]> git.karo-electronics.de Git - karo-tx-linux.git/blob - fs/btrfs/ctree.c
openvswitch: Use generic struct pcpu_tstats.
[karo-tx-linux.git] / fs / btrfs / ctree.c
1 /*
2  * Copyright (C) 2007,2008 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include <linux/rbtree.h>
22 #include "ctree.h"
23 #include "disk-io.h"
24 #include "transaction.h"
25 #include "print-tree.h"
26 #include "locking.h"
27
28 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
29                       *root, struct btrfs_path *path, int level);
30 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
31                       *root, struct btrfs_key *ins_key,
32                       struct btrfs_path *path, int data_size, int extend);
33 static int push_node_left(struct btrfs_trans_handle *trans,
34                           struct btrfs_root *root, struct extent_buffer *dst,
35                           struct extent_buffer *src, int empty);
36 static int balance_node_right(struct btrfs_trans_handle *trans,
37                               struct btrfs_root *root,
38                               struct extent_buffer *dst_buf,
39                               struct extent_buffer *src_buf);
40 static void del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
41                     struct btrfs_path *path, int level, int slot);
42 static void tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
43                                  struct extent_buffer *eb);
44 struct extent_buffer *read_old_tree_block(struct btrfs_root *root, u64 bytenr,
45                                           u32 blocksize, u64 parent_transid,
46                                           u64 time_seq);
47 struct extent_buffer *btrfs_find_old_tree_block(struct btrfs_root *root,
48                                                 u64 bytenr, u32 blocksize,
49                                                 u64 time_seq);
50
51 struct btrfs_path *btrfs_alloc_path(void)
52 {
53         struct btrfs_path *path;
54         path = kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
55         return path;
56 }
57
58 /*
59  * set all locked nodes in the path to blocking locks.  This should
60  * be done before scheduling
61  */
62 noinline void btrfs_set_path_blocking(struct btrfs_path *p)
63 {
64         int i;
65         for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
66                 if (!p->nodes[i] || !p->locks[i])
67                         continue;
68                 btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]);
69                 if (p->locks[i] == BTRFS_READ_LOCK)
70                         p->locks[i] = BTRFS_READ_LOCK_BLOCKING;
71                 else if (p->locks[i] == BTRFS_WRITE_LOCK)
72                         p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING;
73         }
74 }
75
76 /*
77  * reset all the locked nodes in the patch to spinning locks.
78  *
79  * held is used to keep lockdep happy, when lockdep is enabled
80  * we set held to a blocking lock before we go around and
81  * retake all the spinlocks in the path.  You can safely use NULL
82  * for held
83  */
84 noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
85                                         struct extent_buffer *held, int held_rw)
86 {
87         int i;
88
89 #ifdef CONFIG_DEBUG_LOCK_ALLOC
90         /* lockdep really cares that we take all of these spinlocks
91          * in the right order.  If any of the locks in the path are not
92          * currently blocking, it is going to complain.  So, make really
93          * really sure by forcing the path to blocking before we clear
94          * the path blocking.
95          */
96         if (held) {
97                 btrfs_set_lock_blocking_rw(held, held_rw);
98                 if (held_rw == BTRFS_WRITE_LOCK)
99                         held_rw = BTRFS_WRITE_LOCK_BLOCKING;
100                 else if (held_rw == BTRFS_READ_LOCK)
101                         held_rw = BTRFS_READ_LOCK_BLOCKING;
102         }
103         btrfs_set_path_blocking(p);
104 #endif
105
106         for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
107                 if (p->nodes[i] && p->locks[i]) {
108                         btrfs_clear_lock_blocking_rw(p->nodes[i], p->locks[i]);
109                         if (p->locks[i] == BTRFS_WRITE_LOCK_BLOCKING)
110                                 p->locks[i] = BTRFS_WRITE_LOCK;
111                         else if (p->locks[i] == BTRFS_READ_LOCK_BLOCKING)
112                                 p->locks[i] = BTRFS_READ_LOCK;
113                 }
114         }
115
116 #ifdef CONFIG_DEBUG_LOCK_ALLOC
117         if (held)
118                 btrfs_clear_lock_blocking_rw(held, held_rw);
119 #endif
120 }
121
122 /* this also releases the path */
123 void btrfs_free_path(struct btrfs_path *p)
124 {
125         if (!p)
126                 return;
127         btrfs_release_path(p);
128         kmem_cache_free(btrfs_path_cachep, p);
129 }
130
131 /*
132  * path release drops references on the extent buffers in the path
133  * and it drops any locks held by this path
134  *
135  * It is safe to call this on paths that no locks or extent buffers held.
136  */
137 noinline void btrfs_release_path(struct btrfs_path *p)
138 {
139         int i;
140
141         for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
142                 p->slots[i] = 0;
143                 if (!p->nodes[i])
144                         continue;
145                 if (p->locks[i]) {
146                         btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
147                         p->locks[i] = 0;
148                 }
149                 free_extent_buffer(p->nodes[i]);
150                 p->nodes[i] = NULL;
151         }
152 }
153
154 /*
155  * safely gets a reference on the root node of a tree.  A lock
156  * is not taken, so a concurrent writer may put a different node
157  * at the root of the tree.  See btrfs_lock_root_node for the
158  * looping required.
159  *
160  * The extent buffer returned by this has a reference taken, so
161  * it won't disappear.  It may stop being the root of the tree
162  * at any time because there are no locks held.
163  */
164 struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
165 {
166         struct extent_buffer *eb;
167
168         while (1) {
169                 rcu_read_lock();
170                 eb = rcu_dereference(root->node);
171
172                 /*
173                  * RCU really hurts here, we could free up the root node because
174                  * it was cow'ed but we may not get the new root node yet so do
175                  * the inc_not_zero dance and if it doesn't work then
176                  * synchronize_rcu and try again.
177                  */
178                 if (atomic_inc_not_zero(&eb->refs)) {
179                         rcu_read_unlock();
180                         break;
181                 }
182                 rcu_read_unlock();
183                 synchronize_rcu();
184         }
185         return eb;
186 }
187
188 /* loop around taking references on and locking the root node of the
189  * tree until you end up with a lock on the root.  A locked buffer
190  * is returned, with a reference held.
191  */
192 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
193 {
194         struct extent_buffer *eb;
195
196         while (1) {
197                 eb = btrfs_root_node(root);
198                 btrfs_tree_lock(eb);
199                 if (eb == root->node)
200                         break;
201                 btrfs_tree_unlock(eb);
202                 free_extent_buffer(eb);
203         }
204         return eb;
205 }
206
207 /* loop around taking references on and locking the root node of the
208  * tree until you end up with a lock on the root.  A locked buffer
209  * is returned, with a reference held.
210  */
211 struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
212 {
213         struct extent_buffer *eb;
214
215         while (1) {
216                 eb = btrfs_root_node(root);
217                 btrfs_tree_read_lock(eb);
218                 if (eb == root->node)
219                         break;
220                 btrfs_tree_read_unlock(eb);
221                 free_extent_buffer(eb);
222         }
223         return eb;
224 }
225
226 /* cowonly root (everything not a reference counted cow subvolume), just get
227  * put onto a simple dirty list.  transaction.c walks this to make sure they
228  * get properly updated on disk.
229  */
230 static void add_root_to_dirty_list(struct btrfs_root *root)
231 {
232         spin_lock(&root->fs_info->trans_lock);
233         if (root->track_dirty && list_empty(&root->dirty_list)) {
234                 list_add(&root->dirty_list,
235                          &root->fs_info->dirty_cowonly_roots);
236         }
237         spin_unlock(&root->fs_info->trans_lock);
238 }
239
240 /*
241  * used by snapshot creation to make a copy of a root for a tree with
242  * a given objectid.  The buffer with the new root node is returned in
243  * cow_ret, and this func returns zero on success or a negative error code.
244  */
245 int btrfs_copy_root(struct btrfs_trans_handle *trans,
246                       struct btrfs_root *root,
247                       struct extent_buffer *buf,
248                       struct extent_buffer **cow_ret, u64 new_root_objectid)
249 {
250         struct extent_buffer *cow;
251         int ret = 0;
252         int level;
253         struct btrfs_disk_key disk_key;
254
255         WARN_ON(root->ref_cows && trans->transid !=
256                 root->fs_info->running_transaction->transid);
257         WARN_ON(root->ref_cows && trans->transid != root->last_trans);
258
259         level = btrfs_header_level(buf);
260         if (level == 0)
261                 btrfs_item_key(buf, &disk_key, 0);
262         else
263                 btrfs_node_key(buf, &disk_key, 0);
264
265         cow = btrfs_alloc_free_block(trans, root, buf->len, 0,
266                                      new_root_objectid, &disk_key, level,
267                                      buf->start, 0);
268         if (IS_ERR(cow))
269                 return PTR_ERR(cow);
270
271         copy_extent_buffer(cow, buf, 0, 0, cow->len);
272         btrfs_set_header_bytenr(cow, cow->start);
273         btrfs_set_header_generation(cow, trans->transid);
274         btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
275         btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
276                                      BTRFS_HEADER_FLAG_RELOC);
277         if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
278                 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
279         else
280                 btrfs_set_header_owner(cow, new_root_objectid);
281
282         write_extent_buffer(cow, root->fs_info->fsid,
283                             (unsigned long)btrfs_header_fsid(cow),
284                             BTRFS_FSID_SIZE);
285
286         WARN_ON(btrfs_header_generation(buf) > trans->transid);
287         if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
288                 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
289         else
290                 ret = btrfs_inc_ref(trans, root, cow, 0, 1);
291
292         if (ret)
293                 return ret;
294
295         btrfs_mark_buffer_dirty(cow);
296         *cow_ret = cow;
297         return 0;
298 }
299
300 enum mod_log_op {
301         MOD_LOG_KEY_REPLACE,
302         MOD_LOG_KEY_ADD,
303         MOD_LOG_KEY_REMOVE,
304         MOD_LOG_KEY_REMOVE_WHILE_FREEING,
305         MOD_LOG_KEY_REMOVE_WHILE_MOVING,
306         MOD_LOG_MOVE_KEYS,
307         MOD_LOG_ROOT_REPLACE,
308 };
309
310 struct tree_mod_move {
311         int dst_slot;
312         int nr_items;
313 };
314
315 struct tree_mod_root {
316         u64 logical;
317         u8 level;
318 };
319
320 struct tree_mod_elem {
321         struct rb_node node;
322         u64 index;              /* shifted logical */
323         u64 seq;
324         enum mod_log_op op;
325
326         /* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
327         int slot;
328
329         /* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
330         u64 generation;
331
332         /* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
333         struct btrfs_disk_key key;
334         u64 blockptr;
335
336         /* this is used for op == MOD_LOG_MOVE_KEYS */
337         struct tree_mod_move move;
338
339         /* this is used for op == MOD_LOG_ROOT_REPLACE */
340         struct tree_mod_root old_root;
341 };
342
343 static inline void tree_mod_log_read_lock(struct btrfs_fs_info *fs_info)
344 {
345         read_lock(&fs_info->tree_mod_log_lock);
346 }
347
348 static inline void tree_mod_log_read_unlock(struct btrfs_fs_info *fs_info)
349 {
350         read_unlock(&fs_info->tree_mod_log_lock);
351 }
352
353 static inline void tree_mod_log_write_lock(struct btrfs_fs_info *fs_info)
354 {
355         write_lock(&fs_info->tree_mod_log_lock);
356 }
357
358 static inline void tree_mod_log_write_unlock(struct btrfs_fs_info *fs_info)
359 {
360         write_unlock(&fs_info->tree_mod_log_lock);
361 }
362
363 /*
364  * This adds a new blocker to the tree mod log's blocker list if the @elem
365  * passed does not already have a sequence number set. So when a caller expects
366  * to record tree modifications, it should ensure to set elem->seq to zero
367  * before calling btrfs_get_tree_mod_seq.
368  * Returns a fresh, unused tree log modification sequence number, even if no new
369  * blocker was added.
370  */
371 u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
372                            struct seq_list *elem)
373 {
374         u64 seq;
375
376         tree_mod_log_write_lock(fs_info);
377         spin_lock(&fs_info->tree_mod_seq_lock);
378         if (!elem->seq) {
379                 elem->seq = btrfs_inc_tree_mod_seq(fs_info);
380                 list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
381         }
382         seq = btrfs_inc_tree_mod_seq(fs_info);
383         spin_unlock(&fs_info->tree_mod_seq_lock);
384         tree_mod_log_write_unlock(fs_info);
385
386         return seq;
387 }
388
389 void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
390                             struct seq_list *elem)
391 {
392         struct rb_root *tm_root;
393         struct rb_node *node;
394         struct rb_node *next;
395         struct seq_list *cur_elem;
396         struct tree_mod_elem *tm;
397         u64 min_seq = (u64)-1;
398         u64 seq_putting = elem->seq;
399
400         if (!seq_putting)
401                 return;
402
403         spin_lock(&fs_info->tree_mod_seq_lock);
404         list_del(&elem->list);
405         elem->seq = 0;
406
407         list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) {
408                 if (cur_elem->seq < min_seq) {
409                         if (seq_putting > cur_elem->seq) {
410                                 /*
411                                  * blocker with lower sequence number exists, we
412                                  * cannot remove anything from the log
413                                  */
414                                 spin_unlock(&fs_info->tree_mod_seq_lock);
415                                 return;
416                         }
417                         min_seq = cur_elem->seq;
418                 }
419         }
420         spin_unlock(&fs_info->tree_mod_seq_lock);
421
422         /*
423          * anything that's lower than the lowest existing (read: blocked)
424          * sequence number can be removed from the tree.
425          */
426         tree_mod_log_write_lock(fs_info);
427         tm_root = &fs_info->tree_mod_log;
428         for (node = rb_first(tm_root); node; node = next) {
429                 next = rb_next(node);
430                 tm = container_of(node, struct tree_mod_elem, node);
431                 if (tm->seq > min_seq)
432                         continue;
433                 rb_erase(node, tm_root);
434                 kfree(tm);
435         }
436         tree_mod_log_write_unlock(fs_info);
437 }
438
439 /*
440  * key order of the log:
441  *       index -> sequence
442  *
443  * the index is the shifted logical of the *new* root node for root replace
444  * operations, or the shifted logical of the affected block for all other
445  * operations.
446  */
447 static noinline int
448 __tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm)
449 {
450         struct rb_root *tm_root;
451         struct rb_node **new;
452         struct rb_node *parent = NULL;
453         struct tree_mod_elem *cur;
454
455         BUG_ON(!tm || !tm->seq);
456
457         tm_root = &fs_info->tree_mod_log;
458         new = &tm_root->rb_node;
459         while (*new) {
460                 cur = container_of(*new, struct tree_mod_elem, node);
461                 parent = *new;
462                 if (cur->index < tm->index)
463                         new = &((*new)->rb_left);
464                 else if (cur->index > tm->index)
465                         new = &((*new)->rb_right);
466                 else if (cur->seq < tm->seq)
467                         new = &((*new)->rb_left);
468                 else if (cur->seq > tm->seq)
469                         new = &((*new)->rb_right);
470                 else {
471                         kfree(tm);
472                         return -EEXIST;
473                 }
474         }
475
476         rb_link_node(&tm->node, parent, new);
477         rb_insert_color(&tm->node, tm_root);
478         return 0;
479 }
480
481 /*
482  * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it
483  * returns zero with the tree_mod_log_lock acquired. The caller must hold
484  * this until all tree mod log insertions are recorded in the rb tree and then
485  * call tree_mod_log_write_unlock() to release.
486  */
487 static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info,
488                                     struct extent_buffer *eb) {
489         smp_mb();
490         if (list_empty(&(fs_info)->tree_mod_seq_list))
491                 return 1;
492         if (eb && btrfs_header_level(eb) == 0)
493                 return 1;
494
495         tree_mod_log_write_lock(fs_info);
496         if (list_empty(&fs_info->tree_mod_seq_list)) {
497                 /*
498                  * someone emptied the list while we were waiting for the lock.
499                  * we must not add to the list when no blocker exists.
500                  */
501                 tree_mod_log_write_unlock(fs_info);
502                 return 1;
503         }
504
505         return 0;
506 }
507
508 /*
509  * This allocates memory and gets a tree modification sequence number.
510  *
511  * Returns <0 on error.
512  * Returns >0 (the added sequence number) on success.
513  */
514 static inline int tree_mod_alloc(struct btrfs_fs_info *fs_info, gfp_t flags,
515                                  struct tree_mod_elem **tm_ret)
516 {
517         struct tree_mod_elem *tm;
518
519         /*
520          * once we switch from spin locks to something different, we should
521          * honor the flags parameter here.
522          */
523         tm = *tm_ret = kzalloc(sizeof(*tm), GFP_ATOMIC);
524         if (!tm)
525                 return -ENOMEM;
526
527         tm->seq = btrfs_inc_tree_mod_seq(fs_info);
528         return tm->seq;
529 }
530
531 static inline int
532 __tree_mod_log_insert_key(struct btrfs_fs_info *fs_info,
533                           struct extent_buffer *eb, int slot,
534                           enum mod_log_op op, gfp_t flags)
535 {
536         int ret;
537         struct tree_mod_elem *tm;
538
539         ret = tree_mod_alloc(fs_info, flags, &tm);
540         if (ret < 0)
541                 return ret;
542
543         tm->index = eb->start >> PAGE_CACHE_SHIFT;
544         if (op != MOD_LOG_KEY_ADD) {
545                 btrfs_node_key(eb, &tm->key, slot);
546                 tm->blockptr = btrfs_node_blockptr(eb, slot);
547         }
548         tm->op = op;
549         tm->slot = slot;
550         tm->generation = btrfs_node_ptr_generation(eb, slot);
551
552         return __tree_mod_log_insert(fs_info, tm);
553 }
554
555 static noinline int
556 tree_mod_log_insert_key_mask(struct btrfs_fs_info *fs_info,
557                              struct extent_buffer *eb, int slot,
558                              enum mod_log_op op, gfp_t flags)
559 {
560         int ret;
561
562         if (tree_mod_dont_log(fs_info, eb))
563                 return 0;
564
565         ret = __tree_mod_log_insert_key(fs_info, eb, slot, op, flags);
566
567         tree_mod_log_write_unlock(fs_info);
568         return ret;
569 }
570
571 static noinline int
572 tree_mod_log_insert_key(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
573                         int slot, enum mod_log_op op)
574 {
575         return tree_mod_log_insert_key_mask(fs_info, eb, slot, op, GFP_NOFS);
576 }
577
578 static noinline int
579 tree_mod_log_insert_key_locked(struct btrfs_fs_info *fs_info,
580                              struct extent_buffer *eb, int slot,
581                              enum mod_log_op op)
582 {
583         return __tree_mod_log_insert_key(fs_info, eb, slot, op, GFP_NOFS);
584 }
585
586 static noinline int
587 tree_mod_log_insert_move(struct btrfs_fs_info *fs_info,
588                          struct extent_buffer *eb, int dst_slot, int src_slot,
589                          int nr_items, gfp_t flags)
590 {
591         struct tree_mod_elem *tm;
592         int ret;
593         int i;
594
595         if (tree_mod_dont_log(fs_info, eb))
596                 return 0;
597
598         /*
599          * When we override something during the move, we log these removals.
600          * This can only happen when we move towards the beginning of the
601          * buffer, i.e. dst_slot < src_slot.
602          */
603         for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
604                 ret = tree_mod_log_insert_key_locked(fs_info, eb, i + dst_slot,
605                                               MOD_LOG_KEY_REMOVE_WHILE_MOVING);
606                 BUG_ON(ret < 0);
607         }
608
609         ret = tree_mod_alloc(fs_info, flags, &tm);
610         if (ret < 0)
611                 goto out;
612
613         tm->index = eb->start >> PAGE_CACHE_SHIFT;
614         tm->slot = src_slot;
615         tm->move.dst_slot = dst_slot;
616         tm->move.nr_items = nr_items;
617         tm->op = MOD_LOG_MOVE_KEYS;
618
619         ret = __tree_mod_log_insert(fs_info, tm);
620 out:
621         tree_mod_log_write_unlock(fs_info);
622         return ret;
623 }
624
625 static inline void
626 __tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, struct extent_buffer *eb)
627 {
628         int i;
629         u32 nritems;
630         int ret;
631
632         if (btrfs_header_level(eb) == 0)
633                 return;
634
635         nritems = btrfs_header_nritems(eb);
636         for (i = nritems - 1; i >= 0; i--) {
637                 ret = tree_mod_log_insert_key_locked(fs_info, eb, i,
638                                               MOD_LOG_KEY_REMOVE_WHILE_FREEING);
639                 BUG_ON(ret < 0);
640         }
641 }
642
643 static noinline int
644 tree_mod_log_insert_root(struct btrfs_fs_info *fs_info,
645                          struct extent_buffer *old_root,
646                          struct extent_buffer *new_root, gfp_t flags)
647 {
648         struct tree_mod_elem *tm;
649         int ret;
650
651         if (tree_mod_dont_log(fs_info, NULL))
652                 return 0;
653
654         ret = tree_mod_alloc(fs_info, flags, &tm);
655         if (ret < 0)
656                 goto out;
657
658         tm->index = new_root->start >> PAGE_CACHE_SHIFT;
659         tm->old_root.logical = old_root->start;
660         tm->old_root.level = btrfs_header_level(old_root);
661         tm->generation = btrfs_header_generation(old_root);
662         tm->op = MOD_LOG_ROOT_REPLACE;
663
664         ret = __tree_mod_log_insert(fs_info, tm);
665 out:
666         tree_mod_log_write_unlock(fs_info);
667         return ret;
668 }
669
670 static struct tree_mod_elem *
671 __tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq,
672                       int smallest)
673 {
674         struct rb_root *tm_root;
675         struct rb_node *node;
676         struct tree_mod_elem *cur = NULL;
677         struct tree_mod_elem *found = NULL;
678         u64 index = start >> PAGE_CACHE_SHIFT;
679
680         tree_mod_log_read_lock(fs_info);
681         tm_root = &fs_info->tree_mod_log;
682         node = tm_root->rb_node;
683         while (node) {
684                 cur = container_of(node, struct tree_mod_elem, node);
685                 if (cur->index < index) {
686                         node = node->rb_left;
687                 } else if (cur->index > index) {
688                         node = node->rb_right;
689                 } else if (cur->seq < min_seq) {
690                         node = node->rb_left;
691                 } else if (!smallest) {
692                         /* we want the node with the highest seq */
693                         if (found)
694                                 BUG_ON(found->seq > cur->seq);
695                         found = cur;
696                         node = node->rb_left;
697                 } else if (cur->seq > min_seq) {
698                         /* we want the node with the smallest seq */
699                         if (found)
700                                 BUG_ON(found->seq < cur->seq);
701                         found = cur;
702                         node = node->rb_right;
703                 } else {
704                         found = cur;
705                         break;
706                 }
707         }
708         tree_mod_log_read_unlock(fs_info);
709
710         return found;
711 }
712
713 /*
714  * this returns the element from the log with the smallest time sequence
715  * value that's in the log (the oldest log item). any element with a time
716  * sequence lower than min_seq will be ignored.
717  */
718 static struct tree_mod_elem *
719 tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start,
720                            u64 min_seq)
721 {
722         return __tree_mod_log_search(fs_info, start, min_seq, 1);
723 }
724
725 /*
726  * this returns the element from the log with the largest time sequence
727  * value that's in the log (the most recent log item). any element with
728  * a time sequence lower than min_seq will be ignored.
729  */
730 static struct tree_mod_elem *
731 tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq)
732 {
733         return __tree_mod_log_search(fs_info, start, min_seq, 0);
734 }
735
736 static noinline void
737 tree_mod_log_eb_copy(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
738                      struct extent_buffer *src, unsigned long dst_offset,
739                      unsigned long src_offset, int nr_items)
740 {
741         int ret;
742         int i;
743
744         if (tree_mod_dont_log(fs_info, NULL))
745                 return;
746
747         if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0) {
748                 tree_mod_log_write_unlock(fs_info);
749                 return;
750         }
751
752         for (i = 0; i < nr_items; i++) {
753                 ret = tree_mod_log_insert_key_locked(fs_info, src,
754                                                      i + src_offset,
755                                                      MOD_LOG_KEY_REMOVE);
756                 BUG_ON(ret < 0);
757                 ret = tree_mod_log_insert_key_locked(fs_info, dst,
758                                                      i + dst_offset,
759                                                      MOD_LOG_KEY_ADD);
760                 BUG_ON(ret < 0);
761         }
762
763         tree_mod_log_write_unlock(fs_info);
764 }
765
766 static inline void
767 tree_mod_log_eb_move(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
768                      int dst_offset, int src_offset, int nr_items)
769 {
770         int ret;
771         ret = tree_mod_log_insert_move(fs_info, dst, dst_offset, src_offset,
772                                        nr_items, GFP_NOFS);
773         BUG_ON(ret < 0);
774 }
775
776 static noinline void
777 tree_mod_log_set_node_key(struct btrfs_fs_info *fs_info,
778                           struct extent_buffer *eb, int slot, int atomic)
779 {
780         int ret;
781
782         ret = tree_mod_log_insert_key_mask(fs_info, eb, slot,
783                                            MOD_LOG_KEY_REPLACE,
784                                            atomic ? GFP_ATOMIC : GFP_NOFS);
785         BUG_ON(ret < 0);
786 }
787
788 static noinline void
789 tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, struct extent_buffer *eb)
790 {
791         if (tree_mod_dont_log(fs_info, eb))
792                 return;
793
794         __tree_mod_log_free_eb(fs_info, eb);
795
796         tree_mod_log_write_unlock(fs_info);
797 }
798
799 static noinline void
800 tree_mod_log_set_root_pointer(struct btrfs_root *root,
801                               struct extent_buffer *new_root_node)
802 {
803         int ret;
804         ret = tree_mod_log_insert_root(root->fs_info, root->node,
805                                        new_root_node, GFP_NOFS);
806         BUG_ON(ret < 0);
807 }
808
809 /*
810  * check if the tree block can be shared by multiple trees
811  */
812 int btrfs_block_can_be_shared(struct btrfs_root *root,
813                               struct extent_buffer *buf)
814 {
815         /*
816          * Tree blocks not in refernece counted trees and tree roots
817          * are never shared. If a block was allocated after the last
818          * snapshot and the block was not allocated by tree relocation,
819          * we know the block is not shared.
820          */
821         if (root->ref_cows &&
822             buf != root->node && buf != root->commit_root &&
823             (btrfs_header_generation(buf) <=
824              btrfs_root_last_snapshot(&root->root_item) ||
825              btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
826                 return 1;
827 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
828         if (root->ref_cows &&
829             btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
830                 return 1;
831 #endif
832         return 0;
833 }
834
835 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
836                                        struct btrfs_root *root,
837                                        struct extent_buffer *buf,
838                                        struct extent_buffer *cow,
839                                        int *last_ref)
840 {
841         u64 refs;
842         u64 owner;
843         u64 flags;
844         u64 new_flags = 0;
845         int ret;
846
847         /*
848          * Backrefs update rules:
849          *
850          * Always use full backrefs for extent pointers in tree block
851          * allocated by tree relocation.
852          *
853          * If a shared tree block is no longer referenced by its owner
854          * tree (btrfs_header_owner(buf) == root->root_key.objectid),
855          * use full backrefs for extent pointers in tree block.
856          *
857          * If a tree block is been relocating
858          * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
859          * use full backrefs for extent pointers in tree block.
860          * The reason for this is some operations (such as drop tree)
861          * are only allowed for blocks use full backrefs.
862          */
863
864         if (btrfs_block_can_be_shared(root, buf)) {
865                 ret = btrfs_lookup_extent_info(trans, root, buf->start,
866                                                buf->len, &refs, &flags);
867                 if (ret)
868                         return ret;
869                 if (refs == 0) {
870                         ret = -EROFS;
871                         btrfs_std_error(root->fs_info, ret);
872                         return ret;
873                 }
874         } else {
875                 refs = 1;
876                 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
877                     btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
878                         flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
879                 else
880                         flags = 0;
881         }
882
883         owner = btrfs_header_owner(buf);
884         BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
885                !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
886
887         if (refs > 1) {
888                 if ((owner == root->root_key.objectid ||
889                      root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
890                     !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
891                         ret = btrfs_inc_ref(trans, root, buf, 1, 1);
892                         BUG_ON(ret); /* -ENOMEM */
893
894                         if (root->root_key.objectid ==
895                             BTRFS_TREE_RELOC_OBJECTID) {
896                                 ret = btrfs_dec_ref(trans, root, buf, 0, 1);
897                                 BUG_ON(ret); /* -ENOMEM */
898                                 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
899                                 BUG_ON(ret); /* -ENOMEM */
900                         }
901                         new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
902                 } else {
903
904                         if (root->root_key.objectid ==
905                             BTRFS_TREE_RELOC_OBJECTID)
906                                 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
907                         else
908                                 ret = btrfs_inc_ref(trans, root, cow, 0, 1);
909                         BUG_ON(ret); /* -ENOMEM */
910                 }
911                 if (new_flags != 0) {
912                         ret = btrfs_set_disk_extent_flags(trans, root,
913                                                           buf->start,
914                                                           buf->len,
915                                                           new_flags, 0);
916                         if (ret)
917                                 return ret;
918                 }
919         } else {
920                 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
921                         if (root->root_key.objectid ==
922                             BTRFS_TREE_RELOC_OBJECTID)
923                                 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
924                         else
925                                 ret = btrfs_inc_ref(trans, root, cow, 0, 1);
926                         BUG_ON(ret); /* -ENOMEM */
927                         ret = btrfs_dec_ref(trans, root, buf, 1, 1);
928                         BUG_ON(ret); /* -ENOMEM */
929                 }
930                 tree_mod_log_free_eb(root->fs_info, buf);
931                 clean_tree_block(trans, root, buf);
932                 *last_ref = 1;
933         }
934         return 0;
935 }
936
937 /*
938  * does the dirty work in cow of a single block.  The parent block (if
939  * supplied) is updated to point to the new cow copy.  The new buffer is marked
940  * dirty and returned locked.  If you modify the block it needs to be marked
941  * dirty again.
942  *
943  * search_start -- an allocation hint for the new block
944  *
945  * empty_size -- a hint that you plan on doing more cow.  This is the size in
946  * bytes the allocator should try to find free next to the block it returns.
947  * This is just a hint and may be ignored by the allocator.
948  */
949 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
950                              struct btrfs_root *root,
951                              struct extent_buffer *buf,
952                              struct extent_buffer *parent, int parent_slot,
953                              struct extent_buffer **cow_ret,
954                              u64 search_start, u64 empty_size)
955 {
956         struct btrfs_disk_key disk_key;
957         struct extent_buffer *cow;
958         int level, ret;
959         int last_ref = 0;
960         int unlock_orig = 0;
961         u64 parent_start;
962
963         if (*cow_ret == buf)
964                 unlock_orig = 1;
965
966         btrfs_assert_tree_locked(buf);
967
968         WARN_ON(root->ref_cows && trans->transid !=
969                 root->fs_info->running_transaction->transid);
970         WARN_ON(root->ref_cows && trans->transid != root->last_trans);
971
972         level = btrfs_header_level(buf);
973
974         if (level == 0)
975                 btrfs_item_key(buf, &disk_key, 0);
976         else
977                 btrfs_node_key(buf, &disk_key, 0);
978
979         if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
980                 if (parent)
981                         parent_start = parent->start;
982                 else
983                         parent_start = 0;
984         } else
985                 parent_start = 0;
986
987         cow = btrfs_alloc_free_block(trans, root, buf->len, parent_start,
988                                      root->root_key.objectid, &disk_key,
989                                      level, search_start, empty_size);
990         if (IS_ERR(cow))
991                 return PTR_ERR(cow);
992
993         /* cow is set to blocking by btrfs_init_new_buffer */
994
995         copy_extent_buffer(cow, buf, 0, 0, cow->len);
996         btrfs_set_header_bytenr(cow, cow->start);
997         btrfs_set_header_generation(cow, trans->transid);
998         btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
999         btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
1000                                      BTRFS_HEADER_FLAG_RELOC);
1001         if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1002                 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
1003         else
1004                 btrfs_set_header_owner(cow, root->root_key.objectid);
1005
1006         write_extent_buffer(cow, root->fs_info->fsid,
1007                             (unsigned long)btrfs_header_fsid(cow),
1008                             BTRFS_FSID_SIZE);
1009
1010         ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
1011         if (ret) {
1012                 btrfs_abort_transaction(trans, root, ret);
1013                 return ret;
1014         }
1015
1016         if (root->ref_cows)
1017                 btrfs_reloc_cow_block(trans, root, buf, cow);
1018
1019         if (buf == root->node) {
1020                 WARN_ON(parent && parent != buf);
1021                 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1022                     btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1023                         parent_start = buf->start;
1024                 else
1025                         parent_start = 0;
1026
1027                 extent_buffer_get(cow);
1028                 tree_mod_log_set_root_pointer(root, cow);
1029                 rcu_assign_pointer(root->node, cow);
1030
1031                 btrfs_free_tree_block(trans, root, buf, parent_start,
1032                                       last_ref);
1033                 free_extent_buffer(buf);
1034                 add_root_to_dirty_list(root);
1035         } else {
1036                 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1037                         parent_start = parent->start;
1038                 else
1039                         parent_start = 0;
1040
1041                 WARN_ON(trans->transid != btrfs_header_generation(parent));
1042                 tree_mod_log_insert_key(root->fs_info, parent, parent_slot,
1043                                         MOD_LOG_KEY_REPLACE);
1044                 btrfs_set_node_blockptr(parent, parent_slot,
1045                                         cow->start);
1046                 btrfs_set_node_ptr_generation(parent, parent_slot,
1047                                               trans->transid);
1048                 btrfs_mark_buffer_dirty(parent);
1049                 btrfs_free_tree_block(trans, root, buf, parent_start,
1050                                       last_ref);
1051         }
1052         if (unlock_orig)
1053                 btrfs_tree_unlock(buf);
1054         free_extent_buffer_stale(buf);
1055         btrfs_mark_buffer_dirty(cow);
1056         *cow_ret = cow;
1057         return 0;
1058 }
1059
1060 /*
1061  * returns the logical address of the oldest predecessor of the given root.
1062  * entries older than time_seq are ignored.
1063  */
1064 static struct tree_mod_elem *
1065 __tree_mod_log_oldest_root(struct btrfs_fs_info *fs_info,
1066                            struct btrfs_root *root, u64 time_seq)
1067 {
1068         struct tree_mod_elem *tm;
1069         struct tree_mod_elem *found = NULL;
1070         u64 root_logical = root->node->start;
1071         int looped = 0;
1072
1073         if (!time_seq)
1074                 return 0;
1075
1076         /*
1077          * the very last operation that's logged for a root is the replacement
1078          * operation (if it is replaced at all). this has the index of the *new*
1079          * root, making it the very first operation that's logged for this root.
1080          */
1081         while (1) {
1082                 tm = tree_mod_log_search_oldest(fs_info, root_logical,
1083                                                 time_seq);
1084                 if (!looped && !tm)
1085                         return 0;
1086                 /*
1087                  * if there are no tree operation for the oldest root, we simply
1088                  * return it. this should only happen if that (old) root is at
1089                  * level 0.
1090                  */
1091                 if (!tm)
1092                         break;
1093
1094                 /*
1095                  * if there's an operation that's not a root replacement, we
1096                  * found the oldest version of our root. normally, we'll find a
1097                  * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
1098                  */
1099                 if (tm->op != MOD_LOG_ROOT_REPLACE)
1100                         break;
1101
1102                 found = tm;
1103                 root_logical = tm->old_root.logical;
1104                 BUG_ON(root_logical == root->node->start);
1105                 looped = 1;
1106         }
1107
1108         /* if there's no old root to return, return what we found instead */
1109         if (!found)
1110                 found = tm;
1111
1112         return found;
1113 }
1114
1115 /*
1116  * tm is a pointer to the first operation to rewind within eb. then, all
1117  * previous operations will be rewinded (until we reach something older than
1118  * time_seq).
1119  */
1120 static void
1121 __tree_mod_log_rewind(struct extent_buffer *eb, u64 time_seq,
1122                       struct tree_mod_elem *first_tm)
1123 {
1124         u32 n;
1125         struct rb_node *next;
1126         struct tree_mod_elem *tm = first_tm;
1127         unsigned long o_dst;
1128         unsigned long o_src;
1129         unsigned long p_size = sizeof(struct btrfs_key_ptr);
1130
1131         n = btrfs_header_nritems(eb);
1132         while (tm && tm->seq >= time_seq) {
1133                 /*
1134                  * all the operations are recorded with the operator used for
1135                  * the modification. as we're going backwards, we do the
1136                  * opposite of each operation here.
1137                  */
1138                 switch (tm->op) {
1139                 case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
1140                         BUG_ON(tm->slot < n);
1141                         /* Fallthrough */
1142                 case MOD_LOG_KEY_REMOVE_WHILE_MOVING:
1143                 case MOD_LOG_KEY_REMOVE:
1144                         btrfs_set_node_key(eb, &tm->key, tm->slot);
1145                         btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1146                         btrfs_set_node_ptr_generation(eb, tm->slot,
1147                                                       tm->generation);
1148                         n++;
1149                         break;
1150                 case MOD_LOG_KEY_REPLACE:
1151                         BUG_ON(tm->slot >= n);
1152                         btrfs_set_node_key(eb, &tm->key, tm->slot);
1153                         btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1154                         btrfs_set_node_ptr_generation(eb, tm->slot,
1155                                                       tm->generation);
1156                         break;
1157                 case MOD_LOG_KEY_ADD:
1158                         /* if a move operation is needed it's in the log */
1159                         n--;
1160                         break;
1161                 case MOD_LOG_MOVE_KEYS:
1162                         o_dst = btrfs_node_key_ptr_offset(tm->slot);
1163                         o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot);
1164                         memmove_extent_buffer(eb, o_dst, o_src,
1165                                               tm->move.nr_items * p_size);
1166                         break;
1167                 case MOD_LOG_ROOT_REPLACE:
1168                         /*
1169                          * this operation is special. for roots, this must be
1170                          * handled explicitly before rewinding.
1171                          * for non-roots, this operation may exist if the node
1172                          * was a root: root A -> child B; then A gets empty and
1173                          * B is promoted to the new root. in the mod log, we'll
1174                          * have a root-replace operation for B, a tree block
1175                          * that is no root. we simply ignore that operation.
1176                          */
1177                         break;
1178                 }
1179                 next = rb_next(&tm->node);
1180                 if (!next)
1181                         break;
1182                 tm = container_of(next, struct tree_mod_elem, node);
1183                 if (tm->index != first_tm->index)
1184                         break;
1185         }
1186         btrfs_set_header_nritems(eb, n);
1187 }
1188
1189 static struct extent_buffer *
1190 tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
1191                     u64 time_seq)
1192 {
1193         struct extent_buffer *eb_rewin;
1194         struct tree_mod_elem *tm;
1195
1196         if (!time_seq)
1197                 return eb;
1198
1199         if (btrfs_header_level(eb) == 0)
1200                 return eb;
1201
1202         tm = tree_mod_log_search(fs_info, eb->start, time_seq);
1203         if (!tm)
1204                 return eb;
1205
1206         if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1207                 BUG_ON(tm->slot != 0);
1208                 eb_rewin = alloc_dummy_extent_buffer(eb->start,
1209                                                 fs_info->tree_root->nodesize);
1210                 BUG_ON(!eb_rewin);
1211                 btrfs_set_header_bytenr(eb_rewin, eb->start);
1212                 btrfs_set_header_backref_rev(eb_rewin,
1213                                              btrfs_header_backref_rev(eb));
1214                 btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
1215                 btrfs_set_header_level(eb_rewin, btrfs_header_level(eb));
1216         } else {
1217                 eb_rewin = btrfs_clone_extent_buffer(eb);
1218                 BUG_ON(!eb_rewin);
1219         }
1220
1221         extent_buffer_get(eb_rewin);
1222         free_extent_buffer(eb);
1223
1224         __tree_mod_log_rewind(eb_rewin, time_seq, tm);
1225         WARN_ON(btrfs_header_nritems(eb_rewin) >
1226                 BTRFS_NODEPTRS_PER_BLOCK(fs_info->tree_root));
1227
1228         return eb_rewin;
1229 }
1230
1231 /*
1232  * get_old_root() rewinds the state of @root's root node to the given @time_seq
1233  * value. If there are no changes, the current root->root_node is returned. If
1234  * anything changed in between, there's a fresh buffer allocated on which the
1235  * rewind operations are done. In any case, the returned buffer is read locked.
1236  * Returns NULL on error (with no locks held).
1237  */
1238 static inline struct extent_buffer *
1239 get_old_root(struct btrfs_root *root, u64 time_seq)
1240 {
1241         struct tree_mod_elem *tm;
1242         struct extent_buffer *eb;
1243         struct extent_buffer *old;
1244         struct tree_mod_root *old_root = NULL;
1245         u64 old_generation = 0;
1246         u64 logical;
1247         u32 blocksize;
1248
1249         eb = btrfs_read_lock_root_node(root);
1250         tm = __tree_mod_log_oldest_root(root->fs_info, root, time_seq);
1251         if (!tm)
1252                 return root->node;
1253
1254         if (tm->op == MOD_LOG_ROOT_REPLACE) {
1255                 old_root = &tm->old_root;
1256                 old_generation = tm->generation;
1257                 logical = old_root->logical;
1258         } else {
1259                 logical = root->node->start;
1260         }
1261
1262         tm = tree_mod_log_search(root->fs_info, logical, time_seq);
1263         if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1264                 btrfs_tree_read_unlock(root->node);
1265                 free_extent_buffer(root->node);
1266                 blocksize = btrfs_level_size(root, old_root->level);
1267                 old = read_tree_block(root, logical, blocksize, 0);
1268                 if (!old) {
1269                         pr_warn("btrfs: failed to read tree block %llu from get_old_root\n",
1270                                 logical);
1271                         WARN_ON(1);
1272                 } else {
1273                         eb = btrfs_clone_extent_buffer(old);
1274                         free_extent_buffer(old);
1275                 }
1276         } else if (old_root) {
1277                 btrfs_tree_read_unlock(root->node);
1278                 free_extent_buffer(root->node);
1279                 eb = alloc_dummy_extent_buffer(logical, root->nodesize);
1280         } else {
1281                 eb = btrfs_clone_extent_buffer(root->node);
1282                 btrfs_tree_read_unlock(root->node);
1283                 free_extent_buffer(root->node);
1284         }
1285
1286         if (!eb)
1287                 return NULL;
1288         extent_buffer_get(eb);
1289         btrfs_tree_read_lock(eb);
1290         if (old_root) {
1291                 btrfs_set_header_bytenr(eb, eb->start);
1292                 btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
1293                 btrfs_set_header_owner(eb, root->root_key.objectid);
1294                 btrfs_set_header_level(eb, old_root->level);
1295                 btrfs_set_header_generation(eb, old_generation);
1296         }
1297         if (tm)
1298                 __tree_mod_log_rewind(eb, time_seq, tm);
1299         else
1300                 WARN_ON(btrfs_header_level(eb) != 0);
1301         WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(root));
1302
1303         return eb;
1304 }
1305
1306 int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq)
1307 {
1308         struct tree_mod_elem *tm;
1309         int level;
1310
1311         tm = __tree_mod_log_oldest_root(root->fs_info, root, time_seq);
1312         if (tm && tm->op == MOD_LOG_ROOT_REPLACE) {
1313                 level = tm->old_root.level;
1314         } else {
1315                 rcu_read_lock();
1316                 level = btrfs_header_level(root->node);
1317                 rcu_read_unlock();
1318         }
1319
1320         return level;
1321 }
1322
1323 static inline int should_cow_block(struct btrfs_trans_handle *trans,
1324                                    struct btrfs_root *root,
1325                                    struct extent_buffer *buf)
1326 {
1327         /* ensure we can see the force_cow */
1328         smp_rmb();
1329
1330         /*
1331          * We do not need to cow a block if
1332          * 1) this block is not created or changed in this transaction;
1333          * 2) this block does not belong to TREE_RELOC tree;
1334          * 3) the root is not forced COW.
1335          *
1336          * What is forced COW:
1337          *    when we create snapshot during commiting the transaction,
1338          *    after we've finished coping src root, we must COW the shared
1339          *    block to ensure the metadata consistency.
1340          */
1341         if (btrfs_header_generation(buf) == trans->transid &&
1342             !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
1343             !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1344               btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
1345             !root->force_cow)
1346                 return 0;
1347         return 1;
1348 }
1349
1350 /*
1351  * cows a single block, see __btrfs_cow_block for the real work.
1352  * This version of it has extra checks so that a block isn't cow'd more than
1353  * once per transaction, as long as it hasn't been written yet
1354  */
1355 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
1356                     struct btrfs_root *root, struct extent_buffer *buf,
1357                     struct extent_buffer *parent, int parent_slot,
1358                     struct extent_buffer **cow_ret)
1359 {
1360         u64 search_start;
1361         int ret;
1362
1363         if (trans->transaction != root->fs_info->running_transaction)
1364                 WARN(1, KERN_CRIT "trans %llu running %llu\n",
1365                        (unsigned long long)trans->transid,
1366                        (unsigned long long)
1367                        root->fs_info->running_transaction->transid);
1368
1369         if (trans->transid != root->fs_info->generation)
1370                 WARN(1, KERN_CRIT "trans %llu running %llu\n",
1371                        (unsigned long long)trans->transid,
1372                        (unsigned long long)root->fs_info->generation);
1373
1374         if (!should_cow_block(trans, root, buf)) {
1375                 *cow_ret = buf;
1376                 return 0;
1377         }
1378
1379         search_start = buf->start & ~((u64)(1024 * 1024 * 1024) - 1);
1380
1381         if (parent)
1382                 btrfs_set_lock_blocking(parent);
1383         btrfs_set_lock_blocking(buf);
1384
1385         ret = __btrfs_cow_block(trans, root, buf, parent,
1386                                  parent_slot, cow_ret, search_start, 0);
1387
1388         trace_btrfs_cow_block(root, buf, *cow_ret);
1389
1390         return ret;
1391 }
1392
1393 /*
1394  * helper function for defrag to decide if two blocks pointed to by a
1395  * node are actually close by
1396  */
1397 static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
1398 {
1399         if (blocknr < other && other - (blocknr + blocksize) < 32768)
1400                 return 1;
1401         if (blocknr > other && blocknr - (other + blocksize) < 32768)
1402                 return 1;
1403         return 0;
1404 }
1405
1406 /*
1407  * compare two keys in a memcmp fashion
1408  */
1409 static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
1410 {
1411         struct btrfs_key k1;
1412
1413         btrfs_disk_key_to_cpu(&k1, disk);
1414
1415         return btrfs_comp_cpu_keys(&k1, k2);
1416 }
1417
1418 /*
1419  * same as comp_keys only with two btrfs_key's
1420  */
1421 int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2)
1422 {
1423         if (k1->objectid > k2->objectid)
1424                 return 1;
1425         if (k1->objectid < k2->objectid)
1426                 return -1;
1427         if (k1->type > k2->type)
1428                 return 1;
1429         if (k1->type < k2->type)
1430                 return -1;
1431         if (k1->offset > k2->offset)
1432                 return 1;
1433         if (k1->offset < k2->offset)
1434                 return -1;
1435         return 0;
1436 }
1437
1438 /*
1439  * this is used by the defrag code to go through all the
1440  * leaves pointed to by a node and reallocate them so that
1441  * disk order is close to key order
1442  */
1443 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
1444                        struct btrfs_root *root, struct extent_buffer *parent,
1445                        int start_slot, u64 *last_ret,
1446                        struct btrfs_key *progress)
1447 {
1448         struct extent_buffer *cur;
1449         u64 blocknr;
1450         u64 gen;
1451         u64 search_start = *last_ret;
1452         u64 last_block = 0;
1453         u64 other;
1454         u32 parent_nritems;
1455         int end_slot;
1456         int i;
1457         int err = 0;
1458         int parent_level;
1459         int uptodate;
1460         u32 blocksize;
1461         int progress_passed = 0;
1462         struct btrfs_disk_key disk_key;
1463
1464         parent_level = btrfs_header_level(parent);
1465
1466         WARN_ON(trans->transaction != root->fs_info->running_transaction);
1467         WARN_ON(trans->transid != root->fs_info->generation);
1468
1469         parent_nritems = btrfs_header_nritems(parent);
1470         blocksize = btrfs_level_size(root, parent_level - 1);
1471         end_slot = parent_nritems;
1472
1473         if (parent_nritems == 1)
1474                 return 0;
1475
1476         btrfs_set_lock_blocking(parent);
1477
1478         for (i = start_slot; i < end_slot; i++) {
1479                 int close = 1;
1480
1481                 btrfs_node_key(parent, &disk_key, i);
1482                 if (!progress_passed && comp_keys(&disk_key, progress) < 0)
1483                         continue;
1484
1485                 progress_passed = 1;
1486                 blocknr = btrfs_node_blockptr(parent, i);
1487                 gen = btrfs_node_ptr_generation(parent, i);
1488                 if (last_block == 0)
1489                         last_block = blocknr;
1490
1491                 if (i > 0) {
1492                         other = btrfs_node_blockptr(parent, i - 1);
1493                         close = close_blocks(blocknr, other, blocksize);
1494                 }
1495                 if (!close && i < end_slot - 2) {
1496                         other = btrfs_node_blockptr(parent, i + 1);
1497                         close = close_blocks(blocknr, other, blocksize);
1498                 }
1499                 if (close) {
1500                         last_block = blocknr;
1501                         continue;
1502                 }
1503
1504                 cur = btrfs_find_tree_block(root, blocknr, blocksize);
1505                 if (cur)
1506                         uptodate = btrfs_buffer_uptodate(cur, gen, 0);
1507                 else
1508                         uptodate = 0;
1509                 if (!cur || !uptodate) {
1510                         if (!cur) {
1511                                 cur = read_tree_block(root, blocknr,
1512                                                          blocksize, gen);
1513                                 if (!cur)
1514                                         return -EIO;
1515                         } else if (!uptodate) {
1516                                 err = btrfs_read_buffer(cur, gen);
1517                                 if (err) {
1518                                         free_extent_buffer(cur);
1519                                         return err;
1520                                 }
1521                         }
1522                 }
1523                 if (search_start == 0)
1524                         search_start = last_block;
1525
1526                 btrfs_tree_lock(cur);
1527                 btrfs_set_lock_blocking(cur);
1528                 err = __btrfs_cow_block(trans, root, cur, parent, i,
1529                                         &cur, search_start,
1530                                         min(16 * blocksize,
1531                                             (end_slot - i) * blocksize));
1532                 if (err) {
1533                         btrfs_tree_unlock(cur);
1534                         free_extent_buffer(cur);
1535                         break;
1536                 }
1537                 search_start = cur->start;
1538                 last_block = cur->start;
1539                 *last_ret = search_start;
1540                 btrfs_tree_unlock(cur);
1541                 free_extent_buffer(cur);
1542         }
1543         return err;
1544 }
1545
1546 /*
1547  * The leaf data grows from end-to-front in the node.
1548  * this returns the address of the start of the last item,
1549  * which is the stop of the leaf data stack
1550  */
1551 static inline unsigned int leaf_data_end(struct btrfs_root *root,
1552                                          struct extent_buffer *leaf)
1553 {
1554         u32 nr = btrfs_header_nritems(leaf);
1555         if (nr == 0)
1556                 return BTRFS_LEAF_DATA_SIZE(root);
1557         return btrfs_item_offset_nr(leaf, nr - 1);
1558 }
1559
1560
1561 /*
1562  * search for key in the extent_buffer.  The items start at offset p,
1563  * and they are item_size apart.  There are 'max' items in p.
1564  *
1565  * the slot in the array is returned via slot, and it points to
1566  * the place where you would insert key if it is not found in
1567  * the array.
1568  *
1569  * slot may point to max if the key is bigger than all of the keys
1570  */
1571 static noinline int generic_bin_search(struct extent_buffer *eb,
1572                                        unsigned long p,
1573                                        int item_size, struct btrfs_key *key,
1574                                        int max, int *slot)
1575 {
1576         int low = 0;
1577         int high = max;
1578         int mid;
1579         int ret;
1580         struct btrfs_disk_key *tmp = NULL;
1581         struct btrfs_disk_key unaligned;
1582         unsigned long offset;
1583         char *kaddr = NULL;
1584         unsigned long map_start = 0;
1585         unsigned long map_len = 0;
1586         int err;
1587
1588         while (low < high) {
1589                 mid = (low + high) / 2;
1590                 offset = p + mid * item_size;
1591
1592                 if (!kaddr || offset < map_start ||
1593                     (offset + sizeof(struct btrfs_disk_key)) >
1594                     map_start + map_len) {
1595
1596                         err = map_private_extent_buffer(eb, offset,
1597                                                 sizeof(struct btrfs_disk_key),
1598                                                 &kaddr, &map_start, &map_len);
1599
1600                         if (!err) {
1601                                 tmp = (struct btrfs_disk_key *)(kaddr + offset -
1602                                                         map_start);
1603                         } else {
1604                                 read_extent_buffer(eb, &unaligned,
1605                                                    offset, sizeof(unaligned));
1606                                 tmp = &unaligned;
1607                         }
1608
1609                 } else {
1610                         tmp = (struct btrfs_disk_key *)(kaddr + offset -
1611                                                         map_start);
1612                 }
1613                 ret = comp_keys(tmp, key);
1614
1615                 if (ret < 0)
1616                         low = mid + 1;
1617                 else if (ret > 0)
1618                         high = mid;
1619                 else {
1620                         *slot = mid;
1621                         return 0;
1622                 }
1623         }
1624         *slot = low;
1625         return 1;
1626 }
1627
1628 /*
1629  * simple bin_search frontend that does the right thing for
1630  * leaves vs nodes
1631  */
1632 static int bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1633                       int level, int *slot)
1634 {
1635         if (level == 0)
1636                 return generic_bin_search(eb,
1637                                           offsetof(struct btrfs_leaf, items),
1638                                           sizeof(struct btrfs_item),
1639                                           key, btrfs_header_nritems(eb),
1640                                           slot);
1641         else
1642                 return generic_bin_search(eb,
1643                                           offsetof(struct btrfs_node, ptrs),
1644                                           sizeof(struct btrfs_key_ptr),
1645                                           key, btrfs_header_nritems(eb),
1646                                           slot);
1647 }
1648
1649 int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1650                      int level, int *slot)
1651 {
1652         return bin_search(eb, key, level, slot);
1653 }
1654
1655 static void root_add_used(struct btrfs_root *root, u32 size)
1656 {
1657         spin_lock(&root->accounting_lock);
1658         btrfs_set_root_used(&root->root_item,
1659                             btrfs_root_used(&root->root_item) + size);
1660         spin_unlock(&root->accounting_lock);
1661 }
1662
1663 static void root_sub_used(struct btrfs_root *root, u32 size)
1664 {
1665         spin_lock(&root->accounting_lock);
1666         btrfs_set_root_used(&root->root_item,
1667                             btrfs_root_used(&root->root_item) - size);
1668         spin_unlock(&root->accounting_lock);
1669 }
1670
1671 /* given a node and slot number, this reads the blocks it points to.  The
1672  * extent buffer is returned with a reference taken (but unlocked).
1673  * NULL is returned on error.
1674  */
1675 static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root,
1676                                    struct extent_buffer *parent, int slot)
1677 {
1678         int level = btrfs_header_level(parent);
1679         if (slot < 0)
1680                 return NULL;
1681         if (slot >= btrfs_header_nritems(parent))
1682                 return NULL;
1683
1684         BUG_ON(level == 0);
1685
1686         return read_tree_block(root, btrfs_node_blockptr(parent, slot),
1687                        btrfs_level_size(root, level - 1),
1688                        btrfs_node_ptr_generation(parent, slot));
1689 }
1690
1691 /*
1692  * node level balancing, used to make sure nodes are in proper order for
1693  * item deletion.  We balance from the top down, so we have to make sure
1694  * that a deletion won't leave an node completely empty later on.
1695  */
1696 static noinline int balance_level(struct btrfs_trans_handle *trans,
1697                          struct btrfs_root *root,
1698                          struct btrfs_path *path, int level)
1699 {
1700         struct extent_buffer *right = NULL;
1701         struct extent_buffer *mid;
1702         struct extent_buffer *left = NULL;
1703         struct extent_buffer *parent = NULL;
1704         int ret = 0;
1705         int wret;
1706         int pslot;
1707         int orig_slot = path->slots[level];
1708         u64 orig_ptr;
1709
1710         if (level == 0)
1711                 return 0;
1712
1713         mid = path->nodes[level];
1714
1715         WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
1716                 path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
1717         WARN_ON(btrfs_header_generation(mid) != trans->transid);
1718
1719         orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1720
1721         if (level < BTRFS_MAX_LEVEL - 1) {
1722                 parent = path->nodes[level + 1];
1723                 pslot = path->slots[level + 1];
1724         }
1725
1726         /*
1727          * deal with the case where there is only one pointer in the root
1728          * by promoting the node below to a root
1729          */
1730         if (!parent) {
1731                 struct extent_buffer *child;
1732
1733                 if (btrfs_header_nritems(mid) != 1)
1734                         return 0;
1735
1736                 /* promote the child to a root */
1737                 child = read_node_slot(root, mid, 0);
1738                 if (!child) {
1739                         ret = -EROFS;
1740                         btrfs_std_error(root->fs_info, ret);
1741                         goto enospc;
1742                 }
1743
1744                 btrfs_tree_lock(child);
1745                 btrfs_set_lock_blocking(child);
1746                 ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
1747                 if (ret) {
1748                         btrfs_tree_unlock(child);
1749                         free_extent_buffer(child);
1750                         goto enospc;
1751                 }
1752
1753                 tree_mod_log_free_eb(root->fs_info, root->node);
1754                 tree_mod_log_set_root_pointer(root, child);
1755                 rcu_assign_pointer(root->node, child);
1756
1757                 add_root_to_dirty_list(root);
1758                 btrfs_tree_unlock(child);
1759
1760                 path->locks[level] = 0;
1761                 path->nodes[level] = NULL;
1762                 clean_tree_block(trans, root, mid);
1763                 btrfs_tree_unlock(mid);
1764                 /* once for the path */
1765                 free_extent_buffer(mid);
1766
1767                 root_sub_used(root, mid->len);
1768                 btrfs_free_tree_block(trans, root, mid, 0, 1);
1769                 /* once for the root ptr */
1770                 free_extent_buffer_stale(mid);
1771                 return 0;
1772         }
1773         if (btrfs_header_nritems(mid) >
1774             BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
1775                 return 0;
1776
1777         left = read_node_slot(root, parent, pslot - 1);
1778         if (left) {
1779                 btrfs_tree_lock(left);
1780                 btrfs_set_lock_blocking(left);
1781                 wret = btrfs_cow_block(trans, root, left,
1782                                        parent, pslot - 1, &left);
1783                 if (wret) {
1784                         ret = wret;
1785                         goto enospc;
1786                 }
1787         }
1788         right = read_node_slot(root, parent, pslot + 1);
1789         if (right) {
1790                 btrfs_tree_lock(right);
1791                 btrfs_set_lock_blocking(right);
1792                 wret = btrfs_cow_block(trans, root, right,
1793                                        parent, pslot + 1, &right);
1794                 if (wret) {
1795                         ret = wret;
1796                         goto enospc;
1797                 }
1798         }
1799
1800         /* first, try to make some room in the middle buffer */
1801         if (left) {
1802                 orig_slot += btrfs_header_nritems(left);
1803                 wret = push_node_left(trans, root, left, mid, 1);
1804                 if (wret < 0)
1805                         ret = wret;
1806         }
1807
1808         /*
1809          * then try to empty the right most buffer into the middle
1810          */
1811         if (right) {
1812                 wret = push_node_left(trans, root, mid, right, 1);
1813                 if (wret < 0 && wret != -ENOSPC)
1814                         ret = wret;
1815                 if (btrfs_header_nritems(right) == 0) {
1816                         clean_tree_block(trans, root, right);
1817                         btrfs_tree_unlock(right);
1818                         del_ptr(trans, root, path, level + 1, pslot + 1);
1819                         root_sub_used(root, right->len);
1820                         btrfs_free_tree_block(trans, root, right, 0, 1);
1821                         free_extent_buffer_stale(right);
1822                         right = NULL;
1823                 } else {
1824                         struct btrfs_disk_key right_key;
1825                         btrfs_node_key(right, &right_key, 0);
1826                         tree_mod_log_set_node_key(root->fs_info, parent,
1827                                                   pslot + 1, 0);
1828                         btrfs_set_node_key(parent, &right_key, pslot + 1);
1829                         btrfs_mark_buffer_dirty(parent);
1830                 }
1831         }
1832         if (btrfs_header_nritems(mid) == 1) {
1833                 /*
1834                  * we're not allowed to leave a node with one item in the
1835                  * tree during a delete.  A deletion from lower in the tree
1836                  * could try to delete the only pointer in this node.
1837                  * So, pull some keys from the left.
1838                  * There has to be a left pointer at this point because
1839                  * otherwise we would have pulled some pointers from the
1840                  * right
1841                  */
1842                 if (!left) {
1843                         ret = -EROFS;
1844                         btrfs_std_error(root->fs_info, ret);
1845                         goto enospc;
1846                 }
1847                 wret = balance_node_right(trans, root, mid, left);
1848                 if (wret < 0) {
1849                         ret = wret;
1850                         goto enospc;
1851                 }
1852                 if (wret == 1) {
1853                         wret = push_node_left(trans, root, left, mid, 1);
1854                         if (wret < 0)
1855                                 ret = wret;
1856                 }
1857                 BUG_ON(wret == 1);
1858         }
1859         if (btrfs_header_nritems(mid) == 0) {
1860                 clean_tree_block(trans, root, mid);
1861                 btrfs_tree_unlock(mid);
1862                 del_ptr(trans, root, path, level + 1, pslot);
1863                 root_sub_used(root, mid->len);
1864                 btrfs_free_tree_block(trans, root, mid, 0, 1);
1865                 free_extent_buffer_stale(mid);
1866                 mid = NULL;
1867         } else {
1868                 /* update the parent key to reflect our changes */
1869                 struct btrfs_disk_key mid_key;
1870                 btrfs_node_key(mid, &mid_key, 0);
1871                 tree_mod_log_set_node_key(root->fs_info, parent,
1872                                           pslot, 0);
1873                 btrfs_set_node_key(parent, &mid_key, pslot);
1874                 btrfs_mark_buffer_dirty(parent);
1875         }
1876
1877         /* update the path */
1878         if (left) {
1879                 if (btrfs_header_nritems(left) > orig_slot) {
1880                         extent_buffer_get(left);
1881                         /* left was locked after cow */
1882                         path->nodes[level] = left;
1883                         path->slots[level + 1] -= 1;
1884                         path->slots[level] = orig_slot;
1885                         if (mid) {
1886                                 btrfs_tree_unlock(mid);
1887                                 free_extent_buffer(mid);
1888                         }
1889                 } else {
1890                         orig_slot -= btrfs_header_nritems(left);
1891                         path->slots[level] = orig_slot;
1892                 }
1893         }
1894         /* double check we haven't messed things up */
1895         if (orig_ptr !=
1896             btrfs_node_blockptr(path->nodes[level], path->slots[level]))
1897                 BUG();
1898 enospc:
1899         if (right) {
1900                 btrfs_tree_unlock(right);
1901                 free_extent_buffer(right);
1902         }
1903         if (left) {
1904                 if (path->nodes[level] != left)
1905                         btrfs_tree_unlock(left);
1906                 free_extent_buffer(left);
1907         }
1908         return ret;
1909 }
1910
1911 /* Node balancing for insertion.  Here we only split or push nodes around
1912  * when they are completely full.  This is also done top down, so we
1913  * have to be pessimistic.
1914  */
1915 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
1916                                           struct btrfs_root *root,
1917                                           struct btrfs_path *path, int level)
1918 {
1919         struct extent_buffer *right = NULL;
1920         struct extent_buffer *mid;
1921         struct extent_buffer *left = NULL;
1922         struct extent_buffer *parent = NULL;
1923         int ret = 0;
1924         int wret;
1925         int pslot;
1926         int orig_slot = path->slots[level];
1927
1928         if (level == 0)
1929                 return 1;
1930
1931         mid = path->nodes[level];
1932         WARN_ON(btrfs_header_generation(mid) != trans->transid);
1933
1934         if (level < BTRFS_MAX_LEVEL - 1) {
1935                 parent = path->nodes[level + 1];
1936                 pslot = path->slots[level + 1];
1937         }
1938
1939         if (!parent)
1940                 return 1;
1941
1942         left = read_node_slot(root, parent, pslot - 1);
1943
1944         /* first, try to make some room in the middle buffer */
1945         if (left) {
1946                 u32 left_nr;
1947
1948                 btrfs_tree_lock(left);
1949                 btrfs_set_lock_blocking(left);
1950
1951                 left_nr = btrfs_header_nritems(left);
1952                 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
1953                         wret = 1;
1954                 } else {
1955                         ret = btrfs_cow_block(trans, root, left, parent,
1956                                               pslot - 1, &left);
1957                         if (ret)
1958                                 wret = 1;
1959                         else {
1960                                 wret = push_node_left(trans, root,
1961                                                       left, mid, 0);
1962                         }
1963                 }
1964                 if (wret < 0)
1965                         ret = wret;
1966                 if (wret == 0) {
1967                         struct btrfs_disk_key disk_key;
1968                         orig_slot += left_nr;
1969                         btrfs_node_key(mid, &disk_key, 0);
1970                         tree_mod_log_set_node_key(root->fs_info, parent,
1971                                                   pslot, 0);
1972                         btrfs_set_node_key(parent, &disk_key, pslot);
1973                         btrfs_mark_buffer_dirty(parent);
1974                         if (btrfs_header_nritems(left) > orig_slot) {
1975                                 path->nodes[level] = left;
1976                                 path->slots[level + 1] -= 1;
1977                                 path->slots[level] = orig_slot;
1978                                 btrfs_tree_unlock(mid);
1979                                 free_extent_buffer(mid);
1980                         } else {
1981                                 orig_slot -=
1982                                         btrfs_header_nritems(left);
1983                                 path->slots[level] = orig_slot;
1984                                 btrfs_tree_unlock(left);
1985                                 free_extent_buffer(left);
1986                         }
1987                         return 0;
1988                 }
1989                 btrfs_tree_unlock(left);
1990                 free_extent_buffer(left);
1991         }
1992         right = read_node_slot(root, parent, pslot + 1);
1993
1994         /*
1995          * then try to empty the right most buffer into the middle
1996          */
1997         if (right) {
1998                 u32 right_nr;
1999
2000                 btrfs_tree_lock(right);
2001                 btrfs_set_lock_blocking(right);
2002
2003                 right_nr = btrfs_header_nritems(right);
2004                 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
2005                         wret = 1;
2006                 } else {
2007                         ret = btrfs_cow_block(trans, root, right,
2008                                               parent, pslot + 1,
2009                                               &right);
2010                         if (ret)
2011                                 wret = 1;
2012                         else {
2013                                 wret = balance_node_right(trans, root,
2014                                                           right, mid);
2015                         }
2016                 }
2017                 if (wret < 0)
2018                         ret = wret;
2019                 if (wret == 0) {
2020                         struct btrfs_disk_key disk_key;
2021
2022                         btrfs_node_key(right, &disk_key, 0);
2023                         tree_mod_log_set_node_key(root->fs_info, parent,
2024                                                   pslot + 1, 0);
2025                         btrfs_set_node_key(parent, &disk_key, pslot + 1);
2026                         btrfs_mark_buffer_dirty(parent);
2027
2028                         if (btrfs_header_nritems(mid) <= orig_slot) {
2029                                 path->nodes[level] = right;
2030                                 path->slots[level + 1] += 1;
2031                                 path->slots[level] = orig_slot -
2032                                         btrfs_header_nritems(mid);
2033                                 btrfs_tree_unlock(mid);
2034                                 free_extent_buffer(mid);
2035                         } else {
2036                                 btrfs_tree_unlock(right);
2037                                 free_extent_buffer(right);
2038                         }
2039                         return 0;
2040                 }
2041                 btrfs_tree_unlock(right);
2042                 free_extent_buffer(right);
2043         }
2044         return 1;
2045 }
2046
2047 /*
2048  * readahead one full node of leaves, finding things that are close
2049  * to the block in 'slot', and triggering ra on them.
2050  */
2051 static void reada_for_search(struct btrfs_root *root,
2052                              struct btrfs_path *path,
2053                              int level, int slot, u64 objectid)
2054 {
2055         struct extent_buffer *node;
2056         struct btrfs_disk_key disk_key;
2057         u32 nritems;
2058         u64 search;
2059         u64 target;
2060         u64 nread = 0;
2061         u64 gen;
2062         int direction = path->reada;
2063         struct extent_buffer *eb;
2064         u32 nr;
2065         u32 blocksize;
2066         u32 nscan = 0;
2067
2068         if (level != 1)
2069                 return;
2070
2071         if (!path->nodes[level])
2072                 return;
2073
2074         node = path->nodes[level];
2075
2076         search = btrfs_node_blockptr(node, slot);
2077         blocksize = btrfs_level_size(root, level - 1);
2078         eb = btrfs_find_tree_block(root, search, blocksize);
2079         if (eb) {
2080                 free_extent_buffer(eb);
2081                 return;
2082         }
2083
2084         target = search;
2085
2086         nritems = btrfs_header_nritems(node);
2087         nr = slot;
2088
2089         while (1) {
2090                 if (direction < 0) {
2091                         if (nr == 0)
2092                                 break;
2093                         nr--;
2094                 } else if (direction > 0) {
2095                         nr++;
2096                         if (nr >= nritems)
2097                                 break;
2098                 }
2099                 if (path->reada < 0 && objectid) {
2100                         btrfs_node_key(node, &disk_key, nr);
2101                         if (btrfs_disk_key_objectid(&disk_key) != objectid)
2102                                 break;
2103                 }
2104                 search = btrfs_node_blockptr(node, nr);
2105                 if ((search <= target && target - search <= 65536) ||
2106                     (search > target && search - target <= 65536)) {
2107                         gen = btrfs_node_ptr_generation(node, nr);
2108                         readahead_tree_block(root, search, blocksize, gen);
2109                         nread += blocksize;
2110                 }
2111                 nscan++;
2112                 if ((nread > 65536 || nscan > 32))
2113                         break;
2114         }
2115 }
2116
2117 /*
2118  * returns -EAGAIN if it had to drop the path, or zero if everything was in
2119  * cache
2120  */
2121 static noinline int reada_for_balance(struct btrfs_root *root,
2122                                       struct btrfs_path *path, int level)
2123 {
2124         int slot;
2125         int nritems;
2126         struct extent_buffer *parent;
2127         struct extent_buffer *eb;
2128         u64 gen;
2129         u64 block1 = 0;
2130         u64 block2 = 0;
2131         int ret = 0;
2132         int blocksize;
2133
2134         parent = path->nodes[level + 1];
2135         if (!parent)
2136                 return 0;
2137
2138         nritems = btrfs_header_nritems(parent);
2139         slot = path->slots[level + 1];
2140         blocksize = btrfs_level_size(root, level);
2141
2142         if (slot > 0) {
2143                 block1 = btrfs_node_blockptr(parent, slot - 1);
2144                 gen = btrfs_node_ptr_generation(parent, slot - 1);
2145                 eb = btrfs_find_tree_block(root, block1, blocksize);
2146                 /*
2147                  * if we get -eagain from btrfs_buffer_uptodate, we
2148                  * don't want to return eagain here.  That will loop
2149                  * forever
2150                  */
2151                 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2152                         block1 = 0;
2153                 free_extent_buffer(eb);
2154         }
2155         if (slot + 1 < nritems) {
2156                 block2 = btrfs_node_blockptr(parent, slot + 1);
2157                 gen = btrfs_node_ptr_generation(parent, slot + 1);
2158                 eb = btrfs_find_tree_block(root, block2, blocksize);
2159                 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2160                         block2 = 0;
2161                 free_extent_buffer(eb);
2162         }
2163         if (block1 || block2) {
2164                 ret = -EAGAIN;
2165
2166                 /* release the whole path */
2167                 btrfs_release_path(path);
2168
2169                 /* read the blocks */
2170                 if (block1)
2171                         readahead_tree_block(root, block1, blocksize, 0);
2172                 if (block2)
2173                         readahead_tree_block(root, block2, blocksize, 0);
2174
2175                 if (block1) {
2176                         eb = read_tree_block(root, block1, blocksize, 0);
2177                         free_extent_buffer(eb);
2178                 }
2179                 if (block2) {
2180                         eb = read_tree_block(root, block2, blocksize, 0);
2181                         free_extent_buffer(eb);
2182                 }
2183         }
2184         return ret;
2185 }
2186
2187
2188 /*
2189  * when we walk down the tree, it is usually safe to unlock the higher layers
2190  * in the tree.  The exceptions are when our path goes through slot 0, because
2191  * operations on the tree might require changing key pointers higher up in the
2192  * tree.
2193  *
2194  * callers might also have set path->keep_locks, which tells this code to keep
2195  * the lock if the path points to the last slot in the block.  This is part of
2196  * walking through the tree, and selecting the next slot in the higher block.
2197  *
2198  * lowest_unlock sets the lowest level in the tree we're allowed to unlock.  so
2199  * if lowest_unlock is 1, level 0 won't be unlocked
2200  */
2201 static noinline void unlock_up(struct btrfs_path *path, int level,
2202                                int lowest_unlock, int min_write_lock_level,
2203                                int *write_lock_level)
2204 {
2205         int i;
2206         int skip_level = level;
2207         int no_skips = 0;
2208         struct extent_buffer *t;
2209
2210         if (path->really_keep_locks)
2211                 return;
2212
2213         for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2214                 if (!path->nodes[i])
2215                         break;
2216                 if (!path->locks[i])
2217                         break;
2218                 if (!no_skips && path->slots[i] == 0) {
2219                         skip_level = i + 1;
2220                         continue;
2221                 }
2222                 if (!no_skips && path->keep_locks) {
2223                         u32 nritems;
2224                         t = path->nodes[i];
2225                         nritems = btrfs_header_nritems(t);
2226                         if (nritems < 1 || path->slots[i] >= nritems - 1) {
2227                                 skip_level = i + 1;
2228                                 continue;
2229                         }
2230                 }
2231                 if (skip_level < i && i >= lowest_unlock)
2232                         no_skips = 1;
2233
2234                 t = path->nodes[i];
2235                 if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
2236                         btrfs_tree_unlock_rw(t, path->locks[i]);
2237                         path->locks[i] = 0;
2238                         if (write_lock_level &&
2239                             i > min_write_lock_level &&
2240                             i <= *write_lock_level) {
2241                                 *write_lock_level = i - 1;
2242                         }
2243                 }
2244         }
2245 }
2246
2247 /*
2248  * This releases any locks held in the path starting at level and
2249  * going all the way up to the root.
2250  *
2251  * btrfs_search_slot will keep the lock held on higher nodes in a few
2252  * corner cases, such as COW of the block at slot zero in the node.  This
2253  * ignores those rules, and it should only be called when there are no
2254  * more updates to be done higher up in the tree.
2255  */
2256 noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
2257 {
2258         int i;
2259
2260         if (path->keep_locks || path->really_keep_locks)
2261                 return;
2262
2263         for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2264                 if (!path->nodes[i])
2265                         continue;
2266                 if (!path->locks[i])
2267                         continue;
2268                 btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
2269                 path->locks[i] = 0;
2270         }
2271 }
2272
2273 /*
2274  * helper function for btrfs_search_slot.  The goal is to find a block
2275  * in cache without setting the path to blocking.  If we find the block
2276  * we return zero and the path is unchanged.
2277  *
2278  * If we can't find the block, we set the path blocking and do some
2279  * reada.  -EAGAIN is returned and the search must be repeated.
2280  */
2281 static int
2282 read_block_for_search(struct btrfs_trans_handle *trans,
2283                        struct btrfs_root *root, struct btrfs_path *p,
2284                        struct extent_buffer **eb_ret, int level, int slot,
2285                        struct btrfs_key *key, u64 time_seq)
2286 {
2287         u64 blocknr;
2288         u64 gen;
2289         u32 blocksize;
2290         struct extent_buffer *b = *eb_ret;
2291         struct extent_buffer *tmp;
2292         int ret;
2293
2294         blocknr = btrfs_node_blockptr(b, slot);
2295         gen = btrfs_node_ptr_generation(b, slot);
2296         blocksize = btrfs_level_size(root, level - 1);
2297
2298         tmp = btrfs_find_tree_block(root, blocknr, blocksize);
2299         if (tmp) {
2300                 /* first we do an atomic uptodate check */
2301                 if (btrfs_buffer_uptodate(tmp, 0, 1) > 0) {
2302                         if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
2303                                 /*
2304                                  * we found an up to date block without
2305                                  * sleeping, return
2306                                  * right away
2307                                  */
2308                                 *eb_ret = tmp;
2309                                 return 0;
2310                         }
2311                         /* the pages were up to date, but we failed
2312                          * the generation number check.  Do a full
2313                          * read for the generation number that is correct.
2314                          * We must do this without dropping locks so
2315                          * we can trust our generation number
2316                          */
2317                         free_extent_buffer(tmp);
2318                         btrfs_set_path_blocking(p);
2319
2320                         /* now we're allowed to do a blocking uptodate check */
2321                         tmp = read_tree_block(root, blocknr, blocksize, gen);
2322                         if (tmp && btrfs_buffer_uptodate(tmp, gen, 0) > 0) {
2323                                 *eb_ret = tmp;
2324                                 return 0;
2325                         }
2326                         free_extent_buffer(tmp);
2327                         btrfs_release_path(p);
2328                         return -EIO;
2329                 }
2330         }
2331
2332         /*
2333          * reduce lock contention at high levels
2334          * of the btree by dropping locks before
2335          * we read.  Don't release the lock on the current
2336          * level because we need to walk this node to figure
2337          * out which blocks to read.
2338          */
2339         btrfs_unlock_up_safe(p, level + 1);
2340         btrfs_set_path_blocking(p);
2341
2342         free_extent_buffer(tmp);
2343         if (p->reada)
2344                 reada_for_search(root, p, level, slot, key->objectid);
2345
2346         btrfs_release_path(p);
2347
2348         ret = -EAGAIN;
2349         tmp = read_tree_block(root, blocknr, blocksize, 0);
2350         if (tmp) {
2351                 /*
2352                  * If the read above didn't mark this buffer up to date,
2353                  * it will never end up being up to date.  Set ret to EIO now
2354                  * and give up so that our caller doesn't loop forever
2355                  * on our EAGAINs.
2356                  */
2357                 if (!btrfs_buffer_uptodate(tmp, 0, 0))
2358                         ret = -EIO;
2359                 free_extent_buffer(tmp);
2360         }
2361         return ret;
2362 }
2363
2364 /*
2365  * helper function for btrfs_search_slot.  This does all of the checks
2366  * for node-level blocks and does any balancing required based on
2367  * the ins_len.
2368  *
2369  * If no extra work was required, zero is returned.  If we had to
2370  * drop the path, -EAGAIN is returned and btrfs_search_slot must
2371  * start over
2372  */
2373 static int
2374 setup_nodes_for_search(struct btrfs_trans_handle *trans,
2375                        struct btrfs_root *root, struct btrfs_path *p,
2376                        struct extent_buffer *b, int level, int ins_len,
2377                        int *write_lock_level)
2378 {
2379         int ret;
2380         if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
2381             BTRFS_NODEPTRS_PER_BLOCK(root) - 3) {
2382                 int sret;
2383
2384                 if (*write_lock_level < level + 1) {
2385                         *write_lock_level = level + 1;
2386                         btrfs_release_path(p);
2387                         goto again;
2388                 }
2389
2390                 sret = reada_for_balance(root, p, level);
2391                 if (sret)
2392                         goto again;
2393
2394                 btrfs_set_path_blocking(p);
2395                 sret = split_node(trans, root, p, level);
2396                 btrfs_clear_path_blocking(p, NULL, 0);
2397
2398                 BUG_ON(sret > 0);
2399                 if (sret) {
2400                         ret = sret;
2401                         goto done;
2402                 }
2403                 b = p->nodes[level];
2404         } else if (ins_len < 0 && btrfs_header_nritems(b) <
2405                    BTRFS_NODEPTRS_PER_BLOCK(root) / 2) {
2406                 int sret;
2407
2408                 if (*write_lock_level < level + 1) {
2409                         *write_lock_level = level + 1;
2410                         btrfs_release_path(p);
2411                         goto again;
2412                 }
2413
2414                 sret = reada_for_balance(root, p, level);
2415                 if (sret)
2416                         goto again;
2417
2418                 btrfs_set_path_blocking(p);
2419                 sret = balance_level(trans, root, p, level);
2420                 btrfs_clear_path_blocking(p, NULL, 0);
2421
2422                 if (sret) {
2423                         ret = sret;
2424                         goto done;
2425                 }
2426                 b = p->nodes[level];
2427                 if (!b) {
2428                         btrfs_release_path(p);
2429                         goto again;
2430                 }
2431                 BUG_ON(btrfs_header_nritems(b) == 1);
2432         }
2433         return 0;
2434
2435 again:
2436         ret = -EAGAIN;
2437 done:
2438         return ret;
2439 }
2440
2441 /*
2442  * look for key in the tree.  path is filled in with nodes along the way
2443  * if key is found, we return zero and you can find the item in the leaf
2444  * level of the path (level 0)
2445  *
2446  * If the key isn't found, the path points to the slot where it should
2447  * be inserted, and 1 is returned.  If there are other errors during the
2448  * search a negative error number is returned.
2449  *
2450  * if ins_len > 0, nodes and leaves will be split as we walk down the
2451  * tree.  if ins_len < 0, nodes will be merged as we walk down the tree (if
2452  * possible)
2453  */
2454 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
2455                       *root, struct btrfs_key *key, struct btrfs_path *p, int
2456                       ins_len, int cow)
2457 {
2458         struct extent_buffer *b;
2459         int slot;
2460         int ret;
2461         int err;
2462         int level;
2463         int lowest_unlock = 1;
2464         int root_lock;
2465         /* everything at write_lock_level or lower must be write locked */
2466         int write_lock_level = 0;
2467         u8 lowest_level = 0;
2468         int min_write_lock_level;
2469
2470         lowest_level = p->lowest_level;
2471         WARN_ON(lowest_level && ins_len > 0);
2472         WARN_ON(p->nodes[0] != NULL);
2473
2474         if (ins_len < 0) {
2475                 lowest_unlock = 2;
2476
2477                 /* when we are removing items, we might have to go up to level
2478                  * two as we update tree pointers  Make sure we keep write
2479                  * for those levels as well
2480                  */
2481                 write_lock_level = 2;
2482         } else if (ins_len > 0) {
2483                 /*
2484                  * for inserting items, make sure we have a write lock on
2485                  * level 1 so we can update keys
2486                  */
2487                 write_lock_level = 1;
2488         }
2489
2490         if (!cow)
2491                 write_lock_level = -1;
2492
2493         if (cow && (p->really_keep_locks || p->keep_locks || p->lowest_level))
2494                 write_lock_level = BTRFS_MAX_LEVEL;
2495
2496         min_write_lock_level = write_lock_level;
2497
2498 again:
2499         /*
2500          * we try very hard to do read locks on the root
2501          */
2502         root_lock = BTRFS_READ_LOCK;
2503         level = 0;
2504         if (p->search_commit_root) {
2505                 /*
2506                  * the commit roots are read only
2507                  * so we always do read locks
2508                  */
2509                 b = root->commit_root;
2510                 extent_buffer_get(b);
2511                 level = btrfs_header_level(b);
2512                 if (!p->skip_locking)
2513                         btrfs_tree_read_lock(b);
2514         } else {
2515                 if (p->skip_locking) {
2516                         b = btrfs_root_node(root);
2517                         level = btrfs_header_level(b);
2518                 } else {
2519                         /* we don't know the level of the root node
2520                          * until we actually have it read locked
2521                          */
2522                         b = btrfs_read_lock_root_node(root);
2523                         level = btrfs_header_level(b);
2524                         if (level <= write_lock_level) {
2525                                 /* whoops, must trade for write lock */
2526                                 btrfs_tree_read_unlock(b);
2527                                 free_extent_buffer(b);
2528                                 b = btrfs_lock_root_node(root);
2529                                 root_lock = BTRFS_WRITE_LOCK;
2530
2531                                 /* the level might have changed, check again */
2532                                 level = btrfs_header_level(b);
2533                         }
2534                 }
2535         }
2536         p->nodes[level] = b;
2537         if (!p->skip_locking)
2538                 p->locks[level] = root_lock;
2539
2540         while (b) {
2541                 level = btrfs_header_level(b);
2542
2543                 /*
2544                  * setup the path here so we can release it under lock
2545                  * contention with the cow code
2546                  */
2547                 if (cow) {
2548                         /*
2549                          * if we don't really need to cow this block
2550                          * then we don't want to set the path blocking,
2551                          * so we test it here
2552                          */
2553                         if (!should_cow_block(trans, root, b))
2554                                 goto cow_done;
2555
2556                         btrfs_set_path_blocking(p);
2557
2558                         /*
2559                          * must have write locks on this node and the
2560                          * parent
2561                          */
2562                         if (level > write_lock_level ||
2563                             (level + 1 > write_lock_level &&
2564                             level + 1 < BTRFS_MAX_LEVEL &&
2565                             p->nodes[level + 1])) {
2566                                 write_lock_level = level + 1;
2567                                 btrfs_release_path(p);
2568                                 goto again;
2569                         }
2570
2571                         err = btrfs_cow_block(trans, root, b,
2572                                               p->nodes[level + 1],
2573                                               p->slots[level + 1], &b);
2574                         if (err) {
2575                                 ret = err;
2576                                 goto done;
2577                         }
2578                 }
2579 cow_done:
2580                 BUG_ON(!cow && ins_len);
2581
2582                 p->nodes[level] = b;
2583                 btrfs_clear_path_blocking(p, NULL, 0);
2584
2585                 /*
2586                  * we have a lock on b and as long as we aren't changing
2587                  * the tree, there is no way to for the items in b to change.
2588                  * It is safe to drop the lock on our parent before we
2589                  * go through the expensive btree search on b.
2590                  *
2591                  * If cow is true, then we might be changing slot zero,
2592                  * which may require changing the parent.  So, we can't
2593                  * drop the lock until after we know which slot we're
2594                  * operating on.
2595                  */
2596                 if (!cow)
2597                         btrfs_unlock_up_safe(p, level + 1);
2598
2599                 ret = bin_search(b, key, level, &slot);
2600
2601                 if (level != 0) {
2602                         int dec = 0;
2603                         if (ret && slot > 0) {
2604                                 dec = 1;
2605                                 slot -= 1;
2606                         }
2607                         p->slots[level] = slot;
2608                         err = setup_nodes_for_search(trans, root, p, b, level,
2609                                              ins_len, &write_lock_level);
2610                         if (err == -EAGAIN)
2611                                 goto again;
2612                         if (err) {
2613                                 ret = err;
2614                                 goto done;
2615                         }
2616                         b = p->nodes[level];
2617                         slot = p->slots[level];
2618
2619                         /*
2620                          * slot 0 is special, if we change the key
2621                          * we have to update the parent pointer
2622                          * which means we must have a write lock
2623                          * on the parent
2624                          */
2625                         if (slot == 0 && cow &&
2626                             write_lock_level < level + 1) {
2627                                 write_lock_level = level + 1;
2628                                 btrfs_release_path(p);
2629                                 goto again;
2630                         }
2631
2632                         unlock_up(p, level, lowest_unlock,
2633                                   min_write_lock_level, &write_lock_level);
2634
2635                         if (level == lowest_level) {
2636                                 if (dec)
2637                                         p->slots[level]++;
2638                                 goto done;
2639                         }
2640
2641                         err = read_block_for_search(trans, root, p,
2642                                                     &b, level, slot, key, 0);
2643                         if (err == -EAGAIN)
2644                                 goto again;
2645                         if (err) {
2646                                 ret = err;
2647                                 goto done;
2648                         }
2649
2650                         if (!p->skip_locking) {
2651                                 level = btrfs_header_level(b);
2652                                 if (level <= write_lock_level) {
2653                                         err = btrfs_try_tree_write_lock(b);
2654                                         if (!err) {
2655                                                 btrfs_set_path_blocking(p);
2656                                                 btrfs_tree_lock(b);
2657                                                 btrfs_clear_path_blocking(p, b,
2658                                                                   BTRFS_WRITE_LOCK);
2659                                         }
2660                                         p->locks[level] = BTRFS_WRITE_LOCK;
2661                                 } else {
2662                                         err = btrfs_try_tree_read_lock(b);
2663                                         if (!err) {
2664                                                 btrfs_set_path_blocking(p);
2665                                                 btrfs_tree_read_lock(b);
2666                                                 btrfs_clear_path_blocking(p, b,
2667                                                                   BTRFS_READ_LOCK);
2668                                         }
2669                                         p->locks[level] = BTRFS_READ_LOCK;
2670                                 }
2671                                 p->nodes[level] = b;
2672                         }
2673                 } else {
2674                         p->slots[level] = slot;
2675                         if (ins_len > 0 &&
2676                             btrfs_leaf_free_space(root, b) < ins_len) {
2677                                 if (write_lock_level < 1) {
2678                                         write_lock_level = 1;
2679                                         btrfs_release_path(p);
2680                                         goto again;
2681                                 }
2682
2683                                 btrfs_set_path_blocking(p);
2684                                 err = split_leaf(trans, root, key,
2685                                                  p, ins_len, ret == 0);
2686                                 btrfs_clear_path_blocking(p, NULL, 0);
2687
2688                                 BUG_ON(err > 0);
2689                                 if (err) {
2690                                         ret = err;
2691                                         goto done;
2692                                 }
2693                         }
2694                         if (!p->search_for_split)
2695                                 unlock_up(p, level, lowest_unlock,
2696                                           min_write_lock_level, &write_lock_level);
2697                         goto done;
2698                 }
2699         }
2700         ret = 1;
2701 done:
2702         /*
2703          * we don't really know what they plan on doing with the path
2704          * from here on, so for now just mark it as blocking
2705          */
2706         if (!p->leave_spinning)
2707                 btrfs_set_path_blocking(p);
2708         if (ret < 0)
2709                 btrfs_release_path(p);
2710         return ret;
2711 }
2712
2713 /*
2714  * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2715  * current state of the tree together with the operations recorded in the tree
2716  * modification log to search for the key in a previous version of this tree, as
2717  * denoted by the time_seq parameter.
2718  *
2719  * Naturally, there is no support for insert, delete or cow operations.
2720  *
2721  * The resulting path and return value will be set up as if we called
2722  * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2723  */
2724 int btrfs_search_old_slot(struct btrfs_root *root, struct btrfs_key *key,
2725                           struct btrfs_path *p, u64 time_seq)
2726 {
2727         struct extent_buffer *b;
2728         int slot;
2729         int ret;
2730         int err;
2731         int level;
2732         int lowest_unlock = 1;
2733         u8 lowest_level = 0;
2734
2735         lowest_level = p->lowest_level;
2736         WARN_ON(p->nodes[0] != NULL);
2737
2738         if (p->search_commit_root) {
2739                 BUG_ON(time_seq);
2740                 return btrfs_search_slot(NULL, root, key, p, 0, 0);
2741         }
2742
2743 again:
2744         b = get_old_root(root, time_seq);
2745         level = btrfs_header_level(b);
2746         p->locks[level] = BTRFS_READ_LOCK;
2747
2748         while (b) {
2749                 level = btrfs_header_level(b);
2750                 p->nodes[level] = b;
2751                 btrfs_clear_path_blocking(p, NULL, 0);
2752
2753                 /*
2754                  * we have a lock on b and as long as we aren't changing
2755                  * the tree, there is no way to for the items in b to change.
2756                  * It is safe to drop the lock on our parent before we
2757                  * go through the expensive btree search on b.
2758                  */
2759                 btrfs_unlock_up_safe(p, level + 1);
2760
2761                 ret = bin_search(b, key, level, &slot);
2762
2763                 if (level != 0) {
2764                         int dec = 0;
2765                         if (ret && slot > 0) {
2766                                 dec = 1;
2767                                 slot -= 1;
2768                         }
2769                         p->slots[level] = slot;
2770                         unlock_up(p, level, lowest_unlock, 0, NULL);
2771
2772                         if (level == lowest_level) {
2773                                 if (dec)
2774                                         p->slots[level]++;
2775                                 goto done;
2776                         }
2777
2778                         err = read_block_for_search(NULL, root, p, &b, level,
2779                                                     slot, key, time_seq);
2780                         if (err == -EAGAIN)
2781                                 goto again;
2782                         if (err) {
2783                                 ret = err;
2784                                 goto done;
2785                         }
2786
2787                         level = btrfs_header_level(b);
2788                         err = btrfs_try_tree_read_lock(b);
2789                         if (!err) {
2790                                 btrfs_set_path_blocking(p);
2791                                 btrfs_tree_read_lock(b);
2792                                 btrfs_clear_path_blocking(p, b,
2793                                                           BTRFS_READ_LOCK);
2794                         }
2795                         p->locks[level] = BTRFS_READ_LOCK;
2796                         p->nodes[level] = b;
2797                         b = tree_mod_log_rewind(root->fs_info, b, time_seq);
2798                         if (b != p->nodes[level]) {
2799                                 btrfs_tree_unlock_rw(p->nodes[level],
2800                                                      p->locks[level]);
2801                                 p->locks[level] = 0;
2802                                 p->nodes[level] = b;
2803                         }
2804                 } else {
2805                         p->slots[level] = slot;
2806                         unlock_up(p, level, lowest_unlock, 0, NULL);
2807                         goto done;
2808                 }
2809         }
2810         ret = 1;
2811 done:
2812         if (!p->leave_spinning)
2813                 btrfs_set_path_blocking(p);
2814         if (ret < 0)
2815                 btrfs_release_path(p);
2816
2817         return ret;
2818 }
2819
2820 /*
2821  * helper to use instead of search slot if no exact match is needed but
2822  * instead the next or previous item should be returned.
2823  * When find_higher is true, the next higher item is returned, the next lower
2824  * otherwise.
2825  * When return_any and find_higher are both true, and no higher item is found,
2826  * return the next lower instead.
2827  * When return_any is true and find_higher is false, and no lower item is found,
2828  * return the next higher instead.
2829  * It returns 0 if any item is found, 1 if none is found (tree empty), and
2830  * < 0 on error
2831  */
2832 int btrfs_search_slot_for_read(struct btrfs_root *root,
2833                                struct btrfs_key *key, struct btrfs_path *p,
2834                                int find_higher, int return_any)
2835 {
2836         int ret;
2837         struct extent_buffer *leaf;
2838
2839 again:
2840         ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
2841         if (ret <= 0)
2842                 return ret;
2843         /*
2844          * a return value of 1 means the path is at the position where the
2845          * item should be inserted. Normally this is the next bigger item,
2846          * but in case the previous item is the last in a leaf, path points
2847          * to the first free slot in the previous leaf, i.e. at an invalid
2848          * item.
2849          */
2850         leaf = p->nodes[0];
2851
2852         if (find_higher) {
2853                 if (p->slots[0] >= btrfs_header_nritems(leaf)) {
2854                         ret = btrfs_next_leaf(root, p);
2855                         if (ret <= 0)
2856                                 return ret;
2857                         if (!return_any)
2858                                 return 1;
2859                         /*
2860                          * no higher item found, return the next
2861                          * lower instead
2862                          */
2863                         return_any = 0;
2864                         find_higher = 0;
2865                         btrfs_release_path(p);
2866                         goto again;
2867                 }
2868         } else {
2869                 if (p->slots[0] == 0) {
2870                         ret = btrfs_prev_leaf(root, p);
2871                         if (ret < 0)
2872                                 return ret;
2873                         if (!ret) {
2874                                 p->slots[0] = btrfs_header_nritems(leaf) - 1;
2875                                 return 0;
2876                         }
2877                         if (!return_any)
2878                                 return 1;
2879                         /*
2880                          * no lower item found, return the next
2881                          * higher instead
2882                          */
2883                         return_any = 0;
2884                         find_higher = 1;
2885                         btrfs_release_path(p);
2886                         goto again;
2887                 } else {
2888                         --p->slots[0];
2889                 }
2890         }
2891         return 0;
2892 }
2893
2894 /*
2895  * adjust the pointers going up the tree, starting at level
2896  * making sure the right key of each node is points to 'key'.
2897  * This is used after shifting pointers to the left, so it stops
2898  * fixing up pointers when a given leaf/node is not in slot 0 of the
2899  * higher levels
2900  *
2901  */
2902 static void fixup_low_keys(struct btrfs_trans_handle *trans,
2903                            struct btrfs_root *root, struct btrfs_path *path,
2904                            struct btrfs_disk_key *key, int level)
2905 {
2906         int i;
2907         struct extent_buffer *t;
2908
2909         for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2910                 int tslot = path->slots[i];
2911                 if (!path->nodes[i])
2912                         break;
2913                 t = path->nodes[i];
2914                 tree_mod_log_set_node_key(root->fs_info, t, tslot, 1);
2915                 btrfs_set_node_key(t, key, tslot);
2916                 btrfs_mark_buffer_dirty(path->nodes[i]);
2917                 if (tslot != 0)
2918                         break;
2919         }
2920 }
2921
2922 /*
2923  * update item key.
2924  *
2925  * This function isn't completely safe. It's the caller's responsibility
2926  * that the new key won't break the order
2927  */
2928 void btrfs_set_item_key_safe(struct btrfs_trans_handle *trans,
2929                              struct btrfs_root *root, struct btrfs_path *path,
2930                              struct btrfs_key *new_key)
2931 {
2932         struct btrfs_disk_key disk_key;
2933         struct extent_buffer *eb;
2934         int slot;
2935
2936         eb = path->nodes[0];
2937         slot = path->slots[0];
2938         if (slot > 0) {
2939                 btrfs_item_key(eb, &disk_key, slot - 1);
2940                 BUG_ON(comp_keys(&disk_key, new_key) >= 0);
2941         }
2942         if (slot < btrfs_header_nritems(eb) - 1) {
2943                 btrfs_item_key(eb, &disk_key, slot + 1);
2944                 BUG_ON(comp_keys(&disk_key, new_key) <= 0);
2945         }
2946
2947         btrfs_cpu_key_to_disk(&disk_key, new_key);
2948         btrfs_set_item_key(eb, &disk_key, slot);
2949         btrfs_mark_buffer_dirty(eb);
2950         if (slot == 0)
2951                 fixup_low_keys(trans, root, path, &disk_key, 1);
2952 }
2953
2954 /*
2955  * try to push data from one node into the next node left in the
2956  * tree.
2957  *
2958  * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
2959  * error, and > 0 if there was no room in the left hand block.
2960  */
2961 static int push_node_left(struct btrfs_trans_handle *trans,
2962                           struct btrfs_root *root, struct extent_buffer *dst,
2963                           struct extent_buffer *src, int empty)
2964 {
2965         int push_items = 0;
2966         int src_nritems;
2967         int dst_nritems;
2968         int ret = 0;
2969
2970         src_nritems = btrfs_header_nritems(src);
2971         dst_nritems = btrfs_header_nritems(dst);
2972         push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
2973         WARN_ON(btrfs_header_generation(src) != trans->transid);
2974         WARN_ON(btrfs_header_generation(dst) != trans->transid);
2975
2976         if (!empty && src_nritems <= 8)
2977                 return 1;
2978
2979         if (push_items <= 0)
2980                 return 1;
2981
2982         if (empty) {
2983                 push_items = min(src_nritems, push_items);
2984                 if (push_items < src_nritems) {
2985                         /* leave at least 8 pointers in the node if
2986                          * we aren't going to empty it
2987                          */
2988                         if (src_nritems - push_items < 8) {
2989                                 if (push_items <= 8)
2990                                         return 1;
2991                                 push_items -= 8;
2992                         }
2993                 }
2994         } else
2995                 push_items = min(src_nritems - 8, push_items);
2996
2997         tree_mod_log_eb_copy(root->fs_info, dst, src, dst_nritems, 0,
2998                              push_items);
2999         copy_extent_buffer(dst, src,
3000                            btrfs_node_key_ptr_offset(dst_nritems),
3001                            btrfs_node_key_ptr_offset(0),
3002                            push_items * sizeof(struct btrfs_key_ptr));
3003
3004         if (push_items < src_nritems) {
3005                 /*
3006                  * don't call tree_mod_log_eb_move here, key removal was already
3007                  * fully logged by tree_mod_log_eb_copy above.
3008                  */
3009                 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
3010                                       btrfs_node_key_ptr_offset(push_items),
3011                                       (src_nritems - push_items) *
3012                                       sizeof(struct btrfs_key_ptr));
3013         }
3014         btrfs_set_header_nritems(src, src_nritems - push_items);
3015         btrfs_set_header_nritems(dst, dst_nritems + push_items);
3016         btrfs_mark_buffer_dirty(src);
3017         btrfs_mark_buffer_dirty(dst);
3018
3019         return ret;
3020 }
3021
3022 /*
3023  * try to push data from one node into the next node right in the
3024  * tree.
3025  *
3026  * returns 0 if some ptrs were pushed, < 0 if there was some horrible
3027  * error, and > 0 if there was no room in the right hand block.
3028  *
3029  * this will  only push up to 1/2 the contents of the left node over
3030  */
3031 static int balance_node_right(struct btrfs_trans_handle *trans,
3032                               struct btrfs_root *root,
3033                               struct extent_buffer *dst,
3034                               struct extent_buffer *src)
3035 {
3036         int push_items = 0;
3037         int max_push;
3038         int src_nritems;
3039         int dst_nritems;
3040         int ret = 0;
3041
3042         WARN_ON(btrfs_header_generation(src) != trans->transid);
3043         WARN_ON(btrfs_header_generation(dst) != trans->transid);
3044
3045         src_nritems = btrfs_header_nritems(src);
3046         dst_nritems = btrfs_header_nritems(dst);
3047         push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
3048         if (push_items <= 0)
3049                 return 1;
3050
3051         if (src_nritems < 4)
3052                 return 1;
3053
3054         max_push = src_nritems / 2 + 1;
3055         /* don't try to empty the node */
3056         if (max_push >= src_nritems)
3057                 return 1;
3058
3059         if (max_push < push_items)
3060                 push_items = max_push;
3061
3062         tree_mod_log_eb_move(root->fs_info, dst, push_items, 0, dst_nritems);
3063         memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
3064                                       btrfs_node_key_ptr_offset(0),
3065                                       (dst_nritems) *
3066                                       sizeof(struct btrfs_key_ptr));
3067
3068         tree_mod_log_eb_copy(root->fs_info, dst, src, 0,
3069                              src_nritems - push_items, push_items);
3070         copy_extent_buffer(dst, src,
3071                            btrfs_node_key_ptr_offset(0),
3072                            btrfs_node_key_ptr_offset(src_nritems - push_items),
3073                            push_items * sizeof(struct btrfs_key_ptr));
3074
3075         btrfs_set_header_nritems(src, src_nritems - push_items);
3076         btrfs_set_header_nritems(dst, dst_nritems + push_items);
3077
3078         btrfs_mark_buffer_dirty(src);
3079         btrfs_mark_buffer_dirty(dst);
3080
3081         return ret;
3082 }
3083
3084 /*
3085  * helper function to insert a new root level in the tree.
3086  * A new node is allocated, and a single item is inserted to
3087  * point to the existing root
3088  *
3089  * returns zero on success or < 0 on failure.
3090  */
3091 static noinline int insert_new_root(struct btrfs_trans_handle *trans,
3092                            struct btrfs_root *root,
3093                            struct btrfs_path *path, int level)
3094 {
3095         u64 lower_gen;
3096         struct extent_buffer *lower;
3097         struct extent_buffer *c;
3098         struct extent_buffer *old;
3099         struct btrfs_disk_key lower_key;
3100
3101         BUG_ON(path->nodes[level]);
3102         BUG_ON(path->nodes[level-1] != root->node);
3103
3104         lower = path->nodes[level-1];
3105         if (level == 1)
3106                 btrfs_item_key(lower, &lower_key, 0);
3107         else
3108                 btrfs_node_key(lower, &lower_key, 0);
3109
3110         c = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
3111                                    root->root_key.objectid, &lower_key,
3112                                    level, root->node->start, 0);
3113         if (IS_ERR(c))
3114                 return PTR_ERR(c);
3115
3116         root_add_used(root, root->nodesize);
3117
3118         memset_extent_buffer(c, 0, 0, sizeof(struct btrfs_header));
3119         btrfs_set_header_nritems(c, 1);
3120         btrfs_set_header_level(c, level);
3121         btrfs_set_header_bytenr(c, c->start);
3122         btrfs_set_header_generation(c, trans->transid);
3123         btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV);
3124         btrfs_set_header_owner(c, root->root_key.objectid);
3125
3126         write_extent_buffer(c, root->fs_info->fsid,
3127                             (unsigned long)btrfs_header_fsid(c),
3128                             BTRFS_FSID_SIZE);
3129
3130         write_extent_buffer(c, root->fs_info->chunk_tree_uuid,
3131                             (unsigned long)btrfs_header_chunk_tree_uuid(c),
3132                             BTRFS_UUID_SIZE);
3133
3134         btrfs_set_node_key(c, &lower_key, 0);
3135         btrfs_set_node_blockptr(c, 0, lower->start);
3136         lower_gen = btrfs_header_generation(lower);
3137         WARN_ON(lower_gen != trans->transid);
3138
3139         btrfs_set_node_ptr_generation(c, 0, lower_gen);
3140
3141         btrfs_mark_buffer_dirty(c);
3142
3143         old = root->node;
3144         tree_mod_log_set_root_pointer(root, c);
3145         rcu_assign_pointer(root->node, c);
3146
3147         /* the super has an extra ref to root->node */
3148         free_extent_buffer(old);
3149
3150         add_root_to_dirty_list(root);
3151         extent_buffer_get(c);
3152         path->nodes[level] = c;
3153         path->locks[level] = BTRFS_WRITE_LOCK;
3154         path->slots[level] = 0;
3155         return 0;
3156 }
3157
3158 /*
3159  * worker function to insert a single pointer in a node.
3160  * the node should have enough room for the pointer already
3161  *
3162  * slot and level indicate where you want the key to go, and
3163  * blocknr is the block the key points to.
3164  */
3165 static void insert_ptr(struct btrfs_trans_handle *trans,
3166                        struct btrfs_root *root, struct btrfs_path *path,
3167                        struct btrfs_disk_key *key, u64 bytenr,
3168                        int slot, int level)
3169 {
3170         struct extent_buffer *lower;
3171         int nritems;
3172         int ret;
3173
3174         BUG_ON(!path->nodes[level]);
3175         btrfs_assert_tree_locked(path->nodes[level]);
3176         lower = path->nodes[level];
3177         nritems = btrfs_header_nritems(lower);
3178         BUG_ON(slot > nritems);
3179         BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(root));
3180         if (slot != nritems) {
3181                 if (level)
3182                         tree_mod_log_eb_move(root->fs_info, lower, slot + 1,
3183                                              slot, nritems - slot);
3184                 memmove_extent_buffer(lower,
3185                               btrfs_node_key_ptr_offset(slot + 1),
3186                               btrfs_node_key_ptr_offset(slot),
3187                               (nritems - slot) * sizeof(struct btrfs_key_ptr));
3188         }
3189         if (level) {
3190                 ret = tree_mod_log_insert_key(root->fs_info, lower, slot,
3191                                               MOD_LOG_KEY_ADD);
3192                 BUG_ON(ret < 0);
3193         }
3194         btrfs_set_node_key(lower, key, slot);
3195         btrfs_set_node_blockptr(lower, slot, bytenr);
3196         WARN_ON(trans->transid == 0);
3197         btrfs_set_node_ptr_generation(lower, slot, trans->transid);
3198         btrfs_set_header_nritems(lower, nritems + 1);
3199         btrfs_mark_buffer_dirty(lower);
3200 }
3201
3202 /*
3203  * split the node at the specified level in path in two.
3204  * The path is corrected to point to the appropriate node after the split
3205  *
3206  * Before splitting this tries to make some room in the node by pushing
3207  * left and right, if either one works, it returns right away.
3208  *
3209  * returns 0 on success and < 0 on failure
3210  */
3211 static noinline int split_node(struct btrfs_trans_handle *trans,
3212                                struct btrfs_root *root,
3213                                struct btrfs_path *path, int level)
3214 {
3215         struct extent_buffer *c;
3216         struct extent_buffer *split;
3217         struct btrfs_disk_key disk_key;
3218         int mid;
3219         int ret;
3220         u32 c_nritems;
3221
3222         c = path->nodes[level];
3223         WARN_ON(btrfs_header_generation(c) != trans->transid);
3224         if (c == root->node) {
3225                 /* trying to split the root, lets make a new one */
3226                 ret = insert_new_root(trans, root, path, level + 1);
3227                 if (ret)
3228                         return ret;
3229         } else {
3230                 ret = push_nodes_for_insert(trans, root, path, level);
3231                 c = path->nodes[level];
3232                 if (!ret && btrfs_header_nritems(c) <
3233                     BTRFS_NODEPTRS_PER_BLOCK(root) - 3)
3234                         return 0;
3235                 if (ret < 0)
3236                         return ret;
3237         }
3238
3239         c_nritems = btrfs_header_nritems(c);
3240         mid = (c_nritems + 1) / 2;
3241         btrfs_node_key(c, &disk_key, mid);
3242
3243         split = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
3244                                         root->root_key.objectid,
3245                                         &disk_key, level, c->start, 0);
3246         if (IS_ERR(split))
3247                 return PTR_ERR(split);
3248
3249         root_add_used(root, root->nodesize);
3250
3251         memset_extent_buffer(split, 0, 0, sizeof(struct btrfs_header));
3252         btrfs_set_header_level(split, btrfs_header_level(c));
3253         btrfs_set_header_bytenr(split, split->start);
3254         btrfs_set_header_generation(split, trans->transid);
3255         btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV);
3256         btrfs_set_header_owner(split, root->root_key.objectid);
3257         write_extent_buffer(split, root->fs_info->fsid,
3258                             (unsigned long)btrfs_header_fsid(split),
3259                             BTRFS_FSID_SIZE);
3260         write_extent_buffer(split, root->fs_info->chunk_tree_uuid,
3261                             (unsigned long)btrfs_header_chunk_tree_uuid(split),
3262                             BTRFS_UUID_SIZE);
3263
3264         tree_mod_log_eb_copy(root->fs_info, split, c, 0, mid, c_nritems - mid);
3265         copy_extent_buffer(split, c,
3266                            btrfs_node_key_ptr_offset(0),
3267                            btrfs_node_key_ptr_offset(mid),
3268                            (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
3269         btrfs_set_header_nritems(split, c_nritems - mid);
3270         btrfs_set_header_nritems(c, mid);
3271         ret = 0;
3272
3273         btrfs_mark_buffer_dirty(c);
3274         btrfs_mark_buffer_dirty(split);
3275
3276         insert_ptr(trans, root, path, &disk_key, split->start,
3277                    path->slots[level + 1] + 1, level + 1);
3278
3279         if (path->slots[level] >= mid) {
3280                 path->slots[level] -= mid;
3281                 btrfs_tree_unlock(c);
3282                 free_extent_buffer(c);
3283                 path->nodes[level] = split;
3284                 path->slots[level + 1] += 1;
3285         } else {
3286                 btrfs_tree_unlock(split);
3287                 free_extent_buffer(split);
3288         }
3289         return ret;
3290 }
3291
3292 /*
3293  * how many bytes are required to store the items in a leaf.  start
3294  * and nr indicate which items in the leaf to check.  This totals up the
3295  * space used both by the item structs and the item data
3296  */
3297 static int leaf_space_used(struct extent_buffer *l, int start, int nr)
3298 {
3299         struct btrfs_item *start_item;
3300         struct btrfs_item *end_item;
3301         struct btrfs_map_token token;
3302         int data_len;
3303         int nritems = btrfs_header_nritems(l);
3304         int end = min(nritems, start + nr) - 1;
3305
3306         if (!nr)
3307                 return 0;
3308         btrfs_init_map_token(&token);
3309         start_item = btrfs_item_nr(l, start);
3310         end_item = btrfs_item_nr(l, end);
3311         data_len = btrfs_token_item_offset(l, start_item, &token) +
3312                 btrfs_token_item_size(l, start_item, &token);
3313         data_len = data_len - btrfs_token_item_offset(l, end_item, &token);
3314         data_len += sizeof(struct btrfs_item) * nr;
3315         WARN_ON(data_len < 0);
3316         return data_len;
3317 }
3318
3319 /*
3320  * The space between the end of the leaf items and
3321  * the start of the leaf data.  IOW, how much room
3322  * the leaf has left for both items and data
3323  */
3324 noinline int btrfs_leaf_free_space(struct btrfs_root *root,
3325                                    struct extent_buffer *leaf)
3326 {
3327         int nritems = btrfs_header_nritems(leaf);
3328         int ret;
3329         ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
3330         if (ret < 0) {
3331                 printk(KERN_CRIT "leaf free space ret %d, leaf data size %lu, "
3332                        "used %d nritems %d\n",
3333                        ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root),
3334                        leaf_space_used(leaf, 0, nritems), nritems);
3335         }
3336         return ret;
3337 }
3338
3339 /*
3340  * min slot controls the lowest index we're willing to push to the
3341  * right.  We'll push up to and including min_slot, but no lower
3342  */
3343 static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
3344                                       struct btrfs_root *root,
3345                                       struct btrfs_path *path,
3346                                       int data_size, int empty,
3347                                       struct extent_buffer *right,
3348                                       int free_space, u32 left_nritems,
3349                                       u32 min_slot)
3350 {
3351         struct extent_buffer *left = path->nodes[0];
3352         struct extent_buffer *upper = path->nodes[1];
3353         struct btrfs_map_token token;
3354         struct btrfs_disk_key disk_key;
3355         int slot;
3356         u32 i;
3357         int push_space = 0;
3358         int push_items = 0;
3359         struct btrfs_item *item;
3360         u32 nr;
3361         u32 right_nritems;
3362         u32 data_end;
3363         u32 this_item_size;
3364
3365         btrfs_init_map_token(&token);
3366
3367         if (empty)
3368                 nr = 0;
3369         else
3370                 nr = max_t(u32, 1, min_slot);
3371
3372         if (path->slots[0] >= left_nritems)
3373                 push_space += data_size;
3374
3375         slot = path->slots[1];
3376         i = left_nritems - 1;
3377         while (i >= nr) {
3378                 item = btrfs_item_nr(left, i);
3379
3380                 if (!empty && push_items > 0) {
3381                         if (path->slots[0] > i)
3382                                 break;
3383                         if (path->slots[0] == i) {
3384                                 int space = btrfs_leaf_free_space(root, left);
3385                                 if (space + push_space * 2 > free_space)
3386                                         break;
3387                         }
3388                 }
3389
3390                 if (path->slots[0] == i)
3391                         push_space += data_size;
3392
3393                 this_item_size = btrfs_item_size(left, item);
3394                 if (this_item_size + sizeof(*item) + push_space > free_space)
3395                         break;
3396
3397                 push_items++;
3398                 push_space += this_item_size + sizeof(*item);
3399                 if (i == 0)
3400                         break;
3401                 i--;
3402         }
3403
3404         if (push_items == 0)
3405                 goto out_unlock;
3406
3407         WARN_ON(!empty && push_items == left_nritems);
3408
3409         /* push left to right */
3410         right_nritems = btrfs_header_nritems(right);
3411
3412         push_space = btrfs_item_end_nr(left, left_nritems - push_items);
3413         push_space -= leaf_data_end(root, left);
3414
3415         /* make room in the right data area */
3416         data_end = leaf_data_end(root, right);
3417         memmove_extent_buffer(right,
3418                               btrfs_leaf_data(right) + data_end - push_space,
3419                               btrfs_leaf_data(right) + data_end,
3420                               BTRFS_LEAF_DATA_SIZE(root) - data_end);
3421
3422         /* copy from the left data area */
3423         copy_extent_buffer(right, left, btrfs_leaf_data(right) +
3424                      BTRFS_LEAF_DATA_SIZE(root) - push_space,
3425                      btrfs_leaf_data(left) + leaf_data_end(root, left),
3426                      push_space);
3427
3428         memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
3429                               btrfs_item_nr_offset(0),
3430                               right_nritems * sizeof(struct btrfs_item));
3431
3432         /* copy the items from left to right */
3433         copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
3434                    btrfs_item_nr_offset(left_nritems - push_items),
3435                    push_items * sizeof(struct btrfs_item));
3436
3437         /* update the item pointers */
3438         right_nritems += push_items;
3439         btrfs_set_header_nritems(right, right_nritems);
3440         push_space = BTRFS_LEAF_DATA_SIZE(root);
3441         for (i = 0; i < right_nritems; i++) {
3442                 item = btrfs_item_nr(right, i);
3443                 push_space -= btrfs_token_item_size(right, item, &token);
3444                 btrfs_set_token_item_offset(right, item, push_space, &token);
3445         }
3446
3447         left_nritems -= push_items;
3448         btrfs_set_header_nritems(left, left_nritems);
3449
3450         if (left_nritems)
3451                 btrfs_mark_buffer_dirty(left);
3452         else
3453                 clean_tree_block(trans, root, left);
3454
3455         btrfs_mark_buffer_dirty(right);
3456
3457         btrfs_item_key(right, &disk_key, 0);
3458         btrfs_set_node_key(upper, &disk_key, slot + 1);
3459         btrfs_mark_buffer_dirty(upper);
3460
3461         /* then fixup the leaf pointer in the path */
3462         if (path->slots[0] >= left_nritems) {
3463                 path->slots[0] -= left_nritems;
3464                 if (btrfs_header_nritems(path->nodes[0]) == 0)
3465                         clean_tree_block(trans, root, path->nodes[0]);
3466                 btrfs_tree_unlock(path->nodes[0]);
3467                 free_extent_buffer(path->nodes[0]);
3468                 path->nodes[0] = right;
3469                 path->slots[1] += 1;
3470         } else {
3471                 btrfs_tree_unlock(right);
3472                 free_extent_buffer(right);
3473         }
3474         return 0;
3475
3476 out_unlock:
3477         btrfs_tree_unlock(right);
3478         free_extent_buffer(right);
3479         return 1;
3480 }
3481
3482 /*
3483  * push some data in the path leaf to the right, trying to free up at
3484  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3485  *
3486  * returns 1 if the push failed because the other node didn't have enough
3487  * room, 0 if everything worked out and < 0 if there were major errors.
3488  *
3489  * this will push starting from min_slot to the end of the leaf.  It won't
3490  * push any slot lower than min_slot
3491  */
3492 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
3493                            *root, struct btrfs_path *path,
3494                            int min_data_size, int data_size,
3495                            int empty, u32 min_slot)
3496 {
3497         struct extent_buffer *left = path->nodes[0];
3498         struct extent_buffer *right;
3499         struct extent_buffer *upper;
3500         int slot;
3501         int free_space;
3502         u32 left_nritems;
3503         int ret;
3504
3505         if (!path->nodes[1])
3506                 return 1;
3507
3508         slot = path->slots[1];
3509         upper = path->nodes[1];
3510         if (slot >= btrfs_header_nritems(upper) - 1)
3511                 return 1;
3512
3513         btrfs_assert_tree_locked(path->nodes[1]);
3514
3515         right = read_node_slot(root, upper, slot + 1);
3516         if (right == NULL)
3517                 return 1;
3518
3519         btrfs_tree_lock(right);
3520         btrfs_set_lock_blocking(right);
3521
3522         free_space = btrfs_leaf_free_space(root, right);
3523         if (free_space < data_size)
3524                 goto out_unlock;
3525
3526         /* cow and double check */
3527         ret = btrfs_cow_block(trans, root, right, upper,
3528                               slot + 1, &right);
3529         if (ret)
3530                 goto out_unlock;
3531
3532         free_space = btrfs_leaf_free_space(root, right);
3533         if (free_space < data_size)
3534                 goto out_unlock;
3535
3536         left_nritems = btrfs_header_nritems(left);
3537         if (left_nritems == 0)
3538                 goto out_unlock;
3539
3540         return __push_leaf_right(trans, root, path, min_data_size, empty,
3541                                 right, free_space, left_nritems, min_slot);
3542 out_unlock:
3543         btrfs_tree_unlock(right);
3544         free_extent_buffer(right);
3545         return 1;
3546 }
3547
3548 /*
3549  * push some data in the path leaf to the left, trying to free up at
3550  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3551  *
3552  * max_slot can put a limit on how far into the leaf we'll push items.  The
3553  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us do all the
3554  * items
3555  */
3556 static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
3557                                      struct btrfs_root *root,
3558                                      struct btrfs_path *path, int data_size,
3559                                      int empty, struct extent_buffer *left,
3560                                      int free_space, u32 right_nritems,
3561                                      u32 max_slot)
3562 {
3563         struct btrfs_disk_key disk_key;
3564         struct extent_buffer *right = path->nodes[0];
3565         int i;
3566         int push_space = 0;
3567         int push_items = 0;
3568         struct btrfs_item *item;
3569         u32 old_left_nritems;
3570         u32 nr;
3571         int ret = 0;
3572         u32 this_item_size;
3573         u32 old_left_item_size;
3574         struct btrfs_map_token token;
3575
3576         btrfs_init_map_token(&token);
3577
3578         if (empty)
3579                 nr = min(right_nritems, max_slot);
3580         else
3581                 nr = min(right_nritems - 1, max_slot);
3582
3583         for (i = 0; i < nr; i++) {
3584                 item = btrfs_item_nr(right, i);
3585
3586                 if (!empty && push_items > 0) {
3587                         if (path->slots[0] < i)
3588                                 break;
3589                         if (path->slots[0] == i) {
3590                                 int space = btrfs_leaf_free_space(root, right);
3591                                 if (space + push_space * 2 > free_space)
3592                                         break;
3593                         }
3594                 }
3595
3596                 if (path->slots[0] == i)
3597                         push_space += data_size;
3598
3599                 this_item_size = btrfs_item_size(right, item);
3600                 if (this_item_size + sizeof(*item) + push_space > free_space)
3601                         break;
3602
3603                 push_items++;
3604                 push_space += this_item_size + sizeof(*item);
3605         }
3606
3607         if (push_items == 0) {
3608                 ret = 1;
3609                 goto out;
3610         }
3611         if (!empty && push_items == btrfs_header_nritems(right))
3612                 WARN_ON(1);
3613
3614         /* push data from right to left */
3615         copy_extent_buffer(left, right,
3616                            btrfs_item_nr_offset(btrfs_header_nritems(left)),
3617                            btrfs_item_nr_offset(0),
3618                            push_items * sizeof(struct btrfs_item));
3619
3620         push_space = BTRFS_LEAF_DATA_SIZE(root) -
3621                      btrfs_item_offset_nr(right, push_items - 1);
3622
3623         copy_extent_buffer(left, right, btrfs_leaf_data(left) +
3624                      leaf_data_end(root, left) - push_space,
3625                      btrfs_leaf_data(right) +
3626                      btrfs_item_offset_nr(right, push_items - 1),
3627                      push_space);
3628         old_left_nritems = btrfs_header_nritems(left);
3629         BUG_ON(old_left_nritems <= 0);
3630
3631         old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
3632         for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3633                 u32 ioff;
3634
3635                 item = btrfs_item_nr(left, i);
3636
3637                 ioff = btrfs_token_item_offset(left, item, &token);
3638                 btrfs_set_token_item_offset(left, item,
3639                       ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size),
3640                       &token);
3641         }
3642         btrfs_set_header_nritems(left, old_left_nritems + push_items);
3643
3644         /* fixup right node */
3645         if (push_items > right_nritems)
3646                 WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
3647                        right_nritems);
3648
3649         if (push_items < right_nritems) {
3650                 push_space = btrfs_item_offset_nr(right, push_items - 1) -
3651                                                   leaf_data_end(root, right);
3652                 memmove_extent_buffer(right, btrfs_leaf_data(right) +
3653                                       BTRFS_LEAF_DATA_SIZE(root) - push_space,
3654                                       btrfs_leaf_data(right) +
3655                                       leaf_data_end(root, right), push_space);
3656
3657                 memmove_extent_buffer(right, btrfs_item_nr_offset(0),
3658                               btrfs_item_nr_offset(push_items),
3659                              (btrfs_header_nritems(right) - push_items) *
3660                              sizeof(struct btrfs_item));
3661         }
3662         right_nritems -= push_items;
3663         btrfs_set_header_nritems(right, right_nritems);
3664         push_space = BTRFS_LEAF_DATA_SIZE(root);
3665         for (i = 0; i < right_nritems; i++) {
3666                 item = btrfs_item_nr(right, i);
3667
3668                 push_space = push_space - btrfs_token_item_size(right,
3669                                                                 item, &token);
3670                 btrfs_set_token_item_offset(right, item, push_space, &token);
3671         }
3672
3673         btrfs_mark_buffer_dirty(left);
3674         if (right_nritems)
3675                 btrfs_mark_buffer_dirty(right);
3676         else
3677                 clean_tree_block(trans, root, right);
3678
3679         btrfs_item_key(right, &disk_key, 0);
3680         fixup_low_keys(trans, root, path, &disk_key, 1);
3681
3682         /* then fixup the leaf pointer in the path */
3683         if (path->slots[0] < push_items) {
3684                 path->slots[0] += old_left_nritems;
3685                 btrfs_tree_unlock(path->nodes[0]);
3686                 free_extent_buffer(path->nodes[0]);
3687                 path->nodes[0] = left;
3688                 path->slots[1] -= 1;
3689         } else {
3690                 btrfs_tree_unlock(left);
3691                 free_extent_buffer(left);
3692                 path->slots[0] -= push_items;
3693         }
3694         BUG_ON(path->slots[0] < 0);
3695         return ret;
3696 out:
3697         btrfs_tree_unlock(left);
3698         free_extent_buffer(left);
3699         return ret;
3700 }
3701
3702 /*
3703  * push some data in the path leaf to the left, trying to free up at
3704  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3705  *
3706  * max_slot can put a limit on how far into the leaf we'll push items.  The
3707  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us push all the
3708  * items
3709  */
3710 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
3711                           *root, struct btrfs_path *path, int min_data_size,
3712                           int data_size, int empty, u32 max_slot)
3713 {
3714         struct extent_buffer *right = path->nodes[0];
3715         struct extent_buffer *left;
3716         int slot;
3717         int free_space;
3718         u32 right_nritems;
3719         int ret = 0;
3720
3721         slot = path->slots[1];
3722         if (slot == 0)
3723                 return 1;
3724         if (!path->nodes[1])
3725                 return 1;
3726
3727         right_nritems = btrfs_header_nritems(right);
3728         if (right_nritems == 0)
3729                 return 1;
3730
3731         btrfs_assert_tree_locked(path->nodes[1]);
3732
3733         left = read_node_slot(root, path->nodes[1], slot - 1);
3734         if (left == NULL)
3735                 return 1;
3736
3737         btrfs_tree_lock(left);
3738         btrfs_set_lock_blocking(left);
3739
3740         free_space = btrfs_leaf_free_space(root, left);
3741         if (free_space < data_size) {
3742                 ret = 1;
3743                 goto out;
3744         }
3745
3746         /* cow and double check */
3747         ret = btrfs_cow_block(trans, root, left,
3748                               path->nodes[1], slot - 1, &left);
3749         if (ret) {
3750                 /* we hit -ENOSPC, but it isn't fatal here */
3751                 if (ret == -ENOSPC)
3752                         ret = 1;
3753                 goto out;
3754         }
3755
3756         free_space = btrfs_leaf_free_space(root, left);
3757         if (free_space < data_size) {
3758                 ret = 1;
3759                 goto out;
3760         }
3761
3762         return __push_leaf_left(trans, root, path, min_data_size,
3763                                empty, left, free_space, right_nritems,
3764                                max_slot);
3765 out:
3766         btrfs_tree_unlock(left);
3767         free_extent_buffer(left);
3768         return ret;
3769 }
3770
3771 /*
3772  * split the path's leaf in two, making sure there is at least data_size
3773  * available for the resulting leaf level of the path.
3774  */
3775 static noinline void copy_for_split(struct btrfs_trans_handle *trans,
3776                                     struct btrfs_root *root,
3777                                     struct btrfs_path *path,
3778                                     struct extent_buffer *l,
3779                                     struct extent_buffer *right,
3780                                     int slot, int mid, int nritems)
3781 {
3782         int data_copy_size;
3783         int rt_data_off;
3784         int i;
3785         struct btrfs_disk_key disk_key;
3786         struct btrfs_map_token token;
3787
3788         btrfs_init_map_token(&token);
3789
3790         nritems = nritems - mid;
3791         btrfs_set_header_nritems(right, nritems);
3792         data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l);
3793
3794         copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
3795                            btrfs_item_nr_offset(mid),
3796                            nritems * sizeof(struct btrfs_item));
3797
3798         copy_extent_buffer(right, l,
3799                      btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
3800                      data_copy_size, btrfs_leaf_data(l) +
3801                      leaf_data_end(root, l), data_copy_size);
3802
3803         rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
3804                       btrfs_item_end_nr(l, mid);
3805
3806         for (i = 0; i < nritems; i++) {
3807                 struct btrfs_item *item = btrfs_item_nr(right, i);
3808                 u32 ioff;
3809
3810                 ioff = btrfs_token_item_offset(right, item, &token);
3811                 btrfs_set_token_item_offset(right, item,
3812                                             ioff + rt_data_off, &token);
3813         }
3814
3815         btrfs_set_header_nritems(l, mid);
3816         btrfs_item_key(right, &disk_key, 0);
3817         insert_ptr(trans, root, path, &disk_key, right->start,
3818                    path->slots[1] + 1, 1);
3819
3820         btrfs_mark_buffer_dirty(right);
3821         btrfs_mark_buffer_dirty(l);
3822         BUG_ON(path->slots[0] != slot);
3823
3824         if (mid <= slot) {
3825                 btrfs_tree_unlock(path->nodes[0]);
3826                 free_extent_buffer(path->nodes[0]);
3827                 path->nodes[0] = right;
3828                 path->slots[0] -= mid;
3829                 path->slots[1] += 1;
3830         } else {
3831                 btrfs_tree_unlock(right);
3832                 free_extent_buffer(right);
3833         }
3834
3835         BUG_ON(path->slots[0] < 0);
3836 }
3837
3838 /*
3839  * double splits happen when we need to insert a big item in the middle
3840  * of a leaf.  A double split can leave us with 3 mostly empty leaves:
3841  * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
3842  *          A                 B                 C
3843  *
3844  * We avoid this by trying to push the items on either side of our target
3845  * into the adjacent leaves.  If all goes well we can avoid the double split
3846  * completely.
3847  */
3848 static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
3849                                           struct btrfs_root *root,
3850                                           struct btrfs_path *path,
3851                                           int data_size)
3852 {
3853         int ret;
3854         int progress = 0;
3855         int slot;
3856         u32 nritems;
3857
3858         slot = path->slots[0];
3859
3860         /*
3861          * try to push all the items after our slot into the
3862          * right leaf
3863          */
3864         ret = push_leaf_right(trans, root, path, 1, data_size, 0, slot);
3865         if (ret < 0)
3866                 return ret;
3867
3868         if (ret == 0)
3869                 progress++;
3870
3871         nritems = btrfs_header_nritems(path->nodes[0]);
3872         /*
3873          * our goal is to get our slot at the start or end of a leaf.  If
3874          * we've done so we're done
3875          */
3876         if (path->slots[0] == 0 || path->slots[0] == nritems)
3877                 return 0;
3878
3879         if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
3880                 return 0;
3881
3882         /* try to push all the items before our slot into the next leaf */
3883         slot = path->slots[0];
3884         ret = push_leaf_left(trans, root, path, 1, data_size, 0, slot);
3885         if (ret < 0)
3886                 return ret;
3887
3888         if (ret == 0)
3889                 progress++;
3890
3891         if (progress)
3892                 return 0;
3893         return 1;
3894 }
3895
3896 /*
3897  * split the path's leaf in two, making sure there is at least data_size
3898  * available for the resulting leaf level of the path.
3899  *
3900  * returns 0 if all went well and < 0 on failure.
3901  */
3902 static noinline int split_leaf(struct btrfs_trans_handle *trans,
3903                                struct btrfs_root *root,
3904                                struct btrfs_key *ins_key,
3905                                struct btrfs_path *path, int data_size,
3906                                int extend)
3907 {
3908         struct btrfs_disk_key disk_key;
3909         struct extent_buffer *l;
3910         u32 nritems;
3911         int mid;
3912         int slot;
3913         struct extent_buffer *right;
3914         int ret = 0;
3915         int wret;
3916         int split;
3917         int num_doubles = 0;
3918         int tried_avoid_double = 0;
3919
3920         l = path->nodes[0];
3921         slot = path->slots[0];
3922         if (extend && data_size + btrfs_item_size_nr(l, slot) +
3923             sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(root))
3924                 return -EOVERFLOW;
3925
3926         /* first try to make some room by pushing left and right */
3927         if (data_size) {
3928                 wret = push_leaf_right(trans, root, path, data_size,
3929                                        data_size, 0, 0);
3930                 if (wret < 0)
3931                         return wret;
3932                 if (wret) {
3933                         wret = push_leaf_left(trans, root, path, data_size,
3934                                               data_size, 0, (u32)-1);
3935                         if (wret < 0)
3936                                 return wret;
3937                 }
3938                 l = path->nodes[0];
3939
3940                 /* did the pushes work? */
3941                 if (btrfs_leaf_free_space(root, l) >= data_size)
3942                         return 0;
3943         }
3944
3945         if (!path->nodes[1]) {
3946                 ret = insert_new_root(trans, root, path, 1);
3947                 if (ret)
3948                         return ret;
3949         }
3950 again:
3951         split = 1;
3952         l = path->nodes[0];
3953         slot = path->slots[0];
3954         nritems = btrfs_header_nritems(l);
3955         mid = (nritems + 1) / 2;
3956
3957         if (mid <= slot) {
3958                 if (nritems == 1 ||
3959                     leaf_space_used(l, mid, nritems - mid) + data_size >
3960                         BTRFS_LEAF_DATA_SIZE(root)) {
3961                         if (slot >= nritems) {
3962                                 split = 0;
3963                         } else {
3964                                 mid = slot;
3965                                 if (mid != nritems &&
3966                                     leaf_space_used(l, mid, nritems - mid) +
3967                                     data_size > BTRFS_LEAF_DATA_SIZE(root)) {
3968                                         if (data_size && !tried_avoid_double)
3969                                                 goto push_for_double;
3970                                         split = 2;
3971                                 }
3972                         }
3973                 }
3974         } else {
3975                 if (leaf_space_used(l, 0, mid) + data_size >
3976                         BTRFS_LEAF_DATA_SIZE(root)) {
3977                         if (!extend && data_size && slot == 0) {
3978                                 split = 0;
3979                         } else if ((extend || !data_size) && slot == 0) {
3980                                 mid = 1;
3981                         } else {
3982                                 mid = slot;
3983                                 if (mid != nritems &&
3984                                     leaf_space_used(l, mid, nritems - mid) +
3985                                     data_size > BTRFS_LEAF_DATA_SIZE(root)) {
3986                                         if (data_size && !tried_avoid_double)
3987                                                 goto push_for_double;
3988                                         split = 2 ;
3989                                 }
3990                         }
3991                 }
3992         }
3993
3994         if (split == 0)
3995                 btrfs_cpu_key_to_disk(&disk_key, ins_key);
3996         else
3997                 btrfs_item_key(l, &disk_key, mid);
3998
3999         right = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
4000                                         root->root_key.objectid,
4001                                         &disk_key, 0, l->start, 0);
4002         if (IS_ERR(right))
4003                 return PTR_ERR(right);
4004
4005         root_add_used(root, root->leafsize);
4006
4007         memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header));
4008         btrfs_set_header_bytenr(right, right->start);
4009         btrfs_set_header_generation(right, trans->transid);
4010         btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV);
4011         btrfs_set_header_owner(right, root->root_key.objectid);
4012         btrfs_set_header_level(right, 0);
4013         write_extent_buffer(right, root->fs_info->fsid,
4014                             (unsigned long)btrfs_header_fsid(right),
4015                             BTRFS_FSID_SIZE);
4016
4017         write_extent_buffer(right, root->fs_info->chunk_tree_uuid,
4018                             (unsigned long)btrfs_header_chunk_tree_uuid(right),
4019                             BTRFS_UUID_SIZE);
4020
4021         if (split == 0) {
4022                 if (mid <= slot) {
4023                         btrfs_set_header_nritems(right, 0);
4024                         insert_ptr(trans, root, path, &disk_key, right->start,
4025                                    path->slots[1] + 1, 1);
4026                         btrfs_tree_unlock(path->nodes[0]);
4027                         free_extent_buffer(path->nodes[0]);
4028                         path->nodes[0] = right;
4029                         path->slots[0] = 0;
4030                         path->slots[1] += 1;
4031                 } else {
4032                         btrfs_set_header_nritems(right, 0);
4033                         insert_ptr(trans, root, path, &disk_key, right->start,
4034                                           path->slots[1], 1);
4035                         btrfs_tree_unlock(path->nodes[0]);
4036                         free_extent_buffer(path->nodes[0]);
4037                         path->nodes[0] = right;
4038                         path->slots[0] = 0;
4039                         if (path->slots[1] == 0)
4040                                 fixup_low_keys(trans, root, path,
4041                                                &disk_key, 1);
4042                 }
4043                 btrfs_mark_buffer_dirty(right);
4044                 return ret;
4045         }
4046
4047         copy_for_split(trans, root, path, l, right, slot, mid, nritems);
4048
4049         if (split == 2) {
4050                 BUG_ON(num_doubles != 0);
4051                 num_doubles++;
4052                 goto again;
4053         }
4054
4055         return 0;
4056
4057 push_for_double:
4058         push_for_double_split(trans, root, path, data_size);
4059         tried_avoid_double = 1;
4060         if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
4061                 return 0;
4062         goto again;
4063 }
4064
4065 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
4066                                          struct btrfs_root *root,
4067                                          struct btrfs_path *path, int ins_len)
4068 {
4069         struct btrfs_key key;
4070         struct extent_buffer *leaf;
4071         struct btrfs_file_extent_item *fi;
4072         u64 extent_len = 0;
4073         u32 item_size;
4074         int ret;
4075
4076         leaf = path->nodes[0];
4077         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4078
4079         BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
4080                key.type != BTRFS_EXTENT_CSUM_KEY);
4081
4082         if (btrfs_leaf_free_space(root, leaf) >= ins_len)
4083                 return 0;
4084
4085         item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4086         if (key.type == BTRFS_EXTENT_DATA_KEY) {
4087                 fi = btrfs_item_ptr(leaf, path->slots[0],
4088                                     struct btrfs_file_extent_item);
4089                 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
4090         }
4091         btrfs_release_path(path);
4092
4093         path->keep_locks = 1;
4094         path->search_for_split = 1;
4095         ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
4096         path->search_for_split = 0;
4097         if (ret < 0)
4098                 goto err;
4099
4100         ret = -EAGAIN;
4101         leaf = path->nodes[0];
4102         /* if our item isn't there or got smaller, return now */
4103         if (ret > 0 || item_size != btrfs_item_size_nr(leaf, path->slots[0]))
4104                 goto err;
4105
4106         /* the leaf has  changed, it now has room.  return now */
4107         if (btrfs_leaf_free_space(root, path->nodes[0]) >= ins_len)
4108                 goto err;
4109
4110         if (key.type == BTRFS_EXTENT_DATA_KEY) {
4111                 fi = btrfs_item_ptr(leaf, path->slots[0],
4112                                     struct btrfs_file_extent_item);
4113                 if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
4114                         goto err;
4115         }
4116
4117         btrfs_set_path_blocking(path);
4118         ret = split_leaf(trans, root, &key, path, ins_len, 1);
4119         if (ret)
4120                 goto err;
4121
4122         path->keep_locks = 0;
4123         btrfs_unlock_up_safe(path, 1);
4124         return 0;
4125 err:
4126         path->keep_locks = 0;
4127         return ret;
4128 }
4129
4130 static noinline int split_item(struct btrfs_trans_handle *trans,
4131                                struct btrfs_root *root,
4132                                struct btrfs_path *path,
4133                                struct btrfs_key *new_key,
4134                                unsigned long split_offset)
4135 {
4136         struct extent_buffer *leaf;
4137         struct btrfs_item *item;
4138         struct btrfs_item *new_item;
4139         int slot;
4140         char *buf;
4141         u32 nritems;
4142         u32 item_size;
4143         u32 orig_offset;
4144         struct btrfs_disk_key disk_key;
4145
4146         leaf = path->nodes[0];
4147         BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item));
4148
4149         btrfs_set_path_blocking(path);
4150
4151         item = btrfs_item_nr(leaf, path->slots[0]);
4152         orig_offset = btrfs_item_offset(leaf, item);
4153         item_size = btrfs_item_size(leaf, item);
4154
4155         buf = kmalloc(item_size, GFP_NOFS);
4156         if (!buf)
4157                 return -ENOMEM;
4158
4159         read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
4160                             path->slots[0]), item_size);
4161
4162         slot = path->slots[0] + 1;
4163         nritems = btrfs_header_nritems(leaf);
4164         if (slot != nritems) {
4165                 /* shift the items */
4166                 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
4167                                 btrfs_item_nr_offset(slot),
4168                                 (nritems - slot) * sizeof(struct btrfs_item));
4169         }
4170
4171         btrfs_cpu_key_to_disk(&disk_key, new_key);
4172         btrfs_set_item_key(leaf, &disk_key, slot);
4173
4174         new_item = btrfs_item_nr(leaf, slot);
4175
4176         btrfs_set_item_offset(leaf, new_item, orig_offset);
4177         btrfs_set_item_size(leaf, new_item, item_size - split_offset);
4178
4179         btrfs_set_item_offset(leaf, item,
4180                               orig_offset + item_size - split_offset);
4181         btrfs_set_item_size(leaf, item, split_offset);
4182
4183         btrfs_set_header_nritems(leaf, nritems + 1);
4184
4185         /* write the data for the start of the original item */
4186         write_extent_buffer(leaf, buf,
4187                             btrfs_item_ptr_offset(leaf, path->slots[0]),
4188                             split_offset);
4189
4190         /* write the data for the new item */
4191         write_extent_buffer(leaf, buf + split_offset,
4192                             btrfs_item_ptr_offset(leaf, slot),
4193                             item_size - split_offset);
4194         btrfs_mark_buffer_dirty(leaf);
4195
4196         BUG_ON(btrfs_leaf_free_space(root, leaf) < 0);
4197         kfree(buf);
4198         return 0;
4199 }
4200
4201 /*
4202  * This function splits a single item into two items,
4203  * giving 'new_key' to the new item and splitting the
4204  * old one at split_offset (from the start of the item).
4205  *
4206  * The path may be released by this operation.  After
4207  * the split, the path is pointing to the old item.  The
4208  * new item is going to be in the same node as the old one.
4209  *
4210  * Note, the item being split must be smaller enough to live alone on
4211  * a tree block with room for one extra struct btrfs_item
4212  *
4213  * This allows us to split the item in place, keeping a lock on the
4214  * leaf the entire time.
4215  */
4216 int btrfs_split_item(struct btrfs_trans_handle *trans,
4217                      struct btrfs_root *root,
4218                      struct btrfs_path *path,
4219                      struct btrfs_key *new_key,
4220                      unsigned long split_offset)
4221 {
4222         int ret;
4223         ret = setup_leaf_for_split(trans, root, path,
4224                                    sizeof(struct btrfs_item));
4225         if (ret)
4226                 return ret;
4227
4228         ret = split_item(trans, root, path, new_key, split_offset);
4229         return ret;
4230 }
4231
4232 /*
4233  * This function duplicate a item, giving 'new_key' to the new item.
4234  * It guarantees both items live in the same tree leaf and the new item
4235  * is contiguous with the original item.
4236  *
4237  * This allows us to split file extent in place, keeping a lock on the
4238  * leaf the entire time.
4239  */
4240 int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4241                          struct btrfs_root *root,
4242                          struct btrfs_path *path,
4243                          struct btrfs_key *new_key)
4244 {
4245         struct extent_buffer *leaf;
4246         int ret;
4247         u32 item_size;
4248
4249         leaf = path->nodes[0];
4250         item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4251         ret = setup_leaf_for_split(trans, root, path,
4252                                    item_size + sizeof(struct btrfs_item));
4253         if (ret)
4254                 return ret;
4255
4256         path->slots[0]++;
4257         setup_items_for_insert(trans, root, path, new_key, &item_size,
4258                                item_size, item_size +
4259                                sizeof(struct btrfs_item), 1);
4260         leaf = path->nodes[0];
4261         memcpy_extent_buffer(leaf,
4262                              btrfs_item_ptr_offset(leaf, path->slots[0]),
4263                              btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4264                              item_size);
4265         return 0;
4266 }
4267
4268 /*
4269  * make the item pointed to by the path smaller.  new_size indicates
4270  * how small to make it, and from_end tells us if we just chop bytes
4271  * off the end of the item or if we shift the item to chop bytes off
4272  * the front.
4273  */
4274 void btrfs_truncate_item(struct btrfs_trans_handle *trans,
4275                          struct btrfs_root *root,
4276                          struct btrfs_path *path,
4277                          u32 new_size, int from_end)
4278 {
4279         int slot;
4280         struct extent_buffer *leaf;
4281         struct btrfs_item *item;
4282         u32 nritems;
4283         unsigned int data_end;
4284         unsigned int old_data_start;
4285         unsigned int old_size;
4286         unsigned int size_diff;
4287         int i;
4288         struct btrfs_map_token token;
4289
4290         btrfs_init_map_token(&token);
4291
4292         leaf = path->nodes[0];
4293         slot = path->slots[0];
4294
4295         old_size = btrfs_item_size_nr(leaf, slot);
4296         if (old_size == new_size)
4297                 return;
4298
4299         nritems = btrfs_header_nritems(leaf);
4300         data_end = leaf_data_end(root, leaf);
4301
4302         old_data_start = btrfs_item_offset_nr(leaf, slot);
4303
4304         size_diff = old_size - new_size;
4305
4306         BUG_ON(slot < 0);
4307         BUG_ON(slot >= nritems);
4308
4309         /*
4310          * item0..itemN ... dataN.offset..dataN.size .. data0.size
4311          */
4312         /* first correct the data pointers */
4313         for (i = slot; i < nritems; i++) {
4314                 u32 ioff;
4315                 item = btrfs_item_nr(leaf, i);
4316
4317                 ioff = btrfs_token_item_offset(leaf, item, &token);
4318                 btrfs_set_token_item_offset(leaf, item,
4319                                             ioff + size_diff, &token);
4320         }
4321
4322         /* shift the data */
4323         if (from_end) {
4324                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4325                               data_end + size_diff, btrfs_leaf_data(leaf) +
4326                               data_end, old_data_start + new_size - data_end);
4327         } else {
4328                 struct btrfs_disk_key disk_key;
4329                 u64 offset;
4330
4331                 btrfs_item_key(leaf, &disk_key, slot);
4332
4333                 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
4334                         unsigned long ptr;
4335                         struct btrfs_file_extent_item *fi;
4336
4337                         fi = btrfs_item_ptr(leaf, slot,
4338                                             struct btrfs_file_extent_item);
4339                         fi = (struct btrfs_file_extent_item *)(
4340                              (unsigned long)fi - size_diff);
4341
4342                         if (btrfs_file_extent_type(leaf, fi) ==
4343                             BTRFS_FILE_EXTENT_INLINE) {
4344                                 ptr = btrfs_item_ptr_offset(leaf, slot);
4345                                 memmove_extent_buffer(leaf, ptr,
4346                                       (unsigned long)fi,
4347                                       offsetof(struct btrfs_file_extent_item,
4348                                                  disk_bytenr));
4349                         }
4350                 }
4351
4352                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4353                               data_end + size_diff, btrfs_leaf_data(leaf) +
4354                               data_end, old_data_start - data_end);
4355
4356                 offset = btrfs_disk_key_offset(&disk_key);
4357                 btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
4358                 btrfs_set_item_key(leaf, &disk_key, slot);
4359                 if (slot == 0)
4360                         fixup_low_keys(trans, root, path, &disk_key, 1);
4361         }
4362
4363         item = btrfs_item_nr(leaf, slot);
4364         btrfs_set_item_size(leaf, item, new_size);
4365         btrfs_mark_buffer_dirty(leaf);
4366
4367         if (btrfs_leaf_free_space(root, leaf) < 0) {
4368                 btrfs_print_leaf(root, leaf);
4369                 BUG();
4370         }
4371 }
4372
4373 /*
4374  * make the item pointed to by the path bigger, data_size is the new size.
4375  */
4376 void btrfs_extend_item(struct btrfs_trans_handle *trans,
4377                        struct btrfs_root *root, struct btrfs_path *path,
4378                        u32 data_size)
4379 {
4380         int slot;
4381         struct extent_buffer *leaf;
4382         struct btrfs_item *item;
4383         u32 nritems;
4384         unsigned int data_end;
4385         unsigned int old_data;
4386         unsigned int old_size;
4387         int i;
4388         struct btrfs_map_token token;
4389
4390         btrfs_init_map_token(&token);
4391
4392         leaf = path->nodes[0];
4393
4394         nritems = btrfs_header_nritems(leaf);
4395         data_end = leaf_data_end(root, leaf);
4396
4397         if (btrfs_leaf_free_space(root, leaf) < data_size) {
4398                 btrfs_print_leaf(root, leaf);
4399                 BUG();
4400         }
4401         slot = path->slots[0];
4402         old_data = btrfs_item_end_nr(leaf, slot);
4403
4404         BUG_ON(slot < 0);
4405         if (slot >= nritems) {
4406                 btrfs_print_leaf(root, leaf);
4407                 printk(KERN_CRIT "slot %d too large, nritems %d\n",
4408                        slot, nritems);
4409                 BUG_ON(1);
4410         }
4411
4412         /*
4413          * item0..itemN ... dataN.offset..dataN.size .. data0.size
4414          */
4415         /* first correct the data pointers */
4416         for (i = slot; i < nritems; i++) {
4417                 u32 ioff;
4418                 item = btrfs_item_nr(leaf, i);
4419
4420                 ioff = btrfs_token_item_offset(leaf, item, &token);
4421                 btrfs_set_token_item_offset(leaf, item,
4422                                             ioff - data_size, &token);
4423         }
4424
4425         /* shift the data */
4426         memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4427                       data_end - data_size, btrfs_leaf_data(leaf) +
4428                       data_end, old_data - data_end);
4429
4430         data_end = old_data;
4431         old_size = btrfs_item_size_nr(leaf, slot);
4432         item = btrfs_item_nr(leaf, slot);
4433         btrfs_set_item_size(leaf, item, old_size + data_size);
4434         btrfs_mark_buffer_dirty(leaf);
4435
4436         if (btrfs_leaf_free_space(root, leaf) < 0) {
4437                 btrfs_print_leaf(root, leaf);
4438                 BUG();
4439         }
4440 }
4441
4442 /*
4443  * this is a helper for btrfs_insert_empty_items, the main goal here is
4444  * to save stack depth by doing the bulk of the work in a function
4445  * that doesn't call btrfs_search_slot
4446  */
4447 void setup_items_for_insert(struct btrfs_trans_handle *trans,
4448                             struct btrfs_root *root, struct btrfs_path *path,
4449                             struct btrfs_key *cpu_key, u32 *data_size,
4450                             u32 total_data, u32 total_size, int nr)
4451 {
4452         struct btrfs_item *item;
4453         int i;
4454         u32 nritems;
4455         unsigned int data_end;
4456         struct btrfs_disk_key disk_key;
4457         struct extent_buffer *leaf;
4458         int slot;
4459         struct btrfs_map_token token;
4460
4461         btrfs_init_map_token(&token);
4462
4463         leaf = path->nodes[0];
4464         slot = path->slots[0];
4465
4466         nritems = btrfs_header_nritems(leaf);
4467         data_end = leaf_data_end(root, leaf);
4468
4469         if (btrfs_leaf_free_space(root, leaf) < total_size) {
4470                 btrfs_print_leaf(root, leaf);
4471                 printk(KERN_CRIT "not enough freespace need %u have %d\n",
4472                        total_size, btrfs_leaf_free_space(root, leaf));
4473                 BUG();
4474         }
4475
4476         if (slot != nritems) {
4477                 unsigned int old_data = btrfs_item_end_nr(leaf, slot);
4478
4479                 if (old_data < data_end) {
4480                         btrfs_print_leaf(root, leaf);
4481                         printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
4482                                slot, old_data, data_end);
4483                         BUG_ON(1);
4484                 }
4485                 /*
4486                  * item0..itemN ... dataN.offset..dataN.size .. data0.size
4487                  */
4488                 /* first correct the data pointers */
4489                 for (i = slot; i < nritems; i++) {
4490                         u32 ioff;
4491
4492                         item = btrfs_item_nr(leaf, i);
4493                         ioff = btrfs_token_item_offset(leaf, item, &token);
4494                         btrfs_set_token_item_offset(leaf, item,
4495                                                     ioff - total_data, &token);
4496                 }
4497                 /* shift the items */
4498                 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
4499                               btrfs_item_nr_offset(slot),
4500                               (nritems - slot) * sizeof(struct btrfs_item));
4501
4502                 /* shift the data */
4503                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4504                               data_end - total_data, btrfs_leaf_data(leaf) +
4505                               data_end, old_data - data_end);
4506                 data_end = old_data;
4507         }
4508
4509         /* setup the item for the new data */
4510         for (i = 0; i < nr; i++) {
4511                 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
4512                 btrfs_set_item_key(leaf, &disk_key, slot + i);
4513                 item = btrfs_item_nr(leaf, slot + i);
4514                 btrfs_set_token_item_offset(leaf, item,
4515                                             data_end - data_size[i], &token);
4516                 data_end -= data_size[i];
4517                 btrfs_set_token_item_size(leaf, item, data_size[i], &token);
4518         }
4519
4520         btrfs_set_header_nritems(leaf, nritems + nr);
4521
4522         if (slot == 0) {
4523                 btrfs_cpu_key_to_disk(&disk_key, cpu_key);
4524                 fixup_low_keys(trans, root, path, &disk_key, 1);
4525         }
4526         btrfs_unlock_up_safe(path, 1);
4527         btrfs_mark_buffer_dirty(leaf);
4528
4529         if (btrfs_leaf_free_space(root, leaf) < 0) {
4530                 btrfs_print_leaf(root, leaf);
4531                 BUG();
4532         }
4533 }
4534
4535 /*
4536  * Given a key and some data, insert items into the tree.
4537  * This does all the path init required, making room in the tree if needed.
4538  */
4539 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4540                             struct btrfs_root *root,
4541                             struct btrfs_path *path,
4542                             struct btrfs_key *cpu_key, u32 *data_size,
4543                             int nr)
4544 {
4545         int ret = 0;
4546         int slot;
4547         int i;
4548         u32 total_size = 0;
4549         u32 total_data = 0;
4550
4551         for (i = 0; i < nr; i++)
4552                 total_data += data_size[i];
4553
4554         total_size = total_data + (nr * sizeof(struct btrfs_item));
4555         ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
4556         if (ret == 0)
4557                 return -EEXIST;
4558         if (ret < 0)
4559                 return ret;
4560
4561         slot = path->slots[0];
4562         BUG_ON(slot < 0);
4563
4564         setup_items_for_insert(trans, root, path, cpu_key, data_size,
4565                                total_data, total_size, nr);
4566         return 0;
4567 }
4568
4569 /*
4570  * Given a key and some data, insert an item into the tree.
4571  * This does all the path init required, making room in the tree if needed.
4572  */
4573 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
4574                       *root, struct btrfs_key *cpu_key, void *data, u32
4575                       data_size)
4576 {
4577         int ret = 0;
4578         struct btrfs_path *path;
4579         struct extent_buffer *leaf;
4580         unsigned long ptr;
4581
4582         path = btrfs_alloc_path();
4583         if (!path)
4584                 return -ENOMEM;
4585         ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4586         if (!ret) {
4587                 leaf = path->nodes[0];
4588                 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4589                 write_extent_buffer(leaf, data, ptr, data_size);
4590                 btrfs_mark_buffer_dirty(leaf);
4591         }
4592         btrfs_free_path(path);
4593         return ret;
4594 }
4595
4596 /*
4597  * delete the pointer from a given node.
4598  *
4599  * the tree should have been previously balanced so the deletion does not
4600  * empty a node.
4601  */
4602 static void del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4603                     struct btrfs_path *path, int level, int slot)
4604 {
4605         struct extent_buffer *parent = path->nodes[level];
4606         u32 nritems;
4607         int ret;
4608
4609         nritems = btrfs_header_nritems(parent);
4610         if (slot != nritems - 1) {
4611                 if (level)
4612                         tree_mod_log_eb_move(root->fs_info, parent, slot,
4613                                              slot + 1, nritems - slot - 1);
4614                 memmove_extent_buffer(parent,
4615                               btrfs_node_key_ptr_offset(slot),
4616                               btrfs_node_key_ptr_offset(slot + 1),
4617                               sizeof(struct btrfs_key_ptr) *
4618                               (nritems - slot - 1));
4619         } else if (level) {
4620                 ret = tree_mod_log_insert_key(root->fs_info, parent, slot,
4621                                               MOD_LOG_KEY_REMOVE);
4622                 BUG_ON(ret < 0);
4623         }
4624
4625         nritems--;
4626         btrfs_set_header_nritems(parent, nritems);
4627         if (nritems == 0 && parent == root->node) {
4628                 BUG_ON(btrfs_header_level(root->node) != 1);
4629                 /* just turn the root into a leaf and break */
4630                 btrfs_set_header_level(root->node, 0);
4631         } else if (slot == 0) {
4632                 struct btrfs_disk_key disk_key;
4633
4634                 btrfs_node_key(parent, &disk_key, 0);
4635                 fixup_low_keys(trans, root, path, &disk_key, level + 1);
4636         }
4637         btrfs_mark_buffer_dirty(parent);
4638 }
4639
4640 /*
4641  * a helper function to delete the leaf pointed to by path->slots[1] and
4642  * path->nodes[1].
4643  *
4644  * This deletes the pointer in path->nodes[1] and frees the leaf
4645  * block extent.  zero is returned if it all worked out, < 0 otherwise.
4646  *
4647  * The path must have already been setup for deleting the leaf, including
4648  * all the proper balancing.  path->nodes[1] must be locked.
4649  */
4650 static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
4651                                     struct btrfs_root *root,
4652                                     struct btrfs_path *path,
4653                                     struct extent_buffer *leaf)
4654 {
4655         WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4656         del_ptr(trans, root, path, 1, path->slots[1]);
4657
4658         /*
4659          * btrfs_free_extent is expensive, we want to make sure we
4660          * aren't holding any locks when we call it
4661          */
4662         btrfs_unlock_up_safe(path, 0);
4663
4664         root_sub_used(root, leaf->len);
4665
4666         extent_buffer_get(leaf);
4667         btrfs_free_tree_block(trans, root, leaf, 0, 1);
4668         free_extent_buffer_stale(leaf);
4669 }
4670 /*
4671  * delete the item at the leaf level in path.  If that empties
4672  * the leaf, remove it from the tree
4673  */
4674 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4675                     struct btrfs_path *path, int slot, int nr)
4676 {
4677         struct extent_buffer *leaf;
4678         struct btrfs_item *item;
4679         int last_off;
4680         int dsize = 0;
4681         int ret = 0;
4682         int wret;
4683         int i;
4684         u32 nritems;
4685         struct btrfs_map_token token;
4686
4687         btrfs_init_map_token(&token);
4688
4689         leaf = path->nodes[0];
4690         last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
4691
4692         for (i = 0; i < nr; i++)
4693                 dsize += btrfs_item_size_nr(leaf, slot + i);
4694
4695         nritems = btrfs_header_nritems(leaf);
4696
4697         if (slot + nr != nritems) {
4698                 int data_end = leaf_data_end(root, leaf);
4699
4700                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4701                               data_end + dsize,
4702                               btrfs_leaf_data(leaf) + data_end,
4703                               last_off - data_end);
4704
4705                 for (i = slot + nr; i < nritems; i++) {
4706                         u32 ioff;
4707
4708                         item = btrfs_item_nr(leaf, i);
4709                         ioff = btrfs_token_item_offset(leaf, item, &token);
4710                         btrfs_set_token_item_offset(leaf, item,
4711                                                     ioff + dsize, &token);
4712                 }
4713
4714                 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
4715                               btrfs_item_nr_offset(slot + nr),
4716                               sizeof(struct btrfs_item) *
4717                               (nritems - slot - nr));
4718         }
4719         btrfs_set_header_nritems(leaf, nritems - nr);
4720         nritems -= nr;
4721
4722         /* delete the leaf if we've emptied it */
4723         if (nritems == 0) {
4724                 if (leaf == root->node) {
4725                         btrfs_set_header_level(leaf, 0);
4726                 } else {
4727                         btrfs_set_path_blocking(path);
4728                         clean_tree_block(trans, root, leaf);
4729                         btrfs_del_leaf(trans, root, path, leaf);
4730                 }
4731         } else {
4732                 int used = leaf_space_used(leaf, 0, nritems);
4733                 if (slot == 0) {
4734                         struct btrfs_disk_key disk_key;
4735
4736                         btrfs_item_key(leaf, &disk_key, 0);
4737                         fixup_low_keys(trans, root, path, &disk_key, 1);
4738                 }
4739
4740                 /* delete the leaf if it is mostly empty */
4741                 if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) {
4742                         /* push_leaf_left fixes the path.
4743                          * make sure the path still points to our leaf
4744                          * for possible call to del_ptr below
4745                          */
4746                         slot = path->slots[1];
4747                         extent_buffer_get(leaf);
4748
4749                         btrfs_set_path_blocking(path);
4750                         wret = push_leaf_left(trans, root, path, 1, 1,
4751                                               1, (u32)-1);
4752                         if (wret < 0 && wret != -ENOSPC)
4753                                 ret = wret;
4754
4755                         if (path->nodes[0] == leaf &&
4756                             btrfs_header_nritems(leaf)) {
4757                                 wret = push_leaf_right(trans, root, path, 1,
4758                                                        1, 1, 0);
4759                                 if (wret < 0 && wret != -ENOSPC)
4760                                         ret = wret;
4761                         }
4762
4763                         if (btrfs_header_nritems(leaf) == 0) {
4764                                 path->slots[1] = slot;
4765                                 btrfs_del_leaf(trans, root, path, leaf);
4766                                 free_extent_buffer(leaf);
4767                                 ret = 0;
4768                         } else {
4769                                 /* if we're still in the path, make sure
4770                                  * we're dirty.  Otherwise, one of the
4771                                  * push_leaf functions must have already
4772                                  * dirtied this buffer
4773                                  */
4774                                 if (path->nodes[0] == leaf)
4775                                         btrfs_mark_buffer_dirty(leaf);
4776                                 free_extent_buffer(leaf);
4777                         }
4778                 } else {
4779                         btrfs_mark_buffer_dirty(leaf);
4780                 }
4781         }
4782         return ret;
4783 }
4784
4785 /*
4786  * search the tree again to find a leaf with lesser keys
4787  * returns 0 if it found something or 1 if there are no lesser leaves.
4788  * returns < 0 on io errors.
4789  *
4790  * This may release the path, and so you may lose any locks held at the
4791  * time you call it.
4792  */
4793 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
4794 {
4795         struct btrfs_key key;
4796         struct btrfs_disk_key found_key;
4797         int ret;
4798
4799         btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
4800
4801         if (key.offset > 0)
4802                 key.offset--;
4803         else if (key.type > 0)
4804                 key.type--;
4805         else if (key.objectid > 0)
4806                 key.objectid--;
4807         else
4808                 return 1;
4809
4810         btrfs_release_path(path);
4811         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4812         if (ret < 0)
4813                 return ret;
4814         btrfs_item_key(path->nodes[0], &found_key, 0);
4815         ret = comp_keys(&found_key, &key);
4816         if (ret < 0)
4817                 return 0;
4818         return 1;
4819 }
4820
4821 /*
4822  * A helper function to walk down the tree starting at min_key, and looking
4823  * for nodes or leaves that are have a minimum transaction id.
4824  * This is used by the btree defrag code, and tree logging
4825  *
4826  * This does not cow, but it does stuff the starting key it finds back
4827  * into min_key, so you can call btrfs_search_slot with cow=1 on the
4828  * key and get a writable path.
4829  *
4830  * This does lock as it descends, and path->keep_locks should be set
4831  * to 1 by the caller.
4832  *
4833  * This honors path->lowest_level to prevent descent past a given level
4834  * of the tree.
4835  *
4836  * min_trans indicates the oldest transaction that you are interested
4837  * in walking through.  Any nodes or leaves older than min_trans are
4838  * skipped over (without reading them).
4839  *
4840  * returns zero if something useful was found, < 0 on error and 1 if there
4841  * was nothing in the tree that matched the search criteria.
4842  */
4843 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
4844                          struct btrfs_key *max_key,
4845                          struct btrfs_path *path,
4846                          u64 min_trans)
4847 {
4848         struct extent_buffer *cur;
4849         struct btrfs_key found_key;
4850         int slot;
4851         int sret;
4852         u32 nritems;
4853         int level;
4854         int ret = 1;
4855
4856         WARN_ON(!path->keep_locks);
4857 again:
4858         cur = btrfs_read_lock_root_node(root);
4859         level = btrfs_header_level(cur);
4860         WARN_ON(path->nodes[level]);
4861         path->nodes[level] = cur;
4862         path->locks[level] = BTRFS_READ_LOCK;
4863
4864         if (btrfs_header_generation(cur) < min_trans) {
4865                 ret = 1;
4866                 goto out;
4867         }
4868         while (1) {
4869                 nritems = btrfs_header_nritems(cur);
4870                 level = btrfs_header_level(cur);
4871                 sret = bin_search(cur, min_key, level, &slot);
4872
4873                 /* at the lowest level, we're done, setup the path and exit */
4874                 if (level == path->lowest_level) {
4875                         if (slot >= nritems)
4876                                 goto find_next_key;
4877                         ret = 0;
4878                         path->slots[level] = slot;
4879                         btrfs_item_key_to_cpu(cur, &found_key, slot);
4880                         goto out;
4881                 }
4882                 if (sret && slot > 0)
4883                         slot--;
4884                 /*
4885                  * check this node pointer against the min_trans parameters.
4886                  * If it is too old, old, skip to the next one.
4887                  */
4888                 while (slot < nritems) {
4889                         u64 blockptr;
4890                         u64 gen;
4891
4892                         blockptr = btrfs_node_blockptr(cur, slot);
4893                         gen = btrfs_node_ptr_generation(cur, slot);
4894                         if (gen < min_trans) {
4895                                 slot++;
4896                                 continue;
4897                         }
4898                         break;
4899                 }
4900 find_next_key:
4901                 /*
4902                  * we didn't find a candidate key in this node, walk forward
4903                  * and find another one
4904                  */
4905                 if (slot >= nritems) {
4906                         path->slots[level] = slot;
4907                         btrfs_set_path_blocking(path);
4908                         sret = btrfs_find_next_key(root, path, min_key, level,
4909                                                   min_trans);
4910                         if (sret == 0) {
4911                                 btrfs_release_path(path);
4912                                 goto again;
4913                         } else {
4914                                 goto out;
4915                         }
4916                 }
4917                 /* save our key for returning back */
4918                 btrfs_node_key_to_cpu(cur, &found_key, slot);
4919                 path->slots[level] = slot;
4920                 if (level == path->lowest_level) {
4921                         ret = 0;
4922                         unlock_up(path, level, 1, 0, NULL);
4923                         goto out;
4924                 }
4925                 btrfs_set_path_blocking(path);
4926                 cur = read_node_slot(root, cur, slot);
4927                 BUG_ON(!cur); /* -ENOMEM */
4928
4929                 btrfs_tree_read_lock(cur);
4930
4931                 path->locks[level - 1] = BTRFS_READ_LOCK;
4932                 path->nodes[level - 1] = cur;
4933                 unlock_up(path, level, 1, 0, NULL);
4934                 btrfs_clear_path_blocking(path, NULL, 0);
4935         }
4936 out:
4937         if (ret == 0)
4938                 memcpy(min_key, &found_key, sizeof(found_key));
4939         btrfs_set_path_blocking(path);
4940         return ret;
4941 }
4942
4943 static void tree_move_down(struct btrfs_root *root,
4944                            struct btrfs_path *path,
4945                            int *level, int root_level)
4946 {
4947         BUG_ON(*level == 0);
4948         path->nodes[*level - 1] = read_node_slot(root, path->nodes[*level],
4949                                         path->slots[*level]);
4950         path->slots[*level - 1] = 0;
4951         (*level)--;
4952 }
4953
4954 static int tree_move_next_or_upnext(struct btrfs_root *root,
4955                                     struct btrfs_path *path,
4956                                     int *level, int root_level)
4957 {
4958         int ret = 0;
4959         int nritems;
4960         nritems = btrfs_header_nritems(path->nodes[*level]);
4961
4962         path->slots[*level]++;
4963
4964         while (path->slots[*level] >= nritems) {
4965                 if (*level == root_level)
4966                         return -1;
4967
4968                 /* move upnext */
4969                 path->slots[*level] = 0;
4970                 free_extent_buffer(path->nodes[*level]);
4971                 path->nodes[*level] = NULL;
4972                 (*level)++;
4973                 path->slots[*level]++;
4974
4975                 nritems = btrfs_header_nritems(path->nodes[*level]);
4976                 ret = 1;
4977         }
4978         return ret;
4979 }
4980
4981 /*
4982  * Returns 1 if it had to move up and next. 0 is returned if it moved only next
4983  * or down.
4984  */
4985 static int tree_advance(struct btrfs_root *root,
4986                         struct btrfs_path *path,
4987                         int *level, int root_level,
4988                         int allow_down,
4989                         struct btrfs_key *key)
4990 {
4991         int ret;
4992
4993         if (*level == 0 || !allow_down) {
4994                 ret = tree_move_next_or_upnext(root, path, level, root_level);
4995         } else {
4996                 tree_move_down(root, path, level, root_level);
4997                 ret = 0;
4998         }
4999         if (ret >= 0) {
5000                 if (*level == 0)
5001                         btrfs_item_key_to_cpu(path->nodes[*level], key,
5002                                         path->slots[*level]);
5003                 else
5004                         btrfs_node_key_to_cpu(path->nodes[*level], key,
5005                                         path->slots[*level]);
5006         }
5007         return ret;
5008 }
5009
5010 static int tree_compare_item(struct btrfs_root *left_root,
5011                              struct btrfs_path *left_path,
5012                              struct btrfs_path *right_path,
5013                              char *tmp_buf)
5014 {
5015         int cmp;
5016         int len1, len2;
5017         unsigned long off1, off2;
5018
5019         len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]);
5020         len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]);
5021         if (len1 != len2)
5022                 return 1;
5023
5024         off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]);
5025         off2 = btrfs_item_ptr_offset(right_path->nodes[0],
5026                                 right_path->slots[0]);
5027
5028         read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1);
5029
5030         cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1);
5031         if (cmp)
5032                 return 1;
5033         return 0;
5034 }
5035
5036 #define ADVANCE 1
5037 #define ADVANCE_ONLY_NEXT -1
5038
5039 /*
5040  * This function compares two trees and calls the provided callback for
5041  * every changed/new/deleted item it finds.
5042  * If shared tree blocks are encountered, whole subtrees are skipped, making
5043  * the compare pretty fast on snapshotted subvolumes.
5044  *
5045  * This currently works on commit roots only. As commit roots are read only,
5046  * we don't do any locking. The commit roots are protected with transactions.
5047  * Transactions are ended and rejoined when a commit is tried in between.
5048  *
5049  * This function checks for modifications done to the trees while comparing.
5050  * If it detects a change, it aborts immediately.
5051  */
5052 int btrfs_compare_trees(struct btrfs_root *left_root,
5053                         struct btrfs_root *right_root,
5054                         btrfs_changed_cb_t changed_cb, void *ctx)
5055 {
5056         int ret;
5057         int cmp;
5058         struct btrfs_trans_handle *trans = NULL;
5059         struct btrfs_path *left_path = NULL;
5060         struct btrfs_path *right_path = NULL;
5061         struct btrfs_key left_key;
5062         struct btrfs_key right_key;
5063         char *tmp_buf = NULL;
5064         int left_root_level;
5065         int right_root_level;
5066         int left_level;
5067         int right_level;
5068         int left_end_reached;
5069         int right_end_reached;
5070         int advance_left;
5071         int advance_right;
5072         u64 left_blockptr;
5073         u64 right_blockptr;
5074         u64 left_start_ctransid;
5075         u64 right_start_ctransid;
5076         u64 ctransid;
5077
5078         left_path = btrfs_alloc_path();
5079         if (!left_path) {
5080                 ret = -ENOMEM;
5081                 goto out;
5082         }
5083         right_path = btrfs_alloc_path();
5084         if (!right_path) {
5085                 ret = -ENOMEM;
5086                 goto out;
5087         }
5088
5089         tmp_buf = kmalloc(left_root->leafsize, GFP_NOFS);
5090         if (!tmp_buf) {
5091                 ret = -ENOMEM;
5092                 goto out;
5093         }
5094
5095         left_path->search_commit_root = 1;
5096         left_path->skip_locking = 1;
5097         right_path->search_commit_root = 1;
5098         right_path->skip_locking = 1;
5099
5100         spin_lock(&left_root->root_item_lock);
5101         left_start_ctransid = btrfs_root_ctransid(&left_root->root_item);
5102         spin_unlock(&left_root->root_item_lock);
5103
5104         spin_lock(&right_root->root_item_lock);
5105         right_start_ctransid = btrfs_root_ctransid(&right_root->root_item);
5106         spin_unlock(&right_root->root_item_lock);
5107
5108         trans = btrfs_join_transaction(left_root);
5109         if (IS_ERR(trans)) {
5110                 ret = PTR_ERR(trans);
5111                 trans = NULL;
5112                 goto out;
5113         }
5114
5115         /*
5116          * Strategy: Go to the first items of both trees. Then do
5117          *
5118          * If both trees are at level 0
5119          *   Compare keys of current items
5120          *     If left < right treat left item as new, advance left tree
5121          *       and repeat
5122          *     If left > right treat right item as deleted, advance right tree
5123          *       and repeat
5124          *     If left == right do deep compare of items, treat as changed if
5125          *       needed, advance both trees and repeat
5126          * If both trees are at the same level but not at level 0
5127          *   Compare keys of current nodes/leafs
5128          *     If left < right advance left tree and repeat
5129          *     If left > right advance right tree and repeat
5130          *     If left == right compare blockptrs of the next nodes/leafs
5131          *       If they match advance both trees but stay at the same level
5132          *         and repeat
5133          *       If they don't match advance both trees while allowing to go
5134          *         deeper and repeat
5135          * If tree levels are different
5136          *   Advance the tree that needs it and repeat
5137          *
5138          * Advancing a tree means:
5139          *   If we are at level 0, try to go to the next slot. If that's not
5140          *   possible, go one level up and repeat. Stop when we found a level
5141          *   where we could go to the next slot. We may at this point be on a
5142          *   node or a leaf.
5143          *
5144          *   If we are not at level 0 and not on shared tree blocks, go one
5145          *   level deeper.
5146          *
5147          *   If we are not at level 0 and on shared tree blocks, go one slot to
5148          *   the right if possible or go up and right.
5149          */
5150
5151         left_level = btrfs_header_level(left_root->commit_root);
5152         left_root_level = left_level;
5153         left_path->nodes[left_level] = left_root->commit_root;
5154         extent_buffer_get(left_path->nodes[left_level]);
5155
5156         right_level = btrfs_header_level(right_root->commit_root);
5157         right_root_level = right_level;
5158         right_path->nodes[right_level] = right_root->commit_root;
5159         extent_buffer_get(right_path->nodes[right_level]);
5160
5161         if (left_level == 0)
5162                 btrfs_item_key_to_cpu(left_path->nodes[left_level],
5163                                 &left_key, left_path->slots[left_level]);
5164         else
5165                 btrfs_node_key_to_cpu(left_path->nodes[left_level],
5166                                 &left_key, left_path->slots[left_level]);
5167         if (right_level == 0)
5168                 btrfs_item_key_to_cpu(right_path->nodes[right_level],
5169                                 &right_key, right_path->slots[right_level]);
5170         else
5171                 btrfs_node_key_to_cpu(right_path->nodes[right_level],
5172                                 &right_key, right_path->slots[right_level]);
5173
5174         left_end_reached = right_end_reached = 0;
5175         advance_left = advance_right = 0;
5176
5177         while (1) {
5178                 /*
5179                  * We need to make sure the transaction does not get committed
5180                  * while we do anything on commit roots. This means, we need to
5181                  * join and leave transactions for every item that we process.
5182                  */
5183                 if (trans && btrfs_should_end_transaction(trans, left_root)) {
5184                         btrfs_release_path(left_path);
5185                         btrfs_release_path(right_path);
5186
5187                         ret = btrfs_end_transaction(trans, left_root);
5188                         trans = NULL;
5189                         if (ret < 0)
5190                                 goto out;
5191                 }
5192                 /* now rejoin the transaction */
5193                 if (!trans) {
5194                         trans = btrfs_join_transaction(left_root);
5195                         if (IS_ERR(trans)) {
5196                                 ret = PTR_ERR(trans);
5197                                 trans = NULL;
5198                                 goto out;
5199                         }
5200
5201                         spin_lock(&left_root->root_item_lock);
5202                         ctransid = btrfs_root_ctransid(&left_root->root_item);
5203                         spin_unlock(&left_root->root_item_lock);
5204                         if (ctransid != left_start_ctransid)
5205                                 left_start_ctransid = 0;
5206
5207                         spin_lock(&right_root->root_item_lock);
5208                         ctransid = btrfs_root_ctransid(&right_root->root_item);
5209                         spin_unlock(&right_root->root_item_lock);
5210                         if (ctransid != right_start_ctransid)
5211                                 right_start_ctransid = 0;
5212
5213                         if (!left_start_ctransid || !right_start_ctransid) {
5214                                 WARN(1, KERN_WARNING
5215                                         "btrfs: btrfs_compare_tree detected "
5216                                         "a change in one of the trees while "
5217                                         "iterating. This is probably a "
5218                                         "bug.\n");
5219                                 ret = -EIO;
5220                                 goto out;
5221                         }
5222
5223                         /*
5224                          * the commit root may have changed, so start again
5225                          * where we stopped
5226                          */
5227                         left_path->lowest_level = left_level;
5228                         right_path->lowest_level = right_level;
5229                         ret = btrfs_search_slot(NULL, left_root,
5230                                         &left_key, left_path, 0, 0);
5231                         if (ret < 0)
5232                                 goto out;
5233                         ret = btrfs_search_slot(NULL, right_root,
5234                                         &right_key, right_path, 0, 0);
5235                         if (ret < 0)
5236                                 goto out;
5237                 }
5238
5239                 if (advance_left && !left_end_reached) {
5240                         ret = tree_advance(left_root, left_path, &left_level,
5241                                         left_root_level,
5242                                         advance_left != ADVANCE_ONLY_NEXT,
5243                                         &left_key);
5244                         if (ret < 0)
5245                                 left_end_reached = ADVANCE;
5246                         advance_left = 0;
5247                 }
5248                 if (advance_right && !right_end_reached) {
5249                         ret = tree_advance(right_root, right_path, &right_level,
5250                                         right_root_level,
5251                                         advance_right != ADVANCE_ONLY_NEXT,
5252                                         &right_key);
5253                         if (ret < 0)
5254                                 right_end_reached = ADVANCE;
5255                         advance_right = 0;
5256                 }
5257
5258                 if (left_end_reached && right_end_reached) {
5259                         ret = 0;
5260                         goto out;
5261                 } else if (left_end_reached) {
5262                         if (right_level == 0) {
5263                                 ret = changed_cb(left_root, right_root,
5264                                                 left_path, right_path,
5265                                                 &right_key,
5266                                                 BTRFS_COMPARE_TREE_DELETED,
5267                                                 ctx);
5268                                 if (ret < 0)
5269                                         goto out;
5270                         }
5271                         advance_right = ADVANCE;
5272                         continue;
5273                 } else if (right_end_reached) {
5274                         if (left_level == 0) {
5275                                 ret = changed_cb(left_root, right_root,
5276                                                 left_path, right_path,
5277                                                 &left_key,
5278                                                 BTRFS_COMPARE_TREE_NEW,
5279                                                 ctx);
5280                                 if (ret < 0)
5281                                         goto out;
5282                         }
5283                         advance_left = ADVANCE;
5284                         continue;
5285                 }
5286
5287                 if (left_level == 0 && right_level == 0) {
5288                         cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5289                         if (cmp < 0) {
5290                                 ret = changed_cb(left_root, right_root,
5291                                                 left_path, right_path,
5292                                                 &left_key,
5293                                                 BTRFS_COMPARE_TREE_NEW,
5294                                                 ctx);
5295                                 if (ret < 0)
5296                                         goto out;
5297                                 advance_left = ADVANCE;
5298                         } else if (cmp > 0) {
5299                                 ret = changed_cb(left_root, right_root,
5300                                                 left_path, right_path,
5301                                                 &right_key,
5302                                                 BTRFS_COMPARE_TREE_DELETED,
5303                                                 ctx);
5304                                 if (ret < 0)
5305                                         goto out;
5306                                 advance_right = ADVANCE;
5307                         } else {
5308                                 WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
5309                                 ret = tree_compare_item(left_root, left_path,
5310                                                 right_path, tmp_buf);
5311                                 if (ret) {
5312                                         WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
5313                                         ret = changed_cb(left_root, right_root,
5314                                                 left_path, right_path,
5315                                                 &left_key,
5316                                                 BTRFS_COMPARE_TREE_CHANGED,
5317                                                 ctx);
5318                                         if (ret < 0)
5319                                                 goto out;
5320                                 }
5321                                 advance_left = ADVANCE;
5322                                 advance_right = ADVANCE;
5323                         }
5324                 } else if (left_level == right_level) {
5325                         cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5326                         if (cmp < 0) {
5327                                 advance_left = ADVANCE;
5328                         } else if (cmp > 0) {
5329                                 advance_right = ADVANCE;
5330                         } else {
5331                                 left_blockptr = btrfs_node_blockptr(
5332                                                 left_path->nodes[left_level],
5333                                                 left_path->slots[left_level]);
5334                                 right_blockptr = btrfs_node_blockptr(
5335                                                 right_path->nodes[right_level],
5336                                                 right_path->slots[right_level]);
5337                                 if (left_blockptr == right_blockptr) {
5338                                         /*
5339                                          * As we're on a shared block, don't
5340                                          * allow to go deeper.
5341                                          */
5342                                         advance_left = ADVANCE_ONLY_NEXT;
5343                                         advance_right = ADVANCE_ONLY_NEXT;
5344                                 } else {
5345                                         advance_left = ADVANCE;
5346                                         advance_right = ADVANCE;
5347                                 }
5348                         }
5349                 } else if (left_level < right_level) {
5350                         advance_right = ADVANCE;
5351                 } else {
5352                         advance_left = ADVANCE;
5353                 }
5354         }
5355
5356 out:
5357         btrfs_free_path(left_path);
5358         btrfs_free_path(right_path);
5359         kfree(tmp_buf);
5360
5361         if (trans) {
5362                 if (!ret)
5363                         ret = btrfs_end_transaction(trans, left_root);
5364                 else
5365                         btrfs_end_transaction(trans, left_root);
5366         }
5367
5368         return ret;
5369 }
5370
5371 /*
5372  * this is similar to btrfs_next_leaf, but does not try to preserve
5373  * and fixup the path.  It looks for and returns the next key in the
5374  * tree based on the current path and the min_trans parameters.
5375  *
5376  * 0 is returned if another key is found, < 0 if there are any errors
5377  * and 1 is returned if there are no higher keys in the tree
5378  *
5379  * path->keep_locks should be set to 1 on the search made before
5380  * calling this function.
5381  */
5382 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
5383                         struct btrfs_key *key, int level, u64 min_trans)
5384 {
5385         int slot;
5386         struct extent_buffer *c;
5387
5388         WARN_ON(!path->keep_locks);
5389         while (level < BTRFS_MAX_LEVEL) {
5390                 if (!path->nodes[level])
5391                         return 1;
5392
5393                 slot = path->slots[level] + 1;
5394                 c = path->nodes[level];
5395 next:
5396                 if (slot >= btrfs_header_nritems(c)) {
5397                         int ret;
5398                         int orig_lowest;
5399                         struct btrfs_key cur_key;
5400                         if (level + 1 >= BTRFS_MAX_LEVEL ||
5401                             !path->nodes[level + 1])
5402                                 return 1;
5403
5404                         if (path->locks[level + 1]) {
5405                                 level++;
5406                                 continue;
5407                         }
5408
5409                         slot = btrfs_header_nritems(c) - 1;
5410                         if (level == 0)
5411                                 btrfs_item_key_to_cpu(c, &cur_key, slot);
5412                         else
5413                                 btrfs_node_key_to_cpu(c, &cur_key, slot);
5414
5415                         orig_lowest = path->lowest_level;
5416                         btrfs_release_path(path);
5417                         path->lowest_level = level;
5418                         ret = btrfs_search_slot(NULL, root, &cur_key, path,
5419                                                 0, 0);
5420                         path->lowest_level = orig_lowest;
5421                         if (ret < 0)
5422                                 return ret;
5423
5424                         c = path->nodes[level];
5425                         slot = path->slots[level];
5426                         if (ret == 0)
5427                                 slot++;
5428                         goto next;
5429                 }
5430
5431                 if (level == 0)
5432                         btrfs_item_key_to_cpu(c, key, slot);
5433                 else {
5434                         u64 gen = btrfs_node_ptr_generation(c, slot);
5435
5436                         if (gen < min_trans) {
5437                                 slot++;
5438                                 goto next;
5439                         }
5440                         btrfs_node_key_to_cpu(c, key, slot);
5441                 }
5442                 return 0;
5443         }
5444         return 1;
5445 }
5446
5447 /*
5448  * search the tree again to find a leaf with greater keys
5449  * returns 0 if it found something or 1 if there are no greater leaves.
5450  * returns < 0 on io errors.
5451  */
5452 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
5453 {
5454         return btrfs_next_old_leaf(root, path, 0);
5455 }
5456
5457 /* Release the path up to but not including the given level */
5458 static void btrfs_release_level(struct btrfs_path *path, int level)
5459 {
5460         int i;
5461
5462         for (i = 0; i < level; i++) {
5463                 path->slots[i] = 0;
5464                 if (!path->nodes[i])
5465                         continue;
5466                 if (path->locks[i]) {
5467                         btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
5468                         path->locks[i] = 0;
5469                 }
5470                 free_extent_buffer(path->nodes[i]);
5471                 path->nodes[i] = NULL;
5472         }
5473 }
5474
5475 /*
5476  * This function assumes 2 things
5477  *
5478  * 1) You are using path->keep_locks
5479  * 2) You are not inserting items.
5480  *
5481  * If either of these are not true do not use this function. If you need a next
5482  * leaf with either of these not being true then this function can be easily
5483  * adapted to do that, but at the moment these are the limitations.
5484  */
5485 int btrfs_next_leaf_write(struct btrfs_trans_handle *trans,
5486                           struct btrfs_root *root, struct btrfs_path *path,
5487                           int del)
5488 {
5489         struct extent_buffer *b;
5490         struct btrfs_key key;
5491         u32 nritems;
5492         int level = 1;
5493         int slot;
5494         int ret = 1;
5495         int write_lock_level = BTRFS_MAX_LEVEL;
5496         int ins_len = del ? -1 : 0;
5497
5498         WARN_ON(!(path->keep_locks || path->really_keep_locks));
5499
5500         nritems = btrfs_header_nritems(path->nodes[0]);
5501         btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
5502
5503         while (path->nodes[level]) {
5504                 nritems = btrfs_header_nritems(path->nodes[level]);
5505                 if (!(path->locks[level] & BTRFS_WRITE_LOCK)) {
5506 search:
5507                         btrfs_release_path(path);
5508                         ret = btrfs_search_slot(trans, root, &key, path,
5509                                                 ins_len, 1);
5510                         if (ret < 0)
5511                                 goto out;
5512                         level = 1;
5513                         continue;
5514                 }
5515
5516                 if (path->slots[level] >= nritems - 1) {
5517                         level++;
5518                         continue;
5519                 }
5520
5521                 btrfs_release_level(path, level);
5522                 break;
5523         }
5524
5525         if (!path->nodes[level]) {
5526                 ret = 1;
5527                 goto out;
5528         }
5529
5530         path->slots[level]++;
5531         b = path->nodes[level];
5532
5533         while (b) {
5534                 level = btrfs_header_level(b);
5535
5536                 if (!should_cow_block(trans, root, b))
5537                         goto cow_done;
5538
5539                 btrfs_set_path_blocking(path);
5540                 ret = btrfs_cow_block(trans, root, b,
5541                                       path->nodes[level + 1],
5542                                       path->slots[level + 1], &b);
5543                 if (ret)
5544                         goto out;
5545 cow_done:
5546                 path->nodes[level] = b;
5547                 btrfs_clear_path_blocking(path, NULL, 0);
5548                 if (level != 0) {
5549                         ret = setup_nodes_for_search(trans, root, path, b,
5550                                                      level, ins_len,
5551                                                      &write_lock_level);
5552                         if (ret == -EAGAIN)
5553                                 goto search;
5554                         if (ret)
5555                                 goto out;
5556
5557                         b = path->nodes[level];
5558                         slot = path->slots[level];
5559
5560                         ret = read_block_for_search(trans, root, path,
5561                                                     &b, level, slot, &key, 0);
5562                         if (ret == -EAGAIN)
5563                                 goto search;
5564                         if (ret)
5565                                 goto out;
5566                         level = btrfs_header_level(b);
5567                         if (!btrfs_try_tree_write_lock(b)) {
5568                                 btrfs_set_path_blocking(path);
5569                                 btrfs_tree_lock(b);
5570                                 btrfs_clear_path_blocking(path, b,
5571                                                           BTRFS_WRITE_LOCK);
5572                         }
5573                         path->locks[level] = BTRFS_WRITE_LOCK;
5574                         path->nodes[level] = b;
5575                         path->slots[level] = 0;
5576                 } else {
5577                         path->slots[level] = 0;
5578                         ret = 0;
5579                         break;
5580                 }
5581         }
5582
5583 out:
5584         if (ret)
5585                 btrfs_release_path(path);
5586
5587         return ret;
5588 }
5589
5590 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
5591                         u64 time_seq)
5592 {
5593         int slot;
5594         int level;
5595         struct extent_buffer *c;
5596         struct extent_buffer *next;
5597         struct btrfs_key key;
5598         u32 nritems;
5599         int ret;
5600         int old_spinning = path->leave_spinning;
5601         int next_rw_lock = 0;
5602
5603         nritems = btrfs_header_nritems(path->nodes[0]);
5604         if (nritems == 0)
5605                 return 1;
5606
5607         btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
5608 again:
5609         level = 1;
5610         next = NULL;
5611         next_rw_lock = 0;
5612         btrfs_release_path(path);
5613
5614         path->keep_locks = 1;
5615         path->leave_spinning = 1;
5616
5617         if (time_seq)
5618                 ret = btrfs_search_old_slot(root, &key, path, time_seq);
5619         else
5620                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5621         path->keep_locks = 0;
5622
5623         if (ret < 0)
5624                 return ret;
5625
5626         nritems = btrfs_header_nritems(path->nodes[0]);
5627         /*
5628          * by releasing the path above we dropped all our locks.  A balance
5629          * could have added more items next to the key that used to be
5630          * at the very end of the block.  So, check again here and
5631          * advance the path if there are now more items available.
5632          */
5633         if (nritems > 0 && path->slots[0] < nritems - 1) {
5634                 if (ret == 0)
5635                         path->slots[0]++;
5636                 ret = 0;
5637                 goto done;
5638         }
5639
5640         while (level < BTRFS_MAX_LEVEL) {
5641                 if (!path->nodes[level]) {
5642                         ret = 1;
5643                         goto done;
5644                 }
5645
5646                 slot = path->slots[level] + 1;
5647                 c = path->nodes[level];
5648                 if (slot >= btrfs_header_nritems(c)) {
5649                         level++;
5650                         if (level == BTRFS_MAX_LEVEL) {
5651                                 ret = 1;
5652                                 goto done;
5653                         }
5654                         continue;
5655                 }
5656
5657                 if (next) {
5658                         btrfs_tree_unlock_rw(next, next_rw_lock);
5659                         free_extent_buffer(next);
5660                 }
5661
5662                 next = c;
5663                 next_rw_lock = path->locks[level];
5664                 ret = read_block_for_search(NULL, root, path, &next, level,
5665                                             slot, &key, 0);
5666                 if (ret == -EAGAIN)
5667                         goto again;
5668
5669                 if (ret < 0) {
5670                         btrfs_release_path(path);
5671                         goto done;
5672                 }
5673
5674                 if (!path->skip_locking) {
5675                         ret = btrfs_try_tree_read_lock(next);
5676                         if (!ret && time_seq) {
5677                                 /*
5678                                  * If we don't get the lock, we may be racing
5679                                  * with push_leaf_left, holding that lock while
5680                                  * itself waiting for the leaf we've currently
5681                                  * locked. To solve this situation, we give up
5682                                  * on our lock and cycle.
5683                                  */
5684                                 free_extent_buffer(next);
5685                                 btrfs_release_path(path);
5686                                 cond_resched();
5687                                 goto again;
5688                         }
5689                         if (!ret) {
5690                                 btrfs_set_path_blocking(path);
5691                                 btrfs_tree_read_lock(next);
5692                                 btrfs_clear_path_blocking(path, next,
5693                                                           BTRFS_READ_LOCK);
5694                         }
5695                         next_rw_lock = BTRFS_READ_LOCK;
5696                 }
5697                 break;
5698         }
5699         path->slots[level] = slot;
5700         while (1) {
5701                 level--;
5702                 c = path->nodes[level];
5703                 if (path->locks[level])
5704                         btrfs_tree_unlock_rw(c, path->locks[level]);
5705
5706                 free_extent_buffer(c);
5707                 path->nodes[level] = next;
5708                 path->slots[level] = 0;
5709                 if (!path->skip_locking)
5710                         path->locks[level] = next_rw_lock;
5711                 if (!level)
5712                         break;
5713
5714                 ret = read_block_for_search(NULL, root, path, &next, level,
5715                                             0, &key, 0);
5716                 if (ret == -EAGAIN)
5717                         goto again;
5718
5719                 if (ret < 0) {
5720                         btrfs_release_path(path);
5721                         goto done;
5722                 }
5723
5724                 if (!path->skip_locking) {
5725                         ret = btrfs_try_tree_read_lock(next);
5726                         if (!ret) {
5727                                 btrfs_set_path_blocking(path);
5728                                 btrfs_tree_read_lock(next);
5729                                 btrfs_clear_path_blocking(path, next,
5730                                                           BTRFS_READ_LOCK);
5731                         }
5732                         next_rw_lock = BTRFS_READ_LOCK;
5733                 }
5734         }
5735         ret = 0;
5736 done:
5737         unlock_up(path, 0, 1, 0, NULL);
5738         path->leave_spinning = old_spinning;
5739         if (!old_spinning)
5740                 btrfs_set_path_blocking(path);
5741
5742         return ret;
5743 }
5744
5745 /*
5746  * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
5747  * searching until it gets past min_objectid or finds an item of 'type'
5748  *
5749  * returns 0 if something is found, 1 if nothing was found and < 0 on error
5750  */
5751 int btrfs_previous_item(struct btrfs_root *root,
5752                         struct btrfs_path *path, u64 min_objectid,
5753                         int type)
5754 {
5755         struct btrfs_key found_key;
5756         struct extent_buffer *leaf;
5757         u32 nritems;
5758         int ret;
5759
5760         while (1) {
5761                 if (path->slots[0] == 0) {
5762                         btrfs_set_path_blocking(path);
5763                         ret = btrfs_prev_leaf(root, path);
5764                         if (ret != 0)
5765                                 return ret;
5766                 } else {
5767                         path->slots[0]--;
5768                 }
5769                 leaf = path->nodes[0];
5770                 nritems = btrfs_header_nritems(leaf);
5771                 if (nritems == 0)
5772                         return 1;
5773                 if (path->slots[0] == nritems)
5774                         path->slots[0]--;
5775
5776                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5777                 if (found_key.objectid < min_objectid)
5778                         break;
5779                 if (found_key.type == type)
5780                         return 0;
5781                 if (found_key.objectid == min_objectid &&
5782                     found_key.type < type)
5783                         break;
5784         }
5785         return 1;
5786 }