]> git.karo-electronics.de Git - karo-tx-linux.git/blob - fs/btrfs/ctree.c
Btrfs: Fixup reference counting on cows
[karo-tx-linux.git] / fs / btrfs / ctree.c
1 #include <stdio.h>
2 #include <stdlib.h>
3 #include "kerncompat.h"
4 #include "radix-tree.h"
5 #include "ctree.h"
6 #include "disk-io.h"
7 #include "print-tree.h"
8
9 static int split_node(struct ctree_root *root, struct ctree_path *path,
10                       int level);
11 static int split_leaf(struct ctree_root *root, struct ctree_path *path,
12                       int data_size);
13 static int push_node_left(struct ctree_root *root, struct tree_buffer *dst,
14                           struct tree_buffer *src);
15 static int balance_node_right(struct ctree_root *root,
16                               struct tree_buffer *dst_buf,
17                               struct tree_buffer *src_buf);
18 static int del_ptr(struct ctree_root *root, struct ctree_path *path, int level,
19                    int slot);
20
21 inline void init_path(struct ctree_path *p)
22 {
23         memset(p, 0, sizeof(*p));
24 }
25
26 void release_path(struct ctree_root *root, struct ctree_path *p)
27 {
28         int i;
29         for (i = 0; i < MAX_LEVEL; i++) {
30                 if (!p->nodes[i])
31                         break;
32                 tree_block_release(root, p->nodes[i]);
33         }
34         memset(p, 0, sizeof(*p));
35 }
36
37 int btrfs_cow_block(struct ctree_root *root,
38                     struct tree_buffer *buf,
39                     struct tree_buffer *parent,
40                     int parent_slot,
41                     struct tree_buffer **cow_ret)
42 {
43         struct tree_buffer *cow;
44
45         if (!list_empty(&buf->dirty)) {
46                 *cow_ret = buf;
47                 return 0;
48         }
49         cow = alloc_free_block(root);
50         memcpy(&cow->node, &buf->node, sizeof(buf->node));
51         cow->node.header.blocknr = cow->blocknr;
52         *cow_ret = cow;
53         btrfs_inc_ref(root, buf);
54         if (buf == root->node) {
55                 root->node = cow;
56                 cow->count++;
57                 if (buf != root->commit_root)
58                         free_extent(root, buf->blocknr, 1);
59                 tree_block_release(root, buf);
60         } else {
61                 parent->node.blockptrs[parent_slot] = cow->blocknr;
62                 BUG_ON(list_empty(&parent->dirty));
63                 free_extent(root, buf->blocknr, 1);
64         }
65         tree_block_release(root, buf);
66         return 0;
67 }
68
69 /*
70  * The leaf data grows from end-to-front in the node.
71  * this returns the address of the start of the last item,
72  * which is the stop of the leaf data stack
73  */
74 static inline unsigned int leaf_data_end(struct leaf *leaf)
75 {
76         unsigned int nr = leaf->header.nritems;
77         if (nr == 0)
78                 return sizeof(leaf->data);
79         return leaf->items[nr-1].offset;
80 }
81
82 /*
83  * The space between the end of the leaf items and
84  * the start of the leaf data.  IOW, how much room
85  * the leaf has left for both items and data
86  */
87 int leaf_free_space(struct leaf *leaf)
88 {
89         int data_end = leaf_data_end(leaf);
90         int nritems = leaf->header.nritems;
91         char *items_end = (char *)(leaf->items + nritems + 1);
92         return (char *)(leaf->data + data_end) - (char *)items_end;
93 }
94
95 /*
96  * compare two keys in a memcmp fashion
97  */
98 int comp_keys(struct key *k1, struct key *k2)
99 {
100         if (k1->objectid > k2->objectid)
101                 return 1;
102         if (k1->objectid < k2->objectid)
103                 return -1;
104         if (k1->flags > k2->flags)
105                 return 1;
106         if (k1->flags < k2->flags)
107                 return -1;
108         if (k1->offset > k2->offset)
109                 return 1;
110         if (k1->offset < k2->offset)
111                 return -1;
112         return 0;
113 }
114
115 int check_node(struct ctree_path *path, int level)
116 {
117         int i;
118         struct node *parent = NULL;
119         struct node *node = &path->nodes[level]->node;
120         int parent_slot;
121
122         if (path->nodes[level + 1])
123                 parent = &path->nodes[level + 1]->node;
124         parent_slot = path->slots[level + 1];
125         if (parent && node->header.nritems > 0) {
126                 struct key *parent_key;
127                 parent_key = &parent->keys[parent_slot];
128                 BUG_ON(memcmp(parent_key, node->keys, sizeof(struct key)));
129                 BUG_ON(parent->blockptrs[parent_slot] != node->header.blocknr);
130         }
131         BUG_ON(node->header.nritems > NODEPTRS_PER_BLOCK);
132         for (i = 0; i < node->header.nritems - 2; i++) {
133                 BUG_ON(comp_keys(&node->keys[i], &node->keys[i+1]) >= 0);
134         }
135         return 0;
136 }
137
138 int check_leaf(struct ctree_path *path, int level)
139 {
140         int i;
141         struct leaf *leaf = &path->nodes[level]->leaf;
142         struct node *parent = NULL;
143         int parent_slot;
144
145         if (path->nodes[level + 1])
146                 parent = &path->nodes[level + 1]->node;
147         parent_slot = path->slots[level + 1];
148         if (parent && leaf->header.nritems > 0) {
149                 struct key *parent_key;
150                 parent_key = &parent->keys[parent_slot];
151                 BUG_ON(memcmp(parent_key, &leaf->items[0].key,
152                        sizeof(struct key)));
153                 BUG_ON(parent->blockptrs[parent_slot] != leaf->header.blocknr);
154         }
155         for (i = 0; i < leaf->header.nritems - 2; i++) {
156                 BUG_ON(comp_keys(&leaf->items[i].key,
157                                  &leaf->items[i+1].key) >= 0);
158                 BUG_ON(leaf->items[i].offset != leaf->items[i + 1].offset +
159                     leaf->items[i + 1].size);
160                 if (i == 0) {
161                         BUG_ON(leaf->items[i].offset + leaf->items[i].size !=
162                                 LEAF_DATA_SIZE);
163                 }
164         }
165         BUG_ON(leaf_free_space(leaf) < 0);
166         return 0;
167 }
168
169 int check_block(struct ctree_path *path, int level)
170 {
171         if (level == 0)
172                 return check_leaf(path, level);
173         return check_node(path, level);
174 }
175
176 /*
177  * search for key in the array p.  items p are item_size apart
178  * and there are 'max' items in p
179  * the slot in the array is returned via slot, and it points to
180  * the place where you would insert key if it is not found in
181  * the array.
182  *
183  * slot may point to max if the key is bigger than all of the keys
184  */
185 int generic_bin_search(char *p, int item_size, struct key *key,
186                        int max, int *slot)
187 {
188         int low = 0;
189         int high = max;
190         int mid;
191         int ret;
192         struct key *tmp;
193
194         while(low < high) {
195                 mid = (low + high) / 2;
196                 tmp = (struct key *)(p + mid * item_size);
197                 ret = comp_keys(tmp, key);
198
199                 if (ret < 0)
200                         low = mid + 1;
201                 else if (ret > 0)
202                         high = mid;
203                 else {
204                         *slot = mid;
205                         return 0;
206                 }
207         }
208         *slot = low;
209         return 1;
210 }
211
212 /*
213  * simple bin_search frontend that does the right thing for
214  * leaves vs nodes
215  */
216 int bin_search(struct node *c, struct key *key, int *slot)
217 {
218         if (is_leaf(c->header.flags)) {
219                 struct leaf *l = (struct leaf *)c;
220                 return generic_bin_search((void *)l->items, sizeof(struct item),
221                                           key, c->header.nritems, slot);
222         } else {
223                 return generic_bin_search((void *)c->keys, sizeof(struct key),
224                                           key, c->header.nritems, slot);
225         }
226         return -1;
227 }
228
229 struct tree_buffer *read_node_slot(struct ctree_root *root,
230                                    struct tree_buffer *parent_buf,
231                                    int slot)
232 {
233         struct node *node = &parent_buf->node;
234         if (slot < 0)
235                 return NULL;
236         if (slot >= node->header.nritems)
237                 return NULL;
238         return read_tree_block(root, node->blockptrs[slot]);
239 }
240
241 static int balance_level(struct ctree_root *root, struct ctree_path *path,
242                         int level)
243 {
244         struct tree_buffer *right_buf;
245         struct tree_buffer *mid_buf;
246         struct tree_buffer *left_buf;
247         struct tree_buffer *parent_buf = NULL;
248         struct node *right = NULL;
249         struct node *mid;
250         struct node *left = NULL;
251         struct node *parent = NULL;
252         int ret = 0;
253         int wret;
254         int pslot;
255         int orig_slot = path->slots[level];
256         u64 orig_ptr;
257
258         if (level == 0)
259                 return 0;
260
261         mid_buf = path->nodes[level];
262         mid = &mid_buf->node;
263         orig_ptr = mid->blockptrs[orig_slot];
264
265         if (level < MAX_LEVEL - 1)
266                 parent_buf = path->nodes[level + 1];
267         pslot = path->slots[level + 1];
268
269         if (!parent_buf) {
270                 struct tree_buffer *child;
271                 u64 blocknr = mid_buf->blocknr;
272
273                 if (mid->header.nritems != 1)
274                         return 0;
275
276                 /* promote the child to a root */
277                 child = read_node_slot(root, mid_buf, 0);
278                 BUG_ON(!child);
279                 root->node = child;
280                 path->nodes[level] = NULL;
281                 /* once for the path */
282                 tree_block_release(root, mid_buf);
283                 /* once for the root ptr */
284                 tree_block_release(root, mid_buf);
285                 clean_tree_block(root, mid_buf);
286                 return free_extent(root, blocknr, 1);
287         }
288         parent = &parent_buf->node;
289
290         if (mid->header.nritems > NODEPTRS_PER_BLOCK / 4)
291                 return 0;
292
293         left_buf = read_node_slot(root, parent_buf, pslot - 1);
294         right_buf = read_node_slot(root, parent_buf, pslot + 1);
295
296         /* first, try to make some room in the middle buffer */
297         if (left_buf) {
298                 btrfs_cow_block(root, left_buf, parent_buf,
299                                 pslot - 1, &left_buf);
300                 left = &left_buf->node;
301                 orig_slot += left->header.nritems;
302                 wret = push_node_left(root, left_buf, mid_buf);
303                 if (wret < 0)
304                         ret = wret;
305         }
306
307         /*
308          * then try to empty the right most buffer into the middle
309          */
310         if (right_buf) {
311                 btrfs_cow_block(root, right_buf, parent_buf,
312                                 pslot + 1, &right_buf);
313                 right = &right_buf->node;
314                 wret = push_node_left(root, mid_buf, right_buf);
315                 if (wret < 0)
316                         ret = wret;
317                 if (right->header.nritems == 0) {
318                         u64 blocknr = right_buf->blocknr;
319                         tree_block_release(root, right_buf);
320                         clean_tree_block(root, right_buf);
321                         right_buf = NULL;
322                         right = NULL;
323                         wret = del_ptr(root, path, level + 1, pslot + 1);
324                         if (wret)
325                                 ret = wret;
326                         wret = free_extent(root, blocknr, 1);
327                         if (wret)
328                                 ret = wret;
329                 } else {
330                         memcpy(parent->keys + pslot + 1, right->keys,
331                                 sizeof(struct key));
332                         BUG_ON(list_empty(&parent_buf->dirty));
333                 }
334         }
335         if (mid->header.nritems == 1) {
336                 /*
337                  * we're not allowed to leave a node with one item in the
338                  * tree during a delete.  A deletion from lower in the tree
339                  * could try to delete the only pointer in this node.
340                  * So, pull some keys from the left.
341                  * There has to be a left pointer at this point because
342                  * otherwise we would have pulled some pointers from the
343                  * right
344                  */
345                 BUG_ON(!left_buf);
346                 wret = balance_node_right(root, mid_buf, left_buf);
347                 if (wret < 0)
348                         ret = wret;
349                 BUG_ON(wret == 1);
350         }
351         if (mid->header.nritems == 0) {
352                 /* we've managed to empty the middle node, drop it */
353                 u64 blocknr = mid_buf->blocknr;
354                 tree_block_release(root, mid_buf);
355                 clean_tree_block(root, mid_buf);
356                 mid_buf = NULL;
357                 mid = NULL;
358                 wret = del_ptr(root, path, level + 1, pslot);
359                 if (wret)
360                         ret = wret;
361                 wret = free_extent(root, blocknr, 1);
362                 if (wret)
363                         ret = wret;
364         } else {
365                 /* update the parent key to reflect our changes */
366                 memcpy(parent->keys + pslot, mid->keys, sizeof(struct key));
367                 BUG_ON(list_empty(&parent_buf->dirty));
368         }
369
370         /* update the path */
371         if (left_buf) {
372                 if (left->header.nritems > orig_slot) {
373                         left_buf->count++; // released below
374                         path->nodes[level] = left_buf;
375                         path->slots[level + 1] -= 1;
376                         path->slots[level] = orig_slot;
377                         if (mid_buf)
378                                 tree_block_release(root, mid_buf);
379                 } else {
380                         orig_slot -= left->header.nritems;
381                         path->slots[level] = orig_slot;
382                 }
383         }
384         /* double check we haven't messed things up */
385         check_block(path, level);
386         if (orig_ptr != path->nodes[level]->node.blockptrs[path->slots[level]])
387                 BUG();
388
389         if (right_buf)
390                 tree_block_release(root, right_buf);
391         if (left_buf)
392                 tree_block_release(root, left_buf);
393         return ret;
394 }
395
396 /*
397  * look for key in the tree.  path is filled in with nodes along the way
398  * if key is found, we return zero and you can find the item in the leaf
399  * level of the path (level 0)
400  *
401  * If the key isn't found, the path points to the slot where it should
402  * be inserted, and 1 is returned.  If there are other errors during the
403  * search a negative error number is returned.
404  *
405  * if ins_len > 0, nodes and leaves will be split as we walk down the
406  * tree.  if ins_len < 0, nodes will be merged as we walk down the tree (if
407  * possible)
408  */
409 int search_slot(struct ctree_root *root, struct key *key,
410                 struct ctree_path *p, int ins_len, int cow)
411 {
412         struct tree_buffer *b;
413         struct tree_buffer *cow_buf;
414         struct node *c;
415         int slot;
416         int ret;
417         int level;
418
419 again:
420         b = root->node;
421         b->count++;
422         while (b) {
423                 level = node_level(b->node.header.flags);
424                 if (cow) {
425                         int wret;
426                         wret = btrfs_cow_block(root, b, p->nodes[level + 1],
427                                                p->slots[level + 1], &cow_buf);
428                         b = cow_buf;
429                 }
430                 BUG_ON(!cow && ins_len);
431                 c = &b->node;
432                 p->nodes[level] = b;
433                 ret = check_block(p, level);
434                 if (ret)
435                         return -1;
436                 ret = bin_search(c, key, &slot);
437                 if (!is_leaf(c->header.flags)) {
438                         if (ret && slot > 0)
439                                 slot -= 1;
440                         p->slots[level] = slot;
441                         if (ins_len > 0 &&
442                             c->header.nritems == NODEPTRS_PER_BLOCK) {
443                                 int sret = split_node(root, p, level);
444                                 BUG_ON(sret > 0);
445                                 if (sret)
446                                         return sret;
447                                 b = p->nodes[level];
448                                 c = &b->node;
449                                 slot = p->slots[level];
450                         } else if (ins_len < 0) {
451                                 int sret = balance_level(root, p, level);
452                                 if (sret)
453                                         return sret;
454                                 b = p->nodes[level];
455                                 if (!b)
456                                         goto again;
457                                 c = &b->node;
458                                 slot = p->slots[level];
459                                 BUG_ON(c->header.nritems == 1);
460                         }
461                         b = read_tree_block(root, c->blockptrs[slot]);
462                 } else {
463                         struct leaf *l = (struct leaf *)c;
464                         p->slots[level] = slot;
465                         if (ins_len > 0 && leaf_free_space(l) <
466                             sizeof(struct item) + ins_len) {
467                                 int sret = split_leaf(root, p, ins_len);
468                                 BUG_ON(sret > 0);
469                                 if (sret)
470                                         return sret;
471                         }
472                         BUG_ON(root->node->count == 1);
473                         return ret;
474                 }
475         }
476         BUG_ON(root->node->count == 1);
477         return 1;
478 }
479
480 /*
481  * adjust the pointers going up the tree, starting at level
482  * making sure the right key of each node is points to 'key'.
483  * This is used after shifting pointers to the left, so it stops
484  * fixing up pointers when a given leaf/node is not in slot 0 of the
485  * higher levels
486  *
487  * If this fails to write a tree block, it returns -1, but continues
488  * fixing up the blocks in ram so the tree is consistent.
489  */
490 static int fixup_low_keys(struct ctree_root *root,
491                            struct ctree_path *path, struct key *key,
492                            int level)
493 {
494         int i;
495         int ret = 0;
496         for (i = level; i < MAX_LEVEL; i++) {
497                 struct node *t;
498                 int tslot = path->slots[i];
499                 if (!path->nodes[i])
500                         break;
501                 t = &path->nodes[i]->node;
502                 memcpy(t->keys + tslot, key, sizeof(*key));
503                 BUG_ON(list_empty(&path->nodes[i]->dirty));
504                 if (tslot != 0)
505                         break;
506         }
507         return ret;
508 }
509
510 /*
511  * try to push data from one node into the next node left in the
512  * tree.
513  *
514  * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
515  * error, and > 0 if there was no room in the left hand block.
516  */
517 static int push_node_left(struct ctree_root *root, struct tree_buffer *dst_buf,
518                           struct tree_buffer *src_buf)
519 {
520         struct node *src = &src_buf->node;
521         struct node *dst = &dst_buf->node;
522         int push_items = 0;
523         int src_nritems;
524         int dst_nritems;
525         int ret = 0;
526
527         src_nritems = src->header.nritems;
528         dst_nritems = dst->header.nritems;
529         push_items = NODEPTRS_PER_BLOCK - dst_nritems;
530         if (push_items <= 0) {
531                 return 1;
532         }
533
534         if (src_nritems < push_items)
535                 push_items = src_nritems;
536
537         memcpy(dst->keys + dst_nritems, src->keys,
538                 push_items * sizeof(struct key));
539         memcpy(dst->blockptrs + dst_nritems, src->blockptrs,
540                 push_items * sizeof(u64));
541         if (push_items < src_nritems) {
542                 memmove(src->keys, src->keys + push_items,
543                         (src_nritems - push_items) * sizeof(struct key));
544                 memmove(src->blockptrs, src->blockptrs + push_items,
545                         (src_nritems - push_items) * sizeof(u64));
546         }
547         src->header.nritems -= push_items;
548         dst->header.nritems += push_items;
549
550         BUG_ON(list_empty(&src_buf->dirty));
551         BUG_ON(list_empty(&dst_buf->dirty));
552         return ret;
553 }
554
555 /*
556  * try to push data from one node into the next node right in the
557  * tree.
558  *
559  * returns 0 if some ptrs were pushed, < 0 if there was some horrible
560  * error, and > 0 if there was no room in the right hand block.
561  *
562  * this will  only push up to 1/2 the contents of the left node over
563  */
564 static int balance_node_right(struct ctree_root *root,
565                               struct tree_buffer *dst_buf,
566                               struct tree_buffer *src_buf)
567 {
568         struct node *src = &src_buf->node;
569         struct node *dst = &dst_buf->node;
570         int push_items = 0;
571         int max_push;
572         int src_nritems;
573         int dst_nritems;
574         int ret = 0;
575
576         src_nritems = src->header.nritems;
577         dst_nritems = dst->header.nritems;
578         push_items = NODEPTRS_PER_BLOCK - dst_nritems;
579         if (push_items <= 0) {
580                 return 1;
581         }
582
583         max_push = src_nritems / 2 + 1;
584         /* don't try to empty the node */
585         if (max_push > src_nritems)
586                 return 1;
587         if (max_push < push_items)
588                 push_items = max_push;
589
590         memmove(dst->keys + push_items, dst->keys,
591                 dst_nritems * sizeof(struct key));
592         memmove(dst->blockptrs + push_items, dst->blockptrs,
593                 dst_nritems * sizeof(u64));
594         memcpy(dst->keys, src->keys + src_nritems - push_items,
595                 push_items * sizeof(struct key));
596         memcpy(dst->blockptrs, src->blockptrs + src_nritems - push_items,
597                 push_items * sizeof(u64));
598
599         src->header.nritems -= push_items;
600         dst->header.nritems += push_items;
601
602         BUG_ON(list_empty(&src_buf->dirty));
603         BUG_ON(list_empty(&dst_buf->dirty));
604         return ret;
605 }
606
607 /*
608  * helper function to insert a new root level in the tree.
609  * A new node is allocated, and a single item is inserted to
610  * point to the existing root
611  *
612  * returns zero on success or < 0 on failure.
613  */
614 static int insert_new_root(struct ctree_root *root,
615                            struct ctree_path *path, int level)
616 {
617         struct tree_buffer *t;
618         struct node *lower;
619         struct node *c;
620         struct key *lower_key;
621
622         BUG_ON(path->nodes[level]);
623         BUG_ON(path->nodes[level-1] != root->node);
624
625         t = alloc_free_block(root);
626         c = &t->node;
627         memset(c, 0, sizeof(c));
628         c->header.nritems = 1;
629         c->header.flags = node_level(level);
630         c->header.blocknr = t->blocknr;
631         c->header.parentid = root->node->node.header.parentid;
632         lower = &path->nodes[level-1]->node;
633         if (is_leaf(lower->header.flags))
634                 lower_key = &((struct leaf *)lower)->items[0].key;
635         else
636                 lower_key = lower->keys;
637         memcpy(c->keys, lower_key, sizeof(struct key));
638         c->blockptrs[0] = path->nodes[level-1]->blocknr;
639         /* the super has an extra ref to root->node */
640         tree_block_release(root, root->node);
641         root->node = t;
642         t->count++;
643         path->nodes[level] = t;
644         path->slots[level] = 0;
645         return 0;
646 }
647
648 /*
649  * worker function to insert a single pointer in a node.
650  * the node should have enough room for the pointer already
651  *
652  * slot and level indicate where you want the key to go, and
653  * blocknr is the block the key points to.
654  *
655  * returns zero on success and < 0 on any error
656  */
657 static int insert_ptr(struct ctree_root *root,
658                 struct ctree_path *path, struct key *key,
659                 u64 blocknr, int slot, int level)
660 {
661         struct node *lower;
662         int nritems;
663
664         BUG_ON(!path->nodes[level]);
665         lower = &path->nodes[level]->node;
666         nritems = lower->header.nritems;
667         if (slot > nritems)
668                 BUG();
669         if (nritems == NODEPTRS_PER_BLOCK)
670                 BUG();
671         if (slot != nritems) {
672                 memmove(lower->keys + slot + 1, lower->keys + slot,
673                         (nritems - slot) * sizeof(struct key));
674                 memmove(lower->blockptrs + slot + 1, lower->blockptrs + slot,
675                         (nritems - slot) * sizeof(u64));
676         }
677         memcpy(lower->keys + slot, key, sizeof(struct key));
678         lower->blockptrs[slot] = blocknr;
679         lower->header.nritems++;
680         if (lower->keys[1].objectid == 0)
681                         BUG();
682         BUG_ON(list_empty(&path->nodes[level]->dirty));
683         return 0;
684 }
685
686 /*
687  * split the node at the specified level in path in two.
688  * The path is corrected to point to the appropriate node after the split
689  *
690  * Before splitting this tries to make some room in the node by pushing
691  * left and right, if either one works, it returns right away.
692  *
693  * returns 0 on success and < 0 on failure
694  */
695 static int split_node(struct ctree_root *root, struct ctree_path *path,
696                       int level)
697 {
698         struct tree_buffer *t;
699         struct node *c;
700         struct tree_buffer *split_buffer;
701         struct node *split;
702         int mid;
703         int ret;
704         int wret;
705
706         t = path->nodes[level];
707         c = &t->node;
708         if (t == root->node) {
709                 /* trying to split the root, lets make a new one */
710                 ret = insert_new_root(root, path, level + 1);
711                 if (ret)
712                         return ret;
713         }
714         split_buffer = alloc_free_block(root);
715         split = &split_buffer->node;
716         split->header.flags = c->header.flags;
717         split->header.blocknr = split_buffer->blocknr;
718         split->header.parentid = root->node->node.header.parentid;
719         mid = (c->header.nritems + 1) / 2;
720         memcpy(split->keys, c->keys + mid,
721                 (c->header.nritems - mid) * sizeof(struct key));
722         memcpy(split->blockptrs, c->blockptrs + mid,
723                 (c->header.nritems - mid) * sizeof(u64));
724         split->header.nritems = c->header.nritems - mid;
725         c->header.nritems = mid;
726         ret = 0;
727
728         BUG_ON(list_empty(&t->dirty));
729         wret = insert_ptr(root, path, split->keys, split_buffer->blocknr,
730                           path->slots[level + 1] + 1, level + 1);
731         if (wret)
732                 ret = wret;
733
734         if (path->slots[level] >= mid) {
735                 path->slots[level] -= mid;
736                 tree_block_release(root, t);
737                 path->nodes[level] = split_buffer;
738                 path->slots[level + 1] += 1;
739         } else {
740                 tree_block_release(root, split_buffer);
741         }
742         return ret;
743 }
744
745 /*
746  * how many bytes are required to store the items in a leaf.  start
747  * and nr indicate which items in the leaf to check.  This totals up the
748  * space used both by the item structs and the item data
749  */
750 static int leaf_space_used(struct leaf *l, int start, int nr)
751 {
752         int data_len;
753         int end = start + nr - 1;
754
755         if (!nr)
756                 return 0;
757         data_len = l->items[start].offset + l->items[start].size;
758         data_len = data_len - l->items[end].offset;
759         data_len += sizeof(struct item) * nr;
760         return data_len;
761 }
762
763 /*
764  * push some data in the path leaf to the right, trying to free up at
765  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
766  *
767  * returns 1 if the push failed because the other node didn't have enough
768  * room, 0 if everything worked out and < 0 if there were major errors.
769  */
770 static int push_leaf_right(struct ctree_root *root, struct ctree_path *path,
771                            int data_size)
772 {
773         struct tree_buffer *left_buf = path->nodes[0];
774         struct leaf *left = &left_buf->leaf;
775         struct leaf *right;
776         struct tree_buffer *right_buf;
777         struct tree_buffer *upper;
778         int slot;
779         int i;
780         int free_space;
781         int push_space = 0;
782         int push_items = 0;
783         struct item *item;
784
785         slot = path->slots[1];
786         if (!path->nodes[1]) {
787                 return 1;
788         }
789         upper = path->nodes[1];
790         if (slot >= upper->node.header.nritems - 1) {
791                 return 1;
792         }
793         right_buf = read_tree_block(root, upper->node.blockptrs[slot + 1]);
794         right = &right_buf->leaf;
795         free_space = leaf_free_space(right);
796         if (free_space < data_size + sizeof(struct item)) {
797                 tree_block_release(root, right_buf);
798                 return 1;
799         }
800         /* cow and double check */
801         btrfs_cow_block(root, right_buf, upper, slot + 1, &right_buf);
802         right = &right_buf->leaf;
803         free_space = leaf_free_space(right);
804         if (free_space < data_size + sizeof(struct item)) {
805                 tree_block_release(root, right_buf);
806                 return 1;
807         }
808
809         for (i = left->header.nritems - 1; i >= 0; i--) {
810                 item = left->items + i;
811                 if (path->slots[0] == i)
812                         push_space += data_size + sizeof(*item);
813                 if (item->size + sizeof(*item) + push_space > free_space)
814                         break;
815                 push_items++;
816                 push_space += item->size + sizeof(*item);
817         }
818         if (push_items == 0) {
819                 tree_block_release(root, right_buf);
820                 return 1;
821         }
822         /* push left to right */
823         push_space = left->items[left->header.nritems - push_items].offset +
824                      left->items[left->header.nritems - push_items].size;
825         push_space -= leaf_data_end(left);
826         /* make room in the right data area */
827         memmove(right->data + leaf_data_end(right) - push_space,
828                 right->data + leaf_data_end(right),
829                 LEAF_DATA_SIZE - leaf_data_end(right));
830         /* copy from the left data area */
831         memcpy(right->data + LEAF_DATA_SIZE - push_space,
832                 left->data + leaf_data_end(left),
833                 push_space);
834         memmove(right->items + push_items, right->items,
835                 right->header.nritems * sizeof(struct item));
836         /* copy the items from left to right */
837         memcpy(right->items, left->items + left->header.nritems - push_items,
838                 push_items * sizeof(struct item));
839
840         /* update the item pointers */
841         right->header.nritems += push_items;
842         push_space = LEAF_DATA_SIZE;
843         for (i = 0; i < right->header.nritems; i++) {
844                 right->items[i].offset = push_space - right->items[i].size;
845                 push_space = right->items[i].offset;
846         }
847         left->header.nritems -= push_items;
848
849         BUG_ON(list_empty(&left_buf->dirty));
850         BUG_ON(list_empty(&right_buf->dirty));
851         memcpy(upper->node.keys + slot + 1,
852                 &right->items[0].key, sizeof(struct key));
853         BUG_ON(list_empty(&upper->dirty));
854
855         /* then fixup the leaf pointer in the path */
856         if (path->slots[0] >= left->header.nritems) {
857                 path->slots[0] -= left->header.nritems;
858                 tree_block_release(root, path->nodes[0]);
859                 path->nodes[0] = right_buf;
860                 path->slots[1] += 1;
861         } else {
862                 tree_block_release(root, right_buf);
863         }
864         return 0;
865 }
866 /*
867  * push some data in the path leaf to the left, trying to free up at
868  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
869  */
870 static int push_leaf_left(struct ctree_root *root, struct ctree_path *path,
871                           int data_size)
872 {
873         struct tree_buffer *right_buf = path->nodes[0];
874         struct leaf *right = &right_buf->leaf;
875         struct tree_buffer *t;
876         struct leaf *left;
877         int slot;
878         int i;
879         int free_space;
880         int push_space = 0;
881         int push_items = 0;
882         struct item *item;
883         int old_left_nritems;
884         int ret = 0;
885         int wret;
886
887         slot = path->slots[1];
888         if (slot == 0) {
889                 return 1;
890         }
891         if (!path->nodes[1]) {
892                 return 1;
893         }
894         t = read_tree_block(root, path->nodes[1]->node.blockptrs[slot - 1]);
895         left = &t->leaf;
896         free_space = leaf_free_space(left);
897         if (free_space < data_size + sizeof(struct item)) {
898                 tree_block_release(root, t);
899                 return 1;
900         }
901
902         /* cow and double check */
903         btrfs_cow_block(root, t, path->nodes[1], slot - 1, &t);
904         left = &t->leaf;
905         free_space = leaf_free_space(left);
906         if (free_space < data_size + sizeof(struct item)) {
907                 tree_block_release(root, t);
908                 return 1;
909         }
910
911         for (i = 0; i < right->header.nritems; i++) {
912                 item = right->items + i;
913                 if (path->slots[0] == i)
914                         push_space += data_size + sizeof(*item);
915                 if (item->size + sizeof(*item) + push_space > free_space)
916                         break;
917                 push_items++;
918                 push_space += item->size + sizeof(*item);
919         }
920         if (push_items == 0) {
921                 tree_block_release(root, t);
922                 return 1;
923         }
924         /* push data from right to left */
925         memcpy(left->items + left->header.nritems,
926                 right->items, push_items * sizeof(struct item));
927         push_space = LEAF_DATA_SIZE - right->items[push_items -1].offset;
928         memcpy(left->data + leaf_data_end(left) - push_space,
929                 right->data + right->items[push_items - 1].offset,
930                 push_space);
931         old_left_nritems = left->header.nritems;
932         BUG_ON(old_left_nritems < 0);
933
934         for(i = old_left_nritems; i < old_left_nritems + push_items; i++) {
935                 left->items[i].offset -= LEAF_DATA_SIZE -
936                         left->items[old_left_nritems -1].offset;
937         }
938         left->header.nritems += push_items;
939
940         /* fixup right node */
941         push_space = right->items[push_items-1].offset - leaf_data_end(right);
942         memmove(right->data + LEAF_DATA_SIZE - push_space, right->data +
943                 leaf_data_end(right), push_space);
944         memmove(right->items, right->items + push_items,
945                 (right->header.nritems - push_items) * sizeof(struct item));
946         right->header.nritems -= push_items;
947         push_space = LEAF_DATA_SIZE;
948
949         for (i = 0; i < right->header.nritems; i++) {
950                 right->items[i].offset = push_space - right->items[i].size;
951                 push_space = right->items[i].offset;
952         }
953
954         BUG_ON(list_empty(&t->dirty));
955         BUG_ON(list_empty(&right_buf->dirty));
956
957         wret = fixup_low_keys(root, path, &right->items[0].key, 1);
958         if (wret)
959                 ret = wret;
960
961         /* then fixup the leaf pointer in the path */
962         if (path->slots[0] < push_items) {
963                 path->slots[0] += old_left_nritems;
964                 tree_block_release(root, path->nodes[0]);
965                 path->nodes[0] = t;
966                 path->slots[1] -= 1;
967         } else {
968                 tree_block_release(root, t);
969                 path->slots[0] -= push_items;
970         }
971         BUG_ON(path->slots[0] < 0);
972         return ret;
973 }
974
975 /*
976  * split the path's leaf in two, making sure there is at least data_size
977  * available for the resulting leaf level of the path.
978  *
979  * returns 0 if all went well and < 0 on failure.
980  */
981 static int split_leaf(struct ctree_root *root, struct ctree_path *path,
982                       int data_size)
983 {
984         struct tree_buffer *l_buf;
985         struct leaf *l;
986         int nritems;
987         int mid;
988         int slot;
989         struct leaf *right;
990         struct tree_buffer *right_buffer;
991         int space_needed = data_size + sizeof(struct item);
992         int data_copy_size;
993         int rt_data_off;
994         int i;
995         int ret;
996         int wret;
997
998         wret = push_leaf_left(root, path, data_size);
999         if (wret < 0)
1000                 return wret;
1001         if (wret) {
1002                 wret = push_leaf_right(root, path, data_size);
1003                 if (wret < 0)
1004                         return wret;
1005         }
1006
1007         l_buf = path->nodes[0];
1008         l = &l_buf->leaf;
1009
1010         /* did the pushes work? */
1011         if (leaf_free_space(l) >= sizeof(struct item) + data_size)
1012                 return 0;
1013
1014         if (!path->nodes[1]) {
1015                 ret = insert_new_root(root, path, 1);
1016                 if (ret)
1017                         return ret;
1018         }
1019         slot = path->slots[0];
1020         nritems = l->header.nritems;
1021         mid = (nritems + 1)/ 2;
1022         right_buffer = alloc_free_block(root);
1023         BUG_ON(!right_buffer);
1024         BUG_ON(mid == nritems);
1025         right = &right_buffer->leaf;
1026         memset(right, 0, sizeof(*right));
1027         if (mid <= slot) {
1028                 /* FIXME, just alloc a new leaf here */
1029                 if (leaf_space_used(l, mid, nritems - mid) + space_needed >
1030                         LEAF_DATA_SIZE)
1031                         BUG();
1032         } else {
1033                 /* FIXME, just alloc a new leaf here */
1034                 if (leaf_space_used(l, 0, mid + 1) + space_needed >
1035                         LEAF_DATA_SIZE)
1036                         BUG();
1037         }
1038         right->header.nritems = nritems - mid;
1039         right->header.blocknr = right_buffer->blocknr;
1040         right->header.flags = node_level(0);
1041         right->header.parentid = root->node->node.header.parentid;
1042         data_copy_size = l->items[mid].offset + l->items[mid].size -
1043                          leaf_data_end(l);
1044         memcpy(right->items, l->items + mid,
1045                (nritems - mid) * sizeof(struct item));
1046         memcpy(right->data + LEAF_DATA_SIZE - data_copy_size,
1047                l->data + leaf_data_end(l), data_copy_size);
1048         rt_data_off = LEAF_DATA_SIZE -
1049                      (l->items[mid].offset + l->items[mid].size);
1050
1051         for (i = 0; i < right->header.nritems; i++)
1052                 right->items[i].offset += rt_data_off;
1053
1054         l->header.nritems = mid;
1055         ret = 0;
1056         wret = insert_ptr(root, path, &right->items[0].key,
1057                           right_buffer->blocknr, path->slots[1] + 1, 1);
1058         if (wret)
1059                 ret = wret;
1060         BUG_ON(list_empty(&right_buffer->dirty));
1061         BUG_ON(list_empty(&l_buf->dirty));
1062         BUG_ON(path->slots[0] != slot);
1063         if (mid <= slot) {
1064                 tree_block_release(root, path->nodes[0]);
1065                 path->nodes[0] = right_buffer;
1066                 path->slots[0] -= mid;
1067                 path->slots[1] += 1;
1068         } else
1069                 tree_block_release(root, right_buffer);
1070         BUG_ON(path->slots[0] < 0);
1071         return ret;
1072 }
1073
1074 /*
1075  * Given a key and some data, insert an item into the tree.
1076  * This does all the path init required, making room in the tree if needed.
1077  */
1078 int insert_item(struct ctree_root *root, struct key *key,
1079                           void *data, int data_size)
1080 {
1081         int ret = 0;
1082         int slot;
1083         int slot_orig;
1084         struct leaf *leaf;
1085         struct tree_buffer *leaf_buf;
1086         unsigned int nritems;
1087         unsigned int data_end;
1088         struct ctree_path path;
1089
1090         /* create a root if there isn't one */
1091         if (!root->node)
1092                 BUG();
1093         init_path(&path);
1094         ret = search_slot(root, key, &path, data_size, 1);
1095         if (ret == 0) {
1096                 release_path(root, &path);
1097                 return -EEXIST;
1098         }
1099         if (ret < 0)
1100                 goto out;
1101
1102         slot_orig = path.slots[0];
1103         leaf_buf = path.nodes[0];
1104         leaf = &leaf_buf->leaf;
1105
1106         nritems = leaf->header.nritems;
1107         data_end = leaf_data_end(leaf);
1108
1109         if (leaf_free_space(leaf) <  sizeof(struct item) + data_size)
1110                 BUG();
1111
1112         slot = path.slots[0];
1113         BUG_ON(slot < 0);
1114         if (slot != nritems) {
1115                 int i;
1116                 unsigned int old_data = leaf->items[slot].offset +
1117                                         leaf->items[slot].size;
1118
1119                 /*
1120                  * item0..itemN ... dataN.offset..dataN.size .. data0.size
1121                  */
1122                 /* first correct the data pointers */
1123                 for (i = slot; i < nritems; i++)
1124                         leaf->items[i].offset -= data_size;
1125
1126                 /* shift the items */
1127                 memmove(leaf->items + slot + 1, leaf->items + slot,
1128                         (nritems - slot) * sizeof(struct item));
1129
1130                 /* shift the data */
1131                 memmove(leaf->data + data_end - data_size, leaf->data +
1132                         data_end, old_data - data_end);
1133                 data_end = old_data;
1134         }
1135         /* copy the new data in */
1136         memcpy(&leaf->items[slot].key, key, sizeof(struct key));
1137         leaf->items[slot].offset = data_end - data_size;
1138         leaf->items[slot].size = data_size;
1139         memcpy(leaf->data + data_end - data_size, data, data_size);
1140         leaf->header.nritems += 1;
1141
1142         ret = 0;
1143         if (slot == 0)
1144                 ret = fixup_low_keys(root, &path, key, 1);
1145
1146         BUG_ON(list_empty(&leaf_buf->dirty));
1147         if (leaf_free_space(leaf) < 0)
1148                 BUG();
1149         check_leaf(&path, 0);
1150 out:
1151         release_path(root, &path);
1152         return ret;
1153 }
1154
1155 /*
1156  * delete the pointer from a given node.
1157  *
1158  * If the delete empties a node, the node is removed from the tree,
1159  * continuing all the way the root if required.  The root is converted into
1160  * a leaf if all the nodes are emptied.
1161  */
1162 static int del_ptr(struct ctree_root *root, struct ctree_path *path, int level,
1163                    int slot)
1164 {
1165         struct node *node;
1166         struct tree_buffer *parent = path->nodes[level];
1167         int nritems;
1168         int ret = 0;
1169         int wret;
1170
1171         node = &parent->node;
1172         nritems = node->header.nritems;
1173         if (slot != nritems -1) {
1174                 memmove(node->keys + slot, node->keys + slot + 1,
1175                         sizeof(struct key) * (nritems - slot - 1));
1176                 memmove(node->blockptrs + slot,
1177                         node->blockptrs + slot + 1,
1178                         sizeof(u64) * (nritems - slot - 1));
1179         }
1180         node->header.nritems--;
1181         if (node->header.nritems == 0 && parent == root->node) {
1182                 BUG_ON(node_level(root->node->node.header.flags) != 1);
1183                 /* just turn the root into a leaf and break */
1184                 root->node->node.header.flags = node_level(0);
1185         } else if (slot == 0) {
1186                 wret = fixup_low_keys(root, path, node->keys, level + 1);
1187                 if (wret)
1188                         ret = wret;
1189         }
1190         BUG_ON(list_empty(&parent->dirty));
1191         return ret;
1192 }
1193
1194 /*
1195  * delete the item at the leaf level in path.  If that empties
1196  * the leaf, remove it from the tree
1197  */
1198 int del_item(struct ctree_root *root, struct ctree_path *path)
1199 {
1200         int slot;
1201         struct leaf *leaf;
1202         struct tree_buffer *leaf_buf;
1203         int doff;
1204         int dsize;
1205         int ret = 0;
1206         int wret;
1207
1208         leaf_buf = path->nodes[0];
1209         leaf = &leaf_buf->leaf;
1210         slot = path->slots[0];
1211         doff = leaf->items[slot].offset;
1212         dsize = leaf->items[slot].size;
1213
1214         if (slot != leaf->header.nritems - 1) {
1215                 int i;
1216                 int data_end = leaf_data_end(leaf);
1217                 memmove(leaf->data + data_end + dsize,
1218                         leaf->data + data_end,
1219                         doff - data_end);
1220                 for (i = slot + 1; i < leaf->header.nritems; i++)
1221                         leaf->items[i].offset += dsize;
1222                 memmove(leaf->items + slot, leaf->items + slot + 1,
1223                         sizeof(struct item) *
1224                         (leaf->header.nritems - slot - 1));
1225         }
1226         leaf->header.nritems -= 1;
1227         /* delete the leaf if we've emptied it */
1228         if (leaf->header.nritems == 0) {
1229                 if (leaf_buf == root->node) {
1230                         leaf->header.flags = node_level(0);
1231                         BUG_ON(list_empty(&leaf_buf->dirty));
1232                 } else {
1233                         clean_tree_block(root, leaf_buf);
1234                         wret = del_ptr(root, path, 1, path->slots[1]);
1235                         if (wret)
1236                                 ret = wret;
1237                         wret = free_extent(root, leaf_buf->blocknr, 1);
1238                         if (wret)
1239                                 ret = wret;
1240                 }
1241         } else {
1242                 int used = leaf_space_used(leaf, 0, leaf->header.nritems);
1243                 if (slot == 0) {
1244                         wret = fixup_low_keys(root, path,
1245                                                    &leaf->items[0].key, 1);
1246                         if (wret)
1247                                 ret = wret;
1248                 }
1249                 BUG_ON(list_empty(&leaf_buf->dirty));
1250
1251                 /* delete the leaf if it is mostly empty */
1252                 if (used < LEAF_DATA_SIZE / 3) {
1253                         /* push_leaf_left fixes the path.
1254                          * make sure the path still points to our leaf
1255                          * for possible call to del_ptr below
1256                          */
1257                         slot = path->slots[1];
1258                         leaf_buf->count++;
1259                         wret = push_leaf_left(root, path, 1);
1260                         if (wret < 0)
1261                                 ret = wret;
1262                         if (path->nodes[0] == leaf_buf &&
1263                             leaf->header.nritems) {
1264                                 wret = push_leaf_right(root, path, 1);
1265                                 if (wret < 0)
1266                                         ret = wret;
1267                         }
1268                         if (leaf->header.nritems == 0) {
1269                                 u64 blocknr = leaf_buf->blocknr;
1270                                 clean_tree_block(root, leaf_buf);
1271                                 wret = del_ptr(root, path, 1, slot);
1272                                 if (wret)
1273                                         ret = wret;
1274                                 tree_block_release(root, leaf_buf);
1275                                 wret = free_extent(root, blocknr, 1);
1276                                 if (wret)
1277                                         ret = wret;
1278                         } else {
1279                                 tree_block_release(root, leaf_buf);
1280                         }
1281                 }
1282         }
1283         return ret;
1284 }
1285
1286 /*
1287  * walk up the tree as far as required to find the next leaf.
1288  * returns 0 if it found something or 1 if there are no greater leaves.
1289  * returns < 0 on io errors.
1290  */
1291 int next_leaf(struct ctree_root *root, struct ctree_path *path)
1292 {
1293         int slot;
1294         int level = 1;
1295         u64 blocknr;
1296         struct tree_buffer *c;
1297         struct tree_buffer *next = NULL;
1298
1299         while(level < MAX_LEVEL) {
1300                 if (!path->nodes[level])
1301                         return 1;
1302                 slot = path->slots[level] + 1;
1303                 c = path->nodes[level];
1304                 if (slot >= c->node.header.nritems) {
1305                         level++;
1306                         continue;
1307                 }
1308                 blocknr = c->node.blockptrs[slot];
1309                 if (next)
1310                         tree_block_release(root, next);
1311                 next = read_tree_block(root, blocknr);
1312                 break;
1313         }
1314         path->slots[level] = slot;
1315         while(1) {
1316                 level--;
1317                 c = path->nodes[level];
1318                 tree_block_release(root, c);
1319                 path->nodes[level] = next;
1320                 path->slots[level] = 0;
1321                 if (!level)
1322                         break;
1323                 next = read_tree_block(root, next->node.blockptrs[0]);
1324         }
1325         return 0;
1326 }
1327
1328