]> git.karo-electronics.de Git - linux-beck.git/blob - fs/btrfs/disk-io.c
21d1d066758ea94ac2ffc7a4d3dff0fe88b128cc
[linux-beck.git] / fs / btrfs / disk-io.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
29 #include <linux/crc32c.h>
30 #include <linux/slab.h>
31 #include <linux/migrate.h>
32 #include <linux/ratelimit.h>
33 #include <linux/uuid.h>
34 #include <linux/semaphore.h>
35 #include <asm/unaligned.h>
36 #include "compat.h"
37 #include "ctree.h"
38 #include "disk-io.h"
39 #include "transaction.h"
40 #include "btrfs_inode.h"
41 #include "volumes.h"
42 #include "print-tree.h"
43 #include "async-thread.h"
44 #include "locking.h"
45 #include "tree-log.h"
46 #include "free-space-cache.h"
47 #include "inode-map.h"
48 #include "check-integrity.h"
49 #include "rcu-string.h"
50 #include "dev-replace.h"
51 #include "raid56.h"
52
53 #ifdef CONFIG_X86
54 #include <asm/cpufeature.h>
55 #endif
56
57 static struct extent_io_ops btree_extent_io_ops;
58 static void end_workqueue_fn(struct btrfs_work *work);
59 static void free_fs_root(struct btrfs_root *root);
60 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
61                                     int read_only);
62 static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
63                                              struct btrfs_root *root);
64 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
65 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
66                                       struct btrfs_root *root);
67 static void btrfs_evict_pending_snapshots(struct btrfs_transaction *t);
68 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
69 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
70                                         struct extent_io_tree *dirty_pages,
71                                         int mark);
72 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
73                                        struct extent_io_tree *pinned_extents);
74 static int btrfs_cleanup_transaction(struct btrfs_root *root);
75 static void btrfs_error_commit_super(struct btrfs_root *root);
76
77 /*
78  * end_io_wq structs are used to do processing in task context when an IO is
79  * complete.  This is used during reads to verify checksums, and it is used
80  * by writes to insert metadata for new file extents after IO is complete.
81  */
82 struct end_io_wq {
83         struct bio *bio;
84         bio_end_io_t *end_io;
85         void *private;
86         struct btrfs_fs_info *info;
87         int error;
88         int metadata;
89         struct list_head list;
90         struct btrfs_work work;
91 };
92
93 /*
94  * async submit bios are used to offload expensive checksumming
95  * onto the worker threads.  They checksum file and metadata bios
96  * just before they are sent down the IO stack.
97  */
98 struct async_submit_bio {
99         struct inode *inode;
100         struct bio *bio;
101         struct list_head list;
102         extent_submit_bio_hook_t *submit_bio_start;
103         extent_submit_bio_hook_t *submit_bio_done;
104         int rw;
105         int mirror_num;
106         unsigned long bio_flags;
107         /*
108          * bio_offset is optional, can be used if the pages in the bio
109          * can't tell us where in the file the bio should go
110          */
111         u64 bio_offset;
112         struct btrfs_work work;
113         int error;
114 };
115
116 /*
117  * Lockdep class keys for extent_buffer->lock's in this root.  For a given
118  * eb, the lockdep key is determined by the btrfs_root it belongs to and
119  * the level the eb occupies in the tree.
120  *
121  * Different roots are used for different purposes and may nest inside each
122  * other and they require separate keysets.  As lockdep keys should be
123  * static, assign keysets according to the purpose of the root as indicated
124  * by btrfs_root->objectid.  This ensures that all special purpose roots
125  * have separate keysets.
126  *
127  * Lock-nesting across peer nodes is always done with the immediate parent
128  * node locked thus preventing deadlock.  As lockdep doesn't know this, use
129  * subclass to avoid triggering lockdep warning in such cases.
130  *
131  * The key is set by the readpage_end_io_hook after the buffer has passed
132  * csum validation but before the pages are unlocked.  It is also set by
133  * btrfs_init_new_buffer on freshly allocated blocks.
134  *
135  * We also add a check to make sure the highest level of the tree is the
136  * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
137  * needs update as well.
138  */
139 #ifdef CONFIG_DEBUG_LOCK_ALLOC
140 # if BTRFS_MAX_LEVEL != 8
141 #  error
142 # endif
143
144 static struct btrfs_lockdep_keyset {
145         u64                     id;             /* root objectid */
146         const char              *name_stem;     /* lock name stem */
147         char                    names[BTRFS_MAX_LEVEL + 1][20];
148         struct lock_class_key   keys[BTRFS_MAX_LEVEL + 1];
149 } btrfs_lockdep_keysets[] = {
150         { .id = BTRFS_ROOT_TREE_OBJECTID,       .name_stem = "root"     },
151         { .id = BTRFS_EXTENT_TREE_OBJECTID,     .name_stem = "extent"   },
152         { .id = BTRFS_CHUNK_TREE_OBJECTID,      .name_stem = "chunk"    },
153         { .id = BTRFS_DEV_TREE_OBJECTID,        .name_stem = "dev"      },
154         { .id = BTRFS_FS_TREE_OBJECTID,         .name_stem = "fs"       },
155         { .id = BTRFS_CSUM_TREE_OBJECTID,       .name_stem = "csum"     },
156         { .id = BTRFS_QUOTA_TREE_OBJECTID,      .name_stem = "quota"    },
157         { .id = BTRFS_TREE_LOG_OBJECTID,        .name_stem = "log"      },
158         { .id = BTRFS_TREE_RELOC_OBJECTID,      .name_stem = "treloc"   },
159         { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc"   },
160         { .id = 0,                              .name_stem = "tree"     },
161 };
162
163 void __init btrfs_init_lockdep(void)
164 {
165         int i, j;
166
167         /* initialize lockdep class names */
168         for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
169                 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
170
171                 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
172                         snprintf(ks->names[j], sizeof(ks->names[j]),
173                                  "btrfs-%s-%02d", ks->name_stem, j);
174         }
175 }
176
177 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
178                                     int level)
179 {
180         struct btrfs_lockdep_keyset *ks;
181
182         BUG_ON(level >= ARRAY_SIZE(ks->keys));
183
184         /* find the matching keyset, id 0 is the default entry */
185         for (ks = btrfs_lockdep_keysets; ks->id; ks++)
186                 if (ks->id == objectid)
187                         break;
188
189         lockdep_set_class_and_name(&eb->lock,
190                                    &ks->keys[level], ks->names[level]);
191 }
192
193 #endif
194
195 /*
196  * extents on the btree inode are pretty simple, there's one extent
197  * that covers the entire device
198  */
199 static struct extent_map *btree_get_extent(struct inode *inode,
200                 struct page *page, size_t pg_offset, u64 start, u64 len,
201                 int create)
202 {
203         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
204         struct extent_map *em;
205         int ret;
206
207         read_lock(&em_tree->lock);
208         em = lookup_extent_mapping(em_tree, start, len);
209         if (em) {
210                 em->bdev =
211                         BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
212                 read_unlock(&em_tree->lock);
213                 goto out;
214         }
215         read_unlock(&em_tree->lock);
216
217         em = alloc_extent_map();
218         if (!em) {
219                 em = ERR_PTR(-ENOMEM);
220                 goto out;
221         }
222         em->start = 0;
223         em->len = (u64)-1;
224         em->block_len = (u64)-1;
225         em->block_start = 0;
226         em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
227
228         write_lock(&em_tree->lock);
229         ret = add_extent_mapping(em_tree, em, 0);
230         if (ret == -EEXIST) {
231                 free_extent_map(em);
232                 em = lookup_extent_mapping(em_tree, start, len);
233                 if (!em)
234                         em = ERR_PTR(-EIO);
235         } else if (ret) {
236                 free_extent_map(em);
237                 em = ERR_PTR(ret);
238         }
239         write_unlock(&em_tree->lock);
240
241 out:
242         return em;
243 }
244
245 u32 btrfs_csum_data(char *data, u32 seed, size_t len)
246 {
247         return crc32c(seed, data, len);
248 }
249
250 void btrfs_csum_final(u32 crc, char *result)
251 {
252         put_unaligned_le32(~crc, result);
253 }
254
255 /*
256  * compute the csum for a btree block, and either verify it or write it
257  * into the csum field of the block.
258  */
259 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
260                            int verify)
261 {
262         u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
263         char *result = NULL;
264         unsigned long len;
265         unsigned long cur_len;
266         unsigned long offset = BTRFS_CSUM_SIZE;
267         char *kaddr;
268         unsigned long map_start;
269         unsigned long map_len;
270         int err;
271         u32 crc = ~(u32)0;
272         unsigned long inline_result;
273
274         len = buf->len - offset;
275         while (len > 0) {
276                 err = map_private_extent_buffer(buf, offset, 32,
277                                         &kaddr, &map_start, &map_len);
278                 if (err)
279                         return 1;
280                 cur_len = min(len, map_len - (offset - map_start));
281                 crc = btrfs_csum_data(kaddr + offset - map_start,
282                                       crc, cur_len);
283                 len -= cur_len;
284                 offset += cur_len;
285         }
286         if (csum_size > sizeof(inline_result)) {
287                 result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
288                 if (!result)
289                         return 1;
290         } else {
291                 result = (char *)&inline_result;
292         }
293
294         btrfs_csum_final(crc, result);
295
296         if (verify) {
297                 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
298                         u32 val;
299                         u32 found = 0;
300                         memcpy(&found, result, csum_size);
301
302                         read_extent_buffer(buf, &val, 0, csum_size);
303                         printk_ratelimited(KERN_INFO "btrfs: %s checksum verify "
304                                        "failed on %llu wanted %X found %X "
305                                        "level %d\n",
306                                        root->fs_info->sb->s_id, buf->start,
307                                        val, found, btrfs_header_level(buf));
308                         if (result != (char *)&inline_result)
309                                 kfree(result);
310                         return 1;
311                 }
312         } else {
313                 write_extent_buffer(buf, result, 0, csum_size);
314         }
315         if (result != (char *)&inline_result)
316                 kfree(result);
317         return 0;
318 }
319
320 /*
321  * we can't consider a given block up to date unless the transid of the
322  * block matches the transid in the parent node's pointer.  This is how we
323  * detect blocks that either didn't get written at all or got written
324  * in the wrong place.
325  */
326 static int verify_parent_transid(struct extent_io_tree *io_tree,
327                                  struct extent_buffer *eb, u64 parent_transid,
328                                  int atomic)
329 {
330         struct extent_state *cached_state = NULL;
331         int ret;
332
333         if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
334                 return 0;
335
336         if (atomic)
337                 return -EAGAIN;
338
339         lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
340                          0, &cached_state);
341         if (extent_buffer_uptodate(eb) &&
342             btrfs_header_generation(eb) == parent_transid) {
343                 ret = 0;
344                 goto out;
345         }
346         printk_ratelimited("parent transid verify failed on %llu wanted %llu "
347                        "found %llu\n",
348                        eb->start, parent_transid, btrfs_header_generation(eb));
349         ret = 1;
350         clear_extent_buffer_uptodate(eb);
351 out:
352         unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
353                              &cached_state, GFP_NOFS);
354         return ret;
355 }
356
357 /*
358  * Return 0 if the superblock checksum type matches the checksum value of that
359  * algorithm. Pass the raw disk superblock data.
360  */
361 static int btrfs_check_super_csum(char *raw_disk_sb)
362 {
363         struct btrfs_super_block *disk_sb =
364                 (struct btrfs_super_block *)raw_disk_sb;
365         u16 csum_type = btrfs_super_csum_type(disk_sb);
366         int ret = 0;
367
368         if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
369                 u32 crc = ~(u32)0;
370                 const int csum_size = sizeof(crc);
371                 char result[csum_size];
372
373                 /*
374                  * The super_block structure does not span the whole
375                  * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
376                  * is filled with zeros and is included in the checkum.
377                  */
378                 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
379                                 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
380                 btrfs_csum_final(crc, result);
381
382                 if (memcmp(raw_disk_sb, result, csum_size))
383                         ret = 1;
384
385                 if (ret && btrfs_super_generation(disk_sb) < 10) {
386                         printk(KERN_WARNING "btrfs: super block crcs don't match, older mkfs detected\n");
387                         ret = 0;
388                 }
389         }
390
391         if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
392                 printk(KERN_ERR "btrfs: unsupported checksum algorithm %u\n",
393                                 csum_type);
394                 ret = 1;
395         }
396
397         return ret;
398 }
399
400 /*
401  * helper to read a given tree block, doing retries as required when
402  * the checksums don't match and we have alternate mirrors to try.
403  */
404 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
405                                           struct extent_buffer *eb,
406                                           u64 start, u64 parent_transid)
407 {
408         struct extent_io_tree *io_tree;
409         int failed = 0;
410         int ret;
411         int num_copies = 0;
412         int mirror_num = 0;
413         int failed_mirror = 0;
414
415         clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
416         io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
417         while (1) {
418                 ret = read_extent_buffer_pages(io_tree, eb, start,
419                                                WAIT_COMPLETE,
420                                                btree_get_extent, mirror_num);
421                 if (!ret) {
422                         if (!verify_parent_transid(io_tree, eb,
423                                                    parent_transid, 0))
424                                 break;
425                         else
426                                 ret = -EIO;
427                 }
428
429                 /*
430                  * This buffer's crc is fine, but its contents are corrupted, so
431                  * there is no reason to read the other copies, they won't be
432                  * any less wrong.
433                  */
434                 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
435                         break;
436
437                 num_copies = btrfs_num_copies(root->fs_info,
438                                               eb->start, eb->len);
439                 if (num_copies == 1)
440                         break;
441
442                 if (!failed_mirror) {
443                         failed = 1;
444                         failed_mirror = eb->read_mirror;
445                 }
446
447                 mirror_num++;
448                 if (mirror_num == failed_mirror)
449                         mirror_num++;
450
451                 if (mirror_num > num_copies)
452                         break;
453         }
454
455         if (failed && !ret && failed_mirror)
456                 repair_eb_io_failure(root, eb, failed_mirror);
457
458         return ret;
459 }
460
461 /*
462  * checksum a dirty tree block before IO.  This has extra checks to make sure
463  * we only fill in the checksum field in the first page of a multi-page block
464  */
465
466 static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
467 {
468         struct extent_io_tree *tree;
469         u64 start = page_offset(page);
470         u64 found_start;
471         struct extent_buffer *eb;
472
473         tree = &BTRFS_I(page->mapping->host)->io_tree;
474
475         eb = (struct extent_buffer *)page->private;
476         if (page != eb->pages[0])
477                 return 0;
478         found_start = btrfs_header_bytenr(eb);
479         if (found_start != start) {
480                 WARN_ON(1);
481                 return 0;
482         }
483         if (!PageUptodate(page)) {
484                 WARN_ON(1);
485                 return 0;
486         }
487         csum_tree_block(root, eb, 0);
488         return 0;
489 }
490
491 static int check_tree_block_fsid(struct btrfs_root *root,
492                                  struct extent_buffer *eb)
493 {
494         struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
495         u8 fsid[BTRFS_UUID_SIZE];
496         int ret = 1;
497
498         read_extent_buffer(eb, fsid, btrfs_header_fsid(eb), BTRFS_FSID_SIZE);
499         while (fs_devices) {
500                 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
501                         ret = 0;
502                         break;
503                 }
504                 fs_devices = fs_devices->seed;
505         }
506         return ret;
507 }
508
509 #define CORRUPT(reason, eb, root, slot)                         \
510         printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu," \
511                "root=%llu, slot=%d\n", reason,                  \
512                btrfs_header_bytenr(eb), root->objectid, slot)
513
514 static noinline int check_leaf(struct btrfs_root *root,
515                                struct extent_buffer *leaf)
516 {
517         struct btrfs_key key;
518         struct btrfs_key leaf_key;
519         u32 nritems = btrfs_header_nritems(leaf);
520         int slot;
521
522         if (nritems == 0)
523                 return 0;
524
525         /* Check the 0 item */
526         if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
527             BTRFS_LEAF_DATA_SIZE(root)) {
528                 CORRUPT("invalid item offset size pair", leaf, root, 0);
529                 return -EIO;
530         }
531
532         /*
533          * Check to make sure each items keys are in the correct order and their
534          * offsets make sense.  We only have to loop through nritems-1 because
535          * we check the current slot against the next slot, which verifies the
536          * next slot's offset+size makes sense and that the current's slot
537          * offset is correct.
538          */
539         for (slot = 0; slot < nritems - 1; slot++) {
540                 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
541                 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
542
543                 /* Make sure the keys are in the right order */
544                 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
545                         CORRUPT("bad key order", leaf, root, slot);
546                         return -EIO;
547                 }
548
549                 /*
550                  * Make sure the offset and ends are right, remember that the
551                  * item data starts at the end of the leaf and grows towards the
552                  * front.
553                  */
554                 if (btrfs_item_offset_nr(leaf, slot) !=
555                         btrfs_item_end_nr(leaf, slot + 1)) {
556                         CORRUPT("slot offset bad", leaf, root, slot);
557                         return -EIO;
558                 }
559
560                 /*
561                  * Check to make sure that we don't point outside of the leaf,
562                  * just incase all the items are consistent to eachother, but
563                  * all point outside of the leaf.
564                  */
565                 if (btrfs_item_end_nr(leaf, slot) >
566                     BTRFS_LEAF_DATA_SIZE(root)) {
567                         CORRUPT("slot end outside of leaf", leaf, root, slot);
568                         return -EIO;
569                 }
570         }
571
572         return 0;
573 }
574
575 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
576                                       u64 phy_offset, struct page *page,
577                                       u64 start, u64 end, int mirror)
578 {
579         struct extent_io_tree *tree;
580         u64 found_start;
581         int found_level;
582         struct extent_buffer *eb;
583         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
584         int ret = 0;
585         int reads_done;
586
587         if (!page->private)
588                 goto out;
589
590         tree = &BTRFS_I(page->mapping->host)->io_tree;
591         eb = (struct extent_buffer *)page->private;
592
593         /* the pending IO might have been the only thing that kept this buffer
594          * in memory.  Make sure we have a ref for all this other checks
595          */
596         extent_buffer_get(eb);
597
598         reads_done = atomic_dec_and_test(&eb->io_pages);
599         if (!reads_done)
600                 goto err;
601
602         eb->read_mirror = mirror;
603         if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
604                 ret = -EIO;
605                 goto err;
606         }
607
608         found_start = btrfs_header_bytenr(eb);
609         if (found_start != eb->start) {
610                 printk_ratelimited(KERN_INFO "btrfs bad tree block start "
611                                "%llu %llu\n",
612                                found_start, eb->start);
613                 ret = -EIO;
614                 goto err;
615         }
616         if (check_tree_block_fsid(root, eb)) {
617                 printk_ratelimited(KERN_INFO "btrfs bad fsid on block %llu\n",
618                                eb->start);
619                 ret = -EIO;
620                 goto err;
621         }
622         found_level = btrfs_header_level(eb);
623         if (found_level >= BTRFS_MAX_LEVEL) {
624                 btrfs_info(root->fs_info, "bad tree block level %d\n",
625                            (int)btrfs_header_level(eb));
626                 ret = -EIO;
627                 goto err;
628         }
629
630         btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
631                                        eb, found_level);
632
633         ret = csum_tree_block(root, eb, 1);
634         if (ret) {
635                 ret = -EIO;
636                 goto err;
637         }
638
639         /*
640          * If this is a leaf block and it is corrupt, set the corrupt bit so
641          * that we don't try and read the other copies of this block, just
642          * return -EIO.
643          */
644         if (found_level == 0 && check_leaf(root, eb)) {
645                 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
646                 ret = -EIO;
647         }
648
649         if (!ret)
650                 set_extent_buffer_uptodate(eb);
651 err:
652         if (reads_done &&
653             test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
654                 btree_readahead_hook(root, eb, eb->start, ret);
655
656         if (ret) {
657                 /*
658                  * our io error hook is going to dec the io pages
659                  * again, we have to make sure it has something
660                  * to decrement
661                  */
662                 atomic_inc(&eb->io_pages);
663                 clear_extent_buffer_uptodate(eb);
664         }
665         free_extent_buffer(eb);
666 out:
667         return ret;
668 }
669
670 static int btree_io_failed_hook(struct page *page, int failed_mirror)
671 {
672         struct extent_buffer *eb;
673         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
674
675         eb = (struct extent_buffer *)page->private;
676         set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
677         eb->read_mirror = failed_mirror;
678         atomic_dec(&eb->io_pages);
679         if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
680                 btree_readahead_hook(root, eb, eb->start, -EIO);
681         return -EIO;    /* we fixed nothing */
682 }
683
684 static void end_workqueue_bio(struct bio *bio, int err)
685 {
686         struct end_io_wq *end_io_wq = bio->bi_private;
687         struct btrfs_fs_info *fs_info;
688
689         fs_info = end_io_wq->info;
690         end_io_wq->error = err;
691         end_io_wq->work.func = end_workqueue_fn;
692         end_io_wq->work.flags = 0;
693
694         if (bio->bi_rw & REQ_WRITE) {
695                 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
696                         btrfs_queue_worker(&fs_info->endio_meta_write_workers,
697                                            &end_io_wq->work);
698                 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
699                         btrfs_queue_worker(&fs_info->endio_freespace_worker,
700                                            &end_io_wq->work);
701                 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
702                         btrfs_queue_worker(&fs_info->endio_raid56_workers,
703                                            &end_io_wq->work);
704                 else
705                         btrfs_queue_worker(&fs_info->endio_write_workers,
706                                            &end_io_wq->work);
707         } else {
708                 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
709                         btrfs_queue_worker(&fs_info->endio_raid56_workers,
710                                            &end_io_wq->work);
711                 else if (end_io_wq->metadata)
712                         btrfs_queue_worker(&fs_info->endio_meta_workers,
713                                            &end_io_wq->work);
714                 else
715                         btrfs_queue_worker(&fs_info->endio_workers,
716                                            &end_io_wq->work);
717         }
718 }
719
720 /*
721  * For the metadata arg you want
722  *
723  * 0 - if data
724  * 1 - if normal metadta
725  * 2 - if writing to the free space cache area
726  * 3 - raid parity work
727  */
728 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
729                         int metadata)
730 {
731         struct end_io_wq *end_io_wq;
732         end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
733         if (!end_io_wq)
734                 return -ENOMEM;
735
736         end_io_wq->private = bio->bi_private;
737         end_io_wq->end_io = bio->bi_end_io;
738         end_io_wq->info = info;
739         end_io_wq->error = 0;
740         end_io_wq->bio = bio;
741         end_io_wq->metadata = metadata;
742
743         bio->bi_private = end_io_wq;
744         bio->bi_end_io = end_workqueue_bio;
745         return 0;
746 }
747
748 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
749 {
750         unsigned long limit = min_t(unsigned long,
751                                     info->workers.max_workers,
752                                     info->fs_devices->open_devices);
753         return 256 * limit;
754 }
755
756 static void run_one_async_start(struct btrfs_work *work)
757 {
758         struct async_submit_bio *async;
759         int ret;
760
761         async = container_of(work, struct  async_submit_bio, work);
762         ret = async->submit_bio_start(async->inode, async->rw, async->bio,
763                                       async->mirror_num, async->bio_flags,
764                                       async->bio_offset);
765         if (ret)
766                 async->error = ret;
767 }
768
769 static void run_one_async_done(struct btrfs_work *work)
770 {
771         struct btrfs_fs_info *fs_info;
772         struct async_submit_bio *async;
773         int limit;
774
775         async = container_of(work, struct  async_submit_bio, work);
776         fs_info = BTRFS_I(async->inode)->root->fs_info;
777
778         limit = btrfs_async_submit_limit(fs_info);
779         limit = limit * 2 / 3;
780
781         if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
782             waitqueue_active(&fs_info->async_submit_wait))
783                 wake_up(&fs_info->async_submit_wait);
784
785         /* If an error occured we just want to clean up the bio and move on */
786         if (async->error) {
787                 bio_endio(async->bio, async->error);
788                 return;
789         }
790
791         async->submit_bio_done(async->inode, async->rw, async->bio,
792                                async->mirror_num, async->bio_flags,
793                                async->bio_offset);
794 }
795
796 static void run_one_async_free(struct btrfs_work *work)
797 {
798         struct async_submit_bio *async;
799
800         async = container_of(work, struct  async_submit_bio, work);
801         kfree(async);
802 }
803
804 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
805                         int rw, struct bio *bio, int mirror_num,
806                         unsigned long bio_flags,
807                         u64 bio_offset,
808                         extent_submit_bio_hook_t *submit_bio_start,
809                         extent_submit_bio_hook_t *submit_bio_done)
810 {
811         struct async_submit_bio *async;
812
813         async = kmalloc(sizeof(*async), GFP_NOFS);
814         if (!async)
815                 return -ENOMEM;
816
817         async->inode = inode;
818         async->rw = rw;
819         async->bio = bio;
820         async->mirror_num = mirror_num;
821         async->submit_bio_start = submit_bio_start;
822         async->submit_bio_done = submit_bio_done;
823
824         async->work.func = run_one_async_start;
825         async->work.ordered_func = run_one_async_done;
826         async->work.ordered_free = run_one_async_free;
827
828         async->work.flags = 0;
829         async->bio_flags = bio_flags;
830         async->bio_offset = bio_offset;
831
832         async->error = 0;
833
834         atomic_inc(&fs_info->nr_async_submits);
835
836         if (rw & REQ_SYNC)
837                 btrfs_set_work_high_prio(&async->work);
838
839         btrfs_queue_worker(&fs_info->workers, &async->work);
840
841         while (atomic_read(&fs_info->async_submit_draining) &&
842               atomic_read(&fs_info->nr_async_submits)) {
843                 wait_event(fs_info->async_submit_wait,
844                            (atomic_read(&fs_info->nr_async_submits) == 0));
845         }
846
847         return 0;
848 }
849
850 static int btree_csum_one_bio(struct bio *bio)
851 {
852         struct bio_vec *bvec = bio->bi_io_vec;
853         int bio_index = 0;
854         struct btrfs_root *root;
855         int ret = 0;
856
857         WARN_ON(bio->bi_vcnt <= 0);
858         while (bio_index < bio->bi_vcnt) {
859                 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
860                 ret = csum_dirty_buffer(root, bvec->bv_page);
861                 if (ret)
862                         break;
863                 bio_index++;
864                 bvec++;
865         }
866         return ret;
867 }
868
869 static int __btree_submit_bio_start(struct inode *inode, int rw,
870                                     struct bio *bio, int mirror_num,
871                                     unsigned long bio_flags,
872                                     u64 bio_offset)
873 {
874         /*
875          * when we're called for a write, we're already in the async
876          * submission context.  Just jump into btrfs_map_bio
877          */
878         return btree_csum_one_bio(bio);
879 }
880
881 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
882                                  int mirror_num, unsigned long bio_flags,
883                                  u64 bio_offset)
884 {
885         int ret;
886
887         /*
888          * when we're called for a write, we're already in the async
889          * submission context.  Just jump into btrfs_map_bio
890          */
891         ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
892         if (ret)
893                 bio_endio(bio, ret);
894         return ret;
895 }
896
897 static int check_async_write(struct inode *inode, unsigned long bio_flags)
898 {
899         if (bio_flags & EXTENT_BIO_TREE_LOG)
900                 return 0;
901 #ifdef CONFIG_X86
902         if (cpu_has_xmm4_2)
903                 return 0;
904 #endif
905         return 1;
906 }
907
908 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
909                                  int mirror_num, unsigned long bio_flags,
910                                  u64 bio_offset)
911 {
912         int async = check_async_write(inode, bio_flags);
913         int ret;
914
915         if (!(rw & REQ_WRITE)) {
916                 /*
917                  * called for a read, do the setup so that checksum validation
918                  * can happen in the async kernel threads
919                  */
920                 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
921                                           bio, 1);
922                 if (ret)
923                         goto out_w_error;
924                 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
925                                     mirror_num, 0);
926         } else if (!async) {
927                 ret = btree_csum_one_bio(bio);
928                 if (ret)
929                         goto out_w_error;
930                 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
931                                     mirror_num, 0);
932         } else {
933                 /*
934                  * kthread helpers are used to submit writes so that
935                  * checksumming can happen in parallel across all CPUs
936                  */
937                 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
938                                           inode, rw, bio, mirror_num, 0,
939                                           bio_offset,
940                                           __btree_submit_bio_start,
941                                           __btree_submit_bio_done);
942         }
943
944         if (ret) {
945 out_w_error:
946                 bio_endio(bio, ret);
947         }
948         return ret;
949 }
950
951 #ifdef CONFIG_MIGRATION
952 static int btree_migratepage(struct address_space *mapping,
953                         struct page *newpage, struct page *page,
954                         enum migrate_mode mode)
955 {
956         /*
957          * we can't safely write a btree page from here,
958          * we haven't done the locking hook
959          */
960         if (PageDirty(page))
961                 return -EAGAIN;
962         /*
963          * Buffers may be managed in a filesystem specific way.
964          * We must have no buffers or drop them.
965          */
966         if (page_has_private(page) &&
967             !try_to_release_page(page, GFP_KERNEL))
968                 return -EAGAIN;
969         return migrate_page(mapping, newpage, page, mode);
970 }
971 #endif
972
973
974 static int btree_writepages(struct address_space *mapping,
975                             struct writeback_control *wbc)
976 {
977         struct extent_io_tree *tree;
978         struct btrfs_fs_info *fs_info;
979         int ret;
980
981         tree = &BTRFS_I(mapping->host)->io_tree;
982         if (wbc->sync_mode == WB_SYNC_NONE) {
983
984                 if (wbc->for_kupdate)
985                         return 0;
986
987                 fs_info = BTRFS_I(mapping->host)->root->fs_info;
988                 /* this is a bit racy, but that's ok */
989                 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
990                                              BTRFS_DIRTY_METADATA_THRESH);
991                 if (ret < 0)
992                         return 0;
993         }
994         return btree_write_cache_pages(mapping, wbc);
995 }
996
997 static int btree_readpage(struct file *file, struct page *page)
998 {
999         struct extent_io_tree *tree;
1000         tree = &BTRFS_I(page->mapping->host)->io_tree;
1001         return extent_read_full_page(tree, page, btree_get_extent, 0);
1002 }
1003
1004 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
1005 {
1006         if (PageWriteback(page) || PageDirty(page))
1007                 return 0;
1008
1009         return try_release_extent_buffer(page);
1010 }
1011
1012 static void btree_invalidatepage(struct page *page, unsigned int offset,
1013                                  unsigned int length)
1014 {
1015         struct extent_io_tree *tree;
1016         tree = &BTRFS_I(page->mapping->host)->io_tree;
1017         extent_invalidatepage(tree, page, offset);
1018         btree_releasepage(page, GFP_NOFS);
1019         if (PagePrivate(page)) {
1020                 printk(KERN_WARNING "btrfs warning page private not zero "
1021                        "on page %llu\n", (unsigned long long)page_offset(page));
1022                 ClearPagePrivate(page);
1023                 set_page_private(page, 0);
1024                 page_cache_release(page);
1025         }
1026 }
1027
1028 static int btree_set_page_dirty(struct page *page)
1029 {
1030 #ifdef DEBUG
1031         struct extent_buffer *eb;
1032
1033         BUG_ON(!PagePrivate(page));
1034         eb = (struct extent_buffer *)page->private;
1035         BUG_ON(!eb);
1036         BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1037         BUG_ON(!atomic_read(&eb->refs));
1038         btrfs_assert_tree_locked(eb);
1039 #endif
1040         return __set_page_dirty_nobuffers(page);
1041 }
1042
1043 static const struct address_space_operations btree_aops = {
1044         .readpage       = btree_readpage,
1045         .writepages     = btree_writepages,
1046         .releasepage    = btree_releasepage,
1047         .invalidatepage = btree_invalidatepage,
1048 #ifdef CONFIG_MIGRATION
1049         .migratepage    = btree_migratepage,
1050 #endif
1051         .set_page_dirty = btree_set_page_dirty,
1052 };
1053
1054 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1055                          u64 parent_transid)
1056 {
1057         struct extent_buffer *buf = NULL;
1058         struct inode *btree_inode = root->fs_info->btree_inode;
1059         int ret = 0;
1060
1061         buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1062         if (!buf)
1063                 return 0;
1064         read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1065                                  buf, 0, WAIT_NONE, btree_get_extent, 0);
1066         free_extent_buffer(buf);
1067         return ret;
1068 }
1069
1070 int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1071                          int mirror_num, struct extent_buffer **eb)
1072 {
1073         struct extent_buffer *buf = NULL;
1074         struct inode *btree_inode = root->fs_info->btree_inode;
1075         struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1076         int ret;
1077
1078         buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1079         if (!buf)
1080                 return 0;
1081
1082         set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1083
1084         ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1085                                        btree_get_extent, mirror_num);
1086         if (ret) {
1087                 free_extent_buffer(buf);
1088                 return ret;
1089         }
1090
1091         if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1092                 free_extent_buffer(buf);
1093                 return -EIO;
1094         } else if (extent_buffer_uptodate(buf)) {
1095                 *eb = buf;
1096         } else {
1097                 free_extent_buffer(buf);
1098         }
1099         return 0;
1100 }
1101
1102 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
1103                                             u64 bytenr, u32 blocksize)
1104 {
1105         struct inode *btree_inode = root->fs_info->btree_inode;
1106         struct extent_buffer *eb;
1107         eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
1108                                 bytenr, blocksize);
1109         return eb;
1110 }
1111
1112 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1113                                                  u64 bytenr, u32 blocksize)
1114 {
1115         struct inode *btree_inode = root->fs_info->btree_inode;
1116         struct extent_buffer *eb;
1117
1118         eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
1119                                  bytenr, blocksize);
1120         return eb;
1121 }
1122
1123
1124 int btrfs_write_tree_block(struct extent_buffer *buf)
1125 {
1126         return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1127                                         buf->start + buf->len - 1);
1128 }
1129
1130 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1131 {
1132         return filemap_fdatawait_range(buf->pages[0]->mapping,
1133                                        buf->start, buf->start + buf->len - 1);
1134 }
1135
1136 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
1137                                       u32 blocksize, u64 parent_transid)
1138 {
1139         struct extent_buffer *buf = NULL;
1140         int ret;
1141
1142         buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1143         if (!buf)
1144                 return NULL;
1145
1146         ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
1147         if (ret) {
1148                 free_extent_buffer(buf);
1149                 return NULL;
1150         }
1151         return buf;
1152
1153 }
1154
1155 void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1156                       struct extent_buffer *buf)
1157 {
1158         struct btrfs_fs_info *fs_info = root->fs_info;
1159
1160         if (btrfs_header_generation(buf) ==
1161             fs_info->running_transaction->transid) {
1162                 btrfs_assert_tree_locked(buf);
1163
1164                 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1165                         __percpu_counter_add(&fs_info->dirty_metadata_bytes,
1166                                              -buf->len,
1167                                              fs_info->dirty_metadata_batch);
1168                         /* ugh, clear_extent_buffer_dirty needs to lock the page */
1169                         btrfs_set_lock_blocking(buf);
1170                         clear_extent_buffer_dirty(buf);
1171                 }
1172         }
1173 }
1174
1175 static void __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
1176                          u32 stripesize, struct btrfs_root *root,
1177                          struct btrfs_fs_info *fs_info,
1178                          u64 objectid)
1179 {
1180         root->node = NULL;
1181         root->commit_root = NULL;
1182         root->sectorsize = sectorsize;
1183         root->nodesize = nodesize;
1184         root->leafsize = leafsize;
1185         root->stripesize = stripesize;
1186         root->ref_cows = 0;
1187         root->track_dirty = 0;
1188         root->in_radix = 0;
1189         root->orphan_item_inserted = 0;
1190         root->orphan_cleanup_state = 0;
1191
1192         root->objectid = objectid;
1193         root->last_trans = 0;
1194         root->highest_objectid = 0;
1195         root->nr_delalloc_inodes = 0;
1196         root->nr_ordered_extents = 0;
1197         root->name = NULL;
1198         root->inode_tree = RB_ROOT;
1199         INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1200         root->block_rsv = NULL;
1201         root->orphan_block_rsv = NULL;
1202
1203         INIT_LIST_HEAD(&root->dirty_list);
1204         INIT_LIST_HEAD(&root->root_list);
1205         INIT_LIST_HEAD(&root->delalloc_inodes);
1206         INIT_LIST_HEAD(&root->delalloc_root);
1207         INIT_LIST_HEAD(&root->ordered_extents);
1208         INIT_LIST_HEAD(&root->ordered_root);
1209         INIT_LIST_HEAD(&root->logged_list[0]);
1210         INIT_LIST_HEAD(&root->logged_list[1]);
1211         spin_lock_init(&root->orphan_lock);
1212         spin_lock_init(&root->inode_lock);
1213         spin_lock_init(&root->delalloc_lock);
1214         spin_lock_init(&root->ordered_extent_lock);
1215         spin_lock_init(&root->accounting_lock);
1216         spin_lock_init(&root->log_extents_lock[0]);
1217         spin_lock_init(&root->log_extents_lock[1]);
1218         mutex_init(&root->objectid_mutex);
1219         mutex_init(&root->log_mutex);
1220         init_waitqueue_head(&root->log_writer_wait);
1221         init_waitqueue_head(&root->log_commit_wait[0]);
1222         init_waitqueue_head(&root->log_commit_wait[1]);
1223         atomic_set(&root->log_commit[0], 0);
1224         atomic_set(&root->log_commit[1], 0);
1225         atomic_set(&root->log_writers, 0);
1226         atomic_set(&root->log_batch, 0);
1227         atomic_set(&root->orphan_inodes, 0);
1228         atomic_set(&root->refs, 1);
1229         root->log_transid = 0;
1230         root->last_log_commit = 0;
1231         extent_io_tree_init(&root->dirty_log_pages,
1232                              fs_info->btree_inode->i_mapping);
1233
1234         memset(&root->root_key, 0, sizeof(root->root_key));
1235         memset(&root->root_item, 0, sizeof(root->root_item));
1236         memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1237         memset(&root->root_kobj, 0, sizeof(root->root_kobj));
1238         root->defrag_trans_start = fs_info->generation;
1239         init_completion(&root->kobj_unregister);
1240         root->defrag_running = 0;
1241         root->root_key.objectid = objectid;
1242         root->anon_dev = 0;
1243
1244         spin_lock_init(&root->root_item_lock);
1245 }
1246
1247 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
1248 {
1249         struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
1250         if (root)
1251                 root->fs_info = fs_info;
1252         return root;
1253 }
1254
1255 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1256                                      struct btrfs_fs_info *fs_info,
1257                                      u64 objectid)
1258 {
1259         struct extent_buffer *leaf;
1260         struct btrfs_root *tree_root = fs_info->tree_root;
1261         struct btrfs_root *root;
1262         struct btrfs_key key;
1263         int ret = 0;
1264         u64 bytenr;
1265         uuid_le uuid;
1266
1267         root = btrfs_alloc_root(fs_info);
1268         if (!root)
1269                 return ERR_PTR(-ENOMEM);
1270
1271         __setup_root(tree_root->nodesize, tree_root->leafsize,
1272                      tree_root->sectorsize, tree_root->stripesize,
1273                      root, fs_info, objectid);
1274         root->root_key.objectid = objectid;
1275         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1276         root->root_key.offset = 0;
1277
1278         leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
1279                                       0, objectid, NULL, 0, 0, 0);
1280         if (IS_ERR(leaf)) {
1281                 ret = PTR_ERR(leaf);
1282                 leaf = NULL;
1283                 goto fail;
1284         }
1285
1286         bytenr = leaf->start;
1287         memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1288         btrfs_set_header_bytenr(leaf, leaf->start);
1289         btrfs_set_header_generation(leaf, trans->transid);
1290         btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1291         btrfs_set_header_owner(leaf, objectid);
1292         root->node = leaf;
1293
1294         write_extent_buffer(leaf, fs_info->fsid, btrfs_header_fsid(leaf),
1295                             BTRFS_FSID_SIZE);
1296         write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
1297                             btrfs_header_chunk_tree_uuid(leaf),
1298                             BTRFS_UUID_SIZE);
1299         btrfs_mark_buffer_dirty(leaf);
1300
1301         root->commit_root = btrfs_root_node(root);
1302         root->track_dirty = 1;
1303
1304
1305         root->root_item.flags = 0;
1306         root->root_item.byte_limit = 0;
1307         btrfs_set_root_bytenr(&root->root_item, leaf->start);
1308         btrfs_set_root_generation(&root->root_item, trans->transid);
1309         btrfs_set_root_level(&root->root_item, 0);
1310         btrfs_set_root_refs(&root->root_item, 1);
1311         btrfs_set_root_used(&root->root_item, leaf->len);
1312         btrfs_set_root_last_snapshot(&root->root_item, 0);
1313         btrfs_set_root_dirid(&root->root_item, 0);
1314         uuid_le_gen(&uuid);
1315         memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
1316         root->root_item.drop_level = 0;
1317
1318         key.objectid = objectid;
1319         key.type = BTRFS_ROOT_ITEM_KEY;
1320         key.offset = 0;
1321         ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1322         if (ret)
1323                 goto fail;
1324
1325         btrfs_tree_unlock(leaf);
1326
1327         return root;
1328
1329 fail:
1330         if (leaf) {
1331                 btrfs_tree_unlock(leaf);
1332                 free_extent_buffer(leaf);
1333         }
1334         kfree(root);
1335
1336         return ERR_PTR(ret);
1337 }
1338
1339 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1340                                          struct btrfs_fs_info *fs_info)
1341 {
1342         struct btrfs_root *root;
1343         struct btrfs_root *tree_root = fs_info->tree_root;
1344         struct extent_buffer *leaf;
1345
1346         root = btrfs_alloc_root(fs_info);
1347         if (!root)
1348                 return ERR_PTR(-ENOMEM);
1349
1350         __setup_root(tree_root->nodesize, tree_root->leafsize,
1351                      tree_root->sectorsize, tree_root->stripesize,
1352                      root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1353
1354         root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1355         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1356         root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1357         /*
1358          * log trees do not get reference counted because they go away
1359          * before a real commit is actually done.  They do store pointers
1360          * to file data extents, and those reference counts still get
1361          * updated (along with back refs to the log tree).
1362          */
1363         root->ref_cows = 0;
1364
1365         leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
1366                                       BTRFS_TREE_LOG_OBJECTID, NULL,
1367                                       0, 0, 0);
1368         if (IS_ERR(leaf)) {
1369                 kfree(root);
1370                 return ERR_CAST(leaf);
1371         }
1372
1373         memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1374         btrfs_set_header_bytenr(leaf, leaf->start);
1375         btrfs_set_header_generation(leaf, trans->transid);
1376         btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1377         btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1378         root->node = leaf;
1379
1380         write_extent_buffer(root->node, root->fs_info->fsid,
1381                             btrfs_header_fsid(root->node), BTRFS_FSID_SIZE);
1382         btrfs_mark_buffer_dirty(root->node);
1383         btrfs_tree_unlock(root->node);
1384         return root;
1385 }
1386
1387 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1388                              struct btrfs_fs_info *fs_info)
1389 {
1390         struct btrfs_root *log_root;
1391
1392         log_root = alloc_log_tree(trans, fs_info);
1393         if (IS_ERR(log_root))
1394                 return PTR_ERR(log_root);
1395         WARN_ON(fs_info->log_root_tree);
1396         fs_info->log_root_tree = log_root;
1397         return 0;
1398 }
1399
1400 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1401                        struct btrfs_root *root)
1402 {
1403         struct btrfs_root *log_root;
1404         struct btrfs_inode_item *inode_item;
1405
1406         log_root = alloc_log_tree(trans, root->fs_info);
1407         if (IS_ERR(log_root))
1408                 return PTR_ERR(log_root);
1409
1410         log_root->last_trans = trans->transid;
1411         log_root->root_key.offset = root->root_key.objectid;
1412
1413         inode_item = &log_root->root_item.inode;
1414         btrfs_set_stack_inode_generation(inode_item, 1);
1415         btrfs_set_stack_inode_size(inode_item, 3);
1416         btrfs_set_stack_inode_nlink(inode_item, 1);
1417         btrfs_set_stack_inode_nbytes(inode_item, root->leafsize);
1418         btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1419
1420         btrfs_set_root_node(&log_root->root_item, log_root->node);
1421
1422         WARN_ON(root->log_root);
1423         root->log_root = log_root;
1424         root->log_transid = 0;
1425         root->last_log_commit = 0;
1426         return 0;
1427 }
1428
1429 static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1430                                                struct btrfs_key *key)
1431 {
1432         struct btrfs_root *root;
1433         struct btrfs_fs_info *fs_info = tree_root->fs_info;
1434         struct btrfs_path *path;
1435         u64 generation;
1436         u32 blocksize;
1437         int ret;
1438
1439         path = btrfs_alloc_path();
1440         if (!path)
1441                 return ERR_PTR(-ENOMEM);
1442
1443         root = btrfs_alloc_root(fs_info);
1444         if (!root) {
1445                 ret = -ENOMEM;
1446                 goto alloc_fail;
1447         }
1448
1449         __setup_root(tree_root->nodesize, tree_root->leafsize,
1450                      tree_root->sectorsize, tree_root->stripesize,
1451                      root, fs_info, key->objectid);
1452
1453         ret = btrfs_find_root(tree_root, key, path,
1454                               &root->root_item, &root->root_key);
1455         if (ret) {
1456                 if (ret > 0)
1457                         ret = -ENOENT;
1458                 goto find_fail;
1459         }
1460
1461         generation = btrfs_root_generation(&root->root_item);
1462         blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1463         root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1464                                      blocksize, generation);
1465         if (!root->node) {
1466                 ret = -ENOMEM;
1467                 goto find_fail;
1468         } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1469                 ret = -EIO;
1470                 goto read_fail;
1471         }
1472         root->commit_root = btrfs_root_node(root);
1473 out:
1474         btrfs_free_path(path);
1475         return root;
1476
1477 read_fail:
1478         free_extent_buffer(root->node);
1479 find_fail:
1480         kfree(root);
1481 alloc_fail:
1482         root = ERR_PTR(ret);
1483         goto out;
1484 }
1485
1486 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1487                                       struct btrfs_key *location)
1488 {
1489         struct btrfs_root *root;
1490
1491         root = btrfs_read_tree_root(tree_root, location);
1492         if (IS_ERR(root))
1493                 return root;
1494
1495         if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1496                 root->ref_cows = 1;
1497                 btrfs_check_and_init_root_item(&root->root_item);
1498         }
1499
1500         return root;
1501 }
1502
1503 int btrfs_init_fs_root(struct btrfs_root *root)
1504 {
1505         int ret;
1506
1507         root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1508         root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1509                                         GFP_NOFS);
1510         if (!root->free_ino_pinned || !root->free_ino_ctl) {
1511                 ret = -ENOMEM;
1512                 goto fail;
1513         }
1514
1515         btrfs_init_free_ino_ctl(root);
1516         mutex_init(&root->fs_commit_mutex);
1517         spin_lock_init(&root->cache_lock);
1518         init_waitqueue_head(&root->cache_wait);
1519
1520         ret = get_anon_bdev(&root->anon_dev);
1521         if (ret)
1522                 goto fail;
1523         return 0;
1524 fail:
1525         kfree(root->free_ino_ctl);
1526         kfree(root->free_ino_pinned);
1527         return ret;
1528 }
1529
1530 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1531                                                u64 root_id)
1532 {
1533         struct btrfs_root *root;
1534
1535         spin_lock(&fs_info->fs_roots_radix_lock);
1536         root = radix_tree_lookup(&fs_info->fs_roots_radix,
1537                                  (unsigned long)root_id);
1538         spin_unlock(&fs_info->fs_roots_radix_lock);
1539         return root;
1540 }
1541
1542 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1543                          struct btrfs_root *root)
1544 {
1545         int ret;
1546
1547         ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1548         if (ret)
1549                 return ret;
1550
1551         spin_lock(&fs_info->fs_roots_radix_lock);
1552         ret = radix_tree_insert(&fs_info->fs_roots_radix,
1553                                 (unsigned long)root->root_key.objectid,
1554                                 root);
1555         if (ret == 0)
1556                 root->in_radix = 1;
1557         spin_unlock(&fs_info->fs_roots_radix_lock);
1558         radix_tree_preload_end();
1559
1560         return ret;
1561 }
1562
1563 struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
1564                                               struct btrfs_key *location)
1565 {
1566         struct btrfs_root *root;
1567         int ret;
1568
1569         if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1570                 return fs_info->tree_root;
1571         if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1572                 return fs_info->extent_root;
1573         if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1574                 return fs_info->chunk_root;
1575         if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1576                 return fs_info->dev_root;
1577         if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1578                 return fs_info->csum_root;
1579         if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1580                 return fs_info->quota_root ? fs_info->quota_root :
1581                                              ERR_PTR(-ENOENT);
1582         if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1583                 return fs_info->uuid_root ? fs_info->uuid_root :
1584                                             ERR_PTR(-ENOENT);
1585 again:
1586         root = btrfs_lookup_fs_root(fs_info, location->objectid);
1587         if (root) {
1588                 if (btrfs_root_refs(&root->root_item) == 0)
1589                         return ERR_PTR(-ENOENT);
1590                 return root;
1591         }
1592
1593         root = btrfs_read_fs_root(fs_info->tree_root, location);
1594         if (IS_ERR(root))
1595                 return root;
1596
1597         if (btrfs_root_refs(&root->root_item) == 0) {
1598                 ret = -ENOENT;
1599                 goto fail;
1600         }
1601
1602         ret = btrfs_init_fs_root(root);
1603         if (ret)
1604                 goto fail;
1605
1606         ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid);
1607         if (ret < 0)
1608                 goto fail;
1609         if (ret == 0)
1610                 root->orphan_item_inserted = 1;
1611
1612         ret = btrfs_insert_fs_root(fs_info, root);
1613         if (ret) {
1614                 if (ret == -EEXIST) {
1615                         free_fs_root(root);
1616                         goto again;
1617                 }
1618                 goto fail;
1619         }
1620         return root;
1621 fail:
1622         free_fs_root(root);
1623         return ERR_PTR(ret);
1624 }
1625
1626 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1627 {
1628         struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1629         int ret = 0;
1630         struct btrfs_device *device;
1631         struct backing_dev_info *bdi;
1632
1633         rcu_read_lock();
1634         list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1635                 if (!device->bdev)
1636                         continue;
1637                 bdi = blk_get_backing_dev_info(device->bdev);
1638                 if (bdi && bdi_congested(bdi, bdi_bits)) {
1639                         ret = 1;
1640                         break;
1641                 }
1642         }
1643         rcu_read_unlock();
1644         return ret;
1645 }
1646
1647 /*
1648  * If this fails, caller must call bdi_destroy() to get rid of the
1649  * bdi again.
1650  */
1651 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1652 {
1653         int err;
1654
1655         bdi->capabilities = BDI_CAP_MAP_COPY;
1656         err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
1657         if (err)
1658                 return err;
1659
1660         bdi->ra_pages   = default_backing_dev_info.ra_pages;
1661         bdi->congested_fn       = btrfs_congested_fn;
1662         bdi->congested_data     = info;
1663         return 0;
1664 }
1665
1666 /*
1667  * called by the kthread helper functions to finally call the bio end_io
1668  * functions.  This is where read checksum verification actually happens
1669  */
1670 static void end_workqueue_fn(struct btrfs_work *work)
1671 {
1672         struct bio *bio;
1673         struct end_io_wq *end_io_wq;
1674         struct btrfs_fs_info *fs_info;
1675         int error;
1676
1677         end_io_wq = container_of(work, struct end_io_wq, work);
1678         bio = end_io_wq->bio;
1679         fs_info = end_io_wq->info;
1680
1681         error = end_io_wq->error;
1682         bio->bi_private = end_io_wq->private;
1683         bio->bi_end_io = end_io_wq->end_io;
1684         kfree(end_io_wq);
1685         bio_endio(bio, error);
1686 }
1687
1688 static int cleaner_kthread(void *arg)
1689 {
1690         struct btrfs_root *root = arg;
1691         int again;
1692
1693         do {
1694                 again = 0;
1695
1696                 /* Make the cleaner go to sleep early. */
1697                 if (btrfs_need_cleaner_sleep(root))
1698                         goto sleep;
1699
1700                 if (!mutex_trylock(&root->fs_info->cleaner_mutex))
1701                         goto sleep;
1702
1703                 /*
1704                  * Avoid the problem that we change the status of the fs
1705                  * during the above check and trylock.
1706                  */
1707                 if (btrfs_need_cleaner_sleep(root)) {
1708                         mutex_unlock(&root->fs_info->cleaner_mutex);
1709                         goto sleep;
1710                 }
1711
1712                 btrfs_run_delayed_iputs(root);
1713                 again = btrfs_clean_one_deleted_snapshot(root);
1714                 mutex_unlock(&root->fs_info->cleaner_mutex);
1715
1716                 /*
1717                  * The defragger has dealt with the R/O remount and umount,
1718                  * needn't do anything special here.
1719                  */
1720                 btrfs_run_defrag_inodes(root->fs_info);
1721 sleep:
1722                 if (!try_to_freeze() && !again) {
1723                         set_current_state(TASK_INTERRUPTIBLE);
1724                         if (!kthread_should_stop())
1725                                 schedule();
1726                         __set_current_state(TASK_RUNNING);
1727                 }
1728         } while (!kthread_should_stop());
1729         return 0;
1730 }
1731
1732 static int transaction_kthread(void *arg)
1733 {
1734         struct btrfs_root *root = arg;
1735         struct btrfs_trans_handle *trans;
1736         struct btrfs_transaction *cur;
1737         u64 transid;
1738         unsigned long now;
1739         unsigned long delay;
1740         bool cannot_commit;
1741
1742         do {
1743                 cannot_commit = false;
1744                 delay = HZ * root->fs_info->commit_interval;
1745                 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1746
1747                 spin_lock(&root->fs_info->trans_lock);
1748                 cur = root->fs_info->running_transaction;
1749                 if (!cur) {
1750                         spin_unlock(&root->fs_info->trans_lock);
1751                         goto sleep;
1752                 }
1753
1754                 now = get_seconds();
1755                 if (cur->state < TRANS_STATE_BLOCKED &&
1756                     (now < cur->start_time ||
1757                      now - cur->start_time < root->fs_info->commit_interval)) {
1758                         spin_unlock(&root->fs_info->trans_lock);
1759                         delay = HZ * 5;
1760                         goto sleep;
1761                 }
1762                 transid = cur->transid;
1763                 spin_unlock(&root->fs_info->trans_lock);
1764
1765                 /* If the file system is aborted, this will always fail. */
1766                 trans = btrfs_attach_transaction(root);
1767                 if (IS_ERR(trans)) {
1768                         if (PTR_ERR(trans) != -ENOENT)
1769                                 cannot_commit = true;
1770                         goto sleep;
1771                 }
1772                 if (transid == trans->transid) {
1773                         btrfs_commit_transaction(trans, root);
1774                 } else {
1775                         btrfs_end_transaction(trans, root);
1776                 }
1777 sleep:
1778                 wake_up_process(root->fs_info->cleaner_kthread);
1779                 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1780
1781                 if (!try_to_freeze()) {
1782                         set_current_state(TASK_INTERRUPTIBLE);
1783                         if (!kthread_should_stop() &&
1784                             (!btrfs_transaction_blocked(root->fs_info) ||
1785                              cannot_commit))
1786                                 schedule_timeout(delay);
1787                         __set_current_state(TASK_RUNNING);
1788                 }
1789         } while (!kthread_should_stop());
1790         return 0;
1791 }
1792
1793 /*
1794  * this will find the highest generation in the array of
1795  * root backups.  The index of the highest array is returned,
1796  * or -1 if we can't find anything.
1797  *
1798  * We check to make sure the array is valid by comparing the
1799  * generation of the latest  root in the array with the generation
1800  * in the super block.  If they don't match we pitch it.
1801  */
1802 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1803 {
1804         u64 cur;
1805         int newest_index = -1;
1806         struct btrfs_root_backup *root_backup;
1807         int i;
1808
1809         for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1810                 root_backup = info->super_copy->super_roots + i;
1811                 cur = btrfs_backup_tree_root_gen(root_backup);
1812                 if (cur == newest_gen)
1813                         newest_index = i;
1814         }
1815
1816         /* check to see if we actually wrapped around */
1817         if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1818                 root_backup = info->super_copy->super_roots;
1819                 cur = btrfs_backup_tree_root_gen(root_backup);
1820                 if (cur == newest_gen)
1821                         newest_index = 0;
1822         }
1823         return newest_index;
1824 }
1825
1826
1827 /*
1828  * find the oldest backup so we know where to store new entries
1829  * in the backup array.  This will set the backup_root_index
1830  * field in the fs_info struct
1831  */
1832 static void find_oldest_super_backup(struct btrfs_fs_info *info,
1833                                      u64 newest_gen)
1834 {
1835         int newest_index = -1;
1836
1837         newest_index = find_newest_super_backup(info, newest_gen);
1838         /* if there was garbage in there, just move along */
1839         if (newest_index == -1) {
1840                 info->backup_root_index = 0;
1841         } else {
1842                 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1843         }
1844 }
1845
1846 /*
1847  * copy all the root pointers into the super backup array.
1848  * this will bump the backup pointer by one when it is
1849  * done
1850  */
1851 static void backup_super_roots(struct btrfs_fs_info *info)
1852 {
1853         int next_backup;
1854         struct btrfs_root_backup *root_backup;
1855         int last_backup;
1856
1857         next_backup = info->backup_root_index;
1858         last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1859                 BTRFS_NUM_BACKUP_ROOTS;
1860
1861         /*
1862          * just overwrite the last backup if we're at the same generation
1863          * this happens only at umount
1864          */
1865         root_backup = info->super_for_commit->super_roots + last_backup;
1866         if (btrfs_backup_tree_root_gen(root_backup) ==
1867             btrfs_header_generation(info->tree_root->node))
1868                 next_backup = last_backup;
1869
1870         root_backup = info->super_for_commit->super_roots + next_backup;
1871
1872         /*
1873          * make sure all of our padding and empty slots get zero filled
1874          * regardless of which ones we use today
1875          */
1876         memset(root_backup, 0, sizeof(*root_backup));
1877
1878         info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1879
1880         btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1881         btrfs_set_backup_tree_root_gen(root_backup,
1882                                btrfs_header_generation(info->tree_root->node));
1883
1884         btrfs_set_backup_tree_root_level(root_backup,
1885                                btrfs_header_level(info->tree_root->node));
1886
1887         btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1888         btrfs_set_backup_chunk_root_gen(root_backup,
1889                                btrfs_header_generation(info->chunk_root->node));
1890         btrfs_set_backup_chunk_root_level(root_backup,
1891                                btrfs_header_level(info->chunk_root->node));
1892
1893         btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1894         btrfs_set_backup_extent_root_gen(root_backup,
1895                                btrfs_header_generation(info->extent_root->node));
1896         btrfs_set_backup_extent_root_level(root_backup,
1897                                btrfs_header_level(info->extent_root->node));
1898
1899         /*
1900          * we might commit during log recovery, which happens before we set
1901          * the fs_root.  Make sure it is valid before we fill it in.
1902          */
1903         if (info->fs_root && info->fs_root->node) {
1904                 btrfs_set_backup_fs_root(root_backup,
1905                                          info->fs_root->node->start);
1906                 btrfs_set_backup_fs_root_gen(root_backup,
1907                                btrfs_header_generation(info->fs_root->node));
1908                 btrfs_set_backup_fs_root_level(root_backup,
1909                                btrfs_header_level(info->fs_root->node));
1910         }
1911
1912         btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1913         btrfs_set_backup_dev_root_gen(root_backup,
1914                                btrfs_header_generation(info->dev_root->node));
1915         btrfs_set_backup_dev_root_level(root_backup,
1916                                        btrfs_header_level(info->dev_root->node));
1917
1918         btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1919         btrfs_set_backup_csum_root_gen(root_backup,
1920                                btrfs_header_generation(info->csum_root->node));
1921         btrfs_set_backup_csum_root_level(root_backup,
1922                                btrfs_header_level(info->csum_root->node));
1923
1924         btrfs_set_backup_total_bytes(root_backup,
1925                              btrfs_super_total_bytes(info->super_copy));
1926         btrfs_set_backup_bytes_used(root_backup,
1927                              btrfs_super_bytes_used(info->super_copy));
1928         btrfs_set_backup_num_devices(root_backup,
1929                              btrfs_super_num_devices(info->super_copy));
1930
1931         /*
1932          * if we don't copy this out to the super_copy, it won't get remembered
1933          * for the next commit
1934          */
1935         memcpy(&info->super_copy->super_roots,
1936                &info->super_for_commit->super_roots,
1937                sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1938 }
1939
1940 /*
1941  * this copies info out of the root backup array and back into
1942  * the in-memory super block.  It is meant to help iterate through
1943  * the array, so you send it the number of backups you've already
1944  * tried and the last backup index you used.
1945  *
1946  * this returns -1 when it has tried all the backups
1947  */
1948 static noinline int next_root_backup(struct btrfs_fs_info *info,
1949                                      struct btrfs_super_block *super,
1950                                      int *num_backups_tried, int *backup_index)
1951 {
1952         struct btrfs_root_backup *root_backup;
1953         int newest = *backup_index;
1954
1955         if (*num_backups_tried == 0) {
1956                 u64 gen = btrfs_super_generation(super);
1957
1958                 newest = find_newest_super_backup(info, gen);
1959                 if (newest == -1)
1960                         return -1;
1961
1962                 *backup_index = newest;
1963                 *num_backups_tried = 1;
1964         } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
1965                 /* we've tried all the backups, all done */
1966                 return -1;
1967         } else {
1968                 /* jump to the next oldest backup */
1969                 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
1970                         BTRFS_NUM_BACKUP_ROOTS;
1971                 *backup_index = newest;
1972                 *num_backups_tried += 1;
1973         }
1974         root_backup = super->super_roots + newest;
1975
1976         btrfs_set_super_generation(super,
1977                                    btrfs_backup_tree_root_gen(root_backup));
1978         btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1979         btrfs_set_super_root_level(super,
1980                                    btrfs_backup_tree_root_level(root_backup));
1981         btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1982
1983         /*
1984          * fixme: the total bytes and num_devices need to match or we should
1985          * need a fsck
1986          */
1987         btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1988         btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1989         return 0;
1990 }
1991
1992 /* helper to cleanup workers */
1993 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
1994 {
1995         btrfs_stop_workers(&fs_info->generic_worker);
1996         btrfs_stop_workers(&fs_info->fixup_workers);
1997         btrfs_stop_workers(&fs_info->delalloc_workers);
1998         btrfs_stop_workers(&fs_info->workers);
1999         btrfs_stop_workers(&fs_info->endio_workers);
2000         btrfs_stop_workers(&fs_info->endio_meta_workers);
2001         btrfs_stop_workers(&fs_info->endio_raid56_workers);
2002         btrfs_stop_workers(&fs_info->rmw_workers);
2003         btrfs_stop_workers(&fs_info->endio_meta_write_workers);
2004         btrfs_stop_workers(&fs_info->endio_write_workers);
2005         btrfs_stop_workers(&fs_info->endio_freespace_worker);
2006         btrfs_stop_workers(&fs_info->submit_workers);
2007         btrfs_stop_workers(&fs_info->delayed_workers);
2008         btrfs_stop_workers(&fs_info->caching_workers);
2009         btrfs_stop_workers(&fs_info->readahead_workers);
2010         btrfs_stop_workers(&fs_info->flush_workers);
2011         btrfs_stop_workers(&fs_info->qgroup_rescan_workers);
2012 }
2013
2014 /* helper to cleanup tree roots */
2015 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2016 {
2017         free_extent_buffer(info->tree_root->node);
2018         free_extent_buffer(info->tree_root->commit_root);
2019         info->tree_root->node = NULL;
2020         info->tree_root->commit_root = NULL;
2021
2022         if (info->dev_root) {
2023                 free_extent_buffer(info->dev_root->node);
2024                 free_extent_buffer(info->dev_root->commit_root);
2025                 info->dev_root->node = NULL;
2026                 info->dev_root->commit_root = NULL;
2027         }
2028         if (info->extent_root) {
2029                 free_extent_buffer(info->extent_root->node);
2030                 free_extent_buffer(info->extent_root->commit_root);
2031                 info->extent_root->node = NULL;
2032                 info->extent_root->commit_root = NULL;
2033         }
2034         if (info->csum_root) {
2035                 free_extent_buffer(info->csum_root->node);
2036                 free_extent_buffer(info->csum_root->commit_root);
2037                 info->csum_root->node = NULL;
2038                 info->csum_root->commit_root = NULL;
2039         }
2040         if (info->quota_root) {
2041                 free_extent_buffer(info->quota_root->node);
2042                 free_extent_buffer(info->quota_root->commit_root);
2043                 info->quota_root->node = NULL;
2044                 info->quota_root->commit_root = NULL;
2045         }
2046         if (info->uuid_root) {
2047                 free_extent_buffer(info->uuid_root->node);
2048                 free_extent_buffer(info->uuid_root->commit_root);
2049                 info->uuid_root->node = NULL;
2050                 info->uuid_root->commit_root = NULL;
2051         }
2052         if (chunk_root) {
2053                 free_extent_buffer(info->chunk_root->node);
2054                 free_extent_buffer(info->chunk_root->commit_root);
2055                 info->chunk_root->node = NULL;
2056                 info->chunk_root->commit_root = NULL;
2057         }
2058 }
2059
2060 static void del_fs_roots(struct btrfs_fs_info *fs_info)
2061 {
2062         int ret;
2063         struct btrfs_root *gang[8];
2064         int i;
2065
2066         while (!list_empty(&fs_info->dead_roots)) {
2067                 gang[0] = list_entry(fs_info->dead_roots.next,
2068                                      struct btrfs_root, root_list);
2069                 list_del(&gang[0]->root_list);
2070
2071                 if (gang[0]->in_radix) {
2072                         btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2073                 } else {
2074                         free_extent_buffer(gang[0]->node);
2075                         free_extent_buffer(gang[0]->commit_root);
2076                         btrfs_put_fs_root(gang[0]);
2077                 }
2078         }
2079
2080         while (1) {
2081                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2082                                              (void **)gang, 0,
2083                                              ARRAY_SIZE(gang));
2084                 if (!ret)
2085                         break;
2086                 for (i = 0; i < ret; i++)
2087                         btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2088         }
2089 }
2090
2091 int open_ctree(struct super_block *sb,
2092                struct btrfs_fs_devices *fs_devices,
2093                char *options)
2094 {
2095         u32 sectorsize;
2096         u32 nodesize;
2097         u32 leafsize;
2098         u32 blocksize;
2099         u32 stripesize;
2100         u64 generation;
2101         u64 features;
2102         struct btrfs_key location;
2103         struct buffer_head *bh;
2104         struct btrfs_super_block *disk_super;
2105         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2106         struct btrfs_root *tree_root;
2107         struct btrfs_root *extent_root;
2108         struct btrfs_root *csum_root;
2109         struct btrfs_root *chunk_root;
2110         struct btrfs_root *dev_root;
2111         struct btrfs_root *quota_root;
2112         struct btrfs_root *uuid_root;
2113         struct btrfs_root *log_tree_root;
2114         int ret;
2115         int err = -EINVAL;
2116         int num_backups_tried = 0;
2117         int backup_index = 0;
2118         bool create_uuid_tree;
2119         bool check_uuid_tree;
2120
2121         tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
2122         chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
2123         if (!tree_root || !chunk_root) {
2124                 err = -ENOMEM;
2125                 goto fail;
2126         }
2127
2128         ret = init_srcu_struct(&fs_info->subvol_srcu);
2129         if (ret) {
2130                 err = ret;
2131                 goto fail;
2132         }
2133
2134         ret = setup_bdi(fs_info, &fs_info->bdi);
2135         if (ret) {
2136                 err = ret;
2137                 goto fail_srcu;
2138         }
2139
2140         ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0);
2141         if (ret) {
2142                 err = ret;
2143                 goto fail_bdi;
2144         }
2145         fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE *
2146                                         (1 + ilog2(nr_cpu_ids));
2147
2148         ret = percpu_counter_init(&fs_info->delalloc_bytes, 0);
2149         if (ret) {
2150                 err = ret;
2151                 goto fail_dirty_metadata_bytes;
2152         }
2153
2154         fs_info->btree_inode = new_inode(sb);
2155         if (!fs_info->btree_inode) {
2156                 err = -ENOMEM;
2157                 goto fail_delalloc_bytes;
2158         }
2159
2160         mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2161
2162         INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2163         INIT_LIST_HEAD(&fs_info->trans_list);
2164         INIT_LIST_HEAD(&fs_info->dead_roots);
2165         INIT_LIST_HEAD(&fs_info->delayed_iputs);
2166         INIT_LIST_HEAD(&fs_info->delalloc_roots);
2167         INIT_LIST_HEAD(&fs_info->caching_block_groups);
2168         spin_lock_init(&fs_info->delalloc_root_lock);
2169         spin_lock_init(&fs_info->trans_lock);
2170         spin_lock_init(&fs_info->fs_roots_radix_lock);
2171         spin_lock_init(&fs_info->delayed_iput_lock);
2172         spin_lock_init(&fs_info->defrag_inodes_lock);
2173         spin_lock_init(&fs_info->free_chunk_lock);
2174         spin_lock_init(&fs_info->tree_mod_seq_lock);
2175         spin_lock_init(&fs_info->super_lock);
2176         rwlock_init(&fs_info->tree_mod_log_lock);
2177         mutex_init(&fs_info->reloc_mutex);
2178         seqlock_init(&fs_info->profiles_lock);
2179
2180         init_completion(&fs_info->kobj_unregister);
2181         INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2182         INIT_LIST_HEAD(&fs_info->space_info);
2183         INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2184         btrfs_mapping_init(&fs_info->mapping_tree);
2185         btrfs_init_block_rsv(&fs_info->global_block_rsv,
2186                              BTRFS_BLOCK_RSV_GLOBAL);
2187         btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2188                              BTRFS_BLOCK_RSV_DELALLOC);
2189         btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2190         btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2191         btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2192         btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2193                              BTRFS_BLOCK_RSV_DELOPS);
2194         atomic_set(&fs_info->nr_async_submits, 0);
2195         atomic_set(&fs_info->async_delalloc_pages, 0);
2196         atomic_set(&fs_info->async_submit_draining, 0);
2197         atomic_set(&fs_info->nr_async_bios, 0);
2198         atomic_set(&fs_info->defrag_running, 0);
2199         atomic64_set(&fs_info->tree_mod_seq, 0);
2200         fs_info->sb = sb;
2201         fs_info->max_inline = 8192 * 1024;
2202         fs_info->metadata_ratio = 0;
2203         fs_info->defrag_inodes = RB_ROOT;
2204         fs_info->free_chunk_space = 0;
2205         fs_info->tree_mod_log = RB_ROOT;
2206         fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2207
2208         /* readahead state */
2209         INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
2210         spin_lock_init(&fs_info->reada_lock);
2211
2212         fs_info->thread_pool_size = min_t(unsigned long,
2213                                           num_online_cpus() + 2, 8);
2214
2215         INIT_LIST_HEAD(&fs_info->ordered_roots);
2216         spin_lock_init(&fs_info->ordered_root_lock);
2217         fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2218                                         GFP_NOFS);
2219         if (!fs_info->delayed_root) {
2220                 err = -ENOMEM;
2221                 goto fail_iput;
2222         }
2223         btrfs_init_delayed_root(fs_info->delayed_root);
2224
2225         mutex_init(&fs_info->scrub_lock);
2226         atomic_set(&fs_info->scrubs_running, 0);
2227         atomic_set(&fs_info->scrub_pause_req, 0);
2228         atomic_set(&fs_info->scrubs_paused, 0);
2229         atomic_set(&fs_info->scrub_cancel_req, 0);
2230         init_waitqueue_head(&fs_info->scrub_pause_wait);
2231         init_rwsem(&fs_info->scrub_super_lock);
2232         fs_info->scrub_workers_refcnt = 0;
2233 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2234         fs_info->check_integrity_print_mask = 0;
2235 #endif
2236
2237         spin_lock_init(&fs_info->balance_lock);
2238         mutex_init(&fs_info->balance_mutex);
2239         atomic_set(&fs_info->balance_running, 0);
2240         atomic_set(&fs_info->balance_pause_req, 0);
2241         atomic_set(&fs_info->balance_cancel_req, 0);
2242         fs_info->balance_ctl = NULL;
2243         init_waitqueue_head(&fs_info->balance_wait_q);
2244
2245         sb->s_blocksize = 4096;
2246         sb->s_blocksize_bits = blksize_bits(4096);
2247         sb->s_bdi = &fs_info->bdi;
2248
2249         fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2250         set_nlink(fs_info->btree_inode, 1);
2251         /*
2252          * we set the i_size on the btree inode to the max possible int.
2253          * the real end of the address space is determined by all of
2254          * the devices in the system
2255          */
2256         fs_info->btree_inode->i_size = OFFSET_MAX;
2257         fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
2258         fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
2259
2260         RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
2261         extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
2262                              fs_info->btree_inode->i_mapping);
2263         BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
2264         extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
2265
2266         BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
2267
2268         BTRFS_I(fs_info->btree_inode)->root = tree_root;
2269         memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2270                sizeof(struct btrfs_key));
2271         set_bit(BTRFS_INODE_DUMMY,
2272                 &BTRFS_I(fs_info->btree_inode)->runtime_flags);
2273         insert_inode_hash(fs_info->btree_inode);
2274
2275         spin_lock_init(&fs_info->block_group_cache_lock);
2276         fs_info->block_group_cache_tree = RB_ROOT;
2277         fs_info->first_logical_byte = (u64)-1;
2278
2279         extent_io_tree_init(&fs_info->freed_extents[0],
2280                              fs_info->btree_inode->i_mapping);
2281         extent_io_tree_init(&fs_info->freed_extents[1],
2282                              fs_info->btree_inode->i_mapping);
2283         fs_info->pinned_extents = &fs_info->freed_extents[0];
2284         fs_info->do_barriers = 1;
2285
2286
2287         mutex_init(&fs_info->ordered_operations_mutex);
2288         mutex_init(&fs_info->ordered_extent_flush_mutex);
2289         mutex_init(&fs_info->tree_log_mutex);
2290         mutex_init(&fs_info->chunk_mutex);
2291         mutex_init(&fs_info->transaction_kthread_mutex);
2292         mutex_init(&fs_info->cleaner_mutex);
2293         mutex_init(&fs_info->volume_mutex);
2294         init_rwsem(&fs_info->extent_commit_sem);
2295         init_rwsem(&fs_info->cleanup_work_sem);
2296         init_rwsem(&fs_info->subvol_sem);
2297         sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2298         fs_info->dev_replace.lock_owner = 0;
2299         atomic_set(&fs_info->dev_replace.nesting_level, 0);
2300         mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2301         mutex_init(&fs_info->dev_replace.lock_management_lock);
2302         mutex_init(&fs_info->dev_replace.lock);
2303
2304         spin_lock_init(&fs_info->qgroup_lock);
2305         mutex_init(&fs_info->qgroup_ioctl_lock);
2306         fs_info->qgroup_tree = RB_ROOT;
2307         INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2308         fs_info->qgroup_seq = 1;
2309         fs_info->quota_enabled = 0;
2310         fs_info->pending_quota_state = 0;
2311         fs_info->qgroup_ulist = NULL;
2312         mutex_init(&fs_info->qgroup_rescan_lock);
2313
2314         btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2315         btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2316
2317         init_waitqueue_head(&fs_info->transaction_throttle);
2318         init_waitqueue_head(&fs_info->transaction_wait);
2319         init_waitqueue_head(&fs_info->transaction_blocked_wait);
2320         init_waitqueue_head(&fs_info->async_submit_wait);
2321
2322         ret = btrfs_alloc_stripe_hash_table(fs_info);
2323         if (ret) {
2324                 err = ret;
2325                 goto fail_alloc;
2326         }
2327
2328         __setup_root(4096, 4096, 4096, 4096, tree_root,
2329                      fs_info, BTRFS_ROOT_TREE_OBJECTID);
2330
2331         invalidate_bdev(fs_devices->latest_bdev);
2332
2333         /*
2334          * Read super block and check the signature bytes only
2335          */
2336         bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2337         if (!bh) {
2338                 err = -EINVAL;
2339                 goto fail_alloc;
2340         }
2341
2342         /*
2343          * We want to check superblock checksum, the type is stored inside.
2344          * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2345          */
2346         if (btrfs_check_super_csum(bh->b_data)) {
2347                 printk(KERN_ERR "btrfs: superblock checksum mismatch\n");
2348                 err = -EINVAL;
2349                 goto fail_alloc;
2350         }
2351
2352         /*
2353          * super_copy is zeroed at allocation time and we never touch the
2354          * following bytes up to INFO_SIZE, the checksum is calculated from
2355          * the whole block of INFO_SIZE
2356          */
2357         memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2358         memcpy(fs_info->super_for_commit, fs_info->super_copy,
2359                sizeof(*fs_info->super_for_commit));
2360         brelse(bh);
2361
2362         memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2363
2364         ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2365         if (ret) {
2366                 printk(KERN_ERR "btrfs: superblock contains fatal errors\n");
2367                 err = -EINVAL;
2368                 goto fail_alloc;
2369         }
2370
2371         disk_super = fs_info->super_copy;
2372         if (!btrfs_super_root(disk_super))
2373                 goto fail_alloc;
2374
2375         /* check FS state, whether FS is broken. */
2376         if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2377                 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2378
2379         /*
2380          * run through our array of backup supers and setup
2381          * our ring pointer to the oldest one
2382          */
2383         generation = btrfs_super_generation(disk_super);
2384         find_oldest_super_backup(fs_info, generation);
2385
2386         /*
2387          * In the long term, we'll store the compression type in the super
2388          * block, and it'll be used for per file compression control.
2389          */
2390         fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2391
2392         ret = btrfs_parse_options(tree_root, options);
2393         if (ret) {
2394                 err = ret;
2395                 goto fail_alloc;
2396         }
2397
2398         features = btrfs_super_incompat_flags(disk_super) &
2399                 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2400         if (features) {
2401                 printk(KERN_ERR "BTRFS: couldn't mount because of "
2402                        "unsupported optional features (%Lx).\n",
2403                        features);
2404                 err = -EINVAL;
2405                 goto fail_alloc;
2406         }
2407
2408         if (btrfs_super_leafsize(disk_super) !=
2409             btrfs_super_nodesize(disk_super)) {
2410                 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2411                        "blocksizes don't match.  node %d leaf %d\n",
2412                        btrfs_super_nodesize(disk_super),
2413                        btrfs_super_leafsize(disk_super));
2414                 err = -EINVAL;
2415                 goto fail_alloc;
2416         }
2417         if (btrfs_super_leafsize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
2418                 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2419                        "blocksize (%d) was too large\n",
2420                        btrfs_super_leafsize(disk_super));
2421                 err = -EINVAL;
2422                 goto fail_alloc;
2423         }
2424
2425         features = btrfs_super_incompat_flags(disk_super);
2426         features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2427         if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
2428                 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2429
2430         if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2431                 printk(KERN_ERR "btrfs: has skinny extents\n");
2432
2433         /*
2434          * flag our filesystem as having big metadata blocks if
2435          * they are bigger than the page size
2436          */
2437         if (btrfs_super_leafsize(disk_super) > PAGE_CACHE_SIZE) {
2438                 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2439                         printk(KERN_INFO "btrfs flagging fs with big metadata feature\n");
2440                 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2441         }
2442
2443         nodesize = btrfs_super_nodesize(disk_super);
2444         leafsize = btrfs_super_leafsize(disk_super);
2445         sectorsize = btrfs_super_sectorsize(disk_super);
2446         stripesize = btrfs_super_stripesize(disk_super);
2447         fs_info->dirty_metadata_batch = leafsize * (1 + ilog2(nr_cpu_ids));
2448         fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2449
2450         /*
2451          * mixed block groups end up with duplicate but slightly offset
2452          * extent buffers for the same range.  It leads to corruptions
2453          */
2454         if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2455             (sectorsize != leafsize)) {
2456                 printk(KERN_WARNING "btrfs: unequal leaf/node/sector sizes "
2457                                 "are not allowed for mixed block groups on %s\n",
2458                                 sb->s_id);
2459                 goto fail_alloc;
2460         }
2461
2462         /*
2463          * Needn't use the lock because there is no other task which will
2464          * update the flag.
2465          */
2466         btrfs_set_super_incompat_flags(disk_super, features);
2467
2468         features = btrfs_super_compat_ro_flags(disk_super) &
2469                 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2470         if (!(sb->s_flags & MS_RDONLY) && features) {
2471                 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2472                        "unsupported option features (%Lx).\n",
2473                        features);
2474                 err = -EINVAL;
2475                 goto fail_alloc;
2476         }
2477
2478         btrfs_init_workers(&fs_info->generic_worker,
2479                            "genwork", 1, NULL);
2480
2481         btrfs_init_workers(&fs_info->workers, "worker",
2482                            fs_info->thread_pool_size,
2483                            &fs_info->generic_worker);
2484
2485         btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
2486                            fs_info->thread_pool_size,
2487                            &fs_info->generic_worker);
2488
2489         btrfs_init_workers(&fs_info->flush_workers, "flush_delalloc",
2490                            fs_info->thread_pool_size,
2491                            &fs_info->generic_worker);
2492
2493         btrfs_init_workers(&fs_info->submit_workers, "submit",
2494                            min_t(u64, fs_devices->num_devices,
2495                            fs_info->thread_pool_size),
2496                            &fs_info->generic_worker);
2497
2498         btrfs_init_workers(&fs_info->caching_workers, "cache",
2499                            2, &fs_info->generic_worker);
2500
2501         /* a higher idle thresh on the submit workers makes it much more
2502          * likely that bios will be send down in a sane order to the
2503          * devices
2504          */
2505         fs_info->submit_workers.idle_thresh = 64;
2506
2507         fs_info->workers.idle_thresh = 16;
2508         fs_info->workers.ordered = 1;
2509
2510         fs_info->delalloc_workers.idle_thresh = 2;
2511         fs_info->delalloc_workers.ordered = 1;
2512
2513         btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
2514                            &fs_info->generic_worker);
2515         btrfs_init_workers(&fs_info->endio_workers, "endio",
2516                            fs_info->thread_pool_size,
2517                            &fs_info->generic_worker);
2518         btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
2519                            fs_info->thread_pool_size,
2520                            &fs_info->generic_worker);
2521         btrfs_init_workers(&fs_info->endio_meta_write_workers,
2522                            "endio-meta-write", fs_info->thread_pool_size,
2523                            &fs_info->generic_worker);
2524         btrfs_init_workers(&fs_info->endio_raid56_workers,
2525                            "endio-raid56", fs_info->thread_pool_size,
2526                            &fs_info->generic_worker);
2527         btrfs_init_workers(&fs_info->rmw_workers,
2528                            "rmw", fs_info->thread_pool_size,
2529                            &fs_info->generic_worker);
2530         btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
2531                            fs_info->thread_pool_size,
2532                            &fs_info->generic_worker);
2533         btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write",
2534                            1, &fs_info->generic_worker);
2535         btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta",
2536                            fs_info->thread_pool_size,
2537                            &fs_info->generic_worker);
2538         btrfs_init_workers(&fs_info->readahead_workers, "readahead",
2539                            fs_info->thread_pool_size,
2540                            &fs_info->generic_worker);
2541         btrfs_init_workers(&fs_info->qgroup_rescan_workers, "qgroup-rescan", 1,
2542                            &fs_info->generic_worker);
2543
2544         /*
2545          * endios are largely parallel and should have a very
2546          * low idle thresh
2547          */
2548         fs_info->endio_workers.idle_thresh = 4;
2549         fs_info->endio_meta_workers.idle_thresh = 4;
2550         fs_info->endio_raid56_workers.idle_thresh = 4;
2551         fs_info->rmw_workers.idle_thresh = 2;
2552
2553         fs_info->endio_write_workers.idle_thresh = 2;
2554         fs_info->endio_meta_write_workers.idle_thresh = 2;
2555         fs_info->readahead_workers.idle_thresh = 2;
2556
2557         /*
2558          * btrfs_start_workers can really only fail because of ENOMEM so just
2559          * return -ENOMEM if any of these fail.
2560          */
2561         ret = btrfs_start_workers(&fs_info->workers);
2562         ret |= btrfs_start_workers(&fs_info->generic_worker);
2563         ret |= btrfs_start_workers(&fs_info->submit_workers);
2564         ret |= btrfs_start_workers(&fs_info->delalloc_workers);
2565         ret |= btrfs_start_workers(&fs_info->fixup_workers);
2566         ret |= btrfs_start_workers(&fs_info->endio_workers);
2567         ret |= btrfs_start_workers(&fs_info->endio_meta_workers);
2568         ret |= btrfs_start_workers(&fs_info->rmw_workers);
2569         ret |= btrfs_start_workers(&fs_info->endio_raid56_workers);
2570         ret |= btrfs_start_workers(&fs_info->endio_meta_write_workers);
2571         ret |= btrfs_start_workers(&fs_info->endio_write_workers);
2572         ret |= btrfs_start_workers(&fs_info->endio_freespace_worker);
2573         ret |= btrfs_start_workers(&fs_info->delayed_workers);
2574         ret |= btrfs_start_workers(&fs_info->caching_workers);
2575         ret |= btrfs_start_workers(&fs_info->readahead_workers);
2576         ret |= btrfs_start_workers(&fs_info->flush_workers);
2577         ret |= btrfs_start_workers(&fs_info->qgroup_rescan_workers);
2578         if (ret) {
2579                 err = -ENOMEM;
2580                 goto fail_sb_buffer;
2581         }
2582
2583         fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
2584         fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2585                                     4 * 1024 * 1024 / PAGE_CACHE_SIZE);
2586
2587         tree_root->nodesize = nodesize;
2588         tree_root->leafsize = leafsize;
2589         tree_root->sectorsize = sectorsize;
2590         tree_root->stripesize = stripesize;
2591
2592         sb->s_blocksize = sectorsize;
2593         sb->s_blocksize_bits = blksize_bits(sectorsize);
2594
2595         if (btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
2596                 printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
2597                 goto fail_sb_buffer;
2598         }
2599
2600         if (sectorsize != PAGE_SIZE) {
2601                 printk(KERN_WARNING "btrfs: Incompatible sector size(%lu) "
2602                        "found on %s\n", (unsigned long)sectorsize, sb->s_id);
2603                 goto fail_sb_buffer;
2604         }
2605
2606         mutex_lock(&fs_info->chunk_mutex);
2607         ret = btrfs_read_sys_array(tree_root);
2608         mutex_unlock(&fs_info->chunk_mutex);
2609         if (ret) {
2610                 printk(KERN_WARNING "btrfs: failed to read the system "
2611                        "array on %s\n", sb->s_id);
2612                 goto fail_sb_buffer;
2613         }
2614
2615         blocksize = btrfs_level_size(tree_root,
2616                                      btrfs_super_chunk_root_level(disk_super));
2617         generation = btrfs_super_chunk_root_generation(disk_super);
2618
2619         __setup_root(nodesize, leafsize, sectorsize, stripesize,
2620                      chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2621
2622         chunk_root->node = read_tree_block(chunk_root,
2623                                            btrfs_super_chunk_root(disk_super),
2624                                            blocksize, generation);
2625         if (!chunk_root->node ||
2626             !test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
2627                 printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
2628                        sb->s_id);
2629                 goto fail_tree_roots;
2630         }
2631         btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2632         chunk_root->commit_root = btrfs_root_node(chunk_root);
2633
2634         read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2635            btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
2636
2637         ret = btrfs_read_chunk_tree(chunk_root);
2638         if (ret) {
2639                 printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
2640                        sb->s_id);
2641                 goto fail_tree_roots;
2642         }
2643
2644         /*
2645          * keep the device that is marked to be the target device for the
2646          * dev_replace procedure
2647          */
2648         btrfs_close_extra_devices(fs_info, fs_devices, 0);
2649
2650         if (!fs_devices->latest_bdev) {
2651                 printk(KERN_CRIT "btrfs: failed to read devices on %s\n",
2652                        sb->s_id);
2653                 goto fail_tree_roots;
2654         }
2655
2656 retry_root_backup:
2657         blocksize = btrfs_level_size(tree_root,
2658                                      btrfs_super_root_level(disk_super));
2659         generation = btrfs_super_generation(disk_super);
2660
2661         tree_root->node = read_tree_block(tree_root,
2662                                           btrfs_super_root(disk_super),
2663                                           blocksize, generation);
2664         if (!tree_root->node ||
2665             !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
2666                 printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
2667                        sb->s_id);
2668
2669                 goto recovery_tree_root;
2670         }
2671
2672         btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2673         tree_root->commit_root = btrfs_root_node(tree_root);
2674
2675         location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2676         location.type = BTRFS_ROOT_ITEM_KEY;
2677         location.offset = 0;
2678
2679         extent_root = btrfs_read_tree_root(tree_root, &location);
2680         if (IS_ERR(extent_root)) {
2681                 ret = PTR_ERR(extent_root);
2682                 goto recovery_tree_root;
2683         }
2684         extent_root->track_dirty = 1;
2685         fs_info->extent_root = extent_root;
2686
2687         location.objectid = BTRFS_DEV_TREE_OBJECTID;
2688         dev_root = btrfs_read_tree_root(tree_root, &location);
2689         if (IS_ERR(dev_root)) {
2690                 ret = PTR_ERR(dev_root);
2691                 goto recovery_tree_root;
2692         }
2693         dev_root->track_dirty = 1;
2694         fs_info->dev_root = dev_root;
2695         btrfs_init_devices_late(fs_info);
2696
2697         location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2698         csum_root = btrfs_read_tree_root(tree_root, &location);
2699         if (IS_ERR(csum_root)) {
2700                 ret = PTR_ERR(csum_root);
2701                 goto recovery_tree_root;
2702         }
2703         csum_root->track_dirty = 1;
2704         fs_info->csum_root = csum_root;
2705
2706         location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2707         quota_root = btrfs_read_tree_root(tree_root, &location);
2708         if (!IS_ERR(quota_root)) {
2709                 quota_root->track_dirty = 1;
2710                 fs_info->quota_enabled = 1;
2711                 fs_info->pending_quota_state = 1;
2712                 fs_info->quota_root = quota_root;
2713         }
2714
2715         location.objectid = BTRFS_UUID_TREE_OBJECTID;
2716         uuid_root = btrfs_read_tree_root(tree_root, &location);
2717         if (IS_ERR(uuid_root)) {
2718                 ret = PTR_ERR(uuid_root);
2719                 if (ret != -ENOENT)
2720                         goto recovery_tree_root;
2721                 create_uuid_tree = true;
2722                 check_uuid_tree = false;
2723         } else {
2724                 uuid_root->track_dirty = 1;
2725                 fs_info->uuid_root = uuid_root;
2726                 create_uuid_tree = false;
2727                 check_uuid_tree =
2728                     generation != btrfs_super_uuid_tree_generation(disk_super);
2729         }
2730
2731         fs_info->generation = generation;
2732         fs_info->last_trans_committed = generation;
2733
2734         ret = btrfs_recover_balance(fs_info);
2735         if (ret) {
2736                 printk(KERN_WARNING "btrfs: failed to recover balance\n");
2737                 goto fail_block_groups;
2738         }
2739
2740         ret = btrfs_init_dev_stats(fs_info);
2741         if (ret) {
2742                 printk(KERN_ERR "btrfs: failed to init dev_stats: %d\n",
2743                        ret);
2744                 goto fail_block_groups;
2745         }
2746
2747         ret = btrfs_init_dev_replace(fs_info);
2748         if (ret) {
2749                 pr_err("btrfs: failed to init dev_replace: %d\n", ret);
2750                 goto fail_block_groups;
2751         }
2752
2753         btrfs_close_extra_devices(fs_info, fs_devices, 1);
2754
2755         ret = btrfs_init_space_info(fs_info);
2756         if (ret) {
2757                 printk(KERN_ERR "Failed to initial space info: %d\n", ret);
2758                 goto fail_block_groups;
2759         }
2760
2761         ret = btrfs_read_block_groups(extent_root);
2762         if (ret) {
2763                 printk(KERN_ERR "Failed to read block groups: %d\n", ret);
2764                 goto fail_block_groups;
2765         }
2766         fs_info->num_tolerated_disk_barrier_failures =
2767                 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
2768         if (fs_info->fs_devices->missing_devices >
2769              fs_info->num_tolerated_disk_barrier_failures &&
2770             !(sb->s_flags & MS_RDONLY)) {
2771                 printk(KERN_WARNING
2772                        "Btrfs: too many missing devices, writeable mount is not allowed\n");
2773                 goto fail_block_groups;
2774         }
2775
2776         fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2777                                                "btrfs-cleaner");
2778         if (IS_ERR(fs_info->cleaner_kthread))
2779                 goto fail_block_groups;
2780
2781         fs_info->transaction_kthread = kthread_run(transaction_kthread,
2782                                                    tree_root,
2783                                                    "btrfs-transaction");
2784         if (IS_ERR(fs_info->transaction_kthread))
2785                 goto fail_cleaner;
2786
2787         if (!btrfs_test_opt(tree_root, SSD) &&
2788             !btrfs_test_opt(tree_root, NOSSD) &&
2789             !fs_info->fs_devices->rotating) {
2790                 printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
2791                        "mode\n");
2792                 btrfs_set_opt(fs_info->mount_opt, SSD);
2793         }
2794
2795 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2796         if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
2797                 ret = btrfsic_mount(tree_root, fs_devices,
2798                                     btrfs_test_opt(tree_root,
2799                                         CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2800                                     1 : 0,
2801                                     fs_info->check_integrity_print_mask);
2802                 if (ret)
2803                         printk(KERN_WARNING "btrfs: failed to initialize"
2804                                " integrity check module %s\n", sb->s_id);
2805         }
2806 #endif
2807         ret = btrfs_read_qgroup_config(fs_info);
2808         if (ret)
2809                 goto fail_trans_kthread;
2810
2811         /* do not make disk changes in broken FS */
2812         if (btrfs_super_log_root(disk_super) != 0) {
2813                 u64 bytenr = btrfs_super_log_root(disk_super);
2814
2815                 if (fs_devices->rw_devices == 0) {
2816                         printk(KERN_WARNING "Btrfs log replay required "
2817                                "on RO media\n");
2818                         err = -EIO;
2819                         goto fail_qgroup;
2820                 }
2821                 blocksize =
2822                      btrfs_level_size(tree_root,
2823                                       btrfs_super_log_root_level(disk_super));
2824
2825                 log_tree_root = btrfs_alloc_root(fs_info);
2826                 if (!log_tree_root) {
2827                         err = -ENOMEM;
2828                         goto fail_qgroup;
2829                 }
2830
2831                 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2832                              log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2833
2834                 log_tree_root->node = read_tree_block(tree_root, bytenr,
2835                                                       blocksize,
2836                                                       generation + 1);
2837                 if (!log_tree_root->node ||
2838                     !extent_buffer_uptodate(log_tree_root->node)) {
2839                         printk(KERN_ERR "btrfs: failed to read log tree\n");
2840                         free_extent_buffer(log_tree_root->node);
2841                         kfree(log_tree_root);
2842                         goto fail_trans_kthread;
2843                 }
2844                 /* returns with log_tree_root freed on success */
2845                 ret = btrfs_recover_log_trees(log_tree_root);
2846                 if (ret) {
2847                         btrfs_error(tree_root->fs_info, ret,
2848                                     "Failed to recover log tree");
2849                         free_extent_buffer(log_tree_root->node);
2850                         kfree(log_tree_root);
2851                         goto fail_trans_kthread;
2852                 }
2853
2854                 if (sb->s_flags & MS_RDONLY) {
2855                         ret = btrfs_commit_super(tree_root);
2856                         if (ret)
2857                                 goto fail_trans_kthread;
2858                 }
2859         }
2860
2861         ret = btrfs_find_orphan_roots(tree_root);
2862         if (ret)
2863                 goto fail_trans_kthread;
2864
2865         if (!(sb->s_flags & MS_RDONLY)) {
2866                 ret = btrfs_cleanup_fs_roots(fs_info);
2867                 if (ret)
2868                         goto fail_trans_kthread;
2869
2870                 ret = btrfs_recover_relocation(tree_root);
2871                 if (ret < 0) {
2872                         printk(KERN_WARNING
2873                                "btrfs: failed to recover relocation\n");
2874                         err = -EINVAL;
2875                         goto fail_qgroup;
2876                 }
2877         }
2878
2879         location.objectid = BTRFS_FS_TREE_OBJECTID;
2880         location.type = BTRFS_ROOT_ITEM_KEY;
2881         location.offset = 0;
2882
2883         fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
2884         if (IS_ERR(fs_info->fs_root)) {
2885                 err = PTR_ERR(fs_info->fs_root);
2886                 goto fail_qgroup;
2887         }
2888
2889         if (sb->s_flags & MS_RDONLY)
2890                 return 0;
2891
2892         down_read(&fs_info->cleanup_work_sem);
2893         if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
2894             (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
2895                 up_read(&fs_info->cleanup_work_sem);
2896                 close_ctree(tree_root);
2897                 return ret;
2898         }
2899         up_read(&fs_info->cleanup_work_sem);
2900
2901         ret = btrfs_resume_balance_async(fs_info);
2902         if (ret) {
2903                 printk(KERN_WARNING "btrfs: failed to resume balance\n");
2904                 close_ctree(tree_root);
2905                 return ret;
2906         }
2907
2908         ret = btrfs_resume_dev_replace_async(fs_info);
2909         if (ret) {
2910                 pr_warn("btrfs: failed to resume dev_replace\n");
2911                 close_ctree(tree_root);
2912                 return ret;
2913         }
2914
2915         btrfs_qgroup_rescan_resume(fs_info);
2916
2917         if (create_uuid_tree) {
2918                 pr_info("btrfs: creating UUID tree\n");
2919                 ret = btrfs_create_uuid_tree(fs_info);
2920                 if (ret) {
2921                         pr_warn("btrfs: failed to create the UUID tree %d\n",
2922                                 ret);
2923                         close_ctree(tree_root);
2924                         return ret;
2925                 }
2926         } else if (check_uuid_tree ||
2927                    btrfs_test_opt(tree_root, RESCAN_UUID_TREE)) {
2928                 pr_info("btrfs: checking UUID tree\n");
2929                 ret = btrfs_check_uuid_tree(fs_info);
2930                 if (ret) {
2931                         pr_warn("btrfs: failed to check the UUID tree %d\n",
2932                                 ret);
2933                         close_ctree(tree_root);
2934                         return ret;
2935                 }
2936         } else {
2937                 fs_info->update_uuid_tree_gen = 1;
2938         }
2939
2940         return 0;
2941
2942 fail_qgroup:
2943         btrfs_free_qgroup_config(fs_info);
2944 fail_trans_kthread:
2945         kthread_stop(fs_info->transaction_kthread);
2946         btrfs_cleanup_transaction(fs_info->tree_root);
2947         del_fs_roots(fs_info);
2948 fail_cleaner:
2949         kthread_stop(fs_info->cleaner_kthread);
2950
2951         /*
2952          * make sure we're done with the btree inode before we stop our
2953          * kthreads
2954          */
2955         filemap_write_and_wait(fs_info->btree_inode->i_mapping);
2956
2957 fail_block_groups:
2958         btrfs_put_block_group_cache(fs_info);
2959         btrfs_free_block_groups(fs_info);
2960
2961 fail_tree_roots:
2962         free_root_pointers(fs_info, 1);
2963         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2964
2965 fail_sb_buffer:
2966         btrfs_stop_all_workers(fs_info);
2967 fail_alloc:
2968 fail_iput:
2969         btrfs_mapping_tree_free(&fs_info->mapping_tree);
2970
2971         iput(fs_info->btree_inode);
2972 fail_delalloc_bytes:
2973         percpu_counter_destroy(&fs_info->delalloc_bytes);
2974 fail_dirty_metadata_bytes:
2975         percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
2976 fail_bdi:
2977         bdi_destroy(&fs_info->bdi);
2978 fail_srcu:
2979         cleanup_srcu_struct(&fs_info->subvol_srcu);
2980 fail:
2981         btrfs_free_stripe_hash_table(fs_info);
2982         btrfs_close_devices(fs_info->fs_devices);
2983         return err;
2984
2985 recovery_tree_root:
2986         if (!btrfs_test_opt(tree_root, RECOVERY))
2987                 goto fail_tree_roots;
2988
2989         free_root_pointers(fs_info, 0);
2990
2991         /* don't use the log in recovery mode, it won't be valid */
2992         btrfs_set_super_log_root(disk_super, 0);
2993
2994         /* we can't trust the free space cache either */
2995         btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2996
2997         ret = next_root_backup(fs_info, fs_info->super_copy,
2998                                &num_backups_tried, &backup_index);
2999         if (ret == -1)
3000                 goto fail_block_groups;
3001         goto retry_root_backup;
3002 }
3003
3004 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3005 {
3006         if (uptodate) {
3007                 set_buffer_uptodate(bh);
3008         } else {
3009                 struct btrfs_device *device = (struct btrfs_device *)
3010                         bh->b_private;
3011
3012                 printk_ratelimited_in_rcu(KERN_WARNING "lost page write due to "
3013                                           "I/O error on %s\n",
3014                                           rcu_str_deref(device->name));
3015                 /* note, we dont' set_buffer_write_io_error because we have
3016                  * our own ways of dealing with the IO errors
3017                  */
3018                 clear_buffer_uptodate(bh);
3019                 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
3020         }
3021         unlock_buffer(bh);
3022         put_bh(bh);
3023 }
3024
3025 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3026 {
3027         struct buffer_head *bh;
3028         struct buffer_head *latest = NULL;
3029         struct btrfs_super_block *super;
3030         int i;
3031         u64 transid = 0;
3032         u64 bytenr;
3033
3034         /* we would like to check all the supers, but that would make
3035          * a btrfs mount succeed after a mkfs from a different FS.
3036          * So, we need to add a special mount option to scan for
3037          * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3038          */
3039         for (i = 0; i < 1; i++) {
3040                 bytenr = btrfs_sb_offset(i);
3041                 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3042                                         i_size_read(bdev->bd_inode))
3043                         break;
3044                 bh = __bread(bdev, bytenr / 4096,
3045                                         BTRFS_SUPER_INFO_SIZE);
3046                 if (!bh)
3047                         continue;
3048
3049                 super = (struct btrfs_super_block *)bh->b_data;
3050                 if (btrfs_super_bytenr(super) != bytenr ||
3051                     btrfs_super_magic(super) != BTRFS_MAGIC) {
3052                         brelse(bh);
3053                         continue;
3054                 }
3055
3056                 if (!latest || btrfs_super_generation(super) > transid) {
3057                         brelse(latest);
3058                         latest = bh;
3059                         transid = btrfs_super_generation(super);
3060                 } else {
3061                         brelse(bh);
3062                 }
3063         }
3064         return latest;
3065 }
3066
3067 /*
3068  * this should be called twice, once with wait == 0 and
3069  * once with wait == 1.  When wait == 0 is done, all the buffer heads
3070  * we write are pinned.
3071  *
3072  * They are released when wait == 1 is done.
3073  * max_mirrors must be the same for both runs, and it indicates how
3074  * many supers on this one device should be written.
3075  *
3076  * max_mirrors == 0 means to write them all.
3077  */
3078 static int write_dev_supers(struct btrfs_device *device,
3079                             struct btrfs_super_block *sb,
3080                             int do_barriers, int wait, int max_mirrors)
3081 {
3082         struct buffer_head *bh;
3083         int i;
3084         int ret;
3085         int errors = 0;
3086         u32 crc;
3087         u64 bytenr;
3088
3089         if (max_mirrors == 0)
3090                 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3091
3092         for (i = 0; i < max_mirrors; i++) {
3093                 bytenr = btrfs_sb_offset(i);
3094                 if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
3095                         break;
3096
3097                 if (wait) {
3098                         bh = __find_get_block(device->bdev, bytenr / 4096,
3099                                               BTRFS_SUPER_INFO_SIZE);
3100                         if (!bh) {
3101                                 errors++;
3102                                 continue;
3103                         }
3104                         wait_on_buffer(bh);
3105                         if (!buffer_uptodate(bh))
3106                                 errors++;
3107
3108                         /* drop our reference */
3109                         brelse(bh);
3110
3111                         /* drop the reference from the wait == 0 run */
3112                         brelse(bh);
3113                         continue;
3114                 } else {
3115                         btrfs_set_super_bytenr(sb, bytenr);
3116
3117                         crc = ~(u32)0;
3118                         crc = btrfs_csum_data((char *)sb +
3119                                               BTRFS_CSUM_SIZE, crc,
3120                                               BTRFS_SUPER_INFO_SIZE -
3121                                               BTRFS_CSUM_SIZE);
3122                         btrfs_csum_final(crc, sb->csum);
3123
3124                         /*
3125                          * one reference for us, and we leave it for the
3126                          * caller
3127                          */
3128                         bh = __getblk(device->bdev, bytenr / 4096,
3129                                       BTRFS_SUPER_INFO_SIZE);
3130                         if (!bh) {
3131                                 printk(KERN_ERR "btrfs: couldn't get super "
3132                                        "buffer head for bytenr %Lu\n", bytenr);
3133                                 errors++;
3134                                 continue;
3135                         }
3136
3137                         memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3138
3139                         /* one reference for submit_bh */
3140                         get_bh(bh);
3141
3142                         set_buffer_uptodate(bh);
3143                         lock_buffer(bh);
3144                         bh->b_end_io = btrfs_end_buffer_write_sync;
3145                         bh->b_private = device;
3146                 }
3147
3148                 /*
3149                  * we fua the first super.  The others we allow
3150                  * to go down lazy.
3151                  */
3152                 ret = btrfsic_submit_bh(WRITE_FUA, bh);
3153                 if (ret)
3154                         errors++;
3155         }
3156         return errors < i ? 0 : -1;
3157 }
3158
3159 /*
3160  * endio for the write_dev_flush, this will wake anyone waiting
3161  * for the barrier when it is done
3162  */
3163 static void btrfs_end_empty_barrier(struct bio *bio, int err)
3164 {
3165         if (err) {
3166                 if (err == -EOPNOTSUPP)
3167                         set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
3168                 clear_bit(BIO_UPTODATE, &bio->bi_flags);
3169         }
3170         if (bio->bi_private)
3171                 complete(bio->bi_private);
3172         bio_put(bio);
3173 }
3174
3175 /*
3176  * trigger flushes for one the devices.  If you pass wait == 0, the flushes are
3177  * sent down.  With wait == 1, it waits for the previous flush.
3178  *
3179  * any device where the flush fails with eopnotsupp are flagged as not-barrier
3180  * capable
3181  */
3182 static int write_dev_flush(struct btrfs_device *device, int wait)
3183 {
3184         struct bio *bio;
3185         int ret = 0;
3186
3187         if (device->nobarriers)
3188                 return 0;
3189
3190         if (wait) {
3191                 bio = device->flush_bio;
3192                 if (!bio)
3193                         return 0;
3194
3195                 wait_for_completion(&device->flush_wait);
3196
3197                 if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
3198                         printk_in_rcu("btrfs: disabling barriers on dev %s\n",
3199                                       rcu_str_deref(device->name));
3200                         device->nobarriers = 1;
3201                 } else if (!bio_flagged(bio, BIO_UPTODATE)) {
3202                         ret = -EIO;
3203                         btrfs_dev_stat_inc_and_print(device,
3204                                 BTRFS_DEV_STAT_FLUSH_ERRS);
3205                 }
3206
3207                 /* drop the reference from the wait == 0 run */
3208                 bio_put(bio);
3209                 device->flush_bio = NULL;
3210
3211                 return ret;
3212         }
3213
3214         /*
3215          * one reference for us, and we leave it for the
3216          * caller
3217          */
3218         device->flush_bio = NULL;
3219         bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
3220         if (!bio)
3221                 return -ENOMEM;
3222
3223         bio->bi_end_io = btrfs_end_empty_barrier;
3224         bio->bi_bdev = device->bdev;
3225         init_completion(&device->flush_wait);
3226         bio->bi_private = &device->flush_wait;
3227         device->flush_bio = bio;
3228
3229         bio_get(bio);
3230         btrfsic_submit_bio(WRITE_FLUSH, bio);
3231
3232         return 0;
3233 }
3234
3235 /*
3236  * send an empty flush down to each device in parallel,
3237  * then wait for them
3238  */
3239 static int barrier_all_devices(struct btrfs_fs_info *info)
3240 {
3241         struct list_head *head;
3242         struct btrfs_device *dev;
3243         int errors_send = 0;
3244         int errors_wait = 0;
3245         int ret;
3246
3247         /* send down all the barriers */
3248         head = &info->fs_devices->devices;
3249         list_for_each_entry_rcu(dev, head, dev_list) {
3250                 if (!dev->bdev) {
3251                         errors_send++;
3252                         continue;
3253                 }
3254                 if (!dev->in_fs_metadata || !dev->writeable)
3255                         continue;
3256
3257                 ret = write_dev_flush(dev, 0);
3258                 if (ret)
3259                         errors_send++;
3260         }
3261
3262         /* wait for all the barriers */
3263         list_for_each_entry_rcu(dev, head, dev_list) {
3264                 if (!dev->bdev) {
3265                         errors_wait++;
3266                         continue;
3267                 }
3268                 if (!dev->in_fs_metadata || !dev->writeable)
3269                         continue;
3270
3271                 ret = write_dev_flush(dev, 1);
3272                 if (ret)
3273                         errors_wait++;
3274         }
3275         if (errors_send > info->num_tolerated_disk_barrier_failures ||
3276             errors_wait > info->num_tolerated_disk_barrier_failures)
3277                 return -EIO;
3278         return 0;
3279 }
3280
3281 int btrfs_calc_num_tolerated_disk_barrier_failures(
3282         struct btrfs_fs_info *fs_info)
3283 {
3284         struct btrfs_ioctl_space_info space;
3285         struct btrfs_space_info *sinfo;
3286         u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3287                        BTRFS_BLOCK_GROUP_SYSTEM,
3288                        BTRFS_BLOCK_GROUP_METADATA,
3289                        BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3290         int num_types = 4;
3291         int i;
3292         int c;
3293         int num_tolerated_disk_barrier_failures =
3294                 (int)fs_info->fs_devices->num_devices;
3295
3296         for (i = 0; i < num_types; i++) {
3297                 struct btrfs_space_info *tmp;
3298
3299                 sinfo = NULL;
3300                 rcu_read_lock();
3301                 list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
3302                         if (tmp->flags == types[i]) {
3303                                 sinfo = tmp;
3304                                 break;
3305                         }
3306                 }
3307                 rcu_read_unlock();
3308
3309                 if (!sinfo)
3310                         continue;
3311
3312                 down_read(&sinfo->groups_sem);
3313                 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3314                         if (!list_empty(&sinfo->block_groups[c])) {
3315                                 u64 flags;
3316
3317                                 btrfs_get_block_group_info(
3318                                         &sinfo->block_groups[c], &space);
3319                                 if (space.total_bytes == 0 ||
3320                                     space.used_bytes == 0)
3321                                         continue;
3322                                 flags = space.flags;
3323                                 /*
3324                                  * return
3325                                  * 0: if dup, single or RAID0 is configured for
3326                                  *    any of metadata, system or data, else
3327                                  * 1: if RAID5 is configured, or if RAID1 or
3328                                  *    RAID10 is configured and only two mirrors
3329                                  *    are used, else
3330                                  * 2: if RAID6 is configured, else
3331                                  * num_mirrors - 1: if RAID1 or RAID10 is
3332                                  *                  configured and more than
3333                                  *                  2 mirrors are used.
3334                                  */
3335                                 if (num_tolerated_disk_barrier_failures > 0 &&
3336                                     ((flags & (BTRFS_BLOCK_GROUP_DUP |
3337                                                BTRFS_BLOCK_GROUP_RAID0)) ||
3338                                      ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK)
3339                                       == 0)))
3340                                         num_tolerated_disk_barrier_failures = 0;
3341                                 else if (num_tolerated_disk_barrier_failures > 1) {
3342                                         if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
3343                                             BTRFS_BLOCK_GROUP_RAID5 |
3344                                             BTRFS_BLOCK_GROUP_RAID10)) {
3345                                                 num_tolerated_disk_barrier_failures = 1;
3346                                         } else if (flags &
3347                                                    BTRFS_BLOCK_GROUP_RAID6) {
3348                                                 num_tolerated_disk_barrier_failures = 2;
3349                                         }
3350                                 }
3351                         }
3352                 }
3353                 up_read(&sinfo->groups_sem);
3354         }
3355
3356         return num_tolerated_disk_barrier_failures;
3357 }
3358
3359 static int write_all_supers(struct btrfs_root *root, int max_mirrors)
3360 {
3361         struct list_head *head;
3362         struct btrfs_device *dev;
3363         struct btrfs_super_block *sb;
3364         struct btrfs_dev_item *dev_item;
3365         int ret;
3366         int do_barriers;
3367         int max_errors;
3368         int total_errors = 0;
3369         u64 flags;
3370
3371         do_barriers = !btrfs_test_opt(root, NOBARRIER);
3372         backup_super_roots(root->fs_info);
3373
3374         sb = root->fs_info->super_for_commit;
3375         dev_item = &sb->dev_item;
3376
3377         mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
3378         head = &root->fs_info->fs_devices->devices;
3379         max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
3380
3381         if (do_barriers) {
3382                 ret = barrier_all_devices(root->fs_info);
3383                 if (ret) {
3384                         mutex_unlock(
3385                                 &root->fs_info->fs_devices->device_list_mutex);
3386                         btrfs_error(root->fs_info, ret,
3387                                     "errors while submitting device barriers.");
3388                         return ret;
3389                 }
3390         }
3391
3392         list_for_each_entry_rcu(dev, head, dev_list) {
3393                 if (!dev->bdev) {
3394                         total_errors++;
3395                         continue;
3396                 }
3397                 if (!dev->in_fs_metadata || !dev->writeable)
3398                         continue;
3399
3400                 btrfs_set_stack_device_generation(dev_item, 0);
3401                 btrfs_set_stack_device_type(dev_item, dev->type);
3402                 btrfs_set_stack_device_id(dev_item, dev->devid);
3403                 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
3404                 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
3405                 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3406                 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3407                 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3408                 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3409                 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
3410
3411                 flags = btrfs_super_flags(sb);
3412                 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3413
3414                 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
3415                 if (ret)
3416                         total_errors++;
3417         }
3418         if (total_errors > max_errors) {
3419                 printk(KERN_ERR "btrfs: %d errors while writing supers\n",
3420                        total_errors);
3421
3422                 /* FUA is masked off if unsupported and can't be the reason */
3423                 btrfs_error(root->fs_info, -EIO,
3424                             "%d errors while writing supers", total_errors);
3425                 return -EIO;
3426         }
3427
3428         total_errors = 0;
3429         list_for_each_entry_rcu(dev, head, dev_list) {
3430                 if (!dev->bdev)
3431                         continue;
3432                 if (!dev->in_fs_metadata || !dev->writeable)
3433                         continue;
3434
3435                 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3436                 if (ret)
3437                         total_errors++;
3438         }
3439         mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3440         if (total_errors > max_errors) {
3441                 btrfs_error(root->fs_info, -EIO,
3442                             "%d errors while writing supers", total_errors);
3443                 return -EIO;
3444         }
3445         return 0;
3446 }
3447
3448 int write_ctree_super(struct btrfs_trans_handle *trans,
3449                       struct btrfs_root *root, int max_mirrors)
3450 {
3451         int ret;
3452
3453         ret = write_all_supers(root, max_mirrors);
3454         return ret;
3455 }
3456
3457 /* Drop a fs root from the radix tree and free it. */
3458 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3459                                   struct btrfs_root *root)
3460 {
3461         spin_lock(&fs_info->fs_roots_radix_lock);
3462         radix_tree_delete(&fs_info->fs_roots_radix,
3463                           (unsigned long)root->root_key.objectid);
3464         spin_unlock(&fs_info->fs_roots_radix_lock);
3465
3466         if (btrfs_root_refs(&root->root_item) == 0)
3467                 synchronize_srcu(&fs_info->subvol_srcu);
3468
3469         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3470                 btrfs_free_log(NULL, root);
3471                 btrfs_free_log_root_tree(NULL, fs_info);
3472         }
3473
3474         __btrfs_remove_free_space_cache(root->free_ino_pinned);
3475         __btrfs_remove_free_space_cache(root->free_ino_ctl);
3476         free_fs_root(root);
3477 }
3478
3479 static void free_fs_root(struct btrfs_root *root)
3480 {
3481         iput(root->cache_inode);
3482         WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3483         btrfs_free_block_rsv(root, root->orphan_block_rsv);
3484         root->orphan_block_rsv = NULL;
3485         if (root->anon_dev)
3486                 free_anon_bdev(root->anon_dev);
3487         free_extent_buffer(root->node);
3488         free_extent_buffer(root->commit_root);
3489         kfree(root->free_ino_ctl);
3490         kfree(root->free_ino_pinned);
3491         kfree(root->name);
3492         btrfs_put_fs_root(root);
3493 }
3494
3495 void btrfs_free_fs_root(struct btrfs_root *root)
3496 {
3497         free_fs_root(root);
3498 }
3499
3500 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3501 {
3502         u64 root_objectid = 0;
3503         struct btrfs_root *gang[8];
3504         int i;
3505         int ret;
3506
3507         while (1) {
3508                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3509                                              (void **)gang, root_objectid,
3510                                              ARRAY_SIZE(gang));
3511                 if (!ret)
3512                         break;
3513
3514                 root_objectid = gang[ret - 1]->root_key.objectid + 1;
3515                 for (i = 0; i < ret; i++) {
3516                         int err;
3517
3518                         root_objectid = gang[i]->root_key.objectid;
3519                         err = btrfs_orphan_cleanup(gang[i]);
3520                         if (err)
3521                                 return err;
3522                 }
3523                 root_objectid++;
3524         }
3525         return 0;
3526 }
3527
3528 int btrfs_commit_super(struct btrfs_root *root)
3529 {
3530         struct btrfs_trans_handle *trans;
3531         int ret;
3532
3533         mutex_lock(&root->fs_info->cleaner_mutex);
3534         btrfs_run_delayed_iputs(root);
3535         mutex_unlock(&root->fs_info->cleaner_mutex);
3536         wake_up_process(root->fs_info->cleaner_kthread);
3537
3538         /* wait until ongoing cleanup work done */
3539         down_write(&root->fs_info->cleanup_work_sem);
3540         up_write(&root->fs_info->cleanup_work_sem);
3541
3542         trans = btrfs_join_transaction(root);
3543         if (IS_ERR(trans))
3544                 return PTR_ERR(trans);
3545         ret = btrfs_commit_transaction(trans, root);
3546         if (ret)
3547                 return ret;
3548         /* run commit again to drop the original snapshot */
3549         trans = btrfs_join_transaction(root);
3550         if (IS_ERR(trans))
3551                 return PTR_ERR(trans);
3552         ret = btrfs_commit_transaction(trans, root);
3553         if (ret)
3554                 return ret;
3555         ret = btrfs_write_and_wait_transaction(NULL, root);
3556         if (ret) {
3557                 btrfs_error(root->fs_info, ret,
3558                             "Failed to sync btree inode to disk.");
3559                 return ret;
3560         }
3561
3562         ret = write_ctree_super(NULL, root, 0);
3563         return ret;
3564 }
3565
3566 int close_ctree(struct btrfs_root *root)
3567 {
3568         struct btrfs_fs_info *fs_info = root->fs_info;
3569         int ret;
3570
3571         fs_info->closing = 1;
3572         smp_mb();
3573
3574         /* wait for the uuid_scan task to finish */
3575         down(&fs_info->uuid_tree_rescan_sem);
3576         /* avoid complains from lockdep et al., set sem back to initial state */
3577         up(&fs_info->uuid_tree_rescan_sem);
3578
3579         /* pause restriper - we want to resume on mount */
3580         btrfs_pause_balance(fs_info);
3581
3582         btrfs_dev_replace_suspend_for_unmount(fs_info);
3583
3584         btrfs_scrub_cancel(fs_info);
3585
3586         /* wait for any defraggers to finish */
3587         wait_event(fs_info->transaction_wait,
3588                    (atomic_read(&fs_info->defrag_running) == 0));
3589
3590         /* clear out the rbtree of defraggable inodes */
3591         btrfs_cleanup_defrag_inodes(fs_info);
3592
3593         if (!(fs_info->sb->s_flags & MS_RDONLY)) {
3594                 ret = btrfs_commit_super(root);
3595                 if (ret)
3596                         printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
3597         }
3598
3599         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3600                 btrfs_error_commit_super(root);
3601
3602         btrfs_put_block_group_cache(fs_info);
3603
3604         kthread_stop(fs_info->transaction_kthread);
3605         kthread_stop(fs_info->cleaner_kthread);
3606
3607         fs_info->closing = 2;
3608         smp_mb();
3609
3610         btrfs_free_qgroup_config(root->fs_info);
3611
3612         if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
3613                 printk(KERN_INFO "btrfs: at unmount delalloc count %lld\n",
3614                        percpu_counter_sum(&fs_info->delalloc_bytes));
3615         }
3616
3617         btrfs_free_block_groups(fs_info);
3618
3619         btrfs_stop_all_workers(fs_info);
3620
3621         del_fs_roots(fs_info);
3622
3623         free_root_pointers(fs_info, 1);
3624
3625         iput(fs_info->btree_inode);
3626
3627 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3628         if (btrfs_test_opt(root, CHECK_INTEGRITY))
3629                 btrfsic_unmount(root, fs_info->fs_devices);
3630 #endif
3631
3632         btrfs_close_devices(fs_info->fs_devices);
3633         btrfs_mapping_tree_free(&fs_info->mapping_tree);
3634
3635         percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3636         percpu_counter_destroy(&fs_info->delalloc_bytes);
3637         bdi_destroy(&fs_info->bdi);
3638         cleanup_srcu_struct(&fs_info->subvol_srcu);
3639
3640         btrfs_free_stripe_hash_table(fs_info);
3641
3642         btrfs_free_block_rsv(root, root->orphan_block_rsv);
3643         root->orphan_block_rsv = NULL;
3644
3645         return 0;
3646 }
3647
3648 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3649                           int atomic)
3650 {
3651         int ret;
3652         struct inode *btree_inode = buf->pages[0]->mapping->host;
3653
3654         ret = extent_buffer_uptodate(buf);
3655         if (!ret)
3656                 return ret;
3657
3658         ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
3659                                     parent_transid, atomic);
3660         if (ret == -EAGAIN)
3661                 return ret;
3662         return !ret;
3663 }
3664
3665 int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
3666 {
3667         return set_extent_buffer_uptodate(buf);
3668 }
3669
3670 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3671 {
3672         struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3673         u64 transid = btrfs_header_generation(buf);
3674         int was_dirty;
3675
3676         btrfs_assert_tree_locked(buf);
3677         if (transid != root->fs_info->generation)
3678                 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
3679                        "found %llu running %llu\n",
3680                         buf->start, transid, root->fs_info->generation);
3681         was_dirty = set_extent_buffer_dirty(buf);
3682         if (!was_dirty)
3683                 __percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
3684                                      buf->len,
3685                                      root->fs_info->dirty_metadata_batch);
3686 }
3687
3688 static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
3689                                         int flush_delayed)
3690 {
3691         /*
3692          * looks as though older kernels can get into trouble with
3693          * this code, they end up stuck in balance_dirty_pages forever
3694          */
3695         int ret;
3696
3697         if (current->flags & PF_MEMALLOC)
3698                 return;
3699
3700         if (flush_delayed)
3701                 btrfs_balance_delayed_items(root);
3702
3703         ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
3704                                      BTRFS_DIRTY_METADATA_THRESH);
3705         if (ret > 0) {
3706                 balance_dirty_pages_ratelimited(
3707                                    root->fs_info->btree_inode->i_mapping);
3708         }
3709         return;
3710 }
3711
3712 void btrfs_btree_balance_dirty(struct btrfs_root *root)
3713 {
3714         __btrfs_btree_balance_dirty(root, 1);
3715 }
3716
3717 void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
3718 {
3719         __btrfs_btree_balance_dirty(root, 0);
3720 }
3721
3722 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
3723 {
3724         struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3725         return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
3726 }
3727
3728 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
3729                               int read_only)
3730 {
3731         /*
3732          * Placeholder for checks
3733          */
3734         return 0;
3735 }
3736
3737 static void btrfs_error_commit_super(struct btrfs_root *root)
3738 {
3739         mutex_lock(&root->fs_info->cleaner_mutex);
3740         btrfs_run_delayed_iputs(root);
3741         mutex_unlock(&root->fs_info->cleaner_mutex);
3742
3743         down_write(&root->fs_info->cleanup_work_sem);
3744         up_write(&root->fs_info->cleanup_work_sem);
3745
3746         /* cleanup FS via transaction */
3747         btrfs_cleanup_transaction(root);
3748 }
3749
3750 static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
3751                                              struct btrfs_root *root)
3752 {
3753         struct btrfs_inode *btrfs_inode;
3754         struct list_head splice;
3755
3756         INIT_LIST_HEAD(&splice);
3757
3758         mutex_lock(&root->fs_info->ordered_operations_mutex);
3759         spin_lock(&root->fs_info->ordered_root_lock);
3760
3761         list_splice_init(&t->ordered_operations, &splice);
3762         while (!list_empty(&splice)) {
3763                 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3764                                          ordered_operations);
3765
3766                 list_del_init(&btrfs_inode->ordered_operations);
3767                 spin_unlock(&root->fs_info->ordered_root_lock);
3768
3769                 btrfs_invalidate_inodes(btrfs_inode->root);
3770
3771                 spin_lock(&root->fs_info->ordered_root_lock);
3772         }
3773
3774         spin_unlock(&root->fs_info->ordered_root_lock);
3775         mutex_unlock(&root->fs_info->ordered_operations_mutex);
3776 }
3777
3778 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
3779 {
3780         struct btrfs_ordered_extent *ordered;
3781
3782         spin_lock(&root->ordered_extent_lock);
3783         /*
3784          * This will just short circuit the ordered completion stuff which will
3785          * make sure the ordered extent gets properly cleaned up.
3786          */
3787         list_for_each_entry(ordered, &root->ordered_extents,
3788                             root_extent_list)
3789                 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
3790         spin_unlock(&root->ordered_extent_lock);
3791 }
3792
3793 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
3794 {
3795         struct btrfs_root *root;
3796         struct list_head splice;
3797
3798         INIT_LIST_HEAD(&splice);
3799
3800         spin_lock(&fs_info->ordered_root_lock);
3801         list_splice_init(&fs_info->ordered_roots, &splice);
3802         while (!list_empty(&splice)) {
3803                 root = list_first_entry(&splice, struct btrfs_root,
3804                                         ordered_root);
3805                 list_del_init(&root->ordered_root);
3806
3807                 btrfs_destroy_ordered_extents(root);
3808
3809                 cond_resched_lock(&fs_info->ordered_root_lock);
3810         }
3811         spin_unlock(&fs_info->ordered_root_lock);
3812 }
3813
3814 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
3815                                       struct btrfs_root *root)
3816 {
3817         struct rb_node *node;
3818         struct btrfs_delayed_ref_root *delayed_refs;
3819         struct btrfs_delayed_ref_node *ref;
3820         int ret = 0;
3821
3822         delayed_refs = &trans->delayed_refs;
3823
3824         spin_lock(&delayed_refs->lock);
3825         if (delayed_refs->num_entries == 0) {
3826                 spin_unlock(&delayed_refs->lock);
3827                 printk(KERN_INFO "delayed_refs has NO entry\n");
3828                 return ret;
3829         }
3830
3831         while ((node = rb_first(&delayed_refs->root)) != NULL) {
3832                 struct btrfs_delayed_ref_head *head = NULL;
3833                 bool pin_bytes = false;
3834
3835                 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
3836                 atomic_set(&ref->refs, 1);
3837                 if (btrfs_delayed_ref_is_head(ref)) {
3838
3839                         head = btrfs_delayed_node_to_head(ref);
3840                         if (!mutex_trylock(&head->mutex)) {
3841                                 atomic_inc(&ref->refs);
3842                                 spin_unlock(&delayed_refs->lock);
3843
3844                                 /* Need to wait for the delayed ref to run */
3845                                 mutex_lock(&head->mutex);
3846                                 mutex_unlock(&head->mutex);
3847                                 btrfs_put_delayed_ref(ref);
3848
3849                                 spin_lock(&delayed_refs->lock);
3850                                 continue;
3851                         }
3852
3853                         if (head->must_insert_reserved)
3854                                 pin_bytes = true;
3855                         btrfs_free_delayed_extent_op(head->extent_op);
3856                         delayed_refs->num_heads--;
3857                         if (list_empty(&head->cluster))
3858                                 delayed_refs->num_heads_ready--;
3859                         list_del_init(&head->cluster);
3860                 }
3861
3862                 ref->in_tree = 0;
3863                 rb_erase(&ref->rb_node, &delayed_refs->root);
3864                 delayed_refs->num_entries--;
3865                 spin_unlock(&delayed_refs->lock);
3866                 if (head) {
3867                         if (pin_bytes)
3868                                 btrfs_pin_extent(root, ref->bytenr,
3869                                                  ref->num_bytes, 1);
3870                         mutex_unlock(&head->mutex);
3871                 }
3872                 btrfs_put_delayed_ref(ref);
3873
3874                 cond_resched();
3875                 spin_lock(&delayed_refs->lock);
3876         }
3877
3878         spin_unlock(&delayed_refs->lock);
3879
3880         return ret;
3881 }
3882
3883 static void btrfs_evict_pending_snapshots(struct btrfs_transaction *t)
3884 {
3885         struct btrfs_pending_snapshot *snapshot;
3886         struct list_head splice;
3887
3888         INIT_LIST_HEAD(&splice);
3889
3890         list_splice_init(&t->pending_snapshots, &splice);
3891
3892         while (!list_empty(&splice)) {
3893                 snapshot = list_entry(splice.next,
3894                                       struct btrfs_pending_snapshot,
3895                                       list);
3896                 snapshot->error = -ECANCELED;
3897                 list_del_init(&snapshot->list);
3898         }
3899 }
3900
3901 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
3902 {
3903         struct btrfs_inode *btrfs_inode;
3904         struct list_head splice;
3905
3906         INIT_LIST_HEAD(&splice);
3907
3908         spin_lock(&root->delalloc_lock);
3909         list_splice_init(&root->delalloc_inodes, &splice);
3910
3911         while (!list_empty(&splice)) {
3912                 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
3913                                                delalloc_inodes);
3914
3915                 list_del_init(&btrfs_inode->delalloc_inodes);
3916                 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
3917                           &btrfs_inode->runtime_flags);
3918                 spin_unlock(&root->delalloc_lock);
3919
3920                 btrfs_invalidate_inodes(btrfs_inode->root);
3921
3922                 spin_lock(&root->delalloc_lock);
3923         }
3924
3925         spin_unlock(&root->delalloc_lock);
3926 }
3927
3928 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
3929 {
3930         struct btrfs_root *root;
3931         struct list_head splice;
3932
3933         INIT_LIST_HEAD(&splice);
3934
3935         spin_lock(&fs_info->delalloc_root_lock);
3936         list_splice_init(&fs_info->delalloc_roots, &splice);
3937         while (!list_empty(&splice)) {
3938                 root = list_first_entry(&splice, struct btrfs_root,
3939                                          delalloc_root);
3940                 list_del_init(&root->delalloc_root);
3941                 root = btrfs_grab_fs_root(root);
3942                 BUG_ON(!root);
3943                 spin_unlock(&fs_info->delalloc_root_lock);
3944
3945                 btrfs_destroy_delalloc_inodes(root);
3946                 btrfs_put_fs_root(root);
3947
3948                 spin_lock(&fs_info->delalloc_root_lock);
3949         }
3950         spin_unlock(&fs_info->delalloc_root_lock);
3951 }
3952
3953 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
3954                                         struct extent_io_tree *dirty_pages,
3955                                         int mark)
3956 {
3957         int ret;
3958         struct extent_buffer *eb;
3959         u64 start = 0;
3960         u64 end;
3961
3962         while (1) {
3963                 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
3964                                             mark, NULL);
3965                 if (ret)
3966                         break;
3967
3968                 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
3969                 while (start <= end) {
3970                         eb = btrfs_find_tree_block(root, start,
3971                                                    root->leafsize);
3972                         start += root->leafsize;
3973                         if (!eb)
3974                                 continue;
3975                         wait_on_extent_buffer_writeback(eb);
3976
3977                         if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
3978                                                &eb->bflags))
3979                                 clear_extent_buffer_dirty(eb);
3980                         free_extent_buffer_stale(eb);
3981                 }
3982         }
3983
3984         return ret;
3985 }
3986
3987 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
3988                                        struct extent_io_tree *pinned_extents)
3989 {
3990         struct extent_io_tree *unpin;
3991         u64 start;
3992         u64 end;
3993         int ret;
3994         bool loop = true;
3995
3996         unpin = pinned_extents;
3997 again:
3998         while (1) {
3999                 ret = find_first_extent_bit(unpin, 0, &start, &end,
4000                                             EXTENT_DIRTY, NULL);
4001                 if (ret)
4002                         break;
4003
4004                 /* opt_discard */
4005                 if (btrfs_test_opt(root, DISCARD))
4006                         ret = btrfs_error_discard_extent(root, start,
4007                                                          end + 1 - start,
4008                                                          NULL);
4009
4010                 clear_extent_dirty(unpin, start, end, GFP_NOFS);
4011                 btrfs_error_unpin_extent_range(root, start, end);
4012                 cond_resched();
4013         }
4014
4015         if (loop) {
4016                 if (unpin == &root->fs_info->freed_extents[0])
4017                         unpin = &root->fs_info->freed_extents[1];
4018                 else
4019                         unpin = &root->fs_info->freed_extents[0];
4020                 loop = false;
4021                 goto again;
4022         }
4023
4024         return 0;
4025 }
4026
4027 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4028                                    struct btrfs_root *root)
4029 {
4030         btrfs_destroy_delayed_refs(cur_trans, root);
4031         btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
4032                                 cur_trans->dirty_pages.dirty_bytes);
4033
4034         cur_trans->state = TRANS_STATE_COMMIT_START;
4035         wake_up(&root->fs_info->transaction_blocked_wait);
4036
4037         btrfs_evict_pending_snapshots(cur_trans);
4038
4039         cur_trans->state = TRANS_STATE_UNBLOCKED;
4040         wake_up(&root->fs_info->transaction_wait);
4041
4042         btrfs_destroy_delayed_inodes(root);
4043         btrfs_assert_delayed_root_empty(root);
4044
4045         btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
4046                                      EXTENT_DIRTY);
4047         btrfs_destroy_pinned_extent(root,
4048                                     root->fs_info->pinned_extents);
4049
4050         cur_trans->state =TRANS_STATE_COMPLETED;
4051         wake_up(&cur_trans->commit_wait);
4052
4053         /*
4054         memset(cur_trans, 0, sizeof(*cur_trans));
4055         kmem_cache_free(btrfs_transaction_cachep, cur_trans);
4056         */
4057 }
4058
4059 static int btrfs_cleanup_transaction(struct btrfs_root *root)
4060 {
4061         struct btrfs_transaction *t;
4062         LIST_HEAD(list);
4063
4064         mutex_lock(&root->fs_info->transaction_kthread_mutex);
4065
4066         spin_lock(&root->fs_info->trans_lock);
4067         list_splice_init(&root->fs_info->trans_list, &list);
4068         root->fs_info->running_transaction = NULL;
4069         spin_unlock(&root->fs_info->trans_lock);
4070
4071         while (!list_empty(&list)) {
4072                 t = list_entry(list.next, struct btrfs_transaction, list);
4073
4074                 btrfs_destroy_ordered_operations(t, root);
4075
4076                 btrfs_destroy_all_ordered_extents(root->fs_info);
4077
4078                 btrfs_destroy_delayed_refs(t, root);
4079
4080                 /*
4081                  *  FIXME: cleanup wait for commit
4082                  *  We needn't acquire the lock here, because we are during
4083                  *  the umount, there is no other task which will change it.
4084                  */
4085                 t->state = TRANS_STATE_COMMIT_START;
4086                 smp_mb();
4087                 if (waitqueue_active(&root->fs_info->transaction_blocked_wait))
4088                         wake_up(&root->fs_info->transaction_blocked_wait);
4089
4090                 btrfs_evict_pending_snapshots(t);
4091
4092                 t->state = TRANS_STATE_UNBLOCKED;
4093                 smp_mb();
4094                 if (waitqueue_active(&root->fs_info->transaction_wait))
4095                         wake_up(&root->fs_info->transaction_wait);
4096
4097                 btrfs_destroy_delayed_inodes(root);
4098                 btrfs_assert_delayed_root_empty(root);
4099
4100                 btrfs_destroy_all_delalloc_inodes(root->fs_info);
4101
4102                 btrfs_destroy_marked_extents(root, &t->dirty_pages,
4103                                              EXTENT_DIRTY);
4104
4105                 btrfs_destroy_pinned_extent(root,
4106                                             root->fs_info->pinned_extents);
4107
4108                 t->state = TRANS_STATE_COMPLETED;
4109                 smp_mb();
4110                 if (waitqueue_active(&t->commit_wait))
4111                         wake_up(&t->commit_wait);
4112
4113                 atomic_set(&t->use_count, 0);
4114                 list_del_init(&t->list);
4115                 memset(t, 0, sizeof(*t));
4116                 kmem_cache_free(btrfs_transaction_cachep, t);
4117         }
4118
4119         mutex_unlock(&root->fs_info->transaction_kthread_mutex);
4120
4121         return 0;
4122 }
4123
4124 static struct extent_io_ops btree_extent_io_ops = {
4125         .readpage_end_io_hook = btree_readpage_end_io_hook,
4126         .readpage_io_failed_hook = btree_io_failed_hook,
4127         .submit_bio_hook = btree_submit_bio_hook,
4128         /* note we're sharing with inode.c for the merge bio hook */
4129         .merge_bio_hook = btrfs_merge_bio_hook,
4130 };