]> git.karo-electronics.de Git - karo-tx-linux.git/blob - fs/btrfs/delayed-inode.c
Merge branch 'for-linus' of git://git.samba.org/sfrench/cifs-2.6
[karo-tx-linux.git] / fs / btrfs / delayed-inode.c
1 /*
2  * Copyright (C) 2011 Fujitsu.  All rights reserved.
3  * Written by Miao Xie <miaox@cn.fujitsu.com>
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public
7  * License v2 as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
12  * General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public
15  * License along with this program; if not, write to the
16  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
17  * Boston, MA 021110-1307, USA.
18  */
19
20 #include <linux/slab.h>
21 #include "delayed-inode.h"
22 #include "disk-io.h"
23 #include "transaction.h"
24 #include "ctree.h"
25
26 #define BTRFS_DELAYED_WRITEBACK         512
27 #define BTRFS_DELAYED_BACKGROUND        128
28 #define BTRFS_DELAYED_BATCH             16
29
30 static struct kmem_cache *delayed_node_cache;
31
32 int __init btrfs_delayed_inode_init(void)
33 {
34         delayed_node_cache = kmem_cache_create("btrfs_delayed_node",
35                                         sizeof(struct btrfs_delayed_node),
36                                         0,
37                                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
38                                         NULL);
39         if (!delayed_node_cache)
40                 return -ENOMEM;
41         return 0;
42 }
43
44 void btrfs_delayed_inode_exit(void)
45 {
46         if (delayed_node_cache)
47                 kmem_cache_destroy(delayed_node_cache);
48 }
49
50 static inline void btrfs_init_delayed_node(
51                                 struct btrfs_delayed_node *delayed_node,
52                                 struct btrfs_root *root, u64 inode_id)
53 {
54         delayed_node->root = root;
55         delayed_node->inode_id = inode_id;
56         atomic_set(&delayed_node->refs, 0);
57         delayed_node->count = 0;
58         delayed_node->flags = 0;
59         delayed_node->ins_root = RB_ROOT;
60         delayed_node->del_root = RB_ROOT;
61         mutex_init(&delayed_node->mutex);
62         delayed_node->index_cnt = 0;
63         INIT_LIST_HEAD(&delayed_node->n_list);
64         INIT_LIST_HEAD(&delayed_node->p_list);
65         delayed_node->bytes_reserved = 0;
66         memset(&delayed_node->inode_item, 0, sizeof(delayed_node->inode_item));
67 }
68
69 static inline int btrfs_is_continuous_delayed_item(
70                                         struct btrfs_delayed_item *item1,
71                                         struct btrfs_delayed_item *item2)
72 {
73         if (item1->key.type == BTRFS_DIR_INDEX_KEY &&
74             item1->key.objectid == item2->key.objectid &&
75             item1->key.type == item2->key.type &&
76             item1->key.offset + 1 == item2->key.offset)
77                 return 1;
78         return 0;
79 }
80
81 static inline struct btrfs_delayed_root *btrfs_get_delayed_root(
82                                                         struct btrfs_root *root)
83 {
84         return root->fs_info->delayed_root;
85 }
86
87 static struct btrfs_delayed_node *btrfs_get_delayed_node(struct inode *inode)
88 {
89         struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
90         struct btrfs_root *root = btrfs_inode->root;
91         u64 ino = btrfs_ino(inode);
92         struct btrfs_delayed_node *node;
93
94         node = ACCESS_ONCE(btrfs_inode->delayed_node);
95         if (node) {
96                 atomic_inc(&node->refs);
97                 return node;
98         }
99
100         spin_lock(&root->inode_lock);
101         node = radix_tree_lookup(&root->delayed_nodes_tree, ino);
102         if (node) {
103                 if (btrfs_inode->delayed_node) {
104                         atomic_inc(&node->refs);        /* can be accessed */
105                         BUG_ON(btrfs_inode->delayed_node != node);
106                         spin_unlock(&root->inode_lock);
107                         return node;
108                 }
109                 btrfs_inode->delayed_node = node;
110                 /* can be accessed and cached in the inode */
111                 atomic_add(2, &node->refs);
112                 spin_unlock(&root->inode_lock);
113                 return node;
114         }
115         spin_unlock(&root->inode_lock);
116
117         return NULL;
118 }
119
120 /* Will return either the node or PTR_ERR(-ENOMEM) */
121 static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node(
122                                                         struct inode *inode)
123 {
124         struct btrfs_delayed_node *node;
125         struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
126         struct btrfs_root *root = btrfs_inode->root;
127         u64 ino = btrfs_ino(inode);
128         int ret;
129
130 again:
131         node = btrfs_get_delayed_node(inode);
132         if (node)
133                 return node;
134
135         node = kmem_cache_alloc(delayed_node_cache, GFP_NOFS);
136         if (!node)
137                 return ERR_PTR(-ENOMEM);
138         btrfs_init_delayed_node(node, root, ino);
139
140         /* cached in the btrfs inode and can be accessed */
141         atomic_add(2, &node->refs);
142
143         ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
144         if (ret) {
145                 kmem_cache_free(delayed_node_cache, node);
146                 return ERR_PTR(ret);
147         }
148
149         spin_lock(&root->inode_lock);
150         ret = radix_tree_insert(&root->delayed_nodes_tree, ino, node);
151         if (ret == -EEXIST) {
152                 kmem_cache_free(delayed_node_cache, node);
153                 spin_unlock(&root->inode_lock);
154                 radix_tree_preload_end();
155                 goto again;
156         }
157         btrfs_inode->delayed_node = node;
158         spin_unlock(&root->inode_lock);
159         radix_tree_preload_end();
160
161         return node;
162 }
163
164 /*
165  * Call it when holding delayed_node->mutex
166  *
167  * If mod = 1, add this node into the prepared list.
168  */
169 static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root,
170                                      struct btrfs_delayed_node *node,
171                                      int mod)
172 {
173         spin_lock(&root->lock);
174         if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
175                 if (!list_empty(&node->p_list))
176                         list_move_tail(&node->p_list, &root->prepare_list);
177                 else if (mod)
178                         list_add_tail(&node->p_list, &root->prepare_list);
179         } else {
180                 list_add_tail(&node->n_list, &root->node_list);
181                 list_add_tail(&node->p_list, &root->prepare_list);
182                 atomic_inc(&node->refs);        /* inserted into list */
183                 root->nodes++;
184                 set_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
185         }
186         spin_unlock(&root->lock);
187 }
188
189 /* Call it when holding delayed_node->mutex */
190 static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root,
191                                        struct btrfs_delayed_node *node)
192 {
193         spin_lock(&root->lock);
194         if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
195                 root->nodes--;
196                 atomic_dec(&node->refs);        /* not in the list */
197                 list_del_init(&node->n_list);
198                 if (!list_empty(&node->p_list))
199                         list_del_init(&node->p_list);
200                 clear_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
201         }
202         spin_unlock(&root->lock);
203 }
204
205 static struct btrfs_delayed_node *btrfs_first_delayed_node(
206                         struct btrfs_delayed_root *delayed_root)
207 {
208         struct list_head *p;
209         struct btrfs_delayed_node *node = NULL;
210
211         spin_lock(&delayed_root->lock);
212         if (list_empty(&delayed_root->node_list))
213                 goto out;
214
215         p = delayed_root->node_list.next;
216         node = list_entry(p, struct btrfs_delayed_node, n_list);
217         atomic_inc(&node->refs);
218 out:
219         spin_unlock(&delayed_root->lock);
220
221         return node;
222 }
223
224 static struct btrfs_delayed_node *btrfs_next_delayed_node(
225                                                 struct btrfs_delayed_node *node)
226 {
227         struct btrfs_delayed_root *delayed_root;
228         struct list_head *p;
229         struct btrfs_delayed_node *next = NULL;
230
231         delayed_root = node->root->fs_info->delayed_root;
232         spin_lock(&delayed_root->lock);
233         if (!test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
234                 /* not in the list */
235                 if (list_empty(&delayed_root->node_list))
236                         goto out;
237                 p = delayed_root->node_list.next;
238         } else if (list_is_last(&node->n_list, &delayed_root->node_list))
239                 goto out;
240         else
241                 p = node->n_list.next;
242
243         next = list_entry(p, struct btrfs_delayed_node, n_list);
244         atomic_inc(&next->refs);
245 out:
246         spin_unlock(&delayed_root->lock);
247
248         return next;
249 }
250
251 static void __btrfs_release_delayed_node(
252                                 struct btrfs_delayed_node *delayed_node,
253                                 int mod)
254 {
255         struct btrfs_delayed_root *delayed_root;
256
257         if (!delayed_node)
258                 return;
259
260         delayed_root = delayed_node->root->fs_info->delayed_root;
261
262         mutex_lock(&delayed_node->mutex);
263         if (delayed_node->count)
264                 btrfs_queue_delayed_node(delayed_root, delayed_node, mod);
265         else
266                 btrfs_dequeue_delayed_node(delayed_root, delayed_node);
267         mutex_unlock(&delayed_node->mutex);
268
269         if (atomic_dec_and_test(&delayed_node->refs)) {
270                 struct btrfs_root *root = delayed_node->root;
271                 spin_lock(&root->inode_lock);
272                 if (atomic_read(&delayed_node->refs) == 0) {
273                         radix_tree_delete(&root->delayed_nodes_tree,
274                                           delayed_node->inode_id);
275                         kmem_cache_free(delayed_node_cache, delayed_node);
276                 }
277                 spin_unlock(&root->inode_lock);
278         }
279 }
280
281 static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node)
282 {
283         __btrfs_release_delayed_node(node, 0);
284 }
285
286 static struct btrfs_delayed_node *btrfs_first_prepared_delayed_node(
287                                         struct btrfs_delayed_root *delayed_root)
288 {
289         struct list_head *p;
290         struct btrfs_delayed_node *node = NULL;
291
292         spin_lock(&delayed_root->lock);
293         if (list_empty(&delayed_root->prepare_list))
294                 goto out;
295
296         p = delayed_root->prepare_list.next;
297         list_del_init(p);
298         node = list_entry(p, struct btrfs_delayed_node, p_list);
299         atomic_inc(&node->refs);
300 out:
301         spin_unlock(&delayed_root->lock);
302
303         return node;
304 }
305
306 static inline void btrfs_release_prepared_delayed_node(
307                                         struct btrfs_delayed_node *node)
308 {
309         __btrfs_release_delayed_node(node, 1);
310 }
311
312 static struct btrfs_delayed_item *btrfs_alloc_delayed_item(u32 data_len)
313 {
314         struct btrfs_delayed_item *item;
315         item = kmalloc(sizeof(*item) + data_len, GFP_NOFS);
316         if (item) {
317                 item->data_len = data_len;
318                 item->ins_or_del = 0;
319                 item->bytes_reserved = 0;
320                 item->delayed_node = NULL;
321                 atomic_set(&item->refs, 1);
322         }
323         return item;
324 }
325
326 /*
327  * __btrfs_lookup_delayed_item - look up the delayed item by key
328  * @delayed_node: pointer to the delayed node
329  * @key:          the key to look up
330  * @prev:         used to store the prev item if the right item isn't found
331  * @next:         used to store the next item if the right item isn't found
332  *
333  * Note: if we don't find the right item, we will return the prev item and
334  * the next item.
335  */
336 static struct btrfs_delayed_item *__btrfs_lookup_delayed_item(
337                                 struct rb_root *root,
338                                 struct btrfs_key *key,
339                                 struct btrfs_delayed_item **prev,
340                                 struct btrfs_delayed_item **next)
341 {
342         struct rb_node *node, *prev_node = NULL;
343         struct btrfs_delayed_item *delayed_item = NULL;
344         int ret = 0;
345
346         node = root->rb_node;
347
348         while (node) {
349                 delayed_item = rb_entry(node, struct btrfs_delayed_item,
350                                         rb_node);
351                 prev_node = node;
352                 ret = btrfs_comp_cpu_keys(&delayed_item->key, key);
353                 if (ret < 0)
354                         node = node->rb_right;
355                 else if (ret > 0)
356                         node = node->rb_left;
357                 else
358                         return delayed_item;
359         }
360
361         if (prev) {
362                 if (!prev_node)
363                         *prev = NULL;
364                 else if (ret < 0)
365                         *prev = delayed_item;
366                 else if ((node = rb_prev(prev_node)) != NULL) {
367                         *prev = rb_entry(node, struct btrfs_delayed_item,
368                                          rb_node);
369                 } else
370                         *prev = NULL;
371         }
372
373         if (next) {
374                 if (!prev_node)
375                         *next = NULL;
376                 else if (ret > 0)
377                         *next = delayed_item;
378                 else if ((node = rb_next(prev_node)) != NULL) {
379                         *next = rb_entry(node, struct btrfs_delayed_item,
380                                          rb_node);
381                 } else
382                         *next = NULL;
383         }
384         return NULL;
385 }
386
387 static struct btrfs_delayed_item *__btrfs_lookup_delayed_insertion_item(
388                                         struct btrfs_delayed_node *delayed_node,
389                                         struct btrfs_key *key)
390 {
391         struct btrfs_delayed_item *item;
392
393         item = __btrfs_lookup_delayed_item(&delayed_node->ins_root, key,
394                                            NULL, NULL);
395         return item;
396 }
397
398 static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node,
399                                     struct btrfs_delayed_item *ins,
400                                     int action)
401 {
402         struct rb_node **p, *node;
403         struct rb_node *parent_node = NULL;
404         struct rb_root *root;
405         struct btrfs_delayed_item *item;
406         int cmp;
407
408         if (action == BTRFS_DELAYED_INSERTION_ITEM)
409                 root = &delayed_node->ins_root;
410         else if (action == BTRFS_DELAYED_DELETION_ITEM)
411                 root = &delayed_node->del_root;
412         else
413                 BUG();
414         p = &root->rb_node;
415         node = &ins->rb_node;
416
417         while (*p) {
418                 parent_node = *p;
419                 item = rb_entry(parent_node, struct btrfs_delayed_item,
420                                  rb_node);
421
422                 cmp = btrfs_comp_cpu_keys(&item->key, &ins->key);
423                 if (cmp < 0)
424                         p = &(*p)->rb_right;
425                 else if (cmp > 0)
426                         p = &(*p)->rb_left;
427                 else
428                         return -EEXIST;
429         }
430
431         rb_link_node(node, parent_node, p);
432         rb_insert_color(node, root);
433         ins->delayed_node = delayed_node;
434         ins->ins_or_del = action;
435
436         if (ins->key.type == BTRFS_DIR_INDEX_KEY &&
437             action == BTRFS_DELAYED_INSERTION_ITEM &&
438             ins->key.offset >= delayed_node->index_cnt)
439                         delayed_node->index_cnt = ins->key.offset + 1;
440
441         delayed_node->count++;
442         atomic_inc(&delayed_node->root->fs_info->delayed_root->items);
443         return 0;
444 }
445
446 static int __btrfs_add_delayed_insertion_item(struct btrfs_delayed_node *node,
447                                               struct btrfs_delayed_item *item)
448 {
449         return __btrfs_add_delayed_item(node, item,
450                                         BTRFS_DELAYED_INSERTION_ITEM);
451 }
452
453 static int __btrfs_add_delayed_deletion_item(struct btrfs_delayed_node *node,
454                                              struct btrfs_delayed_item *item)
455 {
456         return __btrfs_add_delayed_item(node, item,
457                                         BTRFS_DELAYED_DELETION_ITEM);
458 }
459
460 static void finish_one_item(struct btrfs_delayed_root *delayed_root)
461 {
462         int seq = atomic_inc_return(&delayed_root->items_seq);
463         if ((atomic_dec_return(&delayed_root->items) <
464             BTRFS_DELAYED_BACKGROUND || seq % BTRFS_DELAYED_BATCH == 0) &&
465             waitqueue_active(&delayed_root->wait))
466                 wake_up(&delayed_root->wait);
467 }
468
469 static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item)
470 {
471         struct rb_root *root;
472         struct btrfs_delayed_root *delayed_root;
473
474         delayed_root = delayed_item->delayed_node->root->fs_info->delayed_root;
475
476         BUG_ON(!delayed_root);
477         BUG_ON(delayed_item->ins_or_del != BTRFS_DELAYED_DELETION_ITEM &&
478                delayed_item->ins_or_del != BTRFS_DELAYED_INSERTION_ITEM);
479
480         if (delayed_item->ins_or_del == BTRFS_DELAYED_INSERTION_ITEM)
481                 root = &delayed_item->delayed_node->ins_root;
482         else
483                 root = &delayed_item->delayed_node->del_root;
484
485         rb_erase(&delayed_item->rb_node, root);
486         delayed_item->delayed_node->count--;
487
488         finish_one_item(delayed_root);
489 }
490
491 static void btrfs_release_delayed_item(struct btrfs_delayed_item *item)
492 {
493         if (item) {
494                 __btrfs_remove_delayed_item(item);
495                 if (atomic_dec_and_test(&item->refs))
496                         kfree(item);
497         }
498 }
499
500 static struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item(
501                                         struct btrfs_delayed_node *delayed_node)
502 {
503         struct rb_node *p;
504         struct btrfs_delayed_item *item = NULL;
505
506         p = rb_first(&delayed_node->ins_root);
507         if (p)
508                 item = rb_entry(p, struct btrfs_delayed_item, rb_node);
509
510         return item;
511 }
512
513 static struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item(
514                                         struct btrfs_delayed_node *delayed_node)
515 {
516         struct rb_node *p;
517         struct btrfs_delayed_item *item = NULL;
518
519         p = rb_first(&delayed_node->del_root);
520         if (p)
521                 item = rb_entry(p, struct btrfs_delayed_item, rb_node);
522
523         return item;
524 }
525
526 static struct btrfs_delayed_item *__btrfs_next_delayed_item(
527                                                 struct btrfs_delayed_item *item)
528 {
529         struct rb_node *p;
530         struct btrfs_delayed_item *next = NULL;
531
532         p = rb_next(&item->rb_node);
533         if (p)
534                 next = rb_entry(p, struct btrfs_delayed_item, rb_node);
535
536         return next;
537 }
538
539 static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans,
540                                                struct btrfs_root *root,
541                                                struct btrfs_delayed_item *item)
542 {
543         struct btrfs_block_rsv *src_rsv;
544         struct btrfs_block_rsv *dst_rsv;
545         u64 num_bytes;
546         int ret;
547
548         if (!trans->bytes_reserved)
549                 return 0;
550
551         src_rsv = trans->block_rsv;
552         dst_rsv = &root->fs_info->delayed_block_rsv;
553
554         num_bytes = btrfs_calc_trans_metadata_size(root, 1);
555         ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes);
556         if (!ret) {
557                 trace_btrfs_space_reservation(root->fs_info, "delayed_item",
558                                               item->key.objectid,
559                                               num_bytes, 1);
560                 item->bytes_reserved = num_bytes;
561         }
562
563         return ret;
564 }
565
566 static void btrfs_delayed_item_release_metadata(struct btrfs_root *root,
567                                                 struct btrfs_delayed_item *item)
568 {
569         struct btrfs_block_rsv *rsv;
570
571         if (!item->bytes_reserved)
572                 return;
573
574         rsv = &root->fs_info->delayed_block_rsv;
575         trace_btrfs_space_reservation(root->fs_info, "delayed_item",
576                                       item->key.objectid, item->bytes_reserved,
577                                       0);
578         btrfs_block_rsv_release(root, rsv,
579                                 item->bytes_reserved);
580 }
581
582 static int btrfs_delayed_inode_reserve_metadata(
583                                         struct btrfs_trans_handle *trans,
584                                         struct btrfs_root *root,
585                                         struct inode *inode,
586                                         struct btrfs_delayed_node *node)
587 {
588         struct btrfs_block_rsv *src_rsv;
589         struct btrfs_block_rsv *dst_rsv;
590         u64 num_bytes;
591         int ret;
592         bool release = false;
593
594         src_rsv = trans->block_rsv;
595         dst_rsv = &root->fs_info->delayed_block_rsv;
596
597         num_bytes = btrfs_calc_trans_metadata_size(root, 1);
598
599         /*
600          * btrfs_dirty_inode will update the inode under btrfs_join_transaction
601          * which doesn't reserve space for speed.  This is a problem since we
602          * still need to reserve space for this update, so try to reserve the
603          * space.
604          *
605          * Now if src_rsv == delalloc_block_rsv we'll let it just steal since
606          * we're accounted for.
607          */
608         if (!src_rsv || (!trans->bytes_reserved &&
609                          src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) {
610                 ret = btrfs_block_rsv_add(root, dst_rsv, num_bytes,
611                                           BTRFS_RESERVE_NO_FLUSH);
612                 /*
613                  * Since we're under a transaction reserve_metadata_bytes could
614                  * try to commit the transaction which will make it return
615                  * EAGAIN to make us stop the transaction we have, so return
616                  * ENOSPC instead so that btrfs_dirty_inode knows what to do.
617                  */
618                 if (ret == -EAGAIN)
619                         ret = -ENOSPC;
620                 if (!ret) {
621                         node->bytes_reserved = num_bytes;
622                         trace_btrfs_space_reservation(root->fs_info,
623                                                       "delayed_inode",
624                                                       btrfs_ino(inode),
625                                                       num_bytes, 1);
626                 }
627                 return ret;
628         } else if (src_rsv->type == BTRFS_BLOCK_RSV_DELALLOC) {
629                 spin_lock(&BTRFS_I(inode)->lock);
630                 if (test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
631                                        &BTRFS_I(inode)->runtime_flags)) {
632                         spin_unlock(&BTRFS_I(inode)->lock);
633                         release = true;
634                         goto migrate;
635                 }
636                 spin_unlock(&BTRFS_I(inode)->lock);
637
638                 /* Ok we didn't have space pre-reserved.  This shouldn't happen
639                  * too often but it can happen if we do delalloc to an existing
640                  * inode which gets dirtied because of the time update, and then
641                  * isn't touched again until after the transaction commits and
642                  * then we try to write out the data.  First try to be nice and
643                  * reserve something strictly for us.  If not be a pain and try
644                  * to steal from the delalloc block rsv.
645                  */
646                 ret = btrfs_block_rsv_add(root, dst_rsv, num_bytes,
647                                           BTRFS_RESERVE_NO_FLUSH);
648                 if (!ret)
649                         goto out;
650
651                 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes);
652                 if (!WARN_ON(ret))
653                         goto out;
654
655                 /*
656                  * Ok this is a problem, let's just steal from the global rsv
657                  * since this really shouldn't happen that often.
658                  */
659                 ret = btrfs_block_rsv_migrate(&root->fs_info->global_block_rsv,
660                                               dst_rsv, num_bytes);
661                 goto out;
662         }
663
664 migrate:
665         ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes);
666
667 out:
668         /*
669          * Migrate only takes a reservation, it doesn't touch the size of the
670          * block_rsv.  This is to simplify people who don't normally have things
671          * migrated from their block rsv.  If they go to release their
672          * reservation, that will decrease the size as well, so if migrate
673          * reduced size we'd end up with a negative size.  But for the
674          * delalloc_meta_reserved stuff we will only know to drop 1 reservation,
675          * but we could in fact do this reserve/migrate dance several times
676          * between the time we did the original reservation and we'd clean it
677          * up.  So to take care of this, release the space for the meta
678          * reservation here.  I think it may be time for a documentation page on
679          * how block rsvs. work.
680          */
681         if (!ret) {
682                 trace_btrfs_space_reservation(root->fs_info, "delayed_inode",
683                                               btrfs_ino(inode), num_bytes, 1);
684                 node->bytes_reserved = num_bytes;
685         }
686
687         if (release) {
688                 trace_btrfs_space_reservation(root->fs_info, "delalloc",
689                                               btrfs_ino(inode), num_bytes, 0);
690                 btrfs_block_rsv_release(root, src_rsv, num_bytes);
691         }
692
693         return ret;
694 }
695
696 static void btrfs_delayed_inode_release_metadata(struct btrfs_root *root,
697                                                 struct btrfs_delayed_node *node)
698 {
699         struct btrfs_block_rsv *rsv;
700
701         if (!node->bytes_reserved)
702                 return;
703
704         rsv = &root->fs_info->delayed_block_rsv;
705         trace_btrfs_space_reservation(root->fs_info, "delayed_inode",
706                                       node->inode_id, node->bytes_reserved, 0);
707         btrfs_block_rsv_release(root, rsv,
708                                 node->bytes_reserved);
709         node->bytes_reserved = 0;
710 }
711
712 /*
713  * This helper will insert some continuous items into the same leaf according
714  * to the free space of the leaf.
715  */
716 static int btrfs_batch_insert_items(struct btrfs_root *root,
717                                     struct btrfs_path *path,
718                                     struct btrfs_delayed_item *item)
719 {
720         struct btrfs_delayed_item *curr, *next;
721         int free_space;
722         int total_data_size = 0, total_size = 0;
723         struct extent_buffer *leaf;
724         char *data_ptr;
725         struct btrfs_key *keys;
726         u32 *data_size;
727         struct list_head head;
728         int slot;
729         int nitems;
730         int i;
731         int ret = 0;
732
733         BUG_ON(!path->nodes[0]);
734
735         leaf = path->nodes[0];
736         free_space = btrfs_leaf_free_space(root, leaf);
737         INIT_LIST_HEAD(&head);
738
739         next = item;
740         nitems = 0;
741
742         /*
743          * count the number of the continuous items that we can insert in batch
744          */
745         while (total_size + next->data_len + sizeof(struct btrfs_item) <=
746                free_space) {
747                 total_data_size += next->data_len;
748                 total_size += next->data_len + sizeof(struct btrfs_item);
749                 list_add_tail(&next->tree_list, &head);
750                 nitems++;
751
752                 curr = next;
753                 next = __btrfs_next_delayed_item(curr);
754                 if (!next)
755                         break;
756
757                 if (!btrfs_is_continuous_delayed_item(curr, next))
758                         break;
759         }
760
761         if (!nitems) {
762                 ret = 0;
763                 goto out;
764         }
765
766         /*
767          * we need allocate some memory space, but it might cause the task
768          * to sleep, so we set all locked nodes in the path to blocking locks
769          * first.
770          */
771         btrfs_set_path_blocking(path);
772
773         keys = kmalloc_array(nitems, sizeof(struct btrfs_key), GFP_NOFS);
774         if (!keys) {
775                 ret = -ENOMEM;
776                 goto out;
777         }
778
779         data_size = kmalloc_array(nitems, sizeof(u32), GFP_NOFS);
780         if (!data_size) {
781                 ret = -ENOMEM;
782                 goto error;
783         }
784
785         /* get keys of all the delayed items */
786         i = 0;
787         list_for_each_entry(next, &head, tree_list) {
788                 keys[i] = next->key;
789                 data_size[i] = next->data_len;
790                 i++;
791         }
792
793         /* reset all the locked nodes in the patch to spinning locks. */
794         btrfs_clear_path_blocking(path, NULL, 0);
795
796         /* insert the keys of the items */
797         setup_items_for_insert(root, path, keys, data_size,
798                                total_data_size, total_size, nitems);
799
800         /* insert the dir index items */
801         slot = path->slots[0];
802         list_for_each_entry_safe(curr, next, &head, tree_list) {
803                 data_ptr = btrfs_item_ptr(leaf, slot, char);
804                 write_extent_buffer(leaf, &curr->data,
805                                     (unsigned long)data_ptr,
806                                     curr->data_len);
807                 slot++;
808
809                 btrfs_delayed_item_release_metadata(root, curr);
810
811                 list_del(&curr->tree_list);
812                 btrfs_release_delayed_item(curr);
813         }
814
815 error:
816         kfree(data_size);
817         kfree(keys);
818 out:
819         return ret;
820 }
821
822 /*
823  * This helper can just do simple insertion that needn't extend item for new
824  * data, such as directory name index insertion, inode insertion.
825  */
826 static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans,
827                                      struct btrfs_root *root,
828                                      struct btrfs_path *path,
829                                      struct btrfs_delayed_item *delayed_item)
830 {
831         struct extent_buffer *leaf;
832         char *ptr;
833         int ret;
834
835         ret = btrfs_insert_empty_item(trans, root, path, &delayed_item->key,
836                                       delayed_item->data_len);
837         if (ret < 0 && ret != -EEXIST)
838                 return ret;
839
840         leaf = path->nodes[0];
841
842         ptr = btrfs_item_ptr(leaf, path->slots[0], char);
843
844         write_extent_buffer(leaf, delayed_item->data, (unsigned long)ptr,
845                             delayed_item->data_len);
846         btrfs_mark_buffer_dirty(leaf);
847
848         btrfs_delayed_item_release_metadata(root, delayed_item);
849         return 0;
850 }
851
852 /*
853  * we insert an item first, then if there are some continuous items, we try
854  * to insert those items into the same leaf.
855  */
856 static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans,
857                                       struct btrfs_path *path,
858                                       struct btrfs_root *root,
859                                       struct btrfs_delayed_node *node)
860 {
861         struct btrfs_delayed_item *curr, *prev;
862         int ret = 0;
863
864 do_again:
865         mutex_lock(&node->mutex);
866         curr = __btrfs_first_delayed_insertion_item(node);
867         if (!curr)
868                 goto insert_end;
869
870         ret = btrfs_insert_delayed_item(trans, root, path, curr);
871         if (ret < 0) {
872                 btrfs_release_path(path);
873                 goto insert_end;
874         }
875
876         prev = curr;
877         curr = __btrfs_next_delayed_item(prev);
878         if (curr && btrfs_is_continuous_delayed_item(prev, curr)) {
879                 /* insert the continuous items into the same leaf */
880                 path->slots[0]++;
881                 btrfs_batch_insert_items(root, path, curr);
882         }
883         btrfs_release_delayed_item(prev);
884         btrfs_mark_buffer_dirty(path->nodes[0]);
885
886         btrfs_release_path(path);
887         mutex_unlock(&node->mutex);
888         goto do_again;
889
890 insert_end:
891         mutex_unlock(&node->mutex);
892         return ret;
893 }
894
895 static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans,
896                                     struct btrfs_root *root,
897                                     struct btrfs_path *path,
898                                     struct btrfs_delayed_item *item)
899 {
900         struct btrfs_delayed_item *curr, *next;
901         struct extent_buffer *leaf;
902         struct btrfs_key key;
903         struct list_head head;
904         int nitems, i, last_item;
905         int ret = 0;
906
907         BUG_ON(!path->nodes[0]);
908
909         leaf = path->nodes[0];
910
911         i = path->slots[0];
912         last_item = btrfs_header_nritems(leaf) - 1;
913         if (i > last_item)
914                 return -ENOENT; /* FIXME: Is errno suitable? */
915
916         next = item;
917         INIT_LIST_HEAD(&head);
918         btrfs_item_key_to_cpu(leaf, &key, i);
919         nitems = 0;
920         /*
921          * count the number of the dir index items that we can delete in batch
922          */
923         while (btrfs_comp_cpu_keys(&next->key, &key) == 0) {
924                 list_add_tail(&next->tree_list, &head);
925                 nitems++;
926
927                 curr = next;
928                 next = __btrfs_next_delayed_item(curr);
929                 if (!next)
930                         break;
931
932                 if (!btrfs_is_continuous_delayed_item(curr, next))
933                         break;
934
935                 i++;
936                 if (i > last_item)
937                         break;
938                 btrfs_item_key_to_cpu(leaf, &key, i);
939         }
940
941         if (!nitems)
942                 return 0;
943
944         ret = btrfs_del_items(trans, root, path, path->slots[0], nitems);
945         if (ret)
946                 goto out;
947
948         list_for_each_entry_safe(curr, next, &head, tree_list) {
949                 btrfs_delayed_item_release_metadata(root, curr);
950                 list_del(&curr->tree_list);
951                 btrfs_release_delayed_item(curr);
952         }
953
954 out:
955         return ret;
956 }
957
958 static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans,
959                                       struct btrfs_path *path,
960                                       struct btrfs_root *root,
961                                       struct btrfs_delayed_node *node)
962 {
963         struct btrfs_delayed_item *curr, *prev;
964         int ret = 0;
965
966 do_again:
967         mutex_lock(&node->mutex);
968         curr = __btrfs_first_delayed_deletion_item(node);
969         if (!curr)
970                 goto delete_fail;
971
972         ret = btrfs_search_slot(trans, root, &curr->key, path, -1, 1);
973         if (ret < 0)
974                 goto delete_fail;
975         else if (ret > 0) {
976                 /*
977                  * can't find the item which the node points to, so this node
978                  * is invalid, just drop it.
979                  */
980                 prev = curr;
981                 curr = __btrfs_next_delayed_item(prev);
982                 btrfs_release_delayed_item(prev);
983                 ret = 0;
984                 btrfs_release_path(path);
985                 if (curr) {
986                         mutex_unlock(&node->mutex);
987                         goto do_again;
988                 } else
989                         goto delete_fail;
990         }
991
992         btrfs_batch_delete_items(trans, root, path, curr);
993         btrfs_release_path(path);
994         mutex_unlock(&node->mutex);
995         goto do_again;
996
997 delete_fail:
998         btrfs_release_path(path);
999         mutex_unlock(&node->mutex);
1000         return ret;
1001 }
1002
1003 static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node)
1004 {
1005         struct btrfs_delayed_root *delayed_root;
1006
1007         if (delayed_node &&
1008             test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1009                 BUG_ON(!delayed_node->root);
1010                 clear_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
1011                 delayed_node->count--;
1012
1013                 delayed_root = delayed_node->root->fs_info->delayed_root;
1014                 finish_one_item(delayed_root);
1015         }
1016 }
1017
1018 static void btrfs_release_delayed_iref(struct btrfs_delayed_node *delayed_node)
1019 {
1020         struct btrfs_delayed_root *delayed_root;
1021
1022         ASSERT(delayed_node->root);
1023         clear_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
1024         delayed_node->count--;
1025
1026         delayed_root = delayed_node->root->fs_info->delayed_root;
1027         finish_one_item(delayed_root);
1028 }
1029
1030 static int __btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1031                                         struct btrfs_root *root,
1032                                         struct btrfs_path *path,
1033                                         struct btrfs_delayed_node *node)
1034 {
1035         struct btrfs_key key;
1036         struct btrfs_inode_item *inode_item;
1037         struct extent_buffer *leaf;
1038         int mod;
1039         int ret;
1040
1041         key.objectid = node->inode_id;
1042         btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
1043         key.offset = 0;
1044
1045         if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1046                 mod = -1;
1047         else
1048                 mod = 1;
1049
1050         ret = btrfs_lookup_inode(trans, root, path, &key, mod);
1051         if (ret > 0) {
1052                 btrfs_release_path(path);
1053                 return -ENOENT;
1054         } else if (ret < 0) {
1055                 return ret;
1056         }
1057
1058         leaf = path->nodes[0];
1059         inode_item = btrfs_item_ptr(leaf, path->slots[0],
1060                                     struct btrfs_inode_item);
1061         write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item,
1062                             sizeof(struct btrfs_inode_item));
1063         btrfs_mark_buffer_dirty(leaf);
1064
1065         if (!test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1066                 goto no_iref;
1067
1068         path->slots[0]++;
1069         if (path->slots[0] >= btrfs_header_nritems(leaf))
1070                 goto search;
1071 again:
1072         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1073         if (key.objectid != node->inode_id)
1074                 goto out;
1075
1076         if (key.type != BTRFS_INODE_REF_KEY &&
1077             key.type != BTRFS_INODE_EXTREF_KEY)
1078                 goto out;
1079
1080         /*
1081          * Delayed iref deletion is for the inode who has only one link,
1082          * so there is only one iref. The case that several irefs are
1083          * in the same item doesn't exist.
1084          */
1085         btrfs_del_item(trans, root, path);
1086 out:
1087         btrfs_release_delayed_iref(node);
1088 no_iref:
1089         btrfs_release_path(path);
1090 err_out:
1091         btrfs_delayed_inode_release_metadata(root, node);
1092         btrfs_release_delayed_inode(node);
1093
1094         return ret;
1095
1096 search:
1097         btrfs_release_path(path);
1098
1099         btrfs_set_key_type(&key, BTRFS_INODE_EXTREF_KEY);
1100         key.offset = -1;
1101         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1102         if (ret < 0)
1103                 goto err_out;
1104         ASSERT(ret);
1105
1106         ret = 0;
1107         leaf = path->nodes[0];
1108         path->slots[0]--;
1109         goto again;
1110 }
1111
1112 static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1113                                              struct btrfs_root *root,
1114                                              struct btrfs_path *path,
1115                                              struct btrfs_delayed_node *node)
1116 {
1117         int ret;
1118
1119         mutex_lock(&node->mutex);
1120         if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &node->flags)) {
1121                 mutex_unlock(&node->mutex);
1122                 return 0;
1123         }
1124
1125         ret = __btrfs_update_delayed_inode(trans, root, path, node);
1126         mutex_unlock(&node->mutex);
1127         return ret;
1128 }
1129
1130 static inline int
1131 __btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1132                                    struct btrfs_path *path,
1133                                    struct btrfs_delayed_node *node)
1134 {
1135         int ret;
1136
1137         ret = btrfs_insert_delayed_items(trans, path, node->root, node);
1138         if (ret)
1139                 return ret;
1140
1141         ret = btrfs_delete_delayed_items(trans, path, node->root, node);
1142         if (ret)
1143                 return ret;
1144
1145         ret = btrfs_update_delayed_inode(trans, node->root, path, node);
1146         return ret;
1147 }
1148
1149 /*
1150  * Called when committing the transaction.
1151  * Returns 0 on success.
1152  * Returns < 0 on error and returns with an aborted transaction with any
1153  * outstanding delayed items cleaned up.
1154  */
1155 static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans,
1156                                      struct btrfs_root *root, int nr)
1157 {
1158         struct btrfs_delayed_root *delayed_root;
1159         struct btrfs_delayed_node *curr_node, *prev_node;
1160         struct btrfs_path *path;
1161         struct btrfs_block_rsv *block_rsv;
1162         int ret = 0;
1163         bool count = (nr > 0);
1164
1165         if (trans->aborted)
1166                 return -EIO;
1167
1168         path = btrfs_alloc_path();
1169         if (!path)
1170                 return -ENOMEM;
1171         path->leave_spinning = 1;
1172
1173         block_rsv = trans->block_rsv;
1174         trans->block_rsv = &root->fs_info->delayed_block_rsv;
1175
1176         delayed_root = btrfs_get_delayed_root(root);
1177
1178         curr_node = btrfs_first_delayed_node(delayed_root);
1179         while (curr_node && (!count || (count && nr--))) {
1180                 ret = __btrfs_commit_inode_delayed_items(trans, path,
1181                                                          curr_node);
1182                 if (ret) {
1183                         btrfs_release_delayed_node(curr_node);
1184                         curr_node = NULL;
1185                         btrfs_abort_transaction(trans, root, ret);
1186                         break;
1187                 }
1188
1189                 prev_node = curr_node;
1190                 curr_node = btrfs_next_delayed_node(curr_node);
1191                 btrfs_release_delayed_node(prev_node);
1192         }
1193
1194         if (curr_node)
1195                 btrfs_release_delayed_node(curr_node);
1196         btrfs_free_path(path);
1197         trans->block_rsv = block_rsv;
1198
1199         return ret;
1200 }
1201
1202 int btrfs_run_delayed_items(struct btrfs_trans_handle *trans,
1203                             struct btrfs_root *root)
1204 {
1205         return __btrfs_run_delayed_items(trans, root, -1);
1206 }
1207
1208 int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans,
1209                                struct btrfs_root *root, int nr)
1210 {
1211         return __btrfs_run_delayed_items(trans, root, nr);
1212 }
1213
1214 int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1215                                      struct inode *inode)
1216 {
1217         struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1218         struct btrfs_path *path;
1219         struct btrfs_block_rsv *block_rsv;
1220         int ret;
1221
1222         if (!delayed_node)
1223                 return 0;
1224
1225         mutex_lock(&delayed_node->mutex);
1226         if (!delayed_node->count) {
1227                 mutex_unlock(&delayed_node->mutex);
1228                 btrfs_release_delayed_node(delayed_node);
1229                 return 0;
1230         }
1231         mutex_unlock(&delayed_node->mutex);
1232
1233         path = btrfs_alloc_path();
1234         if (!path) {
1235                 btrfs_release_delayed_node(delayed_node);
1236                 return -ENOMEM;
1237         }
1238         path->leave_spinning = 1;
1239
1240         block_rsv = trans->block_rsv;
1241         trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;
1242
1243         ret = __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1244
1245         btrfs_release_delayed_node(delayed_node);
1246         btrfs_free_path(path);
1247         trans->block_rsv = block_rsv;
1248
1249         return ret;
1250 }
1251
1252 int btrfs_commit_inode_delayed_inode(struct inode *inode)
1253 {
1254         struct btrfs_trans_handle *trans;
1255         struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1256         struct btrfs_path *path;
1257         struct btrfs_block_rsv *block_rsv;
1258         int ret;
1259
1260         if (!delayed_node)
1261                 return 0;
1262
1263         mutex_lock(&delayed_node->mutex);
1264         if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1265                 mutex_unlock(&delayed_node->mutex);
1266                 btrfs_release_delayed_node(delayed_node);
1267                 return 0;
1268         }
1269         mutex_unlock(&delayed_node->mutex);
1270
1271         trans = btrfs_join_transaction(delayed_node->root);
1272         if (IS_ERR(trans)) {
1273                 ret = PTR_ERR(trans);
1274                 goto out;
1275         }
1276
1277         path = btrfs_alloc_path();
1278         if (!path) {
1279                 ret = -ENOMEM;
1280                 goto trans_out;
1281         }
1282         path->leave_spinning = 1;
1283
1284         block_rsv = trans->block_rsv;
1285         trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;
1286
1287         mutex_lock(&delayed_node->mutex);
1288         if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags))
1289                 ret = __btrfs_update_delayed_inode(trans, delayed_node->root,
1290                                                    path, delayed_node);
1291         else
1292                 ret = 0;
1293         mutex_unlock(&delayed_node->mutex);
1294
1295         btrfs_free_path(path);
1296         trans->block_rsv = block_rsv;
1297 trans_out:
1298         btrfs_end_transaction(trans, delayed_node->root);
1299         btrfs_btree_balance_dirty(delayed_node->root);
1300 out:
1301         btrfs_release_delayed_node(delayed_node);
1302
1303         return ret;
1304 }
1305
1306 void btrfs_remove_delayed_node(struct inode *inode)
1307 {
1308         struct btrfs_delayed_node *delayed_node;
1309
1310         delayed_node = ACCESS_ONCE(BTRFS_I(inode)->delayed_node);
1311         if (!delayed_node)
1312                 return;
1313
1314         BTRFS_I(inode)->delayed_node = NULL;
1315         btrfs_release_delayed_node(delayed_node);
1316 }
1317
1318 struct btrfs_async_delayed_work {
1319         struct btrfs_delayed_root *delayed_root;
1320         int nr;
1321         struct btrfs_work work;
1322 };
1323
1324 static void btrfs_async_run_delayed_root(struct btrfs_work *work)
1325 {
1326         struct btrfs_async_delayed_work *async_work;
1327         struct btrfs_delayed_root *delayed_root;
1328         struct btrfs_trans_handle *trans;
1329         struct btrfs_path *path;
1330         struct btrfs_delayed_node *delayed_node = NULL;
1331         struct btrfs_root *root;
1332         struct btrfs_block_rsv *block_rsv;
1333         int total_done = 0;
1334
1335         async_work = container_of(work, struct btrfs_async_delayed_work, work);
1336         delayed_root = async_work->delayed_root;
1337
1338         path = btrfs_alloc_path();
1339         if (!path)
1340                 goto out;
1341
1342 again:
1343         if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND / 2)
1344                 goto free_path;
1345
1346         delayed_node = btrfs_first_prepared_delayed_node(delayed_root);
1347         if (!delayed_node)
1348                 goto free_path;
1349
1350         path->leave_spinning = 1;
1351         root = delayed_node->root;
1352
1353         trans = btrfs_join_transaction(root);
1354         if (IS_ERR(trans))
1355                 goto release_path;
1356
1357         block_rsv = trans->block_rsv;
1358         trans->block_rsv = &root->fs_info->delayed_block_rsv;
1359
1360         __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1361
1362         trans->block_rsv = block_rsv;
1363         btrfs_end_transaction(trans, root);
1364         btrfs_btree_balance_dirty_nodelay(root);
1365
1366 release_path:
1367         btrfs_release_path(path);
1368         total_done++;
1369
1370         btrfs_release_prepared_delayed_node(delayed_node);
1371         if (async_work->nr == 0 || total_done < async_work->nr)
1372                 goto again;
1373
1374 free_path:
1375         btrfs_free_path(path);
1376 out:
1377         wake_up(&delayed_root->wait);
1378         kfree(async_work);
1379 }
1380
1381
1382 static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root,
1383                                      struct btrfs_root *root, int nr)
1384 {
1385         struct btrfs_async_delayed_work *async_work;
1386
1387         if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
1388                 return 0;
1389
1390         async_work = kmalloc(sizeof(*async_work), GFP_NOFS);
1391         if (!async_work)
1392                 return -ENOMEM;
1393
1394         async_work->delayed_root = delayed_root;
1395         btrfs_init_work(&async_work->work, btrfs_async_run_delayed_root,
1396                         NULL, NULL);
1397         async_work->nr = nr;
1398
1399         btrfs_queue_work(root->fs_info->delayed_workers, &async_work->work);
1400         return 0;
1401 }
1402
1403 void btrfs_assert_delayed_root_empty(struct btrfs_root *root)
1404 {
1405         struct btrfs_delayed_root *delayed_root;
1406         delayed_root = btrfs_get_delayed_root(root);
1407         WARN_ON(btrfs_first_delayed_node(delayed_root));
1408 }
1409
1410 static int could_end_wait(struct btrfs_delayed_root *delayed_root, int seq)
1411 {
1412         int val = atomic_read(&delayed_root->items_seq);
1413
1414         if (val < seq || val >= seq + BTRFS_DELAYED_BATCH)
1415                 return 1;
1416
1417         if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
1418                 return 1;
1419
1420         return 0;
1421 }
1422
1423 void btrfs_balance_delayed_items(struct btrfs_root *root)
1424 {
1425         struct btrfs_delayed_root *delayed_root;
1426
1427         delayed_root = btrfs_get_delayed_root(root);
1428
1429         if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
1430                 return;
1431
1432         if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) {
1433                 int seq;
1434                 int ret;
1435
1436                 seq = atomic_read(&delayed_root->items_seq);
1437
1438                 ret = btrfs_wq_run_delayed_node(delayed_root, root, 0);
1439                 if (ret)
1440                         return;
1441
1442                 wait_event_interruptible(delayed_root->wait,
1443                                          could_end_wait(delayed_root, seq));
1444                 return;
1445         }
1446
1447         btrfs_wq_run_delayed_node(delayed_root, root, BTRFS_DELAYED_BATCH);
1448 }
1449
1450 /* Will return 0 or -ENOMEM */
1451 int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans,
1452                                    struct btrfs_root *root, const char *name,
1453                                    int name_len, struct inode *dir,
1454                                    struct btrfs_disk_key *disk_key, u8 type,
1455                                    u64 index)
1456 {
1457         struct btrfs_delayed_node *delayed_node;
1458         struct btrfs_delayed_item *delayed_item;
1459         struct btrfs_dir_item *dir_item;
1460         int ret;
1461
1462         delayed_node = btrfs_get_or_create_delayed_node(dir);
1463         if (IS_ERR(delayed_node))
1464                 return PTR_ERR(delayed_node);
1465
1466         delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len);
1467         if (!delayed_item) {
1468                 ret = -ENOMEM;
1469                 goto release_node;
1470         }
1471
1472         delayed_item->key.objectid = btrfs_ino(dir);
1473         btrfs_set_key_type(&delayed_item->key, BTRFS_DIR_INDEX_KEY);
1474         delayed_item->key.offset = index;
1475
1476         dir_item = (struct btrfs_dir_item *)delayed_item->data;
1477         dir_item->location = *disk_key;
1478         btrfs_set_stack_dir_transid(dir_item, trans->transid);
1479         btrfs_set_stack_dir_data_len(dir_item, 0);
1480         btrfs_set_stack_dir_name_len(dir_item, name_len);
1481         btrfs_set_stack_dir_type(dir_item, type);
1482         memcpy((char *)(dir_item + 1), name, name_len);
1483
1484         ret = btrfs_delayed_item_reserve_metadata(trans, root, delayed_item);
1485         /*
1486          * we have reserved enough space when we start a new transaction,
1487          * so reserving metadata failure is impossible
1488          */
1489         BUG_ON(ret);
1490
1491
1492         mutex_lock(&delayed_node->mutex);
1493         ret = __btrfs_add_delayed_insertion_item(delayed_node, delayed_item);
1494         if (unlikely(ret)) {
1495                 btrfs_err(root->fs_info, "err add delayed dir index item(name: %.*s) "
1496                                 "into the insertion tree of the delayed node"
1497                                 "(root id: %llu, inode id: %llu, errno: %d)",
1498                                 name_len, name, delayed_node->root->objectid,
1499                                 delayed_node->inode_id, ret);
1500                 BUG();
1501         }
1502         mutex_unlock(&delayed_node->mutex);
1503
1504 release_node:
1505         btrfs_release_delayed_node(delayed_node);
1506         return ret;
1507 }
1508
1509 static int btrfs_delete_delayed_insertion_item(struct btrfs_root *root,
1510                                                struct btrfs_delayed_node *node,
1511                                                struct btrfs_key *key)
1512 {
1513         struct btrfs_delayed_item *item;
1514
1515         mutex_lock(&node->mutex);
1516         item = __btrfs_lookup_delayed_insertion_item(node, key);
1517         if (!item) {
1518                 mutex_unlock(&node->mutex);
1519                 return 1;
1520         }
1521
1522         btrfs_delayed_item_release_metadata(root, item);
1523         btrfs_release_delayed_item(item);
1524         mutex_unlock(&node->mutex);
1525         return 0;
1526 }
1527
1528 int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans,
1529                                    struct btrfs_root *root, struct inode *dir,
1530                                    u64 index)
1531 {
1532         struct btrfs_delayed_node *node;
1533         struct btrfs_delayed_item *item;
1534         struct btrfs_key item_key;
1535         int ret;
1536
1537         node = btrfs_get_or_create_delayed_node(dir);
1538         if (IS_ERR(node))
1539                 return PTR_ERR(node);
1540
1541         item_key.objectid = btrfs_ino(dir);
1542         btrfs_set_key_type(&item_key, BTRFS_DIR_INDEX_KEY);
1543         item_key.offset = index;
1544
1545         ret = btrfs_delete_delayed_insertion_item(root, node, &item_key);
1546         if (!ret)
1547                 goto end;
1548
1549         item = btrfs_alloc_delayed_item(0);
1550         if (!item) {
1551                 ret = -ENOMEM;
1552                 goto end;
1553         }
1554
1555         item->key = item_key;
1556
1557         ret = btrfs_delayed_item_reserve_metadata(trans, root, item);
1558         /*
1559          * we have reserved enough space when we start a new transaction,
1560          * so reserving metadata failure is impossible.
1561          */
1562         BUG_ON(ret);
1563
1564         mutex_lock(&node->mutex);
1565         ret = __btrfs_add_delayed_deletion_item(node, item);
1566         if (unlikely(ret)) {
1567                 btrfs_err(root->fs_info, "err add delayed dir index item(index: %llu) "
1568                                 "into the deletion tree of the delayed node"
1569                                 "(root id: %llu, inode id: %llu, errno: %d)",
1570                                 index, node->root->objectid, node->inode_id,
1571                                 ret);
1572                 BUG();
1573         }
1574         mutex_unlock(&node->mutex);
1575 end:
1576         btrfs_release_delayed_node(node);
1577         return ret;
1578 }
1579
1580 int btrfs_inode_delayed_dir_index_count(struct inode *inode)
1581 {
1582         struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1583
1584         if (!delayed_node)
1585                 return -ENOENT;
1586
1587         /*
1588          * Since we have held i_mutex of this directory, it is impossible that
1589          * a new directory index is added into the delayed node and index_cnt
1590          * is updated now. So we needn't lock the delayed node.
1591          */
1592         if (!delayed_node->index_cnt) {
1593                 btrfs_release_delayed_node(delayed_node);
1594                 return -EINVAL;
1595         }
1596
1597         BTRFS_I(inode)->index_cnt = delayed_node->index_cnt;
1598         btrfs_release_delayed_node(delayed_node);
1599         return 0;
1600 }
1601
1602 void btrfs_get_delayed_items(struct inode *inode, struct list_head *ins_list,
1603                              struct list_head *del_list)
1604 {
1605         struct btrfs_delayed_node *delayed_node;
1606         struct btrfs_delayed_item *item;
1607
1608         delayed_node = btrfs_get_delayed_node(inode);
1609         if (!delayed_node)
1610                 return;
1611
1612         mutex_lock(&delayed_node->mutex);
1613         item = __btrfs_first_delayed_insertion_item(delayed_node);
1614         while (item) {
1615                 atomic_inc(&item->refs);
1616                 list_add_tail(&item->readdir_list, ins_list);
1617                 item = __btrfs_next_delayed_item(item);
1618         }
1619
1620         item = __btrfs_first_delayed_deletion_item(delayed_node);
1621         while (item) {
1622                 atomic_inc(&item->refs);
1623                 list_add_tail(&item->readdir_list, del_list);
1624                 item = __btrfs_next_delayed_item(item);
1625         }
1626         mutex_unlock(&delayed_node->mutex);
1627         /*
1628          * This delayed node is still cached in the btrfs inode, so refs
1629          * must be > 1 now, and we needn't check it is going to be freed
1630          * or not.
1631          *
1632          * Besides that, this function is used to read dir, we do not
1633          * insert/delete delayed items in this period. So we also needn't
1634          * requeue or dequeue this delayed node.
1635          */
1636         atomic_dec(&delayed_node->refs);
1637 }
1638
1639 void btrfs_put_delayed_items(struct list_head *ins_list,
1640                              struct list_head *del_list)
1641 {
1642         struct btrfs_delayed_item *curr, *next;
1643
1644         list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1645                 list_del(&curr->readdir_list);
1646                 if (atomic_dec_and_test(&curr->refs))
1647                         kfree(curr);
1648         }
1649
1650         list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1651                 list_del(&curr->readdir_list);
1652                 if (atomic_dec_and_test(&curr->refs))
1653                         kfree(curr);
1654         }
1655 }
1656
1657 int btrfs_should_delete_dir_index(struct list_head *del_list,
1658                                   u64 index)
1659 {
1660         struct btrfs_delayed_item *curr, *next;
1661         int ret;
1662
1663         if (list_empty(del_list))
1664                 return 0;
1665
1666         list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1667                 if (curr->key.offset > index)
1668                         break;
1669
1670                 list_del(&curr->readdir_list);
1671                 ret = (curr->key.offset == index);
1672
1673                 if (atomic_dec_and_test(&curr->refs))
1674                         kfree(curr);
1675
1676                 if (ret)
1677                         return 1;
1678                 else
1679                         continue;
1680         }
1681         return 0;
1682 }
1683
1684 /*
1685  * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree
1686  *
1687  */
1688 int btrfs_readdir_delayed_dir_index(struct dir_context *ctx,
1689                                     struct list_head *ins_list)
1690 {
1691         struct btrfs_dir_item *di;
1692         struct btrfs_delayed_item *curr, *next;
1693         struct btrfs_key location;
1694         char *name;
1695         int name_len;
1696         int over = 0;
1697         unsigned char d_type;
1698
1699         if (list_empty(ins_list))
1700                 return 0;
1701
1702         /*
1703          * Changing the data of the delayed item is impossible. So
1704          * we needn't lock them. And we have held i_mutex of the
1705          * directory, nobody can delete any directory indexes now.
1706          */
1707         list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1708                 list_del(&curr->readdir_list);
1709
1710                 if (curr->key.offset < ctx->pos) {
1711                         if (atomic_dec_and_test(&curr->refs))
1712                                 kfree(curr);
1713                         continue;
1714                 }
1715
1716                 ctx->pos = curr->key.offset;
1717
1718                 di = (struct btrfs_dir_item *)curr->data;
1719                 name = (char *)(di + 1);
1720                 name_len = btrfs_stack_dir_name_len(di);
1721
1722                 d_type = btrfs_filetype_table[di->type];
1723                 btrfs_disk_key_to_cpu(&location, &di->location);
1724
1725                 over = !dir_emit(ctx, name, name_len,
1726                                location.objectid, d_type);
1727
1728                 if (atomic_dec_and_test(&curr->refs))
1729                         kfree(curr);
1730
1731                 if (over)
1732                         return 1;
1733         }
1734         return 0;
1735 }
1736
1737 static void fill_stack_inode_item(struct btrfs_trans_handle *trans,
1738                                   struct btrfs_inode_item *inode_item,
1739                                   struct inode *inode)
1740 {
1741         btrfs_set_stack_inode_uid(inode_item, i_uid_read(inode));
1742         btrfs_set_stack_inode_gid(inode_item, i_gid_read(inode));
1743         btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size);
1744         btrfs_set_stack_inode_mode(inode_item, inode->i_mode);
1745         btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink);
1746         btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode));
1747         btrfs_set_stack_inode_generation(inode_item,
1748                                          BTRFS_I(inode)->generation);
1749         btrfs_set_stack_inode_sequence(inode_item, inode->i_version);
1750         btrfs_set_stack_inode_transid(inode_item, trans->transid);
1751         btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev);
1752         btrfs_set_stack_inode_flags(inode_item, BTRFS_I(inode)->flags);
1753         btrfs_set_stack_inode_block_group(inode_item, 0);
1754
1755         btrfs_set_stack_timespec_sec(btrfs_inode_atime(inode_item),
1756                                      inode->i_atime.tv_sec);
1757         btrfs_set_stack_timespec_nsec(btrfs_inode_atime(inode_item),
1758                                       inode->i_atime.tv_nsec);
1759
1760         btrfs_set_stack_timespec_sec(btrfs_inode_mtime(inode_item),
1761                                      inode->i_mtime.tv_sec);
1762         btrfs_set_stack_timespec_nsec(btrfs_inode_mtime(inode_item),
1763                                       inode->i_mtime.tv_nsec);
1764
1765         btrfs_set_stack_timespec_sec(btrfs_inode_ctime(inode_item),
1766                                      inode->i_ctime.tv_sec);
1767         btrfs_set_stack_timespec_nsec(btrfs_inode_ctime(inode_item),
1768                                       inode->i_ctime.tv_nsec);
1769 }
1770
1771 int btrfs_fill_inode(struct inode *inode, u32 *rdev)
1772 {
1773         struct btrfs_delayed_node *delayed_node;
1774         struct btrfs_inode_item *inode_item;
1775         struct btrfs_timespec *tspec;
1776
1777         delayed_node = btrfs_get_delayed_node(inode);
1778         if (!delayed_node)
1779                 return -ENOENT;
1780
1781         mutex_lock(&delayed_node->mutex);
1782         if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1783                 mutex_unlock(&delayed_node->mutex);
1784                 btrfs_release_delayed_node(delayed_node);
1785                 return -ENOENT;
1786         }
1787
1788         inode_item = &delayed_node->inode_item;
1789
1790         i_uid_write(inode, btrfs_stack_inode_uid(inode_item));
1791         i_gid_write(inode, btrfs_stack_inode_gid(inode_item));
1792         btrfs_i_size_write(inode, btrfs_stack_inode_size(inode_item));
1793         inode->i_mode = btrfs_stack_inode_mode(inode_item);
1794         set_nlink(inode, btrfs_stack_inode_nlink(inode_item));
1795         inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item));
1796         BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item);
1797         inode->i_version = btrfs_stack_inode_sequence(inode_item);
1798         inode->i_rdev = 0;
1799         *rdev = btrfs_stack_inode_rdev(inode_item);
1800         BTRFS_I(inode)->flags = btrfs_stack_inode_flags(inode_item);
1801
1802         tspec = btrfs_inode_atime(inode_item);
1803         inode->i_atime.tv_sec = btrfs_stack_timespec_sec(tspec);
1804         inode->i_atime.tv_nsec = btrfs_stack_timespec_nsec(tspec);
1805
1806         tspec = btrfs_inode_mtime(inode_item);
1807         inode->i_mtime.tv_sec = btrfs_stack_timespec_sec(tspec);
1808         inode->i_mtime.tv_nsec = btrfs_stack_timespec_nsec(tspec);
1809
1810         tspec = btrfs_inode_ctime(inode_item);
1811         inode->i_ctime.tv_sec = btrfs_stack_timespec_sec(tspec);
1812         inode->i_ctime.tv_nsec = btrfs_stack_timespec_nsec(tspec);
1813
1814         inode->i_generation = BTRFS_I(inode)->generation;
1815         BTRFS_I(inode)->index_cnt = (u64)-1;
1816
1817         mutex_unlock(&delayed_node->mutex);
1818         btrfs_release_delayed_node(delayed_node);
1819         return 0;
1820 }
1821
1822 int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans,
1823                                struct btrfs_root *root, struct inode *inode)
1824 {
1825         struct btrfs_delayed_node *delayed_node;
1826         int ret = 0;
1827
1828         delayed_node = btrfs_get_or_create_delayed_node(inode);
1829         if (IS_ERR(delayed_node))
1830                 return PTR_ERR(delayed_node);
1831
1832         mutex_lock(&delayed_node->mutex);
1833         if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1834                 fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1835                 goto release_node;
1836         }
1837
1838         ret = btrfs_delayed_inode_reserve_metadata(trans, root, inode,
1839                                                    delayed_node);
1840         if (ret)
1841                 goto release_node;
1842
1843         fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1844         set_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
1845         delayed_node->count++;
1846         atomic_inc(&root->fs_info->delayed_root->items);
1847 release_node:
1848         mutex_unlock(&delayed_node->mutex);
1849         btrfs_release_delayed_node(delayed_node);
1850         return ret;
1851 }
1852
1853 int btrfs_delayed_delete_inode_ref(struct inode *inode)
1854 {
1855         struct btrfs_delayed_node *delayed_node;
1856
1857         delayed_node = btrfs_get_or_create_delayed_node(inode);
1858         if (IS_ERR(delayed_node))
1859                 return PTR_ERR(delayed_node);
1860
1861         /*
1862          * We don't reserve space for inode ref deletion is because:
1863          * - We ONLY do async inode ref deletion for the inode who has only
1864          *   one link(i_nlink == 1), it means there is only one inode ref.
1865          *   And in most case, the inode ref and the inode item are in the
1866          *   same leaf, and we will deal with them at the same time.
1867          *   Since we are sure we will reserve the space for the inode item,
1868          *   it is unnecessary to reserve space for inode ref deletion.
1869          * - If the inode ref and the inode item are not in the same leaf,
1870          *   We also needn't worry about enospc problem, because we reserve
1871          *   much more space for the inode update than it needs.
1872          * - At the worst, we can steal some space from the global reservation.
1873          *   It is very rare.
1874          */
1875         mutex_lock(&delayed_node->mutex);
1876         if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
1877                 goto release_node;
1878
1879         set_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
1880         delayed_node->count++;
1881         atomic_inc(&BTRFS_I(inode)->root->fs_info->delayed_root->items);
1882 release_node:
1883         mutex_unlock(&delayed_node->mutex);
1884         btrfs_release_delayed_node(delayed_node);
1885         return 0;
1886 }
1887
1888 static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node)
1889 {
1890         struct btrfs_root *root = delayed_node->root;
1891         struct btrfs_delayed_item *curr_item, *prev_item;
1892
1893         mutex_lock(&delayed_node->mutex);
1894         curr_item = __btrfs_first_delayed_insertion_item(delayed_node);
1895         while (curr_item) {
1896                 btrfs_delayed_item_release_metadata(root, curr_item);
1897                 prev_item = curr_item;
1898                 curr_item = __btrfs_next_delayed_item(prev_item);
1899                 btrfs_release_delayed_item(prev_item);
1900         }
1901
1902         curr_item = __btrfs_first_delayed_deletion_item(delayed_node);
1903         while (curr_item) {
1904                 btrfs_delayed_item_release_metadata(root, curr_item);
1905                 prev_item = curr_item;
1906                 curr_item = __btrfs_next_delayed_item(prev_item);
1907                 btrfs_release_delayed_item(prev_item);
1908         }
1909
1910         if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
1911                 btrfs_release_delayed_iref(delayed_node);
1912
1913         if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1914                 btrfs_delayed_inode_release_metadata(root, delayed_node);
1915                 btrfs_release_delayed_inode(delayed_node);
1916         }
1917         mutex_unlock(&delayed_node->mutex);
1918 }
1919
1920 void btrfs_kill_delayed_inode_items(struct inode *inode)
1921 {
1922         struct btrfs_delayed_node *delayed_node;
1923
1924         delayed_node = btrfs_get_delayed_node(inode);
1925         if (!delayed_node)
1926                 return;
1927
1928         __btrfs_kill_delayed_node(delayed_node);
1929         btrfs_release_delayed_node(delayed_node);
1930 }
1931
1932 void btrfs_kill_all_delayed_nodes(struct btrfs_root *root)
1933 {
1934         u64 inode_id = 0;
1935         struct btrfs_delayed_node *delayed_nodes[8];
1936         int i, n;
1937
1938         while (1) {
1939                 spin_lock(&root->inode_lock);
1940                 n = radix_tree_gang_lookup(&root->delayed_nodes_tree,
1941                                            (void **)delayed_nodes, inode_id,
1942                                            ARRAY_SIZE(delayed_nodes));
1943                 if (!n) {
1944                         spin_unlock(&root->inode_lock);
1945                         break;
1946                 }
1947
1948                 inode_id = delayed_nodes[n - 1]->inode_id + 1;
1949
1950                 for (i = 0; i < n; i++)
1951                         atomic_inc(&delayed_nodes[i]->refs);
1952                 spin_unlock(&root->inode_lock);
1953
1954                 for (i = 0; i < n; i++) {
1955                         __btrfs_kill_delayed_node(delayed_nodes[i]);
1956                         btrfs_release_delayed_node(delayed_nodes[i]);
1957                 }
1958         }
1959 }
1960
1961 void btrfs_destroy_delayed_inodes(struct btrfs_root *root)
1962 {
1963         struct btrfs_delayed_root *delayed_root;
1964         struct btrfs_delayed_node *curr_node, *prev_node;
1965
1966         delayed_root = btrfs_get_delayed_root(root);
1967
1968         curr_node = btrfs_first_delayed_node(delayed_root);
1969         while (curr_node) {
1970                 __btrfs_kill_delayed_node(curr_node);
1971
1972                 prev_node = curr_node;
1973                 curr_node = btrfs_next_delayed_node(curr_node);
1974                 btrfs_release_delayed_node(prev_node);
1975         }
1976 }
1977