_alloc(struct block_device *bdev,
96 u64 first_byte, gfp_t gfp_flags)
100 nr_vecs = bio_get_nr_vecs(bdev);
101 return btrfs_bio_alloc(bdev, first_byte >> 9, nr_vecs, gfp_flags);
104 static int check_compressed_csum(struct inode *inode,
105 struct compressed_bio *cb,
109 struct btrfs_root *root = BTRFS_I(inode)->root;
114 u32 *cb_sum = &cb->sums;
116 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
119 for (i = 0; i < cb->nr_pages; i++) {
120 page = cb->compressed_pages[i];
123 kaddr = kmap_atomic(page);
124 csum = btrfs_csum_data(root, kaddr, csum, PAGE_CACHE_SIZE);
125 btrfs_csum_final(csum, (char *)&csum);
126 kunmap_atomic(kaddr);
128 if (csum != *cb_sum) {
129 printk(KERN_INFO "btrfs csum failed ino %llu "
130 "extent %llu csum %u "
131 "wanted %u mirror %d\n",
132 (unsigned long long)btrfs_ino(inode),
133 (unsigned long long)disk_start,
134 csum, *cb_sum, cb->mirror_num);
146 /* when we finish reading compressed pages from the disk, we
147 * decompress them and then run the bio end_io routines on the
148 * decompressed pages (in the inode address space).
150 * This allows the checksumming and other IO error handling routines
153 * The compressed pages are freed here, and it must be run
156 static void end_compressed_bio_read(struct bio *bio, int err)
158 struct compressed_bio *cb = bio->bi_private;
167 /* if there are more bios still pending for this compressed
170 if (!atomic_dec_and_test(&cb->pending_bios))
174 ret = check_compressed_csum(inode, cb, (u64)bio->bi_sector << 9);
178 /* ok, we're the last bio for this extent, lets start
181 ret = btrfs_decompress_biovec(cb->compress_type,
182 cb->compressed_pages,
184 cb->orig_bio->bi_io_vec,
185 cb->orig_bio->bi_vcnt,
191 /* release the compressed pages */
193 for (index = 0; index < cb->nr_pages; index++) {
194 page = cb->compressed_pages[index];
195 page->mapping = NULL;
196 page_cache_release(page);
199 /* do io completion on the original bio */
201 bio_io_error(cb->orig_bio);
204 struct bio_vec *bvec = cb->orig_bio->bi_io_vec;
207 * we have verified the checksum already, set page
208 * checked so the end_io handlers know about it
210 while (bio_index < cb->orig_bio->bi_vcnt) {
211 SetPageChecked(bvec->bv_page);
215 bio_endio(cb->orig_bio, 0);
218 /* finally free the cb struct */
219 kfree(cb->compressed_pages);
226 * Clear the writeback bits on all of the file
227 * pages for a compressed write
229 static noinline void end_compressed_writeback(struct inode *inode, u64 start,
230 unsigned long ram_size)
232 unsigned long index = start >> PAGE_CACHE_SHIFT;
233 unsigned long end_index = (start + ram_size - 1) >> PAGE_CACHE_SHIFT;
234 struct page *pages[16];
235 unsigned long nr_pages = end_index - index + 1;
239 while (nr_pages > 0) {
240 ret = find_get_pages_contig(inode->i_mapping, index,
242 nr_pages, ARRAY_SIZE(pages)), pages);
248 for (i = 0; i < ret; i++) {
249 end_page_writeback(pages[i]);
250 page_cache_release(pages[i]);
255 /* the inode may be gone now */
259 * do the cleanup once all the compressed pages hit the disk.
260 * This will clear writeback on the file pages and free the compressed
263 * This also calls the writeback end hooks for the file pages so that
264 * metadata and checksums can be updated in the file.
266 static void end_compressed_bio_write(struct bio *bio, int err)
268 struct extent_io_tree *tree;
269 struct compressed_bio *cb = bio->bi_private;
277 /* if there are more bios still pending for this compressed
280 if (!atomic_dec_and_test(&cb->pending_bios))
283 /* ok, we're the last bio for this extent, step one is to
284 * call back into the FS and do all the end_io operations
287 tree = &BTRFS_I(inode)->io_tree;
288 cb->compressed_pages[0]->mapping = cb->inode->i_mapping;
289 tree->ops->writepage_end_io_hook(cb->compressed_pages[0],
291 cb->start + cb->len - 1,
293 cb->compressed_pages[0]->mapping = NULL;
295 end_compressed_writeback(inode, cb->start, cb->len);
296 /* note, our inode could be gone now */
299 * release the compressed pages, these came from alloc_page and
300 * are not attached to the inode at all
303 for (index = 0; index < cb->nr_pages; index++) {
304 page = cb->compressed_pages[index];
305 page->mapping = NULL;
306 page_cache_release(page);
309 /* finally free the cb struct */
310 kfree(cb->compressed_pages);
317 * worker function to build and submit bios for previously compressed pages.
318 * The corresponding pages in the inode should be marked for writeback
319 * and the compressed pages should have a reference on them for dropping
320 * when the IO is complete.
322 * This also checksums the file bytes and gets things ready for
325 int btrfs_submit_compressed_write(struct inode *inode, u64 start,
326 unsigned long len, u64 disk_start,
327 unsigned long compressed_len,
328 struct page **compressed_pages,
329 unsigned long nr_pages)
331 struct bio *bio = NULL;
332 struct btrfs_root *root = BTRFS_I(inode)->root;
333 struct compressed_bio *cb;
334 unsigned long bytes_left;
335 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
338 u64 first_byte = disk_start;
339 struct block_device *bdev;
341 int skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
343 WARN_ON(start & ((u64)PAGE_CACHE_SIZE - 1));
344 cb = kmalloc(compressed_bio_size(root, compressed_len), GFP_NOFS);
347 atomic_set(&cb->pending_bios, 0);
353 cb->compressed_pages = compressed_pages;
354 cb->compressed_len = compressed_len;
356 cb->nr_pages = nr_pages;
358 bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
360 bio = compressed_bio_alloc(bdev, first_byte, GFP_NOFS);
365 bio->bi_private = cb;
366 bio->bi_end_io = end_compressed_bio_write;
367 atomic_inc(&cb->pending_bios);
369 /* create and submit bios for the compressed pages */
370 bytes_left = compressed_len;
371 for (pg_index = 0; pg_index < cb->nr_pages; pg_index++) {
372 page = compressed_pages[pg_index];
373 page->mapping = inode->i_mapping;
375 ret = io_tree->ops->merge_bio_hook(page, 0,
381 page->mapping = NULL;
382 if (ret || bio_add_page(bio, page, PAGE_CACHE_SIZE, 0) <
387 * inc the count before we submit the bio so
388 * we know the end IO handler won't happen before
389 * we inc the count. Otherwise, the cb might get
390 * freed before we're done setting it up
392 atomic_inc(&cb->pending_bios);
393 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
394 BUG_ON(ret); /* -ENOMEM */
397 ret = btrfs_csum_one_bio(root, inode, bio,
399 BUG_ON(ret); /* -ENOMEM */
402 ret = btrfs_map_bio(root, WRITE, bio, 0, 1);
403 BUG_ON(ret); /* -ENOMEM */
407 bio = compressed_bio_alloc(bdev, first_byte, GFP_NOFS);
409 bio->bi_private = cb;
410 bio->bi_end_io = end_compressed_bio_write;
411 bio_add_page(bio, page, PAGE_CACHE_SIZE, 0);
413 if (bytes_left < PAGE_CACHE_SIZE) {
414 printk("bytes left %lu compress len %lu nr %lu\n",
415 bytes_left, cb->compressed_len, cb->nr_pages);
417 bytes_left -= PAGE_CACHE_SIZE;
418 first_byte += PAGE_CACHE_SIZE;
423 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
424 BUG_ON(ret); /* -ENOMEM */
427 ret = btrfs_csum_one_bio(root, inode, bio, start, 1);
428 BUG_ON(ret); /* -ENOMEM */
431 ret = btrfs_map_bio(root, WRITE, bio, 0, 1);
432 BUG_ON(ret); /* -ENOMEM */
438 static noinline int add_ra_bio_pages(struct inode *inode,
440 struct compressed_bio *cb)
442 unsigned long end_index;
443 unsigned long pg_index;
445 u64 isize = i_size_read(inode);
448 unsigned long nr_pages = 0;
449 struct extent_map *em;
450 struct address_space *mapping = inode->i_mapping;
451 struct extent_map_tree *em_tree;
452 struct extent_io_tree *tree;
456 page = cb->orig_bio->bi_io_vec[cb->orig_bio->bi_vcnt - 1].bv_page;
457 last_offset = (page_offset(page) + PAGE_CACHE_SIZE);
458 em_tree = &BTRFS_I(inode)->extent_tree;
459 tree = &BTRFS_I(inode)->io_tree;
464 end_index = (i_size_read(inode) - 1) >> PAGE_CACHE_SHIFT;
466 while (last_offset < compressed_end) {
467 pg_index = last_offset >> PAGE_CACHE_SHIFT;
469 if (pg_index > end_index)
473 page = radix_tree_lookup(&mapping->page_tree, pg_index);
482 page = __page_cache_alloc(mapping_gfp_mask(mapping) &
487 if (add_to_page_cache_lru(page, mapping, pg_index,
489 page_cache_release(page);
493 end = last_offset + PAGE_CACHE_SIZE - 1;
495 * at this point, we have a locked page in the page cache
496 * for these bytes in the file. But, we have to make
497 * sure they map to this compressed extent on disk.
499 set_page_extent_mapped(page);
500 lock_extent(tree, last_offset, end);
501 read_lock(&em_tree->lock);
502 em = lookup_extent_mapping(em_tree, last_offset,
504 read_unlock(&em_tree->lock);
506 if (!em || last_offset < em->start ||
507 (last_offset + PAGE_CACHE_SIZE > extent_map_end(em)) ||
508 (em->block_start >> 9) != cb->orig_bio->bi_sector) {
510 unlock_extent(tree, last_offset, end);
512 page_cache_release(page);
517 if (page->index == end_index) {
519 size_t zero_offset = isize & (PAGE_CACHE_SIZE - 1);
523 zeros = PAGE_CACHE_SIZE - zero_offset;
524 userpage = kmap_atomic(page);
525 memset(userpage + zero_offset, 0, zeros);
526 flush_dcache_page(page);
527 kunmap_atomic(userpage);
531 ret = bio_add_page(cb->orig_bio, page,
534 if (ret == PAGE_CACHE_SIZE) {
536 page_cache_release(page);
538 unlock_extent(tree, last_offset, end);
540 page_cache_release(page);
544 last_offset += PAGE_CACHE_SIZE;
550 * for a compressed read, the bio we get passed has all the inode pages
551 * in it. We don't actually do IO on those pages but allocate new ones
552 * to hold the compressed pages on disk.
554 * bio->bi_sector points to the compressed extent on disk
555 * bio->bi_io_vec points to all of the inode pages
556 * bio->bi_vcnt is a count of pages
558 * After the compressed pages are read, we copy the bytes into the
559 * bio we were passed and then call the bio end_io calls
561 int btrfs_submit_compressed_read(struct inode *inode, struct bio *bio,
562 int mirror_num, unsigned long bio_flags)
564 struct extent_io_tree *tree;
565 struct extent_map_tree *em_tree;
566 struct compressed_bio *cb;
567 struct btrfs_root *root = BTRFS_I(inode)->root;
568 unsigned long uncompressed_len = bio->bi_vcnt * PAGE_CACHE_SIZE;
569 unsigned long compressed_len;
570 unsigned long nr_pages;
571 unsigned long pg_index;
573 struct block_device *bdev;
574 struct bio *comp_bio;
575 u64 cur_disk_byte = (u64)bio->bi_sector << 9;
578 struct extent_map *em;
583 tree = &BTRFS_I(inode)->io_tree;
584 em_tree = &BTRFS_I(inode)->extent_tree;
586 /* we need the actual starting offset of this extent in the file */
587 read_lock(&em_tree->lock);
588 em = lookup_extent_mapping(em_tree,
589 page_offset(bio->bi_io_vec->bv_page),
591 read_unlock(&em_tree->lock);
595 compressed_len = em->block_len;
596 cb = kmalloc(compressed_bio_size(root, compressed_len), GFP_NOFS);
600 atomic_set(&cb->pending_bios, 0);
603 cb->mirror_num = mirror_num;
606 cb->start = em->orig_start;
608 em_start = em->start;
613 cb->len = uncompressed_len;
614 cb->compressed_len = compressed_len;
615 cb->compress_type = extent_compress_type(bio_flags);
618 nr_pages = (compressed_len + PAGE_CACHE_SIZE - 1) /
620 cb->compressed_pages = kzalloc(sizeof(struct page *) * nr_pages,
622 if (!cb->compressed_pages)
625 bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
627 for (pg_index = 0; pg_index < nr_pages; pg_index++) {
628 cb->compressed_pages[pg_index] = alloc_page(GFP_NOFS |
630 if (!cb->compressed_pages[pg_index]) {
631 faili = pg_index - 1;
636 faili = nr_pages - 1;
637 cb->nr_pages = nr_pages;
639 add_ra_bio_pages(inode, em_start + em_len, cb);
641 /* include any pages we added in add_ra-bio_pages */
642 uncompressed_len = bio->bi_vcnt * PAGE_CACHE_SIZE;
643 cb->len = uncompressed_len;
645 comp_bio = compressed_bio_alloc(bdev, cur_disk_byte, GFP_NOFS);
648 comp_bio->bi_private = cb;
649 comp_bio->bi_end_io = end_compressed_bio_read;
650 atomic_inc(&cb->pending_bios);
652 for (pg_index = 0; pg_index < nr_pages; pg_index++) {
653 page = cb->compressed_pages[pg_index];
654 page->mapping = inode->i_mapping;
655 page->index = em_start >> PAGE_CACHE_SHIFT;
657 if (comp_bio->bi_size)
658 ret = tree->ops->merge_bio_hook(page, 0,
664 page->mapping = NULL;
665 if (ret || bio_add_page(comp_bio, page, PAGE_CACHE_SIZE, 0) <
669 ret = btrfs_bio_wq_end_io(root->fs_info, comp_bio, 0);
670 BUG_ON(ret); /* -ENOMEM */
673 * inc the count before we submit the bio so
674 * we know the end IO handler won't happen before
675 * we inc the count. Otherwise, the cb might get
676 * freed before we're done setting it up
678 atomic_inc(&cb->pending_bios);
680 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
681 ret = btrfs_lookup_bio_sums(root, inode,
683 BUG_ON(ret); /* -ENOMEM */
685 sums += (comp_bio->bi_size + root->sectorsize - 1) /
688 ret = btrfs_map_bio(root, READ, comp_bio,
690 BUG_ON(ret); /* -ENOMEM */
694 comp_bio = compressed_bio_alloc(bdev, cur_disk_byte,
697 comp_bio->bi_private = cb;
698 comp_bio->bi_end_io = end_compressed_bio_read;
700 bio_add_page(comp_bio, page, PAGE_CACHE_SIZE, 0);
702 cur_disk_byte += PAGE_CACHE_SIZE;
706 ret = btrfs_bio_wq_end_io(root->fs_info, comp_bio, 0);
707 BUG_ON(ret); /* -ENOMEM */
709 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
710 ret = btrfs_lookup_bio_sums(root, inode, comp_bio, sums);
711 BUG_ON(ret); /* -ENOMEM */
714 ret = btrfs_map_bio(root, READ, comp_bio, mirror_num, 0);
715 BUG_ON(ret); /* -ENOMEM */
722 __free_page(cb->compressed_pages[faili]);
726 kfree(cb->compressed_pages);
734 static struct list_head comp_idle_workspace[BTRFS_COMPRESS_TYPES];
735 static spinlock_t comp_workspace_lock[BTRFS_COMPRESS_TYPES];
736 static int comp_num_workspace[BTRFS_COMPRESS_TYPES];
737 static atomic_t comp_alloc_workspace[BTRFS_COMPRESS_TYPES];
738 static wait_queue_head_t comp_workspace_wait[BTRFS_COMPRESS_TYPES];
740 struct btrfs_compress_op *btrfs_compress_op[] = {
741 &btrfs_zlib_compress,
745 void __init btrfs_init_compress(void)
749 for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) {
750 INIT_LIST_HEAD(&comp_idle_workspace[i]);
751 spin_lock_init(&comp_workspace_lock[i]);
752 atomic_set(&comp_alloc_workspace[i], 0);
753 init_waitqueue_head(&comp_workspace_wait[i]);
758 * this finds an available workspace or allocates a new one
759 * ERR_PTR is returned if things go bad.
761 static struct list_head *find_workspace(int type)
763 struct list_head *workspace;
764 int cpus = num_online_cpus();
767 struct list_head *idle_workspace = &comp_idle_workspace[idx];
768 spinlock_t *workspace_lock = &comp_workspace_lock[idx];
769 atomic_t *alloc_workspace = &comp_alloc_workspace[idx];
770 wait_queue_head_t *workspace_wait = &comp_workspace_wait[idx];
771 int *num_workspace = &comp_num_workspace[idx];
773 spin_lock(workspace_lock);
774 if (!list_empty(idle_workspace)) {
775 workspace = idle_workspace->next;
778 spin_unlock(workspace_lock);
782 if (atomic_read(alloc_workspace) > cpus) {
785 spin_unlock(workspace_lock);
786 prepare_to_wait(workspace_wait, &wait, TASK_UNINTERRUPTIBLE);
787 if (atomic_read(alloc_workspace) > cpus && !*num_workspace)
789 finish_wait(workspace_wait, &wait);
792 atomic_inc(alloc_workspace);
793 spin_unlock(workspace_lock);
795 workspace = btrfs_compress_op[idx]->alloc_workspace();
796 if (IS_ERR(workspace)) {
797 atomic_dec(alloc_workspace);
798 wake_up(workspace_wait);
804 * put a workspace struct back on the list or free it if we have enough
805 * idle ones sitting around
807 static void free_workspace(int type, struct list_head *workspace)
810 struct list_head *idle_workspace = &comp_idle_workspace[idx];
811 spinlock_t *workspace_lock = &comp_workspace_lock[idx];
812 atomic_t *alloc_workspace = &comp_alloc_workspace[idx];
813 wait_queue_head_t *workspace_wait = &comp_workspace_wait[idx];
814 int *num_workspace = &comp_num_workspace[idx];
816 spin_lock(workspace_lock);
817 if (*num_workspace < num_online_cpus()) {
818 list_add_tail(workspace, idle_workspace);
820 spin_unlock(workspace_lock);
823 spin_unlock(workspace_lock);
825 btrfs_compress_op[idx]->free_workspace(workspace);
826 atomic_dec(alloc_workspace);
829 if (waitqueue_active(workspace_wait))
830 wake_up(workspace_wait);
834 * cleanup function for module exit
836 static void free_workspaces(void)
838 struct list_head *workspace;
841 for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) {
842 while (!list_empty(&comp_idle_workspace[i])) {
843 workspace = comp_idle_workspace[i].next;
845 btrfs_compress_op[i]->free_workspace(workspace);
846 atomic_dec(&comp_alloc_workspace[i]);
852 * given an address space and start/len, compress the bytes.
854 * pages are allocated to hold the compressed result and stored
857 * out_pages is used to return the number of pages allocated. There
858 * may be pages allocated even if we return an error
860 * total_in is used to return the number of bytes actually read. It
861 * may be smaller then len if we had to exit early because we
862 * ran out of room in the pages array or because we cross the
865 * total_out is used to return the total number of compressed bytes
867 * max_out tells us the max number of bytes that we're allowed to
870 int btrfs_compress_pages(int type, struct address_space *mapping,
871 u64 start, unsigned long len,
873 unsigned long nr_dest_pages,
874 unsigned long *out_pages,
875 unsigned long *total_in,
876 unsigned long *total_out,
877 unsigned long max_out)
879 struct list_head *workspace;
882 workspace = find_workspace(type);
883 if (IS_ERR(workspace))
886 ret = btrfs_compress_op[type-1]->compress_pages(workspace, mapping,
888 nr_dest_pages, out_pages,
891 free_workspace(type, workspace);
896 * pages_in is an array of pages with compressed data.
898 * disk_start is the starting logical offset of this array in the file
900 * bvec is a bio_vec of pages from the file that we want to decompress into
902 * vcnt is the count of pages in the biovec
904 * srclen is the number of bytes in pages_in
906 * The basic idea is that we have a bio that was created by readpages.
907 * The pages in the bio are for the uncompressed data, and they may not
908 * be contiguous. They all correspond to the range of bytes covered by
909 * the compressed extent.
911 int btrfs_decompress_biovec(int type, struct page **pages_in, u64 disk_start,
912 struct bio_vec *bvec, int vcnt, size_t srclen)
914 struct list_head *workspace;
917 workspace = find_workspace(type);
918 if (IS_ERR(workspace))
921 ret = btrfs_compress_op[type-1]->decompress_biovec(workspace, pages_in,
924 free_workspace(type, workspace);
929 * a less complex decompression routine. Our compressed data fits in a
930 * single page, and we want to read a single page out of it.
931 * start_byte tells us the offset into the compressed data we're interested in
933 int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page,
934 unsigned long start_byte, size_t srclen, size_t destlen)
936 struct list_head *workspace;
939 workspace = find_workspace(type);
940 if (IS_ERR(workspace))
943 ret = btrfs_compress_op[type-1]->decompress(workspace, data_in,
944 dest_page, start_byte,
947 free_workspace(type, workspace);
951 void btrfs_exit_compress(void)
957 * Copy uncompressed data from working buffer to pages.
959 * buf_start is the byte offset we're of the start of our workspace buffer.
961 * total_out is the last byte of the buffer
963 int btrfs_decompress_buf2page(char *buf, unsigned long buf_start,
964 unsigned long total_out, u64 disk_start,
965 struct bio_vec *bvec, int vcnt,
966 unsigned long *pg_index,
967 unsigned long *pg_offset)
969 unsigned long buf_offset;
970 unsigned long current_buf_start;
971 unsigned long start_byte;
972 unsigned long working_bytes = total_out - buf_start;
975 struct page *page_out = bvec[*pg_index].bv_page;
978 * start byte is the first byte of the page we're currently
979 * copying into relative to the start of the compressed data.
981 start_byte = page_offset(page_out) - disk_start;
983 /* we haven't yet hit data corresponding to this page */
984 if (total_out <= start_byte)
988 * the start of the data we care about is offset into
989 * the middle of our working buffer
991 if (total_out > start_byte && buf_start < start_byte) {
992 buf_offset = start_byte - buf_start;
993 working_bytes -= buf_offset;
997 current_buf_start = buf_start;
999 /* copy bytes from the working buffer into the pages */
1000 while (working_bytes > 0) {
1001 bytes = min(PAGE_CACHE_SIZE - *pg_offset,
1002 PAGE_CACHE_SIZE - buf_offset);
1003 bytes = min(bytes, working_bytes);
1004 kaddr = kmap_atomic(page_out);
1005 memcpy(kaddr + *pg_offset, buf + buf_offset, bytes);
1006 kunmap_atomic(kaddr);
1007 flush_dcache_page(page_out);
1009 *pg_offset += bytes;
1010 buf_offset += bytes;
1011 working_bytes -= bytes;
1012 current_buf_start += bytes;
1014 /* check if we need to pick another page */
1015 if (*pg_offset == PAGE_CACHE_SIZE) {
1017 if (*pg_index >= vcnt)
1020 page_out = bvec[*pg_index].bv_page;
1022 start_byte = page_offset(page_out) - disk_start;
1025 * make sure our new page is covered by this
1028 if (total_out <= start_byte)
1032 * the next page in the biovec might not be adjacent
1033 * to the last page, but it might still be found
1034 * inside this working buffer. bump our offset pointer
1036 if (total_out > start_byte &&
1037 current_buf_start < start_byte) {
1038 buf_offset = start_byte - buf_start;
1039 working_bytes = total_out - start_byte;
1040 current_buf_start = buf_start + buf_offset;