]> git.karo-electronics.de Git - mv-sheeva.git/blob - fs/btrfs/ctree.c
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit...
[mv-sheeva.git] / fs / btrfs / ctree.c
1 /*
2  * Copyright (C) 2007,2008 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include "ctree.h"
22 #include "disk-io.h"
23 #include "transaction.h"
24 #include "print-tree.h"
25 #include "locking.h"
26
27 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
28                       *root, struct btrfs_path *path, int level);
29 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
30                       *root, struct btrfs_key *ins_key,
31                       struct btrfs_path *path, int data_size, int extend);
32 static int push_node_left(struct btrfs_trans_handle *trans,
33                           struct btrfs_root *root, struct extent_buffer *dst,
34                           struct extent_buffer *src, int empty);
35 static int balance_node_right(struct btrfs_trans_handle *trans,
36                               struct btrfs_root *root,
37                               struct extent_buffer *dst_buf,
38                               struct extent_buffer *src_buf);
39 static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
40                    struct btrfs_path *path, int level, int slot);
41 static int setup_items_for_insert(struct btrfs_trans_handle *trans,
42                         struct btrfs_root *root, struct btrfs_path *path,
43                         struct btrfs_key *cpu_key, u32 *data_size,
44                         u32 total_data, u32 total_size, int nr);
45
46
47 struct btrfs_path *btrfs_alloc_path(void)
48 {
49         struct btrfs_path *path;
50         path = kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
51         if (path)
52                 path->reada = 1;
53         return path;
54 }
55
56 /*
57  * set all locked nodes in the path to blocking locks.  This should
58  * be done before scheduling
59  */
60 noinline void btrfs_set_path_blocking(struct btrfs_path *p)
61 {
62         int i;
63         for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
64                 if (p->nodes[i] && p->locks[i])
65                         btrfs_set_lock_blocking(p->nodes[i]);
66         }
67 }
68
69 /*
70  * reset all the locked nodes in the patch to spinning locks.
71  *
72  * held is used to keep lockdep happy, when lockdep is enabled
73  * we set held to a blocking lock before we go around and
74  * retake all the spinlocks in the path.  You can safely use NULL
75  * for held
76  */
77 noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
78                                         struct extent_buffer *held)
79 {
80         int i;
81
82 #ifdef CONFIG_DEBUG_LOCK_ALLOC
83         /* lockdep really cares that we take all of these spinlocks
84          * in the right order.  If any of the locks in the path are not
85          * currently blocking, it is going to complain.  So, make really
86          * really sure by forcing the path to blocking before we clear
87          * the path blocking.
88          */
89         if (held)
90                 btrfs_set_lock_blocking(held);
91         btrfs_set_path_blocking(p);
92 #endif
93
94         for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
95                 if (p->nodes[i] && p->locks[i])
96                         btrfs_clear_lock_blocking(p->nodes[i]);
97         }
98
99 #ifdef CONFIG_DEBUG_LOCK_ALLOC
100         if (held)
101                 btrfs_clear_lock_blocking(held);
102 #endif
103 }
104
105 /* this also releases the path */
106 void btrfs_free_path(struct btrfs_path *p)
107 {
108         btrfs_release_path(NULL, p);
109         kmem_cache_free(btrfs_path_cachep, p);
110 }
111
112 /*
113  * path release drops references on the extent buffers in the path
114  * and it drops any locks held by this path
115  *
116  * It is safe to call this on paths that no locks or extent buffers held.
117  */
118 noinline void btrfs_release_path(struct btrfs_root *root, struct btrfs_path *p)
119 {
120         int i;
121
122         for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
123                 p->slots[i] = 0;
124                 if (!p->nodes[i])
125                         continue;
126                 if (p->locks[i]) {
127                         btrfs_tree_unlock(p->nodes[i]);
128                         p->locks[i] = 0;
129                 }
130                 free_extent_buffer(p->nodes[i]);
131                 p->nodes[i] = NULL;
132         }
133 }
134
135 /*
136  * safely gets a reference on the root node of a tree.  A lock
137  * is not taken, so a concurrent writer may put a different node
138  * at the root of the tree.  See btrfs_lock_root_node for the
139  * looping required.
140  *
141  * The extent buffer returned by this has a reference taken, so
142  * it won't disappear.  It may stop being the root of the tree
143  * at any time because there are no locks held.
144  */
145 struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
146 {
147         struct extent_buffer *eb;
148         spin_lock(&root->node_lock);
149         eb = root->node;
150         extent_buffer_get(eb);
151         spin_unlock(&root->node_lock);
152         return eb;
153 }
154
155 /* loop around taking references on and locking the root node of the
156  * tree until you end up with a lock on the root.  A locked buffer
157  * is returned, with a reference held.
158  */
159 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
160 {
161         struct extent_buffer *eb;
162
163         while (1) {
164                 eb = btrfs_root_node(root);
165                 btrfs_tree_lock(eb);
166
167                 spin_lock(&root->node_lock);
168                 if (eb == root->node) {
169                         spin_unlock(&root->node_lock);
170                         break;
171                 }
172                 spin_unlock(&root->node_lock);
173
174                 btrfs_tree_unlock(eb);
175                 free_extent_buffer(eb);
176         }
177         return eb;
178 }
179
180 /* cowonly root (everything not a reference counted cow subvolume), just get
181  * put onto a simple dirty list.  transaction.c walks this to make sure they
182  * get properly updated on disk.
183  */
184 static void add_root_to_dirty_list(struct btrfs_root *root)
185 {
186         if (root->track_dirty && list_empty(&root->dirty_list)) {
187                 list_add(&root->dirty_list,
188                          &root->fs_info->dirty_cowonly_roots);
189         }
190 }
191
192 /*
193  * used by snapshot creation to make a copy of a root for a tree with
194  * a given objectid.  The buffer with the new root node is returned in
195  * cow_ret, and this func returns zero on success or a negative error code.
196  */
197 int btrfs_copy_root(struct btrfs_trans_handle *trans,
198                       struct btrfs_root *root,
199                       struct extent_buffer *buf,
200                       struct extent_buffer **cow_ret, u64 new_root_objectid)
201 {
202         struct extent_buffer *cow;
203         u32 nritems;
204         int ret = 0;
205         int level;
206         struct btrfs_disk_key disk_key;
207
208         WARN_ON(root->ref_cows && trans->transid !=
209                 root->fs_info->running_transaction->transid);
210         WARN_ON(root->ref_cows && trans->transid != root->last_trans);
211
212         level = btrfs_header_level(buf);
213         nritems = btrfs_header_nritems(buf);
214         if (level == 0)
215                 btrfs_item_key(buf, &disk_key, 0);
216         else
217                 btrfs_node_key(buf, &disk_key, 0);
218
219         cow = btrfs_alloc_free_block(trans, root, buf->len, 0,
220                                      new_root_objectid, &disk_key, level,
221                                      buf->start, 0);
222         if (IS_ERR(cow))
223                 return PTR_ERR(cow);
224
225         copy_extent_buffer(cow, buf, 0, 0, cow->len);
226         btrfs_set_header_bytenr(cow, cow->start);
227         btrfs_set_header_generation(cow, trans->transid);
228         btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
229         btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
230                                      BTRFS_HEADER_FLAG_RELOC);
231         if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
232                 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
233         else
234                 btrfs_set_header_owner(cow, new_root_objectid);
235
236         write_extent_buffer(cow, root->fs_info->fsid,
237                             (unsigned long)btrfs_header_fsid(cow),
238                             BTRFS_FSID_SIZE);
239
240         WARN_ON(btrfs_header_generation(buf) > trans->transid);
241         if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
242                 ret = btrfs_inc_ref(trans, root, cow, 1);
243         else
244                 ret = btrfs_inc_ref(trans, root, cow, 0);
245
246         if (ret)
247                 return ret;
248
249         btrfs_mark_buffer_dirty(cow);
250         *cow_ret = cow;
251         return 0;
252 }
253
254 /*
255  * check if the tree block can be shared by multiple trees
256  */
257 int btrfs_block_can_be_shared(struct btrfs_root *root,
258                               struct extent_buffer *buf)
259 {
260         /*
261          * Tree blocks not in refernece counted trees and tree roots
262          * are never shared. If a block was allocated after the last
263          * snapshot and the block was not allocated by tree relocation,
264          * we know the block is not shared.
265          */
266         if (root->ref_cows &&
267             buf != root->node && buf != root->commit_root &&
268             (btrfs_header_generation(buf) <=
269              btrfs_root_last_snapshot(&root->root_item) ||
270              btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
271                 return 1;
272 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
273         if (root->ref_cows &&
274             btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
275                 return 1;
276 #endif
277         return 0;
278 }
279
280 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
281                                        struct btrfs_root *root,
282                                        struct extent_buffer *buf,
283                                        struct extent_buffer *cow)
284 {
285         u64 refs;
286         u64 owner;
287         u64 flags;
288         u64 new_flags = 0;
289         int ret;
290
291         /*
292          * Backrefs update rules:
293          *
294          * Always use full backrefs for extent pointers in tree block
295          * allocated by tree relocation.
296          *
297          * If a shared tree block is no longer referenced by its owner
298          * tree (btrfs_header_owner(buf) == root->root_key.objectid),
299          * use full backrefs for extent pointers in tree block.
300          *
301          * If a tree block is been relocating
302          * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
303          * use full backrefs for extent pointers in tree block.
304          * The reason for this is some operations (such as drop tree)
305          * are only allowed for blocks use full backrefs.
306          */
307
308         if (btrfs_block_can_be_shared(root, buf)) {
309                 ret = btrfs_lookup_extent_info(trans, root, buf->start,
310                                                buf->len, &refs, &flags);
311                 BUG_ON(ret);
312                 BUG_ON(refs == 0);
313         } else {
314                 refs = 1;
315                 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
316                     btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
317                         flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
318                 else
319                         flags = 0;
320         }
321
322         owner = btrfs_header_owner(buf);
323         BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
324                !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
325
326         if (refs > 1) {
327                 if ((owner == root->root_key.objectid ||
328                      root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
329                     !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
330                         ret = btrfs_inc_ref(trans, root, buf, 1);
331                         BUG_ON(ret);
332
333                         if (root->root_key.objectid ==
334                             BTRFS_TREE_RELOC_OBJECTID) {
335                                 ret = btrfs_dec_ref(trans, root, buf, 0);
336                                 BUG_ON(ret);
337                                 ret = btrfs_inc_ref(trans, root, cow, 1);
338                                 BUG_ON(ret);
339                         }
340                         new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
341                 } else {
342
343                         if (root->root_key.objectid ==
344                             BTRFS_TREE_RELOC_OBJECTID)
345                                 ret = btrfs_inc_ref(trans, root, cow, 1);
346                         else
347                                 ret = btrfs_inc_ref(trans, root, cow, 0);
348                         BUG_ON(ret);
349                 }
350                 if (new_flags != 0) {
351                         ret = btrfs_set_disk_extent_flags(trans, root,
352                                                           buf->start,
353                                                           buf->len,
354                                                           new_flags, 0);
355                         BUG_ON(ret);
356                 }
357         } else {
358                 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
359                         if (root->root_key.objectid ==
360                             BTRFS_TREE_RELOC_OBJECTID)
361                                 ret = btrfs_inc_ref(trans, root, cow, 1);
362                         else
363                                 ret = btrfs_inc_ref(trans, root, cow, 0);
364                         BUG_ON(ret);
365                         ret = btrfs_dec_ref(trans, root, buf, 1);
366                         BUG_ON(ret);
367                 }
368                 clean_tree_block(trans, root, buf);
369         }
370         return 0;
371 }
372
373 /*
374  * does the dirty work in cow of a single block.  The parent block (if
375  * supplied) is updated to point to the new cow copy.  The new buffer is marked
376  * dirty and returned locked.  If you modify the block it needs to be marked
377  * dirty again.
378  *
379  * search_start -- an allocation hint for the new block
380  *
381  * empty_size -- a hint that you plan on doing more cow.  This is the size in
382  * bytes the allocator should try to find free next to the block it returns.
383  * This is just a hint and may be ignored by the allocator.
384  */
385 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
386                              struct btrfs_root *root,
387                              struct extent_buffer *buf,
388                              struct extent_buffer *parent, int parent_slot,
389                              struct extent_buffer **cow_ret,
390                              u64 search_start, u64 empty_size)
391 {
392         struct btrfs_disk_key disk_key;
393         struct extent_buffer *cow;
394         int level;
395         int unlock_orig = 0;
396         u64 parent_start;
397
398         if (*cow_ret == buf)
399                 unlock_orig = 1;
400
401         btrfs_assert_tree_locked(buf);
402
403         WARN_ON(root->ref_cows && trans->transid !=
404                 root->fs_info->running_transaction->transid);
405         WARN_ON(root->ref_cows && trans->transid != root->last_trans);
406
407         level = btrfs_header_level(buf);
408
409         if (level == 0)
410                 btrfs_item_key(buf, &disk_key, 0);
411         else
412                 btrfs_node_key(buf, &disk_key, 0);
413
414         if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
415                 if (parent)
416                         parent_start = parent->start;
417                 else
418                         parent_start = 0;
419         } else
420                 parent_start = 0;
421
422         cow = btrfs_alloc_free_block(trans, root, buf->len, parent_start,
423                                      root->root_key.objectid, &disk_key,
424                                      level, search_start, empty_size);
425         if (IS_ERR(cow))
426                 return PTR_ERR(cow);
427
428         /* cow is set to blocking by btrfs_init_new_buffer */
429
430         copy_extent_buffer(cow, buf, 0, 0, cow->len);
431         btrfs_set_header_bytenr(cow, cow->start);
432         btrfs_set_header_generation(cow, trans->transid);
433         btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
434         btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
435                                      BTRFS_HEADER_FLAG_RELOC);
436         if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
437                 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
438         else
439                 btrfs_set_header_owner(cow, root->root_key.objectid);
440
441         write_extent_buffer(cow, root->fs_info->fsid,
442                             (unsigned long)btrfs_header_fsid(cow),
443                             BTRFS_FSID_SIZE);
444
445         update_ref_for_cow(trans, root, buf, cow);
446
447         if (buf == root->node) {
448                 WARN_ON(parent && parent != buf);
449                 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
450                     btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
451                         parent_start = buf->start;
452                 else
453                         parent_start = 0;
454
455                 spin_lock(&root->node_lock);
456                 root->node = cow;
457                 extent_buffer_get(cow);
458                 spin_unlock(&root->node_lock);
459
460                 btrfs_free_tree_block(trans, root, buf->start, buf->len,
461                                 parent_start, root->root_key.objectid, level);
462                 free_extent_buffer(buf);
463                 add_root_to_dirty_list(root);
464         } else {
465                 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
466                         parent_start = parent->start;
467                 else
468                         parent_start = 0;
469
470                 WARN_ON(trans->transid != btrfs_header_generation(parent));
471                 btrfs_set_node_blockptr(parent, parent_slot,
472                                         cow->start);
473                 btrfs_set_node_ptr_generation(parent, parent_slot,
474                                               trans->transid);
475                 btrfs_mark_buffer_dirty(parent);
476                 btrfs_free_tree_block(trans, root, buf->start, buf->len,
477                                 parent_start, root->root_key.objectid, level);
478         }
479         if (unlock_orig)
480                 btrfs_tree_unlock(buf);
481         free_extent_buffer(buf);
482         btrfs_mark_buffer_dirty(cow);
483         *cow_ret = cow;
484         return 0;
485 }
486
487 static inline int should_cow_block(struct btrfs_trans_handle *trans,
488                                    struct btrfs_root *root,
489                                    struct extent_buffer *buf)
490 {
491         if (btrfs_header_generation(buf) == trans->transid &&
492             !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
493             !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
494               btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
495                 return 0;
496         return 1;
497 }
498
499 /*
500  * cows a single block, see __btrfs_cow_block for the real work.
501  * This version of it has extra checks so that a block isn't cow'd more than
502  * once per transaction, as long as it hasn't been written yet
503  */
504 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
505                     struct btrfs_root *root, struct extent_buffer *buf,
506                     struct extent_buffer *parent, int parent_slot,
507                     struct extent_buffer **cow_ret)
508 {
509         u64 search_start;
510         int ret;
511
512         if (trans->transaction != root->fs_info->running_transaction) {
513                 printk(KERN_CRIT "trans %llu running %llu\n",
514                        (unsigned long long)trans->transid,
515                        (unsigned long long)
516                        root->fs_info->running_transaction->transid);
517                 WARN_ON(1);
518         }
519         if (trans->transid != root->fs_info->generation) {
520                 printk(KERN_CRIT "trans %llu running %llu\n",
521                        (unsigned long long)trans->transid,
522                        (unsigned long long)root->fs_info->generation);
523                 WARN_ON(1);
524         }
525
526         if (!should_cow_block(trans, root, buf)) {
527                 *cow_ret = buf;
528                 return 0;
529         }
530
531         search_start = buf->start & ~((u64)(1024 * 1024 * 1024) - 1);
532
533         if (parent)
534                 btrfs_set_lock_blocking(parent);
535         btrfs_set_lock_blocking(buf);
536
537         ret = __btrfs_cow_block(trans, root, buf, parent,
538                                  parent_slot, cow_ret, search_start, 0);
539         return ret;
540 }
541
542 /*
543  * helper function for defrag to decide if two blocks pointed to by a
544  * node are actually close by
545  */
546 static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
547 {
548         if (blocknr < other && other - (blocknr + blocksize) < 32768)
549                 return 1;
550         if (blocknr > other && blocknr - (other + blocksize) < 32768)
551                 return 1;
552         return 0;
553 }
554
555 /*
556  * compare two keys in a memcmp fashion
557  */
558 static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
559 {
560         struct btrfs_key k1;
561
562         btrfs_disk_key_to_cpu(&k1, disk);
563
564         return btrfs_comp_cpu_keys(&k1, k2);
565 }
566
567 /*
568  * same as comp_keys only with two btrfs_key's
569  */
570 int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2)
571 {
572         if (k1->objectid > k2->objectid)
573                 return 1;
574         if (k1->objectid < k2->objectid)
575                 return -1;
576         if (k1->type > k2->type)
577                 return 1;
578         if (k1->type < k2->type)
579                 return -1;
580         if (k1->offset > k2->offset)
581                 return 1;
582         if (k1->offset < k2->offset)
583                 return -1;
584         return 0;
585 }
586
587 /*
588  * this is used by the defrag code to go through all the
589  * leaves pointed to by a node and reallocate them so that
590  * disk order is close to key order
591  */
592 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
593                        struct btrfs_root *root, struct extent_buffer *parent,
594                        int start_slot, int cache_only, u64 *last_ret,
595                        struct btrfs_key *progress)
596 {
597         struct extent_buffer *cur;
598         u64 blocknr;
599         u64 gen;
600         u64 search_start = *last_ret;
601         u64 last_block = 0;
602         u64 other;
603         u32 parent_nritems;
604         int end_slot;
605         int i;
606         int err = 0;
607         int parent_level;
608         int uptodate;
609         u32 blocksize;
610         int progress_passed = 0;
611         struct btrfs_disk_key disk_key;
612
613         parent_level = btrfs_header_level(parent);
614         if (cache_only && parent_level != 1)
615                 return 0;
616
617         if (trans->transaction != root->fs_info->running_transaction)
618                 WARN_ON(1);
619         if (trans->transid != root->fs_info->generation)
620                 WARN_ON(1);
621
622         parent_nritems = btrfs_header_nritems(parent);
623         blocksize = btrfs_level_size(root, parent_level - 1);
624         end_slot = parent_nritems;
625
626         if (parent_nritems == 1)
627                 return 0;
628
629         btrfs_set_lock_blocking(parent);
630
631         for (i = start_slot; i < end_slot; i++) {
632                 int close = 1;
633
634                 if (!parent->map_token) {
635                         map_extent_buffer(parent,
636                                         btrfs_node_key_ptr_offset(i),
637                                         sizeof(struct btrfs_key_ptr),
638                                         &parent->map_token, &parent->kaddr,
639                                         &parent->map_start, &parent->map_len,
640                                         KM_USER1);
641                 }
642                 btrfs_node_key(parent, &disk_key, i);
643                 if (!progress_passed && comp_keys(&disk_key, progress) < 0)
644                         continue;
645
646                 progress_passed = 1;
647                 blocknr = btrfs_node_blockptr(parent, i);
648                 gen = btrfs_node_ptr_generation(parent, i);
649                 if (last_block == 0)
650                         last_block = blocknr;
651
652                 if (i > 0) {
653                         other = btrfs_node_blockptr(parent, i - 1);
654                         close = close_blocks(blocknr, other, blocksize);
655                 }
656                 if (!close && i < end_slot - 2) {
657                         other = btrfs_node_blockptr(parent, i + 1);
658                         close = close_blocks(blocknr, other, blocksize);
659                 }
660                 if (close) {
661                         last_block = blocknr;
662                         continue;
663                 }
664                 if (parent->map_token) {
665                         unmap_extent_buffer(parent, parent->map_token,
666                                             KM_USER1);
667                         parent->map_token = NULL;
668                 }
669
670                 cur = btrfs_find_tree_block(root, blocknr, blocksize);
671                 if (cur)
672                         uptodate = btrfs_buffer_uptodate(cur, gen);
673                 else
674                         uptodate = 0;
675                 if (!cur || !uptodate) {
676                         if (cache_only) {
677                                 free_extent_buffer(cur);
678                                 continue;
679                         }
680                         if (!cur) {
681                                 cur = read_tree_block(root, blocknr,
682                                                          blocksize, gen);
683                         } else if (!uptodate) {
684                                 btrfs_read_buffer(cur, gen);
685                         }
686                 }
687                 if (search_start == 0)
688                         search_start = last_block;
689
690                 btrfs_tree_lock(cur);
691                 btrfs_set_lock_blocking(cur);
692                 err = __btrfs_cow_block(trans, root, cur, parent, i,
693                                         &cur, search_start,
694                                         min(16 * blocksize,
695                                             (end_slot - i) * blocksize));
696                 if (err) {
697                         btrfs_tree_unlock(cur);
698                         free_extent_buffer(cur);
699                         break;
700                 }
701                 search_start = cur->start;
702                 last_block = cur->start;
703                 *last_ret = search_start;
704                 btrfs_tree_unlock(cur);
705                 free_extent_buffer(cur);
706         }
707         if (parent->map_token) {
708                 unmap_extent_buffer(parent, parent->map_token,
709                                     KM_USER1);
710                 parent->map_token = NULL;
711         }
712         return err;
713 }
714
715 /*
716  * The leaf data grows from end-to-front in the node.
717  * this returns the address of the start of the last item,
718  * which is the stop of the leaf data stack
719  */
720 static inline unsigned int leaf_data_end(struct btrfs_root *root,
721                                          struct extent_buffer *leaf)
722 {
723         u32 nr = btrfs_header_nritems(leaf);
724         if (nr == 0)
725                 return BTRFS_LEAF_DATA_SIZE(root);
726         return btrfs_item_offset_nr(leaf, nr - 1);
727 }
728
729 /*
730  * extra debugging checks to make sure all the items in a key are
731  * well formed and in the proper order
732  */
733 static int check_node(struct btrfs_root *root, struct btrfs_path *path,
734                       int level)
735 {
736         struct extent_buffer *parent = NULL;
737         struct extent_buffer *node = path->nodes[level];
738         struct btrfs_disk_key parent_key;
739         struct btrfs_disk_key node_key;
740         int parent_slot;
741         int slot;
742         struct btrfs_key cpukey;
743         u32 nritems = btrfs_header_nritems(node);
744
745         if (path->nodes[level + 1])
746                 parent = path->nodes[level + 1];
747
748         slot = path->slots[level];
749         BUG_ON(nritems == 0);
750         if (parent) {
751                 parent_slot = path->slots[level + 1];
752                 btrfs_node_key(parent, &parent_key, parent_slot);
753                 btrfs_node_key(node, &node_key, 0);
754                 BUG_ON(memcmp(&parent_key, &node_key,
755                               sizeof(struct btrfs_disk_key)));
756                 BUG_ON(btrfs_node_blockptr(parent, parent_slot) !=
757                        btrfs_header_bytenr(node));
758         }
759         BUG_ON(nritems > BTRFS_NODEPTRS_PER_BLOCK(root));
760         if (slot != 0) {
761                 btrfs_node_key_to_cpu(node, &cpukey, slot - 1);
762                 btrfs_node_key(node, &node_key, slot);
763                 BUG_ON(comp_keys(&node_key, &cpukey) <= 0);
764         }
765         if (slot < nritems - 1) {
766                 btrfs_node_key_to_cpu(node, &cpukey, slot + 1);
767                 btrfs_node_key(node, &node_key, slot);
768                 BUG_ON(comp_keys(&node_key, &cpukey) >= 0);
769         }
770         return 0;
771 }
772
773 /*
774  * extra checking to make sure all the items in a leaf are
775  * well formed and in the proper order
776  */
777 static int check_leaf(struct btrfs_root *root, struct btrfs_path *path,
778                       int level)
779 {
780         struct extent_buffer *leaf = path->nodes[level];
781         struct extent_buffer *parent = NULL;
782         int parent_slot;
783         struct btrfs_key cpukey;
784         struct btrfs_disk_key parent_key;
785         struct btrfs_disk_key leaf_key;
786         int slot = path->slots[0];
787
788         u32 nritems = btrfs_header_nritems(leaf);
789
790         if (path->nodes[level + 1])
791                 parent = path->nodes[level + 1];
792
793         if (nritems == 0)
794                 return 0;
795
796         if (parent) {
797                 parent_slot = path->slots[level + 1];
798                 btrfs_node_key(parent, &parent_key, parent_slot);
799                 btrfs_item_key(leaf, &leaf_key, 0);
800
801                 BUG_ON(memcmp(&parent_key, &leaf_key,
802                        sizeof(struct btrfs_disk_key)));
803                 BUG_ON(btrfs_node_blockptr(parent, parent_slot) !=
804                        btrfs_header_bytenr(leaf));
805         }
806         if (slot != 0 && slot < nritems - 1) {
807                 btrfs_item_key(leaf, &leaf_key, slot);
808                 btrfs_item_key_to_cpu(leaf, &cpukey, slot - 1);
809                 if (comp_keys(&leaf_key, &cpukey) <= 0) {
810                         btrfs_print_leaf(root, leaf);
811                         printk(KERN_CRIT "slot %d offset bad key\n", slot);
812                         BUG_ON(1);
813                 }
814                 if (btrfs_item_offset_nr(leaf, slot - 1) !=
815                        btrfs_item_end_nr(leaf, slot)) {
816                         btrfs_print_leaf(root, leaf);
817                         printk(KERN_CRIT "slot %d offset bad\n", slot);
818                         BUG_ON(1);
819                 }
820         }
821         if (slot < nritems - 1) {
822                 btrfs_item_key(leaf, &leaf_key, slot);
823                 btrfs_item_key_to_cpu(leaf, &cpukey, slot + 1);
824                 BUG_ON(comp_keys(&leaf_key, &cpukey) >= 0);
825                 if (btrfs_item_offset_nr(leaf, slot) !=
826                         btrfs_item_end_nr(leaf, slot + 1)) {
827                         btrfs_print_leaf(root, leaf);
828                         printk(KERN_CRIT "slot %d offset bad\n", slot);
829                         BUG_ON(1);
830                 }
831         }
832         BUG_ON(btrfs_item_offset_nr(leaf, 0) +
833                btrfs_item_size_nr(leaf, 0) != BTRFS_LEAF_DATA_SIZE(root));
834         return 0;
835 }
836
837 static noinline int check_block(struct btrfs_root *root,
838                                 struct btrfs_path *path, int level)
839 {
840         return 0;
841         if (level == 0)
842                 return check_leaf(root, path, level);
843         return check_node(root, path, level);
844 }
845
846 /*
847  * search for key in the extent_buffer.  The items start at offset p,
848  * and they are item_size apart.  There are 'max' items in p.
849  *
850  * the slot in the array is returned via slot, and it points to
851  * the place where you would insert key if it is not found in
852  * the array.
853  *
854  * slot may point to max if the key is bigger than all of the keys
855  */
856 static noinline int generic_bin_search(struct extent_buffer *eb,
857                                        unsigned long p,
858                                        int item_size, struct btrfs_key *key,
859                                        int max, int *slot)
860 {
861         int low = 0;
862         int high = max;
863         int mid;
864         int ret;
865         struct btrfs_disk_key *tmp = NULL;
866         struct btrfs_disk_key unaligned;
867         unsigned long offset;
868         char *map_token = NULL;
869         char *kaddr = NULL;
870         unsigned long map_start = 0;
871         unsigned long map_len = 0;
872         int err;
873
874         while (low < high) {
875                 mid = (low + high) / 2;
876                 offset = p + mid * item_size;
877
878                 if (!map_token || offset < map_start ||
879                     (offset + sizeof(struct btrfs_disk_key)) >
880                     map_start + map_len) {
881                         if (map_token) {
882                                 unmap_extent_buffer(eb, map_token, KM_USER0);
883                                 map_token = NULL;
884                         }
885
886                         err = map_private_extent_buffer(eb, offset,
887                                                 sizeof(struct btrfs_disk_key),
888                                                 &map_token, &kaddr,
889                                                 &map_start, &map_len, KM_USER0);
890
891                         if (!err) {
892                                 tmp = (struct btrfs_disk_key *)(kaddr + offset -
893                                                         map_start);
894                         } else {
895                                 read_extent_buffer(eb, &unaligned,
896                                                    offset, sizeof(unaligned));
897                                 tmp = &unaligned;
898                         }
899
900                 } else {
901                         tmp = (struct btrfs_disk_key *)(kaddr + offset -
902                                                         map_start);
903                 }
904                 ret = comp_keys(tmp, key);
905
906                 if (ret < 0)
907                         low = mid + 1;
908                 else if (ret > 0)
909                         high = mid;
910                 else {
911                         *slot = mid;
912                         if (map_token)
913                                 unmap_extent_buffer(eb, map_token, KM_USER0);
914                         return 0;
915                 }
916         }
917         *slot = low;
918         if (map_token)
919                 unmap_extent_buffer(eb, map_token, KM_USER0);
920         return 1;
921 }
922
923 /*
924  * simple bin_search frontend that does the right thing for
925  * leaves vs nodes
926  */
927 static int bin_search(struct extent_buffer *eb, struct btrfs_key *key,
928                       int level, int *slot)
929 {
930         if (level == 0) {
931                 return generic_bin_search(eb,
932                                           offsetof(struct btrfs_leaf, items),
933                                           sizeof(struct btrfs_item),
934                                           key, btrfs_header_nritems(eb),
935                                           slot);
936         } else {
937                 return generic_bin_search(eb,
938                                           offsetof(struct btrfs_node, ptrs),
939                                           sizeof(struct btrfs_key_ptr),
940                                           key, btrfs_header_nritems(eb),
941                                           slot);
942         }
943         return -1;
944 }
945
946 int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key,
947                      int level, int *slot)
948 {
949         return bin_search(eb, key, level, slot);
950 }
951
952 /* given a node and slot number, this reads the blocks it points to.  The
953  * extent buffer is returned with a reference taken (but unlocked).
954  * NULL is returned on error.
955  */
956 static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root,
957                                    struct extent_buffer *parent, int slot)
958 {
959         int level = btrfs_header_level(parent);
960         if (slot < 0)
961                 return NULL;
962         if (slot >= btrfs_header_nritems(parent))
963                 return NULL;
964
965         BUG_ON(level == 0);
966
967         return read_tree_block(root, btrfs_node_blockptr(parent, slot),
968                        btrfs_level_size(root, level - 1),
969                        btrfs_node_ptr_generation(parent, slot));
970 }
971
972 /*
973  * node level balancing, used to make sure nodes are in proper order for
974  * item deletion.  We balance from the top down, so we have to make sure
975  * that a deletion won't leave an node completely empty later on.
976  */
977 static noinline int balance_level(struct btrfs_trans_handle *trans,
978                          struct btrfs_root *root,
979                          struct btrfs_path *path, int level)
980 {
981         struct extent_buffer *right = NULL;
982         struct extent_buffer *mid;
983         struct extent_buffer *left = NULL;
984         struct extent_buffer *parent = NULL;
985         int ret = 0;
986         int wret;
987         int pslot;
988         int orig_slot = path->slots[level];
989         int err_on_enospc = 0;
990         u64 orig_ptr;
991
992         if (level == 0)
993                 return 0;
994
995         mid = path->nodes[level];
996
997         WARN_ON(!path->locks[level]);
998         WARN_ON(btrfs_header_generation(mid) != trans->transid);
999
1000         orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1001
1002         if (level < BTRFS_MAX_LEVEL - 1)
1003                 parent = path->nodes[level + 1];
1004         pslot = path->slots[level + 1];
1005
1006         /*
1007          * deal with the case where there is only one pointer in the root
1008          * by promoting the node below to a root
1009          */
1010         if (!parent) {
1011                 struct extent_buffer *child;
1012
1013                 if (btrfs_header_nritems(mid) != 1)
1014                         return 0;
1015
1016                 /* promote the child to a root */
1017                 child = read_node_slot(root, mid, 0);
1018                 BUG_ON(!child);
1019                 btrfs_tree_lock(child);
1020                 btrfs_set_lock_blocking(child);
1021                 ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
1022                 BUG_ON(ret);
1023
1024                 spin_lock(&root->node_lock);
1025                 root->node = child;
1026                 spin_unlock(&root->node_lock);
1027
1028                 add_root_to_dirty_list(root);
1029                 btrfs_tree_unlock(child);
1030
1031                 path->locks[level] = 0;
1032                 path->nodes[level] = NULL;
1033                 clean_tree_block(trans, root, mid);
1034                 btrfs_tree_unlock(mid);
1035                 /* once for the path */
1036                 free_extent_buffer(mid);
1037                 ret = btrfs_free_tree_block(trans, root, mid->start, mid->len,
1038                                             0, root->root_key.objectid, level);
1039                 /* once for the root ptr */
1040                 free_extent_buffer(mid);
1041                 return ret;
1042         }
1043         if (btrfs_header_nritems(mid) >
1044             BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
1045                 return 0;
1046
1047         if (btrfs_header_nritems(mid) < 2)
1048                 err_on_enospc = 1;
1049
1050         left = read_node_slot(root, parent, pslot - 1);
1051         if (left) {
1052                 btrfs_tree_lock(left);
1053                 btrfs_set_lock_blocking(left);
1054                 wret = btrfs_cow_block(trans, root, left,
1055                                        parent, pslot - 1, &left);
1056                 if (wret) {
1057                         ret = wret;
1058                         goto enospc;
1059                 }
1060         }
1061         right = read_node_slot(root, parent, pslot + 1);
1062         if (right) {
1063                 btrfs_tree_lock(right);
1064                 btrfs_set_lock_blocking(right);
1065                 wret = btrfs_cow_block(trans, root, right,
1066                                        parent, pslot + 1, &right);
1067                 if (wret) {
1068                         ret = wret;
1069                         goto enospc;
1070                 }
1071         }
1072
1073         /* first, try to make some room in the middle buffer */
1074         if (left) {
1075                 orig_slot += btrfs_header_nritems(left);
1076                 wret = push_node_left(trans, root, left, mid, 1);
1077                 if (wret < 0)
1078                         ret = wret;
1079                 if (btrfs_header_nritems(mid) < 2)
1080                         err_on_enospc = 1;
1081         }
1082
1083         /*
1084          * then try to empty the right most buffer into the middle
1085          */
1086         if (right) {
1087                 wret = push_node_left(trans, root, mid, right, 1);
1088                 if (wret < 0 && wret != -ENOSPC)
1089                         ret = wret;
1090                 if (btrfs_header_nritems(right) == 0) {
1091                         u64 bytenr = right->start;
1092                         u32 blocksize = right->len;
1093
1094                         clean_tree_block(trans, root, right);
1095                         btrfs_tree_unlock(right);
1096                         free_extent_buffer(right);
1097                         right = NULL;
1098                         wret = del_ptr(trans, root, path, level + 1, pslot +
1099                                        1);
1100                         if (wret)
1101                                 ret = wret;
1102                         wret = btrfs_free_tree_block(trans, root,
1103                                                      bytenr, blocksize, 0,
1104                                                      root->root_key.objectid,
1105                                                      level);
1106                         if (wret)
1107                                 ret = wret;
1108                 } else {
1109                         struct btrfs_disk_key right_key;
1110                         btrfs_node_key(right, &right_key, 0);
1111                         btrfs_set_node_key(parent, &right_key, pslot + 1);
1112                         btrfs_mark_buffer_dirty(parent);
1113                 }
1114         }
1115         if (btrfs_header_nritems(mid) == 1) {
1116                 /*
1117                  * we're not allowed to leave a node with one item in the
1118                  * tree during a delete.  A deletion from lower in the tree
1119                  * could try to delete the only pointer in this node.
1120                  * So, pull some keys from the left.
1121                  * There has to be a left pointer at this point because
1122                  * otherwise we would have pulled some pointers from the
1123                  * right
1124                  */
1125                 BUG_ON(!left);
1126                 wret = balance_node_right(trans, root, mid, left);
1127                 if (wret < 0) {
1128                         ret = wret;
1129                         goto enospc;
1130                 }
1131                 if (wret == 1) {
1132                         wret = push_node_left(trans, root, left, mid, 1);
1133                         if (wret < 0)
1134                                 ret = wret;
1135                 }
1136                 BUG_ON(wret == 1);
1137         }
1138         if (btrfs_header_nritems(mid) == 0) {
1139                 /* we've managed to empty the middle node, drop it */
1140                 u64 bytenr = mid->start;
1141                 u32 blocksize = mid->len;
1142
1143                 clean_tree_block(trans, root, mid);
1144                 btrfs_tree_unlock(mid);
1145                 free_extent_buffer(mid);
1146                 mid = NULL;
1147                 wret = del_ptr(trans, root, path, level + 1, pslot);
1148                 if (wret)
1149                         ret = wret;
1150                 wret = btrfs_free_tree_block(trans, root, bytenr, blocksize,
1151                                          0, root->root_key.objectid, level);
1152                 if (wret)
1153                         ret = wret;
1154         } else {
1155                 /* update the parent key to reflect our changes */
1156                 struct btrfs_disk_key mid_key;
1157                 btrfs_node_key(mid, &mid_key, 0);
1158                 btrfs_set_node_key(parent, &mid_key, pslot);
1159                 btrfs_mark_buffer_dirty(parent);
1160         }
1161
1162         /* update the path */
1163         if (left) {
1164                 if (btrfs_header_nritems(left) > orig_slot) {
1165                         extent_buffer_get(left);
1166                         /* left was locked after cow */
1167                         path->nodes[level] = left;
1168                         path->slots[level + 1] -= 1;
1169                         path->slots[level] = orig_slot;
1170                         if (mid) {
1171                                 btrfs_tree_unlock(mid);
1172                                 free_extent_buffer(mid);
1173                         }
1174                 } else {
1175                         orig_slot -= btrfs_header_nritems(left);
1176                         path->slots[level] = orig_slot;
1177                 }
1178         }
1179         /* double check we haven't messed things up */
1180         check_block(root, path, level);
1181         if (orig_ptr !=
1182             btrfs_node_blockptr(path->nodes[level], path->slots[level]))
1183                 BUG();
1184 enospc:
1185         if (right) {
1186                 btrfs_tree_unlock(right);
1187                 free_extent_buffer(right);
1188         }
1189         if (left) {
1190                 if (path->nodes[level] != left)
1191                         btrfs_tree_unlock(left);
1192                 free_extent_buffer(left);
1193         }
1194         return ret;
1195 }
1196
1197 /* Node balancing for insertion.  Here we only split or push nodes around
1198  * when they are completely full.  This is also done top down, so we
1199  * have to be pessimistic.
1200  */
1201 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
1202                                           struct btrfs_root *root,
1203                                           struct btrfs_path *path, int level)
1204 {
1205         struct extent_buffer *right = NULL;
1206         struct extent_buffer *mid;
1207         struct extent_buffer *left = NULL;
1208         struct extent_buffer *parent = NULL;
1209         int ret = 0;
1210         int wret;
1211         int pslot;
1212         int orig_slot = path->slots[level];
1213         u64 orig_ptr;
1214
1215         if (level == 0)
1216                 return 1;
1217
1218         mid = path->nodes[level];
1219         WARN_ON(btrfs_header_generation(mid) != trans->transid);
1220         orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1221
1222         if (level < BTRFS_MAX_LEVEL - 1)
1223                 parent = path->nodes[level + 1];
1224         pslot = path->slots[level + 1];
1225
1226         if (!parent)
1227                 return 1;
1228
1229         left = read_node_slot(root, parent, pslot - 1);
1230
1231         /* first, try to make some room in the middle buffer */
1232         if (left) {
1233                 u32 left_nr;
1234
1235                 btrfs_tree_lock(left);
1236                 btrfs_set_lock_blocking(left);
1237
1238                 left_nr = btrfs_header_nritems(left);
1239                 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
1240                         wret = 1;
1241                 } else {
1242                         ret = btrfs_cow_block(trans, root, left, parent,
1243                                               pslot - 1, &left);
1244                         if (ret)
1245                                 wret = 1;
1246                         else {
1247                                 wret = push_node_left(trans, root,
1248                                                       left, mid, 0);
1249                         }
1250                 }
1251                 if (wret < 0)
1252                         ret = wret;
1253                 if (wret == 0) {
1254                         struct btrfs_disk_key disk_key;
1255                         orig_slot += left_nr;
1256                         btrfs_node_key(mid, &disk_key, 0);
1257                         btrfs_set_node_key(parent, &disk_key, pslot);
1258                         btrfs_mark_buffer_dirty(parent);
1259                         if (btrfs_header_nritems(left) > orig_slot) {
1260                                 path->nodes[level] = left;
1261                                 path->slots[level + 1] -= 1;
1262                                 path->slots[level] = orig_slot;
1263                                 btrfs_tree_unlock(mid);
1264                                 free_extent_buffer(mid);
1265                         } else {
1266                                 orig_slot -=
1267                                         btrfs_header_nritems(left);
1268                                 path->slots[level] = orig_slot;
1269                                 btrfs_tree_unlock(left);
1270                                 free_extent_buffer(left);
1271                         }
1272                         return 0;
1273                 }
1274                 btrfs_tree_unlock(left);
1275                 free_extent_buffer(left);
1276         }
1277         right = read_node_slot(root, parent, pslot + 1);
1278
1279         /*
1280          * then try to empty the right most buffer into the middle
1281          */
1282         if (right) {
1283                 u32 right_nr;
1284
1285                 btrfs_tree_lock(right);
1286                 btrfs_set_lock_blocking(right);
1287
1288                 right_nr = btrfs_header_nritems(right);
1289                 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
1290                         wret = 1;
1291                 } else {
1292                         ret = btrfs_cow_block(trans, root, right,
1293                                               parent, pslot + 1,
1294                                               &right);
1295                         if (ret)
1296                                 wret = 1;
1297                         else {
1298                                 wret = balance_node_right(trans, root,
1299                                                           right, mid);
1300                         }
1301                 }
1302                 if (wret < 0)
1303                         ret = wret;
1304                 if (wret == 0) {
1305                         struct btrfs_disk_key disk_key;
1306
1307                         btrfs_node_key(right, &disk_key, 0);
1308                         btrfs_set_node_key(parent, &disk_key, pslot + 1);
1309                         btrfs_mark_buffer_dirty(parent);
1310
1311                         if (btrfs_header_nritems(mid) <= orig_slot) {
1312                                 path->nodes[level] = right;
1313                                 path->slots[level + 1] += 1;
1314                                 path->slots[level] = orig_slot -
1315                                         btrfs_header_nritems(mid);
1316                                 btrfs_tree_unlock(mid);
1317                                 free_extent_buffer(mid);
1318                         } else {
1319                                 btrfs_tree_unlock(right);
1320                                 free_extent_buffer(right);
1321                         }
1322                         return 0;
1323                 }
1324                 btrfs_tree_unlock(right);
1325                 free_extent_buffer(right);
1326         }
1327         return 1;
1328 }
1329
1330 /*
1331  * readahead one full node of leaves, finding things that are close
1332  * to the block in 'slot', and triggering ra on them.
1333  */
1334 static void reada_for_search(struct btrfs_root *root,
1335                              struct btrfs_path *path,
1336                              int level, int slot, u64 objectid)
1337 {
1338         struct extent_buffer *node;
1339         struct btrfs_disk_key disk_key;
1340         u32 nritems;
1341         u64 search;
1342         u64 target;
1343         u64 nread = 0;
1344         int direction = path->reada;
1345         struct extent_buffer *eb;
1346         u32 nr;
1347         u32 blocksize;
1348         u32 nscan = 0;
1349
1350         if (level != 1)
1351                 return;
1352
1353         if (!path->nodes[level])
1354                 return;
1355
1356         node = path->nodes[level];
1357
1358         search = btrfs_node_blockptr(node, slot);
1359         blocksize = btrfs_level_size(root, level - 1);
1360         eb = btrfs_find_tree_block(root, search, blocksize);
1361         if (eb) {
1362                 free_extent_buffer(eb);
1363                 return;
1364         }
1365
1366         target = search;
1367
1368         nritems = btrfs_header_nritems(node);
1369         nr = slot;
1370         while (1) {
1371                 if (direction < 0) {
1372                         if (nr == 0)
1373                                 break;
1374                         nr--;
1375                 } else if (direction > 0) {
1376                         nr++;
1377                         if (nr >= nritems)
1378                                 break;
1379                 }
1380                 if (path->reada < 0 && objectid) {
1381                         btrfs_node_key(node, &disk_key, nr);
1382                         if (btrfs_disk_key_objectid(&disk_key) != objectid)
1383                                 break;
1384                 }
1385                 search = btrfs_node_blockptr(node, nr);
1386                 if ((search <= target && target - search <= 65536) ||
1387                     (search > target && search - target <= 65536)) {
1388                         readahead_tree_block(root, search, blocksize,
1389                                      btrfs_node_ptr_generation(node, nr));
1390                         nread += blocksize;
1391                 }
1392                 nscan++;
1393                 if ((nread > 65536 || nscan > 32))
1394                         break;
1395         }
1396 }
1397
1398 /*
1399  * returns -EAGAIN if it had to drop the path, or zero if everything was in
1400  * cache
1401  */
1402 static noinline int reada_for_balance(struct btrfs_root *root,
1403                                       struct btrfs_path *path, int level)
1404 {
1405         int slot;
1406         int nritems;
1407         struct extent_buffer *parent;
1408         struct extent_buffer *eb;
1409         u64 gen;
1410         u64 block1 = 0;
1411         u64 block2 = 0;
1412         int ret = 0;
1413         int blocksize;
1414
1415         parent = path->nodes[level + 1];
1416         if (!parent)
1417                 return 0;
1418
1419         nritems = btrfs_header_nritems(parent);
1420         slot = path->slots[level + 1];
1421         blocksize = btrfs_level_size(root, level);
1422
1423         if (slot > 0) {
1424                 block1 = btrfs_node_blockptr(parent, slot - 1);
1425                 gen = btrfs_node_ptr_generation(parent, slot - 1);
1426                 eb = btrfs_find_tree_block(root, block1, blocksize);
1427                 if (eb && btrfs_buffer_uptodate(eb, gen))
1428                         block1 = 0;
1429                 free_extent_buffer(eb);
1430         }
1431         if (slot + 1 < nritems) {
1432                 block2 = btrfs_node_blockptr(parent, slot + 1);
1433                 gen = btrfs_node_ptr_generation(parent, slot + 1);
1434                 eb = btrfs_find_tree_block(root, block2, blocksize);
1435                 if (eb && btrfs_buffer_uptodate(eb, gen))
1436                         block2 = 0;
1437                 free_extent_buffer(eb);
1438         }
1439         if (block1 || block2) {
1440                 ret = -EAGAIN;
1441
1442                 /* release the whole path */
1443                 btrfs_release_path(root, path);
1444
1445                 /* read the blocks */
1446                 if (block1)
1447                         readahead_tree_block(root, block1, blocksize, 0);
1448                 if (block2)
1449                         readahead_tree_block(root, block2, blocksize, 0);
1450
1451                 if (block1) {
1452                         eb = read_tree_block(root, block1, blocksize, 0);
1453                         free_extent_buffer(eb);
1454                 }
1455                 if (block2) {
1456                         eb = read_tree_block(root, block2, blocksize, 0);
1457                         free_extent_buffer(eb);
1458                 }
1459         }
1460         return ret;
1461 }
1462
1463
1464 /*
1465  * when we walk down the tree, it is usually safe to unlock the higher layers
1466  * in the tree.  The exceptions are when our path goes through slot 0, because
1467  * operations on the tree might require changing key pointers higher up in the
1468  * tree.
1469  *
1470  * callers might also have set path->keep_locks, which tells this code to keep
1471  * the lock if the path points to the last slot in the block.  This is part of
1472  * walking through the tree, and selecting the next slot in the higher block.
1473  *
1474  * lowest_unlock sets the lowest level in the tree we're allowed to unlock.  so
1475  * if lowest_unlock is 1, level 0 won't be unlocked
1476  */
1477 static noinline void unlock_up(struct btrfs_path *path, int level,
1478                                int lowest_unlock)
1479 {
1480         int i;
1481         int skip_level = level;
1482         int no_skips = 0;
1483         struct extent_buffer *t;
1484
1485         for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1486                 if (!path->nodes[i])
1487                         break;
1488                 if (!path->locks[i])
1489                         break;
1490                 if (!no_skips && path->slots[i] == 0) {
1491                         skip_level = i + 1;
1492                         continue;
1493                 }
1494                 if (!no_skips && path->keep_locks) {
1495                         u32 nritems;
1496                         t = path->nodes[i];
1497                         nritems = btrfs_header_nritems(t);
1498                         if (nritems < 1 || path->slots[i] >= nritems - 1) {
1499                                 skip_level = i + 1;
1500                                 continue;
1501                         }
1502                 }
1503                 if (skip_level < i && i >= lowest_unlock)
1504                         no_skips = 1;
1505
1506                 t = path->nodes[i];
1507                 if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
1508                         btrfs_tree_unlock(t);
1509                         path->locks[i] = 0;
1510                 }
1511         }
1512 }
1513
1514 /*
1515  * This releases any locks held in the path starting at level and
1516  * going all the way up to the root.
1517  *
1518  * btrfs_search_slot will keep the lock held on higher nodes in a few
1519  * corner cases, such as COW of the block at slot zero in the node.  This
1520  * ignores those rules, and it should only be called when there are no
1521  * more updates to be done higher up in the tree.
1522  */
1523 noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
1524 {
1525         int i;
1526
1527         if (path->keep_locks)
1528                 return;
1529
1530         for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1531                 if (!path->nodes[i])
1532                         continue;
1533                 if (!path->locks[i])
1534                         continue;
1535                 btrfs_tree_unlock(path->nodes[i]);
1536                 path->locks[i] = 0;
1537         }
1538 }
1539
1540 /*
1541  * helper function for btrfs_search_slot.  The goal is to find a block
1542  * in cache without setting the path to blocking.  If we find the block
1543  * we return zero and the path is unchanged.
1544  *
1545  * If we can't find the block, we set the path blocking and do some
1546  * reada.  -EAGAIN is returned and the search must be repeated.
1547  */
1548 static int
1549 read_block_for_search(struct btrfs_trans_handle *trans,
1550                        struct btrfs_root *root, struct btrfs_path *p,
1551                        struct extent_buffer **eb_ret, int level, int slot,
1552                        struct btrfs_key *key)
1553 {
1554         u64 blocknr;
1555         u64 gen;
1556         u32 blocksize;
1557         struct extent_buffer *b = *eb_ret;
1558         struct extent_buffer *tmp;
1559         int ret;
1560
1561         blocknr = btrfs_node_blockptr(b, slot);
1562         gen = btrfs_node_ptr_generation(b, slot);
1563         blocksize = btrfs_level_size(root, level - 1);
1564
1565         tmp = btrfs_find_tree_block(root, blocknr, blocksize);
1566         if (tmp && btrfs_buffer_uptodate(tmp, gen)) {
1567                 /*
1568                  * we found an up to date block without sleeping, return
1569                  * right away
1570                  */
1571                 *eb_ret = tmp;
1572                 return 0;
1573         }
1574
1575         /*
1576          * reduce lock contention at high levels
1577          * of the btree by dropping locks before
1578          * we read.  Don't release the lock on the current
1579          * level because we need to walk this node to figure
1580          * out which blocks to read.
1581          */
1582         btrfs_unlock_up_safe(p, level + 1);
1583         btrfs_set_path_blocking(p);
1584
1585         if (tmp)
1586                 free_extent_buffer(tmp);
1587         if (p->reada)
1588                 reada_for_search(root, p, level, slot, key->objectid);
1589
1590         btrfs_release_path(NULL, p);
1591
1592         ret = -EAGAIN;
1593         tmp = read_tree_block(root, blocknr, blocksize, gen);
1594         if (tmp) {
1595                 /*
1596                  * If the read above didn't mark this buffer up to date,
1597                  * it will never end up being up to date.  Set ret to EIO now
1598                  * and give up so that our caller doesn't loop forever
1599                  * on our EAGAINs.
1600                  */
1601                 if (!btrfs_buffer_uptodate(tmp, 0))
1602                         ret = -EIO;
1603                 free_extent_buffer(tmp);
1604         }
1605         return ret;
1606 }
1607
1608 /*
1609  * helper function for btrfs_search_slot.  This does all of the checks
1610  * for node-level blocks and does any balancing required based on
1611  * the ins_len.
1612  *
1613  * If no extra work was required, zero is returned.  If we had to
1614  * drop the path, -EAGAIN is returned and btrfs_search_slot must
1615  * start over
1616  */
1617 static int
1618 setup_nodes_for_search(struct btrfs_trans_handle *trans,
1619                        struct btrfs_root *root, struct btrfs_path *p,
1620                        struct extent_buffer *b, int level, int ins_len)
1621 {
1622         int ret;
1623         if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
1624             BTRFS_NODEPTRS_PER_BLOCK(root) - 3) {
1625                 int sret;
1626
1627                 sret = reada_for_balance(root, p, level);
1628                 if (sret)
1629                         goto again;
1630
1631                 btrfs_set_path_blocking(p);
1632                 sret = split_node(trans, root, p, level);
1633                 btrfs_clear_path_blocking(p, NULL);
1634
1635                 BUG_ON(sret > 0);
1636                 if (sret) {
1637                         ret = sret;
1638                         goto done;
1639                 }
1640                 b = p->nodes[level];
1641         } else if (ins_len < 0 && btrfs_header_nritems(b) <
1642                    BTRFS_NODEPTRS_PER_BLOCK(root) / 2) {
1643                 int sret;
1644
1645                 sret = reada_for_balance(root, p, level);
1646                 if (sret)
1647                         goto again;
1648
1649                 btrfs_set_path_blocking(p);
1650                 sret = balance_level(trans, root, p, level);
1651                 btrfs_clear_path_blocking(p, NULL);
1652
1653                 if (sret) {
1654                         ret = sret;
1655                         goto done;
1656                 }
1657                 b = p->nodes[level];
1658                 if (!b) {
1659                         btrfs_release_path(NULL, p);
1660                         goto again;
1661                 }
1662                 BUG_ON(btrfs_header_nritems(b) == 1);
1663         }
1664         return 0;
1665
1666 again:
1667         ret = -EAGAIN;
1668 done:
1669         return ret;
1670 }
1671
1672 /*
1673  * look for key in the tree.  path is filled in with nodes along the way
1674  * if key is found, we return zero and you can find the item in the leaf
1675  * level of the path (level 0)
1676  *
1677  * If the key isn't found, the path points to the slot where it should
1678  * be inserted, and 1 is returned.  If there are other errors during the
1679  * search a negative error number is returned.
1680  *
1681  * if ins_len > 0, nodes and leaves will be split as we walk down the
1682  * tree.  if ins_len < 0, nodes will be merged as we walk down the tree (if
1683  * possible)
1684  */
1685 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
1686                       *root, struct btrfs_key *key, struct btrfs_path *p, int
1687                       ins_len, int cow)
1688 {
1689         struct extent_buffer *b;
1690         int slot;
1691         int ret;
1692         int err;
1693         int level;
1694         int lowest_unlock = 1;
1695         u8 lowest_level = 0;
1696
1697         lowest_level = p->lowest_level;
1698         WARN_ON(lowest_level && ins_len > 0);
1699         WARN_ON(p->nodes[0] != NULL);
1700
1701         if (ins_len < 0)
1702                 lowest_unlock = 2;
1703
1704 again:
1705         if (p->search_commit_root) {
1706                 b = root->commit_root;
1707                 extent_buffer_get(b);
1708                 if (!p->skip_locking)
1709                         btrfs_tree_lock(b);
1710         } else {
1711                 if (p->skip_locking)
1712                         b = btrfs_root_node(root);
1713                 else
1714                         b = btrfs_lock_root_node(root);
1715         }
1716
1717         while (b) {
1718                 level = btrfs_header_level(b);
1719
1720                 /*
1721                  * setup the path here so we can release it under lock
1722                  * contention with the cow code
1723                  */
1724                 p->nodes[level] = b;
1725                 if (!p->skip_locking)
1726                         p->locks[level] = 1;
1727
1728                 if (cow) {
1729                         /*
1730                          * if we don't really need to cow this block
1731                          * then we don't want to set the path blocking,
1732                          * so we test it here
1733                          */
1734                         if (!should_cow_block(trans, root, b))
1735                                 goto cow_done;
1736
1737                         btrfs_set_path_blocking(p);
1738
1739                         err = btrfs_cow_block(trans, root, b,
1740                                               p->nodes[level + 1],
1741                                               p->slots[level + 1], &b);
1742                         if (err) {
1743                                 free_extent_buffer(b);
1744                                 ret = err;
1745                                 goto done;
1746                         }
1747                 }
1748 cow_done:
1749                 BUG_ON(!cow && ins_len);
1750                 if (level != btrfs_header_level(b))
1751                         WARN_ON(1);
1752                 level = btrfs_header_level(b);
1753
1754                 p->nodes[level] = b;
1755                 if (!p->skip_locking)
1756                         p->locks[level] = 1;
1757
1758                 btrfs_clear_path_blocking(p, NULL);
1759
1760                 /*
1761                  * we have a lock on b and as long as we aren't changing
1762                  * the tree, there is no way to for the items in b to change.
1763                  * It is safe to drop the lock on our parent before we
1764                  * go through the expensive btree search on b.
1765                  *
1766                  * If cow is true, then we might be changing slot zero,
1767                  * which may require changing the parent.  So, we can't
1768                  * drop the lock until after we know which slot we're
1769                  * operating on.
1770                  */
1771                 if (!cow)
1772                         btrfs_unlock_up_safe(p, level + 1);
1773
1774                 ret = check_block(root, p, level);
1775                 if (ret) {
1776                         ret = -1;
1777                         goto done;
1778                 }
1779
1780                 ret = bin_search(b, key, level, &slot);
1781
1782                 if (level != 0) {
1783                         int dec = 0;
1784                         if (ret && slot > 0) {
1785                                 dec = 1;
1786                                 slot -= 1;
1787                         }
1788                         p->slots[level] = slot;
1789                         err = setup_nodes_for_search(trans, root, p, b, level,
1790                                                      ins_len);
1791                         if (err == -EAGAIN)
1792                                 goto again;
1793                         if (err) {
1794                                 ret = err;
1795                                 goto done;
1796                         }
1797                         b = p->nodes[level];
1798                         slot = p->slots[level];
1799
1800                         unlock_up(p, level, lowest_unlock);
1801
1802                         if (level == lowest_level) {
1803                                 if (dec)
1804                                         p->slots[level]++;
1805                                 goto done;
1806                         }
1807
1808                         err = read_block_for_search(trans, root, p,
1809                                                     &b, level, slot, key);
1810                         if (err == -EAGAIN)
1811                                 goto again;
1812                         if (err) {
1813                                 ret = err;
1814                                 goto done;
1815                         }
1816
1817                         if (!p->skip_locking) {
1818                                 btrfs_clear_path_blocking(p, NULL);
1819                                 err = btrfs_try_spin_lock(b);
1820
1821                                 if (!err) {
1822                                         btrfs_set_path_blocking(p);
1823                                         btrfs_tree_lock(b);
1824                                         btrfs_clear_path_blocking(p, b);
1825                                 }
1826                         }
1827                 } else {
1828                         p->slots[level] = slot;
1829                         if (ins_len > 0 &&
1830                             btrfs_leaf_free_space(root, b) < ins_len) {
1831                                 btrfs_set_path_blocking(p);
1832                                 err = split_leaf(trans, root, key,
1833                                                  p, ins_len, ret == 0);
1834                                 btrfs_clear_path_blocking(p, NULL);
1835
1836                                 BUG_ON(err > 0);
1837                                 if (err) {
1838                                         ret = err;
1839                                         goto done;
1840                                 }
1841                         }
1842                         if (!p->search_for_split)
1843                                 unlock_up(p, level, lowest_unlock);
1844                         goto done;
1845                 }
1846         }
1847         ret = 1;
1848 done:
1849         /*
1850          * we don't really know what they plan on doing with the path
1851          * from here on, so for now just mark it as blocking
1852          */
1853         if (!p->leave_spinning)
1854                 btrfs_set_path_blocking(p);
1855         if (ret < 0)
1856                 btrfs_release_path(root, p);
1857         return ret;
1858 }
1859
1860 /*
1861  * adjust the pointers going up the tree, starting at level
1862  * making sure the right key of each node is points to 'key'.
1863  * This is used after shifting pointers to the left, so it stops
1864  * fixing up pointers when a given leaf/node is not in slot 0 of the
1865  * higher levels
1866  *
1867  * If this fails to write a tree block, it returns -1, but continues
1868  * fixing up the blocks in ram so the tree is consistent.
1869  */
1870 static int fixup_low_keys(struct btrfs_trans_handle *trans,
1871                           struct btrfs_root *root, struct btrfs_path *path,
1872                           struct btrfs_disk_key *key, int level)
1873 {
1874         int i;
1875         int ret = 0;
1876         struct extent_buffer *t;
1877
1878         for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1879                 int tslot = path->slots[i];
1880                 if (!path->nodes[i])
1881                         break;
1882                 t = path->nodes[i];
1883                 btrfs_set_node_key(t, key, tslot);
1884                 btrfs_mark_buffer_dirty(path->nodes[i]);
1885                 if (tslot != 0)
1886                         break;
1887         }
1888         return ret;
1889 }
1890
1891 /*
1892  * update item key.
1893  *
1894  * This function isn't completely safe. It's the caller's responsibility
1895  * that the new key won't break the order
1896  */
1897 int btrfs_set_item_key_safe(struct btrfs_trans_handle *trans,
1898                             struct btrfs_root *root, struct btrfs_path *path,
1899                             struct btrfs_key *new_key)
1900 {
1901         struct btrfs_disk_key disk_key;
1902         struct extent_buffer *eb;
1903         int slot;
1904
1905         eb = path->nodes[0];
1906         slot = path->slots[0];
1907         if (slot > 0) {
1908                 btrfs_item_key(eb, &disk_key, slot - 1);
1909                 if (comp_keys(&disk_key, new_key) >= 0)
1910                         return -1;
1911         }
1912         if (slot < btrfs_header_nritems(eb) - 1) {
1913                 btrfs_item_key(eb, &disk_key, slot + 1);
1914                 if (comp_keys(&disk_key, new_key) <= 0)
1915                         return -1;
1916         }
1917
1918         btrfs_cpu_key_to_disk(&disk_key, new_key);
1919         btrfs_set_item_key(eb, &disk_key, slot);
1920         btrfs_mark_buffer_dirty(eb);
1921         if (slot == 0)
1922                 fixup_low_keys(trans, root, path, &disk_key, 1);
1923         return 0;
1924 }
1925
1926 /*
1927  * try to push data from one node into the next node left in the
1928  * tree.
1929  *
1930  * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
1931  * error, and > 0 if there was no room in the left hand block.
1932  */
1933 static int push_node_left(struct btrfs_trans_handle *trans,
1934                           struct btrfs_root *root, struct extent_buffer *dst,
1935                           struct extent_buffer *src, int empty)
1936 {
1937         int push_items = 0;
1938         int src_nritems;
1939         int dst_nritems;
1940         int ret = 0;
1941
1942         src_nritems = btrfs_header_nritems(src);
1943         dst_nritems = btrfs_header_nritems(dst);
1944         push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
1945         WARN_ON(btrfs_header_generation(src) != trans->transid);
1946         WARN_ON(btrfs_header_generation(dst) != trans->transid);
1947
1948         if (!empty && src_nritems <= 8)
1949                 return 1;
1950
1951         if (push_items <= 0)
1952                 return 1;
1953
1954         if (empty) {
1955                 push_items = min(src_nritems, push_items);
1956                 if (push_items < src_nritems) {
1957                         /* leave at least 8 pointers in the node if
1958                          * we aren't going to empty it
1959                          */
1960                         if (src_nritems - push_items < 8) {
1961                                 if (push_items <= 8)
1962                                         return 1;
1963                                 push_items -= 8;
1964                         }
1965                 }
1966         } else
1967                 push_items = min(src_nritems - 8, push_items);
1968
1969         copy_extent_buffer(dst, src,
1970                            btrfs_node_key_ptr_offset(dst_nritems),
1971                            btrfs_node_key_ptr_offset(0),
1972                            push_items * sizeof(struct btrfs_key_ptr));
1973
1974         if (push_items < src_nritems) {
1975                 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
1976                                       btrfs_node_key_ptr_offset(push_items),
1977                                       (src_nritems - push_items) *
1978                                       sizeof(struct btrfs_key_ptr));
1979         }
1980         btrfs_set_header_nritems(src, src_nritems - push_items);
1981         btrfs_set_header_nritems(dst, dst_nritems + push_items);
1982         btrfs_mark_buffer_dirty(src);
1983         btrfs_mark_buffer_dirty(dst);
1984
1985         return ret;
1986 }
1987
1988 /*
1989  * try to push data from one node into the next node right in the
1990  * tree.
1991  *
1992  * returns 0 if some ptrs were pushed, < 0 if there was some horrible
1993  * error, and > 0 if there was no room in the right hand block.
1994  *
1995  * this will  only push up to 1/2 the contents of the left node over
1996  */
1997 static int balance_node_right(struct btrfs_trans_handle *trans,
1998                               struct btrfs_root *root,
1999                               struct extent_buffer *dst,
2000                               struct extent_buffer *src)
2001 {
2002         int push_items = 0;
2003         int max_push;
2004         int src_nritems;
2005         int dst_nritems;
2006         int ret = 0;
2007
2008         WARN_ON(btrfs_header_generation(src) != trans->transid);
2009         WARN_ON(btrfs_header_generation(dst) != trans->transid);
2010
2011         src_nritems = btrfs_header_nritems(src);
2012         dst_nritems = btrfs_header_nritems(dst);
2013         push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
2014         if (push_items <= 0)
2015                 return 1;
2016
2017         if (src_nritems < 4)
2018                 return 1;
2019
2020         max_push = src_nritems / 2 + 1;
2021         /* don't try to empty the node */
2022         if (max_push >= src_nritems)
2023                 return 1;
2024
2025         if (max_push < push_items)
2026                 push_items = max_push;
2027
2028         memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
2029                                       btrfs_node_key_ptr_offset(0),
2030                                       (dst_nritems) *
2031                                       sizeof(struct btrfs_key_ptr));
2032
2033         copy_extent_buffer(dst, src,
2034                            btrfs_node_key_ptr_offset(0),
2035                            btrfs_node_key_ptr_offset(src_nritems - push_items),
2036                            push_items * sizeof(struct btrfs_key_ptr));
2037
2038         btrfs_set_header_nritems(src, src_nritems - push_items);
2039         btrfs_set_header_nritems(dst, dst_nritems + push_items);
2040
2041         btrfs_mark_buffer_dirty(src);
2042         btrfs_mark_buffer_dirty(dst);
2043
2044         return ret;
2045 }
2046
2047 /*
2048  * helper function to insert a new root level in the tree.
2049  * A new node is allocated, and a single item is inserted to
2050  * point to the existing root
2051  *
2052  * returns zero on success or < 0 on failure.
2053  */
2054 static noinline int insert_new_root(struct btrfs_trans_handle *trans,
2055                            struct btrfs_root *root,
2056                            struct btrfs_path *path, int level)
2057 {
2058         u64 lower_gen;
2059         struct extent_buffer *lower;
2060         struct extent_buffer *c;
2061         struct extent_buffer *old;
2062         struct btrfs_disk_key lower_key;
2063
2064         BUG_ON(path->nodes[level]);
2065         BUG_ON(path->nodes[level-1] != root->node);
2066
2067         lower = path->nodes[level-1];
2068         if (level == 1)
2069                 btrfs_item_key(lower, &lower_key, 0);
2070         else
2071                 btrfs_node_key(lower, &lower_key, 0);
2072
2073         c = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
2074                                    root->root_key.objectid, &lower_key,
2075                                    level, root->node->start, 0);
2076         if (IS_ERR(c))
2077                 return PTR_ERR(c);
2078
2079         memset_extent_buffer(c, 0, 0, sizeof(struct btrfs_header));
2080         btrfs_set_header_nritems(c, 1);
2081         btrfs_set_header_level(c, level);
2082         btrfs_set_header_bytenr(c, c->start);
2083         btrfs_set_header_generation(c, trans->transid);
2084         btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV);
2085         btrfs_set_header_owner(c, root->root_key.objectid);
2086
2087         write_extent_buffer(c, root->fs_info->fsid,
2088                             (unsigned long)btrfs_header_fsid(c),
2089                             BTRFS_FSID_SIZE);
2090
2091         write_extent_buffer(c, root->fs_info->chunk_tree_uuid,
2092                             (unsigned long)btrfs_header_chunk_tree_uuid(c),
2093                             BTRFS_UUID_SIZE);
2094
2095         btrfs_set_node_key(c, &lower_key, 0);
2096         btrfs_set_node_blockptr(c, 0, lower->start);
2097         lower_gen = btrfs_header_generation(lower);
2098         WARN_ON(lower_gen != trans->transid);
2099
2100         btrfs_set_node_ptr_generation(c, 0, lower_gen);
2101
2102         btrfs_mark_buffer_dirty(c);
2103
2104         spin_lock(&root->node_lock);
2105         old = root->node;
2106         root->node = c;
2107         spin_unlock(&root->node_lock);
2108
2109         /* the super has an extra ref to root->node */
2110         free_extent_buffer(old);
2111
2112         add_root_to_dirty_list(root);
2113         extent_buffer_get(c);
2114         path->nodes[level] = c;
2115         path->locks[level] = 1;
2116         path->slots[level] = 0;
2117         return 0;
2118 }
2119
2120 /*
2121  * worker function to insert a single pointer in a node.
2122  * the node should have enough room for the pointer already
2123  *
2124  * slot and level indicate where you want the key to go, and
2125  * blocknr is the block the key points to.
2126  *
2127  * returns zero on success and < 0 on any error
2128  */
2129 static int insert_ptr(struct btrfs_trans_handle *trans, struct btrfs_root
2130                       *root, struct btrfs_path *path, struct btrfs_disk_key
2131                       *key, u64 bytenr, int slot, int level)
2132 {
2133         struct extent_buffer *lower;
2134         int nritems;
2135
2136         BUG_ON(!path->nodes[level]);
2137         lower = path->nodes[level];
2138         nritems = btrfs_header_nritems(lower);
2139         BUG_ON(slot > nritems);
2140         if (nritems == BTRFS_NODEPTRS_PER_BLOCK(root))
2141                 BUG();
2142         if (slot != nritems) {
2143                 memmove_extent_buffer(lower,
2144                               btrfs_node_key_ptr_offset(slot + 1),
2145                               btrfs_node_key_ptr_offset(slot),
2146                               (nritems - slot) * sizeof(struct btrfs_key_ptr));
2147         }
2148         btrfs_set_node_key(lower, key, slot);
2149         btrfs_set_node_blockptr(lower, slot, bytenr);
2150         WARN_ON(trans->transid == 0);
2151         btrfs_set_node_ptr_generation(lower, slot, trans->transid);
2152         btrfs_set_header_nritems(lower, nritems + 1);
2153         btrfs_mark_buffer_dirty(lower);
2154         return 0;
2155 }
2156
2157 /*
2158  * split the node at the specified level in path in two.
2159  * The path is corrected to point to the appropriate node after the split
2160  *
2161  * Before splitting this tries to make some room in the node by pushing
2162  * left and right, if either one works, it returns right away.
2163  *
2164  * returns 0 on success and < 0 on failure
2165  */
2166 static noinline int split_node(struct btrfs_trans_handle *trans,
2167                                struct btrfs_root *root,
2168                                struct btrfs_path *path, int level)
2169 {
2170         struct extent_buffer *c;
2171         struct extent_buffer *split;
2172         struct btrfs_disk_key disk_key;
2173         int mid;
2174         int ret;
2175         int wret;
2176         u32 c_nritems;
2177
2178         c = path->nodes[level];
2179         WARN_ON(btrfs_header_generation(c) != trans->transid);
2180         if (c == root->node) {
2181                 /* trying to split the root, lets make a new one */
2182                 ret = insert_new_root(trans, root, path, level + 1);
2183                 if (ret)
2184                         return ret;
2185         } else {
2186                 ret = push_nodes_for_insert(trans, root, path, level);
2187                 c = path->nodes[level];
2188                 if (!ret && btrfs_header_nritems(c) <
2189                     BTRFS_NODEPTRS_PER_BLOCK(root) - 3)
2190                         return 0;
2191                 if (ret < 0)
2192                         return ret;
2193         }
2194
2195         c_nritems = btrfs_header_nritems(c);
2196         mid = (c_nritems + 1) / 2;
2197         btrfs_node_key(c, &disk_key, mid);
2198
2199         split = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
2200                                         root->root_key.objectid,
2201                                         &disk_key, level, c->start, 0);
2202         if (IS_ERR(split))
2203                 return PTR_ERR(split);
2204
2205         memset_extent_buffer(split, 0, 0, sizeof(struct btrfs_header));
2206         btrfs_set_header_level(split, btrfs_header_level(c));
2207         btrfs_set_header_bytenr(split, split->start);
2208         btrfs_set_header_generation(split, trans->transid);
2209         btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV);
2210         btrfs_set_header_owner(split, root->root_key.objectid);
2211         write_extent_buffer(split, root->fs_info->fsid,
2212                             (unsigned long)btrfs_header_fsid(split),
2213                             BTRFS_FSID_SIZE);
2214         write_extent_buffer(split, root->fs_info->chunk_tree_uuid,
2215                             (unsigned long)btrfs_header_chunk_tree_uuid(split),
2216                             BTRFS_UUID_SIZE);
2217
2218
2219         copy_extent_buffer(split, c,
2220                            btrfs_node_key_ptr_offset(0),
2221                            btrfs_node_key_ptr_offset(mid),
2222                            (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
2223         btrfs_set_header_nritems(split, c_nritems - mid);
2224         btrfs_set_header_nritems(c, mid);
2225         ret = 0;
2226
2227         btrfs_mark_buffer_dirty(c);
2228         btrfs_mark_buffer_dirty(split);
2229
2230         wret = insert_ptr(trans, root, path, &disk_key, split->start,
2231                           path->slots[level + 1] + 1,
2232                           level + 1);
2233         if (wret)
2234                 ret = wret;
2235
2236         if (path->slots[level] >= mid) {
2237                 path->slots[level] -= mid;
2238                 btrfs_tree_unlock(c);
2239                 free_extent_buffer(c);
2240                 path->nodes[level] = split;
2241                 path->slots[level + 1] += 1;
2242         } else {
2243                 btrfs_tree_unlock(split);
2244                 free_extent_buffer(split);
2245         }
2246         return ret;
2247 }
2248
2249 /*
2250  * how many bytes are required to store the items in a leaf.  start
2251  * and nr indicate which items in the leaf to check.  This totals up the
2252  * space used both by the item structs and the item data
2253  */
2254 static int leaf_space_used(struct extent_buffer *l, int start, int nr)
2255 {
2256         int data_len;
2257         int nritems = btrfs_header_nritems(l);
2258         int end = min(nritems, start + nr) - 1;
2259
2260         if (!nr)
2261                 return 0;
2262         data_len = btrfs_item_end_nr(l, start);
2263         data_len = data_len - btrfs_item_offset_nr(l, end);
2264         data_len += sizeof(struct btrfs_item) * nr;
2265         WARN_ON(data_len < 0);
2266         return data_len;
2267 }
2268
2269 /*
2270  * The space between the end of the leaf items and
2271  * the start of the leaf data.  IOW, how much room
2272  * the leaf has left for both items and data
2273  */
2274 noinline int btrfs_leaf_free_space(struct btrfs_root *root,
2275                                    struct extent_buffer *leaf)
2276 {
2277         int nritems = btrfs_header_nritems(leaf);
2278         int ret;
2279         ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
2280         if (ret < 0) {
2281                 printk(KERN_CRIT "leaf free space ret %d, leaf data size %lu, "
2282                        "used %d nritems %d\n",
2283                        ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root),
2284                        leaf_space_used(leaf, 0, nritems), nritems);
2285         }
2286         return ret;
2287 }
2288
2289 static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
2290                                       struct btrfs_root *root,
2291                                       struct btrfs_path *path,
2292                                       int data_size, int empty,
2293                                       struct extent_buffer *right,
2294                                       int free_space, u32 left_nritems)
2295 {
2296         struct extent_buffer *left = path->nodes[0];
2297         struct extent_buffer *upper = path->nodes[1];
2298         struct btrfs_disk_key disk_key;
2299         int slot;
2300         u32 i;
2301         int push_space = 0;
2302         int push_items = 0;
2303         struct btrfs_item *item;
2304         u32 nr;
2305         u32 right_nritems;
2306         u32 data_end;
2307         u32 this_item_size;
2308
2309         if (empty)
2310                 nr = 0;
2311         else
2312                 nr = 1;
2313
2314         if (path->slots[0] >= left_nritems)
2315                 push_space += data_size;
2316
2317         slot = path->slots[1];
2318         i = left_nritems - 1;
2319         while (i >= nr) {
2320                 item = btrfs_item_nr(left, i);
2321
2322                 if (!empty && push_items > 0) {
2323                         if (path->slots[0] > i)
2324                                 break;
2325                         if (path->slots[0] == i) {
2326                                 int space = btrfs_leaf_free_space(root, left);
2327                                 if (space + push_space * 2 > free_space)
2328                                         break;
2329                         }
2330                 }
2331
2332                 if (path->slots[0] == i)
2333                         push_space += data_size;
2334
2335                 if (!left->map_token) {
2336                         map_extent_buffer(left, (unsigned long)item,
2337                                         sizeof(struct btrfs_item),
2338                                         &left->map_token, &left->kaddr,
2339                                         &left->map_start, &left->map_len,
2340                                         KM_USER1);
2341                 }
2342
2343                 this_item_size = btrfs_item_size(left, item);
2344                 if (this_item_size + sizeof(*item) + push_space > free_space)
2345                         break;
2346
2347                 push_items++;
2348                 push_space += this_item_size + sizeof(*item);
2349                 if (i == 0)
2350                         break;
2351                 i--;
2352         }
2353         if (left->map_token) {
2354                 unmap_extent_buffer(left, left->map_token, KM_USER1);
2355                 left->map_token = NULL;
2356         }
2357
2358         if (push_items == 0)
2359                 goto out_unlock;
2360
2361         if (!empty && push_items == left_nritems)
2362                 WARN_ON(1);
2363
2364         /* push left to right */
2365         right_nritems = btrfs_header_nritems(right);
2366
2367         push_space = btrfs_item_end_nr(left, left_nritems - push_items);
2368         push_space -= leaf_data_end(root, left);
2369
2370         /* make room in the right data area */
2371         data_end = leaf_data_end(root, right);
2372         memmove_extent_buffer(right,
2373                               btrfs_leaf_data(right) + data_end - push_space,
2374                               btrfs_leaf_data(right) + data_end,
2375                               BTRFS_LEAF_DATA_SIZE(root) - data_end);
2376
2377         /* copy from the left data area */
2378         copy_extent_buffer(right, left, btrfs_leaf_data(right) +
2379                      BTRFS_LEAF_DATA_SIZE(root) - push_space,
2380                      btrfs_leaf_data(left) + leaf_data_end(root, left),
2381                      push_space);
2382
2383         memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
2384                               btrfs_item_nr_offset(0),
2385                               right_nritems * sizeof(struct btrfs_item));
2386
2387         /* copy the items from left to right */
2388         copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
2389                    btrfs_item_nr_offset(left_nritems - push_items),
2390                    push_items * sizeof(struct btrfs_item));
2391
2392         /* update the item pointers */
2393         right_nritems += push_items;
2394         btrfs_set_header_nritems(right, right_nritems);
2395         push_space = BTRFS_LEAF_DATA_SIZE(root);
2396         for (i = 0; i < right_nritems; i++) {
2397                 item = btrfs_item_nr(right, i);
2398                 if (!right->map_token) {
2399                         map_extent_buffer(right, (unsigned long)item,
2400                                         sizeof(struct btrfs_item),
2401                                         &right->map_token, &right->kaddr,
2402                                         &right->map_start, &right->map_len,
2403                                         KM_USER1);
2404                 }
2405                 push_space -= btrfs_item_size(right, item);
2406                 btrfs_set_item_offset(right, item, push_space);
2407         }
2408
2409         if (right->map_token) {
2410                 unmap_extent_buffer(right, right->map_token, KM_USER1);
2411                 right->map_token = NULL;
2412         }
2413         left_nritems -= push_items;
2414         btrfs_set_header_nritems(left, left_nritems);
2415
2416         if (left_nritems)
2417                 btrfs_mark_buffer_dirty(left);
2418         btrfs_mark_buffer_dirty(right);
2419
2420         btrfs_item_key(right, &disk_key, 0);
2421         btrfs_set_node_key(upper, &disk_key, slot + 1);
2422         btrfs_mark_buffer_dirty(upper);
2423
2424         /* then fixup the leaf pointer in the path */
2425         if (path->slots[0] >= left_nritems) {
2426                 path->slots[0] -= left_nritems;
2427                 if (btrfs_header_nritems(path->nodes[0]) == 0)
2428                         clean_tree_block(trans, root, path->nodes[0]);
2429                 btrfs_tree_unlock(path->nodes[0]);
2430                 free_extent_buffer(path->nodes[0]);
2431                 path->nodes[0] = right;
2432                 path->slots[1] += 1;
2433         } else {
2434                 btrfs_tree_unlock(right);
2435                 free_extent_buffer(right);
2436         }
2437         return 0;
2438
2439 out_unlock:
2440         btrfs_tree_unlock(right);
2441         free_extent_buffer(right);
2442         return 1;
2443 }
2444
2445 /*
2446  * push some data in the path leaf to the right, trying to free up at
2447  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
2448  *
2449  * returns 1 if the push failed because the other node didn't have enough
2450  * room, 0 if everything worked out and < 0 if there were major errors.
2451  */
2452 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
2453                            *root, struct btrfs_path *path, int data_size,
2454                            int empty)
2455 {
2456         struct extent_buffer *left = path->nodes[0];
2457         struct extent_buffer *right;
2458         struct extent_buffer *upper;
2459         int slot;
2460         int free_space;
2461         u32 left_nritems;
2462         int ret;
2463
2464         if (!path->nodes[1])
2465                 return 1;
2466
2467         slot = path->slots[1];
2468         upper = path->nodes[1];
2469         if (slot >= btrfs_header_nritems(upper) - 1)
2470                 return 1;
2471
2472         btrfs_assert_tree_locked(path->nodes[1]);
2473
2474         right = read_node_slot(root, upper, slot + 1);
2475         btrfs_tree_lock(right);
2476         btrfs_set_lock_blocking(right);
2477
2478         free_space = btrfs_leaf_free_space(root, right);
2479         if (free_space < data_size)
2480                 goto out_unlock;
2481
2482         /* cow and double check */
2483         ret = btrfs_cow_block(trans, root, right, upper,
2484                               slot + 1, &right);
2485         if (ret)
2486                 goto out_unlock;
2487
2488         free_space = btrfs_leaf_free_space(root, right);
2489         if (free_space < data_size)
2490                 goto out_unlock;
2491
2492         left_nritems = btrfs_header_nritems(left);
2493         if (left_nritems == 0)
2494                 goto out_unlock;
2495
2496         return __push_leaf_right(trans, root, path, data_size, empty,
2497                                 right, free_space, left_nritems);
2498 out_unlock:
2499         btrfs_tree_unlock(right);
2500         free_extent_buffer(right);
2501         return 1;
2502 }
2503
2504 /*
2505  * push some data in the path leaf to the left, trying to free up at
2506  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
2507  */
2508 static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
2509                                      struct btrfs_root *root,
2510                                      struct btrfs_path *path, int data_size,
2511                                      int empty, struct extent_buffer *left,
2512                                      int free_space, int right_nritems)
2513 {
2514         struct btrfs_disk_key disk_key;
2515         struct extent_buffer *right = path->nodes[0];
2516         int slot;
2517         int i;
2518         int push_space = 0;
2519         int push_items = 0;
2520         struct btrfs_item *item;
2521         u32 old_left_nritems;
2522         u32 nr;
2523         int ret = 0;
2524         int wret;
2525         u32 this_item_size;
2526         u32 old_left_item_size;
2527
2528         slot = path->slots[1];
2529
2530         if (empty)
2531                 nr = right_nritems;
2532         else
2533                 nr = right_nritems - 1;
2534
2535         for (i = 0; i < nr; i++) {
2536                 item = btrfs_item_nr(right, i);
2537                 if (!right->map_token) {
2538                         map_extent_buffer(right, (unsigned long)item,
2539                                         sizeof(struct btrfs_item),
2540                                         &right->map_token, &right->kaddr,
2541                                         &right->map_start, &right->map_len,
2542                                         KM_USER1);
2543                 }
2544
2545                 if (!empty && push_items > 0) {
2546                         if (path->slots[0] < i)
2547                                 break;
2548                         if (path->slots[0] == i) {
2549                                 int space = btrfs_leaf_free_space(root, right);
2550                                 if (space + push_space * 2 > free_space)
2551                                         break;
2552                         }
2553                 }
2554
2555                 if (path->slots[0] == i)
2556                         push_space += data_size;
2557
2558                 this_item_size = btrfs_item_size(right, item);
2559                 if (this_item_size + sizeof(*item) + push_space > free_space)
2560                         break;
2561
2562                 push_items++;
2563                 push_space += this_item_size + sizeof(*item);
2564         }
2565
2566         if (right->map_token) {
2567                 unmap_extent_buffer(right, right->map_token, KM_USER1);
2568                 right->map_token = NULL;
2569         }
2570
2571         if (push_items == 0) {
2572                 ret = 1;
2573                 goto out;
2574         }
2575         if (!empty && push_items == btrfs_header_nritems(right))
2576                 WARN_ON(1);
2577
2578         /* push data from right to left */
2579         copy_extent_buffer(left, right,
2580                            btrfs_item_nr_offset(btrfs_header_nritems(left)),
2581                            btrfs_item_nr_offset(0),
2582                            push_items * sizeof(struct btrfs_item));
2583
2584         push_space = BTRFS_LEAF_DATA_SIZE(root) -
2585                      btrfs_item_offset_nr(right, push_items - 1);
2586
2587         copy_extent_buffer(left, right, btrfs_leaf_data(left) +
2588                      leaf_data_end(root, left) - push_space,
2589                      btrfs_leaf_data(right) +
2590                      btrfs_item_offset_nr(right, push_items - 1),
2591                      push_space);
2592         old_left_nritems = btrfs_header_nritems(left);
2593         BUG_ON(old_left_nritems <= 0);
2594
2595         old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
2596         for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
2597                 u32 ioff;
2598
2599                 item = btrfs_item_nr(left, i);
2600                 if (!left->map_token) {
2601                         map_extent_buffer(left, (unsigned long)item,
2602                                         sizeof(struct btrfs_item),
2603                                         &left->map_token, &left->kaddr,
2604                                         &left->map_start, &left->map_len,
2605                                         KM_USER1);
2606                 }
2607
2608                 ioff = btrfs_item_offset(left, item);
2609                 btrfs_set_item_offset(left, item,
2610                       ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size));
2611         }
2612         btrfs_set_header_nritems(left, old_left_nritems + push_items);
2613         if (left->map_token) {
2614                 unmap_extent_buffer(left, left->map_token, KM_USER1);
2615                 left->map_token = NULL;
2616         }
2617
2618         /* fixup right node */
2619         if (push_items > right_nritems) {
2620                 printk(KERN_CRIT "push items %d nr %u\n", push_items,
2621                        right_nritems);
2622                 WARN_ON(1);
2623         }
2624
2625         if (push_items < right_nritems) {
2626                 push_space = btrfs_item_offset_nr(right, push_items - 1) -
2627                                                   leaf_data_end(root, right);
2628                 memmove_extent_buffer(right, btrfs_leaf_data(right) +
2629                                       BTRFS_LEAF_DATA_SIZE(root) - push_space,
2630                                       btrfs_leaf_data(right) +
2631                                       leaf_data_end(root, right), push_space);
2632
2633                 memmove_extent_buffer(right, btrfs_item_nr_offset(0),
2634                               btrfs_item_nr_offset(push_items),
2635                              (btrfs_header_nritems(right) - push_items) *
2636                              sizeof(struct btrfs_item));
2637         }
2638         right_nritems -= push_items;
2639         btrfs_set_header_nritems(right, right_nritems);
2640         push_space = BTRFS_LEAF_DATA_SIZE(root);
2641         for (i = 0; i < right_nritems; i++) {
2642                 item = btrfs_item_nr(right, i);
2643
2644                 if (!right->map_token) {
2645                         map_extent_buffer(right, (unsigned long)item,
2646                                         sizeof(struct btrfs_item),
2647                                         &right->map_token, &right->kaddr,
2648                                         &right->map_start, &right->map_len,
2649                                         KM_USER1);
2650                 }
2651
2652                 push_space = push_space - btrfs_item_size(right, item);
2653                 btrfs_set_item_offset(right, item, push_space);
2654         }
2655         if (right->map_token) {
2656                 unmap_extent_buffer(right, right->map_token, KM_USER1);
2657                 right->map_token = NULL;
2658         }
2659
2660         btrfs_mark_buffer_dirty(left);
2661         if (right_nritems)
2662                 btrfs_mark_buffer_dirty(right);
2663
2664         btrfs_item_key(right, &disk_key, 0);
2665         wret = fixup_low_keys(trans, root, path, &disk_key, 1);
2666         if (wret)
2667                 ret = wret;
2668
2669         /* then fixup the leaf pointer in the path */
2670         if (path->slots[0] < push_items) {
2671                 path->slots[0] += old_left_nritems;
2672                 if (btrfs_header_nritems(path->nodes[0]) == 0)
2673                         clean_tree_block(trans, root, path->nodes[0]);
2674                 btrfs_tree_unlock(path->nodes[0]);
2675                 free_extent_buffer(path->nodes[0]);
2676                 path->nodes[0] = left;
2677                 path->slots[1] -= 1;
2678         } else {
2679                 btrfs_tree_unlock(left);
2680                 free_extent_buffer(left);
2681                 path->slots[0] -= push_items;
2682         }
2683         BUG_ON(path->slots[0] < 0);
2684         return ret;
2685 out:
2686         btrfs_tree_unlock(left);
2687         free_extent_buffer(left);
2688         return ret;
2689 }
2690
2691 /*
2692  * push some data in the path leaf to the left, trying to free up at
2693  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
2694  */
2695 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
2696                           *root, struct btrfs_path *path, int data_size,
2697                           int empty)
2698 {
2699         struct extent_buffer *right = path->nodes[0];
2700         struct extent_buffer *left;
2701         int slot;
2702         int free_space;
2703         u32 right_nritems;
2704         int ret = 0;
2705
2706         slot = path->slots[1];
2707         if (slot == 0)
2708                 return 1;
2709         if (!path->nodes[1])
2710                 return 1;
2711
2712         right_nritems = btrfs_header_nritems(right);
2713         if (right_nritems == 0)
2714                 return 1;
2715
2716         btrfs_assert_tree_locked(path->nodes[1]);
2717
2718         left = read_node_slot(root, path->nodes[1], slot - 1);
2719         btrfs_tree_lock(left);
2720         btrfs_set_lock_blocking(left);
2721
2722         free_space = btrfs_leaf_free_space(root, left);
2723         if (free_space < data_size) {
2724                 ret = 1;
2725                 goto out;
2726         }
2727
2728         /* cow and double check */
2729         ret = btrfs_cow_block(trans, root, left,
2730                               path->nodes[1], slot - 1, &left);
2731         if (ret) {
2732                 /* we hit -ENOSPC, but it isn't fatal here */
2733                 ret = 1;
2734                 goto out;
2735         }
2736
2737         free_space = btrfs_leaf_free_space(root, left);
2738         if (free_space < data_size) {
2739                 ret = 1;
2740                 goto out;
2741         }
2742
2743         return __push_leaf_left(trans, root, path, data_size,
2744                                empty, left, free_space, right_nritems);
2745 out:
2746         btrfs_tree_unlock(left);
2747         free_extent_buffer(left);
2748         return ret;
2749 }
2750
2751 /*
2752  * split the path's leaf in two, making sure there is at least data_size
2753  * available for the resulting leaf level of the path.
2754  *
2755  * returns 0 if all went well and < 0 on failure.
2756  */
2757 static noinline int copy_for_split(struct btrfs_trans_handle *trans,
2758                                struct btrfs_root *root,
2759                                struct btrfs_path *path,
2760                                struct extent_buffer *l,
2761                                struct extent_buffer *right,
2762                                int slot, int mid, int nritems)
2763 {
2764         int data_copy_size;
2765         int rt_data_off;
2766         int i;
2767         int ret = 0;
2768         int wret;
2769         struct btrfs_disk_key disk_key;
2770
2771         nritems = nritems - mid;
2772         btrfs_set_header_nritems(right, nritems);
2773         data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l);
2774
2775         copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
2776                            btrfs_item_nr_offset(mid),
2777                            nritems * sizeof(struct btrfs_item));
2778
2779         copy_extent_buffer(right, l,
2780                      btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
2781                      data_copy_size, btrfs_leaf_data(l) +
2782                      leaf_data_end(root, l), data_copy_size);
2783
2784         rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
2785                       btrfs_item_end_nr(l, mid);
2786
2787         for (i = 0; i < nritems; i++) {
2788                 struct btrfs_item *item = btrfs_item_nr(right, i);
2789                 u32 ioff;
2790
2791                 if (!right->map_token) {
2792                         map_extent_buffer(right, (unsigned long)item,
2793                                         sizeof(struct btrfs_item),
2794                                         &right->map_token, &right->kaddr,
2795                                         &right->map_start, &right->map_len,
2796                                         KM_USER1);
2797                 }
2798
2799                 ioff = btrfs_item_offset(right, item);
2800                 btrfs_set_item_offset(right, item, ioff + rt_data_off);
2801         }
2802
2803         if (right->map_token) {
2804                 unmap_extent_buffer(right, right->map_token, KM_USER1);
2805                 right->map_token = NULL;
2806         }
2807
2808         btrfs_set_header_nritems(l, mid);
2809         ret = 0;
2810         btrfs_item_key(right, &disk_key, 0);
2811         wret = insert_ptr(trans, root, path, &disk_key, right->start,
2812                           path->slots[1] + 1, 1);
2813         if (wret)
2814                 ret = wret;
2815
2816         btrfs_mark_buffer_dirty(right);
2817         btrfs_mark_buffer_dirty(l);
2818         BUG_ON(path->slots[0] != slot);
2819
2820         if (mid <= slot) {
2821                 btrfs_tree_unlock(path->nodes[0]);
2822                 free_extent_buffer(path->nodes[0]);
2823                 path->nodes[0] = right;
2824                 path->slots[0] -= mid;
2825                 path->slots[1] += 1;
2826         } else {
2827                 btrfs_tree_unlock(right);
2828                 free_extent_buffer(right);
2829         }
2830
2831         BUG_ON(path->slots[0] < 0);
2832
2833         return ret;
2834 }
2835
2836 /*
2837  * split the path's leaf in two, making sure there is at least data_size
2838  * available for the resulting leaf level of the path.
2839  *
2840  * returns 0 if all went well and < 0 on failure.
2841  */
2842 static noinline int split_leaf(struct btrfs_trans_handle *trans,
2843                                struct btrfs_root *root,
2844                                struct btrfs_key *ins_key,
2845                                struct btrfs_path *path, int data_size,
2846                                int extend)
2847 {
2848         struct btrfs_disk_key disk_key;
2849         struct extent_buffer *l;
2850         u32 nritems;
2851         int mid;
2852         int slot;
2853         struct extent_buffer *right;
2854         int ret = 0;
2855         int wret;
2856         int split;
2857         int num_doubles = 0;
2858
2859         l = path->nodes[0];
2860         slot = path->slots[0];
2861         if (extend && data_size + btrfs_item_size_nr(l, slot) +
2862             sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(root))
2863                 return -EOVERFLOW;
2864
2865         /* first try to make some room by pushing left and right */
2866         if (data_size && ins_key->type != BTRFS_DIR_ITEM_KEY) {
2867                 wret = push_leaf_right(trans, root, path, data_size, 0);
2868                 if (wret < 0)
2869                         return wret;
2870                 if (wret) {
2871                         wret = push_leaf_left(trans, root, path, data_size, 0);
2872                         if (wret < 0)
2873                                 return wret;
2874                 }
2875                 l = path->nodes[0];
2876
2877                 /* did the pushes work? */
2878                 if (btrfs_leaf_free_space(root, l) >= data_size)
2879                         return 0;
2880         }
2881
2882         if (!path->nodes[1]) {
2883                 ret = insert_new_root(trans, root, path, 1);
2884                 if (ret)
2885                         return ret;
2886         }
2887 again:
2888         split = 1;
2889         l = path->nodes[0];
2890         slot = path->slots[0];
2891         nritems = btrfs_header_nritems(l);
2892         mid = (nritems + 1) / 2;
2893
2894         if (mid <= slot) {
2895                 if (nritems == 1 ||
2896                     leaf_space_used(l, mid, nritems - mid) + data_size >
2897                         BTRFS_LEAF_DATA_SIZE(root)) {
2898                         if (slot >= nritems) {
2899                                 split = 0;
2900                         } else {
2901                                 mid = slot;
2902                                 if (mid != nritems &&
2903                                     leaf_space_used(l, mid, nritems - mid) +
2904                                     data_size > BTRFS_LEAF_DATA_SIZE(root)) {
2905                                         split = 2;
2906                                 }
2907                         }
2908                 }
2909         } else {
2910                 if (leaf_space_used(l, 0, mid) + data_size >
2911                         BTRFS_LEAF_DATA_SIZE(root)) {
2912                         if (!extend && data_size && slot == 0) {
2913                                 split = 0;
2914                         } else if ((extend || !data_size) && slot == 0) {
2915                                 mid = 1;
2916                         } else {
2917                                 mid = slot;
2918                                 if (mid != nritems &&
2919                                     leaf_space_used(l, mid, nritems - mid) +
2920                                     data_size > BTRFS_LEAF_DATA_SIZE(root)) {
2921                                         split = 2 ;
2922                                 }
2923                         }
2924                 }
2925         }
2926
2927         if (split == 0)
2928                 btrfs_cpu_key_to_disk(&disk_key, ins_key);
2929         else
2930                 btrfs_item_key(l, &disk_key, mid);
2931
2932         right = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
2933                                         root->root_key.objectid,
2934                                         &disk_key, 0, l->start, 0);
2935         if (IS_ERR(right)) {
2936                 BUG_ON(1);
2937                 return PTR_ERR(right);
2938         }
2939
2940         memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header));
2941         btrfs_set_header_bytenr(right, right->start);
2942         btrfs_set_header_generation(right, trans->transid);
2943         btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV);
2944         btrfs_set_header_owner(right, root->root_key.objectid);
2945         btrfs_set_header_level(right, 0);
2946         write_extent_buffer(right, root->fs_info->fsid,
2947                             (unsigned long)btrfs_header_fsid(right),
2948                             BTRFS_FSID_SIZE);
2949
2950         write_extent_buffer(right, root->fs_info->chunk_tree_uuid,
2951                             (unsigned long)btrfs_header_chunk_tree_uuid(right),
2952                             BTRFS_UUID_SIZE);
2953
2954         if (split == 0) {
2955                 if (mid <= slot) {
2956                         btrfs_set_header_nritems(right, 0);
2957                         wret = insert_ptr(trans, root, path,
2958                                           &disk_key, right->start,
2959                                           path->slots[1] + 1, 1);
2960                         if (wret)
2961                                 ret = wret;
2962
2963                         btrfs_tree_unlock(path->nodes[0]);
2964                         free_extent_buffer(path->nodes[0]);
2965                         path->nodes[0] = right;
2966                         path->slots[0] = 0;
2967                         path->slots[1] += 1;
2968                 } else {
2969                         btrfs_set_header_nritems(right, 0);
2970                         wret = insert_ptr(trans, root, path,
2971                                           &disk_key,
2972                                           right->start,
2973                                           path->slots[1], 1);
2974                         if (wret)
2975                                 ret = wret;
2976                         btrfs_tree_unlock(path->nodes[0]);
2977                         free_extent_buffer(path->nodes[0]);
2978                         path->nodes[0] = right;
2979                         path->slots[0] = 0;
2980                         if (path->slots[1] == 0) {
2981                                 wret = fixup_low_keys(trans, root,
2982                                                 path, &disk_key, 1);
2983                                 if (wret)
2984                                         ret = wret;
2985                         }
2986                 }
2987                 btrfs_mark_buffer_dirty(right);
2988                 return ret;
2989         }
2990
2991         ret = copy_for_split(trans, root, path, l, right, slot, mid, nritems);
2992         BUG_ON(ret);
2993
2994         if (split == 2) {
2995                 BUG_ON(num_doubles != 0);
2996                 num_doubles++;
2997                 goto again;
2998         }
2999
3000         return ret;
3001 }
3002
3003 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
3004                                          struct btrfs_root *root,
3005                                          struct btrfs_path *path, int ins_len)
3006 {
3007         struct btrfs_key key;
3008         struct extent_buffer *leaf;
3009         struct btrfs_file_extent_item *fi;
3010         u64 extent_len = 0;
3011         u32 item_size;
3012         int ret;
3013
3014         leaf = path->nodes[0];
3015         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3016
3017         BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
3018                key.type != BTRFS_EXTENT_CSUM_KEY);
3019
3020         if (btrfs_leaf_free_space(root, leaf) >= ins_len)
3021                 return 0;
3022
3023         item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3024         if (key.type == BTRFS_EXTENT_DATA_KEY) {
3025                 fi = btrfs_item_ptr(leaf, path->slots[0],
3026                                     struct btrfs_file_extent_item);
3027                 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
3028         }
3029         btrfs_release_path(root, path);
3030
3031         path->keep_locks = 1;
3032         path->search_for_split = 1;
3033         ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
3034         path->search_for_split = 0;
3035         if (ret < 0)
3036                 goto err;
3037
3038         ret = -EAGAIN;
3039         leaf = path->nodes[0];
3040         /* if our item isn't there or got smaller, return now */
3041         if (ret > 0 || item_size != btrfs_item_size_nr(leaf, path->slots[0]))
3042                 goto err;
3043
3044         if (key.type == BTRFS_EXTENT_DATA_KEY) {
3045                 fi = btrfs_item_ptr(leaf, path->slots[0],
3046                                     struct btrfs_file_extent_item);
3047                 if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
3048                         goto err;
3049         }
3050
3051         btrfs_set_path_blocking(path);
3052         ret = split_leaf(trans, root, &key, path, ins_len, 1);
3053         BUG_ON(ret);
3054
3055         path->keep_locks = 0;
3056         btrfs_unlock_up_safe(path, 1);
3057         return 0;
3058 err:
3059         path->keep_locks = 0;
3060         return ret;
3061 }
3062
3063 static noinline int split_item(struct btrfs_trans_handle *trans,
3064                                struct btrfs_root *root,
3065                                struct btrfs_path *path,
3066                                struct btrfs_key *new_key,
3067                                unsigned long split_offset)
3068 {
3069         struct extent_buffer *leaf;
3070         struct btrfs_item *item;
3071         struct btrfs_item *new_item;
3072         int slot;
3073         char *buf;
3074         u32 nritems;
3075         u32 item_size;
3076         u32 orig_offset;
3077         struct btrfs_disk_key disk_key;
3078
3079         leaf = path->nodes[0];
3080         BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item));
3081
3082         btrfs_set_path_blocking(path);
3083
3084         item = btrfs_item_nr(leaf, path->slots[0]);
3085         orig_offset = btrfs_item_offset(leaf, item);
3086         item_size = btrfs_item_size(leaf, item);
3087
3088         buf = kmalloc(item_size, GFP_NOFS);
3089         if (!buf)
3090                 return -ENOMEM;
3091
3092         read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
3093                             path->slots[0]), item_size);
3094
3095         slot = path->slots[0] + 1;
3096         nritems = btrfs_header_nritems(leaf);
3097         if (slot != nritems) {
3098                 /* shift the items */
3099                 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
3100                                 btrfs_item_nr_offset(slot),
3101                                 (nritems - slot) * sizeof(struct btrfs_item));
3102         }
3103
3104         btrfs_cpu_key_to_disk(&disk_key, new_key);
3105         btrfs_set_item_key(leaf, &disk_key, slot);
3106
3107         new_item = btrfs_item_nr(leaf, slot);
3108
3109         btrfs_set_item_offset(leaf, new_item, orig_offset);
3110         btrfs_set_item_size(leaf, new_item, item_size - split_offset);
3111
3112         btrfs_set_item_offset(leaf, item,
3113                               orig_offset + item_size - split_offset);
3114         btrfs_set_item_size(leaf, item, split_offset);
3115
3116         btrfs_set_header_nritems(leaf, nritems + 1);
3117
3118         /* write the data for the start of the original item */
3119         write_extent_buffer(leaf, buf,
3120                             btrfs_item_ptr_offset(leaf, path->slots[0]),
3121                             split_offset);
3122
3123         /* write the data for the new item */
3124         write_extent_buffer(leaf, buf + split_offset,
3125                             btrfs_item_ptr_offset(leaf, slot),
3126                             item_size - split_offset);
3127         btrfs_mark_buffer_dirty(leaf);
3128
3129         BUG_ON(btrfs_leaf_free_space(root, leaf) < 0);
3130         kfree(buf);
3131         return 0;
3132 }
3133
3134 /*
3135  * This function splits a single item into two items,
3136  * giving 'new_key' to the new item and splitting the
3137  * old one at split_offset (from the start of the item).
3138  *
3139  * The path may be released by this operation.  After
3140  * the split, the path is pointing to the old item.  The
3141  * new item is going to be in the same node as the old one.
3142  *
3143  * Note, the item being split must be smaller enough to live alone on
3144  * a tree block with room for one extra struct btrfs_item
3145  *
3146  * This allows us to split the item in place, keeping a lock on the
3147  * leaf the entire time.
3148  */
3149 int btrfs_split_item(struct btrfs_trans_handle *trans,
3150                      struct btrfs_root *root,
3151                      struct btrfs_path *path,
3152                      struct btrfs_key *new_key,
3153                      unsigned long split_offset)
3154 {
3155         int ret;
3156         ret = setup_leaf_for_split(trans, root, path,
3157                                    sizeof(struct btrfs_item));
3158         if (ret)
3159                 return ret;
3160
3161         ret = split_item(trans, root, path, new_key, split_offset);
3162         return ret;
3163 }
3164
3165 /*
3166  * This function duplicate a item, giving 'new_key' to the new item.
3167  * It guarantees both items live in the same tree leaf and the new item
3168  * is contiguous with the original item.
3169  *
3170  * This allows us to split file extent in place, keeping a lock on the
3171  * leaf the entire time.
3172  */
3173 int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
3174                          struct btrfs_root *root,
3175                          struct btrfs_path *path,
3176                          struct btrfs_key *new_key)
3177 {
3178         struct extent_buffer *leaf;
3179         int ret;
3180         u32 item_size;
3181
3182         leaf = path->nodes[0];
3183         item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3184         ret = setup_leaf_for_split(trans, root, path,
3185                                    item_size + sizeof(struct btrfs_item));
3186         if (ret)
3187                 return ret;
3188
3189         path->slots[0]++;
3190         ret = setup_items_for_insert(trans, root, path, new_key, &item_size,
3191                                      item_size, item_size +
3192                                      sizeof(struct btrfs_item), 1);
3193         BUG_ON(ret);
3194
3195         leaf = path->nodes[0];
3196         memcpy_extent_buffer(leaf,
3197                              btrfs_item_ptr_offset(leaf, path->slots[0]),
3198                              btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
3199                              item_size);
3200         return 0;
3201 }
3202
3203 /*
3204  * make the item pointed to by the path smaller.  new_size indicates
3205  * how small to make it, and from_end tells us if we just chop bytes
3206  * off the end of the item or if we shift the item to chop bytes off
3207  * the front.
3208  */
3209 int btrfs_truncate_item(struct btrfs_trans_handle *trans,
3210                         struct btrfs_root *root,
3211                         struct btrfs_path *path,
3212                         u32 new_size, int from_end)
3213 {
3214         int ret = 0;
3215         int slot;
3216         int slot_orig;
3217         struct extent_buffer *leaf;
3218         struct btrfs_item *item;
3219         u32 nritems;
3220         unsigned int data_end;
3221         unsigned int old_data_start;
3222         unsigned int old_size;
3223         unsigned int size_diff;
3224         int i;
3225
3226         slot_orig = path->slots[0];
3227         leaf = path->nodes[0];
3228         slot = path->slots[0];
3229
3230         old_size = btrfs_item_size_nr(leaf, slot);
3231         if (old_size == new_size)
3232                 return 0;
3233
3234         nritems = btrfs_header_nritems(leaf);
3235         data_end = leaf_data_end(root, leaf);
3236
3237         old_data_start = btrfs_item_offset_nr(leaf, slot);
3238
3239         size_diff = old_size - new_size;
3240
3241         BUG_ON(slot < 0);
3242         BUG_ON(slot >= nritems);
3243
3244         /*
3245          * item0..itemN ... dataN.offset..dataN.size .. data0.size
3246          */
3247         /* first correct the data pointers */
3248         for (i = slot; i < nritems; i++) {
3249                 u32 ioff;
3250                 item = btrfs_item_nr(leaf, i);
3251
3252                 if (!leaf->map_token) {
3253                         map_extent_buffer(leaf, (unsigned long)item,
3254                                         sizeof(struct btrfs_item),
3255                                         &leaf->map_token, &leaf->kaddr,
3256                                         &leaf->map_start, &leaf->map_len,
3257                                         KM_USER1);
3258                 }
3259
3260                 ioff = btrfs_item_offset(leaf, item);
3261                 btrfs_set_item_offset(leaf, item, ioff + size_diff);
3262         }
3263
3264         if (leaf->map_token) {
3265                 unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
3266                 leaf->map_token = NULL;
3267         }
3268
3269         /* shift the data */
3270         if (from_end) {
3271                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3272                               data_end + size_diff, btrfs_leaf_data(leaf) +
3273                               data_end, old_data_start + new_size - data_end);
3274         } else {
3275                 struct btrfs_disk_key disk_key;
3276                 u64 offset;
3277
3278                 btrfs_item_key(leaf, &disk_key, slot);
3279
3280                 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
3281                         unsigned long ptr;
3282                         struct btrfs_file_extent_item *fi;
3283
3284                         fi = btrfs_item_ptr(leaf, slot,
3285                                             struct btrfs_file_extent_item);
3286                         fi = (struct btrfs_file_extent_item *)(
3287                              (unsigned long)fi - size_diff);
3288
3289                         if (btrfs_file_extent_type(leaf, fi) ==
3290                             BTRFS_FILE_EXTENT_INLINE) {
3291                                 ptr = btrfs_item_ptr_offset(leaf, slot);
3292                                 memmove_extent_buffer(leaf, ptr,
3293                                       (unsigned long)fi,
3294                                       offsetof(struct btrfs_file_extent_item,
3295                                                  disk_bytenr));
3296                         }
3297                 }
3298
3299                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3300                               data_end + size_diff, btrfs_leaf_data(leaf) +
3301                               data_end, old_data_start - data_end);
3302
3303                 offset = btrfs_disk_key_offset(&disk_key);
3304                 btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
3305                 btrfs_set_item_key(leaf, &disk_key, slot);
3306                 if (slot == 0)
3307                         fixup_low_keys(trans, root, path, &disk_key, 1);
3308         }
3309
3310         item = btrfs_item_nr(leaf, slot);
3311         btrfs_set_item_size(leaf, item, new_size);
3312         btrfs_mark_buffer_dirty(leaf);
3313
3314         ret = 0;
3315         if (btrfs_leaf_free_space(root, leaf) < 0) {
3316                 btrfs_print_leaf(root, leaf);
3317                 BUG();
3318         }
3319         return ret;
3320 }
3321
3322 /*
3323  * make the item pointed to by the path bigger, data_size is the new size.
3324  */
3325 int btrfs_extend_item(struct btrfs_trans_handle *trans,
3326                       struct btrfs_root *root, struct btrfs_path *path,
3327                       u32 data_size)
3328 {
3329         int ret = 0;
3330         int slot;
3331         int slot_orig;
3332         struct extent_buffer *leaf;
3333         struct btrfs_item *item;
3334         u32 nritems;
3335         unsigned int data_end;
3336         unsigned int old_data;
3337         unsigned int old_size;
3338         int i;
3339
3340         slot_orig = path->slots[0];
3341         leaf = path->nodes[0];
3342
3343         nritems = btrfs_header_nritems(leaf);
3344         data_end = leaf_data_end(root, leaf);
3345
3346         if (btrfs_leaf_free_space(root, leaf) < data_size) {
3347                 btrfs_print_leaf(root, leaf);
3348                 BUG();
3349         }
3350         slot = path->slots[0];
3351         old_data = btrfs_item_end_nr(leaf, slot);
3352
3353         BUG_ON(slot < 0);
3354         if (slot >= nritems) {
3355                 btrfs_print_leaf(root, leaf);
3356                 printk(KERN_CRIT "slot %d too large, nritems %d\n",
3357                        slot, nritems);
3358                 BUG_ON(1);
3359         }
3360
3361         /*
3362          * item0..itemN ... dataN.offset..dataN.size .. data0.size
3363          */
3364         /* first correct the data pointers */
3365         for (i = slot; i < nritems; i++) {
3366                 u32 ioff;
3367                 item = btrfs_item_nr(leaf, i);
3368
3369                 if (!leaf->map_token) {
3370                         map_extent_buffer(leaf, (unsigned long)item,
3371                                         sizeof(struct btrfs_item),
3372                                         &leaf->map_token, &leaf->kaddr,
3373                                         &leaf->map_start, &leaf->map_len,
3374                                         KM_USER1);
3375                 }
3376                 ioff = btrfs_item_offset(leaf, item);
3377                 btrfs_set_item_offset(leaf, item, ioff - data_size);
3378         }
3379
3380         if (leaf->map_token) {
3381                 unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
3382                 leaf->map_token = NULL;
3383         }
3384
3385         /* shift the data */
3386         memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3387                       data_end - data_size, btrfs_leaf_data(leaf) +
3388                       data_end, old_data - data_end);
3389
3390         data_end = old_data;
3391         old_size = btrfs_item_size_nr(leaf, slot);
3392         item = btrfs_item_nr(leaf, slot);
3393         btrfs_set_item_size(leaf, item, old_size + data_size);
3394         btrfs_mark_buffer_dirty(leaf);
3395
3396         ret = 0;
3397         if (btrfs_leaf_free_space(root, leaf) < 0) {
3398                 btrfs_print_leaf(root, leaf);
3399                 BUG();
3400         }
3401         return ret;
3402 }
3403
3404 /*
3405  * Given a key and some data, insert items into the tree.
3406  * This does all the path init required, making room in the tree if needed.
3407  * Returns the number of keys that were inserted.
3408  */
3409 int btrfs_insert_some_items(struct btrfs_trans_handle *trans,
3410                             struct btrfs_root *root,
3411                             struct btrfs_path *path,
3412                             struct btrfs_key *cpu_key, u32 *data_size,
3413                             int nr)
3414 {
3415         struct extent_buffer *leaf;
3416         struct btrfs_item *item;
3417         int ret = 0;
3418         int slot;
3419         int i;
3420         u32 nritems;
3421         u32 total_data = 0;
3422         u32 total_size = 0;
3423         unsigned int data_end;
3424         struct btrfs_disk_key disk_key;
3425         struct btrfs_key found_key;
3426
3427         for (i = 0; i < nr; i++) {
3428                 if (total_size + data_size[i] + sizeof(struct btrfs_item) >
3429                     BTRFS_LEAF_DATA_SIZE(root)) {
3430                         break;
3431                         nr = i;
3432                 }
3433                 total_data += data_size[i];
3434                 total_size += data_size[i] + sizeof(struct btrfs_item);
3435         }
3436         BUG_ON(nr == 0);
3437
3438         ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
3439         if (ret == 0)
3440                 return -EEXIST;
3441         if (ret < 0)
3442                 goto out;
3443
3444         leaf = path->nodes[0];
3445
3446         nritems = btrfs_header_nritems(leaf);
3447         data_end = leaf_data_end(root, leaf);
3448
3449         if (btrfs_leaf_free_space(root, leaf) < total_size) {
3450                 for (i = nr; i >= 0; i--) {
3451                         total_data -= data_size[i];
3452                         total_size -= data_size[i] + sizeof(struct btrfs_item);
3453                         if (total_size < btrfs_leaf_free_space(root, leaf))
3454                                 break;
3455                 }
3456                 nr = i;
3457         }
3458
3459         slot = path->slots[0];
3460         BUG_ON(slot < 0);
3461
3462         if (slot != nritems) {
3463                 unsigned int old_data = btrfs_item_end_nr(leaf, slot);
3464
3465                 item = btrfs_item_nr(leaf, slot);
3466                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3467
3468                 /* figure out how many keys we can insert in here */
3469                 total_data = data_size[0];
3470                 for (i = 1; i < nr; i++) {
3471                         if (btrfs_comp_cpu_keys(&found_key, cpu_key + i) <= 0)
3472                                 break;
3473                         total_data += data_size[i];
3474                 }
3475                 nr = i;
3476
3477                 if (old_data < data_end) {
3478                         btrfs_print_leaf(root, leaf);
3479                         printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
3480                                slot, old_data, data_end);
3481                         BUG_ON(1);
3482                 }
3483                 /*
3484                  * item0..itemN ... dataN.offset..dataN.size .. data0.size
3485                  */
3486                 /* first correct the data pointers */
3487                 WARN_ON(leaf->map_token);
3488                 for (i = slot; i < nritems; i++) {
3489                         u32 ioff;
3490
3491                         item = btrfs_item_nr(leaf, i);
3492                         if (!leaf->map_token) {
3493                                 map_extent_buffer(leaf, (unsigned long)item,
3494                                         sizeof(struct btrfs_item),
3495                                         &leaf->map_token, &leaf->kaddr,
3496                                         &leaf->map_start, &leaf->map_len,
3497                                         KM_USER1);
3498                         }
3499
3500                         ioff = btrfs_item_offset(leaf, item);
3501                         btrfs_set_item_offset(leaf, item, ioff - total_data);
3502                 }
3503                 if (leaf->map_token) {
3504                         unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
3505                         leaf->map_token = NULL;
3506                 }
3507
3508                 /* shift the items */
3509                 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
3510                               btrfs_item_nr_offset(slot),
3511                               (nritems - slot) * sizeof(struct btrfs_item));
3512
3513                 /* shift the data */
3514                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3515                               data_end - total_data, btrfs_leaf_data(leaf) +
3516                               data_end, old_data - data_end);
3517                 data_end = old_data;
3518         } else {
3519                 /*
3520                  * this sucks but it has to be done, if we are inserting at
3521                  * the end of the leaf only insert 1 of the items, since we
3522                  * have no way of knowing whats on the next leaf and we'd have
3523                  * to drop our current locks to figure it out
3524                  */
3525                 nr = 1;
3526         }
3527
3528         /* setup the item for the new data */
3529         for (i = 0; i < nr; i++) {
3530                 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
3531                 btrfs_set_item_key(leaf, &disk_key, slot + i);
3532                 item = btrfs_item_nr(leaf, slot + i);
3533                 btrfs_set_item_offset(leaf, item, data_end - data_size[i]);
3534                 data_end -= data_size[i];
3535                 btrfs_set_item_size(leaf, item, data_size[i]);
3536         }
3537         btrfs_set_header_nritems(leaf, nritems + nr);
3538         btrfs_mark_buffer_dirty(leaf);
3539
3540         ret = 0;
3541         if (slot == 0) {
3542                 btrfs_cpu_key_to_disk(&disk_key, cpu_key);
3543                 ret = fixup_low_keys(trans, root, path, &disk_key, 1);
3544         }
3545
3546         if (btrfs_leaf_free_space(root, leaf) < 0) {
3547                 btrfs_print_leaf(root, leaf);
3548                 BUG();
3549         }
3550 out:
3551         if (!ret)
3552                 ret = nr;
3553         return ret;
3554 }
3555
3556 /*
3557  * this is a helper for btrfs_insert_empty_items, the main goal here is
3558  * to save stack depth by doing the bulk of the work in a function
3559  * that doesn't call btrfs_search_slot
3560  */
3561 static noinline_for_stack int
3562 setup_items_for_insert(struct btrfs_trans_handle *trans,
3563                       struct btrfs_root *root, struct btrfs_path *path,
3564                       struct btrfs_key *cpu_key, u32 *data_size,
3565                       u32 total_data, u32 total_size, int nr)
3566 {
3567         struct btrfs_item *item;
3568         int i;
3569         u32 nritems;
3570         unsigned int data_end;
3571         struct btrfs_disk_key disk_key;
3572         int ret;
3573         struct extent_buffer *leaf;
3574         int slot;
3575
3576         leaf = path->nodes[0];
3577         slot = path->slots[0];
3578
3579         nritems = btrfs_header_nritems(leaf);
3580         data_end = leaf_data_end(root, leaf);
3581
3582         if (btrfs_leaf_free_space(root, leaf) < total_size) {
3583                 btrfs_print_leaf(root, leaf);
3584                 printk(KERN_CRIT "not enough freespace need %u have %d\n",
3585                        total_size, btrfs_leaf_free_space(root, leaf));
3586                 BUG();
3587         }
3588
3589         if (slot != nritems) {
3590                 unsigned int old_data = btrfs_item_end_nr(leaf, slot);
3591
3592                 if (old_data < data_end) {
3593                         btrfs_print_leaf(root, leaf);
3594                         printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
3595                                slot, old_data, data_end);
3596                         BUG_ON(1);
3597                 }
3598                 /*
3599                  * item0..itemN ... dataN.offset..dataN.size .. data0.size
3600                  */
3601                 /* first correct the data pointers */
3602                 WARN_ON(leaf->map_token);
3603                 for (i = slot; i < nritems; i++) {
3604                         u32 ioff;
3605
3606                         item = btrfs_item_nr(leaf, i);
3607                         if (!leaf->map_token) {
3608                                 map_extent_buffer(leaf, (unsigned long)item,
3609                                         sizeof(struct btrfs_item),
3610                                         &leaf->map_token, &leaf->kaddr,
3611                                         &leaf->map_start, &leaf->map_len,
3612                                         KM_USER1);
3613                         }
3614
3615                         ioff = btrfs_item_offset(leaf, item);
3616                         btrfs_set_item_offset(leaf, item, ioff - total_data);
3617                 }
3618                 if (leaf->map_token) {
3619                         unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
3620                         leaf->map_token = NULL;
3621                 }
3622
3623                 /* shift the items */
3624                 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
3625                               btrfs_item_nr_offset(slot),
3626                               (nritems - slot) * sizeof(struct btrfs_item));
3627
3628                 /* shift the data */
3629                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3630                               data_end - total_data, btrfs_leaf_data(leaf) +
3631                               data_end, old_data - data_end);
3632                 data_end = old_data;
3633         }
3634
3635         /* setup the item for the new data */
3636         for (i = 0; i < nr; i++) {
3637                 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
3638                 btrfs_set_item_key(leaf, &disk_key, slot + i);
3639                 item = btrfs_item_nr(leaf, slot + i);
3640                 btrfs_set_item_offset(leaf, item, data_end - data_size[i]);
3641                 data_end -= data_size[i];
3642                 btrfs_set_item_size(leaf, item, data_size[i]);
3643         }
3644
3645         btrfs_set_header_nritems(leaf, nritems + nr);
3646
3647         ret = 0;
3648         if (slot == 0) {
3649                 struct btrfs_disk_key disk_key;
3650                 btrfs_cpu_key_to_disk(&disk_key, cpu_key);
3651                 ret = fixup_low_keys(trans, root, path, &disk_key, 1);
3652         }
3653         btrfs_unlock_up_safe(path, 1);
3654         btrfs_mark_buffer_dirty(leaf);
3655
3656         if (btrfs_leaf_free_space(root, leaf) < 0) {
3657                 btrfs_print_leaf(root, leaf);
3658                 BUG();
3659         }
3660         return ret;
3661 }
3662
3663 /*
3664  * Given a key and some data, insert items into the tree.
3665  * This does all the path init required, making room in the tree if needed.
3666  */
3667 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
3668                             struct btrfs_root *root,
3669                             struct btrfs_path *path,
3670                             struct btrfs_key *cpu_key, u32 *data_size,
3671                             int nr)
3672 {
3673         struct extent_buffer *leaf;
3674         int ret = 0;
3675         int slot;
3676         int i;
3677         u32 total_size = 0;
3678         u32 total_data = 0;
3679
3680         for (i = 0; i < nr; i++)
3681                 total_data += data_size[i];
3682
3683         total_size = total_data + (nr * sizeof(struct btrfs_item));
3684         ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
3685         if (ret == 0)
3686                 return -EEXIST;
3687         if (ret < 0)
3688                 goto out;
3689
3690         leaf = path->nodes[0];
3691         slot = path->slots[0];
3692         BUG_ON(slot < 0);
3693
3694         ret = setup_items_for_insert(trans, root, path, cpu_key, data_size,
3695                                total_data, total_size, nr);
3696
3697 out:
3698         return ret;
3699 }
3700
3701 /*
3702  * Given a key and some data, insert an item into the tree.
3703  * This does all the path init required, making room in the tree if needed.
3704  */
3705 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
3706                       *root, struct btrfs_key *cpu_key, void *data, u32
3707                       data_size)
3708 {
3709         int ret = 0;
3710         struct btrfs_path *path;
3711         struct extent_buffer *leaf;
3712         unsigned long ptr;
3713
3714         path = btrfs_alloc_path();
3715         BUG_ON(!path);
3716         ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
3717         if (!ret) {
3718                 leaf = path->nodes[0];
3719                 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3720                 write_extent_buffer(leaf, data, ptr, data_size);
3721                 btrfs_mark_buffer_dirty(leaf);
3722         }
3723         btrfs_free_path(path);
3724         return ret;
3725 }
3726
3727 /*
3728  * delete the pointer from a given node.
3729  *
3730  * the tree should have been previously balanced so the deletion does not
3731  * empty a node.
3732  */
3733 static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3734                    struct btrfs_path *path, int level, int slot)
3735 {
3736         struct extent_buffer *parent = path->nodes[level];
3737         u32 nritems;
3738         int ret = 0;
3739         int wret;
3740
3741         nritems = btrfs_header_nritems(parent);
3742         if (slot != nritems - 1) {
3743                 memmove_extent_buffer(parent,
3744                               btrfs_node_key_ptr_offset(slot),
3745                               btrfs_node_key_ptr_offset(slot + 1),
3746                               sizeof(struct btrfs_key_ptr) *
3747                               (nritems - slot - 1));
3748         }
3749         nritems--;
3750         btrfs_set_header_nritems(parent, nritems);
3751         if (nritems == 0 && parent == root->node) {
3752                 BUG_ON(btrfs_header_level(root->node) != 1);
3753                 /* just turn the root into a leaf and break */
3754                 btrfs_set_header_level(root->node, 0);
3755         } else if (slot == 0) {
3756                 struct btrfs_disk_key disk_key;
3757
3758                 btrfs_node_key(parent, &disk_key, 0);
3759                 wret = fixup_low_keys(trans, root, path, &disk_key, level + 1);
3760                 if (wret)
3761                         ret = wret;
3762         }
3763         btrfs_mark_buffer_dirty(parent);
3764         return ret;
3765 }
3766
3767 /*
3768  * a helper function to delete the leaf pointed to by path->slots[1] and
3769  * path->nodes[1].
3770  *
3771  * This deletes the pointer in path->nodes[1] and frees the leaf
3772  * block extent.  zero is returned if it all worked out, < 0 otherwise.
3773  *
3774  * The path must have already been setup for deleting the leaf, including
3775  * all the proper balancing.  path->nodes[1] must be locked.
3776  */
3777 static noinline int btrfs_del_leaf(struct btrfs_trans_handle *trans,
3778                                    struct btrfs_root *root,
3779                                    struct btrfs_path *path,
3780                                    struct extent_buffer *leaf)
3781 {
3782         int ret;
3783
3784         WARN_ON(btrfs_header_generation(leaf) != trans->transid);
3785         ret = del_ptr(trans, root, path, 1, path->slots[1]);
3786         if (ret)
3787                 return ret;
3788
3789         /*
3790          * btrfs_free_extent is expensive, we want to make sure we
3791          * aren't holding any locks when we call it
3792          */
3793         btrfs_unlock_up_safe(path, 0);
3794
3795         ret = btrfs_free_tree_block(trans, root, leaf->start, leaf->len,
3796                                     0, root->root_key.objectid, 0);
3797         return ret;
3798 }
3799 /*
3800  * delete the item at the leaf level in path.  If that empties
3801  * the leaf, remove it from the tree
3802  */
3803 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3804                     struct btrfs_path *path, int slot, int nr)
3805 {
3806         struct extent_buffer *leaf;
3807         struct btrfs_item *item;
3808         int last_off;
3809         int dsize = 0;
3810         int ret = 0;
3811         int wret;
3812         int i;
3813         u32 nritems;
3814
3815         leaf = path->nodes[0];
3816         last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
3817
3818         for (i = 0; i < nr; i++)
3819                 dsize += btrfs_item_size_nr(leaf, slot + i);
3820
3821         nritems = btrfs_header_nritems(leaf);
3822
3823         if (slot + nr != nritems) {
3824                 int data_end = leaf_data_end(root, leaf);
3825
3826                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3827                               data_end + dsize,
3828                               btrfs_leaf_data(leaf) + data_end,
3829                               last_off - data_end);
3830
3831                 for (i = slot + nr; i < nritems; i++) {
3832                         u32 ioff;
3833
3834                         item = btrfs_item_nr(leaf, i);
3835                         if (!leaf->map_token) {
3836                                 map_extent_buffer(leaf, (unsigned long)item,
3837                                         sizeof(struct btrfs_item),
3838                                         &leaf->map_token, &leaf->kaddr,
3839                                         &leaf->map_start, &leaf->map_len,
3840                                         KM_USER1);
3841                         }
3842                         ioff = btrfs_item_offset(leaf, item);
3843                         btrfs_set_item_offset(leaf, item, ioff + dsize);
3844                 }
3845
3846                 if (leaf->map_token) {
3847                         unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
3848                         leaf->map_token = NULL;
3849                 }
3850
3851                 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
3852                               btrfs_item_nr_offset(slot + nr),
3853                               sizeof(struct btrfs_item) *
3854                               (nritems - slot - nr));
3855         }
3856         btrfs_set_header_nritems(leaf, nritems - nr);
3857         nritems -= nr;
3858
3859         /* delete the leaf if we've emptied it */
3860         if (nritems == 0) {
3861                 if (leaf == root->node) {
3862                         btrfs_set_header_level(leaf, 0);
3863                 } else {
3864                         ret = btrfs_del_leaf(trans, root, path, leaf);
3865                         BUG_ON(ret);
3866                 }
3867         } else {
3868                 int used = leaf_space_used(leaf, 0, nritems);
3869                 if (slot == 0) {
3870                         struct btrfs_disk_key disk_key;
3871
3872                         btrfs_item_key(leaf, &disk_key, 0);
3873                         wret = fixup_low_keys(trans, root, path,
3874                                               &disk_key, 1);
3875                         if (wret)
3876                                 ret = wret;
3877                 }
3878
3879                 /* delete the leaf if it is mostly empty */
3880                 if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) {
3881                         /* push_leaf_left fixes the path.
3882                          * make sure the path still points to our leaf
3883                          * for possible call to del_ptr below
3884                          */
3885                         slot = path->slots[1];
3886                         extent_buffer_get(leaf);
3887
3888                         btrfs_set_path_blocking(path);
3889                         wret = push_leaf_left(trans, root, path, 1, 1);
3890                         if (wret < 0 && wret != -ENOSPC)
3891                                 ret = wret;
3892
3893                         if (path->nodes[0] == leaf &&
3894                             btrfs_header_nritems(leaf)) {
3895                                 wret = push_leaf_right(trans, root, path, 1, 1);
3896                                 if (wret < 0 && wret != -ENOSPC)
3897                                         ret = wret;
3898                         }
3899
3900                         if (btrfs_header_nritems(leaf) == 0) {
3901                                 path->slots[1] = slot;
3902                                 ret = btrfs_del_leaf(trans, root, path, leaf);
3903                                 BUG_ON(ret);
3904                                 free_extent_buffer(leaf);
3905                         } else {
3906                                 /* if we're still in the path, make sure
3907                                  * we're dirty.  Otherwise, one of the
3908                                  * push_leaf functions must have already
3909                                  * dirtied this buffer
3910                                  */
3911                                 if (path->nodes[0] == leaf)
3912                                         btrfs_mark_buffer_dirty(leaf);
3913                                 free_extent_buffer(leaf);
3914                         }
3915                 } else {
3916                         btrfs_mark_buffer_dirty(leaf);
3917                 }
3918         }
3919         return ret;
3920 }
3921
3922 /*
3923  * search the tree again to find a leaf with lesser keys
3924  * returns 0 if it found something or 1 if there are no lesser leaves.
3925  * returns < 0 on io errors.
3926  *
3927  * This may release the path, and so you may lose any locks held at the
3928  * time you call it.
3929  */
3930 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
3931 {
3932         struct btrfs_key key;
3933         struct btrfs_disk_key found_key;
3934         int ret;
3935
3936         btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
3937
3938         if (key.offset > 0)
3939                 key.offset--;
3940         else if (key.type > 0)
3941                 key.type--;
3942         else if (key.objectid > 0)
3943                 key.objectid--;
3944         else
3945                 return 1;
3946
3947         btrfs_release_path(root, path);
3948         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3949         if (ret < 0)
3950                 return ret;
3951         btrfs_item_key(path->nodes[0], &found_key, 0);
3952         ret = comp_keys(&found_key, &key);
3953         if (ret < 0)
3954                 return 0;
3955         return 1;
3956 }
3957
3958 /*
3959  * A helper function to walk down the tree starting at min_key, and looking
3960  * for nodes or leaves that are either in cache or have a minimum
3961  * transaction id.  This is used by the btree defrag code, and tree logging
3962  *
3963  * This does not cow, but it does stuff the starting key it finds back
3964  * into min_key, so you can call btrfs_search_slot with cow=1 on the
3965  * key and get a writable path.
3966  *
3967  * This does lock as it descends, and path->keep_locks should be set
3968  * to 1 by the caller.
3969  *
3970  * This honors path->lowest_level to prevent descent past a given level
3971  * of the tree.
3972  *
3973  * min_trans indicates the oldest transaction that you are interested
3974  * in walking through.  Any nodes or leaves older than min_trans are
3975  * skipped over (without reading them).
3976  *
3977  * returns zero if something useful was found, < 0 on error and 1 if there
3978  * was nothing in the tree that matched the search criteria.
3979  */
3980 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
3981                          struct btrfs_key *max_key,
3982                          struct btrfs_path *path, int cache_only,
3983                          u64 min_trans)
3984 {
3985         struct extent_buffer *cur;
3986         struct btrfs_key found_key;
3987         int slot;
3988         int sret;
3989         u32 nritems;
3990         int level;
3991         int ret = 1;
3992
3993         WARN_ON(!path->keep_locks);
3994 again:
3995         cur = btrfs_lock_root_node(root);
3996         level = btrfs_header_level(cur);
3997         WARN_ON(path->nodes[level]);
3998         path->nodes[level] = cur;
3999         path->locks[level] = 1;
4000
4001         if (btrfs_header_generation(cur) < min_trans) {
4002                 ret = 1;
4003                 goto out;
4004         }
4005         while (1) {
4006                 nritems = btrfs_header_nritems(cur);
4007                 level = btrfs_header_level(cur);
4008                 sret = bin_search(cur, min_key, level, &slot);
4009
4010                 /* at the lowest level, we're done, setup the path and exit */
4011                 if (level == path->lowest_level) {
4012                         if (slot >= nritems)
4013                                 goto find_next_key;
4014                         ret = 0;
4015                         path->slots[level] = slot;
4016                         btrfs_item_key_to_cpu(cur, &found_key, slot);
4017                         goto out;
4018                 }
4019                 if (sret && slot > 0)
4020                         slot--;
4021                 /*
4022                  * check this node pointer against the cache_only and
4023                  * min_trans parameters.  If it isn't in cache or is too
4024                  * old, skip to the next one.
4025                  */
4026                 while (slot < nritems) {
4027                         u64 blockptr;
4028                         u64 gen;
4029                         struct extent_buffer *tmp;
4030                         struct btrfs_disk_key disk_key;
4031
4032                         blockptr = btrfs_node_blockptr(cur, slot);
4033                         gen = btrfs_node_ptr_generation(cur, slot);
4034                         if (gen < min_trans) {
4035                                 slot++;
4036                                 continue;
4037                         }
4038                         if (!cache_only)
4039                                 break;
4040
4041                         if (max_key) {
4042                                 btrfs_node_key(cur, &disk_key, slot);
4043                                 if (comp_keys(&disk_key, max_key) >= 0) {
4044                                         ret = 1;
4045                                         goto out;
4046                                 }
4047                         }
4048
4049                         tmp = btrfs_find_tree_block(root, blockptr,
4050                                             btrfs_level_size(root, level - 1));
4051
4052                         if (tmp && btrfs_buffer_uptodate(tmp, gen)) {
4053                                 free_extent_buffer(tmp);
4054                                 break;
4055                         }
4056                         if (tmp)
4057                                 free_extent_buffer(tmp);
4058                         slot++;
4059                 }
4060 find_next_key:
4061                 /*
4062                  * we didn't find a candidate key in this node, walk forward
4063                  * and find another one
4064                  */
4065                 if (slot >= nritems) {
4066                         path->slots[level] = slot;
4067                         btrfs_set_path_blocking(path);
4068                         sret = btrfs_find_next_key(root, path, min_key, level,
4069                                                   cache_only, min_trans);
4070                         if (sret == 0) {
4071                                 btrfs_release_path(root, path);
4072                                 goto again;
4073                         } else {
4074                                 goto out;
4075                         }
4076                 }
4077                 /* save our key for returning back */
4078                 btrfs_node_key_to_cpu(cur, &found_key, slot);
4079                 path->slots[level] = slot;
4080                 if (level == path->lowest_level) {
4081                         ret = 0;
4082                         unlock_up(path, level, 1);
4083                         goto out;
4084                 }
4085                 btrfs_set_path_blocking(path);
4086                 cur = read_node_slot(root, cur, slot);
4087
4088                 btrfs_tree_lock(cur);
4089
4090                 path->locks[level - 1] = 1;
4091                 path->nodes[level - 1] = cur;
4092                 unlock_up(path, level, 1);
4093                 btrfs_clear_path_blocking(path, NULL);
4094         }
4095 out:
4096         if (ret == 0)
4097                 memcpy(min_key, &found_key, sizeof(found_key));
4098         btrfs_set_path_blocking(path);
4099         return ret;
4100 }
4101
4102 /*
4103  * this is similar to btrfs_next_leaf, but does not try to preserve
4104  * and fixup the path.  It looks for and returns the next key in the
4105  * tree based on the current path and the cache_only and min_trans
4106  * parameters.
4107  *
4108  * 0 is returned if another key is found, < 0 if there are any errors
4109  * and 1 is returned if there are no higher keys in the tree
4110  *
4111  * path->keep_locks should be set to 1 on the search made before
4112  * calling this function.
4113  */
4114 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
4115                         struct btrfs_key *key, int level,
4116                         int cache_only, u64 min_trans)
4117 {
4118         int slot;
4119         struct extent_buffer *c;
4120
4121         WARN_ON(!path->keep_locks);
4122         while (level < BTRFS_MAX_LEVEL) {
4123                 if (!path->nodes[level])
4124                         return 1;
4125
4126                 slot = path->slots[level] + 1;
4127                 c = path->nodes[level];
4128 next:
4129                 if (slot >= btrfs_header_nritems(c)) {
4130                         int ret;
4131                         int orig_lowest;
4132                         struct btrfs_key cur_key;
4133                         if (level + 1 >= BTRFS_MAX_LEVEL ||
4134                             !path->nodes[level + 1])
4135                                 return 1;
4136
4137                         if (path->locks[level + 1]) {
4138                                 level++;
4139                                 continue;
4140                         }
4141
4142                         slot = btrfs_header_nritems(c) - 1;
4143                         if (level == 0)
4144                                 btrfs_item_key_to_cpu(c, &cur_key, slot);
4145                         else
4146                                 btrfs_node_key_to_cpu(c, &cur_key, slot);
4147
4148                         orig_lowest = path->lowest_level;
4149                         btrfs_release_path(root, path);
4150                         path->lowest_level = level;
4151                         ret = btrfs_search_slot(NULL, root, &cur_key, path,
4152                                                 0, 0);
4153                         path->lowest_level = orig_lowest;
4154                         if (ret < 0)
4155                                 return ret;
4156
4157                         c = path->nodes[level];
4158                         slot = path->slots[level];
4159                         if (ret == 0)
4160                                 slot++;
4161                         goto next;
4162                 }
4163
4164                 if (level == 0)
4165                         btrfs_item_key_to_cpu(c, key, slot);
4166                 else {
4167                         u64 blockptr = btrfs_node_blockptr(c, slot);
4168                         u64 gen = btrfs_node_ptr_generation(c, slot);
4169
4170                         if (cache_only) {
4171                                 struct extent_buffer *cur;
4172                                 cur = btrfs_find_tree_block(root, blockptr,
4173                                             btrfs_level_size(root, level - 1));
4174                                 if (!cur || !btrfs_buffer_uptodate(cur, gen)) {
4175                                         slot++;
4176                                         if (cur)
4177                                                 free_extent_buffer(cur);
4178                                         goto next;
4179                                 }
4180                                 free_extent_buffer(cur);
4181                         }
4182                         if (gen < min_trans) {
4183                                 slot++;
4184                                 goto next;
4185                         }
4186                         btrfs_node_key_to_cpu(c, key, slot);
4187                 }
4188                 return 0;
4189         }
4190         return 1;
4191 }
4192
4193 /*
4194  * search the tree again to find a leaf with greater keys
4195  * returns 0 if it found something or 1 if there are no greater leaves.
4196  * returns < 0 on io errors.
4197  */
4198 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
4199 {
4200         int slot;
4201         int level;
4202         struct extent_buffer *c;
4203         struct extent_buffer *next;
4204         struct btrfs_key key;
4205         u32 nritems;
4206         int ret;
4207         int old_spinning = path->leave_spinning;
4208         int force_blocking = 0;
4209
4210         nritems = btrfs_header_nritems(path->nodes[0]);
4211         if (nritems == 0)
4212                 return 1;
4213
4214         /*
4215          * we take the blocks in an order that upsets lockdep.  Using
4216          * blocking mode is the only way around it.
4217          */
4218 #ifdef CONFIG_DEBUG_LOCK_ALLOC
4219         force_blocking = 1;
4220 #endif
4221
4222         btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
4223 again:
4224         level = 1;
4225         next = NULL;
4226         btrfs_release_path(root, path);
4227
4228         path->keep_locks = 1;
4229
4230         if (!force_blocking)
4231                 path->leave_spinning = 1;
4232
4233         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4234         path->keep_locks = 0;
4235
4236         if (ret < 0)
4237                 return ret;
4238
4239         nritems = btrfs_header_nritems(path->nodes[0]);
4240         /*
4241          * by releasing the path above we dropped all our locks.  A balance
4242          * could have added more items next to the key that used to be
4243          * at the very end of the block.  So, check again here and
4244          * advance the path if there are now more items available.
4245          */
4246         if (nritems > 0 && path->slots[0] < nritems - 1) {
4247                 if (ret == 0)
4248                         path->slots[0]++;
4249                 ret = 0;
4250                 goto done;
4251         }
4252
4253         while (level < BTRFS_MAX_LEVEL) {
4254                 if (!path->nodes[level]) {
4255                         ret = 1;
4256                         goto done;
4257                 }
4258
4259                 slot = path->slots[level] + 1;
4260                 c = path->nodes[level];
4261                 if (slot >= btrfs_header_nritems(c)) {
4262                         level++;
4263                         if (level == BTRFS_MAX_LEVEL) {
4264                                 ret = 1;
4265                                 goto done;
4266                         }
4267                         continue;
4268                 }
4269
4270                 if (next) {
4271                         btrfs_tree_unlock(next);
4272                         free_extent_buffer(next);
4273                 }
4274
4275                 next = c;
4276                 ret = read_block_for_search(NULL, root, path, &next, level,
4277                                             slot, &key);
4278                 if (ret == -EAGAIN)
4279                         goto again;
4280
4281                 if (ret < 0) {
4282                         btrfs_release_path(root, path);
4283                         goto done;
4284                 }
4285
4286                 if (!path->skip_locking) {
4287                         ret = btrfs_try_spin_lock(next);
4288                         if (!ret) {
4289                                 btrfs_set_path_blocking(path);
4290                                 btrfs_tree_lock(next);
4291                                 if (!force_blocking)
4292                                         btrfs_clear_path_blocking(path, next);
4293                         }
4294                         if (force_blocking)
4295                                 btrfs_set_lock_blocking(next);
4296                 }
4297                 break;
4298         }
4299         path->slots[level] = slot;
4300         while (1) {
4301                 level--;
4302                 c = path->nodes[level];
4303                 if (path->locks[level])
4304                         btrfs_tree_unlock(c);
4305
4306                 free_extent_buffer(c);
4307                 path->nodes[level] = next;
4308                 path->slots[level] = 0;
4309                 if (!path->skip_locking)
4310                         path->locks[level] = 1;
4311
4312                 if (!level)
4313                         break;
4314
4315                 ret = read_block_for_search(NULL, root, path, &next, level,
4316                                             0, &key);
4317                 if (ret == -EAGAIN)
4318                         goto again;
4319
4320                 if (ret < 0) {
4321                         btrfs_release_path(root, path);
4322                         goto done;
4323                 }
4324
4325                 if (!path->skip_locking) {
4326                         btrfs_assert_tree_locked(path->nodes[level]);
4327                         ret = btrfs_try_spin_lock(next);
4328                         if (!ret) {
4329                                 btrfs_set_path_blocking(path);
4330                                 btrfs_tree_lock(next);
4331                                 if (!force_blocking)
4332                                         btrfs_clear_path_blocking(path, next);
4333                         }
4334                         if (force_blocking)
4335                                 btrfs_set_lock_blocking(next);
4336                 }
4337         }
4338         ret = 0;
4339 done:
4340         unlock_up(path, 0, 1);
4341         path->leave_spinning = old_spinning;
4342         if (!old_spinning)
4343                 btrfs_set_path_blocking(path);
4344
4345         return ret;
4346 }
4347
4348 /*
4349  * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
4350  * searching until it gets past min_objectid or finds an item of 'type'
4351  *
4352  * returns 0 if something is found, 1 if nothing was found and < 0 on error
4353  */
4354 int btrfs_previous_item(struct btrfs_root *root,
4355                         struct btrfs_path *path, u64 min_objectid,
4356                         int type)
4357 {
4358         struct btrfs_key found_key;
4359         struct extent_buffer *leaf;
4360         u32 nritems;
4361         int ret;
4362
4363         while (1) {
4364                 if (path->slots[0] == 0) {
4365                         btrfs_set_path_blocking(path);
4366                         ret = btrfs_prev_leaf(root, path);
4367                         if (ret != 0)
4368                                 return ret;
4369                 } else {
4370                         path->slots[0]--;
4371                 }
4372                 leaf = path->nodes[0];
4373                 nritems = btrfs_header_nritems(leaf);
4374                 if (nritems == 0)
4375                         return 1;
4376                 if (path->slots[0] == nritems)
4377                         path->slots[0]--;
4378
4379                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4380                 if (found_key.objectid < min_objectid)
4381                         break;
4382                 if (found_key.type == type)
4383                         return 0;
4384                 if (found_key.objectid == min_objectid &&
4385                     found_key.type < type)
4386                         break;
4387         }
4388         return 1;
4389 }