2 * Copyright (C) 2007,2008 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include <linux/rbtree.h>
24 #include "transaction.h"
25 #include "print-tree.h"
28 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
29 *root, struct btrfs_path *path, int level);
30 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
31 *root, struct btrfs_key *ins_key,
32 struct btrfs_path *path, int data_size, int extend);
33 static int push_node_left(struct btrfs_trans_handle *trans,
34 struct btrfs_root *root, struct extent_buffer *dst,
35 struct extent_buffer *src, int empty);
36 static int balance_node_right(struct btrfs_trans_handle *trans,
37 struct btrfs_root *root,
38 struct extent_buffer *dst_buf,
39 struct extent_buffer *src_buf);
40 static void del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
41 struct btrfs_path *path, int level, int slot,
43 static void tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
44 struct extent_buffer *eb);
45 struct extent_buffer *read_old_tree_block(struct btrfs_root *root, u64 bytenr,
46 u32 blocksize, u64 parent_transid,
48 struct extent_buffer *btrfs_find_old_tree_block(struct btrfs_root *root,
49 u64 bytenr, u32 blocksize,
52 struct btrfs_path *btrfs_alloc_path(void)
54 struct btrfs_path *path;
55 path = kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
60 * set all locked nodes in the path to blocking locks. This should
61 * be done before scheduling
63 noinline void btrfs_set_path_blocking(struct btrfs_path *p)
66 for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
67 if (!p->nodes[i] || !p->locks[i])
69 btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]);
70 if (p->locks[i] == BTRFS_READ_LOCK)
71 p->locks[i] = BTRFS_READ_LOCK_BLOCKING;
72 else if (p->locks[i] == BTRFS_WRITE_LOCK)
73 p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING;
78 * reset all the locked nodes in the patch to spinning locks.
80 * held is used to keep lockdep happy, when lockdep is enabled
81 * we set held to a blocking lock before we go around and
82 * retake all the spinlocks in the path. You can safely use NULL
85 noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
86 struct extent_buffer *held, int held_rw)
90 #ifdef CONFIG_DEBUG_LOCK_ALLOC
91 /* lockdep really cares that we take all of these spinlocks
92 * in the right order. If any of the locks in the path are not
93 * currently blocking, it is going to complain. So, make really
94 * really sure by forcing the path to blocking before we clear
98 btrfs_set_lock_blocking_rw(held, held_rw);
99 if (held_rw == BTRFS_WRITE_LOCK)
100 held_rw = BTRFS_WRITE_LOCK_BLOCKING;
101 else if (held_rw == BTRFS_READ_LOCK)
102 held_rw = BTRFS_READ_LOCK_BLOCKING;
104 btrfs_set_path_blocking(p);
107 for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
108 if (p->nodes[i] && p->locks[i]) {
109 btrfs_clear_lock_blocking_rw(p->nodes[i], p->locks[i]);
110 if (p->locks[i] == BTRFS_WRITE_LOCK_BLOCKING)
111 p->locks[i] = BTRFS_WRITE_LOCK;
112 else if (p->locks[i] == BTRFS_READ_LOCK_BLOCKING)
113 p->locks[i] = BTRFS_READ_LOCK;
117 #ifdef CONFIG_DEBUG_LOCK_ALLOC
119 btrfs_clear_lock_blocking_rw(held, held_rw);
123 /* this also releases the path */
124 void btrfs_free_path(struct btrfs_path *p)
128 btrfs_release_path(p);
129 kmem_cache_free(btrfs_path_cachep, p);
133 * path release drops references on the extent buffers in the path
134 * and it drops any locks held by this path
136 * It is safe to call this on paths that no locks or extent buffers held.
138 noinline void btrfs_release_path(struct btrfs_path *p)
142 for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
147 btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
150 free_extent_buffer(p->nodes[i]);
156 * safely gets a reference on the root node of a tree. A lock
157 * is not taken, so a concurrent writer may put a different node
158 * at the root of the tree. See btrfs_lock_root_node for the
161 * The extent buffer returned by this has a reference taken, so
162 * it won't disappear. It may stop being the root of the tree
163 * at any time because there are no locks held.
165 struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
167 struct extent_buffer *eb;
171 eb = rcu_dereference(root->node);
174 * RCU really hurts here, we could free up the root node because
175 * it was cow'ed but we may not get the new root node yet so do
176 * the inc_not_zero dance and if it doesn't work then
177 * synchronize_rcu and try again.
179 if (atomic_inc_not_zero(&eb->refs)) {
189 /* loop around taking references on and locking the root node of the
190 * tree until you end up with a lock on the root. A locked buffer
191 * is returned, with a reference held.
193 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
195 struct extent_buffer *eb;
198 eb = btrfs_root_node(root);
200 if (eb == root->node)
202 btrfs_tree_unlock(eb);
203 free_extent_buffer(eb);
208 /* loop around taking references on and locking the root node of the
209 * tree until you end up with a lock on the root. A locked buffer
210 * is returned, with a reference held.
212 struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
214 struct extent_buffer *eb;
217 eb = btrfs_root_node(root);
218 btrfs_tree_read_lock(eb);
219 if (eb == root->node)
221 btrfs_tree_read_unlock(eb);
222 free_extent_buffer(eb);
227 /* cowonly root (everything not a reference counted cow subvolume), just get
228 * put onto a simple dirty list. transaction.c walks this to make sure they
229 * get properly updated on disk.
231 static void add_root_to_dirty_list(struct btrfs_root *root)
233 spin_lock(&root->fs_info->trans_lock);
234 if (root->track_dirty && list_empty(&root->dirty_list)) {
235 list_add(&root->dirty_list,
236 &root->fs_info->dirty_cowonly_roots);
238 spin_unlock(&root->fs_info->trans_lock);
242 * used by snapshot creation to make a copy of a root for a tree with
243 * a given objectid. The buffer with the new root node is returned in
244 * cow_ret, and this func returns zero on success or a negative error code.
246 int btrfs_copy_root(struct btrfs_trans_handle *trans,
247 struct btrfs_root *root,
248 struct extent_buffer *buf,
249 struct extent_buffer **cow_ret, u64 new_root_objectid)
251 struct extent_buffer *cow;
254 struct btrfs_disk_key disk_key;
256 WARN_ON(root->ref_cows && trans->transid !=
257 root->fs_info->running_transaction->transid);
258 WARN_ON(root->ref_cows && trans->transid != root->last_trans);
260 level = btrfs_header_level(buf);
262 btrfs_item_key(buf, &disk_key, 0);
264 btrfs_node_key(buf, &disk_key, 0);
266 cow = btrfs_alloc_free_block(trans, root, buf->len, 0,
267 new_root_objectid, &disk_key, level,
272 copy_extent_buffer(cow, buf, 0, 0, cow->len);
273 btrfs_set_header_bytenr(cow, cow->start);
274 btrfs_set_header_generation(cow, trans->transid);
275 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
276 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
277 BTRFS_HEADER_FLAG_RELOC);
278 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
279 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
281 btrfs_set_header_owner(cow, new_root_objectid);
283 write_extent_buffer(cow, root->fs_info->fsid,
284 (unsigned long)btrfs_header_fsid(cow),
287 WARN_ON(btrfs_header_generation(buf) > trans->transid);
288 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
289 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
291 ret = btrfs_inc_ref(trans, root, cow, 0, 1);
296 btrfs_mark_buffer_dirty(cow);
305 MOD_LOG_KEY_REMOVE_WHILE_FREEING,
306 MOD_LOG_KEY_REMOVE_WHILE_MOVING,
308 MOD_LOG_ROOT_REPLACE,
311 struct tree_mod_move {
316 struct tree_mod_root {
321 struct tree_mod_elem {
323 u64 index; /* shifted logical */
327 /* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
330 /* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
333 /* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
334 struct btrfs_disk_key key;
337 /* this is used for op == MOD_LOG_MOVE_KEYS */
338 struct tree_mod_move move;
340 /* this is used for op == MOD_LOG_ROOT_REPLACE */
341 struct tree_mod_root old_root;
344 static inline void tree_mod_log_read_lock(struct btrfs_fs_info *fs_info)
346 read_lock(&fs_info->tree_mod_log_lock);
349 static inline void tree_mod_log_read_unlock(struct btrfs_fs_info *fs_info)
351 read_unlock(&fs_info->tree_mod_log_lock);
354 static inline void tree_mod_log_write_lock(struct btrfs_fs_info *fs_info)
356 write_lock(&fs_info->tree_mod_log_lock);
359 static inline void tree_mod_log_write_unlock(struct btrfs_fs_info *fs_info)
361 write_unlock(&fs_info->tree_mod_log_lock);
365 * This adds a new blocker to the tree mod log's blocker list if the @elem
366 * passed does not already have a sequence number set. So when a caller expects
367 * to record tree modifications, it should ensure to set elem->seq to zero
368 * before calling btrfs_get_tree_mod_seq.
369 * Returns a fresh, unused tree log modification sequence number, even if no new
372 u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
373 struct seq_list *elem)
377 tree_mod_log_write_lock(fs_info);
378 spin_lock(&fs_info->tree_mod_seq_lock);
380 elem->seq = btrfs_inc_tree_mod_seq(fs_info);
381 list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
383 seq = btrfs_inc_tree_mod_seq(fs_info);
384 spin_unlock(&fs_info->tree_mod_seq_lock);
385 tree_mod_log_write_unlock(fs_info);
390 void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
391 struct seq_list *elem)
393 struct rb_root *tm_root;
394 struct rb_node *node;
395 struct rb_node *next;
396 struct seq_list *cur_elem;
397 struct tree_mod_elem *tm;
398 u64 min_seq = (u64)-1;
399 u64 seq_putting = elem->seq;
404 spin_lock(&fs_info->tree_mod_seq_lock);
405 list_del(&elem->list);
408 list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) {
409 if (cur_elem->seq < min_seq) {
410 if (seq_putting > cur_elem->seq) {
412 * blocker with lower sequence number exists, we
413 * cannot remove anything from the log
415 spin_unlock(&fs_info->tree_mod_seq_lock);
418 min_seq = cur_elem->seq;
421 spin_unlock(&fs_info->tree_mod_seq_lock);
424 * anything that's lower than the lowest existing (read: blocked)
425 * sequence number can be removed from the tree.
427 tree_mod_log_write_lock(fs_info);
428 tm_root = &fs_info->tree_mod_log;
429 for (node = rb_first(tm_root); node; node = next) {
430 next = rb_next(node);
431 tm = container_of(node, struct tree_mod_elem, node);
432 if (tm->seq > min_seq)
434 rb_erase(node, tm_root);
437 tree_mod_log_write_unlock(fs_info);
441 * key order of the log:
444 * the index is the shifted logical of the *new* root node for root replace
445 * operations, or the shifted logical of the affected block for all other
449 __tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm)
451 struct rb_root *tm_root;
452 struct rb_node **new;
453 struct rb_node *parent = NULL;
454 struct tree_mod_elem *cur;
456 BUG_ON(!tm || !tm->seq);
458 tm_root = &fs_info->tree_mod_log;
459 new = &tm_root->rb_node;
461 cur = container_of(*new, struct tree_mod_elem, node);
463 if (cur->index < tm->index)
464 new = &((*new)->rb_left);
465 else if (cur->index > tm->index)
466 new = &((*new)->rb_right);
467 else if (cur->seq < tm->seq)
468 new = &((*new)->rb_left);
469 else if (cur->seq > tm->seq)
470 new = &((*new)->rb_right);
477 rb_link_node(&tm->node, parent, new);
478 rb_insert_color(&tm->node, tm_root);
483 * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it
484 * returns zero with the tree_mod_log_lock acquired. The caller must hold
485 * this until all tree mod log insertions are recorded in the rb tree and then
486 * call tree_mod_log_write_unlock() to release.
488 static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info,
489 struct extent_buffer *eb) {
491 if (list_empty(&(fs_info)->tree_mod_seq_list))
493 if (eb && btrfs_header_level(eb) == 0)
496 tree_mod_log_write_lock(fs_info);
497 if (list_empty(&fs_info->tree_mod_seq_list)) {
499 * someone emptied the list while we were waiting for the lock.
500 * we must not add to the list when no blocker exists.
502 tree_mod_log_write_unlock(fs_info);
510 * This allocates memory and gets a tree modification sequence number.
512 * Returns <0 on error.
513 * Returns >0 (the added sequence number) on success.
515 static inline int tree_mod_alloc(struct btrfs_fs_info *fs_info, gfp_t flags,
516 struct tree_mod_elem **tm_ret)
518 struct tree_mod_elem *tm;
521 * once we switch from spin locks to something different, we should
522 * honor the flags parameter here.
524 tm = *tm_ret = kzalloc(sizeof(*tm), GFP_ATOMIC);
528 tm->seq = btrfs_inc_tree_mod_seq(fs_info);
533 __tree_mod_log_insert_key(struct btrfs_fs_info *fs_info,
534 struct extent_buffer *eb, int slot,
535 enum mod_log_op op, gfp_t flags)
538 struct tree_mod_elem *tm;
540 ret = tree_mod_alloc(fs_info, flags, &tm);
544 tm->index = eb->start >> PAGE_CACHE_SHIFT;
545 if (op != MOD_LOG_KEY_ADD) {
546 btrfs_node_key(eb, &tm->key, slot);
547 tm->blockptr = btrfs_node_blockptr(eb, slot);
551 tm->generation = btrfs_node_ptr_generation(eb, slot);
553 return __tree_mod_log_insert(fs_info, tm);
557 tree_mod_log_insert_key_mask(struct btrfs_fs_info *fs_info,
558 struct extent_buffer *eb, int slot,
559 enum mod_log_op op, gfp_t flags)
563 if (tree_mod_dont_log(fs_info, eb))
566 ret = __tree_mod_log_insert_key(fs_info, eb, slot, op, flags);
568 tree_mod_log_write_unlock(fs_info);
573 tree_mod_log_insert_key(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
574 int slot, enum mod_log_op op)
576 return tree_mod_log_insert_key_mask(fs_info, eb, slot, op, GFP_NOFS);
580 tree_mod_log_insert_key_locked(struct btrfs_fs_info *fs_info,
581 struct extent_buffer *eb, int slot,
584 return __tree_mod_log_insert_key(fs_info, eb, slot, op, GFP_NOFS);
588 tree_mod_log_insert_move(struct btrfs_fs_info *fs_info,
589 struct extent_buffer *eb, int dst_slot, int src_slot,
590 int nr_items, gfp_t flags)
592 struct tree_mod_elem *tm;
596 if (tree_mod_dont_log(fs_info, eb))
600 * When we override something during the move, we log these removals.
601 * This can only happen when we move towards the beginning of the
602 * buffer, i.e. dst_slot < src_slot.
604 for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
605 ret = tree_mod_log_insert_key_locked(fs_info, eb, i + dst_slot,
606 MOD_LOG_KEY_REMOVE_WHILE_MOVING);
610 ret = tree_mod_alloc(fs_info, flags, &tm);
614 tm->index = eb->start >> PAGE_CACHE_SHIFT;
616 tm->move.dst_slot = dst_slot;
617 tm->move.nr_items = nr_items;
618 tm->op = MOD_LOG_MOVE_KEYS;
620 ret = __tree_mod_log_insert(fs_info, tm);
622 tree_mod_log_write_unlock(fs_info);
627 __tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, struct extent_buffer *eb)
633 if (btrfs_header_level(eb) == 0)
636 nritems = btrfs_header_nritems(eb);
637 for (i = nritems - 1; i >= 0; i--) {
638 ret = tree_mod_log_insert_key_locked(fs_info, eb, i,
639 MOD_LOG_KEY_REMOVE_WHILE_FREEING);
645 tree_mod_log_insert_root(struct btrfs_fs_info *fs_info,
646 struct extent_buffer *old_root,
647 struct extent_buffer *new_root, gfp_t flags)
649 struct tree_mod_elem *tm;
652 if (tree_mod_dont_log(fs_info, NULL))
655 ret = tree_mod_alloc(fs_info, flags, &tm);
659 tm->index = new_root->start >> PAGE_CACHE_SHIFT;
660 tm->old_root.logical = old_root->start;
661 tm->old_root.level = btrfs_header_level(old_root);
662 tm->generation = btrfs_header_generation(old_root);
663 tm->op = MOD_LOG_ROOT_REPLACE;
665 ret = __tree_mod_log_insert(fs_info, tm);
667 tree_mod_log_write_unlock(fs_info);
671 static struct tree_mod_elem *
672 __tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq,
675 struct rb_root *tm_root;
676 struct rb_node *node;
677 struct tree_mod_elem *cur = NULL;
678 struct tree_mod_elem *found = NULL;
679 u64 index = start >> PAGE_CACHE_SHIFT;
681 tree_mod_log_read_lock(fs_info);
682 tm_root = &fs_info->tree_mod_log;
683 node = tm_root->rb_node;
685 cur = container_of(node, struct tree_mod_elem, node);
686 if (cur->index < index) {
687 node = node->rb_left;
688 } else if (cur->index > index) {
689 node = node->rb_right;
690 } else if (cur->seq < min_seq) {
691 node = node->rb_left;
692 } else if (!smallest) {
693 /* we want the node with the highest seq */
695 BUG_ON(found->seq > cur->seq);
697 node = node->rb_left;
698 } else if (cur->seq > min_seq) {
699 /* we want the node with the smallest seq */
701 BUG_ON(found->seq < cur->seq);
703 node = node->rb_right;
709 tree_mod_log_read_unlock(fs_info);
715 * this returns the element from the log with the smallest time sequence
716 * value that's in the log (the oldest log item). any element with a time
717 * sequence lower than min_seq will be ignored.
719 static struct tree_mod_elem *
720 tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start,
723 return __tree_mod_log_search(fs_info, start, min_seq, 1);
727 * this returns the element from the log with the largest time sequence
728 * value that's in the log (the most recent log item). any element with
729 * a time sequence lower than min_seq will be ignored.
731 static struct tree_mod_elem *
732 tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq)
734 return __tree_mod_log_search(fs_info, start, min_seq, 0);
738 tree_mod_log_eb_copy(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
739 struct extent_buffer *src, unsigned long dst_offset,
740 unsigned long src_offset, int nr_items)
745 if (tree_mod_dont_log(fs_info, NULL))
748 if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0) {
749 tree_mod_log_write_unlock(fs_info);
753 for (i = 0; i < nr_items; i++) {
754 ret = tree_mod_log_insert_key_locked(fs_info, src,
758 ret = tree_mod_log_insert_key_locked(fs_info, dst,
764 tree_mod_log_write_unlock(fs_info);
768 tree_mod_log_eb_move(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
769 int dst_offset, int src_offset, int nr_items)
772 ret = tree_mod_log_insert_move(fs_info, dst, dst_offset, src_offset,
778 tree_mod_log_set_node_key(struct btrfs_fs_info *fs_info,
779 struct extent_buffer *eb,
780 struct btrfs_disk_key *disk_key, int slot, int atomic)
784 ret = tree_mod_log_insert_key_mask(fs_info, eb, slot,
786 atomic ? GFP_ATOMIC : GFP_NOFS);
791 tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, struct extent_buffer *eb)
793 if (tree_mod_dont_log(fs_info, eb))
796 __tree_mod_log_free_eb(fs_info, eb);
798 tree_mod_log_write_unlock(fs_info);
802 tree_mod_log_set_root_pointer(struct btrfs_root *root,
803 struct extent_buffer *new_root_node)
806 ret = tree_mod_log_insert_root(root->fs_info, root->node,
807 new_root_node, GFP_NOFS);
812 * check if the tree block can be shared by multiple trees
814 int btrfs_block_can_be_shared(struct btrfs_root *root,
815 struct extent_buffer *buf)
818 * Tree blocks not in refernece counted trees and tree roots
819 * are never shared. If a block was allocated after the last
820 * snapshot and the block was not allocated by tree relocation,
821 * we know the block is not shared.
823 if (root->ref_cows &&
824 buf != root->node && buf != root->commit_root &&
825 (btrfs_header_generation(buf) <=
826 btrfs_root_last_snapshot(&root->root_item) ||
827 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
829 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
830 if (root->ref_cows &&
831 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
837 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
838 struct btrfs_root *root,
839 struct extent_buffer *buf,
840 struct extent_buffer *cow,
850 * Backrefs update rules:
852 * Always use full backrefs for extent pointers in tree block
853 * allocated by tree relocation.
855 * If a shared tree block is no longer referenced by its owner
856 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
857 * use full backrefs for extent pointers in tree block.
859 * If a tree block is been relocating
860 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
861 * use full backrefs for extent pointers in tree block.
862 * The reason for this is some operations (such as drop tree)
863 * are only allowed for blocks use full backrefs.
866 if (btrfs_block_can_be_shared(root, buf)) {
867 ret = btrfs_lookup_extent_info(trans, root, buf->start,
868 buf->len, &refs, &flags);
873 btrfs_std_error(root->fs_info, ret);
878 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
879 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
880 flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
885 owner = btrfs_header_owner(buf);
886 BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
887 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
890 if ((owner == root->root_key.objectid ||
891 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
892 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
893 ret = btrfs_inc_ref(trans, root, buf, 1, 1);
894 BUG_ON(ret); /* -ENOMEM */
896 if (root->root_key.objectid ==
897 BTRFS_TREE_RELOC_OBJECTID) {
898 ret = btrfs_dec_ref(trans, root, buf, 0, 1);
899 BUG_ON(ret); /* -ENOMEM */
900 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
901 BUG_ON(ret); /* -ENOMEM */
903 new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
906 if (root->root_key.objectid ==
907 BTRFS_TREE_RELOC_OBJECTID)
908 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
910 ret = btrfs_inc_ref(trans, root, cow, 0, 1);
911 BUG_ON(ret); /* -ENOMEM */
913 if (new_flags != 0) {
914 ret = btrfs_set_disk_extent_flags(trans, root,
922 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
923 if (root->root_key.objectid ==
924 BTRFS_TREE_RELOC_OBJECTID)
925 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
927 ret = btrfs_inc_ref(trans, root, cow, 0, 1);
928 BUG_ON(ret); /* -ENOMEM */
929 ret = btrfs_dec_ref(trans, root, buf, 1, 1);
930 BUG_ON(ret); /* -ENOMEM */
932 tree_mod_log_free_eb(root->fs_info, buf);
933 clean_tree_block(trans, root, buf);
940 * does the dirty work in cow of a single block. The parent block (if
941 * supplied) is updated to point to the new cow copy. The new buffer is marked
942 * dirty and returned locked. If you modify the block it needs to be marked
945 * search_start -- an allocation hint for the new block
947 * empty_size -- a hint that you plan on doing more cow. This is the size in
948 * bytes the allocator should try to find free next to the block it returns.
949 * This is just a hint and may be ignored by the allocator.
951 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
952 struct btrfs_root *root,
953 struct extent_buffer *buf,
954 struct extent_buffer *parent, int parent_slot,
955 struct extent_buffer **cow_ret,
956 u64 search_start, u64 empty_size)
958 struct btrfs_disk_key disk_key;
959 struct extent_buffer *cow;
968 btrfs_assert_tree_locked(buf);
970 WARN_ON(root->ref_cows && trans->transid !=
971 root->fs_info->running_transaction->transid);
972 WARN_ON(root->ref_cows && trans->transid != root->last_trans);
974 level = btrfs_header_level(buf);
977 btrfs_item_key(buf, &disk_key, 0);
979 btrfs_node_key(buf, &disk_key, 0);
981 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
983 parent_start = parent->start;
989 cow = btrfs_alloc_free_block(trans, root, buf->len, parent_start,
990 root->root_key.objectid, &disk_key,
991 level, search_start, empty_size);
995 /* cow is set to blocking by btrfs_init_new_buffer */
997 copy_extent_buffer(cow, buf, 0, 0, cow->len);
998 btrfs_set_header_bytenr(cow, cow->start);
999 btrfs_set_header_generation(cow, trans->transid);
1000 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
1001 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
1002 BTRFS_HEADER_FLAG_RELOC);
1003 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1004 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
1006 btrfs_set_header_owner(cow, root->root_key.objectid);
1008 write_extent_buffer(cow, root->fs_info->fsid,
1009 (unsigned long)btrfs_header_fsid(cow),
1012 ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
1014 btrfs_abort_transaction(trans, root, ret);
1019 btrfs_reloc_cow_block(trans, root, buf, cow);
1021 if (buf == root->node) {
1022 WARN_ON(parent && parent != buf);
1023 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1024 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1025 parent_start = buf->start;
1029 extent_buffer_get(cow);
1030 tree_mod_log_set_root_pointer(root, cow);
1031 rcu_assign_pointer(root->node, cow);
1033 btrfs_free_tree_block(trans, root, buf, parent_start,
1035 free_extent_buffer(buf);
1036 add_root_to_dirty_list(root);
1038 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1039 parent_start = parent->start;
1043 WARN_ON(trans->transid != btrfs_header_generation(parent));
1044 tree_mod_log_insert_key(root->fs_info, parent, parent_slot,
1045 MOD_LOG_KEY_REPLACE);
1046 btrfs_set_node_blockptr(parent, parent_slot,
1048 btrfs_set_node_ptr_generation(parent, parent_slot,
1050 btrfs_mark_buffer_dirty(parent);
1051 btrfs_free_tree_block(trans, root, buf, parent_start,
1055 btrfs_tree_unlock(buf);
1056 free_extent_buffer_stale(buf);
1057 btrfs_mark_buffer_dirty(cow);
1063 * returns the logical address of the oldest predecessor of the given root.
1064 * entries older than time_seq are ignored.
1066 static struct tree_mod_elem *
1067 __tree_mod_log_oldest_root(struct btrfs_fs_info *fs_info,
1068 struct btrfs_root *root, u64 time_seq)
1070 struct tree_mod_elem *tm;
1071 struct tree_mod_elem *found = NULL;
1072 u64 root_logical = root->node->start;
1079 * the very last operation that's logged for a root is the replacement
1080 * operation (if it is replaced at all). this has the index of the *new*
1081 * root, making it the very first operation that's logged for this root.
1084 tm = tree_mod_log_search_oldest(fs_info, root_logical,
1089 * if there are no tree operation for the oldest root, we simply
1090 * return it. this should only happen if that (old) root is at
1097 * if there's an operation that's not a root replacement, we
1098 * found the oldest version of our root. normally, we'll find a
1099 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
1101 if (tm->op != MOD_LOG_ROOT_REPLACE)
1105 root_logical = tm->old_root.logical;
1106 BUG_ON(root_logical == root->node->start);
1110 /* if there's no old root to return, return what we found instead */
1118 * tm is a pointer to the first operation to rewind within eb. then, all
1119 * previous operations will be rewinded (until we reach something older than
1123 __tree_mod_log_rewind(struct extent_buffer *eb, u64 time_seq,
1124 struct tree_mod_elem *first_tm)
1127 struct rb_node *next;
1128 struct tree_mod_elem *tm = first_tm;
1129 unsigned long o_dst;
1130 unsigned long o_src;
1131 unsigned long p_size = sizeof(struct btrfs_key_ptr);
1133 n = btrfs_header_nritems(eb);
1134 while (tm && tm->seq >= time_seq) {
1136 * all the operations are recorded with the operator used for
1137 * the modification. as we're going backwards, we do the
1138 * opposite of each operation here.
1141 case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
1142 BUG_ON(tm->slot < n);
1143 case MOD_LOG_KEY_REMOVE_WHILE_MOVING:
1144 case MOD_LOG_KEY_REMOVE:
1145 btrfs_set_node_key(eb, &tm->key, tm->slot);
1146 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1147 btrfs_set_node_ptr_generation(eb, tm->slot,
1151 case MOD_LOG_KEY_REPLACE:
1152 BUG_ON(tm->slot >= n);
1153 btrfs_set_node_key(eb, &tm->key, tm->slot);
1154 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1155 btrfs_set_node_ptr_generation(eb, tm->slot,
1158 case MOD_LOG_KEY_ADD:
1159 /* if a move operation is needed it's in the log */
1162 case MOD_LOG_MOVE_KEYS:
1163 o_dst = btrfs_node_key_ptr_offset(tm->slot);
1164 o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot);
1165 memmove_extent_buffer(eb, o_dst, o_src,
1166 tm->move.nr_items * p_size);
1168 case MOD_LOG_ROOT_REPLACE:
1170 * this operation is special. for roots, this must be
1171 * handled explicitly before rewinding.
1172 * for non-roots, this operation may exist if the node
1173 * was a root: root A -> child B; then A gets empty and
1174 * B is promoted to the new root. in the mod log, we'll
1175 * have a root-replace operation for B, a tree block
1176 * that is no root. we simply ignore that operation.
1180 next = rb_next(&tm->node);
1183 tm = container_of(next, struct tree_mod_elem, node);
1184 if (tm->index != first_tm->index)
1187 btrfs_set_header_nritems(eb, n);
1190 static struct extent_buffer *
1191 tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
1194 struct extent_buffer *eb_rewin;
1195 struct tree_mod_elem *tm;
1200 if (btrfs_header_level(eb) == 0)
1203 tm = tree_mod_log_search(fs_info, eb->start, time_seq);
1207 if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1208 BUG_ON(tm->slot != 0);
1209 eb_rewin = alloc_dummy_extent_buffer(eb->start,
1210 fs_info->tree_root->nodesize);
1212 btrfs_set_header_bytenr(eb_rewin, eb->start);
1213 btrfs_set_header_backref_rev(eb_rewin,
1214 btrfs_header_backref_rev(eb));
1215 btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
1216 btrfs_set_header_level(eb_rewin, btrfs_header_level(eb));
1218 eb_rewin = btrfs_clone_extent_buffer(eb);
1222 extent_buffer_get(eb_rewin);
1223 free_extent_buffer(eb);
1225 __tree_mod_log_rewind(eb_rewin, time_seq, tm);
1226 WARN_ON(btrfs_header_nritems(eb_rewin) >
1227 BTRFS_NODEPTRS_PER_BLOCK(fs_info->fs_root));
1233 * get_old_root() rewinds the state of @root's root node to the given @time_seq
1234 * value. If there are no changes, the current root->root_node is returned. If
1235 * anything changed in between, there's a fresh buffer allocated on which the
1236 * rewind operations are done. In any case, the returned buffer is read locked.
1237 * Returns NULL on error (with no locks held).
1239 static inline struct extent_buffer *
1240 get_old_root(struct btrfs_root *root, u64 time_seq)
1242 struct tree_mod_elem *tm;
1243 struct extent_buffer *eb;
1244 struct extent_buffer *old;
1245 struct tree_mod_root *old_root = NULL;
1246 u64 old_generation = 0;
1250 eb = btrfs_read_lock_root_node(root);
1251 tm = __tree_mod_log_oldest_root(root->fs_info, root, time_seq);
1255 if (tm->op == MOD_LOG_ROOT_REPLACE) {
1256 old_root = &tm->old_root;
1257 old_generation = tm->generation;
1258 logical = old_root->logical;
1260 logical = root->node->start;
1263 tm = tree_mod_log_search(root->fs_info, logical, time_seq);
1264 if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1265 btrfs_tree_read_unlock(root->node);
1266 free_extent_buffer(root->node);
1267 blocksize = btrfs_level_size(root, old_root->level);
1268 old = read_tree_block(root, logical, blocksize, 0);
1270 pr_warn("btrfs: failed to read tree block %llu from get_old_root\n",
1274 eb = btrfs_clone_extent_buffer(old);
1275 free_extent_buffer(old);
1277 } else if (old_root) {
1278 btrfs_tree_read_unlock(root->node);
1279 free_extent_buffer(root->node);
1280 eb = alloc_dummy_extent_buffer(logical, root->nodesize);
1282 eb = btrfs_clone_extent_buffer(root->node);
1283 btrfs_tree_read_unlock(root->node);
1284 free_extent_buffer(root->node);
1289 extent_buffer_get(eb);
1290 btrfs_tree_read_lock(eb);
1292 btrfs_set_header_bytenr(eb, eb->start);
1293 btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
1294 btrfs_set_header_owner(eb, root->root_key.objectid);
1295 btrfs_set_header_level(eb, old_root->level);
1296 btrfs_set_header_generation(eb, old_generation);
1299 __tree_mod_log_rewind(eb, time_seq, tm);
1301 WARN_ON(btrfs_header_level(eb) != 0);
1302 WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(root));
1307 int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq)
1309 struct tree_mod_elem *tm;
1312 tm = __tree_mod_log_oldest_root(root->fs_info, root, time_seq);
1313 if (tm && tm->op == MOD_LOG_ROOT_REPLACE) {
1314 level = tm->old_root.level;
1317 level = btrfs_header_level(root->node);
1324 static inline int should_cow_block(struct btrfs_trans_handle *trans,
1325 struct btrfs_root *root,
1326 struct extent_buffer *buf)
1328 /* ensure we can see the force_cow */
1332 * We do not need to cow a block if
1333 * 1) this block is not created or changed in this transaction;
1334 * 2) this block does not belong to TREE_RELOC tree;
1335 * 3) the root is not forced COW.
1337 * What is forced COW:
1338 * when we create snapshot during commiting the transaction,
1339 * after we've finished coping src root, we must COW the shared
1340 * block to ensure the metadata consistency.
1342 if (btrfs_header_generation(buf) == trans->transid &&
1343 !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
1344 !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1345 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
1352 * cows a single block, see __btrfs_cow_block for the real work.
1353 * This version of it has extra checks so that a block isn't cow'd more than
1354 * once per transaction, as long as it hasn't been written yet
1356 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
1357 struct btrfs_root *root, struct extent_buffer *buf,
1358 struct extent_buffer *parent, int parent_slot,
1359 struct extent_buffer **cow_ret)
1364 if (trans->transaction != root->fs_info->running_transaction) {
1365 printk(KERN_CRIT "trans %llu running %llu\n",
1366 (unsigned long long)trans->transid,
1367 (unsigned long long)
1368 root->fs_info->running_transaction->transid);
1371 if (trans->transid != root->fs_info->generation) {
1372 printk(KERN_CRIT "trans %llu running %llu\n",
1373 (unsigned long long)trans->transid,
1374 (unsigned long long)root->fs_info->generation);
1378 if (!should_cow_block(trans, root, buf)) {
1383 search_start = buf->start & ~((u64)(1024 * 1024 * 1024) - 1);
1386 btrfs_set_lock_blocking(parent);
1387 btrfs_set_lock_blocking(buf);
1389 ret = __btrfs_cow_block(trans, root, buf, parent,
1390 parent_slot, cow_ret, search_start, 0);
1392 trace_btrfs_cow_block(root, buf, *cow_ret);
1398 * helper function for defrag to decide if two blocks pointed to by a
1399 * node are actually close by
1401 static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
1403 if (blocknr < other && other - (blocknr + blocksize) < 32768)
1405 if (blocknr > other && blocknr - (other + blocksize) < 32768)
1411 * compare two keys in a memcmp fashion
1413 static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
1415 struct btrfs_key k1;
1417 btrfs_disk_key_to_cpu(&k1, disk);
1419 return btrfs_comp_cpu_keys(&k1, k2);
1423 * same as comp_keys only with two btrfs_key's
1425 int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2)
1427 if (k1->objectid > k2->objectid)
1429 if (k1->objectid < k2->objectid)
1431 if (k1->type > k2->type)
1433 if (k1->type < k2->type)
1435 if (k1->offset > k2->offset)
1437 if (k1->offset < k2->offset)
1443 * this is used by the defrag code to go through all the
1444 * leaves pointed to by a node and reallocate them so that
1445 * disk order is close to key order
1447 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
1448 struct btrfs_root *root, struct extent_buffer *parent,
1449 int start_slot, int cache_only, u64 *last_ret,
1450 struct btrfs_key *progress)
1452 struct extent_buffer *cur;
1455 u64 search_start = *last_ret;
1465 int progress_passed = 0;
1466 struct btrfs_disk_key disk_key;
1468 parent_level = btrfs_header_level(parent);
1469 if (cache_only && parent_level != 1)
1472 if (trans->transaction != root->fs_info->running_transaction)
1474 if (trans->transid != root->fs_info->generation)
1477 parent_nritems = btrfs_header_nritems(parent);
1478 blocksize = btrfs_level_size(root, parent_level - 1);
1479 end_slot = parent_nritems;
1481 if (parent_nritems == 1)
1484 btrfs_set_lock_blocking(parent);
1486 for (i = start_slot; i < end_slot; i++) {
1489 btrfs_node_key(parent, &disk_key, i);
1490 if (!progress_passed && comp_keys(&disk_key, progress) < 0)
1493 progress_passed = 1;
1494 blocknr = btrfs_node_blockptr(parent, i);
1495 gen = btrfs_node_ptr_generation(parent, i);
1496 if (last_block == 0)
1497 last_block = blocknr;
1500 other = btrfs_node_blockptr(parent, i - 1);
1501 close = close_blocks(blocknr, other, blocksize);
1503 if (!close && i < end_slot - 2) {
1504 other = btrfs_node_blockptr(parent, i + 1);
1505 close = close_blocks(blocknr, other, blocksize);
1508 last_block = blocknr;
1512 cur = btrfs_find_tree_block(root, blocknr, blocksize);
1514 uptodate = btrfs_buffer_uptodate(cur, gen, 0);
1517 if (!cur || !uptodate) {
1519 free_extent_buffer(cur);
1523 cur = read_tree_block(root, blocknr,
1527 } else if (!uptodate) {
1528 err = btrfs_read_buffer(cur, gen);
1530 free_extent_buffer(cur);
1535 if (search_start == 0)
1536 search_start = last_block;
1538 btrfs_tree_lock(cur);
1539 btrfs_set_lock_blocking(cur);
1540 err = __btrfs_cow_block(trans, root, cur, parent, i,
1543 (end_slot - i) * blocksize));
1545 btrfs_tree_unlock(cur);
1546 free_extent_buffer(cur);
1549 search_start = cur->start;
1550 last_block = cur->start;
1551 *last_ret = search_start;
1552 btrfs_tree_unlock(cur);
1553 free_extent_buffer(cur);
1559 * The leaf data grows from end-to-front in the node.
1560 * this returns the address of the start of the last item,
1561 * which is the stop of the leaf data stack
1563 static inline unsigned int leaf_data_end(struct btrfs_root *root,
1564 struct extent_buffer *leaf)
1566 u32 nr = btrfs_header_nritems(leaf);
1568 return BTRFS_LEAF_DATA_SIZE(root);
1569 return btrfs_item_offset_nr(leaf, nr - 1);
1574 * search for key in the extent_buffer. The items start at offset p,
1575 * and they are item_size apart. There are 'max' items in p.
1577 * the slot in the array is returned via slot, and it points to
1578 * the place where you would insert key if it is not found in
1581 * slot may point to max if the key is bigger than all of the keys
1583 static noinline int generic_bin_search(struct extent_buffer *eb,
1585 int item_size, struct btrfs_key *key,
1592 struct btrfs_disk_key *tmp = NULL;
1593 struct btrfs_disk_key unaligned;
1594 unsigned long offset;
1596 unsigned long map_start = 0;
1597 unsigned long map_len = 0;
1600 while (low < high) {
1601 mid = (low + high) / 2;
1602 offset = p + mid * item_size;
1604 if (!kaddr || offset < map_start ||
1605 (offset + sizeof(struct btrfs_disk_key)) >
1606 map_start + map_len) {
1608 err = map_private_extent_buffer(eb, offset,
1609 sizeof(struct btrfs_disk_key),
1610 &kaddr, &map_start, &map_len);
1613 tmp = (struct btrfs_disk_key *)(kaddr + offset -
1616 read_extent_buffer(eb, &unaligned,
1617 offset, sizeof(unaligned));
1622 tmp = (struct btrfs_disk_key *)(kaddr + offset -
1625 ret = comp_keys(tmp, key);
1641 * simple bin_search frontend that does the right thing for
1644 static int bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1645 int level, int *slot)
1648 return generic_bin_search(eb,
1649 offsetof(struct btrfs_leaf, items),
1650 sizeof(struct btrfs_item),
1651 key, btrfs_header_nritems(eb),
1654 return generic_bin_search(eb,
1655 offsetof(struct btrfs_node, ptrs),
1656 sizeof(struct btrfs_key_ptr),
1657 key, btrfs_header_nritems(eb),
1661 int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1662 int level, int *slot)
1664 return bin_search(eb, key, level, slot);
1667 static void root_add_used(struct btrfs_root *root, u32 size)
1669 spin_lock(&root->accounting_lock);
1670 btrfs_set_root_used(&root->root_item,
1671 btrfs_root_used(&root->root_item) + size);
1672 spin_unlock(&root->accounting_lock);
1675 static void root_sub_used(struct btrfs_root *root, u32 size)
1677 spin_lock(&root->accounting_lock);
1678 btrfs_set_root_used(&root->root_item,
1679 btrfs_root_used(&root->root_item) - size);
1680 spin_unlock(&root->accounting_lock);
1683 /* given a node and slot number, this reads the blocks it points to. The
1684 * extent buffer is returned with a reference taken (but unlocked).
1685 * NULL is returned on error.
1687 static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root,
1688 struct extent_buffer *parent, int slot)
1690 int level = btrfs_header_level(parent);
1693 if (slot >= btrfs_header_nritems(parent))
1698 return read_tree_block(root, btrfs_node_blockptr(parent, slot),
1699 btrfs_level_size(root, level - 1),
1700 btrfs_node_ptr_generation(parent, slot));
1704 * node level balancing, used to make sure nodes are in proper order for
1705 * item deletion. We balance from the top down, so we have to make sure
1706 * that a deletion won't leave an node completely empty later on.
1708 static noinline int balance_level(struct btrfs_trans_handle *trans,
1709 struct btrfs_root *root,
1710 struct btrfs_path *path, int level)
1712 struct extent_buffer *right = NULL;
1713 struct extent_buffer *mid;
1714 struct extent_buffer *left = NULL;
1715 struct extent_buffer *parent = NULL;
1719 int orig_slot = path->slots[level];
1725 mid = path->nodes[level];
1727 WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
1728 path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
1729 WARN_ON(btrfs_header_generation(mid) != trans->transid);
1731 orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1733 if (level < BTRFS_MAX_LEVEL - 1) {
1734 parent = path->nodes[level + 1];
1735 pslot = path->slots[level + 1];
1739 * deal with the case where there is only one pointer in the root
1740 * by promoting the node below to a root
1743 struct extent_buffer *child;
1745 if (btrfs_header_nritems(mid) != 1)
1748 /* promote the child to a root */
1749 child = read_node_slot(root, mid, 0);
1752 btrfs_std_error(root->fs_info, ret);
1756 btrfs_tree_lock(child);
1757 btrfs_set_lock_blocking(child);
1758 ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
1760 btrfs_tree_unlock(child);
1761 free_extent_buffer(child);
1765 tree_mod_log_free_eb(root->fs_info, root->node);
1766 tree_mod_log_set_root_pointer(root, child);
1767 rcu_assign_pointer(root->node, child);
1769 add_root_to_dirty_list(root);
1770 btrfs_tree_unlock(child);
1772 path->locks[level] = 0;
1773 path->nodes[level] = NULL;
1774 clean_tree_block(trans, root, mid);
1775 btrfs_tree_unlock(mid);
1776 /* once for the path */
1777 free_extent_buffer(mid);
1779 root_sub_used(root, mid->len);
1780 btrfs_free_tree_block(trans, root, mid, 0, 1);
1781 /* once for the root ptr */
1782 free_extent_buffer_stale(mid);
1785 if (btrfs_header_nritems(mid) >
1786 BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
1789 left = read_node_slot(root, parent, pslot - 1);
1791 btrfs_tree_lock(left);
1792 btrfs_set_lock_blocking(left);
1793 wret = btrfs_cow_block(trans, root, left,
1794 parent, pslot - 1, &left);
1800 right = read_node_slot(root, parent, pslot + 1);
1802 btrfs_tree_lock(right);
1803 btrfs_set_lock_blocking(right);
1804 wret = btrfs_cow_block(trans, root, right,
1805 parent, pslot + 1, &right);
1812 /* first, try to make some room in the middle buffer */
1814 orig_slot += btrfs_header_nritems(left);
1815 wret = push_node_left(trans, root, left, mid, 1);
1821 * then try to empty the right most buffer into the middle
1824 wret = push_node_left(trans, root, mid, right, 1);
1825 if (wret < 0 && wret != -ENOSPC)
1827 if (btrfs_header_nritems(right) == 0) {
1828 clean_tree_block(trans, root, right);
1829 btrfs_tree_unlock(right);
1830 del_ptr(trans, root, path, level + 1, pslot + 1, 1);
1831 root_sub_used(root, right->len);
1832 btrfs_free_tree_block(trans, root, right, 0, 1);
1833 free_extent_buffer_stale(right);
1836 struct btrfs_disk_key right_key;
1837 btrfs_node_key(right, &right_key, 0);
1838 tree_mod_log_set_node_key(root->fs_info, parent,
1839 &right_key, pslot + 1, 0);
1840 btrfs_set_node_key(parent, &right_key, pslot + 1);
1841 btrfs_mark_buffer_dirty(parent);
1844 if (btrfs_header_nritems(mid) == 1) {
1846 * we're not allowed to leave a node with one item in the
1847 * tree during a delete. A deletion from lower in the tree
1848 * could try to delete the only pointer in this node.
1849 * So, pull some keys from the left.
1850 * There has to be a left pointer at this point because
1851 * otherwise we would have pulled some pointers from the
1856 btrfs_std_error(root->fs_info, ret);
1859 wret = balance_node_right(trans, root, mid, left);
1865 wret = push_node_left(trans, root, left, mid, 1);
1871 if (btrfs_header_nritems(mid) == 0) {
1872 clean_tree_block(trans, root, mid);
1873 btrfs_tree_unlock(mid);
1874 del_ptr(trans, root, path, level + 1, pslot, 1);
1875 root_sub_used(root, mid->len);
1876 btrfs_free_tree_block(trans, root, mid, 0, 1);
1877 free_extent_buffer_stale(mid);
1880 /* update the parent key to reflect our changes */
1881 struct btrfs_disk_key mid_key;
1882 btrfs_node_key(mid, &mid_key, 0);
1883 tree_mod_log_set_node_key(root->fs_info, parent, &mid_key,
1885 btrfs_set_node_key(parent, &mid_key, pslot);
1886 btrfs_mark_buffer_dirty(parent);
1889 /* update the path */
1891 if (btrfs_header_nritems(left) > orig_slot) {
1892 extent_buffer_get(left);
1893 /* left was locked after cow */
1894 path->nodes[level] = left;
1895 path->slots[level + 1] -= 1;
1896 path->slots[level] = orig_slot;
1898 btrfs_tree_unlock(mid);
1899 free_extent_buffer(mid);
1902 orig_slot -= btrfs_header_nritems(left);
1903 path->slots[level] = orig_slot;
1906 /* double check we haven't messed things up */
1908 btrfs_node_blockptr(path->nodes[level], path->slots[level]))
1912 btrfs_tree_unlock(right);
1913 free_extent_buffer(right);
1916 if (path->nodes[level] != left)
1917 btrfs_tree_unlock(left);
1918 free_extent_buffer(left);
1923 /* Node balancing for insertion. Here we only split or push nodes around
1924 * when they are completely full. This is also done top down, so we
1925 * have to be pessimistic.
1927 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
1928 struct btrfs_root *root,
1929 struct btrfs_path *path, int level)
1931 struct extent_buffer *right = NULL;
1932 struct extent_buffer *mid;
1933 struct extent_buffer *left = NULL;
1934 struct extent_buffer *parent = NULL;
1938 int orig_slot = path->slots[level];
1943 mid = path->nodes[level];
1944 WARN_ON(btrfs_header_generation(mid) != trans->transid);
1946 if (level < BTRFS_MAX_LEVEL - 1) {
1947 parent = path->nodes[level + 1];
1948 pslot = path->slots[level + 1];
1954 left = read_node_slot(root, parent, pslot - 1);
1956 /* first, try to make some room in the middle buffer */
1960 btrfs_tree_lock(left);
1961 btrfs_set_lock_blocking(left);
1963 left_nr = btrfs_header_nritems(left);
1964 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
1967 ret = btrfs_cow_block(trans, root, left, parent,
1972 wret = push_node_left(trans, root,
1979 struct btrfs_disk_key disk_key;
1980 orig_slot += left_nr;
1981 btrfs_node_key(mid, &disk_key, 0);
1982 tree_mod_log_set_node_key(root->fs_info, parent,
1983 &disk_key, pslot, 0);
1984 btrfs_set_node_key(parent, &disk_key, pslot);
1985 btrfs_mark_buffer_dirty(parent);
1986 if (btrfs_header_nritems(left) > orig_slot) {
1987 path->nodes[level] = left;
1988 path->slots[level + 1] -= 1;
1989 path->slots[level] = orig_slot;
1990 btrfs_tree_unlock(mid);
1991 free_extent_buffer(mid);
1994 btrfs_header_nritems(left);
1995 path->slots[level] = orig_slot;
1996 btrfs_tree_unlock(left);
1997 free_extent_buffer(left);
2001 btrfs_tree_unlock(left);
2002 free_extent_buffer(left);
2004 right = read_node_slot(root, parent, pslot + 1);
2007 * then try to empty the right most buffer into the middle
2012 btrfs_tree_lock(right);
2013 btrfs_set_lock_blocking(right);
2015 right_nr = btrfs_header_nritems(right);
2016 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
2019 ret = btrfs_cow_block(trans, root, right,
2025 wret = balance_node_right(trans, root,
2032 struct btrfs_disk_key disk_key;
2034 btrfs_node_key(right, &disk_key, 0);
2035 tree_mod_log_set_node_key(root->fs_info, parent,
2036 &disk_key, pslot + 1, 0);
2037 btrfs_set_node_key(parent, &disk_key, pslot + 1);
2038 btrfs_mark_buffer_dirty(parent);
2040 if (btrfs_header_nritems(mid) <= orig_slot) {
2041 path->nodes[level] = right;
2042 path->slots[level + 1] += 1;
2043 path->slots[level] = orig_slot -
2044 btrfs_header_nritems(mid);
2045 btrfs_tree_unlock(mid);
2046 free_extent_buffer(mid);
2048 btrfs_tree_unlock(right);
2049 free_extent_buffer(right);
2053 btrfs_tree_unlock(right);
2054 free_extent_buffer(right);
2060 * readahead one full node of leaves, finding things that are close
2061 * to the block in 'slot', and triggering ra on them.
2063 static void reada_for_search(struct btrfs_root *root,
2064 struct btrfs_path *path,
2065 int level, int slot, u64 objectid)
2067 struct extent_buffer *node;
2068 struct btrfs_disk_key disk_key;
2074 int direction = path->reada;
2075 struct extent_buffer *eb;
2083 if (!path->nodes[level])
2086 node = path->nodes[level];
2088 search = btrfs_node_blockptr(node, slot);
2089 blocksize = btrfs_level_size(root, level - 1);
2090 eb = btrfs_find_tree_block(root, search, blocksize);
2092 free_extent_buffer(eb);
2098 nritems = btrfs_header_nritems(node);
2102 if (direction < 0) {
2106 } else if (direction > 0) {
2111 if (path->reada < 0 && objectid) {
2112 btrfs_node_key(node, &disk_key, nr);
2113 if (btrfs_disk_key_objectid(&disk_key) != objectid)
2116 search = btrfs_node_blockptr(node, nr);
2117 if ((search <= target && target - search <= 65536) ||
2118 (search > target && search - target <= 65536)) {
2119 gen = btrfs_node_ptr_generation(node, nr);
2120 readahead_tree_block(root, search, blocksize, gen);
2124 if ((nread > 65536 || nscan > 32))
2130 * returns -EAGAIN if it had to drop the path, or zero if everything was in
2133 static noinline int reada_for_balance(struct btrfs_root *root,
2134 struct btrfs_path *path, int level)
2138 struct extent_buffer *parent;
2139 struct extent_buffer *eb;
2146 parent = path->nodes[level + 1];
2150 nritems = btrfs_header_nritems(parent);
2151 slot = path->slots[level + 1];
2152 blocksize = btrfs_level_size(root, level);
2155 block1 = btrfs_node_blockptr(parent, slot - 1);
2156 gen = btrfs_node_ptr_generation(parent, slot - 1);
2157 eb = btrfs_find_tree_block(root, block1, blocksize);
2159 * if we get -eagain from btrfs_buffer_uptodate, we
2160 * don't want to return eagain here. That will loop
2163 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2165 free_extent_buffer(eb);
2167 if (slot + 1 < nritems) {
2168 block2 = btrfs_node_blockptr(parent, slot + 1);
2169 gen = btrfs_node_ptr_generation(parent, slot + 1);
2170 eb = btrfs_find_tree_block(root, block2, blocksize);
2171 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2173 free_extent_buffer(eb);
2175 if (block1 || block2) {
2178 /* release the whole path */
2179 btrfs_release_path(path);
2181 /* read the blocks */
2183 readahead_tree_block(root, block1, blocksize, 0);
2185 readahead_tree_block(root, block2, blocksize, 0);
2188 eb = read_tree_block(root, block1, blocksize, 0);
2189 free_extent_buffer(eb);
2192 eb = read_tree_block(root, block2, blocksize, 0);
2193 free_extent_buffer(eb);
2201 * when we walk down the tree, it is usually safe to unlock the higher layers
2202 * in the tree. The exceptions are when our path goes through slot 0, because
2203 * operations on the tree might require changing key pointers higher up in the
2206 * callers might also have set path->keep_locks, which tells this code to keep
2207 * the lock if the path points to the last slot in the block. This is part of
2208 * walking through the tree, and selecting the next slot in the higher block.
2210 * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so
2211 * if lowest_unlock is 1, level 0 won't be unlocked
2213 static noinline void unlock_up(struct btrfs_path *path, int level,
2214 int lowest_unlock, int min_write_lock_level,
2215 int *write_lock_level)
2218 int skip_level = level;
2220 struct extent_buffer *t;
2222 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2223 if (!path->nodes[i])
2225 if (!path->locks[i])
2227 if (!no_skips && path->slots[i] == 0) {
2231 if (!no_skips && path->keep_locks) {
2234 nritems = btrfs_header_nritems(t);
2235 if (nritems < 1 || path->slots[i] >= nritems - 1) {
2240 if (skip_level < i && i >= lowest_unlock)
2244 if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
2245 btrfs_tree_unlock_rw(t, path->locks[i]);
2247 if (write_lock_level &&
2248 i > min_write_lock_level &&
2249 i <= *write_lock_level) {
2250 *write_lock_level = i - 1;
2257 * This releases any locks held in the path starting at level and
2258 * going all the way up to the root.
2260 * btrfs_search_slot will keep the lock held on higher nodes in a few
2261 * corner cases, such as COW of the block at slot zero in the node. This
2262 * ignores those rules, and it should only be called when there are no
2263 * more updates to be done higher up in the tree.
2265 noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
2269 if (path->keep_locks)
2272 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2273 if (!path->nodes[i])
2275 if (!path->locks[i])
2277 btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
2283 * helper function for btrfs_search_slot. The goal is to find a block
2284 * in cache without setting the path to blocking. If we find the block
2285 * we return zero and the path is unchanged.
2287 * If we can't find the block, we set the path blocking and do some
2288 * reada. -EAGAIN is returned and the search must be repeated.
2291 read_block_for_search(struct btrfs_trans_handle *trans,
2292 struct btrfs_root *root, struct btrfs_path *p,
2293 struct extent_buffer **eb_ret, int level, int slot,
2294 struct btrfs_key *key, u64 time_seq)
2299 struct extent_buffer *b = *eb_ret;
2300 struct extent_buffer *tmp;
2303 blocknr = btrfs_node_blockptr(b, slot);
2304 gen = btrfs_node_ptr_generation(b, slot);
2305 blocksize = btrfs_level_size(root, level - 1);
2307 tmp = btrfs_find_tree_block(root, blocknr, blocksize);
2309 /* first we do an atomic uptodate check */
2310 if (btrfs_buffer_uptodate(tmp, 0, 1) > 0) {
2311 if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
2313 * we found an up to date block without
2320 /* the pages were up to date, but we failed
2321 * the generation number check. Do a full
2322 * read for the generation number that is correct.
2323 * We must do this without dropping locks so
2324 * we can trust our generation number
2326 free_extent_buffer(tmp);
2327 btrfs_set_path_blocking(p);
2329 /* now we're allowed to do a blocking uptodate check */
2330 tmp = read_tree_block(root, blocknr, blocksize, gen);
2331 if (tmp && btrfs_buffer_uptodate(tmp, gen, 0) > 0) {
2335 free_extent_buffer(tmp);
2336 btrfs_release_path(p);
2342 * reduce lock contention at high levels
2343 * of the btree by dropping locks before
2344 * we read. Don't release the lock on the current
2345 * level because we need to walk this node to figure
2346 * out which blocks to read.
2348 btrfs_unlock_up_safe(p, level + 1);
2349 btrfs_set_path_blocking(p);
2351 free_extent_buffer(tmp);
2353 reada_for_search(root, p, level, slot, key->objectid);
2355 btrfs_release_path(p);
2358 tmp = read_tree_block(root, blocknr, blocksize, 0);
2361 * If the read above didn't mark this buffer up to date,
2362 * it will never end up being up to date. Set ret to EIO now
2363 * and give up so that our caller doesn't loop forever
2366 if (!btrfs_buffer_uptodate(tmp, 0, 0))
2368 free_extent_buffer(tmp);
2374 * helper function for btrfs_search_slot. This does all of the checks
2375 * for node-level blocks and does any balancing required based on
2378 * If no extra work was required, zero is returned. If we had to
2379 * drop the path, -EAGAIN is returned and btrfs_search_slot must
2383 setup_nodes_for_search(struct btrfs_trans_handle *trans,
2384 struct btrfs_root *root, struct btrfs_path *p,
2385 struct extent_buffer *b, int level, int ins_len,
2386 int *write_lock_level)
2389 if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
2390 BTRFS_NODEPTRS_PER_BLOCK(root) - 3) {
2393 if (*write_lock_level < level + 1) {
2394 *write_lock_level = level + 1;
2395 btrfs_release_path(p);
2399 sret = reada_for_balance(root, p, level);
2403 btrfs_set_path_blocking(p);
2404 sret = split_node(trans, root, p, level);
2405 btrfs_clear_path_blocking(p, NULL, 0);
2412 b = p->nodes[level];
2413 } else if (ins_len < 0 && btrfs_header_nritems(b) <
2414 BTRFS_NODEPTRS_PER_BLOCK(root) / 2) {
2417 if (*write_lock_level < level + 1) {
2418 *write_lock_level = level + 1;
2419 btrfs_release_path(p);
2423 sret = reada_for_balance(root, p, level);
2427 btrfs_set_path_blocking(p);
2428 sret = balance_level(trans, root, p, level);
2429 btrfs_clear_path_blocking(p, NULL, 0);
2435 b = p->nodes[level];
2437 btrfs_release_path(p);
2440 BUG_ON(btrfs_header_nritems(b) == 1);
2451 * look for key in the tree. path is filled in with nodes along the way
2452 * if key is found, we return zero and you can find the item in the leaf
2453 * level of the path (level 0)
2455 * If the key isn't found, the path points to the slot where it should
2456 * be inserted, and 1 is returned. If there are other errors during the
2457 * search a negative error number is returned.
2459 * if ins_len > 0, nodes and leaves will be split as we walk down the
2460 * tree. if ins_len < 0, nodes will be merged as we walk down the tree (if
2463 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
2464 *root, struct btrfs_key *key, struct btrfs_path *p, int
2467 struct extent_buffer *b;
2472 int lowest_unlock = 1;
2474 /* everything at write_lock_level or lower must be write locked */
2475 int write_lock_level = 0;
2476 u8 lowest_level = 0;
2477 int min_write_lock_level;
2479 lowest_level = p->lowest_level;
2480 WARN_ON(lowest_level && ins_len > 0);
2481 WARN_ON(p->nodes[0] != NULL);
2486 /* when we are removing items, we might have to go up to level
2487 * two as we update tree pointers Make sure we keep write
2488 * for those levels as well
2490 write_lock_level = 2;
2491 } else if (ins_len > 0) {
2493 * for inserting items, make sure we have a write lock on
2494 * level 1 so we can update keys
2496 write_lock_level = 1;
2500 write_lock_level = -1;
2502 if (cow && (p->keep_locks || p->lowest_level))
2503 write_lock_level = BTRFS_MAX_LEVEL;
2505 min_write_lock_level = write_lock_level;
2509 * we try very hard to do read locks on the root
2511 root_lock = BTRFS_READ_LOCK;
2513 if (p->search_commit_root) {
2515 * the commit roots are read only
2516 * so we always do read locks
2518 b = root->commit_root;
2519 extent_buffer_get(b);
2520 level = btrfs_header_level(b);
2521 if (!p->skip_locking)
2522 btrfs_tree_read_lock(b);
2524 if (p->skip_locking) {
2525 b = btrfs_root_node(root);
2526 level = btrfs_header_level(b);
2528 /* we don't know the level of the root node
2529 * until we actually have it read locked
2531 b = btrfs_read_lock_root_node(root);
2532 level = btrfs_header_level(b);
2533 if (level <= write_lock_level) {
2534 /* whoops, must trade for write lock */
2535 btrfs_tree_read_unlock(b);
2536 free_extent_buffer(b);
2537 b = btrfs_lock_root_node(root);
2538 root_lock = BTRFS_WRITE_LOCK;
2540 /* the level might have changed, check again */
2541 level = btrfs_header_level(b);
2545 p->nodes[level] = b;
2546 if (!p->skip_locking)
2547 p->locks[level] = root_lock;
2550 level = btrfs_header_level(b);
2553 * setup the path here so we can release it under lock
2554 * contention with the cow code
2558 * if we don't really need to cow this block
2559 * then we don't want to set the path blocking,
2560 * so we test it here
2562 if (!should_cow_block(trans, root, b))
2565 btrfs_set_path_blocking(p);
2568 * must have write locks on this node and the
2571 if (level + 1 > write_lock_level) {
2572 write_lock_level = level + 1;
2573 btrfs_release_path(p);
2577 err = btrfs_cow_block(trans, root, b,
2578 p->nodes[level + 1],
2579 p->slots[level + 1], &b);
2586 BUG_ON(!cow && ins_len);
2588 p->nodes[level] = b;
2589 btrfs_clear_path_blocking(p, NULL, 0);
2592 * we have a lock on b and as long as we aren't changing
2593 * the tree, there is no way to for the items in b to change.
2594 * It is safe to drop the lock on our parent before we
2595 * go through the expensive btree search on b.
2597 * If cow is true, then we might be changing slot zero,
2598 * which may require changing the parent. So, we can't
2599 * drop the lock until after we know which slot we're
2603 btrfs_unlock_up_safe(p, level + 1);
2605 ret = bin_search(b, key, level, &slot);
2609 if (ret && slot > 0) {
2613 p->slots[level] = slot;
2614 err = setup_nodes_for_search(trans, root, p, b, level,
2615 ins_len, &write_lock_level);
2622 b = p->nodes[level];
2623 slot = p->slots[level];
2626 * slot 0 is special, if we change the key
2627 * we have to update the parent pointer
2628 * which means we must have a write lock
2631 if (slot == 0 && cow &&
2632 write_lock_level < level + 1) {
2633 write_lock_level = level + 1;
2634 btrfs_release_path(p);
2638 unlock_up(p, level, lowest_unlock,
2639 min_write_lock_level, &write_lock_level);
2641 if (level == lowest_level) {
2647 err = read_block_for_search(trans, root, p,
2648 &b, level, slot, key, 0);
2656 if (!p->skip_locking) {
2657 level = btrfs_header_level(b);
2658 if (level <= write_lock_level) {
2659 err = btrfs_try_tree_write_lock(b);
2661 btrfs_set_path_blocking(p);
2663 btrfs_clear_path_blocking(p, b,
2666 p->locks[level] = BTRFS_WRITE_LOCK;
2668 err = btrfs_try_tree_read_lock(b);
2670 btrfs_set_path_blocking(p);
2671 btrfs_tree_read_lock(b);
2672 btrfs_clear_path_blocking(p, b,
2675 p->locks[level] = BTRFS_READ_LOCK;
2677 p->nodes[level] = b;
2680 p->slots[level] = slot;
2682 btrfs_leaf_free_space(root, b) < ins_len) {
2683 if (write_lock_level < 1) {
2684 write_lock_level = 1;
2685 btrfs_release_path(p);
2689 btrfs_set_path_blocking(p);
2690 err = split_leaf(trans, root, key,
2691 p, ins_len, ret == 0);
2692 btrfs_clear_path_blocking(p, NULL, 0);
2700 if (!p->search_for_split)
2701 unlock_up(p, level, lowest_unlock,
2702 min_write_lock_level, &write_lock_level);
2709 * we don't really know what they plan on doing with the path
2710 * from here on, so for now just mark it as blocking
2712 if (!p->leave_spinning)
2713 btrfs_set_path_blocking(p);
2715 btrfs_release_path(p);
2720 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2721 * current state of the tree together with the operations recorded in the tree
2722 * modification log to search for the key in a previous version of this tree, as
2723 * denoted by the time_seq parameter.
2725 * Naturally, there is no support for insert, delete or cow operations.
2727 * The resulting path and return value will be set up as if we called
2728 * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2730 int btrfs_search_old_slot(struct btrfs_root *root, struct btrfs_key *key,
2731 struct btrfs_path *p, u64 time_seq)
2733 struct extent_buffer *b;
2738 int lowest_unlock = 1;
2739 u8 lowest_level = 0;
2741 lowest_level = p->lowest_level;
2742 WARN_ON(p->nodes[0] != NULL);
2744 if (p->search_commit_root) {
2746 return btrfs_search_slot(NULL, root, key, p, 0, 0);
2750 b = get_old_root(root, time_seq);
2751 level = btrfs_header_level(b);
2752 p->locks[level] = BTRFS_READ_LOCK;
2755 level = btrfs_header_level(b);
2756 p->nodes[level] = b;
2757 btrfs_clear_path_blocking(p, NULL, 0);
2760 * we have a lock on b and as long as we aren't changing
2761 * the tree, there is no way to for the items in b to change.
2762 * It is safe to drop the lock on our parent before we
2763 * go through the expensive btree search on b.
2765 btrfs_unlock_up_safe(p, level + 1);
2767 ret = bin_search(b, key, level, &slot);
2771 if (ret && slot > 0) {
2775 p->slots[level] = slot;
2776 unlock_up(p, level, lowest_unlock, 0, NULL);
2778 if (level == lowest_level) {
2784 err = read_block_for_search(NULL, root, p, &b, level,
2785 slot, key, time_seq);
2793 level = btrfs_header_level(b);
2794 err = btrfs_try_tree_read_lock(b);
2796 btrfs_set_path_blocking(p);
2797 btrfs_tree_read_lock(b);
2798 btrfs_clear_path_blocking(p, b,
2801 p->locks[level] = BTRFS_READ_LOCK;
2802 p->nodes[level] = b;
2803 b = tree_mod_log_rewind(root->fs_info, b, time_seq);
2804 if (b != p->nodes[level]) {
2805 btrfs_tree_unlock_rw(p->nodes[level],
2807 p->locks[level] = 0;
2808 p->nodes[level] = b;
2811 p->slots[level] = slot;
2812 unlock_up(p, level, lowest_unlock, 0, NULL);
2818 if (!p->leave_spinning)
2819 btrfs_set_path_blocking(p);
2821 btrfs_release_path(p);
2827 * helper to use instead of search slot if no exact match is needed but
2828 * instead the next or previous item should be returned.
2829 * When find_higher is true, the next higher item is returned, the next lower
2831 * When return_any and find_higher are both true, and no higher item is found,
2832 * return the next lower instead.
2833 * When return_any is true and find_higher is false, and no lower item is found,
2834 * return the next higher instead.
2835 * It returns 0 if any item is found, 1 if none is found (tree empty), and
2838 int btrfs_search_slot_for_read(struct btrfs_root *root,
2839 struct btrfs_key *key, struct btrfs_path *p,
2840 int find_higher, int return_any)
2843 struct extent_buffer *leaf;
2846 ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
2850 * a return value of 1 means the path is at the position where the
2851 * item should be inserted. Normally this is the next bigger item,
2852 * but in case the previous item is the last in a leaf, path points
2853 * to the first free slot in the previous leaf, i.e. at an invalid
2859 if (p->slots[0] >= btrfs_header_nritems(leaf)) {
2860 ret = btrfs_next_leaf(root, p);
2866 * no higher item found, return the next
2871 btrfs_release_path(p);
2875 if (p->slots[0] == 0) {
2876 ret = btrfs_prev_leaf(root, p);
2880 p->slots[0] = btrfs_header_nritems(leaf) - 1;
2886 * no lower item found, return the next
2891 btrfs_release_path(p);
2901 * adjust the pointers going up the tree, starting at level
2902 * making sure the right key of each node is points to 'key'.
2903 * This is used after shifting pointers to the left, so it stops
2904 * fixing up pointers when a given leaf/node is not in slot 0 of the
2908 static void fixup_low_keys(struct btrfs_trans_handle *trans,
2909 struct btrfs_root *root, struct btrfs_path *path,
2910 struct btrfs_disk_key *key, int level)
2913 struct extent_buffer *t;
2915 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2916 int tslot = path->slots[i];
2917 if (!path->nodes[i])
2920 tree_mod_log_set_node_key(root->fs_info, t, key, tslot, 1);
2921 btrfs_set_node_key(t, key, tslot);
2922 btrfs_mark_buffer_dirty(path->nodes[i]);
2931 * This function isn't completely safe. It's the caller's responsibility
2932 * that the new key won't break the order
2934 void btrfs_set_item_key_safe(struct btrfs_trans_handle *trans,
2935 struct btrfs_root *root, struct btrfs_path *path,
2936 struct btrfs_key *new_key)
2938 struct btrfs_disk_key disk_key;
2939 struct extent_buffer *eb;
2942 eb = path->nodes[0];
2943 slot = path->slots[0];
2945 btrfs_item_key(eb, &disk_key, slot - 1);
2946 BUG_ON(comp_keys(&disk_key, new_key) >= 0);
2948 if (slot < btrfs_header_nritems(eb) - 1) {
2949 btrfs_item_key(eb, &disk_key, slot + 1);
2950 BUG_ON(comp_keys(&disk_key, new_key) <= 0);
2953 btrfs_cpu_key_to_disk(&disk_key, new_key);
2954 btrfs_set_item_key(eb, &disk_key, slot);
2955 btrfs_mark_buffer_dirty(eb);
2957 fixup_low_keys(trans, root, path, &disk_key, 1);
2961 * try to push data from one node into the next node left in the
2964 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
2965 * error, and > 0 if there was no room in the left hand block.
2967 static int push_node_left(struct btrfs_trans_handle *trans,
2968 struct btrfs_root *root, struct extent_buffer *dst,
2969 struct extent_buffer *src, int empty)
2976 src_nritems = btrfs_header_nritems(src);
2977 dst_nritems = btrfs_header_nritems(dst);
2978 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
2979 WARN_ON(btrfs_header_generation(src) != trans->transid);
2980 WARN_ON(btrfs_header_generation(dst) != trans->transid);
2982 if (!empty && src_nritems <= 8)
2985 if (push_items <= 0)
2989 push_items = min(src_nritems, push_items);
2990 if (push_items < src_nritems) {
2991 /* leave at least 8 pointers in the node if
2992 * we aren't going to empty it
2994 if (src_nritems - push_items < 8) {
2995 if (push_items <= 8)
3001 push_items = min(src_nritems - 8, push_items);
3003 tree_mod_log_eb_copy(root->fs_info, dst, src, dst_nritems, 0,
3005 copy_extent_buffer(dst, src,
3006 btrfs_node_key_ptr_offset(dst_nritems),
3007 btrfs_node_key_ptr_offset(0),
3008 push_items * sizeof(struct btrfs_key_ptr));
3010 if (push_items < src_nritems) {
3012 * don't call tree_mod_log_eb_move here, key removal was already
3013 * fully logged by tree_mod_log_eb_copy above.
3015 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
3016 btrfs_node_key_ptr_offset(push_items),
3017 (src_nritems - push_items) *
3018 sizeof(struct btrfs_key_ptr));
3020 btrfs_set_header_nritems(src, src_nritems - push_items);
3021 btrfs_set_header_nritems(dst, dst_nritems + push_items);
3022 btrfs_mark_buffer_dirty(src);
3023 btrfs_mark_buffer_dirty(dst);
3029 * try to push data from one node into the next node right in the
3032 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
3033 * error, and > 0 if there was no room in the right hand block.
3035 * this will only push up to 1/2 the contents of the left node over
3037 static int balance_node_right(struct btrfs_trans_handle *trans,
3038 struct btrfs_root *root,
3039 struct extent_buffer *dst,
3040 struct extent_buffer *src)
3048 WARN_ON(btrfs_header_generation(src) != trans->transid);
3049 WARN_ON(btrfs_header_generation(dst) != trans->transid);
3051 src_nritems = btrfs_header_nritems(src);
3052 dst_nritems = btrfs_header_nritems(dst);
3053 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
3054 if (push_items <= 0)
3057 if (src_nritems < 4)
3060 max_push = src_nritems / 2 + 1;
3061 /* don't try to empty the node */
3062 if (max_push >= src_nritems)
3065 if (max_push < push_items)
3066 push_items = max_push;
3068 tree_mod_log_eb_move(root->fs_info, dst, push_items, 0, dst_nritems);
3069 memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
3070 btrfs_node_key_ptr_offset(0),
3072 sizeof(struct btrfs_key_ptr));
3074 tree_mod_log_eb_copy(root->fs_info, dst, src, 0,
3075 src_nritems - push_items, push_items);
3076 copy_extent_buffer(dst, src,
3077 btrfs_node_key_ptr_offset(0),
3078 btrfs_node_key_ptr_offset(src_nritems - push_items),
3079 push_items * sizeof(struct btrfs_key_ptr));
3081 btrfs_set_header_nritems(src, src_nritems - push_items);
3082 btrfs_set_header_nritems(dst, dst_nritems + push_items);
3084 btrfs_mark_buffer_dirty(src);
3085 btrfs_mark_buffer_dirty(dst);
3091 * helper function to insert a new root level in the tree.
3092 * A new node is allocated, and a single item is inserted to
3093 * point to the existing root
3095 * returns zero on success or < 0 on failure.
3097 static noinline int insert_new_root(struct btrfs_trans_handle *trans,
3098 struct btrfs_root *root,
3099 struct btrfs_path *path, int level)
3102 struct extent_buffer *lower;
3103 struct extent_buffer *c;
3104 struct extent_buffer *old;
3105 struct btrfs_disk_key lower_key;
3107 BUG_ON(path->nodes[level]);
3108 BUG_ON(path->nodes[level-1] != root->node);
3110 lower = path->nodes[level-1];
3112 btrfs_item_key(lower, &lower_key, 0);
3114 btrfs_node_key(lower, &lower_key, 0);
3116 c = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
3117 root->root_key.objectid, &lower_key,
3118 level, root->node->start, 0);
3122 root_add_used(root, root->nodesize);
3124 memset_extent_buffer(c, 0, 0, sizeof(struct btrfs_header));
3125 btrfs_set_header_nritems(c, 1);
3126 btrfs_set_header_level(c, level);
3127 btrfs_set_header_bytenr(c, c->start);
3128 btrfs_set_header_generation(c, trans->transid);
3129 btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV);
3130 btrfs_set_header_owner(c, root->root_key.objectid);
3132 write_extent_buffer(c, root->fs_info->fsid,
3133 (unsigned long)btrfs_header_fsid(c),
3136 write_extent_buffer(c, root->fs_info->chunk_tree_uuid,
3137 (unsigned long)btrfs_header_chunk_tree_uuid(c),
3140 btrfs_set_node_key(c, &lower_key, 0);
3141 btrfs_set_node_blockptr(c, 0, lower->start);
3142 lower_gen = btrfs_header_generation(lower);
3143 WARN_ON(lower_gen != trans->transid);
3145 btrfs_set_node_ptr_generation(c, 0, lower_gen);
3147 btrfs_mark_buffer_dirty(c);
3150 tree_mod_log_set_root_pointer(root, c);
3151 rcu_assign_pointer(root->node, c);
3153 /* the super has an extra ref to root->node */
3154 free_extent_buffer(old);
3156 add_root_to_dirty_list(root);
3157 extent_buffer_get(c);
3158 path->nodes[level] = c;
3159 path->locks[level] = BTRFS_WRITE_LOCK;
3160 path->slots[level] = 0;
3165 * worker function to insert a single pointer in a node.
3166 * the node should have enough room for the pointer already
3168 * slot and level indicate where you want the key to go, and
3169 * blocknr is the block the key points to.
3171 static void insert_ptr(struct btrfs_trans_handle *trans,
3172 struct btrfs_root *root, struct btrfs_path *path,
3173 struct btrfs_disk_key *key, u64 bytenr,
3174 int slot, int level)
3176 struct extent_buffer *lower;
3180 BUG_ON(!path->nodes[level]);
3181 btrfs_assert_tree_locked(path->nodes[level]);
3182 lower = path->nodes[level];
3183 nritems = btrfs_header_nritems(lower);
3184 BUG_ON(slot > nritems);
3185 BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(root));
3186 if (slot != nritems) {
3188 tree_mod_log_eb_move(root->fs_info, lower, slot + 1,
3189 slot, nritems - slot);
3190 memmove_extent_buffer(lower,
3191 btrfs_node_key_ptr_offset(slot + 1),
3192 btrfs_node_key_ptr_offset(slot),
3193 (nritems - slot) * sizeof(struct btrfs_key_ptr));
3196 ret = tree_mod_log_insert_key(root->fs_info, lower, slot,
3200 btrfs_set_node_key(lower, key, slot);
3201 btrfs_set_node_blockptr(lower, slot, bytenr);
3202 WARN_ON(trans->transid == 0);
3203 btrfs_set_node_ptr_generation(lower, slot, trans->transid);
3204 btrfs_set_header_nritems(lower, nritems + 1);
3205 btrfs_mark_buffer_dirty(lower);
3209 * split the node at the specified level in path in two.
3210 * The path is corrected to point to the appropriate node after the split
3212 * Before splitting this tries to make some room in the node by pushing
3213 * left and right, if either one works, it returns right away.
3215 * returns 0 on success and < 0 on failure
3217 static noinline int split_node(struct btrfs_trans_handle *trans,
3218 struct btrfs_root *root,
3219 struct btrfs_path *path, int level)
3221 struct extent_buffer *c;
3222 struct extent_buffer *split;
3223 struct btrfs_disk_key disk_key;
3228 c = path->nodes[level];
3229 WARN_ON(btrfs_header_generation(c) != trans->transid);
3230 if (c == root->node) {
3231 /* trying to split the root, lets make a new one */
3232 ret = insert_new_root(trans, root, path, level + 1);
3236 ret = push_nodes_for_insert(trans, root, path, level);
3237 c = path->nodes[level];
3238 if (!ret && btrfs_header_nritems(c) <
3239 BTRFS_NODEPTRS_PER_BLOCK(root) - 3)
3245 c_nritems = btrfs_header_nritems(c);
3246 mid = (c_nritems + 1) / 2;
3247 btrfs_node_key(c, &disk_key, mid);
3249 split = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
3250 root->root_key.objectid,
3251 &disk_key, level, c->start, 0);
3253 return PTR_ERR(split);
3255 root_add_used(root, root->nodesize);
3257 memset_extent_buffer(split, 0, 0, sizeof(struct btrfs_header));
3258 btrfs_set_header_level(split, btrfs_header_level(c));
3259 btrfs_set_header_bytenr(split, split->start);
3260 btrfs_set_header_generation(split, trans->transid);
3261 btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV);
3262 btrfs_set_header_owner(split, root->root_key.objectid);
3263 write_extent_buffer(split, root->fs_info->fsid,
3264 (unsigned long)btrfs_header_fsid(split),
3266 write_extent_buffer(split, root->fs_info->chunk_tree_uuid,
3267 (unsigned long)btrfs_header_chunk_tree_uuid(split),
3270 tree_mod_log_eb_copy(root->fs_info, split, c, 0, mid, c_nritems - mid);
3271 copy_extent_buffer(split, c,
3272 btrfs_node_key_ptr_offset(0),
3273 btrfs_node_key_ptr_offset(mid),
3274 (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
3275 btrfs_set_header_nritems(split, c_nritems - mid);
3276 btrfs_set_header_nritems(c, mid);
3279 btrfs_mark_buffer_dirty(c);
3280 btrfs_mark_buffer_dirty(split);
3282 insert_ptr(trans, root, path, &disk_key, split->start,
3283 path->slots[level + 1] + 1, level + 1);
3285 if (path->slots[level] >= mid) {
3286 path->slots[level] -= mid;
3287 btrfs_tree_unlock(c);
3288 free_extent_buffer(c);
3289 path->nodes[level] = split;
3290 path->slots[level + 1] += 1;
3292 btrfs_tree_unlock(split);
3293 free_extent_buffer(split);
3299 * how many bytes are required to store the items in a leaf. start
3300 * and nr indicate which items in the leaf to check. This totals up the
3301 * space used both by the item structs and the item data
3303 static int leaf_space_used(struct extent_buffer *l, int start, int nr)
3306 int nritems = btrfs_header_nritems(l);
3307 int end = min(nritems, start + nr) - 1;
3311 data_len = btrfs_item_end_nr(l, start);
3312 data_len = data_len - btrfs_item_offset_nr(l, end);
3313 data_len += sizeof(struct btrfs_item) * nr;
3314 WARN_ON(data_len < 0);
3319 * The space between the end of the leaf items and
3320 * the start of the leaf data. IOW, how much room
3321 * the leaf has left for both items and data
3323 noinline int btrfs_leaf_free_space(struct btrfs_root *root,
3324 struct extent_buffer *leaf)
3326 int nritems = btrfs_header_nritems(leaf);
3328 ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
3330 printk(KERN_CRIT "leaf free space ret %d, leaf data size %lu, "
3331 "used %d nritems %d\n",
3332 ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root),
3333 leaf_space_used(leaf, 0, nritems), nritems);
3339 * min slot controls the lowest index we're willing to push to the
3340 * right. We'll push up to and including min_slot, but no lower
3342 static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
3343 struct btrfs_root *root,
3344 struct btrfs_path *path,
3345 int data_size, int empty,
3346 struct extent_buffer *right,
3347 int free_space, u32 left_nritems,
3350 struct extent_buffer *left = path->nodes[0];
3351 struct extent_buffer *upper = path->nodes[1];
3352 struct btrfs_map_token token;
3353 struct btrfs_disk_key disk_key;
3358 struct btrfs_item *item;
3364 btrfs_init_map_token(&token);
3369 nr = max_t(u32, 1, min_slot);
3371 if (path->slots[0] >= left_nritems)
3372 push_space += data_size;
3374 slot = path->slots[1];
3375 i = left_nritems - 1;
3377 item = btrfs_item_nr(left, i);
3379 if (!empty && push_items > 0) {
3380 if (path->slots[0] > i)
3382 if (path->slots[0] == i) {
3383 int space = btrfs_leaf_free_space(root, left);
3384 if (space + push_space * 2 > free_space)
3389 if (path->slots[0] == i)
3390 push_space += data_size;
3392 this_item_size = btrfs_item_size(left, item);
3393 if (this_item_size + sizeof(*item) + push_space > free_space)
3397 push_space += this_item_size + sizeof(*item);
3403 if (push_items == 0)
3406 if (!empty && push_items == left_nritems)
3409 /* push left to right */
3410 right_nritems = btrfs_header_nritems(right);
3412 push_space = btrfs_item_end_nr(left, left_nritems - push_items);
3413 push_space -= leaf_data_end(root, left);
3415 /* make room in the right data area */
3416 data_end = leaf_data_end(root, right);
3417 memmove_extent_buffer(right,
3418 btrfs_leaf_data(right) + data_end - push_space,
3419 btrfs_leaf_data(right) + data_end,
3420 BTRFS_LEAF_DATA_SIZE(root) - data_end);
3422 /* copy from the left data area */
3423 copy_extent_buffer(right, left, btrfs_leaf_data(right) +
3424 BTRFS_LEAF_DATA_SIZE(root) - push_space,
3425 btrfs_leaf_data(left) + leaf_data_end(root, left),
3428 memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
3429 btrfs_item_nr_offset(0),
3430 right_nritems * sizeof(struct btrfs_item));
3432 /* copy the items from left to right */
3433 copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
3434 btrfs_item_nr_offset(left_nritems - push_items),
3435 push_items * sizeof(struct btrfs_item));
3437 /* update the item pointers */
3438 right_nritems += push_items;
3439 btrfs_set_header_nritems(right, right_nritems);
3440 push_space = BTRFS_LEAF_DATA_SIZE(root);
3441 for (i = 0; i < right_nritems; i++) {
3442 item = btrfs_item_nr(right, i);
3443 push_space -= btrfs_token_item_size(right, item, &token);
3444 btrfs_set_token_item_offset(right, item, push_space, &token);
3447 left_nritems -= push_items;
3448 btrfs_set_header_nritems(left, left_nritems);
3451 btrfs_mark_buffer_dirty(left);
3453 clean_tree_block(trans, root, left);
3455 btrfs_mark_buffer_dirty(right);
3457 btrfs_item_key(right, &disk_key, 0);
3458 btrfs_set_node_key(upper, &disk_key, slot + 1);
3459 btrfs_mark_buffer_dirty(upper);
3461 /* then fixup the leaf pointer in the path */
3462 if (path->slots[0] >= left_nritems) {
3463 path->slots[0] -= left_nritems;
3464 if (btrfs_header_nritems(path->nodes[0]) == 0)
3465 clean_tree_block(trans, root, path->nodes[0]);
3466 btrfs_tree_unlock(path->nodes[0]);
3467 free_extent_buffer(path->nodes[0]);
3468 path->nodes[0] = right;
3469 path->slots[1] += 1;
3471 btrfs_tree_unlock(right);
3472 free_extent_buffer(right);
3477 btrfs_tree_unlock(right);
3478 free_extent_buffer(right);
3483 * push some data in the path leaf to the right, trying to free up at
3484 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3486 * returns 1 if the push failed because the other node didn't have enough
3487 * room, 0 if everything worked out and < 0 if there were major errors.
3489 * this will push starting from min_slot to the end of the leaf. It won't
3490 * push any slot lower than min_slot
3492 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
3493 *root, struct btrfs_path *path,
3494 int min_data_size, int data_size,
3495 int empty, u32 min_slot)
3497 struct extent_buffer *left = path->nodes[0];
3498 struct extent_buffer *right;
3499 struct extent_buffer *upper;
3505 if (!path->nodes[1])
3508 slot = path->slots[1];
3509 upper = path->nodes[1];
3510 if (slot >= btrfs_header_nritems(upper) - 1)
3513 btrfs_assert_tree_locked(path->nodes[1]);
3515 right = read_node_slot(root, upper, slot + 1);
3519 btrfs_tree_lock(right);
3520 btrfs_set_lock_blocking(right);
3522 free_space = btrfs_leaf_free_space(root, right);
3523 if (free_space < data_size)
3526 /* cow and double check */
3527 ret = btrfs_cow_block(trans, root, right, upper,
3532 free_space = btrfs_leaf_free_space(root, right);
3533 if (free_space < data_size)
3536 left_nritems = btrfs_header_nritems(left);
3537 if (left_nritems == 0)
3540 return __push_leaf_right(trans, root, path, min_data_size, empty,
3541 right, free_space, left_nritems, min_slot);
3543 btrfs_tree_unlock(right);
3544 free_extent_buffer(right);
3549 * push some data in the path leaf to the left, trying to free up at
3550 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3552 * max_slot can put a limit on how far into the leaf we'll push items. The
3553 * item at 'max_slot' won't be touched. Use (u32)-1 to make us do all the
3556 static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
3557 struct btrfs_root *root,
3558 struct btrfs_path *path, int data_size,
3559 int empty, struct extent_buffer *left,
3560 int free_space, u32 right_nritems,
3563 struct btrfs_disk_key disk_key;
3564 struct extent_buffer *right = path->nodes[0];
3568 struct btrfs_item *item;
3569 u32 old_left_nritems;
3573 u32 old_left_item_size;
3574 struct btrfs_map_token token;
3576 btrfs_init_map_token(&token);
3579 nr = min(right_nritems, max_slot);
3581 nr = min(right_nritems - 1, max_slot);
3583 for (i = 0; i < nr; i++) {
3584 item = btrfs_item_nr(right, i);
3586 if (!empty && push_items > 0) {
3587 if (path->slots[0] < i)
3589 if (path->slots[0] == i) {
3590 int space = btrfs_leaf_free_space(root, right);
3591 if (space + push_space * 2 > free_space)
3596 if (path->slots[0] == i)
3597 push_space += data_size;
3599 this_item_size = btrfs_item_size(right, item);
3600 if (this_item_size + sizeof(*item) + push_space > free_space)
3604 push_space += this_item_size + sizeof(*item);
3607 if (push_items == 0) {
3611 if (!empty && push_items == btrfs_header_nritems(right))
3614 /* push data from right to left */
3615 copy_extent_buffer(left, right,
3616 btrfs_item_nr_offset(btrfs_header_nritems(left)),
3617 btrfs_item_nr_offset(0),
3618 push_items * sizeof(struct btrfs_item));
3620 push_space = BTRFS_LEAF_DATA_SIZE(root) -
3621 btrfs_item_offset_nr(right, push_items - 1);
3623 copy_extent_buffer(left, right, btrfs_leaf_data(left) +
3624 leaf_data_end(root, left) - push_space,
3625 btrfs_leaf_data(right) +
3626 btrfs_item_offset_nr(right, push_items - 1),
3628 old_left_nritems = btrfs_header_nritems(left);
3629 BUG_ON(old_left_nritems <= 0);
3631 old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
3632 for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3635 item = btrfs_item_nr(left, i);
3637 ioff = btrfs_token_item_offset(left, item, &token);
3638 btrfs_set_token_item_offset(left, item,
3639 ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size),
3642 btrfs_set_header_nritems(left, old_left_nritems + push_items);
3644 /* fixup right node */
3645 if (push_items > right_nritems) {
3646 printk(KERN_CRIT "push items %d nr %u\n", push_items,
3651 if (push_items < right_nritems) {
3652 push_space = btrfs_item_offset_nr(right, push_items - 1) -
3653 leaf_data_end(root, right);
3654 memmove_extent_buffer(right, btrfs_leaf_data(right) +
3655 BTRFS_LEAF_DATA_SIZE(root) - push_space,
3656 btrfs_leaf_data(right) +
3657 leaf_data_end(root, right), push_space);
3659 memmove_extent_buffer(right, btrfs_item_nr_offset(0),
3660 btrfs_item_nr_offset(push_items),
3661 (btrfs_header_nritems(right) - push_items) *
3662 sizeof(struct btrfs_item));
3664 right_nritems -= push_items;
3665 btrfs_set_header_nritems(right, right_nritems);
3666 push_space = BTRFS_LEAF_DATA_SIZE(root);
3667 for (i = 0; i < right_nritems; i++) {
3668 item = btrfs_item_nr(right, i);
3670 push_space = push_space - btrfs_token_item_size(right,
3672 btrfs_set_token_item_offset(right, item, push_space, &token);
3675 btrfs_mark_buffer_dirty(left);
3677 btrfs_mark_buffer_dirty(right);
3679 clean_tree_block(trans, root, right);
3681 btrfs_item_key(right, &disk_key, 0);
3682 fixup_low_keys(trans, root, path, &disk_key, 1);
3684 /* then fixup the leaf pointer in the path */
3685 if (path->slots[0] < push_items) {
3686 path->slots[0] += old_left_nritems;
3687 btrfs_tree_unlock(path->nodes[0]);
3688 free_extent_buffer(path->nodes[0]);
3689 path->nodes[0] = left;
3690 path->slots[1] -= 1;
3692 btrfs_tree_unlock(left);
3693 free_extent_buffer(left);
3694 path->slots[0] -= push_items;
3696 BUG_ON(path->slots[0] < 0);
3699 btrfs_tree_unlock(left);
3700 free_extent_buffer(left);
3705 * push some data in the path leaf to the left, trying to free up at
3706 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3708 * max_slot can put a limit on how far into the leaf we'll push items. The
3709 * item at 'max_slot' won't be touched. Use (u32)-1 to make us push all the
3712 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
3713 *root, struct btrfs_path *path, int min_data_size,
3714 int data_size, int empty, u32 max_slot)
3716 struct extent_buffer *right = path->nodes[0];
3717 struct extent_buffer *left;
3723 slot = path->slots[1];
3726 if (!path->nodes[1])
3729 right_nritems = btrfs_header_nritems(right);
3730 if (right_nritems == 0)
3733 btrfs_assert_tree_locked(path->nodes[1]);
3735 left = read_node_slot(root, path->nodes[1], slot - 1);
3739 btrfs_tree_lock(left);
3740 btrfs_set_lock_blocking(left);
3742 free_space = btrfs_leaf_free_space(root, left);
3743 if (free_space < data_size) {
3748 /* cow and double check */
3749 ret = btrfs_cow_block(trans, root, left,
3750 path->nodes[1], slot - 1, &left);
3752 /* we hit -ENOSPC, but it isn't fatal here */
3758 free_space = btrfs_leaf_free_space(root, left);
3759 if (free_space < data_size) {
3764 return __push_leaf_left(trans, root, path, min_data_size,
3765 empty, left, free_space, right_nritems,
3768 btrfs_tree_unlock(left);
3769 free_extent_buffer(left);
3774 * split the path's leaf in two, making sure there is at least data_size
3775 * available for the resulting leaf level of the path.
3777 static noinline void copy_for_split(struct btrfs_trans_handle *trans,
3778 struct btrfs_root *root,
3779 struct btrfs_path *path,
3780 struct extent_buffer *l,
3781 struct extent_buffer *right,
3782 int slot, int mid, int nritems)
3787 struct btrfs_disk_key disk_key;
3788 struct btrfs_map_token token;
3790 btrfs_init_map_token(&token);
3792 nritems = nritems - mid;
3793 btrfs_set_header_nritems(right, nritems);
3794 data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l);
3796 copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
3797 btrfs_item_nr_offset(mid),
3798 nritems * sizeof(struct btrfs_item));
3800 copy_extent_buffer(right, l,
3801 btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
3802 data_copy_size, btrfs_leaf_data(l) +
3803 leaf_data_end(root, l), data_copy_size);
3805 rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
3806 btrfs_item_end_nr(l, mid);
3808 for (i = 0; i < nritems; i++) {
3809 struct btrfs_item *item = btrfs_item_nr(right, i);
3812 ioff = btrfs_token_item_offset(right, item, &token);
3813 btrfs_set_token_item_offset(right, item,
3814 ioff + rt_data_off, &token);
3817 btrfs_set_header_nritems(l, mid);
3818 btrfs_item_key(right, &disk_key, 0);
3819 insert_ptr(trans, root, path, &disk_key, right->start,
3820 path->slots[1] + 1, 1);
3822 btrfs_mark_buffer_dirty(right);
3823 btrfs_mark_buffer_dirty(l);
3824 BUG_ON(path->slots[0] != slot);
3827 btrfs_tree_unlock(path->nodes[0]);
3828 free_extent_buffer(path->nodes[0]);
3829 path->nodes[0] = right;
3830 path->slots[0] -= mid;
3831 path->slots[1] += 1;
3833 btrfs_tree_unlock(right);
3834 free_extent_buffer(right);
3837 BUG_ON(path->slots[0] < 0);
3841 * double splits happen when we need to insert a big item in the middle
3842 * of a leaf. A double split can leave us with 3 mostly empty leaves:
3843 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
3846 * We avoid this by trying to push the items on either side of our target
3847 * into the adjacent leaves. If all goes well we can avoid the double split
3850 static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
3851 struct btrfs_root *root,
3852 struct btrfs_path *path,
3860 slot = path->slots[0];
3863 * try to push all the items after our slot into the
3866 ret = push_leaf_right(trans, root, path, 1, data_size, 0, slot);
3873 nritems = btrfs_header_nritems(path->nodes[0]);
3875 * our goal is to get our slot at the start or end of a leaf. If
3876 * we've done so we're done
3878 if (path->slots[0] == 0 || path->slots[0] == nritems)
3881 if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
3884 /* try to push all the items before our slot into the next leaf */
3885 slot = path->slots[0];
3886 ret = push_leaf_left(trans, root, path, 1, data_size, 0, slot);
3899 * split the path's leaf in two, making sure there is at least data_size
3900 * available for the resulting leaf level of the path.
3902 * returns 0 if all went well and < 0 on failure.
3904 static noinline int split_leaf(struct btrfs_trans_handle *trans,
3905 struct btrfs_root *root,
3906 struct btrfs_key *ins_key,
3907 struct btrfs_path *path, int data_size,
3910 struct btrfs_disk_key disk_key;
3911 struct extent_buffer *l;
3915 struct extent_buffer *right;
3919 int num_doubles = 0;
3920 int tried_avoid_double = 0;
3923 slot = path->slots[0];
3924 if (extend && data_size + btrfs_item_size_nr(l, slot) +
3925 sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(root))
3928 /* first try to make some room by pushing left and right */
3930 wret = push_leaf_right(trans, root, path, data_size,
3935 wret = push_leaf_left(trans, root, path, data_size,
3936 data_size, 0, (u32)-1);
3942 /* did the pushes work? */
3943 if (btrfs_leaf_free_space(root, l) >= data_size)
3947 if (!path->nodes[1]) {
3948 ret = insert_new_root(trans, root, path, 1);
3955 slot = path->slots[0];
3956 nritems = btrfs_header_nritems(l);
3957 mid = (nritems + 1) / 2;
3961 leaf_space_used(l, mid, nritems - mid) + data_size >
3962 BTRFS_LEAF_DATA_SIZE(root)) {
3963 if (slot >= nritems) {
3967 if (mid != nritems &&
3968 leaf_space_used(l, mid, nritems - mid) +
3969 data_size > BTRFS_LEAF_DATA_SIZE(root)) {
3970 if (data_size && !tried_avoid_double)
3971 goto push_for_double;
3977 if (leaf_space_used(l, 0, mid) + data_size >
3978 BTRFS_LEAF_DATA_SIZE(root)) {
3979 if (!extend && data_size && slot == 0) {
3981 } else if ((extend || !data_size) && slot == 0) {
3985 if (mid != nritems &&
3986 leaf_space_used(l, mid, nritems - mid) +
3987 data_size > BTRFS_LEAF_DATA_SIZE(root)) {
3988 if (data_size && !tried_avoid_double)
3989 goto push_for_double;
3997 btrfs_cpu_key_to_disk(&disk_key, ins_key);
3999 btrfs_item_key(l, &disk_key, mid);
4001 right = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
4002 root->root_key.objectid,
4003 &disk_key, 0, l->start, 0);
4005 return PTR_ERR(right);
4007 root_add_used(root, root->leafsize);
4009 memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header));
4010 btrfs_set_header_bytenr(right, right->start);
4011 btrfs_set_header_generation(right, trans->transid);
4012 btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV);
4013 btrfs_set_header_owner(right, root->root_key.objectid);
4014 btrfs_set_header_level(right, 0);
4015 write_extent_buffer(right, root->fs_info->fsid,
4016 (unsigned long)btrfs_header_fsid(right),
4019 write_extent_buffer(right, root->fs_info->chunk_tree_uuid,
4020 (unsigned long)btrfs_header_chunk_tree_uuid(right),
4025 btrfs_set_header_nritems(right, 0);
4026 insert_ptr(trans, root, path, &disk_key, right->start,
4027 path->slots[1] + 1, 1);
4028 btrfs_tree_unlock(path->nodes[0]);
4029 free_extent_buffer(path->nodes[0]);
4030 path->nodes[0] = right;
4032 path->slots[1] += 1;
4034 btrfs_set_header_nritems(right, 0);
4035 insert_ptr(trans, root, path, &disk_key, right->start,
4037 btrfs_tree_unlock(path->nodes[0]);
4038 free_extent_buffer(path->nodes[0]);
4039 path->nodes[0] = right;
4041 if (path->slots[1] == 0)
4042 fixup_low_keys(trans, root, path,
4045 btrfs_mark_buffer_dirty(right);
4049 copy_for_split(trans, root, path, l, right, slot, mid, nritems);
4052 BUG_ON(num_doubles != 0);
4060 push_for_double_split(trans, root, path, data_size);
4061 tried_avoid_double = 1;
4062 if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
4067 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
4068 struct btrfs_root *root,
4069 struct btrfs_path *path, int ins_len)
4071 struct btrfs_key key;
4072 struct extent_buffer *leaf;
4073 struct btrfs_file_extent_item *fi;
4078 leaf = path->nodes[0];
4079 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4081 BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
4082 key.type != BTRFS_EXTENT_CSUM_KEY);
4084 if (btrfs_leaf_free_space(root, leaf) >= ins_len)
4087 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4088 if (key.type == BTRFS_EXTENT_DATA_KEY) {
4089 fi = btrfs_item_ptr(leaf, path->slots[0],
4090 struct btrfs_file_extent_item);
4091 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
4093 btrfs_release_path(path);
4095 path->keep_locks = 1;
4096 path->search_for_split = 1;
4097 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
4098 path->search_for_split = 0;
4103 leaf = path->nodes[0];
4104 /* if our item isn't there or got smaller, return now */
4105 if (ret > 0 || item_size != btrfs_item_size_nr(leaf, path->slots[0]))
4108 /* the leaf has changed, it now has room. return now */
4109 if (btrfs_leaf_free_space(root, path->nodes[0]) >= ins_len)
4112 if (key.type == BTRFS_EXTENT_DATA_KEY) {
4113 fi = btrfs_item_ptr(leaf, path->slots[0],
4114 struct btrfs_file_extent_item);
4115 if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
4119 btrfs_set_path_blocking(path);
4120 ret = split_leaf(trans, root, &key, path, ins_len, 1);
4124 path->keep_locks = 0;
4125 btrfs_unlock_up_safe(path, 1);
4128 path->keep_locks = 0;
4132 static noinline int split_item(struct btrfs_trans_handle *trans,
4133 struct btrfs_root *root,
4134 struct btrfs_path *path,
4135 struct btrfs_key *new_key,
4136 unsigned long split_offset)
4138 struct extent_buffer *leaf;
4139 struct btrfs_item *item;
4140 struct btrfs_item *new_item;
4146 struct btrfs_disk_key disk_key;
4148 leaf = path->nodes[0];
4149 BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item));
4151 btrfs_set_path_blocking(path);
4153 item = btrfs_item_nr(leaf, path->slots[0]);
4154 orig_offset = btrfs_item_offset(leaf, item);
4155 item_size = btrfs_item_size(leaf, item);
4157 buf = kmalloc(item_size, GFP_NOFS);
4161 read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
4162 path->slots[0]), item_size);
4164 slot = path->slots[0] + 1;
4165 nritems = btrfs_header_nritems(leaf);
4166 if (slot != nritems) {
4167 /* shift the items */
4168 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
4169 btrfs_item_nr_offset(slot),
4170 (nritems - slot) * sizeof(struct btrfs_item));
4173 btrfs_cpu_key_to_disk(&disk_key, new_key);
4174 btrfs_set_item_key(leaf, &disk_key, slot);
4176 new_item = btrfs_item_nr(leaf, slot);
4178 btrfs_set_item_offset(leaf, new_item, orig_offset);
4179 btrfs_set_item_size(leaf, new_item, item_size - split_offset);
4181 btrfs_set_item_offset(leaf, item,
4182 orig_offset + item_size - split_offset);
4183 btrfs_set_item_size(leaf, item, split_offset);
4185 btrfs_set_header_nritems(leaf, nritems + 1);
4187 /* write the data for the start of the original item */
4188 write_extent_buffer(leaf, buf,
4189 btrfs_item_ptr_offset(leaf, path->slots[0]),
4192 /* write the data for the new item */
4193 write_extent_buffer(leaf, buf + split_offset,
4194 btrfs_item_ptr_offset(leaf, slot),
4195 item_size - split_offset);
4196 btrfs_mark_buffer_dirty(leaf);
4198 BUG_ON(btrfs_leaf_free_space(root, leaf) < 0);
4204 * This function splits a single item into two items,
4205 * giving 'new_key' to the new item and splitting the
4206 * old one at split_offset (from the start of the item).
4208 * The path may be released by this operation. After
4209 * the split, the path is pointing to the old item. The
4210 * new item is going to be in the same node as the old one.
4212 * Note, the item being split must be smaller enough to live alone on
4213 * a tree block with room for one extra struct btrfs_item
4215 * This allows us to split the item in place, keeping a lock on the
4216 * leaf the entire time.
4218 int btrfs_split_item(struct btrfs_trans_handle *trans,
4219 struct btrfs_root *root,
4220 struct btrfs_path *path,
4221 struct btrfs_key *new_key,
4222 unsigned long split_offset)
4225 ret = setup_leaf_for_split(trans, root, path,
4226 sizeof(struct btrfs_item));
4230 ret = split_item(trans, root, path, new_key, split_offset);
4235 * This function duplicate a item, giving 'new_key' to the new item.
4236 * It guarantees both items live in the same tree leaf and the new item
4237 * is contiguous with the original item.
4239 * This allows us to split file extent in place, keeping a lock on the
4240 * leaf the entire time.
4242 int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4243 struct btrfs_root *root,
4244 struct btrfs_path *path,
4245 struct btrfs_key *new_key)
4247 struct extent_buffer *leaf;
4251 leaf = path->nodes[0];
4252 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4253 ret = setup_leaf_for_split(trans, root, path,
4254 item_size + sizeof(struct btrfs_item));
4259 setup_items_for_insert(trans, root, path, new_key, &item_size,
4260 item_size, item_size +
4261 sizeof(struct btrfs_item), 1);
4262 leaf = path->nodes[0];
4263 memcpy_extent_buffer(leaf,
4264 btrfs_item_ptr_offset(leaf, path->slots[0]),
4265 btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4271 * make the item pointed to by the path smaller. new_size indicates
4272 * how small to make it, and from_end tells us if we just chop bytes
4273 * off the end of the item or if we shift the item to chop bytes off
4276 void btrfs_truncate_item(struct btrfs_trans_handle *trans,
4277 struct btrfs_root *root,
4278 struct btrfs_path *path,
4279 u32 new_size, int from_end)
4282 struct extent_buffer *leaf;
4283 struct btrfs_item *item;
4285 unsigned int data_end;
4286 unsigned int old_data_start;
4287 unsigned int old_size;
4288 unsigned int size_diff;
4290 struct btrfs_map_token token;
4292 btrfs_init_map_token(&token);
4294 leaf = path->nodes[0];
4295 slot = path->slots[0];
4297 old_size = btrfs_item_size_nr(leaf, slot);
4298 if (old_size == new_size)
4301 nritems = btrfs_header_nritems(leaf);
4302 data_end = leaf_data_end(root, leaf);
4304 old_data_start = btrfs_item_offset_nr(leaf, slot);
4306 size_diff = old_size - new_size;
4309 BUG_ON(slot >= nritems);
4312 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4314 /* first correct the data pointers */
4315 for (i = slot; i < nritems; i++) {
4317 item = btrfs_item_nr(leaf, i);
4319 ioff = btrfs_token_item_offset(leaf, item, &token);
4320 btrfs_set_token_item_offset(leaf, item,
4321 ioff + size_diff, &token);
4324 /* shift the data */
4326 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4327 data_end + size_diff, btrfs_leaf_data(leaf) +
4328 data_end, old_data_start + new_size - data_end);
4330 struct btrfs_disk_key disk_key;
4333 btrfs_item_key(leaf, &disk_key, slot);
4335 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
4337 struct btrfs_file_extent_item *fi;
4339 fi = btrfs_item_ptr(leaf, slot,
4340 struct btrfs_file_extent_item);
4341 fi = (struct btrfs_file_extent_item *)(
4342 (unsigned long)fi - size_diff);
4344 if (btrfs_file_extent_type(leaf, fi) ==
4345 BTRFS_FILE_EXTENT_INLINE) {
4346 ptr = btrfs_item_ptr_offset(leaf, slot);
4347 memmove_extent_buffer(leaf, ptr,
4349 offsetof(struct btrfs_file_extent_item,
4354 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4355 data_end + size_diff, btrfs_leaf_data(leaf) +
4356 data_end, old_data_start - data_end);
4358 offset = btrfs_disk_key_offset(&disk_key);
4359 btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
4360 btrfs_set_item_key(leaf, &disk_key, slot);
4362 fixup_low_keys(trans, root, path, &disk_key, 1);
4365 item = btrfs_item_nr(leaf, slot);
4366 btrfs_set_item_size(leaf, item, new_size);
4367 btrfs_mark_buffer_dirty(leaf);
4369 if (btrfs_leaf_free_space(root, leaf) < 0) {
4370 btrfs_print_leaf(root, leaf);
4376 * make the item pointed to by the path bigger, data_size is the new size.
4378 void btrfs_extend_item(struct btrfs_trans_handle *trans,
4379 struct btrfs_root *root, struct btrfs_path *path,
4383 struct extent_buffer *leaf;
4384 struct btrfs_item *item;
4386 unsigned int data_end;
4387 unsigned int old_data;
4388 unsigned int old_size;
4390 struct btrfs_map_token token;
4392 btrfs_init_map_token(&token);
4394 leaf = path->nodes[0];
4396 nritems = btrfs_header_nritems(leaf);
4397 data_end = leaf_data_end(root, leaf);
4399 if (btrfs_leaf_free_space(root, leaf) < data_size) {
4400 btrfs_print_leaf(root, leaf);
4403 slot = path->slots[0];
4404 old_data = btrfs_item_end_nr(leaf, slot);
4407 if (slot >= nritems) {
4408 btrfs_print_leaf(root, leaf);
4409 printk(KERN_CRIT "slot %d too large, nritems %d\n",
4415 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4417 /* first correct the data pointers */
4418 for (i = slot; i < nritems; i++) {
4420 item = btrfs_item_nr(leaf, i);
4422 ioff = btrfs_token_item_offset(leaf, item, &token);
4423 btrfs_set_token_item_offset(leaf, item,
4424 ioff - data_size, &token);
4427 /* shift the data */
4428 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4429 data_end - data_size, btrfs_leaf_data(leaf) +
4430 data_end, old_data - data_end);
4432 data_end = old_data;
4433 old_size = btrfs_item_size_nr(leaf, slot);
4434 item = btrfs_item_nr(leaf, slot);
4435 btrfs_set_item_size(leaf, item, old_size + data_size);
4436 btrfs_mark_buffer_dirty(leaf);
4438 if (btrfs_leaf_free_space(root, leaf) < 0) {
4439 btrfs_print_leaf(root, leaf);
4445 * this is a helper for btrfs_insert_empty_items, the main goal here is
4446 * to save stack depth by doing the bulk of the work in a function
4447 * that doesn't call btrfs_search_slot
4449 void setup_items_for_insert(struct btrfs_trans_handle *trans,
4450 struct btrfs_root *root, struct btrfs_path *path,
4451 struct btrfs_key *cpu_key, u32 *data_size,
4452 u32 total_data, u32 total_size, int nr)
4454 struct btrfs_item *item;
4457 unsigned int data_end;
4458 struct btrfs_disk_key disk_key;
4459 struct extent_buffer *leaf;
4461 struct btrfs_map_token token;
4463 btrfs_init_map_token(&token);
4465 leaf = path->nodes[0];
4466 slot = path->slots[0];
4468 nritems = btrfs_header_nritems(leaf);
4469 data_end = leaf_data_end(root, leaf);
4471 if (btrfs_leaf_free_space(root, leaf) < total_size) {
4472 btrfs_print_leaf(root, leaf);
4473 printk(KERN_CRIT "not enough freespace need %u have %d\n",
4474 total_size, btrfs_leaf_free_space(root, leaf));
4478 if (slot != nritems) {
4479 unsigned int old_data = btrfs_item_end_nr(leaf, slot);
4481 if (old_data < data_end) {
4482 btrfs_print_leaf(root, leaf);
4483 printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
4484 slot, old_data, data_end);
4488 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4490 /* first correct the data pointers */
4491 for (i = slot; i < nritems; i++) {
4494 item = btrfs_item_nr(leaf, i);
4495 ioff = btrfs_token_item_offset(leaf, item, &token);
4496 btrfs_set_token_item_offset(leaf, item,
4497 ioff - total_data, &token);
4499 /* shift the items */
4500 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
4501 btrfs_item_nr_offset(slot),
4502 (nritems - slot) * sizeof(struct btrfs_item));
4504 /* shift the data */
4505 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4506 data_end - total_data, btrfs_leaf_data(leaf) +
4507 data_end, old_data - data_end);
4508 data_end = old_data;
4511 /* setup the item for the new data */
4512 for (i = 0; i < nr; i++) {
4513 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
4514 btrfs_set_item_key(leaf, &disk_key, slot + i);
4515 item = btrfs_item_nr(leaf, slot + i);
4516 btrfs_set_token_item_offset(leaf, item,
4517 data_end - data_size[i], &token);
4518 data_end -= data_size[i];
4519 btrfs_set_token_item_size(leaf, item, data_size[i], &token);
4522 btrfs_set_header_nritems(leaf, nritems + nr);
4525 btrfs_cpu_key_to_disk(&disk_key, cpu_key);
4526 fixup_low_keys(trans, root, path, &disk_key, 1);
4528 btrfs_unlock_up_safe(path, 1);
4529 btrfs_mark_buffer_dirty(leaf);
4531 if (btrfs_leaf_free_space(root, leaf) < 0) {
4532 btrfs_print_leaf(root, leaf);
4538 * Given a key and some data, insert items into the tree.
4539 * This does all the path init required, making room in the tree if needed.
4541 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4542 struct btrfs_root *root,
4543 struct btrfs_path *path,
4544 struct btrfs_key *cpu_key, u32 *data_size,
4553 for (i = 0; i < nr; i++)
4554 total_data += data_size[i];
4556 total_size = total_data + (nr * sizeof(struct btrfs_item));
4557 ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
4563 slot = path->slots[0];
4566 setup_items_for_insert(trans, root, path, cpu_key, data_size,
4567 total_data, total_size, nr);
4572 * Given a key and some data, insert an item into the tree.
4573 * This does all the path init required, making room in the tree if needed.
4575 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
4576 *root, struct btrfs_key *cpu_key, void *data, u32
4580 struct btrfs_path *path;
4581 struct extent_buffer *leaf;
4584 path = btrfs_alloc_path();
4587 ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4589 leaf = path->nodes[0];
4590 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4591 write_extent_buffer(leaf, data, ptr, data_size);
4592 btrfs_mark_buffer_dirty(leaf);
4594 btrfs_free_path(path);
4599 * delete the pointer from a given node.
4601 * the tree should have been previously balanced so the deletion does not
4604 static void del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4605 struct btrfs_path *path, int level, int slot,
4608 struct extent_buffer *parent = path->nodes[level];
4612 nritems = btrfs_header_nritems(parent);
4613 if (slot != nritems - 1) {
4614 if (tree_mod_log && level)
4615 tree_mod_log_eb_move(root->fs_info, parent, slot,
4616 slot + 1, nritems - slot - 1);
4617 memmove_extent_buffer(parent,
4618 btrfs_node_key_ptr_offset(slot),
4619 btrfs_node_key_ptr_offset(slot + 1),
4620 sizeof(struct btrfs_key_ptr) *
4621 (nritems - slot - 1));
4622 } else if (tree_mod_log && level) {
4623 ret = tree_mod_log_insert_key(root->fs_info, parent, slot,
4624 MOD_LOG_KEY_REMOVE);
4629 btrfs_set_header_nritems(parent, nritems);
4630 if (nritems == 0 && parent == root->node) {
4631 BUG_ON(btrfs_header_level(root->node) != 1);
4632 /* just turn the root into a leaf and break */
4633 btrfs_set_header_level(root->node, 0);
4634 } else if (slot == 0) {
4635 struct btrfs_disk_key disk_key;
4637 btrfs_node_key(parent, &disk_key, 0);
4638 fixup_low_keys(trans, root, path, &disk_key, level + 1);
4640 btrfs_mark_buffer_dirty(parent);
4644 * a helper function to delete the leaf pointed to by path->slots[1] and
4647 * This deletes the pointer in path->nodes[1] and frees the leaf
4648 * block extent. zero is returned if it all worked out, < 0 otherwise.
4650 * The path must have already been setup for deleting the leaf, including
4651 * all the proper balancing. path->nodes[1] must be locked.
4653 static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
4654 struct btrfs_root *root,
4655 struct btrfs_path *path,
4656 struct extent_buffer *leaf)
4658 WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4659 del_ptr(trans, root, path, 1, path->slots[1], 1);
4662 * btrfs_free_extent is expensive, we want to make sure we
4663 * aren't holding any locks when we call it
4665 btrfs_unlock_up_safe(path, 0);
4667 root_sub_used(root, leaf->len);
4669 extent_buffer_get(leaf);
4670 btrfs_free_tree_block(trans, root, leaf, 0, 1);
4671 free_extent_buffer_stale(leaf);
4674 * delete the item at the leaf level in path. If that empties
4675 * the leaf, remove it from the tree
4677 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4678 struct btrfs_path *path, int slot, int nr)
4680 struct extent_buffer *leaf;
4681 struct btrfs_item *item;
4688 struct btrfs_map_token token;
4690 btrfs_init_map_token(&token);
4692 leaf = path->nodes[0];
4693 last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
4695 for (i = 0; i < nr; i++)
4696 dsize += btrfs_item_size_nr(leaf, slot + i);
4698 nritems = btrfs_header_nritems(leaf);
4700 if (slot + nr != nritems) {
4701 int data_end = leaf_data_end(root, leaf);
4703 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4705 btrfs_leaf_data(leaf) + data_end,
4706 last_off - data_end);
4708 for (i = slot + nr; i < nritems; i++) {
4711 item = btrfs_item_nr(leaf, i);
4712 ioff = btrfs_token_item_offset(leaf, item, &token);
4713 btrfs_set_token_item_offset(leaf, item,
4714 ioff + dsize, &token);
4717 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
4718 btrfs_item_nr_offset(slot + nr),
4719 sizeof(struct btrfs_item) *
4720 (nritems - slot - nr));
4722 btrfs_set_header_nritems(leaf, nritems - nr);
4725 /* delete the leaf if we've emptied it */
4727 if (leaf == root->node) {
4728 btrfs_set_header_level(leaf, 0);
4730 btrfs_set_path_blocking(path);
4731 clean_tree_block(trans, root, leaf);
4732 btrfs_del_leaf(trans, root, path, leaf);
4735 int used = leaf_space_used(leaf, 0, nritems);
4737 struct btrfs_disk_key disk_key;
4739 btrfs_item_key(leaf, &disk_key, 0);
4740 fixup_low_keys(trans, root, path, &disk_key, 1);
4743 /* delete the leaf if it is mostly empty */
4744 if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) {
4745 /* push_leaf_left fixes the path.
4746 * make sure the path still points to our leaf
4747 * for possible call to del_ptr below
4749 slot = path->slots[1];
4750 extent_buffer_get(leaf);
4752 btrfs_set_path_blocking(path);
4753 wret = push_leaf_left(trans, root, path, 1, 1,
4755 if (wret < 0 && wret != -ENOSPC)
4758 if (path->nodes[0] == leaf &&
4759 btrfs_header_nritems(leaf)) {
4760 wret = push_leaf_right(trans, root, path, 1,
4762 if (wret < 0 && wret != -ENOSPC)
4766 if (btrfs_header_nritems(leaf) == 0) {
4767 path->slots[1] = slot;
4768 btrfs_del_leaf(trans, root, path, leaf);
4769 free_extent_buffer(leaf);
4772 /* if we're still in the path, make sure
4773 * we're dirty. Otherwise, one of the
4774 * push_leaf functions must have already
4775 * dirtied this buffer
4777 if (path->nodes[0] == leaf)
4778 btrfs_mark_buffer_dirty(leaf);
4779 free_extent_buffer(leaf);
4782 btrfs_mark_buffer_dirty(leaf);
4789 * search the tree again to find a leaf with lesser keys
4790 * returns 0 if it found something or 1 if there are no lesser leaves.
4791 * returns < 0 on io errors.
4793 * This may release the path, and so you may lose any locks held at the
4796 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
4798 struct btrfs_key key;
4799 struct btrfs_disk_key found_key;
4802 btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
4806 else if (key.type > 0)
4808 else if (key.objectid > 0)
4813 btrfs_release_path(path);
4814 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4817 btrfs_item_key(path->nodes[0], &found_key, 0);
4818 ret = comp_keys(&found_key, &key);
4825 * A helper function to walk down the tree starting at min_key, and looking
4826 * for nodes or leaves that are either in cache or have a minimum
4827 * transaction id. This is used by the btree defrag code, and tree logging
4829 * This does not cow, but it does stuff the starting key it finds back
4830 * into min_key, so you can call btrfs_search_slot with cow=1 on the
4831 * key and get a writable path.
4833 * This does lock as it descends, and path->keep_locks should be set
4834 * to 1 by the caller.
4836 * This honors path->lowest_level to prevent descent past a given level
4839 * min_trans indicates the oldest transaction that you are interested
4840 * in walking through. Any nodes or leaves older than min_trans are
4841 * skipped over (without reading them).
4843 * returns zero if something useful was found, < 0 on error and 1 if there
4844 * was nothing in the tree that matched the search criteria.
4846 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
4847 struct btrfs_key *max_key,
4848 struct btrfs_path *path, int cache_only,
4851 struct extent_buffer *cur;
4852 struct btrfs_key found_key;
4859 WARN_ON(!path->keep_locks);
4861 cur = btrfs_read_lock_root_node(root);
4862 level = btrfs_header_level(cur);
4863 WARN_ON(path->nodes[level]);
4864 path->nodes[level] = cur;
4865 path->locks[level] = BTRFS_READ_LOCK;
4867 if (btrfs_header_generation(cur) < min_trans) {
4872 nritems = btrfs_header_nritems(cur);
4873 level = btrfs_header_level(cur);
4874 sret = bin_search(cur, min_key, level, &slot);
4876 /* at the lowest level, we're done, setup the path and exit */
4877 if (level == path->lowest_level) {
4878 if (slot >= nritems)
4881 path->slots[level] = slot;
4882 btrfs_item_key_to_cpu(cur, &found_key, slot);
4885 if (sret && slot > 0)
4888 * check this node pointer against the cache_only and
4889 * min_trans parameters. If it isn't in cache or is too
4890 * old, skip to the next one.
4892 while (slot < nritems) {
4895 struct extent_buffer *tmp;
4896 struct btrfs_disk_key disk_key;
4898 blockptr = btrfs_node_blockptr(cur, slot);
4899 gen = btrfs_node_ptr_generation(cur, slot);
4900 if (gen < min_trans) {
4908 btrfs_node_key(cur, &disk_key, slot);
4909 if (comp_keys(&disk_key, max_key) >= 0) {
4915 tmp = btrfs_find_tree_block(root, blockptr,
4916 btrfs_level_size(root, level - 1));
4918 if (tmp && btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
4919 free_extent_buffer(tmp);
4923 free_extent_buffer(tmp);
4928 * we didn't find a candidate key in this node, walk forward
4929 * and find another one
4931 if (slot >= nritems) {
4932 path->slots[level] = slot;
4933 btrfs_set_path_blocking(path);
4934 sret = btrfs_find_next_key(root, path, min_key, level,
4935 cache_only, min_trans);
4937 btrfs_release_path(path);
4943 /* save our key for returning back */
4944 btrfs_node_key_to_cpu(cur, &found_key, slot);
4945 path->slots[level] = slot;
4946 if (level == path->lowest_level) {
4948 unlock_up(path, level, 1, 0, NULL);
4951 btrfs_set_path_blocking(path);
4952 cur = read_node_slot(root, cur, slot);
4953 BUG_ON(!cur); /* -ENOMEM */
4955 btrfs_tree_read_lock(cur);
4957 path->locks[level - 1] = BTRFS_READ_LOCK;
4958 path->nodes[level - 1] = cur;
4959 unlock_up(path, level, 1, 0, NULL);
4960 btrfs_clear_path_blocking(path, NULL, 0);
4964 memcpy(min_key, &found_key, sizeof(found_key));
4965 btrfs_set_path_blocking(path);
4969 static void tree_move_down(struct btrfs_root *root,
4970 struct btrfs_path *path,
4971 int *level, int root_level)
4973 BUG_ON(*level == 0);
4974 path->nodes[*level - 1] = read_node_slot(root, path->nodes[*level],
4975 path->slots[*level]);
4976 path->slots[*level - 1] = 0;
4980 static int tree_move_next_or_upnext(struct btrfs_root *root,
4981 struct btrfs_path *path,
4982 int *level, int root_level)
4986 nritems = btrfs_header_nritems(path->nodes[*level]);
4988 path->slots[*level]++;
4990 while (path->slots[*level] >= nritems) {
4991 if (*level == root_level)
4995 path->slots[*level] = 0;
4996 free_extent_buffer(path->nodes[*level]);
4997 path->nodes[*level] = NULL;
4999 path->slots[*level]++;
5001 nritems = btrfs_header_nritems(path->nodes[*level]);
5008 * Returns 1 if it had to move up and next. 0 is returned if it moved only next
5011 static int tree_advance(struct btrfs_root *root,
5012 struct btrfs_path *path,
5013 int *level, int root_level,
5015 struct btrfs_key *key)
5019 if (*level == 0 || !allow_down) {
5020 ret = tree_move_next_or_upnext(root, path, level, root_level);
5022 tree_move_down(root, path, level, root_level);
5027 btrfs_item_key_to_cpu(path->nodes[*level], key,
5028 path->slots[*level]);
5030 btrfs_node_key_to_cpu(path->nodes[*level], key,
5031 path->slots[*level]);
5036 static int tree_compare_item(struct btrfs_root *left_root,
5037 struct btrfs_path *left_path,
5038 struct btrfs_path *right_path,
5043 unsigned long off1, off2;
5045 len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]);
5046 len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]);
5050 off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]);
5051 off2 = btrfs_item_ptr_offset(right_path->nodes[0],
5052 right_path->slots[0]);
5054 read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1);
5056 cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1);
5063 #define ADVANCE_ONLY_NEXT -1
5066 * This function compares two trees and calls the provided callback for
5067 * every changed/new/deleted item it finds.
5068 * If shared tree blocks are encountered, whole subtrees are skipped, making
5069 * the compare pretty fast on snapshotted subvolumes.
5071 * This currently works on commit roots only. As commit roots are read only,
5072 * we don't do any locking. The commit roots are protected with transactions.
5073 * Transactions are ended and rejoined when a commit is tried in between.
5075 * This function checks for modifications done to the trees while comparing.
5076 * If it detects a change, it aborts immediately.
5078 int btrfs_compare_trees(struct btrfs_root *left_root,
5079 struct btrfs_root *right_root,
5080 btrfs_changed_cb_t changed_cb, void *ctx)
5084 struct btrfs_trans_handle *trans = NULL;
5085 struct btrfs_path *left_path = NULL;
5086 struct btrfs_path *right_path = NULL;
5087 struct btrfs_key left_key;
5088 struct btrfs_key right_key;
5089 char *tmp_buf = NULL;
5090 int left_root_level;
5091 int right_root_level;
5094 int left_end_reached;
5095 int right_end_reached;
5100 u64 left_start_ctransid;
5101 u64 right_start_ctransid;
5104 left_path = btrfs_alloc_path();
5109 right_path = btrfs_alloc_path();
5115 tmp_buf = kmalloc(left_root->leafsize, GFP_NOFS);
5121 left_path->search_commit_root = 1;
5122 left_path->skip_locking = 1;
5123 right_path->search_commit_root = 1;
5124 right_path->skip_locking = 1;
5126 spin_lock(&left_root->root_times_lock);
5127 left_start_ctransid = btrfs_root_ctransid(&left_root->root_item);
5128 spin_unlock(&left_root->root_times_lock);
5130 spin_lock(&right_root->root_times_lock);
5131 right_start_ctransid = btrfs_root_ctransid(&right_root->root_item);
5132 spin_unlock(&right_root->root_times_lock);
5134 trans = btrfs_join_transaction(left_root);
5135 if (IS_ERR(trans)) {
5136 ret = PTR_ERR(trans);
5142 * Strategy: Go to the first items of both trees. Then do
5144 * If both trees are at level 0
5145 * Compare keys of current items
5146 * If left < right treat left item as new, advance left tree
5148 * If left > right treat right item as deleted, advance right tree
5150 * If left == right do deep compare of items, treat as changed if
5151 * needed, advance both trees and repeat
5152 * If both trees are at the same level but not at level 0
5153 * Compare keys of current nodes/leafs
5154 * If left < right advance left tree and repeat
5155 * If left > right advance right tree and repeat
5156 * If left == right compare blockptrs of the next nodes/leafs
5157 * If they match advance both trees but stay at the same level
5159 * If they don't match advance both trees while allowing to go
5161 * If tree levels are different
5162 * Advance the tree that needs it and repeat
5164 * Advancing a tree means:
5165 * If we are at level 0, try to go to the next slot. If that's not
5166 * possible, go one level up and repeat. Stop when we found a level
5167 * where we could go to the next slot. We may at this point be on a
5170 * If we are not at level 0 and not on shared tree blocks, go one
5173 * If we are not at level 0 and on shared tree blocks, go one slot to
5174 * the right if possible or go up and right.
5177 left_level = btrfs_header_level(left_root->commit_root);
5178 left_root_level = left_level;
5179 left_path->nodes[left_level] = left_root->commit_root;
5180 extent_buffer_get(left_path->nodes[left_level]);
5182 right_level = btrfs_header_level(right_root->commit_root);
5183 right_root_level = right_level;
5184 right_path->nodes[right_level] = right_root->commit_root;
5185 extent_buffer_get(right_path->nodes[right_level]);
5187 if (left_level == 0)
5188 btrfs_item_key_to_cpu(left_path->nodes[left_level],
5189 &left_key, left_path->slots[left_level]);
5191 btrfs_node_key_to_cpu(left_path->nodes[left_level],
5192 &left_key, left_path->slots[left_level]);
5193 if (right_level == 0)
5194 btrfs_item_key_to_cpu(right_path->nodes[right_level],
5195 &right_key, right_path->slots[right_level]);
5197 btrfs_node_key_to_cpu(right_path->nodes[right_level],
5198 &right_key, right_path->slots[right_level]);
5200 left_end_reached = right_end_reached = 0;
5201 advance_left = advance_right = 0;
5205 * We need to make sure the transaction does not get committed
5206 * while we do anything on commit roots. This means, we need to
5207 * join and leave transactions for every item that we process.
5209 if (trans && btrfs_should_end_transaction(trans, left_root)) {
5210 btrfs_release_path(left_path);
5211 btrfs_release_path(right_path);
5213 ret = btrfs_end_transaction(trans, left_root);
5218 /* now rejoin the transaction */
5220 trans = btrfs_join_transaction(left_root);
5221 if (IS_ERR(trans)) {
5222 ret = PTR_ERR(trans);
5227 spin_lock(&left_root->root_times_lock);
5228 ctransid = btrfs_root_ctransid(&left_root->root_item);
5229 spin_unlock(&left_root->root_times_lock);
5230 if (ctransid != left_start_ctransid)
5231 left_start_ctransid = 0;
5233 spin_lock(&right_root->root_times_lock);
5234 ctransid = btrfs_root_ctransid(&right_root->root_item);
5235 spin_unlock(&right_root->root_times_lock);
5236 if (ctransid != right_start_ctransid)
5237 right_start_ctransid = 0;
5239 if (!left_start_ctransid || !right_start_ctransid) {
5240 WARN(1, KERN_WARNING
5241 "btrfs: btrfs_compare_tree detected "
5242 "a change in one of the trees while "
5243 "iterating. This is probably a "
5250 * the commit root may have changed, so start again
5253 left_path->lowest_level = left_level;
5254 right_path->lowest_level = right_level;
5255 ret = btrfs_search_slot(NULL, left_root,
5256 &left_key, left_path, 0, 0);
5259 ret = btrfs_search_slot(NULL, right_root,
5260 &right_key, right_path, 0, 0);
5265 if (advance_left && !left_end_reached) {
5266 ret = tree_advance(left_root, left_path, &left_level,
5268 advance_left != ADVANCE_ONLY_NEXT,
5271 left_end_reached = ADVANCE;
5274 if (advance_right && !right_end_reached) {
5275 ret = tree_advance(right_root, right_path, &right_level,
5277 advance_right != ADVANCE_ONLY_NEXT,
5280 right_end_reached = ADVANCE;
5284 if (left_end_reached && right_end_reached) {
5287 } else if (left_end_reached) {
5288 if (right_level == 0) {
5289 ret = changed_cb(left_root, right_root,
5290 left_path, right_path,
5292 BTRFS_COMPARE_TREE_DELETED,
5297 advance_right = ADVANCE;
5299 } else if (right_end_reached) {
5300 if (left_level == 0) {
5301 ret = changed_cb(left_root, right_root,
5302 left_path, right_path,
5304 BTRFS_COMPARE_TREE_NEW,
5309 advance_left = ADVANCE;
5313 if (left_level == 0 && right_level == 0) {
5314 cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5316 ret = changed_cb(left_root, right_root,
5317 left_path, right_path,
5319 BTRFS_COMPARE_TREE_NEW,
5323 advance_left = ADVANCE;
5324 } else if (cmp > 0) {
5325 ret = changed_cb(left_root, right_root,
5326 left_path, right_path,
5328 BTRFS_COMPARE_TREE_DELETED,
5332 advance_right = ADVANCE;
5334 WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
5335 ret = tree_compare_item(left_root, left_path,
5336 right_path, tmp_buf);
5338 WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
5339 ret = changed_cb(left_root, right_root,
5340 left_path, right_path,
5342 BTRFS_COMPARE_TREE_CHANGED,
5347 advance_left = ADVANCE;
5348 advance_right = ADVANCE;
5350 } else if (left_level == right_level) {
5351 cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5353 advance_left = ADVANCE;
5354 } else if (cmp > 0) {
5355 advance_right = ADVANCE;
5357 left_blockptr = btrfs_node_blockptr(
5358 left_path->nodes[left_level],
5359 left_path->slots[left_level]);
5360 right_blockptr = btrfs_node_blockptr(
5361 right_path->nodes[right_level],
5362 right_path->slots[right_level]);
5363 if (left_blockptr == right_blockptr) {
5365 * As we're on a shared block, don't
5366 * allow to go deeper.
5368 advance_left = ADVANCE_ONLY_NEXT;
5369 advance_right = ADVANCE_ONLY_NEXT;
5371 advance_left = ADVANCE;
5372 advance_right = ADVANCE;
5375 } else if (left_level < right_level) {
5376 advance_right = ADVANCE;
5378 advance_left = ADVANCE;
5383 btrfs_free_path(left_path);
5384 btrfs_free_path(right_path);
5389 ret = btrfs_end_transaction(trans, left_root);
5391 btrfs_end_transaction(trans, left_root);
5398 * this is similar to btrfs_next_leaf, but does not try to preserve
5399 * and fixup the path. It looks for and returns the next key in the
5400 * tree based on the current path and the cache_only and min_trans
5403 * 0 is returned if another key is found, < 0 if there are any errors
5404 * and 1 is returned if there are no higher keys in the tree
5406 * path->keep_locks should be set to 1 on the search made before
5407 * calling this function.
5409 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
5410 struct btrfs_key *key, int level,
5411 int cache_only, u64 min_trans)
5414 struct extent_buffer *c;
5416 WARN_ON(!path->keep_locks);
5417 while (level < BTRFS_MAX_LEVEL) {
5418 if (!path->nodes[level])
5421 slot = path->slots[level] + 1;
5422 c = path->nodes[level];
5424 if (slot >= btrfs_header_nritems(c)) {
5427 struct btrfs_key cur_key;
5428 if (level + 1 >= BTRFS_MAX_LEVEL ||
5429 !path->nodes[level + 1])
5432 if (path->locks[level + 1]) {
5437 slot = btrfs_header_nritems(c) - 1;
5439 btrfs_item_key_to_cpu(c, &cur_key, slot);
5441 btrfs_node_key_to_cpu(c, &cur_key, slot);
5443 orig_lowest = path->lowest_level;
5444 btrfs_release_path(path);
5445 path->lowest_level = level;
5446 ret = btrfs_search_slot(NULL, root, &cur_key, path,
5448 path->lowest_level = orig_lowest;
5452 c = path->nodes[level];
5453 slot = path->slots[level];
5460 btrfs_item_key_to_cpu(c, key, slot);
5462 u64 blockptr = btrfs_node_blockptr(c, slot);
5463 u64 gen = btrfs_node_ptr_generation(c, slot);
5466 struct extent_buffer *cur;
5467 cur = btrfs_find_tree_block(root, blockptr,
5468 btrfs_level_size(root, level - 1));
5470 btrfs_buffer_uptodate(cur, gen, 1) <= 0) {
5473 free_extent_buffer(cur);
5476 free_extent_buffer(cur);
5478 if (gen < min_trans) {
5482 btrfs_node_key_to_cpu(c, key, slot);
5490 * search the tree again to find a leaf with greater keys
5491 * returns 0 if it found something or 1 if there are no greater leaves.
5492 * returns < 0 on io errors.
5494 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
5496 return btrfs_next_old_leaf(root, path, 0);
5499 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
5504 struct extent_buffer *c;
5505 struct extent_buffer *next;
5506 struct btrfs_key key;
5509 int old_spinning = path->leave_spinning;
5510 int next_rw_lock = 0;
5512 nritems = btrfs_header_nritems(path->nodes[0]);
5516 btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
5521 btrfs_release_path(path);
5523 path->keep_locks = 1;
5524 path->leave_spinning = 1;
5527 ret = btrfs_search_old_slot(root, &key, path, time_seq);
5529 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5530 path->keep_locks = 0;
5535 nritems = btrfs_header_nritems(path->nodes[0]);
5537 * by releasing the path above we dropped all our locks. A balance
5538 * could have added more items next to the key that used to be
5539 * at the very end of the block. So, check again here and
5540 * advance the path if there are now more items available.
5542 if (nritems > 0 && path->slots[0] < nritems - 1) {
5549 while (level < BTRFS_MAX_LEVEL) {
5550 if (!path->nodes[level]) {
5555 slot = path->slots[level] + 1;
5556 c = path->nodes[level];
5557 if (slot >= btrfs_header_nritems(c)) {
5559 if (level == BTRFS_MAX_LEVEL) {
5567 btrfs_tree_unlock_rw(next, next_rw_lock);
5568 free_extent_buffer(next);
5572 next_rw_lock = path->locks[level];
5573 ret = read_block_for_search(NULL, root, path, &next, level,
5579 btrfs_release_path(path);
5583 if (!path->skip_locking) {
5584 ret = btrfs_try_tree_read_lock(next);
5585 if (!ret && time_seq) {
5587 * If we don't get the lock, we may be racing
5588 * with push_leaf_left, holding that lock while
5589 * itself waiting for the leaf we've currently
5590 * locked. To solve this situation, we give up
5591 * on our lock and cycle.
5593 free_extent_buffer(next);
5594 btrfs_release_path(path);
5599 btrfs_set_path_blocking(path);
5600 btrfs_tree_read_lock(next);
5601 btrfs_clear_path_blocking(path, next,
5604 next_rw_lock = BTRFS_READ_LOCK;
5608 path->slots[level] = slot;
5611 c = path->nodes[level];
5612 if (path->locks[level])
5613 btrfs_tree_unlock_rw(c, path->locks[level]);
5615 free_extent_buffer(c);
5616 path->nodes[level] = next;
5617 path->slots[level] = 0;
5618 if (!path->skip_locking)
5619 path->locks[level] = next_rw_lock;
5623 ret = read_block_for_search(NULL, root, path, &next, level,
5629 btrfs_release_path(path);
5633 if (!path->skip_locking) {
5634 ret = btrfs_try_tree_read_lock(next);
5636 btrfs_set_path_blocking(path);
5637 btrfs_tree_read_lock(next);
5638 btrfs_clear_path_blocking(path, next,
5641 next_rw_lock = BTRFS_READ_LOCK;
5646 unlock_up(path, 0, 1, 0, NULL);
5647 path->leave_spinning = old_spinning;
5649 btrfs_set_path_blocking(path);
5655 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
5656 * searching until it gets past min_objectid or finds an item of 'type'
5658 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5660 int btrfs_previous_item(struct btrfs_root *root,
5661 struct btrfs_path *path, u64 min_objectid,
5664 struct btrfs_key found_key;
5665 struct extent_buffer *leaf;
5670 if (path->slots[0] == 0) {
5671 btrfs_set_path_blocking(path);
5672 ret = btrfs_prev_leaf(root, path);
5678 leaf = path->nodes[0];
5679 nritems = btrfs_header_nritems(leaf);
5682 if (path->slots[0] == nritems)
5685 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5686 if (found_key.objectid < min_objectid)
5688 if (found_key.type == type)
5690 if (found_key.objectid == min_objectid &&
5691 found_key.type < type)