]> git.karo-electronics.de Git - karo-tx-linux.git/blob - fs/btrfs/ctree.c
Btrfs: Add run time btree defrag, and an ioctl to force btree defrag
[karo-tx-linux.git] / fs / btrfs / ctree.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include "ctree.h"
20 #include "disk-io.h"
21 #include "transaction.h"
22
23 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
24                       *root, struct btrfs_path *path, int level);
25 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
26                       *root, struct btrfs_key *ins_key,
27                       struct btrfs_path *path, int data_size);
28 static int push_node_left(struct btrfs_trans_handle *trans, struct btrfs_root
29                           *root, struct buffer_head *dst, struct buffer_head
30                           *src);
31 static int balance_node_right(struct btrfs_trans_handle *trans, struct
32                               btrfs_root *root, struct buffer_head *dst_buf,
33                               struct buffer_head *src_buf);
34 static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
35                    struct btrfs_path *path, int level, int slot);
36
37 inline void btrfs_init_path(struct btrfs_path *p)
38 {
39         memset(p, 0, sizeof(*p));
40 }
41
42 struct btrfs_path *btrfs_alloc_path(void)
43 {
44         struct btrfs_path *path;
45         path = kmem_cache_alloc(btrfs_path_cachep, GFP_NOFS);
46         if (path)
47                 btrfs_init_path(path);
48         return path;
49 }
50
51 void btrfs_free_path(struct btrfs_path *p)
52 {
53         btrfs_release_path(NULL, p);
54         kmem_cache_free(btrfs_path_cachep, p);
55 }
56
57 void btrfs_release_path(struct btrfs_root *root, struct btrfs_path *p)
58 {
59         int i;
60         for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
61                 if (!p->nodes[i])
62                         break;
63                 btrfs_block_release(root, p->nodes[i]);
64         }
65         memset(p, 0, sizeof(*p));
66 }
67
68 static int __btrfs_cow_block(struct btrfs_trans_handle *trans, struct btrfs_root
69                            *root, struct buffer_head *buf, struct buffer_head
70                            *parent, int parent_slot, struct buffer_head
71                            **cow_ret, u64 search_start, u64 empty_size)
72 {
73         struct buffer_head *cow;
74         struct btrfs_node *cow_node;
75         int ret = 0;
76         int different_trans = 0;
77
78         WARN_ON(root->ref_cows && trans->transid != root->last_trans);
79         WARN_ON(!buffer_uptodate(buf));
80         cow = btrfs_alloc_free_block(trans, root, search_start, empty_size);
81         if (IS_ERR(cow))
82                 return PTR_ERR(cow);
83
84         cow_node = btrfs_buffer_node(cow);
85         if (buf->b_size != root->blocksize || cow->b_size != root->blocksize)
86                 WARN_ON(1);
87
88         memcpy(cow_node, btrfs_buffer_node(buf), root->blocksize);
89         btrfs_set_header_blocknr(&cow_node->header, bh_blocknr(cow));
90         btrfs_set_header_generation(&cow_node->header, trans->transid);
91         btrfs_set_header_owner(&cow_node->header, root->root_key.objectid);
92
93         WARN_ON(btrfs_header_generation(btrfs_buffer_header(buf)) >
94                 trans->transid);
95         if (btrfs_header_generation(btrfs_buffer_header(buf)) !=
96                                     trans->transid) {
97                 different_trans = 1;
98                 ret = btrfs_inc_ref(trans, root, buf);
99                 if (ret)
100                         return ret;
101         } else {
102                 WARN_ON(!root->ref_cows);
103                 clean_tree_block(trans, root, buf);
104         }
105
106         if (buf == root->node) {
107                 root->node = cow;
108                 get_bh(cow);
109                 if (buf != root->commit_root) {
110                         btrfs_free_extent(trans, root, bh_blocknr(buf), 1, 1);
111                 }
112                 btrfs_block_release(root, buf);
113         } else {
114                 btrfs_set_node_blockptr(btrfs_buffer_node(parent), parent_slot,
115                                         bh_blocknr(cow));
116                 btrfs_mark_buffer_dirty(parent);
117                 WARN_ON(btrfs_header_generation(btrfs_buffer_header(parent)) !=
118                                     trans->transid);
119                 btrfs_free_extent(trans, root, bh_blocknr(buf), 1, 1);
120         }
121         btrfs_block_release(root, buf);
122         btrfs_mark_buffer_dirty(cow);
123         *cow_ret = cow;
124         return 0;
125 }
126
127 int btrfs_cow_block(struct btrfs_trans_handle *trans, struct btrfs_root
128                            *root, struct buffer_head *buf, struct buffer_head
129                            *parent, int parent_slot, struct buffer_head
130                            **cow_ret)
131 {
132         u64 search_start;
133         if (trans->transaction != root->fs_info->running_transaction) {
134                 printk(KERN_CRIT "trans %Lu running %Lu\n", trans->transid,
135                        root->fs_info->running_transaction->transid);
136                 WARN_ON(1);
137         }
138         if (trans->transid != root->fs_info->generation) {
139                 printk(KERN_CRIT "trans %Lu running %Lu\n", trans->transid,
140                        root->fs_info->generation);
141                 WARN_ON(1);
142         }
143         if (btrfs_header_generation(btrfs_buffer_header(buf)) ==
144                                     trans->transid) {
145                 *cow_ret = buf;
146                 return 0;
147         }
148
149         search_start = bh_blocknr(buf) & ~((u64)65535);
150         return __btrfs_cow_block(trans, root, buf, parent,
151                                  parent_slot, cow_ret, search_start, 0);
152 }
153
154 static int close_blocks(u64 blocknr, u64 other)
155 {
156         if (blocknr < other && other - blocknr < 8)
157                 return 1;
158         if (blocknr > other && blocknr - other < 8)
159                 return 1;
160         return 0;
161 }
162
163 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
164                        struct btrfs_root *root, struct buffer_head *parent,
165                        int cache_only)
166 {
167         struct btrfs_node *parent_node;
168         struct buffer_head *cur_bh;
169         struct buffer_head *tmp_bh;
170         u64 blocknr;
171         u64 search_start = 0;
172         u64 other;
173         u32 parent_nritems;
174         int start_slot;
175         int end_slot;
176         int i;
177         int err = 0;
178
179         if (trans->transaction != root->fs_info->running_transaction) {
180                 printk(KERN_CRIT "trans %Lu running %Lu\n", trans->transid,
181                        root->fs_info->running_transaction->transid);
182                 WARN_ON(1);
183         }
184         if (trans->transid != root->fs_info->generation) {
185                 printk(KERN_CRIT "trans %Lu running %Lu\n", trans->transid,
186                        root->fs_info->generation);
187                 WARN_ON(1);
188         }
189         parent_node = btrfs_buffer_node(parent);
190         parent_nritems = btrfs_header_nritems(&parent_node->header);
191
192         start_slot = 0;
193         end_slot = parent_nritems;
194
195         if (parent_nritems == 1)
196                 return 0;
197
198         for (i = start_slot; i < end_slot; i++) {
199                 int close = 1;
200                 blocknr = btrfs_node_blockptr(parent_node, i);
201                 if (i > 0) {
202                         other = btrfs_node_blockptr(parent_node, i - 1);
203                         close = close_blocks(blocknr, other);
204                 }
205                 if (close && i < end_slot - 1) {
206                         other = btrfs_node_blockptr(parent_node, i + 1);
207                         close = close_blocks(blocknr, other);
208                 }
209                 if (close)
210                         continue;
211
212                 cur_bh = btrfs_find_tree_block(root, blocknr);
213                 if (!cur_bh || !buffer_uptodate(cur_bh) ||
214                     buffer_locked(cur_bh)) {
215                         if (cache_only) {
216                                 brelse(cur_bh);
217                                 continue;
218                         }
219                         brelse(cur_bh);
220                         cur_bh = read_tree_block(root, blocknr);
221                 }
222                 if (search_start == 0) {
223                         search_start = bh_blocknr(cur_bh) & ~((u64)65535);
224                 }
225                 err = __btrfs_cow_block(trans, root, cur_bh, parent, i,
226                                         &tmp_bh, search_start,
227                                         min(8, end_slot - i));
228                 if (err)
229                         break;
230                 search_start = bh_blocknr(tmp_bh);
231                 brelse(tmp_bh);
232         }
233         return err;
234 }
235
236 /*
237  * The leaf data grows from end-to-front in the node.
238  * this returns the address of the start of the last item,
239  * which is the stop of the leaf data stack
240  */
241 static inline unsigned int leaf_data_end(struct btrfs_root *root,
242                                          struct btrfs_leaf *leaf)
243 {
244         u32 nr = btrfs_header_nritems(&leaf->header);
245         if (nr == 0)
246                 return BTRFS_LEAF_DATA_SIZE(root);
247         return btrfs_item_offset(leaf->items + nr - 1);
248 }
249
250 /*
251  * compare two keys in a memcmp fashion
252  */
253 static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
254 {
255         struct btrfs_key k1;
256
257         btrfs_disk_key_to_cpu(&k1, disk);
258
259         if (k1.objectid > k2->objectid)
260                 return 1;
261         if (k1.objectid < k2->objectid)
262                 return -1;
263         if (k1.flags > k2->flags)
264                 return 1;
265         if (k1.flags < k2->flags)
266                 return -1;
267         if (k1.offset > k2->offset)
268                 return 1;
269         if (k1.offset < k2->offset)
270                 return -1;
271         return 0;
272 }
273
274 static int check_node(struct btrfs_root *root, struct btrfs_path *path,
275                       int level)
276 {
277         struct btrfs_node *parent = NULL;
278         struct btrfs_node *node = btrfs_buffer_node(path->nodes[level]);
279         int parent_slot;
280         int slot;
281         struct btrfs_key cpukey;
282         u32 nritems = btrfs_header_nritems(&node->header);
283
284         if (path->nodes[level + 1])
285                 parent = btrfs_buffer_node(path->nodes[level + 1]);
286
287         slot = path->slots[level];
288         BUG_ON(nritems == 0);
289         if (parent) {
290                 struct btrfs_disk_key *parent_key;
291
292                 parent_slot = path->slots[level + 1];
293                 parent_key = &parent->ptrs[parent_slot].key;
294                 BUG_ON(memcmp(parent_key, &node->ptrs[0].key,
295                               sizeof(struct btrfs_disk_key)));
296                 BUG_ON(btrfs_node_blockptr(parent, parent_slot) !=
297                        btrfs_header_blocknr(&node->header));
298         }
299         BUG_ON(nritems > BTRFS_NODEPTRS_PER_BLOCK(root));
300         if (slot != 0) {
301                 btrfs_disk_key_to_cpu(&cpukey, &node->ptrs[slot - 1].key);
302                 BUG_ON(comp_keys(&node->ptrs[slot].key, &cpukey) <= 0);
303         }
304         if (slot < nritems - 1) {
305                 btrfs_disk_key_to_cpu(&cpukey, &node->ptrs[slot + 1].key);
306                 BUG_ON(comp_keys(&node->ptrs[slot].key, &cpukey) >= 0);
307         }
308         return 0;
309 }
310
311 static int check_leaf(struct btrfs_root *root, struct btrfs_path *path,
312                       int level)
313 {
314         struct btrfs_leaf *leaf = btrfs_buffer_leaf(path->nodes[level]);
315         struct btrfs_node *parent = NULL;
316         int parent_slot;
317         int slot = path->slots[0];
318         struct btrfs_key cpukey;
319
320         u32 nritems = btrfs_header_nritems(&leaf->header);
321
322         if (path->nodes[level + 1])
323                 parent = btrfs_buffer_node(path->nodes[level + 1]);
324
325         BUG_ON(btrfs_leaf_free_space(root, leaf) < 0);
326
327         if (nritems == 0)
328                 return 0;
329
330         if (parent) {
331                 struct btrfs_disk_key *parent_key;
332
333                 parent_slot = path->slots[level + 1];
334                 parent_key = &parent->ptrs[parent_slot].key;
335
336                 BUG_ON(memcmp(parent_key, &leaf->items[0].key,
337                        sizeof(struct btrfs_disk_key)));
338                 BUG_ON(btrfs_node_blockptr(parent, parent_slot) !=
339                        btrfs_header_blocknr(&leaf->header));
340         }
341         if (slot != 0) {
342                 btrfs_disk_key_to_cpu(&cpukey, &leaf->items[slot - 1].key);
343                 BUG_ON(comp_keys(&leaf->items[slot].key, &cpukey) <= 0);
344                 BUG_ON(btrfs_item_offset(leaf->items + slot - 1) !=
345                         btrfs_item_end(leaf->items + slot));
346         }
347         if (slot < nritems - 1) {
348                 btrfs_disk_key_to_cpu(&cpukey, &leaf->items[slot + 1].key);
349                 BUG_ON(comp_keys(&leaf->items[slot].key, &cpukey) >= 0);
350                 BUG_ON(btrfs_item_offset(leaf->items + slot) !=
351                         btrfs_item_end(leaf->items + slot + 1));
352         }
353         BUG_ON(btrfs_item_offset(leaf->items) +
354                btrfs_item_size(leaf->items) != BTRFS_LEAF_DATA_SIZE(root));
355         return 0;
356 }
357
358 static int check_block(struct btrfs_root *root, struct btrfs_path *path,
359                         int level)
360 {
361         struct btrfs_node *node = btrfs_buffer_node(path->nodes[level]);
362         if (memcmp(node->header.fsid, root->fs_info->disk_super->fsid,
363                    sizeof(node->header.fsid)))
364                 BUG();
365         if (level == 0)
366                 return check_leaf(root, path, level);
367         return check_node(root, path, level);
368 }
369
370 /*
371  * search for key in the array p.  items p are item_size apart
372  * and there are 'max' items in p
373  * the slot in the array is returned via slot, and it points to
374  * the place where you would insert key if it is not found in
375  * the array.
376  *
377  * slot may point to max if the key is bigger than all of the keys
378  */
379 static int generic_bin_search(char *p, int item_size, struct btrfs_key *key,
380                        int max, int *slot)
381 {
382         int low = 0;
383         int high = max;
384         int mid;
385         int ret;
386         struct btrfs_disk_key *tmp;
387
388         while(low < high) {
389                 mid = (low + high) / 2;
390                 tmp = (struct btrfs_disk_key *)(p + mid * item_size);
391                 ret = comp_keys(tmp, key);
392
393                 if (ret < 0)
394                         low = mid + 1;
395                 else if (ret > 0)
396                         high = mid;
397                 else {
398                         *slot = mid;
399                         return 0;
400                 }
401         }
402         *slot = low;
403         return 1;
404 }
405
406 /*
407  * simple bin_search frontend that does the right thing for
408  * leaves vs nodes
409  */
410 static int bin_search(struct btrfs_node *c, struct btrfs_key *key, int *slot)
411 {
412         if (btrfs_is_leaf(c)) {
413                 struct btrfs_leaf *l = (struct btrfs_leaf *)c;
414                 return generic_bin_search((void *)l->items,
415                                           sizeof(struct btrfs_item),
416                                           key, btrfs_header_nritems(&c->header),
417                                           slot);
418         } else {
419                 return generic_bin_search((void *)c->ptrs,
420                                           sizeof(struct btrfs_key_ptr),
421                                           key, btrfs_header_nritems(&c->header),
422                                           slot);
423         }
424         return -1;
425 }
426
427 static struct buffer_head *read_node_slot(struct btrfs_root *root,
428                                    struct buffer_head *parent_buf,
429                                    int slot)
430 {
431         struct btrfs_node *node = btrfs_buffer_node(parent_buf);
432         if (slot < 0)
433                 return NULL;
434         if (slot >= btrfs_header_nritems(&node->header))
435                 return NULL;
436         return read_tree_block(root, btrfs_node_blockptr(node, slot));
437 }
438
439 static int balance_level(struct btrfs_trans_handle *trans, struct btrfs_root
440                          *root, struct btrfs_path *path, int level)
441 {
442         struct buffer_head *right_buf;
443         struct buffer_head *mid_buf;
444         struct buffer_head *left_buf;
445         struct buffer_head *parent_buf = NULL;
446         struct btrfs_node *right = NULL;
447         struct btrfs_node *mid;
448         struct btrfs_node *left = NULL;
449         struct btrfs_node *parent = NULL;
450         int ret = 0;
451         int wret;
452         int pslot;
453         int orig_slot = path->slots[level];
454         int err_on_enospc = 0;
455         u64 orig_ptr;
456
457         if (level == 0)
458                 return 0;
459
460         mid_buf = path->nodes[level];
461         mid = btrfs_buffer_node(mid_buf);
462         orig_ptr = btrfs_node_blockptr(mid, orig_slot);
463
464         if (level < BTRFS_MAX_LEVEL - 1)
465                 parent_buf = path->nodes[level + 1];
466         pslot = path->slots[level + 1];
467
468         /*
469          * deal with the case where there is only one pointer in the root
470          * by promoting the node below to a root
471          */
472         if (!parent_buf) {
473                 struct buffer_head *child;
474                 u64 blocknr = bh_blocknr(mid_buf);
475
476                 if (btrfs_header_nritems(&mid->header) != 1)
477                         return 0;
478
479                 /* promote the child to a root */
480                 child = read_node_slot(root, mid_buf, 0);
481                 BUG_ON(!child);
482                 root->node = child;
483                 path->nodes[level] = NULL;
484                 clean_tree_block(trans, root, mid_buf);
485                 wait_on_buffer(mid_buf);
486                 /* once for the path */
487                 btrfs_block_release(root, mid_buf);
488                 /* once for the root ptr */
489                 btrfs_block_release(root, mid_buf);
490                 return btrfs_free_extent(trans, root, blocknr, 1, 1);
491         }
492         parent = btrfs_buffer_node(parent_buf);
493
494         if (btrfs_header_nritems(&mid->header) >
495             BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
496                 return 0;
497
498         if (btrfs_header_nritems(&mid->header) < 2)
499                 err_on_enospc = 1;
500
501         left_buf = read_node_slot(root, parent_buf, pslot - 1);
502         right_buf = read_node_slot(root, parent_buf, pslot + 1);
503
504         /* first, try to make some room in the middle buffer */
505         if (left_buf) {
506                 wret = btrfs_cow_block(trans, root, left_buf,
507                                        parent_buf, pslot - 1, &left_buf);
508                 if (wret) {
509                         ret = wret;
510                         goto enospc;
511                 }
512                 left = btrfs_buffer_node(left_buf);
513                 orig_slot += btrfs_header_nritems(&left->header);
514                 wret = push_node_left(trans, root, left_buf, mid_buf);
515                 if (wret < 0)
516                         ret = wret;
517                 if (btrfs_header_nritems(&mid->header) < 2)
518                         err_on_enospc = 1;
519         }
520
521         /*
522          * then try to empty the right most buffer into the middle
523          */
524         if (right_buf) {
525                 wret = btrfs_cow_block(trans, root, right_buf,
526                                        parent_buf, pslot + 1, &right_buf);
527                 if (wret) {
528                         ret = wret;
529                         goto enospc;
530                 }
531
532                 right = btrfs_buffer_node(right_buf);
533                 wret = push_node_left(trans, root, mid_buf, right_buf);
534                 if (wret < 0 && wret != -ENOSPC)
535                         ret = wret;
536                 if (btrfs_header_nritems(&right->header) == 0) {
537                         u64 blocknr = bh_blocknr(right_buf);
538                         clean_tree_block(trans, root, right_buf);
539                         wait_on_buffer(right_buf);
540                         btrfs_block_release(root, right_buf);
541                         right_buf = NULL;
542                         right = NULL;
543                         wret = del_ptr(trans, root, path, level + 1, pslot +
544                                        1);
545                         if (wret)
546                                 ret = wret;
547                         wret = btrfs_free_extent(trans, root, blocknr, 1, 1);
548                         if (wret)
549                                 ret = wret;
550                 } else {
551                         btrfs_memcpy(root, parent,
552                                      &parent->ptrs[pslot + 1].key,
553                                      &right->ptrs[0].key,
554                                      sizeof(struct btrfs_disk_key));
555                         btrfs_mark_buffer_dirty(parent_buf);
556                 }
557         }
558         if (btrfs_header_nritems(&mid->header) == 1) {
559                 /*
560                  * we're not allowed to leave a node with one item in the
561                  * tree during a delete.  A deletion from lower in the tree
562                  * could try to delete the only pointer in this node.
563                  * So, pull some keys from the left.
564                  * There has to be a left pointer at this point because
565                  * otherwise we would have pulled some pointers from the
566                  * right
567                  */
568                 BUG_ON(!left_buf);
569                 wret = balance_node_right(trans, root, mid_buf, left_buf);
570                 if (wret < 0) {
571                         ret = wret;
572                         goto enospc;
573                 }
574                 BUG_ON(wret == 1);
575         }
576         if (btrfs_header_nritems(&mid->header) == 0) {
577                 /* we've managed to empty the middle node, drop it */
578                 u64 blocknr = bh_blocknr(mid_buf);
579                 clean_tree_block(trans, root, mid_buf);
580                 wait_on_buffer(mid_buf);
581                 btrfs_block_release(root, mid_buf);
582                 mid_buf = NULL;
583                 mid = NULL;
584                 wret = del_ptr(trans, root, path, level + 1, pslot);
585                 if (wret)
586                         ret = wret;
587                 wret = btrfs_free_extent(trans, root, blocknr, 1, 1);
588                 if (wret)
589                         ret = wret;
590         } else {
591                 /* update the parent key to reflect our changes */
592                 btrfs_memcpy(root, parent,
593                              &parent->ptrs[pslot].key, &mid->ptrs[0].key,
594                              sizeof(struct btrfs_disk_key));
595                 btrfs_mark_buffer_dirty(parent_buf);
596         }
597
598         /* update the path */
599         if (left_buf) {
600                 if (btrfs_header_nritems(&left->header) > orig_slot) {
601                         get_bh(left_buf);
602                         path->nodes[level] = left_buf;
603                         path->slots[level + 1] -= 1;
604                         path->slots[level] = orig_slot;
605                         if (mid_buf)
606                                 btrfs_block_release(root, mid_buf);
607                 } else {
608                         orig_slot -= btrfs_header_nritems(&left->header);
609                         path->slots[level] = orig_slot;
610                 }
611         }
612         /* double check we haven't messed things up */
613         check_block(root, path, level);
614         if (orig_ptr !=
615             btrfs_node_blockptr(btrfs_buffer_node(path->nodes[level]),
616                                 path->slots[level]))
617                 BUG();
618 enospc:
619         if (right_buf)
620                 btrfs_block_release(root, right_buf);
621         if (left_buf)
622                 btrfs_block_release(root, left_buf);
623         return ret;
624 }
625
626 /* returns zero if the push worked, non-zero otherwise */
627 static int push_nodes_for_insert(struct btrfs_trans_handle *trans,
628                                 struct btrfs_root *root,
629                                 struct btrfs_path *path, int level)
630 {
631         struct buffer_head *right_buf;
632         struct buffer_head *mid_buf;
633         struct buffer_head *left_buf;
634         struct buffer_head *parent_buf = NULL;
635         struct btrfs_node *right = NULL;
636         struct btrfs_node *mid;
637         struct btrfs_node *left = NULL;
638         struct btrfs_node *parent = NULL;
639         int ret = 0;
640         int wret;
641         int pslot;
642         int orig_slot = path->slots[level];
643         u64 orig_ptr;
644
645         if (level == 0)
646                 return 1;
647
648         mid_buf = path->nodes[level];
649         mid = btrfs_buffer_node(mid_buf);
650         orig_ptr = btrfs_node_blockptr(mid, orig_slot);
651
652         if (level < BTRFS_MAX_LEVEL - 1)
653                 parent_buf = path->nodes[level + 1];
654         pslot = path->slots[level + 1];
655
656         if (!parent_buf)
657                 return 1;
658         parent = btrfs_buffer_node(parent_buf);
659
660         left_buf = read_node_slot(root, parent_buf, pslot - 1);
661
662         /* first, try to make some room in the middle buffer */
663         if (left_buf) {
664                 u32 left_nr;
665                 left = btrfs_buffer_node(left_buf);
666                 left_nr = btrfs_header_nritems(&left->header);
667                 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
668                         wret = 1;
669                 } else {
670                         ret = btrfs_cow_block(trans, root, left_buf, parent_buf,
671                                               pslot - 1, &left_buf);
672                         if (ret)
673                                 wret = 1;
674                         else {
675                                 left = btrfs_buffer_node(left_buf);
676                                 wret = push_node_left(trans, root,
677                                                       left_buf, mid_buf);
678                         }
679                 }
680                 if (wret < 0)
681                         ret = wret;
682                 if (wret == 0) {
683                         orig_slot += left_nr;
684                         btrfs_memcpy(root, parent,
685                                      &parent->ptrs[pslot].key,
686                                      &mid->ptrs[0].key,
687                                      sizeof(struct btrfs_disk_key));
688                         btrfs_mark_buffer_dirty(parent_buf);
689                         if (btrfs_header_nritems(&left->header) > orig_slot) {
690                                 path->nodes[level] = left_buf;
691                                 path->slots[level + 1] -= 1;
692                                 path->slots[level] = orig_slot;
693                                 btrfs_block_release(root, mid_buf);
694                         } else {
695                                 orig_slot -=
696                                         btrfs_header_nritems(&left->header);
697                                 path->slots[level] = orig_slot;
698                                 btrfs_block_release(root, left_buf);
699                         }
700                         check_node(root, path, level);
701                         return 0;
702                 }
703                 btrfs_block_release(root, left_buf);
704         }
705         right_buf = read_node_slot(root, parent_buf, pslot + 1);
706
707         /*
708          * then try to empty the right most buffer into the middle
709          */
710         if (right_buf) {
711                 u32 right_nr;
712                 right = btrfs_buffer_node(right_buf);
713                 right_nr = btrfs_header_nritems(&right->header);
714                 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
715                         wret = 1;
716                 } else {
717                         ret = btrfs_cow_block(trans, root, right_buf,
718                                               parent_buf, pslot + 1,
719                                               &right_buf);
720                         if (ret)
721                                 wret = 1;
722                         else {
723                                 right = btrfs_buffer_node(right_buf);
724                                 wret = balance_node_right(trans, root,
725                                                           right_buf, mid_buf);
726                         }
727                 }
728                 if (wret < 0)
729                         ret = wret;
730                 if (wret == 0) {
731                         btrfs_memcpy(root, parent,
732                                      &parent->ptrs[pslot + 1].key,
733                                      &right->ptrs[0].key,
734                                      sizeof(struct btrfs_disk_key));
735                         btrfs_mark_buffer_dirty(parent_buf);
736                         if (btrfs_header_nritems(&mid->header) <= orig_slot) {
737                                 path->nodes[level] = right_buf;
738                                 path->slots[level + 1] += 1;
739                                 path->slots[level] = orig_slot -
740                                         btrfs_header_nritems(&mid->header);
741                                 btrfs_block_release(root, mid_buf);
742                         } else {
743                                 btrfs_block_release(root, right_buf);
744                         }
745                         check_node(root, path, level);
746                         return 0;
747                 }
748                 btrfs_block_release(root, right_buf);
749         }
750         check_node(root, path, level);
751         return 1;
752 }
753
754 /*
755  * readahead one full node of leaves
756  */
757 static void reada_for_search(struct btrfs_root *root, struct btrfs_path *path,
758                              int level, int slot)
759 {
760         struct btrfs_node *node;
761         int i;
762         u32 nritems;
763         u64 item_objectid;
764         u64 blocknr;
765         u64 search;
766         u64 cluster_start;
767         int ret;
768         int nread = 0;
769         int direction = path->reada;
770         struct radix_tree_root found;
771         unsigned long gang[8];
772         struct buffer_head *bh;
773
774         if (level == 0)
775                 return;
776
777         if (!path->nodes[level])
778                 return;
779
780         node = btrfs_buffer_node(path->nodes[level]);
781         search = btrfs_node_blockptr(node, slot);
782         bh = btrfs_find_tree_block(root, search);
783         if (bh) {
784                 brelse(bh);
785                 return;
786         }
787
788         init_bit_radix(&found);
789         nritems = btrfs_header_nritems(&node->header);
790         for (i = slot; i < nritems; i++) {
791                 item_objectid = btrfs_disk_key_objectid(&node->ptrs[i].key);
792                 blocknr = btrfs_node_blockptr(node, i);
793                 set_radix_bit(&found, blocknr);
794         }
795         if (direction > 0) {
796                 cluster_start = search - 4;
797                 if (cluster_start > search)
798                         cluster_start = 0;
799         } else
800                 cluster_start = search + 4;
801         while(1) {
802                 ret = find_first_radix_bit(&found, gang, 0, ARRAY_SIZE(gang));
803                 if (!ret)
804                         break;
805                 for (i = 0; i < ret; i++) {
806                         blocknr = gang[i];
807                         clear_radix_bit(&found, blocknr);
808                         if (nread > 32)
809                                 continue;
810                         if (direction > 0 && cluster_start <= blocknr &&
811                             cluster_start + 8 > blocknr) {
812                                 cluster_start = blocknr;
813                                 readahead_tree_block(root, blocknr);
814                                 nread++;
815                         } else if (direction < 0 && cluster_start >= blocknr &&
816                                    blocknr + 8 > cluster_start) {
817                                 cluster_start = blocknr;
818                                 readahead_tree_block(root, blocknr);
819                                 nread++;
820                         }
821                 }
822         }
823 }
824 /*
825  * look for key in the tree.  path is filled in with nodes along the way
826  * if key is found, we return zero and you can find the item in the leaf
827  * level of the path (level 0)
828  *
829  * If the key isn't found, the path points to the slot where it should
830  * be inserted, and 1 is returned.  If there are other errors during the
831  * search a negative error number is returned.
832  *
833  * if ins_len > 0, nodes and leaves will be split as we walk down the
834  * tree.  if ins_len < 0, nodes will be merged as we walk down the tree (if
835  * possible)
836  */
837 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
838                       *root, struct btrfs_key *key, struct btrfs_path *p, int
839                       ins_len, int cow)
840 {
841         struct buffer_head *b;
842         struct buffer_head *cow_buf;
843         struct btrfs_node *c;
844         u64 blocknr;
845         int slot;
846         int ret;
847         int level;
848         int should_reada = p->reada;
849         u8 lowest_level = 0;
850
851         lowest_level = p->lowest_level;
852         WARN_ON(lowest_level && ins_len);
853         WARN_ON(p->nodes[0] != NULL);
854         WARN_ON(!mutex_is_locked(&root->fs_info->fs_mutex));
855 again:
856         b = root->node;
857         get_bh(b);
858         while (b) {
859                 c = btrfs_buffer_node(b);
860                 level = btrfs_header_level(&c->header);
861                 if (cow) {
862                         int wret;
863                         wret = btrfs_cow_block(trans, root, b,
864                                                p->nodes[level + 1],
865                                                p->slots[level + 1],
866                                                &cow_buf);
867                         if (wret) {
868                                 btrfs_block_release(root, cow_buf);
869                                 return wret;
870                         }
871                         b = cow_buf;
872                         c = btrfs_buffer_node(b);
873                 }
874                 BUG_ON(!cow && ins_len);
875                 if (level != btrfs_header_level(&c->header))
876                         WARN_ON(1);
877                 level = btrfs_header_level(&c->header);
878                 p->nodes[level] = b;
879                 ret = check_block(root, p, level);
880                 if (ret)
881                         return -1;
882                 ret = bin_search(c, key, &slot);
883                 if (!btrfs_is_leaf(c)) {
884                         if (ret && slot > 0)
885                                 slot -= 1;
886                         p->slots[level] = slot;
887                         if (ins_len > 0 && btrfs_header_nritems(&c->header) >=
888                             BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
889                                 int sret = split_node(trans, root, p, level);
890                                 BUG_ON(sret > 0);
891                                 if (sret)
892                                         return sret;
893                                 b = p->nodes[level];
894                                 c = btrfs_buffer_node(b);
895                                 slot = p->slots[level];
896                         } else if (ins_len < 0) {
897                                 int sret = balance_level(trans, root, p,
898                                                          level);
899                                 if (sret)
900                                         return sret;
901                                 b = p->nodes[level];
902                                 if (!b)
903                                         goto again;
904                                 c = btrfs_buffer_node(b);
905                                 slot = p->slots[level];
906                                 BUG_ON(btrfs_header_nritems(&c->header) == 1);
907                         }
908                         /* this is only true while dropping a snapshot */
909                         if (level == lowest_level)
910                                 break;
911                         blocknr = btrfs_node_blockptr(c, slot);
912                         if (should_reada)
913                                 reada_for_search(root, p, level, slot);
914                         b = read_tree_block(root, btrfs_node_blockptr(c, slot));
915
916                 } else {
917                         struct btrfs_leaf *l = (struct btrfs_leaf *)c;
918                         p->slots[level] = slot;
919                         if (ins_len > 0 && btrfs_leaf_free_space(root, l) <
920                             sizeof(struct btrfs_item) + ins_len) {
921                                 int sret = split_leaf(trans, root, key,
922                                                       p, ins_len);
923                                 BUG_ON(sret > 0);
924                                 if (sret)
925                                         return sret;
926                         }
927                         return ret;
928                 }
929         }
930         return 1;
931 }
932
933 /*
934  * adjust the pointers going up the tree, starting at level
935  * making sure the right key of each node is points to 'key'.
936  * This is used after shifting pointers to the left, so it stops
937  * fixing up pointers when a given leaf/node is not in slot 0 of the
938  * higher levels
939  *
940  * If this fails to write a tree block, it returns -1, but continues
941  * fixing up the blocks in ram so the tree is consistent.
942  */
943 static int fixup_low_keys(struct btrfs_trans_handle *trans, struct btrfs_root
944                           *root, struct btrfs_path *path, struct btrfs_disk_key
945                           *key, int level)
946 {
947         int i;
948         int ret = 0;
949         for (i = level; i < BTRFS_MAX_LEVEL; i++) {
950                 struct btrfs_node *t;
951                 int tslot = path->slots[i];
952                 if (!path->nodes[i])
953                         break;
954                 t = btrfs_buffer_node(path->nodes[i]);
955                 btrfs_memcpy(root, t, &t->ptrs[tslot].key, key, sizeof(*key));
956                 btrfs_mark_buffer_dirty(path->nodes[i]);
957                 if (tslot != 0)
958                         break;
959         }
960         return ret;
961 }
962
963 /*
964  * try to push data from one node into the next node left in the
965  * tree.
966  *
967  * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
968  * error, and > 0 if there was no room in the left hand block.
969  */
970 static int push_node_left(struct btrfs_trans_handle *trans, struct btrfs_root
971                           *root, struct buffer_head *dst_buf, struct
972                           buffer_head *src_buf)
973 {
974         struct btrfs_node *src = btrfs_buffer_node(src_buf);
975         struct btrfs_node *dst = btrfs_buffer_node(dst_buf);
976         int push_items = 0;
977         int src_nritems;
978         int dst_nritems;
979         int ret = 0;
980
981         src_nritems = btrfs_header_nritems(&src->header);
982         dst_nritems = btrfs_header_nritems(&dst->header);
983         push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
984
985         if (push_items <= 0) {
986                 return 1;
987         }
988
989         if (src_nritems < push_items)
990                 push_items = src_nritems;
991
992         btrfs_memcpy(root, dst, dst->ptrs + dst_nritems, src->ptrs,
993                      push_items * sizeof(struct btrfs_key_ptr));
994         if (push_items < src_nritems) {
995                 btrfs_memmove(root, src, src->ptrs, src->ptrs + push_items,
996                         (src_nritems - push_items) *
997                         sizeof(struct btrfs_key_ptr));
998         }
999         btrfs_set_header_nritems(&src->header, src_nritems - push_items);
1000         btrfs_set_header_nritems(&dst->header, dst_nritems + push_items);
1001         btrfs_mark_buffer_dirty(src_buf);
1002         btrfs_mark_buffer_dirty(dst_buf);
1003         return ret;
1004 }
1005
1006 /*
1007  * try to push data from one node into the next node right in the
1008  * tree.
1009  *
1010  * returns 0 if some ptrs were pushed, < 0 if there was some horrible
1011  * error, and > 0 if there was no room in the right hand block.
1012  *
1013  * this will  only push up to 1/2 the contents of the left node over
1014  */
1015 static int balance_node_right(struct btrfs_trans_handle *trans, struct
1016                               btrfs_root *root, struct buffer_head *dst_buf,
1017                               struct buffer_head *src_buf)
1018 {
1019         struct btrfs_node *src = btrfs_buffer_node(src_buf);
1020         struct btrfs_node *dst = btrfs_buffer_node(dst_buf);
1021         int push_items = 0;
1022         int max_push;
1023         int src_nritems;
1024         int dst_nritems;
1025         int ret = 0;
1026
1027         src_nritems = btrfs_header_nritems(&src->header);
1028         dst_nritems = btrfs_header_nritems(&dst->header);
1029         push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
1030         if (push_items <= 0) {
1031                 return 1;
1032         }
1033
1034         max_push = src_nritems / 2 + 1;
1035         /* don't try to empty the node */
1036         if (max_push > src_nritems)
1037                 return 1;
1038         if (max_push < push_items)
1039                 push_items = max_push;
1040
1041         btrfs_memmove(root, dst, dst->ptrs + push_items, dst->ptrs,
1042                       dst_nritems * sizeof(struct btrfs_key_ptr));
1043
1044         btrfs_memcpy(root, dst, dst->ptrs,
1045                      src->ptrs + src_nritems - push_items,
1046                      push_items * sizeof(struct btrfs_key_ptr));
1047
1048         btrfs_set_header_nritems(&src->header, src_nritems - push_items);
1049         btrfs_set_header_nritems(&dst->header, dst_nritems + push_items);
1050
1051         btrfs_mark_buffer_dirty(src_buf);
1052         btrfs_mark_buffer_dirty(dst_buf);
1053         return ret;
1054 }
1055
1056 /*
1057  * helper function to insert a new root level in the tree.
1058  * A new node is allocated, and a single item is inserted to
1059  * point to the existing root
1060  *
1061  * returns zero on success or < 0 on failure.
1062  */
1063 static int insert_new_root(struct btrfs_trans_handle *trans, struct btrfs_root
1064                            *root, struct btrfs_path *path, int level)
1065 {
1066         struct buffer_head *t;
1067         struct btrfs_node *lower;
1068         struct btrfs_node *c;
1069         struct btrfs_disk_key *lower_key;
1070
1071         BUG_ON(path->nodes[level]);
1072         BUG_ON(path->nodes[level-1] != root->node);
1073
1074         t = btrfs_alloc_free_block(trans, root, root->node->b_blocknr, 0);
1075         if (IS_ERR(t))
1076                 return PTR_ERR(t);
1077         c = btrfs_buffer_node(t);
1078         memset(c, 0, root->blocksize);
1079         btrfs_set_header_nritems(&c->header, 1);
1080         btrfs_set_header_level(&c->header, level);
1081         btrfs_set_header_blocknr(&c->header, bh_blocknr(t));
1082         btrfs_set_header_generation(&c->header, trans->transid);
1083         btrfs_set_header_owner(&c->header, root->root_key.objectid);
1084         lower = btrfs_buffer_node(path->nodes[level-1]);
1085         memcpy(c->header.fsid, root->fs_info->disk_super->fsid,
1086                sizeof(c->header.fsid));
1087         if (btrfs_is_leaf(lower))
1088                 lower_key = &((struct btrfs_leaf *)lower)->items[0].key;
1089         else
1090                 lower_key = &lower->ptrs[0].key;
1091         btrfs_memcpy(root, c, &c->ptrs[0].key, lower_key,
1092                      sizeof(struct btrfs_disk_key));
1093         btrfs_set_node_blockptr(c, 0, bh_blocknr(path->nodes[level - 1]));
1094
1095         btrfs_mark_buffer_dirty(t);
1096
1097         /* the super has an extra ref to root->node */
1098         btrfs_block_release(root, root->node);
1099         root->node = t;
1100         get_bh(t);
1101         path->nodes[level] = t;
1102         path->slots[level] = 0;
1103         return 0;
1104 }
1105
1106 /*
1107  * worker function to insert a single pointer in a node.
1108  * the node should have enough room for the pointer already
1109  *
1110  * slot and level indicate where you want the key to go, and
1111  * blocknr is the block the key points to.
1112  *
1113  * returns zero on success and < 0 on any error
1114  */
1115 static int insert_ptr(struct btrfs_trans_handle *trans, struct btrfs_root
1116                       *root, struct btrfs_path *path, struct btrfs_disk_key
1117                       *key, u64 blocknr, int slot, int level)
1118 {
1119         struct btrfs_node *lower;
1120         int nritems;
1121
1122         BUG_ON(!path->nodes[level]);
1123         lower = btrfs_buffer_node(path->nodes[level]);
1124         nritems = btrfs_header_nritems(&lower->header);
1125         if (slot > nritems)
1126                 BUG();
1127         if (nritems == BTRFS_NODEPTRS_PER_BLOCK(root))
1128                 BUG();
1129         if (slot != nritems) {
1130                 btrfs_memmove(root, lower, lower->ptrs + slot + 1,
1131                               lower->ptrs + slot,
1132                               (nritems - slot) * sizeof(struct btrfs_key_ptr));
1133         }
1134         btrfs_memcpy(root, lower, &lower->ptrs[slot].key,
1135                      key, sizeof(struct btrfs_disk_key));
1136         btrfs_set_node_blockptr(lower, slot, blocknr);
1137         btrfs_set_header_nritems(&lower->header, nritems + 1);
1138         btrfs_mark_buffer_dirty(path->nodes[level]);
1139         check_node(root, path, level);
1140         return 0;
1141 }
1142
1143 /*
1144  * split the node at the specified level in path in two.
1145  * The path is corrected to point to the appropriate node after the split
1146  *
1147  * Before splitting this tries to make some room in the node by pushing
1148  * left and right, if either one works, it returns right away.
1149  *
1150  * returns 0 on success and < 0 on failure
1151  */
1152 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
1153                       *root, struct btrfs_path *path, int level)
1154 {
1155         struct buffer_head *t;
1156         struct btrfs_node *c;
1157         struct buffer_head *split_buffer;
1158         struct btrfs_node *split;
1159         int mid;
1160         int ret;
1161         int wret;
1162         u32 c_nritems;
1163
1164         t = path->nodes[level];
1165         c = btrfs_buffer_node(t);
1166         if (t == root->node) {
1167                 /* trying to split the root, lets make a new one */
1168                 ret = insert_new_root(trans, root, path, level + 1);
1169                 if (ret)
1170                         return ret;
1171         } else {
1172                 ret = push_nodes_for_insert(trans, root, path, level);
1173                 t = path->nodes[level];
1174                 c = btrfs_buffer_node(t);
1175                 if (!ret &&
1176                     btrfs_header_nritems(&c->header) <
1177                     BTRFS_NODEPTRS_PER_BLOCK(root) - 1)
1178                         return 0;
1179                 if (ret < 0)
1180                         return ret;
1181         }
1182
1183         c_nritems = btrfs_header_nritems(&c->header);
1184         split_buffer = btrfs_alloc_free_block(trans, root, t->b_blocknr, 0);
1185         if (IS_ERR(split_buffer))
1186                 return PTR_ERR(split_buffer);
1187
1188         split = btrfs_buffer_node(split_buffer);
1189         btrfs_set_header_flags(&split->header, btrfs_header_flags(&c->header));
1190         btrfs_set_header_level(&split->header, btrfs_header_level(&c->header));
1191         btrfs_set_header_blocknr(&split->header, bh_blocknr(split_buffer));
1192         btrfs_set_header_generation(&split->header, trans->transid);
1193         btrfs_set_header_owner(&split->header, root->root_key.objectid);
1194         memcpy(split->header.fsid, root->fs_info->disk_super->fsid,
1195                sizeof(split->header.fsid));
1196         mid = (c_nritems + 1) / 2;
1197         btrfs_memcpy(root, split, split->ptrs, c->ptrs + mid,
1198                      (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
1199         btrfs_set_header_nritems(&split->header, c_nritems - mid);
1200         btrfs_set_header_nritems(&c->header, mid);
1201         ret = 0;
1202
1203         btrfs_mark_buffer_dirty(t);
1204         btrfs_mark_buffer_dirty(split_buffer);
1205         wret = insert_ptr(trans, root, path, &split->ptrs[0].key,
1206                           bh_blocknr(split_buffer), path->slots[level + 1] + 1,
1207                           level + 1);
1208         if (wret)
1209                 ret = wret;
1210
1211         if (path->slots[level] >= mid) {
1212                 path->slots[level] -= mid;
1213                 btrfs_block_release(root, t);
1214                 path->nodes[level] = split_buffer;
1215                 path->slots[level + 1] += 1;
1216         } else {
1217                 btrfs_block_release(root, split_buffer);
1218         }
1219         return ret;
1220 }
1221
1222 /*
1223  * how many bytes are required to store the items in a leaf.  start
1224  * and nr indicate which items in the leaf to check.  This totals up the
1225  * space used both by the item structs and the item data
1226  */
1227 static int leaf_space_used(struct btrfs_leaf *l, int start, int nr)
1228 {
1229         int data_len;
1230         int nritems = btrfs_header_nritems(&l->header);
1231         int end = min(nritems, start + nr) - 1;
1232
1233         if (!nr)
1234                 return 0;
1235         data_len = btrfs_item_end(l->items + start);
1236         data_len = data_len - btrfs_item_offset(l->items + end);
1237         data_len += sizeof(struct btrfs_item) * nr;
1238         WARN_ON(data_len < 0);
1239         return data_len;
1240 }
1241
1242 /*
1243  * The space between the end of the leaf items and
1244  * the start of the leaf data.  IOW, how much room
1245  * the leaf has left for both items and data
1246  */
1247 int btrfs_leaf_free_space(struct btrfs_root *root, struct btrfs_leaf *leaf)
1248 {
1249         int nritems = btrfs_header_nritems(&leaf->header);
1250         return BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
1251 }
1252
1253 /*
1254  * push some data in the path leaf to the right, trying to free up at
1255  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
1256  *
1257  * returns 1 if the push failed because the other node didn't have enough
1258  * room, 0 if everything worked out and < 0 if there were major errors.
1259  */
1260 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
1261                            *root, struct btrfs_path *path, int data_size)
1262 {
1263         struct buffer_head *left_buf = path->nodes[0];
1264         struct btrfs_leaf *left = btrfs_buffer_leaf(left_buf);
1265         struct btrfs_leaf *right;
1266         struct buffer_head *right_buf;
1267         struct buffer_head *upper;
1268         struct btrfs_node *upper_node;
1269         int slot;
1270         int i;
1271         int free_space;
1272         int push_space = 0;
1273         int push_items = 0;
1274         struct btrfs_item *item;
1275         u32 left_nritems;
1276         u32 right_nritems;
1277         int ret;
1278
1279         slot = path->slots[1];
1280         if (!path->nodes[1]) {
1281                 return 1;
1282         }
1283         upper = path->nodes[1];
1284         upper_node = btrfs_buffer_node(upper);
1285         if (slot >= btrfs_header_nritems(&upper_node->header) - 1) {
1286                 return 1;
1287         }
1288         right_buf = read_tree_block(root,
1289                     btrfs_node_blockptr(btrfs_buffer_node(upper), slot + 1));
1290         right = btrfs_buffer_leaf(right_buf);
1291         free_space = btrfs_leaf_free_space(root, right);
1292         if (free_space < data_size + sizeof(struct btrfs_item)) {
1293                 btrfs_block_release(root, right_buf);
1294                 return 1;
1295         }
1296         /* cow and double check */
1297         ret = btrfs_cow_block(trans, root, right_buf, upper,
1298                               slot + 1, &right_buf);
1299         if (ret) {
1300                 btrfs_block_release(root, right_buf);
1301                 return 1;
1302         }
1303         right = btrfs_buffer_leaf(right_buf);
1304         free_space = btrfs_leaf_free_space(root, right);
1305         if (free_space < data_size + sizeof(struct btrfs_item)) {
1306                 btrfs_block_release(root, right_buf);
1307                 return 1;
1308         }
1309
1310         left_nritems = btrfs_header_nritems(&left->header);
1311         if (left_nritems == 0) {
1312                 btrfs_block_release(root, right_buf);
1313                 return 1;
1314         }
1315         for (i = left_nritems - 1; i >= 1; i--) {
1316                 item = left->items + i;
1317                 if (path->slots[0] == i)
1318                         push_space += data_size + sizeof(*item);
1319                 if (btrfs_item_size(item) + sizeof(*item) + push_space >
1320                     free_space)
1321                         break;
1322                 push_items++;
1323                 push_space += btrfs_item_size(item) + sizeof(*item);
1324         }
1325         if (push_items == 0) {
1326                 btrfs_block_release(root, right_buf);
1327                 return 1;
1328         }
1329         if (push_items == left_nritems)
1330                 WARN_ON(1);
1331         right_nritems = btrfs_header_nritems(&right->header);
1332         /* push left to right */
1333         push_space = btrfs_item_end(left->items + left_nritems - push_items);
1334         push_space -= leaf_data_end(root, left);
1335         /* make room in the right data area */
1336         btrfs_memmove(root, right, btrfs_leaf_data(right) +
1337                       leaf_data_end(root, right) - push_space,
1338                       btrfs_leaf_data(right) +
1339                       leaf_data_end(root, right), BTRFS_LEAF_DATA_SIZE(root) -
1340                       leaf_data_end(root, right));
1341         /* copy from the left data area */
1342         btrfs_memcpy(root, right, btrfs_leaf_data(right) +
1343                      BTRFS_LEAF_DATA_SIZE(root) - push_space,
1344                      btrfs_leaf_data(left) + leaf_data_end(root, left),
1345                      push_space);
1346         btrfs_memmove(root, right, right->items + push_items, right->items,
1347                 right_nritems * sizeof(struct btrfs_item));
1348         /* copy the items from left to right */
1349         btrfs_memcpy(root, right, right->items, left->items +
1350                      left_nritems - push_items,
1351                      push_items * sizeof(struct btrfs_item));
1352
1353         /* update the item pointers */
1354         right_nritems += push_items;
1355         btrfs_set_header_nritems(&right->header, right_nritems);
1356         push_space = BTRFS_LEAF_DATA_SIZE(root);
1357         for (i = 0; i < right_nritems; i++) {
1358                 btrfs_set_item_offset(right->items + i, push_space -
1359                                       btrfs_item_size(right->items + i));
1360                 push_space = btrfs_item_offset(right->items + i);
1361         }
1362         left_nritems -= push_items;
1363         btrfs_set_header_nritems(&left->header, left_nritems);
1364
1365         btrfs_mark_buffer_dirty(left_buf);
1366         btrfs_mark_buffer_dirty(right_buf);
1367
1368         btrfs_memcpy(root, upper_node, &upper_node->ptrs[slot + 1].key,
1369                 &right->items[0].key, sizeof(struct btrfs_disk_key));
1370         btrfs_mark_buffer_dirty(upper);
1371
1372         /* then fixup the leaf pointer in the path */
1373         if (path->slots[0] >= left_nritems) {
1374                 path->slots[0] -= left_nritems;
1375                 btrfs_block_release(root, path->nodes[0]);
1376                 path->nodes[0] = right_buf;
1377                 path->slots[1] += 1;
1378         } else {
1379                 btrfs_block_release(root, right_buf);
1380         }
1381         if (path->nodes[1])
1382                 check_node(root, path, 1);
1383         return 0;
1384 }
1385 /*
1386  * push some data in the path leaf to the left, trying to free up at
1387  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
1388  */
1389 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
1390                           *root, struct btrfs_path *path, int data_size)
1391 {
1392         struct buffer_head *right_buf = path->nodes[0];
1393         struct btrfs_leaf *right = btrfs_buffer_leaf(right_buf);
1394         struct buffer_head *t;
1395         struct btrfs_leaf *left;
1396         int slot;
1397         int i;
1398         int free_space;
1399         int push_space = 0;
1400         int push_items = 0;
1401         struct btrfs_item *item;
1402         u32 old_left_nritems;
1403         int ret = 0;
1404         int wret;
1405
1406         slot = path->slots[1];
1407         if (slot == 0) {
1408                 return 1;
1409         }
1410         if (!path->nodes[1]) {
1411                 return 1;
1412         }
1413         t = read_tree_block(root,
1414             btrfs_node_blockptr(btrfs_buffer_node(path->nodes[1]), slot - 1));
1415         left = btrfs_buffer_leaf(t);
1416         free_space = btrfs_leaf_free_space(root, left);
1417         if (free_space < data_size + sizeof(struct btrfs_item)) {
1418                 btrfs_block_release(root, t);
1419                 return 1;
1420         }
1421
1422         /* cow and double check */
1423         ret = btrfs_cow_block(trans, root, t, path->nodes[1], slot - 1, &t);
1424         if (ret) {
1425                 /* we hit -ENOSPC, but it isn't fatal here */
1426                 return 1;
1427         }
1428         left = btrfs_buffer_leaf(t);
1429         free_space = btrfs_leaf_free_space(root, left);
1430         if (free_space < data_size + sizeof(struct btrfs_item)) {
1431                 btrfs_block_release(root, t);
1432                 return 1;
1433         }
1434
1435         if (btrfs_header_nritems(&right->header) == 0) {
1436                 btrfs_block_release(root, t);
1437                 return 1;
1438         }
1439
1440         for (i = 0; i < btrfs_header_nritems(&right->header) - 1; i++) {
1441                 item = right->items + i;
1442                 if (path->slots[0] == i)
1443                         push_space += data_size + sizeof(*item);
1444                 if (btrfs_item_size(item) + sizeof(*item) + push_space >
1445                     free_space)
1446                         break;
1447                 push_items++;
1448                 push_space += btrfs_item_size(item) + sizeof(*item);
1449         }
1450         if (push_items == 0) {
1451                 btrfs_block_release(root, t);
1452                 return 1;
1453         }
1454         if (push_items == btrfs_header_nritems(&right->header))
1455                 WARN_ON(1);
1456         /* push data from right to left */
1457         btrfs_memcpy(root, left, left->items +
1458                      btrfs_header_nritems(&left->header),
1459                      right->items, push_items * sizeof(struct btrfs_item));
1460         push_space = BTRFS_LEAF_DATA_SIZE(root) -
1461                      btrfs_item_offset(right->items + push_items -1);
1462         btrfs_memcpy(root, left, btrfs_leaf_data(left) +
1463                      leaf_data_end(root, left) - push_space,
1464                      btrfs_leaf_data(right) +
1465                      btrfs_item_offset(right->items + push_items - 1),
1466                      push_space);
1467         old_left_nritems = btrfs_header_nritems(&left->header);
1468         BUG_ON(old_left_nritems < 0);
1469
1470         for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
1471                 u32 ioff = btrfs_item_offset(left->items + i);
1472                 btrfs_set_item_offset(left->items + i, ioff -
1473                                      (BTRFS_LEAF_DATA_SIZE(root) -
1474                                       btrfs_item_offset(left->items +
1475                                                         old_left_nritems - 1)));
1476         }
1477         btrfs_set_header_nritems(&left->header, old_left_nritems + push_items);
1478
1479         /* fixup right node */
1480         push_space = btrfs_item_offset(right->items + push_items - 1) -
1481                      leaf_data_end(root, right);
1482         btrfs_memmove(root, right, btrfs_leaf_data(right) +
1483                       BTRFS_LEAF_DATA_SIZE(root) - push_space,
1484                       btrfs_leaf_data(right) +
1485                       leaf_data_end(root, right), push_space);
1486         btrfs_memmove(root, right, right->items, right->items + push_items,
1487                 (btrfs_header_nritems(&right->header) - push_items) *
1488                 sizeof(struct btrfs_item));
1489         btrfs_set_header_nritems(&right->header,
1490                                  btrfs_header_nritems(&right->header) -
1491                                  push_items);
1492         push_space = BTRFS_LEAF_DATA_SIZE(root);
1493
1494         for (i = 0; i < btrfs_header_nritems(&right->header); i++) {
1495                 btrfs_set_item_offset(right->items + i, push_space -
1496                                       btrfs_item_size(right->items + i));
1497                 push_space = btrfs_item_offset(right->items + i);
1498         }
1499
1500         btrfs_mark_buffer_dirty(t);
1501         btrfs_mark_buffer_dirty(right_buf);
1502
1503         wret = fixup_low_keys(trans, root, path, &right->items[0].key, 1);
1504         if (wret)
1505                 ret = wret;
1506
1507         /* then fixup the leaf pointer in the path */
1508         if (path->slots[0] < push_items) {
1509                 path->slots[0] += old_left_nritems;
1510                 btrfs_block_release(root, path->nodes[0]);
1511                 path->nodes[0] = t;
1512                 path->slots[1] -= 1;
1513         } else {
1514                 btrfs_block_release(root, t);
1515                 path->slots[0] -= push_items;
1516         }
1517         BUG_ON(path->slots[0] < 0);
1518         if (path->nodes[1])
1519                 check_node(root, path, 1);
1520         return ret;
1521 }
1522
1523 /*
1524  * split the path's leaf in two, making sure there is at least data_size
1525  * available for the resulting leaf level of the path.
1526  *
1527  * returns 0 if all went well and < 0 on failure.
1528  */
1529 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
1530                       *root, struct btrfs_key *ins_key,
1531                       struct btrfs_path *path, int data_size)
1532 {
1533         struct buffer_head *l_buf;
1534         struct btrfs_leaf *l;
1535         u32 nritems;
1536         int mid;
1537         int slot;
1538         struct btrfs_leaf *right;
1539         struct buffer_head *right_buffer;
1540         int space_needed = data_size + sizeof(struct btrfs_item);
1541         int data_copy_size;
1542         int rt_data_off;
1543         int i;
1544         int ret = 0;
1545         int wret;
1546         int double_split = 0;
1547         struct btrfs_disk_key disk_key;
1548
1549         /* first try to make some room by pushing left and right */
1550         wret = push_leaf_left(trans, root, path, data_size);
1551         if (wret < 0)
1552                 return wret;
1553         if (wret) {
1554                 wret = push_leaf_right(trans, root, path, data_size);
1555                 if (wret < 0)
1556                         return wret;
1557         }
1558         l_buf = path->nodes[0];
1559         l = btrfs_buffer_leaf(l_buf);
1560
1561         /* did the pushes work? */
1562         if (btrfs_leaf_free_space(root, l) >=
1563             sizeof(struct btrfs_item) + data_size)
1564                 return 0;
1565
1566         if (!path->nodes[1]) {
1567                 ret = insert_new_root(trans, root, path, 1);
1568                 if (ret)
1569                         return ret;
1570         }
1571         slot = path->slots[0];
1572         nritems = btrfs_header_nritems(&l->header);
1573         mid = (nritems + 1)/ 2;
1574
1575         right_buffer = btrfs_alloc_free_block(trans, root, l_buf->b_blocknr, 0);
1576         if (IS_ERR(right_buffer))
1577                 return PTR_ERR(right_buffer);
1578
1579         right = btrfs_buffer_leaf(right_buffer);
1580         memset(&right->header, 0, sizeof(right->header));
1581         btrfs_set_header_blocknr(&right->header, bh_blocknr(right_buffer));
1582         btrfs_set_header_generation(&right->header, trans->transid);
1583         btrfs_set_header_owner(&right->header, root->root_key.objectid);
1584         btrfs_set_header_level(&right->header, 0);
1585         memcpy(right->header.fsid, root->fs_info->disk_super->fsid,
1586                sizeof(right->header.fsid));
1587         if (mid <= slot) {
1588                 if (nritems == 1 ||
1589                     leaf_space_used(l, mid, nritems - mid) + space_needed >
1590                         BTRFS_LEAF_DATA_SIZE(root)) {
1591                         if (slot >= nritems) {
1592                                 btrfs_cpu_key_to_disk(&disk_key, ins_key);
1593                                 btrfs_set_header_nritems(&right->header, 0);
1594                                 wret = insert_ptr(trans, root, path,
1595                                                   &disk_key,
1596                                                   bh_blocknr(right_buffer),
1597                                                   path->slots[1] + 1, 1);
1598                                 if (wret)
1599                                         ret = wret;
1600                                 btrfs_block_release(root, path->nodes[0]);
1601                                 path->nodes[0] = right_buffer;
1602                                 path->slots[0] = 0;
1603                                 path->slots[1] += 1;
1604                                 return ret;
1605                         }
1606                         mid = slot;
1607                         double_split = 1;
1608                 }
1609         } else {
1610                 if (leaf_space_used(l, 0, mid + 1) + space_needed >
1611                         BTRFS_LEAF_DATA_SIZE(root)) {
1612                         if (slot == 0) {
1613                                 btrfs_cpu_key_to_disk(&disk_key, ins_key);
1614                                 btrfs_set_header_nritems(&right->header, 0);
1615                                 wret = insert_ptr(trans, root, path,
1616                                                   &disk_key,
1617                                                   bh_blocknr(right_buffer),
1618                                                   path->slots[1], 1);
1619                                 if (wret)
1620                                         ret = wret;
1621                                 btrfs_block_release(root, path->nodes[0]);
1622                                 path->nodes[0] = right_buffer;
1623                                 path->slots[0] = 0;
1624                                 if (path->slots[1] == 0) {
1625                                         wret = fixup_low_keys(trans, root,
1626                                                    path, &disk_key, 1);
1627                                         if (wret)
1628                                                 ret = wret;
1629                                 }
1630                                 return ret;
1631                         }
1632                         mid = slot;
1633                         double_split = 1;
1634                 }
1635         }
1636         btrfs_set_header_nritems(&right->header, nritems - mid);
1637         data_copy_size = btrfs_item_end(l->items + mid) -
1638                          leaf_data_end(root, l);
1639         btrfs_memcpy(root, right, right->items, l->items + mid,
1640                      (nritems - mid) * sizeof(struct btrfs_item));
1641         btrfs_memcpy(root, right,
1642                      btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
1643                      data_copy_size, btrfs_leaf_data(l) +
1644                      leaf_data_end(root, l), data_copy_size);
1645         rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
1646                       btrfs_item_end(l->items + mid);
1647
1648         for (i = 0; i < btrfs_header_nritems(&right->header); i++) {
1649                 u32 ioff = btrfs_item_offset(right->items + i);
1650                 btrfs_set_item_offset(right->items + i, ioff + rt_data_off);
1651         }
1652
1653         btrfs_set_header_nritems(&l->header, mid);
1654         ret = 0;
1655         wret = insert_ptr(trans, root, path, &right->items[0].key,
1656                           bh_blocknr(right_buffer), path->slots[1] + 1, 1);
1657         if (wret)
1658                 ret = wret;
1659         btrfs_mark_buffer_dirty(right_buffer);
1660         btrfs_mark_buffer_dirty(l_buf);
1661         BUG_ON(path->slots[0] != slot);
1662         if (mid <= slot) {
1663                 btrfs_block_release(root, path->nodes[0]);
1664                 path->nodes[0] = right_buffer;
1665                 path->slots[0] -= mid;
1666                 path->slots[1] += 1;
1667         } else
1668                 btrfs_block_release(root, right_buffer);
1669         BUG_ON(path->slots[0] < 0);
1670         check_node(root, path, 1);
1671
1672         if (!double_split)
1673                 return ret;
1674         right_buffer = btrfs_alloc_free_block(trans, root, l_buf->b_blocknr, 0);
1675         if (IS_ERR(right_buffer))
1676                 return PTR_ERR(right_buffer);
1677
1678         right = btrfs_buffer_leaf(right_buffer);
1679         memset(&right->header, 0, sizeof(right->header));
1680         btrfs_set_header_blocknr(&right->header, bh_blocknr(right_buffer));
1681         btrfs_set_header_generation(&right->header, trans->transid);
1682         btrfs_set_header_owner(&right->header, root->root_key.objectid);
1683         btrfs_set_header_level(&right->header, 0);
1684         memcpy(right->header.fsid, root->fs_info->disk_super->fsid,
1685                sizeof(right->header.fsid));
1686         btrfs_cpu_key_to_disk(&disk_key, ins_key);
1687         btrfs_set_header_nritems(&right->header, 0);
1688         wret = insert_ptr(trans, root, path,
1689                           &disk_key,
1690                           bh_blocknr(right_buffer),
1691                           path->slots[1], 1);
1692         if (wret)
1693                 ret = wret;
1694         if (path->slots[1] == 0) {
1695                 wret = fixup_low_keys(trans, root, path, &disk_key, 1);
1696                 if (wret)
1697                         ret = wret;
1698         }
1699         btrfs_block_release(root, path->nodes[0]);
1700         path->nodes[0] = right_buffer;
1701         path->slots[0] = 0;
1702         check_node(root, path, 1);
1703         check_leaf(root, path, 0);
1704         return ret;
1705 }
1706
1707 int btrfs_truncate_item(struct btrfs_trans_handle *trans,
1708                         struct btrfs_root *root,
1709                         struct btrfs_path *path,
1710                         u32 new_size)
1711 {
1712         int ret = 0;
1713         int slot;
1714         int slot_orig;
1715         struct btrfs_leaf *leaf;
1716         struct buffer_head *leaf_buf;
1717         u32 nritems;
1718         unsigned int data_end;
1719         unsigned int old_data_start;
1720         unsigned int old_size;
1721         unsigned int size_diff;
1722         int i;
1723
1724         slot_orig = path->slots[0];
1725         leaf_buf = path->nodes[0];
1726         leaf = btrfs_buffer_leaf(leaf_buf);
1727
1728         nritems = btrfs_header_nritems(&leaf->header);
1729         data_end = leaf_data_end(root, leaf);
1730
1731         slot = path->slots[0];
1732         old_data_start = btrfs_item_offset(leaf->items + slot);
1733         old_size = btrfs_item_size(leaf->items + slot);
1734         BUG_ON(old_size <= new_size);
1735         size_diff = old_size - new_size;
1736
1737         BUG_ON(slot < 0);
1738         BUG_ON(slot >= nritems);
1739
1740         /*
1741          * item0..itemN ... dataN.offset..dataN.size .. data0.size
1742          */
1743         /* first correct the data pointers */
1744         for (i = slot; i < nritems; i++) {
1745                 u32 ioff = btrfs_item_offset(leaf->items + i);
1746                 btrfs_set_item_offset(leaf->items + i,
1747                                       ioff + size_diff);
1748         }
1749         /* shift the data */
1750         btrfs_memmove(root, leaf, btrfs_leaf_data(leaf) +
1751                       data_end + size_diff, btrfs_leaf_data(leaf) +
1752                       data_end, old_data_start + new_size - data_end);
1753         btrfs_set_item_size(leaf->items + slot, new_size);
1754         btrfs_mark_buffer_dirty(leaf_buf);
1755
1756         ret = 0;
1757         if (btrfs_leaf_free_space(root, leaf) < 0)
1758                 BUG();
1759         check_leaf(root, path, 0);
1760         return ret;
1761 }
1762
1763 int btrfs_extend_item(struct btrfs_trans_handle *trans, struct btrfs_root
1764                       *root, struct btrfs_path *path, u32 data_size)
1765 {
1766         int ret = 0;
1767         int slot;
1768         int slot_orig;
1769         struct btrfs_leaf *leaf;
1770         struct buffer_head *leaf_buf;
1771         u32 nritems;
1772         unsigned int data_end;
1773         unsigned int old_data;
1774         unsigned int old_size;
1775         int i;
1776
1777         slot_orig = path->slots[0];
1778         leaf_buf = path->nodes[0];
1779         leaf = btrfs_buffer_leaf(leaf_buf);
1780
1781         nritems = btrfs_header_nritems(&leaf->header);
1782         data_end = leaf_data_end(root, leaf);
1783
1784         if (btrfs_leaf_free_space(root, leaf) < data_size)
1785                 BUG();
1786         slot = path->slots[0];
1787         old_data = btrfs_item_end(leaf->items + slot);
1788
1789         BUG_ON(slot < 0);
1790         BUG_ON(slot >= nritems);
1791
1792         /*
1793          * item0..itemN ... dataN.offset..dataN.size .. data0.size
1794          */
1795         /* first correct the data pointers */
1796         for (i = slot; i < nritems; i++) {
1797                 u32 ioff = btrfs_item_offset(leaf->items + i);
1798                 btrfs_set_item_offset(leaf->items + i,
1799                                       ioff - data_size);
1800         }
1801         /* shift the data */
1802         btrfs_memmove(root, leaf, btrfs_leaf_data(leaf) +
1803                       data_end - data_size, btrfs_leaf_data(leaf) +
1804                       data_end, old_data - data_end);
1805         data_end = old_data;
1806         old_size = btrfs_item_size(leaf->items + slot);
1807         btrfs_set_item_size(leaf->items + slot, old_size + data_size);
1808         btrfs_mark_buffer_dirty(leaf_buf);
1809
1810         ret = 0;
1811         if (btrfs_leaf_free_space(root, leaf) < 0)
1812                 BUG();
1813         check_leaf(root, path, 0);
1814         return ret;
1815 }
1816
1817 /*
1818  * Given a key and some data, insert an item into the tree.
1819  * This does all the path init required, making room in the tree if needed.
1820  */
1821 int btrfs_insert_empty_item(struct btrfs_trans_handle *trans, struct btrfs_root
1822                             *root, struct btrfs_path *path, struct btrfs_key
1823                             *cpu_key, u32 data_size)
1824 {
1825         int ret = 0;
1826         int slot;
1827         int slot_orig;
1828         struct btrfs_leaf *leaf;
1829         struct buffer_head *leaf_buf;
1830         u32 nritems;
1831         unsigned int data_end;
1832         struct btrfs_disk_key disk_key;
1833
1834         btrfs_cpu_key_to_disk(&disk_key, cpu_key);
1835
1836         /* create a root if there isn't one */
1837         if (!root->node)
1838                 BUG();
1839         ret = btrfs_search_slot(trans, root, cpu_key, path, data_size, 1);
1840         if (ret == 0) {
1841                 return -EEXIST;
1842         }
1843         if (ret < 0)
1844                 goto out;
1845
1846         slot_orig = path->slots[0];
1847         leaf_buf = path->nodes[0];
1848         leaf = btrfs_buffer_leaf(leaf_buf);
1849
1850         nritems = btrfs_header_nritems(&leaf->header);
1851         data_end = leaf_data_end(root, leaf);
1852
1853         if (btrfs_leaf_free_space(root, leaf) <
1854             sizeof(struct btrfs_item) + data_size) {
1855                 BUG();
1856         }
1857         slot = path->slots[0];
1858         BUG_ON(slot < 0);
1859         if (slot != nritems) {
1860                 int i;
1861                 unsigned int old_data = btrfs_item_end(leaf->items + slot);
1862
1863                 /*
1864                  * item0..itemN ... dataN.offset..dataN.size .. data0.size
1865                  */
1866                 /* first correct the data pointers */
1867                 for (i = slot; i < nritems; i++) {
1868                         u32 ioff = btrfs_item_offset(leaf->items + i);
1869                         btrfs_set_item_offset(leaf->items + i,
1870                                               ioff - data_size);
1871                 }
1872
1873                 /* shift the items */
1874                 btrfs_memmove(root, leaf, leaf->items + slot + 1,
1875                               leaf->items + slot,
1876                               (nritems - slot) * sizeof(struct btrfs_item));
1877
1878                 /* shift the data */
1879                 btrfs_memmove(root, leaf, btrfs_leaf_data(leaf) +
1880                               data_end - data_size, btrfs_leaf_data(leaf) +
1881                               data_end, old_data - data_end);
1882                 data_end = old_data;
1883         }
1884         /* setup the item for the new data */
1885         btrfs_memcpy(root, leaf, &leaf->items[slot].key, &disk_key,
1886                      sizeof(struct btrfs_disk_key));
1887         btrfs_set_item_offset(leaf->items + slot, data_end - data_size);
1888         btrfs_set_item_size(leaf->items + slot, data_size);
1889         btrfs_set_header_nritems(&leaf->header, nritems + 1);
1890         btrfs_mark_buffer_dirty(leaf_buf);
1891
1892         ret = 0;
1893         if (slot == 0)
1894                 ret = fixup_low_keys(trans, root, path, &disk_key, 1);
1895
1896         if (btrfs_leaf_free_space(root, leaf) < 0)
1897                 BUG();
1898         check_leaf(root, path, 0);
1899 out:
1900         return ret;
1901 }
1902
1903 /*
1904  * Given a key and some data, insert an item into the tree.
1905  * This does all the path init required, making room in the tree if needed.
1906  */
1907 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
1908                       *root, struct btrfs_key *cpu_key, void *data, u32
1909                       data_size)
1910 {
1911         int ret = 0;
1912         struct btrfs_path *path;
1913         u8 *ptr;
1914
1915         path = btrfs_alloc_path();
1916         BUG_ON(!path);
1917         ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
1918         if (!ret) {
1919                 ptr = btrfs_item_ptr(btrfs_buffer_leaf(path->nodes[0]),
1920                                      path->slots[0], u8);
1921                 btrfs_memcpy(root, path->nodes[0]->b_data,
1922                              ptr, data, data_size);
1923                 btrfs_mark_buffer_dirty(path->nodes[0]);
1924         }
1925         btrfs_free_path(path);
1926         return ret;
1927 }
1928
1929 /*
1930  * delete the pointer from a given node.
1931  *
1932  * If the delete empties a node, the node is removed from the tree,
1933  * continuing all the way the root if required.  The root is converted into
1934  * a leaf if all the nodes are emptied.
1935  */
1936 static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1937                    struct btrfs_path *path, int level, int slot)
1938 {
1939         struct btrfs_node *node;
1940         struct buffer_head *parent = path->nodes[level];
1941         u32 nritems;
1942         int ret = 0;
1943         int wret;
1944
1945         node = btrfs_buffer_node(parent);
1946         nritems = btrfs_header_nritems(&node->header);
1947         if (slot != nritems -1) {
1948                 btrfs_memmove(root, node, node->ptrs + slot,
1949                               node->ptrs + slot + 1,
1950                               sizeof(struct btrfs_key_ptr) *
1951                               (nritems - slot - 1));
1952         }
1953         nritems--;
1954         btrfs_set_header_nritems(&node->header, nritems);
1955         if (nritems == 0 && parent == root->node) {
1956                 struct btrfs_header *header = btrfs_buffer_header(root->node);
1957                 BUG_ON(btrfs_header_level(header) != 1);
1958                 /* just turn the root into a leaf and break */
1959                 btrfs_set_header_level(header, 0);
1960         } else if (slot == 0) {
1961                 wret = fixup_low_keys(trans, root, path, &node->ptrs[0].key,
1962                                       level + 1);
1963                 if (wret)
1964                         ret = wret;
1965         }
1966         btrfs_mark_buffer_dirty(parent);
1967         return ret;
1968 }
1969
1970 /*
1971  * delete the item at the leaf level in path.  If that empties
1972  * the leaf, remove it from the tree
1973  */
1974 int btrfs_del_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1975                    struct btrfs_path *path)
1976 {
1977         int slot;
1978         struct btrfs_leaf *leaf;
1979         struct buffer_head *leaf_buf;
1980         int doff;
1981         int dsize;
1982         int ret = 0;
1983         int wret;
1984         u32 nritems;
1985
1986         leaf_buf = path->nodes[0];
1987         leaf = btrfs_buffer_leaf(leaf_buf);
1988         slot = path->slots[0];
1989         doff = btrfs_item_offset(leaf->items + slot);
1990         dsize = btrfs_item_size(leaf->items + slot);
1991         nritems = btrfs_header_nritems(&leaf->header);
1992
1993         if (slot != nritems - 1) {
1994                 int i;
1995                 int data_end = leaf_data_end(root, leaf);
1996                 btrfs_memmove(root, leaf, btrfs_leaf_data(leaf) +
1997                               data_end + dsize,
1998                               btrfs_leaf_data(leaf) + data_end,
1999                               doff - data_end);
2000                 for (i = slot + 1; i < nritems; i++) {
2001                         u32 ioff = btrfs_item_offset(leaf->items + i);
2002                         btrfs_set_item_offset(leaf->items + i, ioff + dsize);
2003                 }
2004                 btrfs_memmove(root, leaf, leaf->items + slot,
2005                               leaf->items + slot + 1,
2006                               sizeof(struct btrfs_item) *
2007                               (nritems - slot - 1));
2008         }
2009         btrfs_set_header_nritems(&leaf->header, nritems - 1);
2010         nritems--;
2011         /* delete the leaf if we've emptied it */
2012         if (nritems == 0) {
2013                 if (leaf_buf == root->node) {
2014                         btrfs_set_header_level(&leaf->header, 0);
2015                 } else {
2016                         clean_tree_block(trans, root, leaf_buf);
2017                         wait_on_buffer(leaf_buf);
2018                         wret = del_ptr(trans, root, path, 1, path->slots[1]);
2019                         if (wret)
2020                                 ret = wret;
2021                         wret = btrfs_free_extent(trans, root,
2022                                                  bh_blocknr(leaf_buf), 1, 1);
2023                         if (wret)
2024                                 ret = wret;
2025                 }
2026         } else {
2027                 int used = leaf_space_used(leaf, 0, nritems);
2028                 if (slot == 0) {
2029                         wret = fixup_low_keys(trans, root, path,
2030                                               &leaf->items[0].key, 1);
2031                         if (wret)
2032                                 ret = wret;
2033                 }
2034
2035                 /* delete the leaf if it is mostly empty */
2036                 if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) {
2037                         /* push_leaf_left fixes the path.
2038                          * make sure the path still points to our leaf
2039                          * for possible call to del_ptr below
2040                          */
2041                         slot = path->slots[1];
2042                         get_bh(leaf_buf);
2043                         wret = push_leaf_left(trans, root, path, 1);
2044                         if (wret < 0 && wret != -ENOSPC)
2045                                 ret = wret;
2046                         if (path->nodes[0] == leaf_buf &&
2047                             btrfs_header_nritems(&leaf->header)) {
2048                                 wret = push_leaf_right(trans, root, path, 1);
2049                                 if (wret < 0 && wret != -ENOSPC)
2050                                         ret = wret;
2051                         }
2052                         if (btrfs_header_nritems(&leaf->header) == 0) {
2053                                 u64 blocknr = bh_blocknr(leaf_buf);
2054                                 clean_tree_block(trans, root, leaf_buf);
2055                                 wait_on_buffer(leaf_buf);
2056                                 wret = del_ptr(trans, root, path, 1, slot);
2057                                 if (wret)
2058                                         ret = wret;
2059                                 btrfs_block_release(root, leaf_buf);
2060                                 wret = btrfs_free_extent(trans, root, blocknr,
2061                                                          1, 1);
2062                                 if (wret)
2063                                         ret = wret;
2064                         } else {
2065                                 btrfs_mark_buffer_dirty(leaf_buf);
2066                                 btrfs_block_release(root, leaf_buf);
2067                         }
2068                 } else {
2069                         btrfs_mark_buffer_dirty(leaf_buf);
2070                 }
2071         }
2072         return ret;
2073 }
2074
2075 /*
2076  * walk up the tree as far as required to find the next leaf.
2077  * returns 0 if it found something or 1 if there are no greater leaves.
2078  * returns < 0 on io errors.
2079  */
2080 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
2081 {
2082         int slot;
2083         int level = 1;
2084         u64 blocknr;
2085         struct buffer_head *c;
2086         struct btrfs_node *c_node;
2087         struct buffer_head *next = NULL;
2088
2089         while(level < BTRFS_MAX_LEVEL) {
2090                 if (!path->nodes[level])
2091                         return 1;
2092                 slot = path->slots[level] + 1;
2093                 c = path->nodes[level];
2094                 c_node = btrfs_buffer_node(c);
2095                 if (slot >= btrfs_header_nritems(&c_node->header)) {
2096                         level++;
2097                         continue;
2098                 }
2099                 blocknr = btrfs_node_blockptr(c_node, slot);
2100                 if (next)
2101                         btrfs_block_release(root, next);
2102                 if (path->reada)
2103                         reada_for_search(root, path, level, slot);
2104                 next = read_tree_block(root, blocknr);
2105                 break;
2106         }
2107         path->slots[level] = slot;
2108         while(1) {
2109                 level--;
2110                 c = path->nodes[level];
2111                 btrfs_block_release(root, c);
2112                 path->nodes[level] = next;
2113                 path->slots[level] = 0;
2114                 if (!level)
2115                         break;
2116                 if (path->reada)
2117                         reada_for_search(root, path, level, slot);
2118                 next = read_tree_block(root,
2119                        btrfs_node_blockptr(btrfs_buffer_node(next), 0));
2120         }
2121         return 0;
2122 }