]> git.karo-electronics.de Git - karo-tx-linux.git/blob - fs/btrfs/delayed-inode.c
sparc64: Add 64K page size support
[karo-tx-linux.git] / fs / btrfs / delayed-inode.c
1 /*
2  * Copyright (C) 2011 Fujitsu.  All rights reserved.
3  * Written by Miao Xie <miaox@cn.fujitsu.com>
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public
7  * License v2 as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
12  * General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public
15  * License along with this program; if not, write to the
16  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
17  * Boston, MA 021110-1307, USA.
18  */
19
20 #include <linux/slab.h>
21 #include "delayed-inode.h"
22 #include "disk-io.h"
23 #include "transaction.h"
24 #include "ctree.h"
25
26 #define BTRFS_DELAYED_WRITEBACK         512
27 #define BTRFS_DELAYED_BACKGROUND        128
28 #define BTRFS_DELAYED_BATCH             16
29
30 static struct kmem_cache *delayed_node_cache;
31
32 int __init btrfs_delayed_inode_init(void)
33 {
34         delayed_node_cache = kmem_cache_create("btrfs_delayed_node",
35                                         sizeof(struct btrfs_delayed_node),
36                                         0,
37                                         SLAB_MEM_SPREAD,
38                                         NULL);
39         if (!delayed_node_cache)
40                 return -ENOMEM;
41         return 0;
42 }
43
44 void btrfs_delayed_inode_exit(void)
45 {
46         kmem_cache_destroy(delayed_node_cache);
47 }
48
49 static inline void btrfs_init_delayed_node(
50                                 struct btrfs_delayed_node *delayed_node,
51                                 struct btrfs_root *root, u64 inode_id)
52 {
53         delayed_node->root = root;
54         delayed_node->inode_id = inode_id;
55         atomic_set(&delayed_node->refs, 0);
56         delayed_node->ins_root = RB_ROOT;
57         delayed_node->del_root = RB_ROOT;
58         mutex_init(&delayed_node->mutex);
59         INIT_LIST_HEAD(&delayed_node->n_list);
60         INIT_LIST_HEAD(&delayed_node->p_list);
61 }
62
63 static inline int btrfs_is_continuous_delayed_item(
64                                         struct btrfs_delayed_item *item1,
65                                         struct btrfs_delayed_item *item2)
66 {
67         if (item1->key.type == BTRFS_DIR_INDEX_KEY &&
68             item1->key.objectid == item2->key.objectid &&
69             item1->key.type == item2->key.type &&
70             item1->key.offset + 1 == item2->key.offset)
71                 return 1;
72         return 0;
73 }
74
75 static struct btrfs_delayed_node *btrfs_get_delayed_node(struct inode *inode)
76 {
77         struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
78         struct btrfs_root *root = btrfs_inode->root;
79         u64 ino = btrfs_ino(inode);
80         struct btrfs_delayed_node *node;
81
82         node = ACCESS_ONCE(btrfs_inode->delayed_node);
83         if (node) {
84                 atomic_inc(&node->refs);
85                 return node;
86         }
87
88         spin_lock(&root->inode_lock);
89         node = radix_tree_lookup(&root->delayed_nodes_tree, ino);
90         if (node) {
91                 if (btrfs_inode->delayed_node) {
92                         atomic_inc(&node->refs);        /* can be accessed */
93                         BUG_ON(btrfs_inode->delayed_node != node);
94                         spin_unlock(&root->inode_lock);
95                         return node;
96                 }
97                 btrfs_inode->delayed_node = node;
98                 /* can be accessed and cached in the inode */
99                 atomic_add(2, &node->refs);
100                 spin_unlock(&root->inode_lock);
101                 return node;
102         }
103         spin_unlock(&root->inode_lock);
104
105         return NULL;
106 }
107
108 /* Will return either the node or PTR_ERR(-ENOMEM) */
109 static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node(
110                                                         struct inode *inode)
111 {
112         struct btrfs_delayed_node *node;
113         struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
114         struct btrfs_root *root = btrfs_inode->root;
115         u64 ino = btrfs_ino(inode);
116         int ret;
117
118 again:
119         node = btrfs_get_delayed_node(inode);
120         if (node)
121                 return node;
122
123         node = kmem_cache_zalloc(delayed_node_cache, GFP_NOFS);
124         if (!node)
125                 return ERR_PTR(-ENOMEM);
126         btrfs_init_delayed_node(node, root, ino);
127
128         /* cached in the btrfs inode and can be accessed */
129         atomic_add(2, &node->refs);
130
131         ret = radix_tree_preload(GFP_NOFS);
132         if (ret) {
133                 kmem_cache_free(delayed_node_cache, node);
134                 return ERR_PTR(ret);
135         }
136
137         spin_lock(&root->inode_lock);
138         ret = radix_tree_insert(&root->delayed_nodes_tree, ino, node);
139         if (ret == -EEXIST) {
140                 spin_unlock(&root->inode_lock);
141                 kmem_cache_free(delayed_node_cache, node);
142                 radix_tree_preload_end();
143                 goto again;
144         }
145         btrfs_inode->delayed_node = node;
146         spin_unlock(&root->inode_lock);
147         radix_tree_preload_end();
148
149         return node;
150 }
151
152 /*
153  * Call it when holding delayed_node->mutex
154  *
155  * If mod = 1, add this node into the prepared list.
156  */
157 static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root,
158                                      struct btrfs_delayed_node *node,
159                                      int mod)
160 {
161         spin_lock(&root->lock);
162         if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
163                 if (!list_empty(&node->p_list))
164                         list_move_tail(&node->p_list, &root->prepare_list);
165                 else if (mod)
166                         list_add_tail(&node->p_list, &root->prepare_list);
167         } else {
168                 list_add_tail(&node->n_list, &root->node_list);
169                 list_add_tail(&node->p_list, &root->prepare_list);
170                 atomic_inc(&node->refs);        /* inserted into list */
171                 root->nodes++;
172                 set_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
173         }
174         spin_unlock(&root->lock);
175 }
176
177 /* Call it when holding delayed_node->mutex */
178 static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root,
179                                        struct btrfs_delayed_node *node)
180 {
181         spin_lock(&root->lock);
182         if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
183                 root->nodes--;
184                 atomic_dec(&node->refs);        /* not in the list */
185                 list_del_init(&node->n_list);
186                 if (!list_empty(&node->p_list))
187                         list_del_init(&node->p_list);
188                 clear_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
189         }
190         spin_unlock(&root->lock);
191 }
192
193 static struct btrfs_delayed_node *btrfs_first_delayed_node(
194                         struct btrfs_delayed_root *delayed_root)
195 {
196         struct list_head *p;
197         struct btrfs_delayed_node *node = NULL;
198
199         spin_lock(&delayed_root->lock);
200         if (list_empty(&delayed_root->node_list))
201                 goto out;
202
203         p = delayed_root->node_list.next;
204         node = list_entry(p, struct btrfs_delayed_node, n_list);
205         atomic_inc(&node->refs);
206 out:
207         spin_unlock(&delayed_root->lock);
208
209         return node;
210 }
211
212 static struct btrfs_delayed_node *btrfs_next_delayed_node(
213                                                 struct btrfs_delayed_node *node)
214 {
215         struct btrfs_delayed_root *delayed_root;
216         struct list_head *p;
217         struct btrfs_delayed_node *next = NULL;
218
219         delayed_root = node->root->fs_info->delayed_root;
220         spin_lock(&delayed_root->lock);
221         if (!test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
222                 /* not in the list */
223                 if (list_empty(&delayed_root->node_list))
224                         goto out;
225                 p = delayed_root->node_list.next;
226         } else if (list_is_last(&node->n_list, &delayed_root->node_list))
227                 goto out;
228         else
229                 p = node->n_list.next;
230
231         next = list_entry(p, struct btrfs_delayed_node, n_list);
232         atomic_inc(&next->refs);
233 out:
234         spin_unlock(&delayed_root->lock);
235
236         return next;
237 }
238
239 static void __btrfs_release_delayed_node(
240                                 struct btrfs_delayed_node *delayed_node,
241                                 int mod)
242 {
243         struct btrfs_delayed_root *delayed_root;
244
245         if (!delayed_node)
246                 return;
247
248         delayed_root = delayed_node->root->fs_info->delayed_root;
249
250         mutex_lock(&delayed_node->mutex);
251         if (delayed_node->count)
252                 btrfs_queue_delayed_node(delayed_root, delayed_node, mod);
253         else
254                 btrfs_dequeue_delayed_node(delayed_root, delayed_node);
255         mutex_unlock(&delayed_node->mutex);
256
257         if (atomic_dec_and_test(&delayed_node->refs)) {
258                 bool free = false;
259                 struct btrfs_root *root = delayed_node->root;
260                 spin_lock(&root->inode_lock);
261                 if (atomic_read(&delayed_node->refs) == 0) {
262                         radix_tree_delete(&root->delayed_nodes_tree,
263                                           delayed_node->inode_id);
264                         free = true;
265                 }
266                 spin_unlock(&root->inode_lock);
267                 if (free)
268                         kmem_cache_free(delayed_node_cache, delayed_node);
269         }
270 }
271
272 static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node)
273 {
274         __btrfs_release_delayed_node(node, 0);
275 }
276
277 static struct btrfs_delayed_node *btrfs_first_prepared_delayed_node(
278                                         struct btrfs_delayed_root *delayed_root)
279 {
280         struct list_head *p;
281         struct btrfs_delayed_node *node = NULL;
282
283         spin_lock(&delayed_root->lock);
284         if (list_empty(&delayed_root->prepare_list))
285                 goto out;
286
287         p = delayed_root->prepare_list.next;
288         list_del_init(p);
289         node = list_entry(p, struct btrfs_delayed_node, p_list);
290         atomic_inc(&node->refs);
291 out:
292         spin_unlock(&delayed_root->lock);
293
294         return node;
295 }
296
297 static inline void btrfs_release_prepared_delayed_node(
298                                         struct btrfs_delayed_node *node)
299 {
300         __btrfs_release_delayed_node(node, 1);
301 }
302
303 static struct btrfs_delayed_item *btrfs_alloc_delayed_item(u32 data_len)
304 {
305         struct btrfs_delayed_item *item;
306         item = kmalloc(sizeof(*item) + data_len, GFP_NOFS);
307         if (item) {
308                 item->data_len = data_len;
309                 item->ins_or_del = 0;
310                 item->bytes_reserved = 0;
311                 item->delayed_node = NULL;
312                 atomic_set(&item->refs, 1);
313         }
314         return item;
315 }
316
317 /*
318  * __btrfs_lookup_delayed_item - look up the delayed item by key
319  * @delayed_node: pointer to the delayed node
320  * @key:          the key to look up
321  * @prev:         used to store the prev item if the right item isn't found
322  * @next:         used to store the next item if the right item isn't found
323  *
324  * Note: if we don't find the right item, we will return the prev item and
325  * the next item.
326  */
327 static struct btrfs_delayed_item *__btrfs_lookup_delayed_item(
328                                 struct rb_root *root,
329                                 struct btrfs_key *key,
330                                 struct btrfs_delayed_item **prev,
331                                 struct btrfs_delayed_item **next)
332 {
333         struct rb_node *node, *prev_node = NULL;
334         struct btrfs_delayed_item *delayed_item = NULL;
335         int ret = 0;
336
337         node = root->rb_node;
338
339         while (node) {
340                 delayed_item = rb_entry(node, struct btrfs_delayed_item,
341                                         rb_node);
342                 prev_node = node;
343                 ret = btrfs_comp_cpu_keys(&delayed_item->key, key);
344                 if (ret < 0)
345                         node = node->rb_right;
346                 else if (ret > 0)
347                         node = node->rb_left;
348                 else
349                         return delayed_item;
350         }
351
352         if (prev) {
353                 if (!prev_node)
354                         *prev = NULL;
355                 else if (ret < 0)
356                         *prev = delayed_item;
357                 else if ((node = rb_prev(prev_node)) != NULL) {
358                         *prev = rb_entry(node, struct btrfs_delayed_item,
359                                          rb_node);
360                 } else
361                         *prev = NULL;
362         }
363
364         if (next) {
365                 if (!prev_node)
366                         *next = NULL;
367                 else if (ret > 0)
368                         *next = delayed_item;
369                 else if ((node = rb_next(prev_node)) != NULL) {
370                         *next = rb_entry(node, struct btrfs_delayed_item,
371                                          rb_node);
372                 } else
373                         *next = NULL;
374         }
375         return NULL;
376 }
377
378 static struct btrfs_delayed_item *__btrfs_lookup_delayed_insertion_item(
379                                         struct btrfs_delayed_node *delayed_node,
380                                         struct btrfs_key *key)
381 {
382         return __btrfs_lookup_delayed_item(&delayed_node->ins_root, key,
383                                            NULL, NULL);
384 }
385
386 static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node,
387                                     struct btrfs_delayed_item *ins,
388                                     int action)
389 {
390         struct rb_node **p, *node;
391         struct rb_node *parent_node = NULL;
392         struct rb_root *root;
393         struct btrfs_delayed_item *item;
394         int cmp;
395
396         if (action == BTRFS_DELAYED_INSERTION_ITEM)
397                 root = &delayed_node->ins_root;
398         else if (action == BTRFS_DELAYED_DELETION_ITEM)
399                 root = &delayed_node->del_root;
400         else
401                 BUG();
402         p = &root->rb_node;
403         node = &ins->rb_node;
404
405         while (*p) {
406                 parent_node = *p;
407                 item = rb_entry(parent_node, struct btrfs_delayed_item,
408                                  rb_node);
409
410                 cmp = btrfs_comp_cpu_keys(&item->key, &ins->key);
411                 if (cmp < 0)
412                         p = &(*p)->rb_right;
413                 else if (cmp > 0)
414                         p = &(*p)->rb_left;
415                 else
416                         return -EEXIST;
417         }
418
419         rb_link_node(node, parent_node, p);
420         rb_insert_color(node, root);
421         ins->delayed_node = delayed_node;
422         ins->ins_or_del = action;
423
424         if (ins->key.type == BTRFS_DIR_INDEX_KEY &&
425             action == BTRFS_DELAYED_INSERTION_ITEM &&
426             ins->key.offset >= delayed_node->index_cnt)
427                         delayed_node->index_cnt = ins->key.offset + 1;
428
429         delayed_node->count++;
430         atomic_inc(&delayed_node->root->fs_info->delayed_root->items);
431         return 0;
432 }
433
434 static int __btrfs_add_delayed_insertion_item(struct btrfs_delayed_node *node,
435                                               struct btrfs_delayed_item *item)
436 {
437         return __btrfs_add_delayed_item(node, item,
438                                         BTRFS_DELAYED_INSERTION_ITEM);
439 }
440
441 static int __btrfs_add_delayed_deletion_item(struct btrfs_delayed_node *node,
442                                              struct btrfs_delayed_item *item)
443 {
444         return __btrfs_add_delayed_item(node, item,
445                                         BTRFS_DELAYED_DELETION_ITEM);
446 }
447
448 static void finish_one_item(struct btrfs_delayed_root *delayed_root)
449 {
450         int seq = atomic_inc_return(&delayed_root->items_seq);
451
452         /*
453          * atomic_dec_return implies a barrier for waitqueue_active
454          */
455         if ((atomic_dec_return(&delayed_root->items) <
456             BTRFS_DELAYED_BACKGROUND || seq % BTRFS_DELAYED_BATCH == 0) &&
457             waitqueue_active(&delayed_root->wait))
458                 wake_up(&delayed_root->wait);
459 }
460
461 static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item)
462 {
463         struct rb_root *root;
464         struct btrfs_delayed_root *delayed_root;
465
466         delayed_root = delayed_item->delayed_node->root->fs_info->delayed_root;
467
468         BUG_ON(!delayed_root);
469         BUG_ON(delayed_item->ins_or_del != BTRFS_DELAYED_DELETION_ITEM &&
470                delayed_item->ins_or_del != BTRFS_DELAYED_INSERTION_ITEM);
471
472         if (delayed_item->ins_or_del == BTRFS_DELAYED_INSERTION_ITEM)
473                 root = &delayed_item->delayed_node->ins_root;
474         else
475                 root = &delayed_item->delayed_node->del_root;
476
477         rb_erase(&delayed_item->rb_node, root);
478         delayed_item->delayed_node->count--;
479
480         finish_one_item(delayed_root);
481 }
482
483 static void btrfs_release_delayed_item(struct btrfs_delayed_item *item)
484 {
485         if (item) {
486                 __btrfs_remove_delayed_item(item);
487                 if (atomic_dec_and_test(&item->refs))
488                         kfree(item);
489         }
490 }
491
492 static struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item(
493                                         struct btrfs_delayed_node *delayed_node)
494 {
495         struct rb_node *p;
496         struct btrfs_delayed_item *item = NULL;
497
498         p = rb_first(&delayed_node->ins_root);
499         if (p)
500                 item = rb_entry(p, struct btrfs_delayed_item, rb_node);
501
502         return item;
503 }
504
505 static struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item(
506                                         struct btrfs_delayed_node *delayed_node)
507 {
508         struct rb_node *p;
509         struct btrfs_delayed_item *item = NULL;
510
511         p = rb_first(&delayed_node->del_root);
512         if (p)
513                 item = rb_entry(p, struct btrfs_delayed_item, rb_node);
514
515         return item;
516 }
517
518 static struct btrfs_delayed_item *__btrfs_next_delayed_item(
519                                                 struct btrfs_delayed_item *item)
520 {
521         struct rb_node *p;
522         struct btrfs_delayed_item *next = NULL;
523
524         p = rb_next(&item->rb_node);
525         if (p)
526                 next = rb_entry(p, struct btrfs_delayed_item, rb_node);
527
528         return next;
529 }
530
531 static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans,
532                                                struct btrfs_fs_info *fs_info,
533                                                struct btrfs_delayed_item *item)
534 {
535         struct btrfs_block_rsv *src_rsv;
536         struct btrfs_block_rsv *dst_rsv;
537         u64 num_bytes;
538         int ret;
539
540         if (!trans->bytes_reserved)
541                 return 0;
542
543         src_rsv = trans->block_rsv;
544         dst_rsv = &fs_info->delayed_block_rsv;
545
546         num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
547         ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, 1);
548         if (!ret) {
549                 trace_btrfs_space_reservation(fs_info, "delayed_item",
550                                               item->key.objectid,
551                                               num_bytes, 1);
552                 item->bytes_reserved = num_bytes;
553         }
554
555         return ret;
556 }
557
558 static void btrfs_delayed_item_release_metadata(struct btrfs_fs_info *fs_info,
559                                                 struct btrfs_delayed_item *item)
560 {
561         struct btrfs_block_rsv *rsv;
562
563         if (!item->bytes_reserved)
564                 return;
565
566         rsv = &fs_info->delayed_block_rsv;
567         trace_btrfs_space_reservation(fs_info, "delayed_item",
568                                       item->key.objectid, item->bytes_reserved,
569                                       0);
570         btrfs_block_rsv_release(fs_info, rsv,
571                                 item->bytes_reserved);
572 }
573
574 static int btrfs_delayed_inode_reserve_metadata(
575                                         struct btrfs_trans_handle *trans,
576                                         struct btrfs_root *root,
577                                         struct inode *inode,
578                                         struct btrfs_delayed_node *node)
579 {
580         struct btrfs_fs_info *fs_info = root->fs_info;
581         struct btrfs_block_rsv *src_rsv;
582         struct btrfs_block_rsv *dst_rsv;
583         u64 num_bytes;
584         int ret;
585         bool release = false;
586
587         src_rsv = trans->block_rsv;
588         dst_rsv = &fs_info->delayed_block_rsv;
589
590         num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
591
592         /*
593          * If our block_rsv is the delalloc block reserve then check and see if
594          * we have our extra reservation for updating the inode.  If not fall
595          * through and try to reserve space quickly.
596          *
597          * We used to try and steal from the delalloc block rsv or the global
598          * reserve, but we'd steal a full reservation, which isn't kind.  We are
599          * here through delalloc which means we've likely just cowed down close
600          * to the leaf that contains the inode, so we would steal less just
601          * doing the fallback inode update, so if we do end up having to steal
602          * from the global block rsv we hopefully only steal one or two blocks
603          * worth which is less likely to hurt us.
604          */
605         if (src_rsv && src_rsv->type == BTRFS_BLOCK_RSV_DELALLOC) {
606                 spin_lock(&BTRFS_I(inode)->lock);
607                 if (test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
608                                        &BTRFS_I(inode)->runtime_flags))
609                         release = true;
610                 else
611                         src_rsv = NULL;
612                 spin_unlock(&BTRFS_I(inode)->lock);
613         }
614
615         /*
616          * btrfs_dirty_inode will update the inode under btrfs_join_transaction
617          * which doesn't reserve space for speed.  This is a problem since we
618          * still need to reserve space for this update, so try to reserve the
619          * space.
620          *
621          * Now if src_rsv == delalloc_block_rsv we'll let it just steal since
622          * we're accounted for.
623          */
624         if (!src_rsv || (!trans->bytes_reserved &&
625                          src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) {
626                 ret = btrfs_block_rsv_add(root, dst_rsv, num_bytes,
627                                           BTRFS_RESERVE_NO_FLUSH);
628                 /*
629                  * Since we're under a transaction reserve_metadata_bytes could
630                  * try to commit the transaction which will make it return
631                  * EAGAIN to make us stop the transaction we have, so return
632                  * ENOSPC instead so that btrfs_dirty_inode knows what to do.
633                  */
634                 if (ret == -EAGAIN)
635                         ret = -ENOSPC;
636                 if (!ret) {
637                         node->bytes_reserved = num_bytes;
638                         trace_btrfs_space_reservation(fs_info,
639                                                       "delayed_inode",
640                                                       btrfs_ino(inode),
641                                                       num_bytes, 1);
642                 }
643                 return ret;
644         }
645
646         ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, 1);
647
648         /*
649          * Migrate only takes a reservation, it doesn't touch the size of the
650          * block_rsv.  This is to simplify people who don't normally have things
651          * migrated from their block rsv.  If they go to release their
652          * reservation, that will decrease the size as well, so if migrate
653          * reduced size we'd end up with a negative size.  But for the
654          * delalloc_meta_reserved stuff we will only know to drop 1 reservation,
655          * but we could in fact do this reserve/migrate dance several times
656          * between the time we did the original reservation and we'd clean it
657          * up.  So to take care of this, release the space for the meta
658          * reservation here.  I think it may be time for a documentation page on
659          * how block rsvs. work.
660          */
661         if (!ret) {
662                 trace_btrfs_space_reservation(fs_info, "delayed_inode",
663                                               btrfs_ino(inode), num_bytes, 1);
664                 node->bytes_reserved = num_bytes;
665         }
666
667         if (release) {
668                 trace_btrfs_space_reservation(fs_info, "delalloc",
669                                               btrfs_ino(inode), num_bytes, 0);
670                 btrfs_block_rsv_release(fs_info, src_rsv, num_bytes);
671         }
672
673         return ret;
674 }
675
676 static void btrfs_delayed_inode_release_metadata(struct btrfs_fs_info *fs_info,
677                                                 struct btrfs_delayed_node *node)
678 {
679         struct btrfs_block_rsv *rsv;
680
681         if (!node->bytes_reserved)
682                 return;
683
684         rsv = &fs_info->delayed_block_rsv;
685         trace_btrfs_space_reservation(fs_info, "delayed_inode",
686                                       node->inode_id, node->bytes_reserved, 0);
687         btrfs_block_rsv_release(fs_info, rsv,
688                                 node->bytes_reserved);
689         node->bytes_reserved = 0;
690 }
691
692 /*
693  * This helper will insert some continuous items into the same leaf according
694  * to the free space of the leaf.
695  */
696 static int btrfs_batch_insert_items(struct btrfs_root *root,
697                                     struct btrfs_path *path,
698                                     struct btrfs_delayed_item *item)
699 {
700         struct btrfs_fs_info *fs_info = root->fs_info;
701         struct btrfs_delayed_item *curr, *next;
702         int free_space;
703         int total_data_size = 0, total_size = 0;
704         struct extent_buffer *leaf;
705         char *data_ptr;
706         struct btrfs_key *keys;
707         u32 *data_size;
708         struct list_head head;
709         int slot;
710         int nitems;
711         int i;
712         int ret = 0;
713
714         BUG_ON(!path->nodes[0]);
715
716         leaf = path->nodes[0];
717         free_space = btrfs_leaf_free_space(fs_info, leaf);
718         INIT_LIST_HEAD(&head);
719
720         next = item;
721         nitems = 0;
722
723         /*
724          * count the number of the continuous items that we can insert in batch
725          */
726         while (total_size + next->data_len + sizeof(struct btrfs_item) <=
727                free_space) {
728                 total_data_size += next->data_len;
729                 total_size += next->data_len + sizeof(struct btrfs_item);
730                 list_add_tail(&next->tree_list, &head);
731                 nitems++;
732
733                 curr = next;
734                 next = __btrfs_next_delayed_item(curr);
735                 if (!next)
736                         break;
737
738                 if (!btrfs_is_continuous_delayed_item(curr, next))
739                         break;
740         }
741
742         if (!nitems) {
743                 ret = 0;
744                 goto out;
745         }
746
747         /*
748          * we need allocate some memory space, but it might cause the task
749          * to sleep, so we set all locked nodes in the path to blocking locks
750          * first.
751          */
752         btrfs_set_path_blocking(path);
753
754         keys = kmalloc_array(nitems, sizeof(struct btrfs_key), GFP_NOFS);
755         if (!keys) {
756                 ret = -ENOMEM;
757                 goto out;
758         }
759
760         data_size = kmalloc_array(nitems, sizeof(u32), GFP_NOFS);
761         if (!data_size) {
762                 ret = -ENOMEM;
763                 goto error;
764         }
765
766         /* get keys of all the delayed items */
767         i = 0;
768         list_for_each_entry(next, &head, tree_list) {
769                 keys[i] = next->key;
770                 data_size[i] = next->data_len;
771                 i++;
772         }
773
774         /* reset all the locked nodes in the patch to spinning locks. */
775         btrfs_clear_path_blocking(path, NULL, 0);
776
777         /* insert the keys of the items */
778         setup_items_for_insert(root, path, keys, data_size,
779                                total_data_size, total_size, nitems);
780
781         /* insert the dir index items */
782         slot = path->slots[0];
783         list_for_each_entry_safe(curr, next, &head, tree_list) {
784                 data_ptr = btrfs_item_ptr(leaf, slot, char);
785                 write_extent_buffer(leaf, &curr->data,
786                                     (unsigned long)data_ptr,
787                                     curr->data_len);
788                 slot++;
789
790                 btrfs_delayed_item_release_metadata(fs_info, curr);
791
792                 list_del(&curr->tree_list);
793                 btrfs_release_delayed_item(curr);
794         }
795
796 error:
797         kfree(data_size);
798         kfree(keys);
799 out:
800         return ret;
801 }
802
803 /*
804  * This helper can just do simple insertion that needn't extend item for new
805  * data, such as directory name index insertion, inode insertion.
806  */
807 static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans,
808                                      struct btrfs_root *root,
809                                      struct btrfs_path *path,
810                                      struct btrfs_delayed_item *delayed_item)
811 {
812         struct btrfs_fs_info *fs_info = root->fs_info;
813         struct extent_buffer *leaf;
814         char *ptr;
815         int ret;
816
817         ret = btrfs_insert_empty_item(trans, root, path, &delayed_item->key,
818                                       delayed_item->data_len);
819         if (ret < 0 && ret != -EEXIST)
820                 return ret;
821
822         leaf = path->nodes[0];
823
824         ptr = btrfs_item_ptr(leaf, path->slots[0], char);
825
826         write_extent_buffer(leaf, delayed_item->data, (unsigned long)ptr,
827                             delayed_item->data_len);
828         btrfs_mark_buffer_dirty(leaf);
829
830         btrfs_delayed_item_release_metadata(fs_info, delayed_item);
831         return 0;
832 }
833
834 /*
835  * we insert an item first, then if there are some continuous items, we try
836  * to insert those items into the same leaf.
837  */
838 static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans,
839                                       struct btrfs_path *path,
840                                       struct btrfs_root *root,
841                                       struct btrfs_delayed_node *node)
842 {
843         struct btrfs_delayed_item *curr, *prev;
844         int ret = 0;
845
846 do_again:
847         mutex_lock(&node->mutex);
848         curr = __btrfs_first_delayed_insertion_item(node);
849         if (!curr)
850                 goto insert_end;
851
852         ret = btrfs_insert_delayed_item(trans, root, path, curr);
853         if (ret < 0) {
854                 btrfs_release_path(path);
855                 goto insert_end;
856         }
857
858         prev = curr;
859         curr = __btrfs_next_delayed_item(prev);
860         if (curr && btrfs_is_continuous_delayed_item(prev, curr)) {
861                 /* insert the continuous items into the same leaf */
862                 path->slots[0]++;
863                 btrfs_batch_insert_items(root, path, curr);
864         }
865         btrfs_release_delayed_item(prev);
866         btrfs_mark_buffer_dirty(path->nodes[0]);
867
868         btrfs_release_path(path);
869         mutex_unlock(&node->mutex);
870         goto do_again;
871
872 insert_end:
873         mutex_unlock(&node->mutex);
874         return ret;
875 }
876
877 static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans,
878                                     struct btrfs_root *root,
879                                     struct btrfs_path *path,
880                                     struct btrfs_delayed_item *item)
881 {
882         struct btrfs_fs_info *fs_info = root->fs_info;
883         struct btrfs_delayed_item *curr, *next;
884         struct extent_buffer *leaf;
885         struct btrfs_key key;
886         struct list_head head;
887         int nitems, i, last_item;
888         int ret = 0;
889
890         BUG_ON(!path->nodes[0]);
891
892         leaf = path->nodes[0];
893
894         i = path->slots[0];
895         last_item = btrfs_header_nritems(leaf) - 1;
896         if (i > last_item)
897                 return -ENOENT; /* FIXME: Is errno suitable? */
898
899         next = item;
900         INIT_LIST_HEAD(&head);
901         btrfs_item_key_to_cpu(leaf, &key, i);
902         nitems = 0;
903         /*
904          * count the number of the dir index items that we can delete in batch
905          */
906         while (btrfs_comp_cpu_keys(&next->key, &key) == 0) {
907                 list_add_tail(&next->tree_list, &head);
908                 nitems++;
909
910                 curr = next;
911                 next = __btrfs_next_delayed_item(curr);
912                 if (!next)
913                         break;
914
915                 if (!btrfs_is_continuous_delayed_item(curr, next))
916                         break;
917
918                 i++;
919                 if (i > last_item)
920                         break;
921                 btrfs_item_key_to_cpu(leaf, &key, i);
922         }
923
924         if (!nitems)
925                 return 0;
926
927         ret = btrfs_del_items(trans, root, path, path->slots[0], nitems);
928         if (ret)
929                 goto out;
930
931         list_for_each_entry_safe(curr, next, &head, tree_list) {
932                 btrfs_delayed_item_release_metadata(fs_info, curr);
933                 list_del(&curr->tree_list);
934                 btrfs_release_delayed_item(curr);
935         }
936
937 out:
938         return ret;
939 }
940
941 static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans,
942                                       struct btrfs_path *path,
943                                       struct btrfs_root *root,
944                                       struct btrfs_delayed_node *node)
945 {
946         struct btrfs_delayed_item *curr, *prev;
947         int ret = 0;
948
949 do_again:
950         mutex_lock(&node->mutex);
951         curr = __btrfs_first_delayed_deletion_item(node);
952         if (!curr)
953                 goto delete_fail;
954
955         ret = btrfs_search_slot(trans, root, &curr->key, path, -1, 1);
956         if (ret < 0)
957                 goto delete_fail;
958         else if (ret > 0) {
959                 /*
960                  * can't find the item which the node points to, so this node
961                  * is invalid, just drop it.
962                  */
963                 prev = curr;
964                 curr = __btrfs_next_delayed_item(prev);
965                 btrfs_release_delayed_item(prev);
966                 ret = 0;
967                 btrfs_release_path(path);
968                 if (curr) {
969                         mutex_unlock(&node->mutex);
970                         goto do_again;
971                 } else
972                         goto delete_fail;
973         }
974
975         btrfs_batch_delete_items(trans, root, path, curr);
976         btrfs_release_path(path);
977         mutex_unlock(&node->mutex);
978         goto do_again;
979
980 delete_fail:
981         btrfs_release_path(path);
982         mutex_unlock(&node->mutex);
983         return ret;
984 }
985
986 static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node)
987 {
988         struct btrfs_delayed_root *delayed_root;
989
990         if (delayed_node &&
991             test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
992                 BUG_ON(!delayed_node->root);
993                 clear_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
994                 delayed_node->count--;
995
996                 delayed_root = delayed_node->root->fs_info->delayed_root;
997                 finish_one_item(delayed_root);
998         }
999 }
1000
1001 static void btrfs_release_delayed_iref(struct btrfs_delayed_node *delayed_node)
1002 {
1003         struct btrfs_delayed_root *delayed_root;
1004
1005         ASSERT(delayed_node->root);
1006         clear_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
1007         delayed_node->count--;
1008
1009         delayed_root = delayed_node->root->fs_info->delayed_root;
1010         finish_one_item(delayed_root);
1011 }
1012
1013 static int __btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1014                                         struct btrfs_root *root,
1015                                         struct btrfs_path *path,
1016                                         struct btrfs_delayed_node *node)
1017 {
1018         struct btrfs_fs_info *fs_info = root->fs_info;
1019         struct btrfs_key key;
1020         struct btrfs_inode_item *inode_item;
1021         struct extent_buffer *leaf;
1022         int mod;
1023         int ret;
1024
1025         key.objectid = node->inode_id;
1026         key.type = BTRFS_INODE_ITEM_KEY;
1027         key.offset = 0;
1028
1029         if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1030                 mod = -1;
1031         else
1032                 mod = 1;
1033
1034         ret = btrfs_lookup_inode(trans, root, path, &key, mod);
1035         if (ret > 0) {
1036                 btrfs_release_path(path);
1037                 return -ENOENT;
1038         } else if (ret < 0) {
1039                 return ret;
1040         }
1041
1042         leaf = path->nodes[0];
1043         inode_item = btrfs_item_ptr(leaf, path->slots[0],
1044                                     struct btrfs_inode_item);
1045         write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item,
1046                             sizeof(struct btrfs_inode_item));
1047         btrfs_mark_buffer_dirty(leaf);
1048
1049         if (!test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1050                 goto no_iref;
1051
1052         path->slots[0]++;
1053         if (path->slots[0] >= btrfs_header_nritems(leaf))
1054                 goto search;
1055 again:
1056         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1057         if (key.objectid != node->inode_id)
1058                 goto out;
1059
1060         if (key.type != BTRFS_INODE_REF_KEY &&
1061             key.type != BTRFS_INODE_EXTREF_KEY)
1062                 goto out;
1063
1064         /*
1065          * Delayed iref deletion is for the inode who has only one link,
1066          * so there is only one iref. The case that several irefs are
1067          * in the same item doesn't exist.
1068          */
1069         btrfs_del_item(trans, root, path);
1070 out:
1071         btrfs_release_delayed_iref(node);
1072 no_iref:
1073         btrfs_release_path(path);
1074 err_out:
1075         btrfs_delayed_inode_release_metadata(fs_info, node);
1076         btrfs_release_delayed_inode(node);
1077
1078         return ret;
1079
1080 search:
1081         btrfs_release_path(path);
1082
1083         key.type = BTRFS_INODE_EXTREF_KEY;
1084         key.offset = -1;
1085         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1086         if (ret < 0)
1087                 goto err_out;
1088         ASSERT(ret);
1089
1090         ret = 0;
1091         leaf = path->nodes[0];
1092         path->slots[0]--;
1093         goto again;
1094 }
1095
1096 static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1097                                              struct btrfs_root *root,
1098                                              struct btrfs_path *path,
1099                                              struct btrfs_delayed_node *node)
1100 {
1101         int ret;
1102
1103         mutex_lock(&node->mutex);
1104         if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &node->flags)) {
1105                 mutex_unlock(&node->mutex);
1106                 return 0;
1107         }
1108
1109         ret = __btrfs_update_delayed_inode(trans, root, path, node);
1110         mutex_unlock(&node->mutex);
1111         return ret;
1112 }
1113
1114 static inline int
1115 __btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1116                                    struct btrfs_path *path,
1117                                    struct btrfs_delayed_node *node)
1118 {
1119         int ret;
1120
1121         ret = btrfs_insert_delayed_items(trans, path, node->root, node);
1122         if (ret)
1123                 return ret;
1124
1125         ret = btrfs_delete_delayed_items(trans, path, node->root, node);
1126         if (ret)
1127                 return ret;
1128
1129         ret = btrfs_update_delayed_inode(trans, node->root, path, node);
1130         return ret;
1131 }
1132
1133 /*
1134  * Called when committing the transaction.
1135  * Returns 0 on success.
1136  * Returns < 0 on error and returns with an aborted transaction with any
1137  * outstanding delayed items cleaned up.
1138  */
1139 static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans,
1140                                      struct btrfs_fs_info *fs_info, int nr)
1141 {
1142         struct btrfs_delayed_root *delayed_root;
1143         struct btrfs_delayed_node *curr_node, *prev_node;
1144         struct btrfs_path *path;
1145         struct btrfs_block_rsv *block_rsv;
1146         int ret = 0;
1147         bool count = (nr > 0);
1148
1149         if (trans->aborted)
1150                 return -EIO;
1151
1152         path = btrfs_alloc_path();
1153         if (!path)
1154                 return -ENOMEM;
1155         path->leave_spinning = 1;
1156
1157         block_rsv = trans->block_rsv;
1158         trans->block_rsv = &fs_info->delayed_block_rsv;
1159
1160         delayed_root = fs_info->delayed_root;
1161
1162         curr_node = btrfs_first_delayed_node(delayed_root);
1163         while (curr_node && (!count || (count && nr--))) {
1164                 ret = __btrfs_commit_inode_delayed_items(trans, path,
1165                                                          curr_node);
1166                 if (ret) {
1167                         btrfs_release_delayed_node(curr_node);
1168                         curr_node = NULL;
1169                         btrfs_abort_transaction(trans, ret);
1170                         break;
1171                 }
1172
1173                 prev_node = curr_node;
1174                 curr_node = btrfs_next_delayed_node(curr_node);
1175                 btrfs_release_delayed_node(prev_node);
1176         }
1177
1178         if (curr_node)
1179                 btrfs_release_delayed_node(curr_node);
1180         btrfs_free_path(path);
1181         trans->block_rsv = block_rsv;
1182
1183         return ret;
1184 }
1185
1186 int btrfs_run_delayed_items(struct btrfs_trans_handle *trans,
1187                             struct btrfs_fs_info *fs_info)
1188 {
1189         return __btrfs_run_delayed_items(trans, fs_info, -1);
1190 }
1191
1192 int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans,
1193                                struct btrfs_fs_info *fs_info, int nr)
1194 {
1195         return __btrfs_run_delayed_items(trans, fs_info, nr);
1196 }
1197
1198 int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1199                                      struct inode *inode)
1200 {
1201         struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1202         struct btrfs_path *path;
1203         struct btrfs_block_rsv *block_rsv;
1204         int ret;
1205
1206         if (!delayed_node)
1207                 return 0;
1208
1209         mutex_lock(&delayed_node->mutex);
1210         if (!delayed_node->count) {
1211                 mutex_unlock(&delayed_node->mutex);
1212                 btrfs_release_delayed_node(delayed_node);
1213                 return 0;
1214         }
1215         mutex_unlock(&delayed_node->mutex);
1216
1217         path = btrfs_alloc_path();
1218         if (!path) {
1219                 btrfs_release_delayed_node(delayed_node);
1220                 return -ENOMEM;
1221         }
1222         path->leave_spinning = 1;
1223
1224         block_rsv = trans->block_rsv;
1225         trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;
1226
1227         ret = __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1228
1229         btrfs_release_delayed_node(delayed_node);
1230         btrfs_free_path(path);
1231         trans->block_rsv = block_rsv;
1232
1233         return ret;
1234 }
1235
1236 int btrfs_commit_inode_delayed_inode(struct inode *inode)
1237 {
1238         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1239         struct btrfs_trans_handle *trans;
1240         struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1241         struct btrfs_path *path;
1242         struct btrfs_block_rsv *block_rsv;
1243         int ret;
1244
1245         if (!delayed_node)
1246                 return 0;
1247
1248         mutex_lock(&delayed_node->mutex);
1249         if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1250                 mutex_unlock(&delayed_node->mutex);
1251                 btrfs_release_delayed_node(delayed_node);
1252                 return 0;
1253         }
1254         mutex_unlock(&delayed_node->mutex);
1255
1256         trans = btrfs_join_transaction(delayed_node->root);
1257         if (IS_ERR(trans)) {
1258                 ret = PTR_ERR(trans);
1259                 goto out;
1260         }
1261
1262         path = btrfs_alloc_path();
1263         if (!path) {
1264                 ret = -ENOMEM;
1265                 goto trans_out;
1266         }
1267         path->leave_spinning = 1;
1268
1269         block_rsv = trans->block_rsv;
1270         trans->block_rsv = &fs_info->delayed_block_rsv;
1271
1272         mutex_lock(&delayed_node->mutex);
1273         if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags))
1274                 ret = __btrfs_update_delayed_inode(trans, delayed_node->root,
1275                                                    path, delayed_node);
1276         else
1277                 ret = 0;
1278         mutex_unlock(&delayed_node->mutex);
1279
1280         btrfs_free_path(path);
1281         trans->block_rsv = block_rsv;
1282 trans_out:
1283         btrfs_end_transaction(trans);
1284         btrfs_btree_balance_dirty(fs_info);
1285 out:
1286         btrfs_release_delayed_node(delayed_node);
1287
1288         return ret;
1289 }
1290
1291 void btrfs_remove_delayed_node(struct inode *inode)
1292 {
1293         struct btrfs_delayed_node *delayed_node;
1294
1295         delayed_node = ACCESS_ONCE(BTRFS_I(inode)->delayed_node);
1296         if (!delayed_node)
1297                 return;
1298
1299         BTRFS_I(inode)->delayed_node = NULL;
1300         btrfs_release_delayed_node(delayed_node);
1301 }
1302
1303 struct btrfs_async_delayed_work {
1304         struct btrfs_delayed_root *delayed_root;
1305         int nr;
1306         struct btrfs_work work;
1307 };
1308
1309 static void btrfs_async_run_delayed_root(struct btrfs_work *work)
1310 {
1311         struct btrfs_async_delayed_work *async_work;
1312         struct btrfs_delayed_root *delayed_root;
1313         struct btrfs_trans_handle *trans;
1314         struct btrfs_path *path;
1315         struct btrfs_delayed_node *delayed_node = NULL;
1316         struct btrfs_root *root;
1317         struct btrfs_block_rsv *block_rsv;
1318         int total_done = 0;
1319
1320         async_work = container_of(work, struct btrfs_async_delayed_work, work);
1321         delayed_root = async_work->delayed_root;
1322
1323         path = btrfs_alloc_path();
1324         if (!path)
1325                 goto out;
1326
1327 again:
1328         if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND / 2)
1329                 goto free_path;
1330
1331         delayed_node = btrfs_first_prepared_delayed_node(delayed_root);
1332         if (!delayed_node)
1333                 goto free_path;
1334
1335         path->leave_spinning = 1;
1336         root = delayed_node->root;
1337
1338         trans = btrfs_join_transaction(root);
1339         if (IS_ERR(trans))
1340                 goto release_path;
1341
1342         block_rsv = trans->block_rsv;
1343         trans->block_rsv = &root->fs_info->delayed_block_rsv;
1344
1345         __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1346
1347         trans->block_rsv = block_rsv;
1348         btrfs_end_transaction(trans);
1349         btrfs_btree_balance_dirty_nodelay(root->fs_info);
1350
1351 release_path:
1352         btrfs_release_path(path);
1353         total_done++;
1354
1355         btrfs_release_prepared_delayed_node(delayed_node);
1356         if ((async_work->nr == 0 && total_done < BTRFS_DELAYED_WRITEBACK) ||
1357             total_done < async_work->nr)
1358                 goto again;
1359
1360 free_path:
1361         btrfs_free_path(path);
1362 out:
1363         wake_up(&delayed_root->wait);
1364         kfree(async_work);
1365 }
1366
1367
1368 static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root,
1369                                      struct btrfs_fs_info *fs_info, int nr)
1370 {
1371         struct btrfs_async_delayed_work *async_work;
1372
1373         if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND ||
1374             btrfs_workqueue_normal_congested(fs_info->delayed_workers))
1375                 return 0;
1376
1377         async_work = kmalloc(sizeof(*async_work), GFP_NOFS);
1378         if (!async_work)
1379                 return -ENOMEM;
1380
1381         async_work->delayed_root = delayed_root;
1382         btrfs_init_work(&async_work->work, btrfs_delayed_meta_helper,
1383                         btrfs_async_run_delayed_root, NULL, NULL);
1384         async_work->nr = nr;
1385
1386         btrfs_queue_work(fs_info->delayed_workers, &async_work->work);
1387         return 0;
1388 }
1389
1390 void btrfs_assert_delayed_root_empty(struct btrfs_fs_info *fs_info)
1391 {
1392         WARN_ON(btrfs_first_delayed_node(fs_info->delayed_root));
1393 }
1394
1395 static int could_end_wait(struct btrfs_delayed_root *delayed_root, int seq)
1396 {
1397         int val = atomic_read(&delayed_root->items_seq);
1398
1399         if (val < seq || val >= seq + BTRFS_DELAYED_BATCH)
1400                 return 1;
1401
1402         if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
1403                 return 1;
1404
1405         return 0;
1406 }
1407
1408 void btrfs_balance_delayed_items(struct btrfs_fs_info *fs_info)
1409 {
1410         struct btrfs_delayed_root *delayed_root = fs_info->delayed_root;
1411
1412         if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
1413                 return;
1414
1415         if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) {
1416                 int seq;
1417                 int ret;
1418
1419                 seq = atomic_read(&delayed_root->items_seq);
1420
1421                 ret = btrfs_wq_run_delayed_node(delayed_root, fs_info, 0);
1422                 if (ret)
1423                         return;
1424
1425                 wait_event_interruptible(delayed_root->wait,
1426                                          could_end_wait(delayed_root, seq));
1427                 return;
1428         }
1429
1430         btrfs_wq_run_delayed_node(delayed_root, fs_info, BTRFS_DELAYED_BATCH);
1431 }
1432
1433 /* Will return 0 or -ENOMEM */
1434 int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans,
1435                                    struct btrfs_fs_info *fs_info,
1436                                    const char *name, int name_len,
1437                                    struct inode *dir,
1438                                    struct btrfs_disk_key *disk_key, u8 type,
1439                                    u64 index)
1440 {
1441         struct btrfs_delayed_node *delayed_node;
1442         struct btrfs_delayed_item *delayed_item;
1443         struct btrfs_dir_item *dir_item;
1444         int ret;
1445
1446         delayed_node = btrfs_get_or_create_delayed_node(dir);
1447         if (IS_ERR(delayed_node))
1448                 return PTR_ERR(delayed_node);
1449
1450         delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len);
1451         if (!delayed_item) {
1452                 ret = -ENOMEM;
1453                 goto release_node;
1454         }
1455
1456         delayed_item->key.objectid = btrfs_ino(dir);
1457         delayed_item->key.type = BTRFS_DIR_INDEX_KEY;
1458         delayed_item->key.offset = index;
1459
1460         dir_item = (struct btrfs_dir_item *)delayed_item->data;
1461         dir_item->location = *disk_key;
1462         btrfs_set_stack_dir_transid(dir_item, trans->transid);
1463         btrfs_set_stack_dir_data_len(dir_item, 0);
1464         btrfs_set_stack_dir_name_len(dir_item, name_len);
1465         btrfs_set_stack_dir_type(dir_item, type);
1466         memcpy((char *)(dir_item + 1), name, name_len);
1467
1468         ret = btrfs_delayed_item_reserve_metadata(trans, fs_info, delayed_item);
1469         /*
1470          * we have reserved enough space when we start a new transaction,
1471          * so reserving metadata failure is impossible
1472          */
1473         BUG_ON(ret);
1474
1475
1476         mutex_lock(&delayed_node->mutex);
1477         ret = __btrfs_add_delayed_insertion_item(delayed_node, delayed_item);
1478         if (unlikely(ret)) {
1479                 btrfs_err(fs_info,
1480                           "err add delayed dir index item(name: %.*s) into the insertion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
1481                           name_len, name, delayed_node->root->objectid,
1482                           delayed_node->inode_id, ret);
1483                 BUG();
1484         }
1485         mutex_unlock(&delayed_node->mutex);
1486
1487 release_node:
1488         btrfs_release_delayed_node(delayed_node);
1489         return ret;
1490 }
1491
1492 static int btrfs_delete_delayed_insertion_item(struct btrfs_fs_info *fs_info,
1493                                                struct btrfs_delayed_node *node,
1494                                                struct btrfs_key *key)
1495 {
1496         struct btrfs_delayed_item *item;
1497
1498         mutex_lock(&node->mutex);
1499         item = __btrfs_lookup_delayed_insertion_item(node, key);
1500         if (!item) {
1501                 mutex_unlock(&node->mutex);
1502                 return 1;
1503         }
1504
1505         btrfs_delayed_item_release_metadata(fs_info, item);
1506         btrfs_release_delayed_item(item);
1507         mutex_unlock(&node->mutex);
1508         return 0;
1509 }
1510
1511 int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans,
1512                                    struct btrfs_fs_info *fs_info,
1513                                    struct inode *dir, u64 index)
1514 {
1515         struct btrfs_delayed_node *node;
1516         struct btrfs_delayed_item *item;
1517         struct btrfs_key item_key;
1518         int ret;
1519
1520         node = btrfs_get_or_create_delayed_node(dir);
1521         if (IS_ERR(node))
1522                 return PTR_ERR(node);
1523
1524         item_key.objectid = btrfs_ino(dir);
1525         item_key.type = BTRFS_DIR_INDEX_KEY;
1526         item_key.offset = index;
1527
1528         ret = btrfs_delete_delayed_insertion_item(fs_info, node, &item_key);
1529         if (!ret)
1530                 goto end;
1531
1532         item = btrfs_alloc_delayed_item(0);
1533         if (!item) {
1534                 ret = -ENOMEM;
1535                 goto end;
1536         }
1537
1538         item->key = item_key;
1539
1540         ret = btrfs_delayed_item_reserve_metadata(trans, fs_info, item);
1541         /*
1542          * we have reserved enough space when we start a new transaction,
1543          * so reserving metadata failure is impossible.
1544          */
1545         BUG_ON(ret);
1546
1547         mutex_lock(&node->mutex);
1548         ret = __btrfs_add_delayed_deletion_item(node, item);
1549         if (unlikely(ret)) {
1550                 btrfs_err(fs_info,
1551                           "err add delayed dir index item(index: %llu) into the deletion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
1552                           index, node->root->objectid, node->inode_id, ret);
1553                 BUG();
1554         }
1555         mutex_unlock(&node->mutex);
1556 end:
1557         btrfs_release_delayed_node(node);
1558         return ret;
1559 }
1560
1561 int btrfs_inode_delayed_dir_index_count(struct inode *inode)
1562 {
1563         struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1564
1565         if (!delayed_node)
1566                 return -ENOENT;
1567
1568         /*
1569          * Since we have held i_mutex of this directory, it is impossible that
1570          * a new directory index is added into the delayed node and index_cnt
1571          * is updated now. So we needn't lock the delayed node.
1572          */
1573         if (!delayed_node->index_cnt) {
1574                 btrfs_release_delayed_node(delayed_node);
1575                 return -EINVAL;
1576         }
1577
1578         BTRFS_I(inode)->index_cnt = delayed_node->index_cnt;
1579         btrfs_release_delayed_node(delayed_node);
1580         return 0;
1581 }
1582
1583 bool btrfs_readdir_get_delayed_items(struct inode *inode,
1584                                      struct list_head *ins_list,
1585                                      struct list_head *del_list)
1586 {
1587         struct btrfs_delayed_node *delayed_node;
1588         struct btrfs_delayed_item *item;
1589
1590         delayed_node = btrfs_get_delayed_node(inode);
1591         if (!delayed_node)
1592                 return false;
1593
1594         /*
1595          * We can only do one readdir with delayed items at a time because of
1596          * item->readdir_list.
1597          */
1598         inode_unlock_shared(inode);
1599         inode_lock(inode);
1600
1601         mutex_lock(&delayed_node->mutex);
1602         item = __btrfs_first_delayed_insertion_item(delayed_node);
1603         while (item) {
1604                 atomic_inc(&item->refs);
1605                 list_add_tail(&item->readdir_list, ins_list);
1606                 item = __btrfs_next_delayed_item(item);
1607         }
1608
1609         item = __btrfs_first_delayed_deletion_item(delayed_node);
1610         while (item) {
1611                 atomic_inc(&item->refs);
1612                 list_add_tail(&item->readdir_list, del_list);
1613                 item = __btrfs_next_delayed_item(item);
1614         }
1615         mutex_unlock(&delayed_node->mutex);
1616         /*
1617          * This delayed node is still cached in the btrfs inode, so refs
1618          * must be > 1 now, and we needn't check it is going to be freed
1619          * or not.
1620          *
1621          * Besides that, this function is used to read dir, we do not
1622          * insert/delete delayed items in this period. So we also needn't
1623          * requeue or dequeue this delayed node.
1624          */
1625         atomic_dec(&delayed_node->refs);
1626
1627         return true;
1628 }
1629
1630 void btrfs_readdir_put_delayed_items(struct inode *inode,
1631                                      struct list_head *ins_list,
1632                                      struct list_head *del_list)
1633 {
1634         struct btrfs_delayed_item *curr, *next;
1635
1636         list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1637                 list_del(&curr->readdir_list);
1638                 if (atomic_dec_and_test(&curr->refs))
1639                         kfree(curr);
1640         }
1641
1642         list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1643                 list_del(&curr->readdir_list);
1644                 if (atomic_dec_and_test(&curr->refs))
1645                         kfree(curr);
1646         }
1647
1648         /*
1649          * The VFS is going to do up_read(), so we need to downgrade back to a
1650          * read lock.
1651          */
1652         downgrade_write(&inode->i_rwsem);
1653 }
1654
1655 int btrfs_should_delete_dir_index(struct list_head *del_list,
1656                                   u64 index)
1657 {
1658         struct btrfs_delayed_item *curr, *next;
1659         int ret;
1660
1661         if (list_empty(del_list))
1662                 return 0;
1663
1664         list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1665                 if (curr->key.offset > index)
1666                         break;
1667
1668                 list_del(&curr->readdir_list);
1669                 ret = (curr->key.offset == index);
1670
1671                 if (atomic_dec_and_test(&curr->refs))
1672                         kfree(curr);
1673
1674                 if (ret)
1675                         return 1;
1676                 else
1677                         continue;
1678         }
1679         return 0;
1680 }
1681
1682 /*
1683  * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree
1684  *
1685  */
1686 int btrfs_readdir_delayed_dir_index(struct dir_context *ctx,
1687                                     struct list_head *ins_list)
1688 {
1689         struct btrfs_dir_item *di;
1690         struct btrfs_delayed_item *curr, *next;
1691         struct btrfs_key location;
1692         char *name;
1693         int name_len;
1694         int over = 0;
1695         unsigned char d_type;
1696
1697         if (list_empty(ins_list))
1698                 return 0;
1699
1700         /*
1701          * Changing the data of the delayed item is impossible. So
1702          * we needn't lock them. And we have held i_mutex of the
1703          * directory, nobody can delete any directory indexes now.
1704          */
1705         list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1706                 list_del(&curr->readdir_list);
1707
1708                 if (curr->key.offset < ctx->pos) {
1709                         if (atomic_dec_and_test(&curr->refs))
1710                                 kfree(curr);
1711                         continue;
1712                 }
1713
1714                 ctx->pos = curr->key.offset;
1715
1716                 di = (struct btrfs_dir_item *)curr->data;
1717                 name = (char *)(di + 1);
1718                 name_len = btrfs_stack_dir_name_len(di);
1719
1720                 d_type = btrfs_filetype_table[di->type];
1721                 btrfs_disk_key_to_cpu(&location, &di->location);
1722
1723                 over = !dir_emit(ctx, name, name_len,
1724                                location.objectid, d_type);
1725
1726                 if (atomic_dec_and_test(&curr->refs))
1727                         kfree(curr);
1728
1729                 if (over)
1730                         return 1;
1731         }
1732         return 0;
1733 }
1734
1735 static void fill_stack_inode_item(struct btrfs_trans_handle *trans,
1736                                   struct btrfs_inode_item *inode_item,
1737                                   struct inode *inode)
1738 {
1739         btrfs_set_stack_inode_uid(inode_item, i_uid_read(inode));
1740         btrfs_set_stack_inode_gid(inode_item, i_gid_read(inode));
1741         btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size);
1742         btrfs_set_stack_inode_mode(inode_item, inode->i_mode);
1743         btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink);
1744         btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode));
1745         btrfs_set_stack_inode_generation(inode_item,
1746                                          BTRFS_I(inode)->generation);
1747         btrfs_set_stack_inode_sequence(inode_item, inode->i_version);
1748         btrfs_set_stack_inode_transid(inode_item, trans->transid);
1749         btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev);
1750         btrfs_set_stack_inode_flags(inode_item, BTRFS_I(inode)->flags);
1751         btrfs_set_stack_inode_block_group(inode_item, 0);
1752
1753         btrfs_set_stack_timespec_sec(&inode_item->atime,
1754                                      inode->i_atime.tv_sec);
1755         btrfs_set_stack_timespec_nsec(&inode_item->atime,
1756                                       inode->i_atime.tv_nsec);
1757
1758         btrfs_set_stack_timespec_sec(&inode_item->mtime,
1759                                      inode->i_mtime.tv_sec);
1760         btrfs_set_stack_timespec_nsec(&inode_item->mtime,
1761                                       inode->i_mtime.tv_nsec);
1762
1763         btrfs_set_stack_timespec_sec(&inode_item->ctime,
1764                                      inode->i_ctime.tv_sec);
1765         btrfs_set_stack_timespec_nsec(&inode_item->ctime,
1766                                       inode->i_ctime.tv_nsec);
1767
1768         btrfs_set_stack_timespec_sec(&inode_item->otime,
1769                                      BTRFS_I(inode)->i_otime.tv_sec);
1770         btrfs_set_stack_timespec_nsec(&inode_item->otime,
1771                                      BTRFS_I(inode)->i_otime.tv_nsec);
1772 }
1773
1774 int btrfs_fill_inode(struct inode *inode, u32 *rdev)
1775 {
1776         struct btrfs_delayed_node *delayed_node;
1777         struct btrfs_inode_item *inode_item;
1778
1779         delayed_node = btrfs_get_delayed_node(inode);
1780         if (!delayed_node)
1781                 return -ENOENT;
1782
1783         mutex_lock(&delayed_node->mutex);
1784         if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1785                 mutex_unlock(&delayed_node->mutex);
1786                 btrfs_release_delayed_node(delayed_node);
1787                 return -ENOENT;
1788         }
1789
1790         inode_item = &delayed_node->inode_item;
1791
1792         i_uid_write(inode, btrfs_stack_inode_uid(inode_item));
1793         i_gid_write(inode, btrfs_stack_inode_gid(inode_item));
1794         btrfs_i_size_write(inode, btrfs_stack_inode_size(inode_item));
1795         inode->i_mode = btrfs_stack_inode_mode(inode_item);
1796         set_nlink(inode, btrfs_stack_inode_nlink(inode_item));
1797         inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item));
1798         BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item);
1799         BTRFS_I(inode)->last_trans = btrfs_stack_inode_transid(inode_item);
1800
1801         inode->i_version = btrfs_stack_inode_sequence(inode_item);
1802         inode->i_rdev = 0;
1803         *rdev = btrfs_stack_inode_rdev(inode_item);
1804         BTRFS_I(inode)->flags = btrfs_stack_inode_flags(inode_item);
1805
1806         inode->i_atime.tv_sec = btrfs_stack_timespec_sec(&inode_item->atime);
1807         inode->i_atime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->atime);
1808
1809         inode->i_mtime.tv_sec = btrfs_stack_timespec_sec(&inode_item->mtime);
1810         inode->i_mtime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->mtime);
1811
1812         inode->i_ctime.tv_sec = btrfs_stack_timespec_sec(&inode_item->ctime);
1813         inode->i_ctime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->ctime);
1814
1815         BTRFS_I(inode)->i_otime.tv_sec =
1816                 btrfs_stack_timespec_sec(&inode_item->otime);
1817         BTRFS_I(inode)->i_otime.tv_nsec =
1818                 btrfs_stack_timespec_nsec(&inode_item->otime);
1819
1820         inode->i_generation = BTRFS_I(inode)->generation;
1821         BTRFS_I(inode)->index_cnt = (u64)-1;
1822
1823         mutex_unlock(&delayed_node->mutex);
1824         btrfs_release_delayed_node(delayed_node);
1825         return 0;
1826 }
1827
1828 int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans,
1829                                struct btrfs_root *root, struct inode *inode)
1830 {
1831         struct btrfs_delayed_node *delayed_node;
1832         int ret = 0;
1833
1834         delayed_node = btrfs_get_or_create_delayed_node(inode);
1835         if (IS_ERR(delayed_node))
1836                 return PTR_ERR(delayed_node);
1837
1838         mutex_lock(&delayed_node->mutex);
1839         if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1840                 fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1841                 goto release_node;
1842         }
1843
1844         ret = btrfs_delayed_inode_reserve_metadata(trans, root, inode,
1845                                                    delayed_node);
1846         if (ret)
1847                 goto release_node;
1848
1849         fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1850         set_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
1851         delayed_node->count++;
1852         atomic_inc(&root->fs_info->delayed_root->items);
1853 release_node:
1854         mutex_unlock(&delayed_node->mutex);
1855         btrfs_release_delayed_node(delayed_node);
1856         return ret;
1857 }
1858
1859 int btrfs_delayed_delete_inode_ref(struct inode *inode)
1860 {
1861         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1862         struct btrfs_delayed_node *delayed_node;
1863
1864         /*
1865          * we don't do delayed inode updates during log recovery because it
1866          * leads to enospc problems.  This means we also can't do
1867          * delayed inode refs
1868          */
1869         if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
1870                 return -EAGAIN;
1871
1872         delayed_node = btrfs_get_or_create_delayed_node(inode);
1873         if (IS_ERR(delayed_node))
1874                 return PTR_ERR(delayed_node);
1875
1876         /*
1877          * We don't reserve space for inode ref deletion is because:
1878          * - We ONLY do async inode ref deletion for the inode who has only
1879          *   one link(i_nlink == 1), it means there is only one inode ref.
1880          *   And in most case, the inode ref and the inode item are in the
1881          *   same leaf, and we will deal with them at the same time.
1882          *   Since we are sure we will reserve the space for the inode item,
1883          *   it is unnecessary to reserve space for inode ref deletion.
1884          * - If the inode ref and the inode item are not in the same leaf,
1885          *   We also needn't worry about enospc problem, because we reserve
1886          *   much more space for the inode update than it needs.
1887          * - At the worst, we can steal some space from the global reservation.
1888          *   It is very rare.
1889          */
1890         mutex_lock(&delayed_node->mutex);
1891         if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
1892                 goto release_node;
1893
1894         set_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
1895         delayed_node->count++;
1896         atomic_inc(&fs_info->delayed_root->items);
1897 release_node:
1898         mutex_unlock(&delayed_node->mutex);
1899         btrfs_release_delayed_node(delayed_node);
1900         return 0;
1901 }
1902
1903 static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node)
1904 {
1905         struct btrfs_root *root = delayed_node->root;
1906         struct btrfs_fs_info *fs_info = root->fs_info;
1907         struct btrfs_delayed_item *curr_item, *prev_item;
1908
1909         mutex_lock(&delayed_node->mutex);
1910         curr_item = __btrfs_first_delayed_insertion_item(delayed_node);
1911         while (curr_item) {
1912                 btrfs_delayed_item_release_metadata(fs_info, curr_item);
1913                 prev_item = curr_item;
1914                 curr_item = __btrfs_next_delayed_item(prev_item);
1915                 btrfs_release_delayed_item(prev_item);
1916         }
1917
1918         curr_item = __btrfs_first_delayed_deletion_item(delayed_node);
1919         while (curr_item) {
1920                 btrfs_delayed_item_release_metadata(fs_info, curr_item);
1921                 prev_item = curr_item;
1922                 curr_item = __btrfs_next_delayed_item(prev_item);
1923                 btrfs_release_delayed_item(prev_item);
1924         }
1925
1926         if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
1927                 btrfs_release_delayed_iref(delayed_node);
1928
1929         if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1930                 btrfs_delayed_inode_release_metadata(fs_info, delayed_node);
1931                 btrfs_release_delayed_inode(delayed_node);
1932         }
1933         mutex_unlock(&delayed_node->mutex);
1934 }
1935
1936 void btrfs_kill_delayed_inode_items(struct inode *inode)
1937 {
1938         struct btrfs_delayed_node *delayed_node;
1939
1940         delayed_node = btrfs_get_delayed_node(inode);
1941         if (!delayed_node)
1942                 return;
1943
1944         __btrfs_kill_delayed_node(delayed_node);
1945         btrfs_release_delayed_node(delayed_node);
1946 }
1947
1948 void btrfs_kill_all_delayed_nodes(struct btrfs_root *root)
1949 {
1950         u64 inode_id = 0;
1951         struct btrfs_delayed_node *delayed_nodes[8];
1952         int i, n;
1953
1954         while (1) {
1955                 spin_lock(&root->inode_lock);
1956                 n = radix_tree_gang_lookup(&root->delayed_nodes_tree,
1957                                            (void **)delayed_nodes, inode_id,
1958                                            ARRAY_SIZE(delayed_nodes));
1959                 if (!n) {
1960                         spin_unlock(&root->inode_lock);
1961                         break;
1962                 }
1963
1964                 inode_id = delayed_nodes[n - 1]->inode_id + 1;
1965
1966                 for (i = 0; i < n; i++)
1967                         atomic_inc(&delayed_nodes[i]->refs);
1968                 spin_unlock(&root->inode_lock);
1969
1970                 for (i = 0; i < n; i++) {
1971                         __btrfs_kill_delayed_node(delayed_nodes[i]);
1972                         btrfs_release_delayed_node(delayed_nodes[i]);
1973                 }
1974         }
1975 }
1976
1977 void btrfs_destroy_delayed_inodes(struct btrfs_fs_info *fs_info)
1978 {
1979         struct btrfs_delayed_node *curr_node, *prev_node;
1980
1981         curr_node = btrfs_first_delayed_node(fs_info->delayed_root);
1982         while (curr_node) {
1983                 __btrfs_kill_delayed_node(curr_node);
1984
1985                 prev_node = curr_node;
1986                 curr_node = btrfs_next_delayed_node(curr_node);
1987                 btrfs_release_delayed_node(prev_node);
1988         }
1989 }
1990