]> git.karo-electronics.de Git - linux-beck.git/blob - fs/btrfs/ctree.c
9d4ba3470c1737396ee756b9c96a6369ee3c1f69
[linux-beck.git] / fs / btrfs / ctree.c
1 /*
2  * Copyright (C) 2007,2008 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/sched.h>
20 #include "ctree.h"
21 #include "disk-io.h"
22 #include "transaction.h"
23 #include "print-tree.h"
24 #include "locking.h"
25
26 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
27                       *root, struct btrfs_path *path, int level);
28 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
29                       *root, struct btrfs_key *ins_key,
30                       struct btrfs_path *path, int data_size, int extend);
31 static int push_node_left(struct btrfs_trans_handle *trans,
32                           struct btrfs_root *root, struct extent_buffer *dst,
33                           struct extent_buffer *src, int empty);
34 static int balance_node_right(struct btrfs_trans_handle *trans,
35                               struct btrfs_root *root,
36                               struct extent_buffer *dst_buf,
37                               struct extent_buffer *src_buf);
38 static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
39                    struct btrfs_path *path, int level, int slot);
40 static int setup_items_for_insert(struct btrfs_trans_handle *trans,
41                         struct btrfs_root *root, struct btrfs_path *path,
42                         struct btrfs_key *cpu_key, u32 *data_size,
43                         u32 total_data, u32 total_size, int nr);
44
45
46 struct btrfs_path *btrfs_alloc_path(void)
47 {
48         struct btrfs_path *path;
49         path = kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
50         if (path)
51                 path->reada = 1;
52         return path;
53 }
54
55 /*
56  * set all locked nodes in the path to blocking locks.  This should
57  * be done before scheduling
58  */
59 noinline void btrfs_set_path_blocking(struct btrfs_path *p)
60 {
61         int i;
62         for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
63                 if (p->nodes[i] && p->locks[i])
64                         btrfs_set_lock_blocking(p->nodes[i]);
65         }
66 }
67
68 /*
69  * reset all the locked nodes in the patch to spinning locks.
70  *
71  * held is used to keep lockdep happy, when lockdep is enabled
72  * we set held to a blocking lock before we go around and
73  * retake all the spinlocks in the path.  You can safely use NULL
74  * for held
75  */
76 noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
77                                         struct extent_buffer *held)
78 {
79         int i;
80
81 #ifdef CONFIG_DEBUG_LOCK_ALLOC
82         /* lockdep really cares that we take all of these spinlocks
83          * in the right order.  If any of the locks in the path are not
84          * currently blocking, it is going to complain.  So, make really
85          * really sure by forcing the path to blocking before we clear
86          * the path blocking.
87          */
88         if (held)
89                 btrfs_set_lock_blocking(held);
90         btrfs_set_path_blocking(p);
91 #endif
92
93         for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
94                 if (p->nodes[i] && p->locks[i])
95                         btrfs_clear_lock_blocking(p->nodes[i]);
96         }
97
98 #ifdef CONFIG_DEBUG_LOCK_ALLOC
99         if (held)
100                 btrfs_clear_lock_blocking(held);
101 #endif
102 }
103
104 /* this also releases the path */
105 void btrfs_free_path(struct btrfs_path *p)
106 {
107         btrfs_release_path(NULL, p);
108         kmem_cache_free(btrfs_path_cachep, p);
109 }
110
111 /*
112  * path release drops references on the extent buffers in the path
113  * and it drops any locks held by this path
114  *
115  * It is safe to call this on paths that no locks or extent buffers held.
116  */
117 noinline void btrfs_release_path(struct btrfs_root *root, struct btrfs_path *p)
118 {
119         int i;
120
121         for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
122                 p->slots[i] = 0;
123                 if (!p->nodes[i])
124                         continue;
125                 if (p->locks[i]) {
126                         btrfs_tree_unlock(p->nodes[i]);
127                         p->locks[i] = 0;
128                 }
129                 free_extent_buffer(p->nodes[i]);
130                 p->nodes[i] = NULL;
131         }
132 }
133
134 /*
135  * safely gets a reference on the root node of a tree.  A lock
136  * is not taken, so a concurrent writer may put a different node
137  * at the root of the tree.  See btrfs_lock_root_node for the
138  * looping required.
139  *
140  * The extent buffer returned by this has a reference taken, so
141  * it won't disappear.  It may stop being the root of the tree
142  * at any time because there are no locks held.
143  */
144 struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
145 {
146         struct extent_buffer *eb;
147         spin_lock(&root->node_lock);
148         eb = root->node;
149         extent_buffer_get(eb);
150         spin_unlock(&root->node_lock);
151         return eb;
152 }
153
154 /* loop around taking references on and locking the root node of the
155  * tree until you end up with a lock on the root.  A locked buffer
156  * is returned, with a reference held.
157  */
158 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
159 {
160         struct extent_buffer *eb;
161
162         while (1) {
163                 eb = btrfs_root_node(root);
164                 btrfs_tree_lock(eb);
165
166                 spin_lock(&root->node_lock);
167                 if (eb == root->node) {
168                         spin_unlock(&root->node_lock);
169                         break;
170                 }
171                 spin_unlock(&root->node_lock);
172
173                 btrfs_tree_unlock(eb);
174                 free_extent_buffer(eb);
175         }
176         return eb;
177 }
178
179 /* cowonly root (everything not a reference counted cow subvolume), just get
180  * put onto a simple dirty list.  transaction.c walks this to make sure they
181  * get properly updated on disk.
182  */
183 static void add_root_to_dirty_list(struct btrfs_root *root)
184 {
185         if (root->track_dirty && list_empty(&root->dirty_list)) {
186                 list_add(&root->dirty_list,
187                          &root->fs_info->dirty_cowonly_roots);
188         }
189 }
190
191 /*
192  * used by snapshot creation to make a copy of a root for a tree with
193  * a given objectid.  The buffer with the new root node is returned in
194  * cow_ret, and this func returns zero on success or a negative error code.
195  */
196 int btrfs_copy_root(struct btrfs_trans_handle *trans,
197                       struct btrfs_root *root,
198                       struct extent_buffer *buf,
199                       struct extent_buffer **cow_ret, u64 new_root_objectid)
200 {
201         struct extent_buffer *cow;
202         u32 nritems;
203         int ret = 0;
204         int level;
205         struct btrfs_disk_key disk_key;
206
207         WARN_ON(root->ref_cows && trans->transid !=
208                 root->fs_info->running_transaction->transid);
209         WARN_ON(root->ref_cows && trans->transid != root->last_trans);
210
211         level = btrfs_header_level(buf);
212         nritems = btrfs_header_nritems(buf);
213         if (level == 0)
214                 btrfs_item_key(buf, &disk_key, 0);
215         else
216                 btrfs_node_key(buf, &disk_key, 0);
217
218         cow = btrfs_alloc_free_block(trans, root, buf->len, 0,
219                                      new_root_objectid, &disk_key, level,
220                                      buf->start, 0);
221         if (IS_ERR(cow))
222                 return PTR_ERR(cow);
223
224         copy_extent_buffer(cow, buf, 0, 0, cow->len);
225         btrfs_set_header_bytenr(cow, cow->start);
226         btrfs_set_header_generation(cow, trans->transid);
227         btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
228         btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
229                                      BTRFS_HEADER_FLAG_RELOC);
230         if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
231                 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
232         else
233                 btrfs_set_header_owner(cow, new_root_objectid);
234
235         write_extent_buffer(cow, root->fs_info->fsid,
236                             (unsigned long)btrfs_header_fsid(cow),
237                             BTRFS_FSID_SIZE);
238
239         WARN_ON(btrfs_header_generation(buf) > trans->transid);
240         if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
241                 ret = btrfs_inc_ref(trans, root, cow, 1);
242         else
243                 ret = btrfs_inc_ref(trans, root, cow, 0);
244
245         if (ret)
246                 return ret;
247
248         btrfs_mark_buffer_dirty(cow);
249         *cow_ret = cow;
250         return 0;
251 }
252
253 /*
254  * check if the tree block can be shared by multiple trees
255  */
256 int btrfs_block_can_be_shared(struct btrfs_root *root,
257                               struct extent_buffer *buf)
258 {
259         /*
260          * Tree blocks not in refernece counted trees and tree roots
261          * are never shared. If a block was allocated after the last
262          * snapshot and the block was not allocated by tree relocation,
263          * we know the block is not shared.
264          */
265         if (root->ref_cows &&
266             buf != root->node && buf != root->commit_root &&
267             (btrfs_header_generation(buf) <=
268              btrfs_root_last_snapshot(&root->root_item) ||
269              btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
270                 return 1;
271 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
272         if (root->ref_cows &&
273             btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
274                 return 1;
275 #endif
276         return 0;
277 }
278
279 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
280                                        struct btrfs_root *root,
281                                        struct extent_buffer *buf,
282                                        struct extent_buffer *cow)
283 {
284         u64 refs;
285         u64 owner;
286         u64 flags;
287         u64 new_flags = 0;
288         int ret;
289
290         /*
291          * Backrefs update rules:
292          *
293          * Always use full backrefs for extent pointers in tree block
294          * allocated by tree relocation.
295          *
296          * If a shared tree block is no longer referenced by its owner
297          * tree (btrfs_header_owner(buf) == root->root_key.objectid),
298          * use full backrefs for extent pointers in tree block.
299          *
300          * If a tree block is been relocating
301          * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
302          * use full backrefs for extent pointers in tree block.
303          * The reason for this is some operations (such as drop tree)
304          * are only allowed for blocks use full backrefs.
305          */
306
307         if (btrfs_block_can_be_shared(root, buf)) {
308                 ret = btrfs_lookup_extent_info(trans, root, buf->start,
309                                                buf->len, &refs, &flags);
310                 BUG_ON(ret);
311                 BUG_ON(refs == 0);
312         } else {
313                 refs = 1;
314                 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
315                     btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
316                         flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
317                 else
318                         flags = 0;
319         }
320
321         owner = btrfs_header_owner(buf);
322         BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
323                !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
324
325         if (refs > 1) {
326                 if ((owner == root->root_key.objectid ||
327                      root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
328                     !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
329                         ret = btrfs_inc_ref(trans, root, buf, 1);
330                         BUG_ON(ret);
331
332                         if (root->root_key.objectid ==
333                             BTRFS_TREE_RELOC_OBJECTID) {
334                                 ret = btrfs_dec_ref(trans, root, buf, 0);
335                                 BUG_ON(ret);
336                                 ret = btrfs_inc_ref(trans, root, cow, 1);
337                                 BUG_ON(ret);
338                         }
339                         new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
340                 } else {
341
342                         if (root->root_key.objectid ==
343                             BTRFS_TREE_RELOC_OBJECTID)
344                                 ret = btrfs_inc_ref(trans, root, cow, 1);
345                         else
346                                 ret = btrfs_inc_ref(trans, root, cow, 0);
347                         BUG_ON(ret);
348                 }
349                 if (new_flags != 0) {
350                         ret = btrfs_set_disk_extent_flags(trans, root,
351                                                           buf->start,
352                                                           buf->len,
353                                                           new_flags, 0);
354                         BUG_ON(ret);
355                 }
356         } else {
357                 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
358                         if (root->root_key.objectid ==
359                             BTRFS_TREE_RELOC_OBJECTID)
360                                 ret = btrfs_inc_ref(trans, root, cow, 1);
361                         else
362                                 ret = btrfs_inc_ref(trans, root, cow, 0);
363                         BUG_ON(ret);
364                         ret = btrfs_dec_ref(trans, root, buf, 1);
365                         BUG_ON(ret);
366                 }
367                 clean_tree_block(trans, root, buf);
368         }
369         return 0;
370 }
371
372 /*
373  * does the dirty work in cow of a single block.  The parent block (if
374  * supplied) is updated to point to the new cow copy.  The new buffer is marked
375  * dirty and returned locked.  If you modify the block it needs to be marked
376  * dirty again.
377  *
378  * search_start -- an allocation hint for the new block
379  *
380  * empty_size -- a hint that you plan on doing more cow.  This is the size in
381  * bytes the allocator should try to find free next to the block it returns.
382  * This is just a hint and may be ignored by the allocator.
383  */
384 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
385                              struct btrfs_root *root,
386                              struct extent_buffer *buf,
387                              struct extent_buffer *parent, int parent_slot,
388                              struct extent_buffer **cow_ret,
389                              u64 search_start, u64 empty_size)
390 {
391         struct btrfs_disk_key disk_key;
392         struct extent_buffer *cow;
393         int level;
394         int unlock_orig = 0;
395         u64 parent_start;
396
397         if (*cow_ret == buf)
398                 unlock_orig = 1;
399
400         btrfs_assert_tree_locked(buf);
401
402         WARN_ON(root->ref_cows && trans->transid !=
403                 root->fs_info->running_transaction->transid);
404         WARN_ON(root->ref_cows && trans->transid != root->last_trans);
405
406         level = btrfs_header_level(buf);
407
408         if (level == 0)
409                 btrfs_item_key(buf, &disk_key, 0);
410         else
411                 btrfs_node_key(buf, &disk_key, 0);
412
413         if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
414                 if (parent)
415                         parent_start = parent->start;
416                 else
417                         parent_start = 0;
418         } else
419                 parent_start = 0;
420
421         cow = btrfs_alloc_free_block(trans, root, buf->len, parent_start,
422                                      root->root_key.objectid, &disk_key,
423                                      level, search_start, empty_size);
424         if (IS_ERR(cow))
425                 return PTR_ERR(cow);
426
427         /* cow is set to blocking by btrfs_init_new_buffer */
428
429         copy_extent_buffer(cow, buf, 0, 0, cow->len);
430         btrfs_set_header_bytenr(cow, cow->start);
431         btrfs_set_header_generation(cow, trans->transid);
432         btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
433         btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
434                                      BTRFS_HEADER_FLAG_RELOC);
435         if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
436                 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
437         else
438                 btrfs_set_header_owner(cow, root->root_key.objectid);
439
440         write_extent_buffer(cow, root->fs_info->fsid,
441                             (unsigned long)btrfs_header_fsid(cow),
442                             BTRFS_FSID_SIZE);
443
444         update_ref_for_cow(trans, root, buf, cow);
445
446         if (buf == root->node) {
447                 WARN_ON(parent && parent != buf);
448                 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
449                     btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
450                         parent_start = buf->start;
451                 else
452                         parent_start = 0;
453
454                 spin_lock(&root->node_lock);
455                 root->node = cow;
456                 extent_buffer_get(cow);
457                 spin_unlock(&root->node_lock);
458
459                 btrfs_free_extent(trans, root, buf->start, buf->len,
460                                   parent_start, root->root_key.objectid,
461                                   level, 0);
462                 free_extent_buffer(buf);
463                 add_root_to_dirty_list(root);
464         } else {
465                 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
466                         parent_start = parent->start;
467                 else
468                         parent_start = 0;
469
470                 WARN_ON(trans->transid != btrfs_header_generation(parent));
471                 btrfs_set_node_blockptr(parent, parent_slot,
472                                         cow->start);
473                 btrfs_set_node_ptr_generation(parent, parent_slot,
474                                               trans->transid);
475                 btrfs_mark_buffer_dirty(parent);
476                 btrfs_free_extent(trans, root, buf->start, buf->len,
477                                   parent_start, root->root_key.objectid,
478                                   level, 0);
479         }
480         if (unlock_orig)
481                 btrfs_tree_unlock(buf);
482         free_extent_buffer(buf);
483         btrfs_mark_buffer_dirty(cow);
484         *cow_ret = cow;
485         return 0;
486 }
487
488 static inline int should_cow_block(struct btrfs_trans_handle *trans,
489                                    struct btrfs_root *root,
490                                    struct extent_buffer *buf)
491 {
492         if (btrfs_header_generation(buf) == trans->transid &&
493             !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
494             !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
495               btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
496                 return 0;
497         return 1;
498 }
499
500 /*
501  * cows a single block, see __btrfs_cow_block for the real work.
502  * This version of it has extra checks so that a block isn't cow'd more than
503  * once per transaction, as long as it hasn't been written yet
504  */
505 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
506                     struct btrfs_root *root, struct extent_buffer *buf,
507                     struct extent_buffer *parent, int parent_slot,
508                     struct extent_buffer **cow_ret)
509 {
510         u64 search_start;
511         int ret;
512
513         if (trans->transaction != root->fs_info->running_transaction) {
514                 printk(KERN_CRIT "trans %llu running %llu\n",
515                        (unsigned long long)trans->transid,
516                        (unsigned long long)
517                        root->fs_info->running_transaction->transid);
518                 WARN_ON(1);
519         }
520         if (trans->transid != root->fs_info->generation) {
521                 printk(KERN_CRIT "trans %llu running %llu\n",
522                        (unsigned long long)trans->transid,
523                        (unsigned long long)root->fs_info->generation);
524                 WARN_ON(1);
525         }
526
527         if (!should_cow_block(trans, root, buf)) {
528                 *cow_ret = buf;
529                 return 0;
530         }
531
532         search_start = buf->start & ~((u64)(1024 * 1024 * 1024) - 1);
533
534         if (parent)
535                 btrfs_set_lock_blocking(parent);
536         btrfs_set_lock_blocking(buf);
537
538         ret = __btrfs_cow_block(trans, root, buf, parent,
539                                  parent_slot, cow_ret, search_start, 0);
540         return ret;
541 }
542
543 /*
544  * helper function for defrag to decide if two blocks pointed to by a
545  * node are actually close by
546  */
547 static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
548 {
549         if (blocknr < other && other - (blocknr + blocksize) < 32768)
550                 return 1;
551         if (blocknr > other && blocknr - (other + blocksize) < 32768)
552                 return 1;
553         return 0;
554 }
555
556 /*
557  * compare two keys in a memcmp fashion
558  */
559 static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
560 {
561         struct btrfs_key k1;
562
563         btrfs_disk_key_to_cpu(&k1, disk);
564
565         return btrfs_comp_cpu_keys(&k1, k2);
566 }
567
568 /*
569  * same as comp_keys only with two btrfs_key's
570  */
571 int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2)
572 {
573         if (k1->objectid > k2->objectid)
574                 return 1;
575         if (k1->objectid < k2->objectid)
576                 return -1;
577         if (k1->type > k2->type)
578                 return 1;
579         if (k1->type < k2->type)
580                 return -1;
581         if (k1->offset > k2->offset)
582                 return 1;
583         if (k1->offset < k2->offset)
584                 return -1;
585         return 0;
586 }
587
588 /*
589  * this is used by the defrag code to go through all the
590  * leaves pointed to by a node and reallocate them so that
591  * disk order is close to key order
592  */
593 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
594                        struct btrfs_root *root, struct extent_buffer *parent,
595                        int start_slot, int cache_only, u64 *last_ret,
596                        struct btrfs_key *progress)
597 {
598         struct extent_buffer *cur;
599         u64 blocknr;
600         u64 gen;
601         u64 search_start = *last_ret;
602         u64 last_block = 0;
603         u64 other;
604         u32 parent_nritems;
605         int end_slot;
606         int i;
607         int err = 0;
608         int parent_level;
609         int uptodate;
610         u32 blocksize;
611         int progress_passed = 0;
612         struct btrfs_disk_key disk_key;
613
614         parent_level = btrfs_header_level(parent);
615         if (cache_only && parent_level != 1)
616                 return 0;
617
618         if (trans->transaction != root->fs_info->running_transaction)
619                 WARN_ON(1);
620         if (trans->transid != root->fs_info->generation)
621                 WARN_ON(1);
622
623         parent_nritems = btrfs_header_nritems(parent);
624         blocksize = btrfs_level_size(root, parent_level - 1);
625         end_slot = parent_nritems;
626
627         if (parent_nritems == 1)
628                 return 0;
629
630         btrfs_set_lock_blocking(parent);
631
632         for (i = start_slot; i < end_slot; i++) {
633                 int close = 1;
634
635                 if (!parent->map_token) {
636                         map_extent_buffer(parent,
637                                         btrfs_node_key_ptr_offset(i),
638                                         sizeof(struct btrfs_key_ptr),
639                                         &parent->map_token, &parent->kaddr,
640                                         &parent->map_start, &parent->map_len,
641                                         KM_USER1);
642                 }
643                 btrfs_node_key(parent, &disk_key, i);
644                 if (!progress_passed && comp_keys(&disk_key, progress) < 0)
645                         continue;
646
647                 progress_passed = 1;
648                 blocknr = btrfs_node_blockptr(parent, i);
649                 gen = btrfs_node_ptr_generation(parent, i);
650                 if (last_block == 0)
651                         last_block = blocknr;
652
653                 if (i > 0) {
654                         other = btrfs_node_blockptr(parent, i - 1);
655                         close = close_blocks(blocknr, other, blocksize);
656                 }
657                 if (!close && i < end_slot - 2) {
658                         other = btrfs_node_blockptr(parent, i + 1);
659                         close = close_blocks(blocknr, other, blocksize);
660                 }
661                 if (close) {
662                         last_block = blocknr;
663                         continue;
664                 }
665                 if (parent->map_token) {
666                         unmap_extent_buffer(parent, parent->map_token,
667                                             KM_USER1);
668                         parent->map_token = NULL;
669                 }
670
671                 cur = btrfs_find_tree_block(root, blocknr, blocksize);
672                 if (cur)
673                         uptodate = btrfs_buffer_uptodate(cur, gen);
674                 else
675                         uptodate = 0;
676                 if (!cur || !uptodate) {
677                         if (cache_only) {
678                                 free_extent_buffer(cur);
679                                 continue;
680                         }
681                         if (!cur) {
682                                 cur = read_tree_block(root, blocknr,
683                                                          blocksize, gen);
684                         } else if (!uptodate) {
685                                 btrfs_read_buffer(cur, gen);
686                         }
687                 }
688                 if (search_start == 0)
689                         search_start = last_block;
690
691                 btrfs_tree_lock(cur);
692                 btrfs_set_lock_blocking(cur);
693                 err = __btrfs_cow_block(trans, root, cur, parent, i,
694                                         &cur, search_start,
695                                         min(16 * blocksize,
696                                             (end_slot - i) * blocksize));
697                 if (err) {
698                         btrfs_tree_unlock(cur);
699                         free_extent_buffer(cur);
700                         break;
701                 }
702                 search_start = cur->start;
703                 last_block = cur->start;
704                 *last_ret = search_start;
705                 btrfs_tree_unlock(cur);
706                 free_extent_buffer(cur);
707         }
708         if (parent->map_token) {
709                 unmap_extent_buffer(parent, parent->map_token,
710                                     KM_USER1);
711                 parent->map_token = NULL;
712         }
713         return err;
714 }
715
716 /*
717  * The leaf data grows from end-to-front in the node.
718  * this returns the address of the start of the last item,
719  * which is the stop of the leaf data stack
720  */
721 static inline unsigned int leaf_data_end(struct btrfs_root *root,
722                                          struct extent_buffer *leaf)
723 {
724         u32 nr = btrfs_header_nritems(leaf);
725         if (nr == 0)
726                 return BTRFS_LEAF_DATA_SIZE(root);
727         return btrfs_item_offset_nr(leaf, nr - 1);
728 }
729
730 /*
731  * extra debugging checks to make sure all the items in a key are
732  * well formed and in the proper order
733  */
734 static int check_node(struct btrfs_root *root, struct btrfs_path *path,
735                       int level)
736 {
737         struct extent_buffer *parent = NULL;
738         struct extent_buffer *node = path->nodes[level];
739         struct btrfs_disk_key parent_key;
740         struct btrfs_disk_key node_key;
741         int parent_slot;
742         int slot;
743         struct btrfs_key cpukey;
744         u32 nritems = btrfs_header_nritems(node);
745
746         if (path->nodes[level + 1])
747                 parent = path->nodes[level + 1];
748
749         slot = path->slots[level];
750         BUG_ON(nritems == 0);
751         if (parent) {
752                 parent_slot = path->slots[level + 1];
753                 btrfs_node_key(parent, &parent_key, parent_slot);
754                 btrfs_node_key(node, &node_key, 0);
755                 BUG_ON(memcmp(&parent_key, &node_key,
756                               sizeof(struct btrfs_disk_key)));
757                 BUG_ON(btrfs_node_blockptr(parent, parent_slot) !=
758                        btrfs_header_bytenr(node));
759         }
760         BUG_ON(nritems > BTRFS_NODEPTRS_PER_BLOCK(root));
761         if (slot != 0) {
762                 btrfs_node_key_to_cpu(node, &cpukey, slot - 1);
763                 btrfs_node_key(node, &node_key, slot);
764                 BUG_ON(comp_keys(&node_key, &cpukey) <= 0);
765         }
766         if (slot < nritems - 1) {
767                 btrfs_node_key_to_cpu(node, &cpukey, slot + 1);
768                 btrfs_node_key(node, &node_key, slot);
769                 BUG_ON(comp_keys(&node_key, &cpukey) >= 0);
770         }
771         return 0;
772 }
773
774 /*
775  * extra checking to make sure all the items in a leaf are
776  * well formed and in the proper order
777  */
778 static int check_leaf(struct btrfs_root *root, struct btrfs_path *path,
779                       int level)
780 {
781         struct extent_buffer *leaf = path->nodes[level];
782         struct extent_buffer *parent = NULL;
783         int parent_slot;
784         struct btrfs_key cpukey;
785         struct btrfs_disk_key parent_key;
786         struct btrfs_disk_key leaf_key;
787         int slot = path->slots[0];
788
789         u32 nritems = btrfs_header_nritems(leaf);
790
791         if (path->nodes[level + 1])
792                 parent = path->nodes[level + 1];
793
794         if (nritems == 0)
795                 return 0;
796
797         if (parent) {
798                 parent_slot = path->slots[level + 1];
799                 btrfs_node_key(parent, &parent_key, parent_slot);
800                 btrfs_item_key(leaf, &leaf_key, 0);
801
802                 BUG_ON(memcmp(&parent_key, &leaf_key,
803                        sizeof(struct btrfs_disk_key)));
804                 BUG_ON(btrfs_node_blockptr(parent, parent_slot) !=
805                        btrfs_header_bytenr(leaf));
806         }
807         if (slot != 0 && slot < nritems - 1) {
808                 btrfs_item_key(leaf, &leaf_key, slot);
809                 btrfs_item_key_to_cpu(leaf, &cpukey, slot - 1);
810                 if (comp_keys(&leaf_key, &cpukey) <= 0) {
811                         btrfs_print_leaf(root, leaf);
812                         printk(KERN_CRIT "slot %d offset bad key\n", slot);
813                         BUG_ON(1);
814                 }
815                 if (btrfs_item_offset_nr(leaf, slot - 1) !=
816                        btrfs_item_end_nr(leaf, slot)) {
817                         btrfs_print_leaf(root, leaf);
818                         printk(KERN_CRIT "slot %d offset bad\n", slot);
819                         BUG_ON(1);
820                 }
821         }
822         if (slot < nritems - 1) {
823                 btrfs_item_key(leaf, &leaf_key, slot);
824                 btrfs_item_key_to_cpu(leaf, &cpukey, slot + 1);
825                 BUG_ON(comp_keys(&leaf_key, &cpukey) >= 0);
826                 if (btrfs_item_offset_nr(leaf, slot) !=
827                         btrfs_item_end_nr(leaf, slot + 1)) {
828                         btrfs_print_leaf(root, leaf);
829                         printk(KERN_CRIT "slot %d offset bad\n", slot);
830                         BUG_ON(1);
831                 }
832         }
833         BUG_ON(btrfs_item_offset_nr(leaf, 0) +
834                btrfs_item_size_nr(leaf, 0) != BTRFS_LEAF_DATA_SIZE(root));
835         return 0;
836 }
837
838 static noinline int check_block(struct btrfs_root *root,
839                                 struct btrfs_path *path, int level)
840 {
841         return 0;
842         if (level == 0)
843                 return check_leaf(root, path, level);
844         return check_node(root, path, level);
845 }
846
847 /*
848  * search for key in the extent_buffer.  The items start at offset p,
849  * and they are item_size apart.  There are 'max' items in p.
850  *
851  * the slot in the array is returned via slot, and it points to
852  * the place where you would insert key if it is not found in
853  * the array.
854  *
855  * slot may point to max if the key is bigger than all of the keys
856  */
857 static noinline int generic_bin_search(struct extent_buffer *eb,
858                                        unsigned long p,
859                                        int item_size, struct btrfs_key *key,
860                                        int max, int *slot)
861 {
862         int low = 0;
863         int high = max;
864         int mid;
865         int ret;
866         struct btrfs_disk_key *tmp = NULL;
867         struct btrfs_disk_key unaligned;
868         unsigned long offset;
869         char *map_token = NULL;
870         char *kaddr = NULL;
871         unsigned long map_start = 0;
872         unsigned long map_len = 0;
873         int err;
874
875         while (low < high) {
876                 mid = (low + high) / 2;
877                 offset = p + mid * item_size;
878
879                 if (!map_token || offset < map_start ||
880                     (offset + sizeof(struct btrfs_disk_key)) >
881                     map_start + map_len) {
882                         if (map_token) {
883                                 unmap_extent_buffer(eb, map_token, KM_USER0);
884                                 map_token = NULL;
885                         }
886
887                         err = map_private_extent_buffer(eb, offset,
888                                                 sizeof(struct btrfs_disk_key),
889                                                 &map_token, &kaddr,
890                                                 &map_start, &map_len, KM_USER0);
891
892                         if (!err) {
893                                 tmp = (struct btrfs_disk_key *)(kaddr + offset -
894                                                         map_start);
895                         } else {
896                                 read_extent_buffer(eb, &unaligned,
897                                                    offset, sizeof(unaligned));
898                                 tmp = &unaligned;
899                         }
900
901                 } else {
902                         tmp = (struct btrfs_disk_key *)(kaddr + offset -
903                                                         map_start);
904                 }
905                 ret = comp_keys(tmp, key);
906
907                 if (ret < 0)
908                         low = mid + 1;
909                 else if (ret > 0)
910                         high = mid;
911                 else {
912                         *slot = mid;
913                         if (map_token)
914                                 unmap_extent_buffer(eb, map_token, KM_USER0);
915                         return 0;
916                 }
917         }
918         *slot = low;
919         if (map_token)
920                 unmap_extent_buffer(eb, map_token, KM_USER0);
921         return 1;
922 }
923
924 /*
925  * simple bin_search frontend that does the right thing for
926  * leaves vs nodes
927  */
928 static int bin_search(struct extent_buffer *eb, struct btrfs_key *key,
929                       int level, int *slot)
930 {
931         if (level == 0) {
932                 return generic_bin_search(eb,
933                                           offsetof(struct btrfs_leaf, items),
934                                           sizeof(struct btrfs_item),
935                                           key, btrfs_header_nritems(eb),
936                                           slot);
937         } else {
938                 return generic_bin_search(eb,
939                                           offsetof(struct btrfs_node, ptrs),
940                                           sizeof(struct btrfs_key_ptr),
941                                           key, btrfs_header_nritems(eb),
942                                           slot);
943         }
944         return -1;
945 }
946
947 int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key,
948                      int level, int *slot)
949 {
950         return bin_search(eb, key, level, slot);
951 }
952
953 /* given a node and slot number, this reads the blocks it points to.  The
954  * extent buffer is returned with a reference taken (but unlocked).
955  * NULL is returned on error.
956  */
957 static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root,
958                                    struct extent_buffer *parent, int slot)
959 {
960         int level = btrfs_header_level(parent);
961         if (slot < 0)
962                 return NULL;
963         if (slot >= btrfs_header_nritems(parent))
964                 return NULL;
965
966         BUG_ON(level == 0);
967
968         return read_tree_block(root, btrfs_node_blockptr(parent, slot),
969                        btrfs_level_size(root, level - 1),
970                        btrfs_node_ptr_generation(parent, slot));
971 }
972
973 /*
974  * node level balancing, used to make sure nodes are in proper order for
975  * item deletion.  We balance from the top down, so we have to make sure
976  * that a deletion won't leave an node completely empty later on.
977  */
978 static noinline int balance_level(struct btrfs_trans_handle *trans,
979                          struct btrfs_root *root,
980                          struct btrfs_path *path, int level)
981 {
982         struct extent_buffer *right = NULL;
983         struct extent_buffer *mid;
984         struct extent_buffer *left = NULL;
985         struct extent_buffer *parent = NULL;
986         int ret = 0;
987         int wret;
988         int pslot;
989         int orig_slot = path->slots[level];
990         int err_on_enospc = 0;
991         u64 orig_ptr;
992
993         if (level == 0)
994                 return 0;
995
996         mid = path->nodes[level];
997
998         WARN_ON(!path->locks[level]);
999         WARN_ON(btrfs_header_generation(mid) != trans->transid);
1000
1001         orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1002
1003         if (level < BTRFS_MAX_LEVEL - 1)
1004                 parent = path->nodes[level + 1];
1005         pslot = path->slots[level + 1];
1006
1007         /*
1008          * deal with the case where there is only one pointer in the root
1009          * by promoting the node below to a root
1010          */
1011         if (!parent) {
1012                 struct extent_buffer *child;
1013
1014                 if (btrfs_header_nritems(mid) != 1)
1015                         return 0;
1016
1017                 /* promote the child to a root */
1018                 child = read_node_slot(root, mid, 0);
1019                 BUG_ON(!child);
1020                 btrfs_tree_lock(child);
1021                 btrfs_set_lock_blocking(child);
1022                 ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
1023                 BUG_ON(ret);
1024
1025                 spin_lock(&root->node_lock);
1026                 root->node = child;
1027                 spin_unlock(&root->node_lock);
1028
1029                 add_root_to_dirty_list(root);
1030                 btrfs_tree_unlock(child);
1031
1032                 path->locks[level] = 0;
1033                 path->nodes[level] = NULL;
1034                 clean_tree_block(trans, root, mid);
1035                 btrfs_tree_unlock(mid);
1036                 /* once for the path */
1037                 free_extent_buffer(mid);
1038                 ret = btrfs_free_extent(trans, root, mid->start, mid->len,
1039                                         0, root->root_key.objectid, level, 1);
1040                 /* once for the root ptr */
1041                 free_extent_buffer(mid);
1042                 return ret;
1043         }
1044         if (btrfs_header_nritems(mid) >
1045             BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
1046                 return 0;
1047
1048         if (btrfs_header_nritems(mid) < 2)
1049                 err_on_enospc = 1;
1050
1051         left = read_node_slot(root, parent, pslot - 1);
1052         if (left) {
1053                 btrfs_tree_lock(left);
1054                 btrfs_set_lock_blocking(left);
1055                 wret = btrfs_cow_block(trans, root, left,
1056                                        parent, pslot - 1, &left);
1057                 if (wret) {
1058                         ret = wret;
1059                         goto enospc;
1060                 }
1061         }
1062         right = read_node_slot(root, parent, pslot + 1);
1063         if (right) {
1064                 btrfs_tree_lock(right);
1065                 btrfs_set_lock_blocking(right);
1066                 wret = btrfs_cow_block(trans, root, right,
1067                                        parent, pslot + 1, &right);
1068                 if (wret) {
1069                         ret = wret;
1070                         goto enospc;
1071                 }
1072         }
1073
1074         /* first, try to make some room in the middle buffer */
1075         if (left) {
1076                 orig_slot += btrfs_header_nritems(left);
1077                 wret = push_node_left(trans, root, left, mid, 1);
1078                 if (wret < 0)
1079                         ret = wret;
1080                 if (btrfs_header_nritems(mid) < 2)
1081                         err_on_enospc = 1;
1082         }
1083
1084         /*
1085          * then try to empty the right most buffer into the middle
1086          */
1087         if (right) {
1088                 wret = push_node_left(trans, root, mid, right, 1);
1089                 if (wret < 0 && wret != -ENOSPC)
1090                         ret = wret;
1091                 if (btrfs_header_nritems(right) == 0) {
1092                         u64 bytenr = right->start;
1093                         u32 blocksize = right->len;
1094
1095                         clean_tree_block(trans, root, right);
1096                         btrfs_tree_unlock(right);
1097                         free_extent_buffer(right);
1098                         right = NULL;
1099                         wret = del_ptr(trans, root, path, level + 1, pslot +
1100                                        1);
1101                         if (wret)
1102                                 ret = wret;
1103                         wret = btrfs_free_extent(trans, root, bytenr,
1104                                                  blocksize, 0,
1105                                                  root->root_key.objectid,
1106                                                  level, 0);
1107                         if (wret)
1108                                 ret = wret;
1109                 } else {
1110                         struct btrfs_disk_key right_key;
1111                         btrfs_node_key(right, &right_key, 0);
1112                         btrfs_set_node_key(parent, &right_key, pslot + 1);
1113                         btrfs_mark_buffer_dirty(parent);
1114                 }
1115         }
1116         if (btrfs_header_nritems(mid) == 1) {
1117                 /*
1118                  * we're not allowed to leave a node with one item in the
1119                  * tree during a delete.  A deletion from lower in the tree
1120                  * could try to delete the only pointer in this node.
1121                  * So, pull some keys from the left.
1122                  * There has to be a left pointer at this point because
1123                  * otherwise we would have pulled some pointers from the
1124                  * right
1125                  */
1126                 BUG_ON(!left);
1127                 wret = balance_node_right(trans, root, mid, left);
1128                 if (wret < 0) {
1129                         ret = wret;
1130                         goto enospc;
1131                 }
1132                 if (wret == 1) {
1133                         wret = push_node_left(trans, root, left, mid, 1);
1134                         if (wret < 0)
1135                                 ret = wret;
1136                 }
1137                 BUG_ON(wret == 1);
1138         }
1139         if (btrfs_header_nritems(mid) == 0) {
1140                 /* we've managed to empty the middle node, drop it */
1141                 u64 bytenr = mid->start;
1142                 u32 blocksize = mid->len;
1143
1144                 clean_tree_block(trans, root, mid);
1145                 btrfs_tree_unlock(mid);
1146                 free_extent_buffer(mid);
1147                 mid = NULL;
1148                 wret = del_ptr(trans, root, path, level + 1, pslot);
1149                 if (wret)
1150                         ret = wret;
1151                 wret = btrfs_free_extent(trans, root, bytenr, blocksize,
1152                                          0, root->root_key.objectid,
1153                                          level, 0);
1154                 if (wret)
1155                         ret = wret;
1156         } else {
1157                 /* update the parent key to reflect our changes */
1158                 struct btrfs_disk_key mid_key;
1159                 btrfs_node_key(mid, &mid_key, 0);
1160                 btrfs_set_node_key(parent, &mid_key, pslot);
1161                 btrfs_mark_buffer_dirty(parent);
1162         }
1163
1164         /* update the path */
1165         if (left) {
1166                 if (btrfs_header_nritems(left) > orig_slot) {
1167                         extent_buffer_get(left);
1168                         /* left was locked after cow */
1169                         path->nodes[level] = left;
1170                         path->slots[level + 1] -= 1;
1171                         path->slots[level] = orig_slot;
1172                         if (mid) {
1173                                 btrfs_tree_unlock(mid);
1174                                 free_extent_buffer(mid);
1175                         }
1176                 } else {
1177                         orig_slot -= btrfs_header_nritems(left);
1178                         path->slots[level] = orig_slot;
1179                 }
1180         }
1181         /* double check we haven't messed things up */
1182         check_block(root, path, level);
1183         if (orig_ptr !=
1184             btrfs_node_blockptr(path->nodes[level], path->slots[level]))
1185                 BUG();
1186 enospc:
1187         if (right) {
1188                 btrfs_tree_unlock(right);
1189                 free_extent_buffer(right);
1190         }
1191         if (left) {
1192                 if (path->nodes[level] != left)
1193                         btrfs_tree_unlock(left);
1194                 free_extent_buffer(left);
1195         }
1196         return ret;
1197 }
1198
1199 /* Node balancing for insertion.  Here we only split or push nodes around
1200  * when they are completely full.  This is also done top down, so we
1201  * have to be pessimistic.
1202  */
1203 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
1204                                           struct btrfs_root *root,
1205                                           struct btrfs_path *path, int level)
1206 {
1207         struct extent_buffer *right = NULL;
1208         struct extent_buffer *mid;
1209         struct extent_buffer *left = NULL;
1210         struct extent_buffer *parent = NULL;
1211         int ret = 0;
1212         int wret;
1213         int pslot;
1214         int orig_slot = path->slots[level];
1215         u64 orig_ptr;
1216
1217         if (level == 0)
1218                 return 1;
1219
1220         mid = path->nodes[level];
1221         WARN_ON(btrfs_header_generation(mid) != trans->transid);
1222         orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1223
1224         if (level < BTRFS_MAX_LEVEL - 1)
1225                 parent = path->nodes[level + 1];
1226         pslot = path->slots[level + 1];
1227
1228         if (!parent)
1229                 return 1;
1230
1231         left = read_node_slot(root, parent, pslot - 1);
1232
1233         /* first, try to make some room in the middle buffer */
1234         if (left) {
1235                 u32 left_nr;
1236
1237                 btrfs_tree_lock(left);
1238                 btrfs_set_lock_blocking(left);
1239
1240                 left_nr = btrfs_header_nritems(left);
1241                 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
1242                         wret = 1;
1243                 } else {
1244                         ret = btrfs_cow_block(trans, root, left, parent,
1245                                               pslot - 1, &left);
1246                         if (ret)
1247                                 wret = 1;
1248                         else {
1249                                 wret = push_node_left(trans, root,
1250                                                       left, mid, 0);
1251                         }
1252                 }
1253                 if (wret < 0)
1254                         ret = wret;
1255                 if (wret == 0) {
1256                         struct btrfs_disk_key disk_key;
1257                         orig_slot += left_nr;
1258                         btrfs_node_key(mid, &disk_key, 0);
1259                         btrfs_set_node_key(parent, &disk_key, pslot);
1260                         btrfs_mark_buffer_dirty(parent);
1261                         if (btrfs_header_nritems(left) > orig_slot) {
1262                                 path->nodes[level] = left;
1263                                 path->slots[level + 1] -= 1;
1264                                 path->slots[level] = orig_slot;
1265                                 btrfs_tree_unlock(mid);
1266                                 free_extent_buffer(mid);
1267                         } else {
1268                                 orig_slot -=
1269                                         btrfs_header_nritems(left);
1270                                 path->slots[level] = orig_slot;
1271                                 btrfs_tree_unlock(left);
1272                                 free_extent_buffer(left);
1273                         }
1274                         return 0;
1275                 }
1276                 btrfs_tree_unlock(left);
1277                 free_extent_buffer(left);
1278         }
1279         right = read_node_slot(root, parent, pslot + 1);
1280
1281         /*
1282          * then try to empty the right most buffer into the middle
1283          */
1284         if (right) {
1285                 u32 right_nr;
1286
1287                 btrfs_tree_lock(right);
1288                 btrfs_set_lock_blocking(right);
1289
1290                 right_nr = btrfs_header_nritems(right);
1291                 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
1292                         wret = 1;
1293                 } else {
1294                         ret = btrfs_cow_block(trans, root, right,
1295                                               parent, pslot + 1,
1296                                               &right);
1297                         if (ret)
1298                                 wret = 1;
1299                         else {
1300                                 wret = balance_node_right(trans, root,
1301                                                           right, mid);
1302                         }
1303                 }
1304                 if (wret < 0)
1305                         ret = wret;
1306                 if (wret == 0) {
1307                         struct btrfs_disk_key disk_key;
1308
1309                         btrfs_node_key(right, &disk_key, 0);
1310                         btrfs_set_node_key(parent, &disk_key, pslot + 1);
1311                         btrfs_mark_buffer_dirty(parent);
1312
1313                         if (btrfs_header_nritems(mid) <= orig_slot) {
1314                                 path->nodes[level] = right;
1315                                 path->slots[level + 1] += 1;
1316                                 path->slots[level] = orig_slot -
1317                                         btrfs_header_nritems(mid);
1318                                 btrfs_tree_unlock(mid);
1319                                 free_extent_buffer(mid);
1320                         } else {
1321                                 btrfs_tree_unlock(right);
1322                                 free_extent_buffer(right);
1323                         }
1324                         return 0;
1325                 }
1326                 btrfs_tree_unlock(right);
1327                 free_extent_buffer(right);
1328         }
1329         return 1;
1330 }
1331
1332 /*
1333  * readahead one full node of leaves, finding things that are close
1334  * to the block in 'slot', and triggering ra on them.
1335  */
1336 static void reada_for_search(struct btrfs_root *root,
1337                              struct btrfs_path *path,
1338                              int level, int slot, u64 objectid)
1339 {
1340         struct extent_buffer *node;
1341         struct btrfs_disk_key disk_key;
1342         u32 nritems;
1343         u64 search;
1344         u64 target;
1345         u64 nread = 0;
1346         int direction = path->reada;
1347         struct extent_buffer *eb;
1348         u32 nr;
1349         u32 blocksize;
1350         u32 nscan = 0;
1351
1352         if (level != 1)
1353                 return;
1354
1355         if (!path->nodes[level])
1356                 return;
1357
1358         node = path->nodes[level];
1359
1360         search = btrfs_node_blockptr(node, slot);
1361         blocksize = btrfs_level_size(root, level - 1);
1362         eb = btrfs_find_tree_block(root, search, blocksize);
1363         if (eb) {
1364                 free_extent_buffer(eb);
1365                 return;
1366         }
1367
1368         target = search;
1369
1370         nritems = btrfs_header_nritems(node);
1371         nr = slot;
1372         while (1) {
1373                 if (direction < 0) {
1374                         if (nr == 0)
1375                                 break;
1376                         nr--;
1377                 } else if (direction > 0) {
1378                         nr++;
1379                         if (nr >= nritems)
1380                                 break;
1381                 }
1382                 if (path->reada < 0 && objectid) {
1383                         btrfs_node_key(node, &disk_key, nr);
1384                         if (btrfs_disk_key_objectid(&disk_key) != objectid)
1385                                 break;
1386                 }
1387                 search = btrfs_node_blockptr(node, nr);
1388                 if ((search <= target && target - search <= 65536) ||
1389                     (search > target && search - target <= 65536)) {
1390                         readahead_tree_block(root, search, blocksize,
1391                                      btrfs_node_ptr_generation(node, nr));
1392                         nread += blocksize;
1393                 }
1394                 nscan++;
1395                 if ((nread > 65536 || nscan > 32))
1396                         break;
1397         }
1398 }
1399
1400 /*
1401  * returns -EAGAIN if it had to drop the path, or zero if everything was in
1402  * cache
1403  */
1404 static noinline int reada_for_balance(struct btrfs_root *root,
1405                                       struct btrfs_path *path, int level)
1406 {
1407         int slot;
1408         int nritems;
1409         struct extent_buffer *parent;
1410         struct extent_buffer *eb;
1411         u64 gen;
1412         u64 block1 = 0;
1413         u64 block2 = 0;
1414         int ret = 0;
1415         int blocksize;
1416
1417         parent = path->nodes[level + 1];
1418         if (!parent)
1419                 return 0;
1420
1421         nritems = btrfs_header_nritems(parent);
1422         slot = path->slots[level + 1];
1423         blocksize = btrfs_level_size(root, level);
1424
1425         if (slot > 0) {
1426                 block1 = btrfs_node_blockptr(parent, slot - 1);
1427                 gen = btrfs_node_ptr_generation(parent, slot - 1);
1428                 eb = btrfs_find_tree_block(root, block1, blocksize);
1429                 if (eb && btrfs_buffer_uptodate(eb, gen))
1430                         block1 = 0;
1431                 free_extent_buffer(eb);
1432         }
1433         if (slot + 1 < nritems) {
1434                 block2 = btrfs_node_blockptr(parent, slot + 1);
1435                 gen = btrfs_node_ptr_generation(parent, slot + 1);
1436                 eb = btrfs_find_tree_block(root, block2, blocksize);
1437                 if (eb && btrfs_buffer_uptodate(eb, gen))
1438                         block2 = 0;
1439                 free_extent_buffer(eb);
1440         }
1441         if (block1 || block2) {
1442                 ret = -EAGAIN;
1443
1444                 /* release the whole path */
1445                 btrfs_release_path(root, path);
1446
1447                 /* read the blocks */
1448                 if (block1)
1449                         readahead_tree_block(root, block1, blocksize, 0);
1450                 if (block2)
1451                         readahead_tree_block(root, block2, blocksize, 0);
1452
1453                 if (block1) {
1454                         eb = read_tree_block(root, block1, blocksize, 0);
1455                         free_extent_buffer(eb);
1456                 }
1457                 if (block2) {
1458                         eb = read_tree_block(root, block2, blocksize, 0);
1459                         free_extent_buffer(eb);
1460                 }
1461         }
1462         return ret;
1463 }
1464
1465
1466 /*
1467  * when we walk down the tree, it is usually safe to unlock the higher layers
1468  * in the tree.  The exceptions are when our path goes through slot 0, because
1469  * operations on the tree might require changing key pointers higher up in the
1470  * tree.
1471  *
1472  * callers might also have set path->keep_locks, which tells this code to keep
1473  * the lock if the path points to the last slot in the block.  This is part of
1474  * walking through the tree, and selecting the next slot in the higher block.
1475  *
1476  * lowest_unlock sets the lowest level in the tree we're allowed to unlock.  so
1477  * if lowest_unlock is 1, level 0 won't be unlocked
1478  */
1479 static noinline void unlock_up(struct btrfs_path *path, int level,
1480                                int lowest_unlock)
1481 {
1482         int i;
1483         int skip_level = level;
1484         int no_skips = 0;
1485         struct extent_buffer *t;
1486
1487         for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1488                 if (!path->nodes[i])
1489                         break;
1490                 if (!path->locks[i])
1491                         break;
1492                 if (!no_skips && path->slots[i] == 0) {
1493                         skip_level = i + 1;
1494                         continue;
1495                 }
1496                 if (!no_skips && path->keep_locks) {
1497                         u32 nritems;
1498                         t = path->nodes[i];
1499                         nritems = btrfs_header_nritems(t);
1500                         if (nritems < 1 || path->slots[i] >= nritems - 1) {
1501                                 skip_level = i + 1;
1502                                 continue;
1503                         }
1504                 }
1505                 if (skip_level < i && i >= lowest_unlock)
1506                         no_skips = 1;
1507
1508                 t = path->nodes[i];
1509                 if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
1510                         btrfs_tree_unlock(t);
1511                         path->locks[i] = 0;
1512                 }
1513         }
1514 }
1515
1516 /*
1517  * This releases any locks held in the path starting at level and
1518  * going all the way up to the root.
1519  *
1520  * btrfs_search_slot will keep the lock held on higher nodes in a few
1521  * corner cases, such as COW of the block at slot zero in the node.  This
1522  * ignores those rules, and it should only be called when there are no
1523  * more updates to be done higher up in the tree.
1524  */
1525 noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
1526 {
1527         int i;
1528
1529         if (path->keep_locks)
1530                 return;
1531
1532         for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1533                 if (!path->nodes[i])
1534                         continue;
1535                 if (!path->locks[i])
1536                         continue;
1537                 btrfs_tree_unlock(path->nodes[i]);
1538                 path->locks[i] = 0;
1539         }
1540 }
1541
1542 /*
1543  * helper function for btrfs_search_slot.  The goal is to find a block
1544  * in cache without setting the path to blocking.  If we find the block
1545  * we return zero and the path is unchanged.
1546  *
1547  * If we can't find the block, we set the path blocking and do some
1548  * reada.  -EAGAIN is returned and the search must be repeated.
1549  */
1550 static int
1551 read_block_for_search(struct btrfs_trans_handle *trans,
1552                        struct btrfs_root *root, struct btrfs_path *p,
1553                        struct extent_buffer **eb_ret, int level, int slot,
1554                        struct btrfs_key *key)
1555 {
1556         u64 blocknr;
1557         u64 gen;
1558         u32 blocksize;
1559         struct extent_buffer *b = *eb_ret;
1560         struct extent_buffer *tmp;
1561         int ret;
1562
1563         blocknr = btrfs_node_blockptr(b, slot);
1564         gen = btrfs_node_ptr_generation(b, slot);
1565         blocksize = btrfs_level_size(root, level - 1);
1566
1567         tmp = btrfs_find_tree_block(root, blocknr, blocksize);
1568         if (tmp && btrfs_buffer_uptodate(tmp, gen)) {
1569                 /*
1570                  * we found an up to date block without sleeping, return
1571                  * right away
1572                  */
1573                 *eb_ret = tmp;
1574                 return 0;
1575         }
1576
1577         /*
1578          * reduce lock contention at high levels
1579          * of the btree by dropping locks before
1580          * we read.  Don't release the lock on the current
1581          * level because we need to walk this node to figure
1582          * out which blocks to read.
1583          */
1584         btrfs_unlock_up_safe(p, level + 1);
1585         btrfs_set_path_blocking(p);
1586
1587         if (tmp)
1588                 free_extent_buffer(tmp);
1589         if (p->reada)
1590                 reada_for_search(root, p, level, slot, key->objectid);
1591
1592         btrfs_release_path(NULL, p);
1593
1594         ret = -EAGAIN;
1595         tmp = read_tree_block(root, blocknr, blocksize, gen);
1596         if (tmp) {
1597                 /*
1598                  * If the read above didn't mark this buffer up to date,
1599                  * it will never end up being up to date.  Set ret to EIO now
1600                  * and give up so that our caller doesn't loop forever
1601                  * on our EAGAINs.
1602                  */
1603                 if (!btrfs_buffer_uptodate(tmp, 0))
1604                         ret = -EIO;
1605                 free_extent_buffer(tmp);
1606         }
1607         return ret;
1608 }
1609
1610 /*
1611  * helper function for btrfs_search_slot.  This does all of the checks
1612  * for node-level blocks and does any balancing required based on
1613  * the ins_len.
1614  *
1615  * If no extra work was required, zero is returned.  If we had to
1616  * drop the path, -EAGAIN is returned and btrfs_search_slot must
1617  * start over
1618  */
1619 static int
1620 setup_nodes_for_search(struct btrfs_trans_handle *trans,
1621                        struct btrfs_root *root, struct btrfs_path *p,
1622                        struct extent_buffer *b, int level, int ins_len)
1623 {
1624         int ret;
1625         if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
1626             BTRFS_NODEPTRS_PER_BLOCK(root) - 3) {
1627                 int sret;
1628
1629                 sret = reada_for_balance(root, p, level);
1630                 if (sret)
1631                         goto again;
1632
1633                 btrfs_set_path_blocking(p);
1634                 sret = split_node(trans, root, p, level);
1635                 btrfs_clear_path_blocking(p, NULL);
1636
1637                 BUG_ON(sret > 0);
1638                 if (sret) {
1639                         ret = sret;
1640                         goto done;
1641                 }
1642                 b = p->nodes[level];
1643         } else if (ins_len < 0 && btrfs_header_nritems(b) <
1644                    BTRFS_NODEPTRS_PER_BLOCK(root) / 2) {
1645                 int sret;
1646
1647                 sret = reada_for_balance(root, p, level);
1648                 if (sret)
1649                         goto again;
1650
1651                 btrfs_set_path_blocking(p);
1652                 sret = balance_level(trans, root, p, level);
1653                 btrfs_clear_path_blocking(p, NULL);
1654
1655                 if (sret) {
1656                         ret = sret;
1657                         goto done;
1658                 }
1659                 b = p->nodes[level];
1660                 if (!b) {
1661                         btrfs_release_path(NULL, p);
1662                         goto again;
1663                 }
1664                 BUG_ON(btrfs_header_nritems(b) == 1);
1665         }
1666         return 0;
1667
1668 again:
1669         ret = -EAGAIN;
1670 done:
1671         return ret;
1672 }
1673
1674 /*
1675  * look for key in the tree.  path is filled in with nodes along the way
1676  * if key is found, we return zero and you can find the item in the leaf
1677  * level of the path (level 0)
1678  *
1679  * If the key isn't found, the path points to the slot where it should
1680  * be inserted, and 1 is returned.  If there are other errors during the
1681  * search a negative error number is returned.
1682  *
1683  * if ins_len > 0, nodes and leaves will be split as we walk down the
1684  * tree.  if ins_len < 0, nodes will be merged as we walk down the tree (if
1685  * possible)
1686  */
1687 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
1688                       *root, struct btrfs_key *key, struct btrfs_path *p, int
1689                       ins_len, int cow)
1690 {
1691         struct extent_buffer *b;
1692         int slot;
1693         int ret;
1694         int err;
1695         int level;
1696         int lowest_unlock = 1;
1697         u8 lowest_level = 0;
1698
1699         lowest_level = p->lowest_level;
1700         WARN_ON(lowest_level && ins_len > 0);
1701         WARN_ON(p->nodes[0] != NULL);
1702
1703         if (ins_len < 0)
1704                 lowest_unlock = 2;
1705
1706 again:
1707         if (p->search_commit_root) {
1708                 b = root->commit_root;
1709                 extent_buffer_get(b);
1710                 if (!p->skip_locking)
1711                         btrfs_tree_lock(b);
1712         } else {
1713                 if (p->skip_locking)
1714                         b = btrfs_root_node(root);
1715                 else
1716                         b = btrfs_lock_root_node(root);
1717         }
1718
1719         while (b) {
1720                 level = btrfs_header_level(b);
1721
1722                 /*
1723                  * setup the path here so we can release it under lock
1724                  * contention with the cow code
1725                  */
1726                 p->nodes[level] = b;
1727                 if (!p->skip_locking)
1728                         p->locks[level] = 1;
1729
1730                 if (cow) {
1731                         /*
1732                          * if we don't really need to cow this block
1733                          * then we don't want to set the path blocking,
1734                          * so we test it here
1735                          */
1736                         if (!should_cow_block(trans, root, b))
1737                                 goto cow_done;
1738
1739                         btrfs_set_path_blocking(p);
1740
1741                         err = btrfs_cow_block(trans, root, b,
1742                                               p->nodes[level + 1],
1743                                               p->slots[level + 1], &b);
1744                         if (err) {
1745                                 free_extent_buffer(b);
1746                                 ret = err;
1747                                 goto done;
1748                         }
1749                 }
1750 cow_done:
1751                 BUG_ON(!cow && ins_len);
1752                 if (level != btrfs_header_level(b))
1753                         WARN_ON(1);
1754                 level = btrfs_header_level(b);
1755
1756                 p->nodes[level] = b;
1757                 if (!p->skip_locking)
1758                         p->locks[level] = 1;
1759
1760                 btrfs_clear_path_blocking(p, NULL);
1761
1762                 /*
1763                  * we have a lock on b and as long as we aren't changing
1764                  * the tree, there is no way to for the items in b to change.
1765                  * It is safe to drop the lock on our parent before we
1766                  * go through the expensive btree search on b.
1767                  *
1768                  * If cow is true, then we might be changing slot zero,
1769                  * which may require changing the parent.  So, we can't
1770                  * drop the lock until after we know which slot we're
1771                  * operating on.
1772                  */
1773                 if (!cow)
1774                         btrfs_unlock_up_safe(p, level + 1);
1775
1776                 ret = check_block(root, p, level);
1777                 if (ret) {
1778                         ret = -1;
1779                         goto done;
1780                 }
1781
1782                 ret = bin_search(b, key, level, &slot);
1783
1784                 if (level != 0) {
1785                         int dec = 0;
1786                         if (ret && slot > 0) {
1787                                 dec = 1;
1788                                 slot -= 1;
1789                         }
1790                         p->slots[level] = slot;
1791                         err = setup_nodes_for_search(trans, root, p, b, level,
1792                                                      ins_len);
1793                         if (err == -EAGAIN)
1794                                 goto again;
1795                         if (err) {
1796                                 ret = err;
1797                                 goto done;
1798                         }
1799                         b = p->nodes[level];
1800                         slot = p->slots[level];
1801
1802                         unlock_up(p, level, lowest_unlock);
1803
1804                         if (level == lowest_level) {
1805                                 if (dec)
1806                                         p->slots[level]++;
1807                                 goto done;
1808                         }
1809
1810                         err = read_block_for_search(trans, root, p,
1811                                                     &b, level, slot, key);
1812                         if (err == -EAGAIN)
1813                                 goto again;
1814                         if (err) {
1815                                 ret = err;
1816                                 goto done;
1817                         }
1818
1819                         if (!p->skip_locking) {
1820                                 btrfs_clear_path_blocking(p, NULL);
1821                                 err = btrfs_try_spin_lock(b);
1822
1823                                 if (!err) {
1824                                         btrfs_set_path_blocking(p);
1825                                         btrfs_tree_lock(b);
1826                                         btrfs_clear_path_blocking(p, b);
1827                                 }
1828                         }
1829                 } else {
1830                         p->slots[level] = slot;
1831                         if (ins_len > 0 &&
1832                             btrfs_leaf_free_space(root, b) < ins_len) {
1833                                 btrfs_set_path_blocking(p);
1834                                 err = split_leaf(trans, root, key,
1835                                                  p, ins_len, ret == 0);
1836                                 btrfs_clear_path_blocking(p, NULL);
1837
1838                                 BUG_ON(err > 0);
1839                                 if (err) {
1840                                         ret = err;
1841                                         goto done;
1842                                 }
1843                         }
1844                         if (!p->search_for_split)
1845                                 unlock_up(p, level, lowest_unlock);
1846                         goto done;
1847                 }
1848         }
1849         ret = 1;
1850 done:
1851         /*
1852          * we don't really know what they plan on doing with the path
1853          * from here on, so for now just mark it as blocking
1854          */
1855         if (!p->leave_spinning)
1856                 btrfs_set_path_blocking(p);
1857         if (ret < 0)
1858                 btrfs_release_path(root, p);
1859         return ret;
1860 }
1861
1862 /*
1863  * adjust the pointers going up the tree, starting at level
1864  * making sure the right key of each node is points to 'key'.
1865  * This is used after shifting pointers to the left, so it stops
1866  * fixing up pointers when a given leaf/node is not in slot 0 of the
1867  * higher levels
1868  *
1869  * If this fails to write a tree block, it returns -1, but continues
1870  * fixing up the blocks in ram so the tree is consistent.
1871  */
1872 static int fixup_low_keys(struct btrfs_trans_handle *trans,
1873                           struct btrfs_root *root, struct btrfs_path *path,
1874                           struct btrfs_disk_key *key, int level)
1875 {
1876         int i;
1877         int ret = 0;
1878         struct extent_buffer *t;
1879
1880         for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1881                 int tslot = path->slots[i];
1882                 if (!path->nodes[i])
1883                         break;
1884                 t = path->nodes[i];
1885                 btrfs_set_node_key(t, key, tslot);
1886                 btrfs_mark_buffer_dirty(path->nodes[i]);
1887                 if (tslot != 0)
1888                         break;
1889         }
1890         return ret;
1891 }
1892
1893 /*
1894  * update item key.
1895  *
1896  * This function isn't completely safe. It's the caller's responsibility
1897  * that the new key won't break the order
1898  */
1899 int btrfs_set_item_key_safe(struct btrfs_trans_handle *trans,
1900                             struct btrfs_root *root, struct btrfs_path *path,
1901                             struct btrfs_key *new_key)
1902 {
1903         struct btrfs_disk_key disk_key;
1904         struct extent_buffer *eb;
1905         int slot;
1906
1907         eb = path->nodes[0];
1908         slot = path->slots[0];
1909         if (slot > 0) {
1910                 btrfs_item_key(eb, &disk_key, slot - 1);
1911                 if (comp_keys(&disk_key, new_key) >= 0)
1912                         return -1;
1913         }
1914         if (slot < btrfs_header_nritems(eb) - 1) {
1915                 btrfs_item_key(eb, &disk_key, slot + 1);
1916                 if (comp_keys(&disk_key, new_key) <= 0)
1917                         return -1;
1918         }
1919
1920         btrfs_cpu_key_to_disk(&disk_key, new_key);
1921         btrfs_set_item_key(eb, &disk_key, slot);
1922         btrfs_mark_buffer_dirty(eb);
1923         if (slot == 0)
1924                 fixup_low_keys(trans, root, path, &disk_key, 1);
1925         return 0;
1926 }
1927
1928 /*
1929  * try to push data from one node into the next node left in the
1930  * tree.
1931  *
1932  * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
1933  * error, and > 0 if there was no room in the left hand block.
1934  */
1935 static int push_node_left(struct btrfs_trans_handle *trans,
1936                           struct btrfs_root *root, struct extent_buffer *dst,
1937                           struct extent_buffer *src, int empty)
1938 {
1939         int push_items = 0;
1940         int src_nritems;
1941         int dst_nritems;
1942         int ret = 0;
1943
1944         src_nritems = btrfs_header_nritems(src);
1945         dst_nritems = btrfs_header_nritems(dst);
1946         push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
1947         WARN_ON(btrfs_header_generation(src) != trans->transid);
1948         WARN_ON(btrfs_header_generation(dst) != trans->transid);
1949
1950         if (!empty && src_nritems <= 8)
1951                 return 1;
1952
1953         if (push_items <= 0)
1954                 return 1;
1955
1956         if (empty) {
1957                 push_items = min(src_nritems, push_items);
1958                 if (push_items < src_nritems) {
1959                         /* leave at least 8 pointers in the node if
1960                          * we aren't going to empty it
1961                          */
1962                         if (src_nritems - push_items < 8) {
1963                                 if (push_items <= 8)
1964                                         return 1;
1965                                 push_items -= 8;
1966                         }
1967                 }
1968         } else
1969                 push_items = min(src_nritems - 8, push_items);
1970
1971         copy_extent_buffer(dst, src,
1972                            btrfs_node_key_ptr_offset(dst_nritems),
1973                            btrfs_node_key_ptr_offset(0),
1974                            push_items * sizeof(struct btrfs_key_ptr));
1975
1976         if (push_items < src_nritems) {
1977                 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
1978                                       btrfs_node_key_ptr_offset(push_items),
1979                                       (src_nritems - push_items) *
1980                                       sizeof(struct btrfs_key_ptr));
1981         }
1982         btrfs_set_header_nritems(src, src_nritems - push_items);
1983         btrfs_set_header_nritems(dst, dst_nritems + push_items);
1984         btrfs_mark_buffer_dirty(src);
1985         btrfs_mark_buffer_dirty(dst);
1986
1987         return ret;
1988 }
1989
1990 /*
1991  * try to push data from one node into the next node right in the
1992  * tree.
1993  *
1994  * returns 0 if some ptrs were pushed, < 0 if there was some horrible
1995  * error, and > 0 if there was no room in the right hand block.
1996  *
1997  * this will  only push up to 1/2 the contents of the left node over
1998  */
1999 static int balance_node_right(struct btrfs_trans_handle *trans,
2000                               struct btrfs_root *root,
2001                               struct extent_buffer *dst,
2002                               struct extent_buffer *src)
2003 {
2004         int push_items = 0;
2005         int max_push;
2006         int src_nritems;
2007         int dst_nritems;
2008         int ret = 0;
2009
2010         WARN_ON(btrfs_header_generation(src) != trans->transid);
2011         WARN_ON(btrfs_header_generation(dst) != trans->transid);
2012
2013         src_nritems = btrfs_header_nritems(src);
2014         dst_nritems = btrfs_header_nritems(dst);
2015         push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
2016         if (push_items <= 0)
2017                 return 1;
2018
2019         if (src_nritems < 4)
2020                 return 1;
2021
2022         max_push = src_nritems / 2 + 1;
2023         /* don't try to empty the node */
2024         if (max_push >= src_nritems)
2025                 return 1;
2026
2027         if (max_push < push_items)
2028                 push_items = max_push;
2029
2030         memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
2031                                       btrfs_node_key_ptr_offset(0),
2032                                       (dst_nritems) *
2033                                       sizeof(struct btrfs_key_ptr));
2034
2035         copy_extent_buffer(dst, src,
2036                            btrfs_node_key_ptr_offset(0),
2037                            btrfs_node_key_ptr_offset(src_nritems - push_items),
2038                            push_items * sizeof(struct btrfs_key_ptr));
2039
2040         btrfs_set_header_nritems(src, src_nritems - push_items);
2041         btrfs_set_header_nritems(dst, dst_nritems + push_items);
2042
2043         btrfs_mark_buffer_dirty(src);
2044         btrfs_mark_buffer_dirty(dst);
2045
2046         return ret;
2047 }
2048
2049 /*
2050  * helper function to insert a new root level in the tree.
2051  * A new node is allocated, and a single item is inserted to
2052  * point to the existing root
2053  *
2054  * returns zero on success or < 0 on failure.
2055  */
2056 static noinline int insert_new_root(struct btrfs_trans_handle *trans,
2057                            struct btrfs_root *root,
2058                            struct btrfs_path *path, int level)
2059 {
2060         u64 lower_gen;
2061         struct extent_buffer *lower;
2062         struct extent_buffer *c;
2063         struct extent_buffer *old;
2064         struct btrfs_disk_key lower_key;
2065
2066         BUG_ON(path->nodes[level]);
2067         BUG_ON(path->nodes[level-1] != root->node);
2068
2069         lower = path->nodes[level-1];
2070         if (level == 1)
2071                 btrfs_item_key(lower, &lower_key, 0);
2072         else
2073                 btrfs_node_key(lower, &lower_key, 0);
2074
2075         c = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
2076                                    root->root_key.objectid, &lower_key,
2077                                    level, root->node->start, 0);
2078         if (IS_ERR(c))
2079                 return PTR_ERR(c);
2080
2081         memset_extent_buffer(c, 0, 0, sizeof(struct btrfs_header));
2082         btrfs_set_header_nritems(c, 1);
2083         btrfs_set_header_level(c, level);
2084         btrfs_set_header_bytenr(c, c->start);
2085         btrfs_set_header_generation(c, trans->transid);
2086         btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV);
2087         btrfs_set_header_owner(c, root->root_key.objectid);
2088
2089         write_extent_buffer(c, root->fs_info->fsid,
2090                             (unsigned long)btrfs_header_fsid(c),
2091                             BTRFS_FSID_SIZE);
2092
2093         write_extent_buffer(c, root->fs_info->chunk_tree_uuid,
2094                             (unsigned long)btrfs_header_chunk_tree_uuid(c),
2095                             BTRFS_UUID_SIZE);
2096
2097         btrfs_set_node_key(c, &lower_key, 0);
2098         btrfs_set_node_blockptr(c, 0, lower->start);
2099         lower_gen = btrfs_header_generation(lower);
2100         WARN_ON(lower_gen != trans->transid);
2101
2102         btrfs_set_node_ptr_generation(c, 0, lower_gen);
2103
2104         btrfs_mark_buffer_dirty(c);
2105
2106         spin_lock(&root->node_lock);
2107         old = root->node;
2108         root->node = c;
2109         spin_unlock(&root->node_lock);
2110
2111         /* the super has an extra ref to root->node */
2112         free_extent_buffer(old);
2113
2114         add_root_to_dirty_list(root);
2115         extent_buffer_get(c);
2116         path->nodes[level] = c;
2117         path->locks[level] = 1;
2118         path->slots[level] = 0;
2119         return 0;
2120 }
2121
2122 /*
2123  * worker function to insert a single pointer in a node.
2124  * the node should have enough room for the pointer already
2125  *
2126  * slot and level indicate where you want the key to go, and
2127  * blocknr is the block the key points to.
2128  *
2129  * returns zero on success and < 0 on any error
2130  */
2131 static int insert_ptr(struct btrfs_trans_handle *trans, struct btrfs_root
2132                       *root, struct btrfs_path *path, struct btrfs_disk_key
2133                       *key, u64 bytenr, int slot, int level)
2134 {
2135         struct extent_buffer *lower;
2136         int nritems;
2137
2138         BUG_ON(!path->nodes[level]);
2139         lower = path->nodes[level];
2140         nritems = btrfs_header_nritems(lower);
2141         BUG_ON(slot > nritems);
2142         if (nritems == BTRFS_NODEPTRS_PER_BLOCK(root))
2143                 BUG();
2144         if (slot != nritems) {
2145                 memmove_extent_buffer(lower,
2146                               btrfs_node_key_ptr_offset(slot + 1),
2147                               btrfs_node_key_ptr_offset(slot),
2148                               (nritems - slot) * sizeof(struct btrfs_key_ptr));
2149         }
2150         btrfs_set_node_key(lower, key, slot);
2151         btrfs_set_node_blockptr(lower, slot, bytenr);
2152         WARN_ON(trans->transid == 0);
2153         btrfs_set_node_ptr_generation(lower, slot, trans->transid);
2154         btrfs_set_header_nritems(lower, nritems + 1);
2155         btrfs_mark_buffer_dirty(lower);
2156         return 0;
2157 }
2158
2159 /*
2160  * split the node at the specified level in path in two.
2161  * The path is corrected to point to the appropriate node after the split
2162  *
2163  * Before splitting this tries to make some room in the node by pushing
2164  * left and right, if either one works, it returns right away.
2165  *
2166  * returns 0 on success and < 0 on failure
2167  */
2168 static noinline int split_node(struct btrfs_trans_handle *trans,
2169                                struct btrfs_root *root,
2170                                struct btrfs_path *path, int level)
2171 {
2172         struct extent_buffer *c;
2173         struct extent_buffer *split;
2174         struct btrfs_disk_key disk_key;
2175         int mid;
2176         int ret;
2177         int wret;
2178         u32 c_nritems;
2179
2180         c = path->nodes[level];
2181         WARN_ON(btrfs_header_generation(c) != trans->transid);
2182         if (c == root->node) {
2183                 /* trying to split the root, lets make a new one */
2184                 ret = insert_new_root(trans, root, path, level + 1);
2185                 if (ret)
2186                         return ret;
2187         } else {
2188                 ret = push_nodes_for_insert(trans, root, path, level);
2189                 c = path->nodes[level];
2190                 if (!ret && btrfs_header_nritems(c) <
2191                     BTRFS_NODEPTRS_PER_BLOCK(root) - 3)
2192                         return 0;
2193                 if (ret < 0)
2194                         return ret;
2195         }
2196
2197         c_nritems = btrfs_header_nritems(c);
2198         mid = (c_nritems + 1) / 2;
2199         btrfs_node_key(c, &disk_key, mid);
2200
2201         split = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
2202                                         root->root_key.objectid,
2203                                         &disk_key, level, c->start, 0);
2204         if (IS_ERR(split))
2205                 return PTR_ERR(split);
2206
2207         memset_extent_buffer(split, 0, 0, sizeof(struct btrfs_header));
2208         btrfs_set_header_level(split, btrfs_header_level(c));
2209         btrfs_set_header_bytenr(split, split->start);
2210         btrfs_set_header_generation(split, trans->transid);
2211         btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV);
2212         btrfs_set_header_owner(split, root->root_key.objectid);
2213         write_extent_buffer(split, root->fs_info->fsid,
2214                             (unsigned long)btrfs_header_fsid(split),
2215                             BTRFS_FSID_SIZE);
2216         write_extent_buffer(split, root->fs_info->chunk_tree_uuid,
2217                             (unsigned long)btrfs_header_chunk_tree_uuid(split),
2218                             BTRFS_UUID_SIZE);
2219
2220
2221         copy_extent_buffer(split, c,
2222                            btrfs_node_key_ptr_offset(0),
2223                            btrfs_node_key_ptr_offset(mid),
2224                            (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
2225         btrfs_set_header_nritems(split, c_nritems - mid);
2226         btrfs_set_header_nritems(c, mid);
2227         ret = 0;
2228
2229         btrfs_mark_buffer_dirty(c);
2230         btrfs_mark_buffer_dirty(split);
2231
2232         wret = insert_ptr(trans, root, path, &disk_key, split->start,
2233                           path->slots[level + 1] + 1,
2234                           level + 1);
2235         if (wret)
2236                 ret = wret;
2237
2238         if (path->slots[level] >= mid) {
2239                 path->slots[level] -= mid;
2240                 btrfs_tree_unlock(c);
2241                 free_extent_buffer(c);
2242                 path->nodes[level] = split;
2243                 path->slots[level + 1] += 1;
2244         } else {
2245                 btrfs_tree_unlock(split);
2246                 free_extent_buffer(split);
2247         }
2248         return ret;
2249 }
2250
2251 /*
2252  * how many bytes are required to store the items in a leaf.  start
2253  * and nr indicate which items in the leaf to check.  This totals up the
2254  * space used both by the item structs and the item data
2255  */
2256 static int leaf_space_used(struct extent_buffer *l, int start, int nr)
2257 {
2258         int data_len;
2259         int nritems = btrfs_header_nritems(l);
2260         int end = min(nritems, start + nr) - 1;
2261
2262         if (!nr)
2263                 return 0;
2264         data_len = btrfs_item_end_nr(l, start);
2265         data_len = data_len - btrfs_item_offset_nr(l, end);
2266         data_len += sizeof(struct btrfs_item) * nr;
2267         WARN_ON(data_len < 0);
2268         return data_len;
2269 }
2270
2271 /*
2272  * The space between the end of the leaf items and
2273  * the start of the leaf data.  IOW, how much room
2274  * the leaf has left for both items and data
2275  */
2276 noinline int btrfs_leaf_free_space(struct btrfs_root *root,
2277                                    struct extent_buffer *leaf)
2278 {
2279         int nritems = btrfs_header_nritems(leaf);
2280         int ret;
2281         ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
2282         if (ret < 0) {
2283                 printk(KERN_CRIT "leaf free space ret %d, leaf data size %lu, "
2284                        "used %d nritems %d\n",
2285                        ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root),
2286                        leaf_space_used(leaf, 0, nritems), nritems);
2287         }
2288         return ret;
2289 }
2290
2291 static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
2292                                       struct btrfs_root *root,
2293                                       struct btrfs_path *path,
2294                                       int data_size, int empty,
2295                                       struct extent_buffer *right,
2296                                       int free_space, u32 left_nritems)
2297 {
2298         struct extent_buffer *left = path->nodes[0];
2299         struct extent_buffer *upper = path->nodes[1];
2300         struct btrfs_disk_key disk_key;
2301         int slot;
2302         u32 i;
2303         int push_space = 0;
2304         int push_items = 0;
2305         struct btrfs_item *item;
2306         u32 nr;
2307         u32 right_nritems;
2308         u32 data_end;
2309         u32 this_item_size;
2310
2311         if (empty)
2312                 nr = 0;
2313         else
2314                 nr = 1;
2315
2316         if (path->slots[0] >= left_nritems)
2317                 push_space += data_size;
2318
2319         slot = path->slots[1];
2320         i = left_nritems - 1;
2321         while (i >= nr) {
2322                 item = btrfs_item_nr(left, i);
2323
2324                 if (!empty && push_items > 0) {
2325                         if (path->slots[0] > i)
2326                                 break;
2327                         if (path->slots[0] == i) {
2328                                 int space = btrfs_leaf_free_space(root, left);
2329                                 if (space + push_space * 2 > free_space)
2330                                         break;
2331                         }
2332                 }
2333
2334                 if (path->slots[0] == i)
2335                         push_space += data_size;
2336
2337                 if (!left->map_token) {
2338                         map_extent_buffer(left, (unsigned long)item,
2339                                         sizeof(struct btrfs_item),
2340                                         &left->map_token, &left->kaddr,
2341                                         &left->map_start, &left->map_len,
2342                                         KM_USER1);
2343                 }
2344
2345                 this_item_size = btrfs_item_size(left, item);
2346                 if (this_item_size + sizeof(*item) + push_space > free_space)
2347                         break;
2348
2349                 push_items++;
2350                 push_space += this_item_size + sizeof(*item);
2351                 if (i == 0)
2352                         break;
2353                 i--;
2354         }
2355         if (left->map_token) {
2356                 unmap_extent_buffer(left, left->map_token, KM_USER1);
2357                 left->map_token = NULL;
2358         }
2359
2360         if (push_items == 0)
2361                 goto out_unlock;
2362
2363         if (!empty && push_items == left_nritems)
2364                 WARN_ON(1);
2365
2366         /* push left to right */
2367         right_nritems = btrfs_header_nritems(right);
2368
2369         push_space = btrfs_item_end_nr(left, left_nritems - push_items);
2370         push_space -= leaf_data_end(root, left);
2371
2372         /* make room in the right data area */
2373         data_end = leaf_data_end(root, right);
2374         memmove_extent_buffer(right,
2375                               btrfs_leaf_data(right) + data_end - push_space,
2376                               btrfs_leaf_data(right) + data_end,
2377                               BTRFS_LEAF_DATA_SIZE(root) - data_end);
2378
2379         /* copy from the left data area */
2380         copy_extent_buffer(right, left, btrfs_leaf_data(right) +
2381                      BTRFS_LEAF_DATA_SIZE(root) - push_space,
2382                      btrfs_leaf_data(left) + leaf_data_end(root, left),
2383                      push_space);
2384
2385         memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
2386                               btrfs_item_nr_offset(0),
2387                               right_nritems * sizeof(struct btrfs_item));
2388
2389         /* copy the items from left to right */
2390         copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
2391                    btrfs_item_nr_offset(left_nritems - push_items),
2392                    push_items * sizeof(struct btrfs_item));
2393
2394         /* update the item pointers */
2395         right_nritems += push_items;
2396         btrfs_set_header_nritems(right, right_nritems);
2397         push_space = BTRFS_LEAF_DATA_SIZE(root);
2398         for (i = 0; i < right_nritems; i++) {
2399                 item = btrfs_item_nr(right, i);
2400                 if (!right->map_token) {
2401                         map_extent_buffer(right, (unsigned long)item,
2402                                         sizeof(struct btrfs_item),
2403                                         &right->map_token, &right->kaddr,
2404                                         &right->map_start, &right->map_len,
2405                                         KM_USER1);
2406                 }
2407                 push_space -= btrfs_item_size(right, item);
2408                 btrfs_set_item_offset(right, item, push_space);
2409         }
2410
2411         if (right->map_token) {
2412                 unmap_extent_buffer(right, right->map_token, KM_USER1);
2413                 right->map_token = NULL;
2414         }
2415         left_nritems -= push_items;
2416         btrfs_set_header_nritems(left, left_nritems);
2417
2418         if (left_nritems)
2419                 btrfs_mark_buffer_dirty(left);
2420         btrfs_mark_buffer_dirty(right);
2421
2422         btrfs_item_key(right, &disk_key, 0);
2423         btrfs_set_node_key(upper, &disk_key, slot + 1);
2424         btrfs_mark_buffer_dirty(upper);
2425
2426         /* then fixup the leaf pointer in the path */
2427         if (path->slots[0] >= left_nritems) {
2428                 path->slots[0] -= left_nritems;
2429                 if (btrfs_header_nritems(path->nodes[0]) == 0)
2430                         clean_tree_block(trans, root, path->nodes[0]);
2431                 btrfs_tree_unlock(path->nodes[0]);
2432                 free_extent_buffer(path->nodes[0]);
2433                 path->nodes[0] = right;
2434                 path->slots[1] += 1;
2435         } else {
2436                 btrfs_tree_unlock(right);
2437                 free_extent_buffer(right);
2438         }
2439         return 0;
2440
2441 out_unlock:
2442         btrfs_tree_unlock(right);
2443         free_extent_buffer(right);
2444         return 1;
2445 }
2446
2447 /*
2448  * push some data in the path leaf to the right, trying to free up at
2449  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
2450  *
2451  * returns 1 if the push failed because the other node didn't have enough
2452  * room, 0 if everything worked out and < 0 if there were major errors.
2453  */
2454 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
2455                            *root, struct btrfs_path *path, int data_size,
2456                            int empty)
2457 {
2458         struct extent_buffer *left = path->nodes[0];
2459         struct extent_buffer *right;
2460         struct extent_buffer *upper;
2461         int slot;
2462         int free_space;
2463         u32 left_nritems;
2464         int ret;
2465
2466         if (!path->nodes[1])
2467                 return 1;
2468
2469         slot = path->slots[1];
2470         upper = path->nodes[1];
2471         if (slot >= btrfs_header_nritems(upper) - 1)
2472                 return 1;
2473
2474         btrfs_assert_tree_locked(path->nodes[1]);
2475
2476         right = read_node_slot(root, upper, slot + 1);
2477         btrfs_tree_lock(right);
2478         btrfs_set_lock_blocking(right);
2479
2480         free_space = btrfs_leaf_free_space(root, right);
2481         if (free_space < data_size)
2482                 goto out_unlock;
2483
2484         /* cow and double check */
2485         ret = btrfs_cow_block(trans, root, right, upper,
2486                               slot + 1, &right);
2487         if (ret)
2488                 goto out_unlock;
2489
2490         free_space = btrfs_leaf_free_space(root, right);
2491         if (free_space < data_size)
2492                 goto out_unlock;
2493
2494         left_nritems = btrfs_header_nritems(left);
2495         if (left_nritems == 0)
2496                 goto out_unlock;
2497
2498         return __push_leaf_right(trans, root, path, data_size, empty,
2499                                 right, free_space, left_nritems);
2500 out_unlock:
2501         btrfs_tree_unlock(right);
2502         free_extent_buffer(right);
2503         return 1;
2504 }
2505
2506 /*
2507  * push some data in the path leaf to the left, trying to free up at
2508  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
2509  */
2510 static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
2511                                      struct btrfs_root *root,
2512                                      struct btrfs_path *path, int data_size,
2513                                      int empty, struct extent_buffer *left,
2514                                      int free_space, int right_nritems)
2515 {
2516         struct btrfs_disk_key disk_key;
2517         struct extent_buffer *right = path->nodes[0];
2518         int slot;
2519         int i;
2520         int push_space = 0;
2521         int push_items = 0;
2522         struct btrfs_item *item;
2523         u32 old_left_nritems;
2524         u32 nr;
2525         int ret = 0;
2526         int wret;
2527         u32 this_item_size;
2528         u32 old_left_item_size;
2529
2530         slot = path->slots[1];
2531
2532         if (empty)
2533                 nr = right_nritems;
2534         else
2535                 nr = right_nritems - 1;
2536
2537         for (i = 0; i < nr; i++) {
2538                 item = btrfs_item_nr(right, i);
2539                 if (!right->map_token) {
2540                         map_extent_buffer(right, (unsigned long)item,
2541                                         sizeof(struct btrfs_item),
2542                                         &right->map_token, &right->kaddr,
2543                                         &right->map_start, &right->map_len,
2544                                         KM_USER1);
2545                 }
2546
2547                 if (!empty && push_items > 0) {
2548                         if (path->slots[0] < i)
2549                                 break;
2550                         if (path->slots[0] == i) {
2551                                 int space = btrfs_leaf_free_space(root, right);
2552                                 if (space + push_space * 2 > free_space)
2553                                         break;
2554                         }
2555                 }
2556
2557                 if (path->slots[0] == i)
2558                         push_space += data_size;
2559
2560                 this_item_size = btrfs_item_size(right, item);
2561                 if (this_item_size + sizeof(*item) + push_space > free_space)
2562                         break;
2563
2564                 push_items++;
2565                 push_space += this_item_size + sizeof(*item);
2566         }
2567
2568         if (right->map_token) {
2569                 unmap_extent_buffer(right, right->map_token, KM_USER1);
2570                 right->map_token = NULL;
2571         }
2572
2573         if (push_items == 0) {
2574                 ret = 1;
2575                 goto out;
2576         }
2577         if (!empty && push_items == btrfs_header_nritems(right))
2578                 WARN_ON(1);
2579
2580         /* push data from right to left */
2581         copy_extent_buffer(left, right,
2582                            btrfs_item_nr_offset(btrfs_header_nritems(left)),
2583                            btrfs_item_nr_offset(0),
2584                            push_items * sizeof(struct btrfs_item));
2585
2586         push_space = BTRFS_LEAF_DATA_SIZE(root) -
2587                      btrfs_item_offset_nr(right, push_items - 1);
2588
2589         copy_extent_buffer(left, right, btrfs_leaf_data(left) +
2590                      leaf_data_end(root, left) - push_space,
2591                      btrfs_leaf_data(right) +
2592                      btrfs_item_offset_nr(right, push_items - 1),
2593                      push_space);
2594         old_left_nritems = btrfs_header_nritems(left);
2595         BUG_ON(old_left_nritems <= 0);
2596
2597         old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
2598         for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
2599                 u32 ioff;
2600
2601                 item = btrfs_item_nr(left, i);
2602                 if (!left->map_token) {
2603                         map_extent_buffer(left, (unsigned long)item,
2604                                         sizeof(struct btrfs_item),
2605                                         &left->map_token, &left->kaddr,
2606                                         &left->map_start, &left->map_len,
2607                                         KM_USER1);
2608                 }
2609
2610                 ioff = btrfs_item_offset(left, item);
2611                 btrfs_set_item_offset(left, item,
2612                       ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size));
2613         }
2614         btrfs_set_header_nritems(left, old_left_nritems + push_items);
2615         if (left->map_token) {
2616                 unmap_extent_buffer(left, left->map_token, KM_USER1);
2617                 left->map_token = NULL;
2618         }
2619
2620         /* fixup right node */
2621         if (push_items > right_nritems) {
2622                 printk(KERN_CRIT "push items %d nr %u\n", push_items,
2623                        right_nritems);
2624                 WARN_ON(1);
2625         }
2626
2627         if (push_items < right_nritems) {
2628                 push_space = btrfs_item_offset_nr(right, push_items - 1) -
2629                                                   leaf_data_end(root, right);
2630                 memmove_extent_buffer(right, btrfs_leaf_data(right) +
2631                                       BTRFS_LEAF_DATA_SIZE(root) - push_space,
2632                                       btrfs_leaf_data(right) +
2633                                       leaf_data_end(root, right), push_space);
2634
2635                 memmove_extent_buffer(right, btrfs_item_nr_offset(0),
2636                               btrfs_item_nr_offset(push_items),
2637                              (btrfs_header_nritems(right) - push_items) *
2638                              sizeof(struct btrfs_item));
2639         }
2640         right_nritems -= push_items;
2641         btrfs_set_header_nritems(right, right_nritems);
2642         push_space = BTRFS_LEAF_DATA_SIZE(root);
2643         for (i = 0; i < right_nritems; i++) {
2644                 item = btrfs_item_nr(right, i);
2645
2646                 if (!right->map_token) {
2647                         map_extent_buffer(right, (unsigned long)item,
2648                                         sizeof(struct btrfs_item),
2649                                         &right->map_token, &right->kaddr,
2650                                         &right->map_start, &right->map_len,
2651                                         KM_USER1);
2652                 }
2653
2654                 push_space = push_space - btrfs_item_size(right, item);
2655                 btrfs_set_item_offset(right, item, push_space);
2656         }
2657         if (right->map_token) {
2658                 unmap_extent_buffer(right, right->map_token, KM_USER1);
2659                 right->map_token = NULL;
2660         }
2661
2662         btrfs_mark_buffer_dirty(left);
2663         if (right_nritems)
2664                 btrfs_mark_buffer_dirty(right);
2665
2666         btrfs_item_key(right, &disk_key, 0);
2667         wret = fixup_low_keys(trans, root, path, &disk_key, 1);
2668         if (wret)
2669                 ret = wret;
2670
2671         /* then fixup the leaf pointer in the path */
2672         if (path->slots[0] < push_items) {
2673                 path->slots[0] += old_left_nritems;
2674                 if (btrfs_header_nritems(path->nodes[0]) == 0)
2675                         clean_tree_block(trans, root, path->nodes[0]);
2676                 btrfs_tree_unlock(path->nodes[0]);
2677                 free_extent_buffer(path->nodes[0]);
2678                 path->nodes[0] = left;
2679                 path->slots[1] -= 1;
2680         } else {
2681                 btrfs_tree_unlock(left);
2682                 free_extent_buffer(left);
2683                 path->slots[0] -= push_items;
2684         }
2685         BUG_ON(path->slots[0] < 0);
2686         return ret;
2687 out:
2688         btrfs_tree_unlock(left);
2689         free_extent_buffer(left);
2690         return ret;
2691 }
2692
2693 /*
2694  * push some data in the path leaf to the left, trying to free up at
2695  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
2696  */
2697 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
2698                           *root, struct btrfs_path *path, int data_size,
2699                           int empty)
2700 {
2701         struct extent_buffer *right = path->nodes[0];
2702         struct extent_buffer *left;
2703         int slot;
2704         int free_space;
2705         u32 right_nritems;
2706         int ret = 0;
2707
2708         slot = path->slots[1];
2709         if (slot == 0)
2710                 return 1;
2711         if (!path->nodes[1])
2712                 return 1;
2713
2714         right_nritems = btrfs_header_nritems(right);
2715         if (right_nritems == 0)
2716                 return 1;
2717
2718         btrfs_assert_tree_locked(path->nodes[1]);
2719
2720         left = read_node_slot(root, path->nodes[1], slot - 1);
2721         btrfs_tree_lock(left);
2722         btrfs_set_lock_blocking(left);
2723
2724         free_space = btrfs_leaf_free_space(root, left);
2725         if (free_space < data_size) {
2726                 ret = 1;
2727                 goto out;
2728         }
2729
2730         /* cow and double check */
2731         ret = btrfs_cow_block(trans, root, left,
2732                               path->nodes[1], slot - 1, &left);
2733         if (ret) {
2734                 /* we hit -ENOSPC, but it isn't fatal here */
2735                 ret = 1;
2736                 goto out;
2737         }
2738
2739         free_space = btrfs_leaf_free_space(root, left);
2740         if (free_space < data_size) {
2741                 ret = 1;
2742                 goto out;
2743         }
2744
2745         return __push_leaf_left(trans, root, path, data_size,
2746                                empty, left, free_space, right_nritems);
2747 out:
2748         btrfs_tree_unlock(left);
2749         free_extent_buffer(left);
2750         return ret;
2751 }
2752
2753 /*
2754  * split the path's leaf in two, making sure there is at least data_size
2755  * available for the resulting leaf level of the path.
2756  *
2757  * returns 0 if all went well and < 0 on failure.
2758  */
2759 static noinline int copy_for_split(struct btrfs_trans_handle *trans,
2760                                struct btrfs_root *root,
2761                                struct btrfs_path *path,
2762                                struct extent_buffer *l,
2763                                struct extent_buffer *right,
2764                                int slot, int mid, int nritems)
2765 {
2766         int data_copy_size;
2767         int rt_data_off;
2768         int i;
2769         int ret = 0;
2770         int wret;
2771         struct btrfs_disk_key disk_key;
2772
2773         nritems = nritems - mid;
2774         btrfs_set_header_nritems(right, nritems);
2775         data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l);
2776
2777         copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
2778                            btrfs_item_nr_offset(mid),
2779                            nritems * sizeof(struct btrfs_item));
2780
2781         copy_extent_buffer(right, l,
2782                      btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
2783                      data_copy_size, btrfs_leaf_data(l) +
2784                      leaf_data_end(root, l), data_copy_size);
2785
2786         rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
2787                       btrfs_item_end_nr(l, mid);
2788
2789         for (i = 0; i < nritems; i++) {
2790                 struct btrfs_item *item = btrfs_item_nr(right, i);
2791                 u32 ioff;
2792
2793                 if (!right->map_token) {
2794                         map_extent_buffer(right, (unsigned long)item,
2795                                         sizeof(struct btrfs_item),
2796                                         &right->map_token, &right->kaddr,
2797                                         &right->map_start, &right->map_len,
2798                                         KM_USER1);
2799                 }
2800
2801                 ioff = btrfs_item_offset(right, item);
2802                 btrfs_set_item_offset(right, item, ioff + rt_data_off);
2803         }
2804
2805         if (right->map_token) {
2806                 unmap_extent_buffer(right, right->map_token, KM_USER1);
2807                 right->map_token = NULL;
2808         }
2809
2810         btrfs_set_header_nritems(l, mid);
2811         ret = 0;
2812         btrfs_item_key(right, &disk_key, 0);
2813         wret = insert_ptr(trans, root, path, &disk_key, right->start,
2814                           path->slots[1] + 1, 1);
2815         if (wret)
2816                 ret = wret;
2817
2818         btrfs_mark_buffer_dirty(right);
2819         btrfs_mark_buffer_dirty(l);
2820         BUG_ON(path->slots[0] != slot);
2821
2822         if (mid <= slot) {
2823                 btrfs_tree_unlock(path->nodes[0]);
2824                 free_extent_buffer(path->nodes[0]);
2825                 path->nodes[0] = right;
2826                 path->slots[0] -= mid;
2827                 path->slots[1] += 1;
2828         } else {
2829                 btrfs_tree_unlock(right);
2830                 free_extent_buffer(right);
2831         }
2832
2833         BUG_ON(path->slots[0] < 0);
2834
2835         return ret;
2836 }
2837
2838 /*
2839  * split the path's leaf in two, making sure there is at least data_size
2840  * available for the resulting leaf level of the path.
2841  *
2842  * returns 0 if all went well and < 0 on failure.
2843  */
2844 static noinline int split_leaf(struct btrfs_trans_handle *trans,
2845                                struct btrfs_root *root,
2846                                struct btrfs_key *ins_key,
2847                                struct btrfs_path *path, int data_size,
2848                                int extend)
2849 {
2850         struct btrfs_disk_key disk_key;
2851         struct extent_buffer *l;
2852         u32 nritems;
2853         int mid;
2854         int slot;
2855         struct extent_buffer *right;
2856         int ret = 0;
2857         int wret;
2858         int split;
2859         int num_doubles = 0;
2860
2861         l = path->nodes[0];
2862         slot = path->slots[0];
2863         if (extend && data_size + btrfs_item_size_nr(l, slot) +
2864             sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(root))
2865                 return -EOVERFLOW;
2866
2867         /* first try to make some room by pushing left and right */
2868         if (data_size && ins_key->type != BTRFS_DIR_ITEM_KEY) {
2869                 wret = push_leaf_right(trans, root, path, data_size, 0);
2870                 if (wret < 0)
2871                         return wret;
2872                 if (wret) {
2873                         wret = push_leaf_left(trans, root, path, data_size, 0);
2874                         if (wret < 0)
2875                                 return wret;
2876                 }
2877                 l = path->nodes[0];
2878
2879                 /* did the pushes work? */
2880                 if (btrfs_leaf_free_space(root, l) >= data_size)
2881                         return 0;
2882         }
2883
2884         if (!path->nodes[1]) {
2885                 ret = insert_new_root(trans, root, path, 1);
2886                 if (ret)
2887                         return ret;
2888         }
2889 again:
2890         split = 1;
2891         l = path->nodes[0];
2892         slot = path->slots[0];
2893         nritems = btrfs_header_nritems(l);
2894         mid = (nritems + 1) / 2;
2895
2896         if (mid <= slot) {
2897                 if (nritems == 1 ||
2898                     leaf_space_used(l, mid, nritems - mid) + data_size >
2899                         BTRFS_LEAF_DATA_SIZE(root)) {
2900                         if (slot >= nritems) {
2901                                 split = 0;
2902                         } else {
2903                                 mid = slot;
2904                                 if (mid != nritems &&
2905                                     leaf_space_used(l, mid, nritems - mid) +
2906                                     data_size > BTRFS_LEAF_DATA_SIZE(root)) {
2907                                         split = 2;
2908                                 }
2909                         }
2910                 }
2911         } else {
2912                 if (leaf_space_used(l, 0, mid) + data_size >
2913                         BTRFS_LEAF_DATA_SIZE(root)) {
2914                         if (!extend && data_size && slot == 0) {
2915                                 split = 0;
2916                         } else if ((extend || !data_size) && slot == 0) {
2917                                 mid = 1;
2918                         } else {
2919                                 mid = slot;
2920                                 if (mid != nritems &&
2921                                     leaf_space_used(l, mid, nritems - mid) +
2922                                     data_size > BTRFS_LEAF_DATA_SIZE(root)) {
2923                                         split = 2 ;
2924                                 }
2925                         }
2926                 }
2927         }
2928
2929         if (split == 0)
2930                 btrfs_cpu_key_to_disk(&disk_key, ins_key);
2931         else
2932                 btrfs_item_key(l, &disk_key, mid);
2933
2934         right = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
2935                                         root->root_key.objectid,
2936                                         &disk_key, 0, l->start, 0);
2937         if (IS_ERR(right)) {
2938                 BUG_ON(1);
2939                 return PTR_ERR(right);
2940         }
2941
2942         memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header));
2943         btrfs_set_header_bytenr(right, right->start);
2944         btrfs_set_header_generation(right, trans->transid);
2945         btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV);
2946         btrfs_set_header_owner(right, root->root_key.objectid);
2947         btrfs_set_header_level(right, 0);
2948         write_extent_buffer(right, root->fs_info->fsid,
2949                             (unsigned long)btrfs_header_fsid(right),
2950                             BTRFS_FSID_SIZE);
2951
2952         write_extent_buffer(right, root->fs_info->chunk_tree_uuid,
2953                             (unsigned long)btrfs_header_chunk_tree_uuid(right),
2954                             BTRFS_UUID_SIZE);
2955
2956         if (split == 0) {
2957                 if (mid <= slot) {
2958                         btrfs_set_header_nritems(right, 0);
2959                         wret = insert_ptr(trans, root, path,
2960                                           &disk_key, right->start,
2961                                           path->slots[1] + 1, 1);
2962                         if (wret)
2963                                 ret = wret;
2964
2965                         btrfs_tree_unlock(path->nodes[0]);
2966                         free_extent_buffer(path->nodes[0]);
2967                         path->nodes[0] = right;
2968                         path->slots[0] = 0;
2969                         path->slots[1] += 1;
2970                 } else {
2971                         btrfs_set_header_nritems(right, 0);
2972                         wret = insert_ptr(trans, root, path,
2973                                           &disk_key,
2974                                           right->start,
2975                                           path->slots[1], 1);
2976                         if (wret)
2977                                 ret = wret;
2978                         btrfs_tree_unlock(path->nodes[0]);
2979                         free_extent_buffer(path->nodes[0]);
2980                         path->nodes[0] = right;
2981                         path->slots[0] = 0;
2982                         if (path->slots[1] == 0) {
2983                                 wret = fixup_low_keys(trans, root,
2984                                                 path, &disk_key, 1);
2985                                 if (wret)
2986                                         ret = wret;
2987                         }
2988                 }
2989                 btrfs_mark_buffer_dirty(right);
2990                 return ret;
2991         }
2992
2993         ret = copy_for_split(trans, root, path, l, right, slot, mid, nritems);
2994         BUG_ON(ret);
2995
2996         if (split == 2) {
2997                 BUG_ON(num_doubles != 0);
2998                 num_doubles++;
2999                 goto again;
3000         }
3001
3002         return ret;
3003 }
3004
3005 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
3006                                          struct btrfs_root *root,
3007                                          struct btrfs_path *path, int ins_len)
3008 {
3009         struct btrfs_key key;
3010         struct extent_buffer *leaf;
3011         struct btrfs_file_extent_item *fi;
3012         u64 extent_len = 0;
3013         u32 item_size;
3014         int ret;
3015
3016         leaf = path->nodes[0];
3017         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3018
3019         BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
3020                key.type != BTRFS_EXTENT_CSUM_KEY);
3021
3022         if (btrfs_leaf_free_space(root, leaf) >= ins_len)
3023                 return 0;
3024
3025         item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3026         if (key.type == BTRFS_EXTENT_DATA_KEY) {
3027                 fi = btrfs_item_ptr(leaf, path->slots[0],
3028                                     struct btrfs_file_extent_item);
3029                 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
3030         }
3031         btrfs_release_path(root, path);
3032
3033         path->keep_locks = 1;
3034         path->search_for_split = 1;
3035         ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
3036         path->search_for_split = 0;
3037         if (ret < 0)
3038                 goto err;
3039
3040         ret = -EAGAIN;
3041         leaf = path->nodes[0];
3042         /* if our item isn't there or got smaller, return now */
3043         if (ret > 0 || item_size != btrfs_item_size_nr(leaf, path->slots[0]))
3044                 goto err;
3045
3046         if (key.type == BTRFS_EXTENT_DATA_KEY) {
3047                 fi = btrfs_item_ptr(leaf, path->slots[0],
3048                                     struct btrfs_file_extent_item);
3049                 if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
3050                         goto err;
3051         }
3052
3053         btrfs_set_path_blocking(path);
3054         ret = split_leaf(trans, root, &key, path, ins_len, 1);
3055         BUG_ON(ret);
3056
3057         path->keep_locks = 0;
3058         btrfs_unlock_up_safe(path, 1);
3059         return 0;
3060 err:
3061         path->keep_locks = 0;
3062         return ret;
3063 }
3064
3065 static noinline int split_item(struct btrfs_trans_handle *trans,
3066                                struct btrfs_root *root,
3067                                struct btrfs_path *path,
3068                                struct btrfs_key *new_key,
3069                                unsigned long split_offset)
3070 {
3071         struct extent_buffer *leaf;
3072         struct btrfs_item *item;
3073         struct btrfs_item *new_item;
3074         int slot;
3075         char *buf;
3076         u32 nritems;
3077         u32 item_size;
3078         u32 orig_offset;
3079         struct btrfs_disk_key disk_key;
3080
3081         leaf = path->nodes[0];
3082         BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item));
3083
3084         btrfs_set_path_blocking(path);
3085
3086         item = btrfs_item_nr(leaf, path->slots[0]);
3087         orig_offset = btrfs_item_offset(leaf, item);
3088         item_size = btrfs_item_size(leaf, item);
3089
3090         buf = kmalloc(item_size, GFP_NOFS);
3091         if (!buf)
3092                 return -ENOMEM;
3093
3094         read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
3095                             path->slots[0]), item_size);
3096
3097         slot = path->slots[0] + 1;
3098         nritems = btrfs_header_nritems(leaf);
3099         if (slot != nritems) {
3100                 /* shift the items */
3101                 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
3102                                 btrfs_item_nr_offset(slot),
3103                                 (nritems - slot) * sizeof(struct btrfs_item));
3104         }
3105
3106         btrfs_cpu_key_to_disk(&disk_key, new_key);
3107         btrfs_set_item_key(leaf, &disk_key, slot);
3108
3109         new_item = btrfs_item_nr(leaf, slot);
3110
3111         btrfs_set_item_offset(leaf, new_item, orig_offset);
3112         btrfs_set_item_size(leaf, new_item, item_size - split_offset);
3113
3114         btrfs_set_item_offset(leaf, item,
3115                               orig_offset + item_size - split_offset);
3116         btrfs_set_item_size(leaf, item, split_offset);
3117
3118         btrfs_set_header_nritems(leaf, nritems + 1);
3119
3120         /* write the data for the start of the original item */
3121         write_extent_buffer(leaf, buf,
3122                             btrfs_item_ptr_offset(leaf, path->slots[0]),
3123                             split_offset);
3124
3125         /* write the data for the new item */
3126         write_extent_buffer(leaf, buf + split_offset,
3127                             btrfs_item_ptr_offset(leaf, slot),
3128                             item_size - split_offset);
3129         btrfs_mark_buffer_dirty(leaf);
3130
3131         BUG_ON(btrfs_leaf_free_space(root, leaf) < 0);
3132         kfree(buf);
3133         return 0;
3134 }
3135
3136 /*
3137  * This function splits a single item into two items,
3138  * giving 'new_key' to the new item and splitting the
3139  * old one at split_offset (from the start of the item).
3140  *
3141  * The path may be released by this operation.  After
3142  * the split, the path is pointing to the old item.  The
3143  * new item is going to be in the same node as the old one.
3144  *
3145  * Note, the item being split must be smaller enough to live alone on
3146  * a tree block with room for one extra struct btrfs_item
3147  *
3148  * This allows us to split the item in place, keeping a lock on the
3149  * leaf the entire time.
3150  */
3151 int btrfs_split_item(struct btrfs_trans_handle *trans,
3152                      struct btrfs_root *root,
3153                      struct btrfs_path *path,
3154                      struct btrfs_key *new_key,
3155                      unsigned long split_offset)
3156 {
3157         int ret;
3158         ret = setup_leaf_for_split(trans, root, path,
3159                                    sizeof(struct btrfs_item));
3160         if (ret)
3161                 return ret;
3162
3163         ret = split_item(trans, root, path, new_key, split_offset);
3164         return ret;
3165 }
3166
3167 /*
3168  * This function duplicate a item, giving 'new_key' to the new item.
3169  * It guarantees both items live in the same tree leaf and the new item
3170  * is contiguous with the original item.
3171  *
3172  * This allows us to split file extent in place, keeping a lock on the
3173  * leaf the entire time.
3174  */
3175 int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
3176                          struct btrfs_root *root,
3177                          struct btrfs_path *path,
3178                          struct btrfs_key *new_key)
3179 {
3180         struct extent_buffer *leaf;
3181         int ret;
3182         u32 item_size;
3183
3184         leaf = path->nodes[0];
3185         item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3186         ret = setup_leaf_for_split(trans, root, path,
3187                                    item_size + sizeof(struct btrfs_item));
3188         if (ret)
3189                 return ret;
3190
3191         path->slots[0]++;
3192         ret = setup_items_for_insert(trans, root, path, new_key, &item_size,
3193                                      item_size, item_size +
3194                                      sizeof(struct btrfs_item), 1);
3195         BUG_ON(ret);
3196
3197         leaf = path->nodes[0];
3198         memcpy_extent_buffer(leaf,
3199                              btrfs_item_ptr_offset(leaf, path->slots[0]),
3200                              btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
3201                              item_size);
3202         return 0;
3203 }
3204
3205 /*
3206  * make the item pointed to by the path smaller.  new_size indicates
3207  * how small to make it, and from_end tells us if we just chop bytes
3208  * off the end of the item or if we shift the item to chop bytes off
3209  * the front.
3210  */
3211 int btrfs_truncate_item(struct btrfs_trans_handle *trans,
3212                         struct btrfs_root *root,
3213                         struct btrfs_path *path,
3214                         u32 new_size, int from_end)
3215 {
3216         int ret = 0;
3217         int slot;
3218         int slot_orig;
3219         struct extent_buffer *leaf;
3220         struct btrfs_item *item;
3221         u32 nritems;
3222         unsigned int data_end;
3223         unsigned int old_data_start;
3224         unsigned int old_size;
3225         unsigned int size_diff;
3226         int i;
3227
3228         slot_orig = path->slots[0];
3229         leaf = path->nodes[0];
3230         slot = path->slots[0];
3231
3232         old_size = btrfs_item_size_nr(leaf, slot);
3233         if (old_size == new_size)
3234                 return 0;
3235
3236         nritems = btrfs_header_nritems(leaf);
3237         data_end = leaf_data_end(root, leaf);
3238
3239         old_data_start = btrfs_item_offset_nr(leaf, slot);
3240
3241         size_diff = old_size - new_size;
3242
3243         BUG_ON(slot < 0);
3244         BUG_ON(slot >= nritems);
3245
3246         /*
3247          * item0..itemN ... dataN.offset..dataN.size .. data0.size
3248          */
3249         /* first correct the data pointers */
3250         for (i = slot; i < nritems; i++) {
3251                 u32 ioff;
3252                 item = btrfs_item_nr(leaf, i);
3253
3254                 if (!leaf->map_token) {
3255                         map_extent_buffer(leaf, (unsigned long)item,
3256                                         sizeof(struct btrfs_item),
3257                                         &leaf->map_token, &leaf->kaddr,
3258                                         &leaf->map_start, &leaf->map_len,
3259                                         KM_USER1);
3260                 }
3261
3262                 ioff = btrfs_item_offset(leaf, item);
3263                 btrfs_set_item_offset(leaf, item, ioff + size_diff);
3264         }
3265
3266         if (leaf->map_token) {
3267                 unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
3268                 leaf->map_token = NULL;
3269         }
3270
3271         /* shift the data */
3272         if (from_end) {
3273                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3274                               data_end + size_diff, btrfs_leaf_data(leaf) +
3275                               data_end, old_data_start + new_size - data_end);
3276         } else {
3277                 struct btrfs_disk_key disk_key;
3278                 u64 offset;
3279
3280                 btrfs_item_key(leaf, &disk_key, slot);
3281
3282                 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
3283                         unsigned long ptr;
3284                         struct btrfs_file_extent_item *fi;
3285
3286                         fi = btrfs_item_ptr(leaf, slot,
3287                                             struct btrfs_file_extent_item);
3288                         fi = (struct btrfs_file_extent_item *)(
3289                              (unsigned long)fi - size_diff);
3290
3291                         if (btrfs_file_extent_type(leaf, fi) ==
3292                             BTRFS_FILE_EXTENT_INLINE) {
3293                                 ptr = btrfs_item_ptr_offset(leaf, slot);
3294                                 memmove_extent_buffer(leaf, ptr,
3295                                       (unsigned long)fi,
3296                                       offsetof(struct btrfs_file_extent_item,
3297                                                  disk_bytenr));
3298                         }
3299                 }
3300
3301                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3302                               data_end + size_diff, btrfs_leaf_data(leaf) +
3303                               data_end, old_data_start - data_end);
3304
3305                 offset = btrfs_disk_key_offset(&disk_key);
3306                 btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
3307                 btrfs_set_item_key(leaf, &disk_key, slot);
3308                 if (slot == 0)
3309                         fixup_low_keys(trans, root, path, &disk_key, 1);
3310         }
3311
3312         item = btrfs_item_nr(leaf, slot);
3313         btrfs_set_item_size(leaf, item, new_size);
3314         btrfs_mark_buffer_dirty(leaf);
3315
3316         ret = 0;
3317         if (btrfs_leaf_free_space(root, leaf) < 0) {
3318                 btrfs_print_leaf(root, leaf);
3319                 BUG();
3320         }
3321         return ret;
3322 }
3323
3324 /*
3325  * make the item pointed to by the path bigger, data_size is the new size.
3326  */
3327 int btrfs_extend_item(struct btrfs_trans_handle *trans,
3328                       struct btrfs_root *root, struct btrfs_path *path,
3329                       u32 data_size)
3330 {
3331         int ret = 0;
3332         int slot;
3333         int slot_orig;
3334         struct extent_buffer *leaf;
3335         struct btrfs_item *item;
3336         u32 nritems;
3337         unsigned int data_end;
3338         unsigned int old_data;
3339         unsigned int old_size;
3340         int i;
3341
3342         slot_orig = path->slots[0];
3343         leaf = path->nodes[0];
3344
3345         nritems = btrfs_header_nritems(leaf);
3346         data_end = leaf_data_end(root, leaf);
3347
3348         if (btrfs_leaf_free_space(root, leaf) < data_size) {
3349                 btrfs_print_leaf(root, leaf);
3350                 BUG();
3351         }
3352         slot = path->slots[0];
3353         old_data = btrfs_item_end_nr(leaf, slot);
3354
3355         BUG_ON(slot < 0);
3356         if (slot >= nritems) {
3357                 btrfs_print_leaf(root, leaf);
3358                 printk(KERN_CRIT "slot %d too large, nritems %d\n",
3359                        slot, nritems);
3360                 BUG_ON(1);
3361         }
3362
3363         /*
3364          * item0..itemN ... dataN.offset..dataN.size .. data0.size
3365          */
3366         /* first correct the data pointers */
3367         for (i = slot; i < nritems; i++) {
3368                 u32 ioff;
3369                 item = btrfs_item_nr(leaf, i);
3370
3371                 if (!leaf->map_token) {
3372                         map_extent_buffer(leaf, (unsigned long)item,
3373                                         sizeof(struct btrfs_item),
3374                                         &leaf->map_token, &leaf->kaddr,
3375                                         &leaf->map_start, &leaf->map_len,
3376                                         KM_USER1);
3377                 }
3378                 ioff = btrfs_item_offset(leaf, item);
3379                 btrfs_set_item_offset(leaf, item, ioff - data_size);
3380         }
3381
3382         if (leaf->map_token) {
3383                 unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
3384                 leaf->map_token = NULL;
3385         }
3386
3387         /* shift the data */
3388         memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3389                       data_end - data_size, btrfs_leaf_data(leaf) +
3390                       data_end, old_data - data_end);
3391
3392         data_end = old_data;
3393         old_size = btrfs_item_size_nr(leaf, slot);
3394         item = btrfs_item_nr(leaf, slot);
3395         btrfs_set_item_size(leaf, item, old_size + data_size);
3396         btrfs_mark_buffer_dirty(leaf);
3397
3398         ret = 0;
3399         if (btrfs_leaf_free_space(root, leaf) < 0) {
3400                 btrfs_print_leaf(root, leaf);
3401                 BUG();
3402         }
3403         return ret;
3404 }
3405
3406 /*
3407  * Given a key and some data, insert items into the tree.
3408  * This does all the path init required, making room in the tree if needed.
3409  * Returns the number of keys that were inserted.
3410  */
3411 int btrfs_insert_some_items(struct btrfs_trans_handle *trans,
3412                             struct btrfs_root *root,
3413                             struct btrfs_path *path,
3414                             struct btrfs_key *cpu_key, u32 *data_size,
3415                             int nr)
3416 {
3417         struct extent_buffer *leaf;
3418         struct btrfs_item *item;
3419         int ret = 0;
3420         int slot;
3421         int i;
3422         u32 nritems;
3423         u32 total_data = 0;
3424         u32 total_size = 0;
3425         unsigned int data_end;
3426         struct btrfs_disk_key disk_key;
3427         struct btrfs_key found_key;
3428
3429         for (i = 0; i < nr; i++) {
3430                 if (total_size + data_size[i] + sizeof(struct btrfs_item) >
3431                     BTRFS_LEAF_DATA_SIZE(root)) {
3432                         break;
3433                         nr = i;
3434                 }
3435                 total_data += data_size[i];
3436                 total_size += data_size[i] + sizeof(struct btrfs_item);
3437         }
3438         BUG_ON(nr == 0);
3439
3440         ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
3441         if (ret == 0)
3442                 return -EEXIST;
3443         if (ret < 0)
3444                 goto out;
3445
3446         leaf = path->nodes[0];
3447
3448         nritems = btrfs_header_nritems(leaf);
3449         data_end = leaf_data_end(root, leaf);
3450
3451         if (btrfs_leaf_free_space(root, leaf) < total_size) {
3452                 for (i = nr; i >= 0; i--) {
3453                         total_data -= data_size[i];
3454                         total_size -= data_size[i] + sizeof(struct btrfs_item);
3455                         if (total_size < btrfs_leaf_free_space(root, leaf))
3456                                 break;
3457                 }
3458                 nr = i;
3459         }
3460
3461         slot = path->slots[0];
3462         BUG_ON(slot < 0);
3463
3464         if (slot != nritems) {
3465                 unsigned int old_data = btrfs_item_end_nr(leaf, slot);
3466
3467                 item = btrfs_item_nr(leaf, slot);
3468                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3469
3470                 /* figure out how many keys we can insert in here */
3471                 total_data = data_size[0];
3472                 for (i = 1; i < nr; i++) {
3473                         if (btrfs_comp_cpu_keys(&found_key, cpu_key + i) <= 0)
3474                                 break;
3475                         total_data += data_size[i];
3476                 }
3477                 nr = i;
3478
3479                 if (old_data < data_end) {
3480                         btrfs_print_leaf(root, leaf);
3481                         printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
3482                                slot, old_data, data_end);
3483                         BUG_ON(1);
3484                 }
3485                 /*
3486                  * item0..itemN ... dataN.offset..dataN.size .. data0.size
3487                  */
3488                 /* first correct the data pointers */
3489                 WARN_ON(leaf->map_token);
3490                 for (i = slot; i < nritems; i++) {
3491                         u32 ioff;
3492
3493                         item = btrfs_item_nr(leaf, i);
3494                         if (!leaf->map_token) {
3495                                 map_extent_buffer(leaf, (unsigned long)item,
3496                                         sizeof(struct btrfs_item),
3497                                         &leaf->map_token, &leaf->kaddr,
3498                                         &leaf->map_start, &leaf->map_len,
3499                                         KM_USER1);
3500                         }
3501
3502                         ioff = btrfs_item_offset(leaf, item);
3503                         btrfs_set_item_offset(leaf, item, ioff - total_data);
3504                 }
3505                 if (leaf->map_token) {
3506                         unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
3507                         leaf->map_token = NULL;
3508                 }
3509
3510                 /* shift the items */
3511                 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
3512                               btrfs_item_nr_offset(slot),
3513                               (nritems - slot) * sizeof(struct btrfs_item));
3514
3515                 /* shift the data */
3516                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3517                               data_end - total_data, btrfs_leaf_data(leaf) +
3518                               data_end, old_data - data_end);
3519                 data_end = old_data;
3520         } else {
3521                 /*
3522                  * this sucks but it has to be done, if we are inserting at
3523                  * the end of the leaf only insert 1 of the items, since we
3524                  * have no way of knowing whats on the next leaf and we'd have
3525                  * to drop our current locks to figure it out
3526                  */
3527                 nr = 1;
3528         }
3529
3530         /* setup the item for the new data */
3531         for (i = 0; i < nr; i++) {
3532                 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
3533                 btrfs_set_item_key(leaf, &disk_key, slot + i);
3534                 item = btrfs_item_nr(leaf, slot + i);
3535                 btrfs_set_item_offset(leaf, item, data_end - data_size[i]);
3536                 data_end -= data_size[i];
3537                 btrfs_set_item_size(leaf, item, data_size[i]);
3538         }
3539         btrfs_set_header_nritems(leaf, nritems + nr);
3540         btrfs_mark_buffer_dirty(leaf);
3541
3542         ret = 0;
3543         if (slot == 0) {
3544                 btrfs_cpu_key_to_disk(&disk_key, cpu_key);
3545                 ret = fixup_low_keys(trans, root, path, &disk_key, 1);
3546         }
3547
3548         if (btrfs_leaf_free_space(root, leaf) < 0) {
3549                 btrfs_print_leaf(root, leaf);
3550                 BUG();
3551         }
3552 out:
3553         if (!ret)
3554                 ret = nr;
3555         return ret;
3556 }
3557
3558 /*
3559  * this is a helper for btrfs_insert_empty_items, the main goal here is
3560  * to save stack depth by doing the bulk of the work in a function
3561  * that doesn't call btrfs_search_slot
3562  */
3563 static noinline_for_stack int
3564 setup_items_for_insert(struct btrfs_trans_handle *trans,
3565                       struct btrfs_root *root, struct btrfs_path *path,
3566                       struct btrfs_key *cpu_key, u32 *data_size,
3567                       u32 total_data, u32 total_size, int nr)
3568 {
3569         struct btrfs_item *item;
3570         int i;
3571         u32 nritems;
3572         unsigned int data_end;
3573         struct btrfs_disk_key disk_key;
3574         int ret;
3575         struct extent_buffer *leaf;
3576         int slot;
3577
3578         leaf = path->nodes[0];
3579         slot = path->slots[0];
3580
3581         nritems = btrfs_header_nritems(leaf);
3582         data_end = leaf_data_end(root, leaf);
3583
3584         if (btrfs_leaf_free_space(root, leaf) < total_size) {
3585                 btrfs_print_leaf(root, leaf);
3586                 printk(KERN_CRIT "not enough freespace need %u have %d\n",
3587                        total_size, btrfs_leaf_free_space(root, leaf));
3588                 BUG();
3589         }
3590
3591         if (slot != nritems) {
3592                 unsigned int old_data = btrfs_item_end_nr(leaf, slot);
3593
3594                 if (old_data < data_end) {
3595                         btrfs_print_leaf(root, leaf);
3596                         printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
3597                                slot, old_data, data_end);
3598                         BUG_ON(1);
3599                 }
3600                 /*
3601                  * item0..itemN ... dataN.offset..dataN.size .. data0.size
3602                  */
3603                 /* first correct the data pointers */
3604                 WARN_ON(leaf->map_token);
3605                 for (i = slot; i < nritems; i++) {
3606                         u32 ioff;
3607
3608                         item = btrfs_item_nr(leaf, i);
3609                         if (!leaf->map_token) {
3610                                 map_extent_buffer(leaf, (unsigned long)item,
3611                                         sizeof(struct btrfs_item),
3612                                         &leaf->map_token, &leaf->kaddr,
3613                                         &leaf->map_start, &leaf->map_len,
3614                                         KM_USER1);
3615                         }
3616
3617                         ioff = btrfs_item_offset(leaf, item);
3618                         btrfs_set_item_offset(leaf, item, ioff - total_data);
3619                 }
3620                 if (leaf->map_token) {
3621                         unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
3622                         leaf->map_token = NULL;
3623                 }
3624
3625                 /* shift the items */
3626                 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
3627                               btrfs_item_nr_offset(slot),
3628                               (nritems - slot) * sizeof(struct btrfs_item));
3629
3630                 /* shift the data */
3631                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3632                               data_end - total_data, btrfs_leaf_data(leaf) +
3633                               data_end, old_data - data_end);
3634                 data_end = old_data;
3635         }
3636
3637         /* setup the item for the new data */
3638         for (i = 0; i < nr; i++) {
3639                 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
3640                 btrfs_set_item_key(leaf, &disk_key, slot + i);
3641                 item = btrfs_item_nr(leaf, slot + i);
3642                 btrfs_set_item_offset(leaf, item, data_end - data_size[i]);
3643                 data_end -= data_size[i];
3644                 btrfs_set_item_size(leaf, item, data_size[i]);
3645         }
3646
3647         btrfs_set_header_nritems(leaf, nritems + nr);
3648
3649         ret = 0;
3650         if (slot == 0) {
3651                 struct btrfs_disk_key disk_key;
3652                 btrfs_cpu_key_to_disk(&disk_key, cpu_key);
3653                 ret = fixup_low_keys(trans, root, path, &disk_key, 1);
3654         }
3655         btrfs_unlock_up_safe(path, 1);
3656         btrfs_mark_buffer_dirty(leaf);
3657
3658         if (btrfs_leaf_free_space(root, leaf) < 0) {
3659                 btrfs_print_leaf(root, leaf);
3660                 BUG();
3661         }
3662         return ret;
3663 }
3664
3665 /*
3666  * Given a key and some data, insert items into the tree.
3667  * This does all the path init required, making room in the tree if needed.
3668  */
3669 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
3670                             struct btrfs_root *root,
3671                             struct btrfs_path *path,
3672                             struct btrfs_key *cpu_key, u32 *data_size,
3673                             int nr)
3674 {
3675         struct extent_buffer *leaf;
3676         int ret = 0;
3677         int slot;
3678         int i;
3679         u32 total_size = 0;
3680         u32 total_data = 0;
3681
3682         for (i = 0; i < nr; i++)
3683                 total_data += data_size[i];
3684
3685         total_size = total_data + (nr * sizeof(struct btrfs_item));
3686         ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
3687         if (ret == 0)
3688                 return -EEXIST;
3689         if (ret < 0)
3690                 goto out;
3691
3692         leaf = path->nodes[0];
3693         slot = path->slots[0];
3694         BUG_ON(slot < 0);
3695
3696         ret = setup_items_for_insert(trans, root, path, cpu_key, data_size,
3697                                total_data, total_size, nr);
3698
3699 out:
3700         return ret;
3701 }
3702
3703 /*
3704  * Given a key and some data, insert an item into the tree.
3705  * This does all the path init required, making room in the tree if needed.
3706  */
3707 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
3708                       *root, struct btrfs_key *cpu_key, void *data, u32
3709                       data_size)
3710 {
3711         int ret = 0;
3712         struct btrfs_path *path;
3713         struct extent_buffer *leaf;
3714         unsigned long ptr;
3715
3716         path = btrfs_alloc_path();
3717         BUG_ON(!path);
3718         ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
3719         if (!ret) {
3720                 leaf = path->nodes[0];
3721                 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3722                 write_extent_buffer(leaf, data, ptr, data_size);
3723                 btrfs_mark_buffer_dirty(leaf);
3724         }
3725         btrfs_free_path(path);
3726         return ret;
3727 }
3728
3729 /*
3730  * delete the pointer from a given node.
3731  *
3732  * the tree should have been previously balanced so the deletion does not
3733  * empty a node.
3734  */
3735 static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3736                    struct btrfs_path *path, int level, int slot)
3737 {
3738         struct extent_buffer *parent = path->nodes[level];
3739         u32 nritems;
3740         int ret = 0;
3741         int wret;
3742
3743         nritems = btrfs_header_nritems(parent);
3744         if (slot != nritems - 1) {
3745                 memmove_extent_buffer(parent,
3746                               btrfs_node_key_ptr_offset(slot),
3747                               btrfs_node_key_ptr_offset(slot + 1),
3748                               sizeof(struct btrfs_key_ptr) *
3749                               (nritems - slot - 1));
3750         }
3751         nritems--;
3752         btrfs_set_header_nritems(parent, nritems);
3753         if (nritems == 0 && parent == root->node) {
3754                 BUG_ON(btrfs_header_level(root->node) != 1);
3755                 /* just turn the root into a leaf and break */
3756                 btrfs_set_header_level(root->node, 0);
3757         } else if (slot == 0) {
3758                 struct btrfs_disk_key disk_key;
3759
3760                 btrfs_node_key(parent, &disk_key, 0);
3761                 wret = fixup_low_keys(trans, root, path, &disk_key, level + 1);
3762                 if (wret)
3763                         ret = wret;
3764         }
3765         btrfs_mark_buffer_dirty(parent);
3766         return ret;
3767 }
3768
3769 /*
3770  * a helper function to delete the leaf pointed to by path->slots[1] and
3771  * path->nodes[1].
3772  *
3773  * This deletes the pointer in path->nodes[1] and frees the leaf
3774  * block extent.  zero is returned if it all worked out, < 0 otherwise.
3775  *
3776  * The path must have already been setup for deleting the leaf, including
3777  * all the proper balancing.  path->nodes[1] must be locked.
3778  */
3779 static noinline int btrfs_del_leaf(struct btrfs_trans_handle *trans,
3780                                    struct btrfs_root *root,
3781                                    struct btrfs_path *path,
3782                                    struct extent_buffer *leaf)
3783 {
3784         int ret;
3785
3786         WARN_ON(btrfs_header_generation(leaf) != trans->transid);
3787         ret = del_ptr(trans, root, path, 1, path->slots[1]);
3788         if (ret)
3789                 return ret;
3790
3791         /*
3792          * btrfs_free_extent is expensive, we want to make sure we
3793          * aren't holding any locks when we call it
3794          */
3795         btrfs_unlock_up_safe(path, 0);
3796
3797         ret = btrfs_free_extent(trans, root, leaf->start, leaf->len,
3798                                 0, root->root_key.objectid, 0, 0);
3799         return ret;
3800 }
3801 /*
3802  * delete the item at the leaf level in path.  If that empties
3803  * the leaf, remove it from the tree
3804  */
3805 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3806                     struct btrfs_path *path, int slot, int nr)
3807 {
3808         struct extent_buffer *leaf;
3809         struct btrfs_item *item;
3810         int last_off;
3811         int dsize = 0;
3812         int ret = 0;
3813         int wret;
3814         int i;
3815         u32 nritems;
3816
3817         leaf = path->nodes[0];
3818         last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
3819
3820         for (i = 0; i < nr; i++)
3821                 dsize += btrfs_item_size_nr(leaf, slot + i);
3822
3823         nritems = btrfs_header_nritems(leaf);
3824
3825         if (slot + nr != nritems) {
3826                 int data_end = leaf_data_end(root, leaf);
3827
3828                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3829                               data_end + dsize,
3830                               btrfs_leaf_data(leaf) + data_end,
3831                               last_off - data_end);
3832
3833                 for (i = slot + nr; i < nritems; i++) {
3834                         u32 ioff;
3835
3836                         item = btrfs_item_nr(leaf, i);
3837                         if (!leaf->map_token) {
3838                                 map_extent_buffer(leaf, (unsigned long)item,
3839                                         sizeof(struct btrfs_item),
3840                                         &leaf->map_token, &leaf->kaddr,
3841                                         &leaf->map_start, &leaf->map_len,
3842                                         KM_USER1);
3843                         }
3844                         ioff = btrfs_item_offset(leaf, item);
3845                         btrfs_set_item_offset(leaf, item, ioff + dsize);
3846                 }
3847
3848                 if (leaf->map_token) {
3849                         unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
3850                         leaf->map_token = NULL;
3851                 }
3852
3853                 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
3854                               btrfs_item_nr_offset(slot + nr),
3855                               sizeof(struct btrfs_item) *
3856                               (nritems - slot - nr));
3857         }
3858         btrfs_set_header_nritems(leaf, nritems - nr);
3859         nritems -= nr;
3860
3861         /* delete the leaf if we've emptied it */
3862         if (nritems == 0) {
3863                 if (leaf == root->node) {
3864                         btrfs_set_header_level(leaf, 0);
3865                 } else {
3866                         ret = btrfs_del_leaf(trans, root, path, leaf);
3867                         BUG_ON(ret);
3868                 }
3869         } else {
3870                 int used = leaf_space_used(leaf, 0, nritems);
3871                 if (slot == 0) {
3872                         struct btrfs_disk_key disk_key;
3873
3874                         btrfs_item_key(leaf, &disk_key, 0);
3875                         wret = fixup_low_keys(trans, root, path,
3876                                               &disk_key, 1);
3877                         if (wret)
3878                                 ret = wret;
3879                 }
3880
3881                 /* delete the leaf if it is mostly empty */
3882                 if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) {
3883                         /* push_leaf_left fixes the path.
3884                          * make sure the path still points to our leaf
3885                          * for possible call to del_ptr below
3886                          */
3887                         slot = path->slots[1];
3888                         extent_buffer_get(leaf);
3889
3890                         btrfs_set_path_blocking(path);
3891                         wret = push_leaf_left(trans, root, path, 1, 1);
3892                         if (wret < 0 && wret != -ENOSPC)
3893                                 ret = wret;
3894
3895                         if (path->nodes[0] == leaf &&
3896                             btrfs_header_nritems(leaf)) {
3897                                 wret = push_leaf_right(trans, root, path, 1, 1);
3898                                 if (wret < 0 && wret != -ENOSPC)
3899                                         ret = wret;
3900                         }
3901
3902                         if (btrfs_header_nritems(leaf) == 0) {
3903                                 path->slots[1] = slot;
3904                                 ret = btrfs_del_leaf(trans, root, path, leaf);
3905                                 BUG_ON(ret);
3906                                 free_extent_buffer(leaf);
3907                         } else {
3908                                 /* if we're still in the path, make sure
3909                                  * we're dirty.  Otherwise, one of the
3910                                  * push_leaf functions must have already
3911                                  * dirtied this buffer
3912                                  */
3913                                 if (path->nodes[0] == leaf)
3914                                         btrfs_mark_buffer_dirty(leaf);
3915                                 free_extent_buffer(leaf);
3916                         }
3917                 } else {
3918                         btrfs_mark_buffer_dirty(leaf);
3919                 }
3920         }
3921         return ret;
3922 }
3923
3924 /*
3925  * search the tree again to find a leaf with lesser keys
3926  * returns 0 if it found something or 1 if there are no lesser leaves.
3927  * returns < 0 on io errors.
3928  *
3929  * This may release the path, and so you may lose any locks held at the
3930  * time you call it.
3931  */
3932 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
3933 {
3934         struct btrfs_key key;
3935         struct btrfs_disk_key found_key;
3936         int ret;
3937
3938         btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
3939
3940         if (key.offset > 0)
3941                 key.offset--;
3942         else if (key.type > 0)
3943                 key.type--;
3944         else if (key.objectid > 0)
3945                 key.objectid--;
3946         else
3947                 return 1;
3948
3949         btrfs_release_path(root, path);
3950         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3951         if (ret < 0)
3952                 return ret;
3953         btrfs_item_key(path->nodes[0], &found_key, 0);
3954         ret = comp_keys(&found_key, &key);
3955         if (ret < 0)
3956                 return 0;
3957         return 1;
3958 }
3959
3960 /*
3961  * A helper function to walk down the tree starting at min_key, and looking
3962  * for nodes or leaves that are either in cache or have a minimum
3963  * transaction id.  This is used by the btree defrag code, and tree logging
3964  *
3965  * This does not cow, but it does stuff the starting key it finds back
3966  * into min_key, so you can call btrfs_search_slot with cow=1 on the
3967  * key and get a writable path.
3968  *
3969  * This does lock as it descends, and path->keep_locks should be set
3970  * to 1 by the caller.
3971  *
3972  * This honors path->lowest_level to prevent descent past a given level
3973  * of the tree.
3974  *
3975  * min_trans indicates the oldest transaction that you are interested
3976  * in walking through.  Any nodes or leaves older than min_trans are
3977  * skipped over (without reading them).
3978  *
3979  * returns zero if something useful was found, < 0 on error and 1 if there
3980  * was nothing in the tree that matched the search criteria.
3981  */
3982 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
3983                          struct btrfs_key *max_key,
3984                          struct btrfs_path *path, int cache_only,
3985                          u64 min_trans)
3986 {
3987         struct extent_buffer *cur;
3988         struct btrfs_key found_key;
3989         int slot;
3990         int sret;
3991         u32 nritems;
3992         int level;
3993         int ret = 1;
3994
3995         WARN_ON(!path->keep_locks);
3996 again:
3997         cur = btrfs_lock_root_node(root);
3998         level = btrfs_header_level(cur);
3999         WARN_ON(path->nodes[level]);
4000         path->nodes[level] = cur;
4001         path->locks[level] = 1;
4002
4003         if (btrfs_header_generation(cur) < min_trans) {
4004                 ret = 1;
4005                 goto out;
4006         }
4007         while (1) {
4008                 nritems = btrfs_header_nritems(cur);
4009                 level = btrfs_header_level(cur);
4010                 sret = bin_search(cur, min_key, level, &slot);
4011
4012                 /* at the lowest level, we're done, setup the path and exit */
4013                 if (level == path->lowest_level) {
4014                         if (slot >= nritems)
4015                                 goto find_next_key;
4016                         ret = 0;
4017                         path->slots[level] = slot;
4018                         btrfs_item_key_to_cpu(cur, &found_key, slot);
4019                         goto out;
4020                 }
4021                 if (sret && slot > 0)
4022                         slot--;
4023                 /*
4024                  * check this node pointer against the cache_only and
4025                  * min_trans parameters.  If it isn't in cache or is too
4026                  * old, skip to the next one.
4027                  */
4028                 while (slot < nritems) {
4029                         u64 blockptr;
4030                         u64 gen;
4031                         struct extent_buffer *tmp;
4032                         struct btrfs_disk_key disk_key;
4033
4034                         blockptr = btrfs_node_blockptr(cur, slot);
4035                         gen = btrfs_node_ptr_generation(cur, slot);
4036                         if (gen < min_trans) {
4037                                 slot++;
4038                                 continue;
4039                         }
4040                         if (!cache_only)
4041                                 break;
4042
4043                         if (max_key) {
4044                                 btrfs_node_key(cur, &disk_key, slot);
4045                                 if (comp_keys(&disk_key, max_key) >= 0) {
4046                                         ret = 1;
4047                                         goto out;
4048                                 }
4049                         }
4050
4051                         tmp = btrfs_find_tree_block(root, blockptr,
4052                                             btrfs_level_size(root, level - 1));
4053
4054                         if (tmp && btrfs_buffer_uptodate(tmp, gen)) {
4055                                 free_extent_buffer(tmp);
4056                                 break;
4057                         }
4058                         if (tmp)
4059                                 free_extent_buffer(tmp);
4060                         slot++;
4061                 }
4062 find_next_key:
4063                 /*
4064                  * we didn't find a candidate key in this node, walk forward
4065                  * and find another one
4066                  */
4067                 if (slot >= nritems) {
4068                         path->slots[level] = slot;
4069                         btrfs_set_path_blocking(path);
4070                         sret = btrfs_find_next_key(root, path, min_key, level,
4071                                                   cache_only, min_trans);
4072                         if (sret == 0) {
4073                                 btrfs_release_path(root, path);
4074                                 goto again;
4075                         } else {
4076                                 goto out;
4077                         }
4078                 }
4079                 /* save our key for returning back */
4080                 btrfs_node_key_to_cpu(cur, &found_key, slot);
4081                 path->slots[level] = slot;
4082                 if (level == path->lowest_level) {
4083                         ret = 0;
4084                         unlock_up(path, level, 1);
4085                         goto out;
4086                 }
4087                 btrfs_set_path_blocking(path);
4088                 cur = read_node_slot(root, cur, slot);
4089
4090                 btrfs_tree_lock(cur);
4091
4092                 path->locks[level - 1] = 1;
4093                 path->nodes[level - 1] = cur;
4094                 unlock_up(path, level, 1);
4095                 btrfs_clear_path_blocking(path, NULL);
4096         }
4097 out:
4098         if (ret == 0)
4099                 memcpy(min_key, &found_key, sizeof(found_key));
4100         btrfs_set_path_blocking(path);
4101         return ret;
4102 }
4103
4104 /*
4105  * this is similar to btrfs_next_leaf, but does not try to preserve
4106  * and fixup the path.  It looks for and returns the next key in the
4107  * tree based on the current path and the cache_only and min_trans
4108  * parameters.
4109  *
4110  * 0 is returned if another key is found, < 0 if there are any errors
4111  * and 1 is returned if there are no higher keys in the tree
4112  *
4113  * path->keep_locks should be set to 1 on the search made before
4114  * calling this function.
4115  */
4116 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
4117                         struct btrfs_key *key, int level,
4118                         int cache_only, u64 min_trans)
4119 {
4120         int slot;
4121         struct extent_buffer *c;
4122
4123         WARN_ON(!path->keep_locks);
4124         while (level < BTRFS_MAX_LEVEL) {
4125                 if (!path->nodes[level])
4126                         return 1;
4127
4128                 slot = path->slots[level] + 1;
4129                 c = path->nodes[level];
4130 next:
4131                 if (slot >= btrfs_header_nritems(c)) {
4132                         int ret;
4133                         int orig_lowest;
4134                         struct btrfs_key cur_key;
4135                         if (level + 1 >= BTRFS_MAX_LEVEL ||
4136                             !path->nodes[level + 1])
4137                                 return 1;
4138
4139                         if (path->locks[level + 1]) {
4140                                 level++;
4141                                 continue;
4142                         }
4143
4144                         slot = btrfs_header_nritems(c) - 1;
4145                         if (level == 0)
4146                                 btrfs_item_key_to_cpu(c, &cur_key, slot);
4147                         else
4148                                 btrfs_node_key_to_cpu(c, &cur_key, slot);
4149
4150                         orig_lowest = path->lowest_level;
4151                         btrfs_release_path(root, path);
4152                         path->lowest_level = level;
4153                         ret = btrfs_search_slot(NULL, root, &cur_key, path,
4154                                                 0, 0);
4155                         path->lowest_level = orig_lowest;
4156                         if (ret < 0)
4157                                 return ret;
4158
4159                         c = path->nodes[level];
4160                         slot = path->slots[level];
4161                         if (ret == 0)
4162                                 slot++;
4163                         goto next;
4164                 }
4165
4166                 if (level == 0)
4167                         btrfs_item_key_to_cpu(c, key, slot);
4168                 else {
4169                         u64 blockptr = btrfs_node_blockptr(c, slot);
4170                         u64 gen = btrfs_node_ptr_generation(c, slot);
4171
4172                         if (cache_only) {
4173                                 struct extent_buffer *cur;
4174                                 cur = btrfs_find_tree_block(root, blockptr,
4175                                             btrfs_level_size(root, level - 1));
4176                                 if (!cur || !btrfs_buffer_uptodate(cur, gen)) {
4177                                         slot++;
4178                                         if (cur)
4179                                                 free_extent_buffer(cur);
4180                                         goto next;
4181                                 }
4182                                 free_extent_buffer(cur);
4183                         }
4184                         if (gen < min_trans) {
4185                                 slot++;
4186                                 goto next;
4187                         }
4188                         btrfs_node_key_to_cpu(c, key, slot);
4189                 }
4190                 return 0;
4191         }
4192         return 1;
4193 }
4194
4195 /*
4196  * search the tree again to find a leaf with greater keys
4197  * returns 0 if it found something or 1 if there are no greater leaves.
4198  * returns < 0 on io errors.
4199  */
4200 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
4201 {
4202         int slot;
4203         int level;
4204         struct extent_buffer *c;
4205         struct extent_buffer *next;
4206         struct btrfs_key key;
4207         u32 nritems;
4208         int ret;
4209         int old_spinning = path->leave_spinning;
4210         int force_blocking = 0;
4211
4212         nritems = btrfs_header_nritems(path->nodes[0]);
4213         if (nritems == 0)
4214                 return 1;
4215
4216         /*
4217          * we take the blocks in an order that upsets lockdep.  Using
4218          * blocking mode is the only way around it.
4219          */
4220 #ifdef CONFIG_DEBUG_LOCK_ALLOC
4221         force_blocking = 1;
4222 #endif
4223
4224         btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
4225 again:
4226         level = 1;
4227         next = NULL;
4228         btrfs_release_path(root, path);
4229
4230         path->keep_locks = 1;
4231
4232         if (!force_blocking)
4233                 path->leave_spinning = 1;
4234
4235         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4236         path->keep_locks = 0;
4237
4238         if (ret < 0)
4239                 return ret;
4240
4241         nritems = btrfs_header_nritems(path->nodes[0]);
4242         /*
4243          * by releasing the path above we dropped all our locks.  A balance
4244          * could have added more items next to the key that used to be
4245          * at the very end of the block.  So, check again here and
4246          * advance the path if there are now more items available.
4247          */
4248         if (nritems > 0 && path->slots[0] < nritems - 1) {
4249                 if (ret == 0)
4250                         path->slots[0]++;
4251                 ret = 0;
4252                 goto done;
4253         }
4254
4255         while (level < BTRFS_MAX_LEVEL) {
4256                 if (!path->nodes[level]) {
4257                         ret = 1;
4258                         goto done;
4259                 }
4260
4261                 slot = path->slots[level] + 1;
4262                 c = path->nodes[level];
4263                 if (slot >= btrfs_header_nritems(c)) {
4264                         level++;
4265                         if (level == BTRFS_MAX_LEVEL) {
4266                                 ret = 1;
4267                                 goto done;
4268                         }
4269                         continue;
4270                 }
4271
4272                 if (next) {
4273                         btrfs_tree_unlock(next);
4274                         free_extent_buffer(next);
4275                 }
4276
4277                 next = c;
4278                 ret = read_block_for_search(NULL, root, path, &next, level,
4279                                             slot, &key);
4280                 if (ret == -EAGAIN)
4281                         goto again;
4282
4283                 if (ret < 0) {
4284                         btrfs_release_path(root, path);
4285                         goto done;
4286                 }
4287
4288                 if (!path->skip_locking) {
4289                         ret = btrfs_try_spin_lock(next);
4290                         if (!ret) {
4291                                 btrfs_set_path_blocking(path);
4292                                 btrfs_tree_lock(next);
4293                                 if (!force_blocking)
4294                                         btrfs_clear_path_blocking(path, next);
4295                         }
4296                         if (force_blocking)
4297                                 btrfs_set_lock_blocking(next);
4298                 }
4299                 break;
4300         }
4301         path->slots[level] = slot;
4302         while (1) {
4303                 level--;
4304                 c = path->nodes[level];
4305                 if (path->locks[level])
4306                         btrfs_tree_unlock(c);
4307
4308                 free_extent_buffer(c);
4309                 path->nodes[level] = next;
4310                 path->slots[level] = 0;
4311                 if (!path->skip_locking)
4312                         path->locks[level] = 1;
4313
4314                 if (!level)
4315                         break;
4316
4317                 ret = read_block_for_search(NULL, root, path, &next, level,
4318                                             0, &key);
4319                 if (ret == -EAGAIN)
4320                         goto again;
4321
4322                 if (ret < 0) {
4323                         btrfs_release_path(root, path);
4324                         goto done;
4325                 }
4326
4327                 if (!path->skip_locking) {
4328                         btrfs_assert_tree_locked(path->nodes[level]);
4329                         ret = btrfs_try_spin_lock(next);
4330                         if (!ret) {
4331                                 btrfs_set_path_blocking(path);
4332                                 btrfs_tree_lock(next);
4333                                 if (!force_blocking)
4334                                         btrfs_clear_path_blocking(path, next);
4335                         }
4336                         if (force_blocking)
4337                                 btrfs_set_lock_blocking(next);
4338                 }
4339         }
4340         ret = 0;
4341 done:
4342         unlock_up(path, 0, 1);
4343         path->leave_spinning = old_spinning;
4344         if (!old_spinning)
4345                 btrfs_set_path_blocking(path);
4346
4347         return ret;
4348 }
4349
4350 /*
4351  * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
4352  * searching until it gets past min_objectid or finds an item of 'type'
4353  *
4354  * returns 0 if something is found, 1 if nothing was found and < 0 on error
4355  */
4356 int btrfs_previous_item(struct btrfs_root *root,
4357                         struct btrfs_path *path, u64 min_objectid,
4358                         int type)
4359 {
4360         struct btrfs_key found_key;
4361         struct extent_buffer *leaf;
4362         u32 nritems;
4363         int ret;
4364
4365         while (1) {
4366                 if (path->slots[0] == 0) {
4367                         btrfs_set_path_blocking(path);
4368                         ret = btrfs_prev_leaf(root, path);
4369                         if (ret != 0)
4370                                 return ret;
4371                 } else {
4372                         path->slots[0]--;
4373                 }
4374                 leaf = path->nodes[0];
4375                 nritems = btrfs_header_nritems(leaf);
4376                 if (nritems == 0)
4377                         return 1;
4378                 if (path->slots[0] == nritems)
4379                         path->slots[0]--;
4380
4381                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4382                 if (found_key.objectid < min_objectid)
4383                         break;
4384                 if (found_key.type == type)
4385                         return 0;
4386                 if (found_key.objectid == min_objectid &&
4387                     found_key.type < type)
4388                         break;
4389         }
4390         return 1;
4391 }