]> git.karo-electronics.de Git - karo-tx-linux.git/blob - fs/btrfs/disk-io.c
419968e3eaa00d899351dff426594296511b2866
[karo-tx-linux.git] / fs / btrfs / disk-io.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
29 #include <linux/crc32c.h>
30 #include <linux/slab.h>
31 #include <linux/migrate.h>
32 #include <linux/ratelimit.h>
33 #include <linux/uuid.h>
34 #include <linux/semaphore.h>
35 #include <asm/unaligned.h>
36 #include "compat.h"
37 #include "ctree.h"
38 #include "disk-io.h"
39 #include "transaction.h"
40 #include "btrfs_inode.h"
41 #include "volumes.h"
42 #include "print-tree.h"
43 #include "async-thread.h"
44 #include "locking.h"
45 #include "tree-log.h"
46 #include "free-space-cache.h"
47 #include "inode-map.h"
48 #include "check-integrity.h"
49 #include "rcu-string.h"
50 #include "dev-replace.h"
51 #include "raid56.h"
52
53 #ifdef CONFIG_X86
54 #include <asm/cpufeature.h>
55 #endif
56
57 static struct extent_io_ops btree_extent_io_ops;
58 static void end_workqueue_fn(struct btrfs_work *work);
59 static void free_fs_root(struct btrfs_root *root);
60 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
61                                     int read_only);
62 static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
63                                              struct btrfs_root *root);
64 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
65 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
66                                       struct btrfs_root *root);
67 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
68 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
69                                         struct extent_io_tree *dirty_pages,
70                                         int mark);
71 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
72                                        struct extent_io_tree *pinned_extents);
73 static int btrfs_cleanup_transaction(struct btrfs_root *root);
74 static void btrfs_error_commit_super(struct btrfs_root *root);
75
76 /*
77  * end_io_wq structs are used to do processing in task context when an IO is
78  * complete.  This is used during reads to verify checksums, and it is used
79  * by writes to insert metadata for new file extents after IO is complete.
80  */
81 struct end_io_wq {
82         struct bio *bio;
83         bio_end_io_t *end_io;
84         void *private;
85         struct btrfs_fs_info *info;
86         int error;
87         int metadata;
88         struct list_head list;
89         struct btrfs_work work;
90 };
91
92 /*
93  * async submit bios are used to offload expensive checksumming
94  * onto the worker threads.  They checksum file and metadata bios
95  * just before they are sent down the IO stack.
96  */
97 struct async_submit_bio {
98         struct inode *inode;
99         struct bio *bio;
100         struct list_head list;
101         extent_submit_bio_hook_t *submit_bio_start;
102         extent_submit_bio_hook_t *submit_bio_done;
103         int rw;
104         int mirror_num;
105         unsigned long bio_flags;
106         /*
107          * bio_offset is optional, can be used if the pages in the bio
108          * can't tell us where in the file the bio should go
109          */
110         u64 bio_offset;
111         struct btrfs_work work;
112         int error;
113 };
114
115 /*
116  * Lockdep class keys for extent_buffer->lock's in this root.  For a given
117  * eb, the lockdep key is determined by the btrfs_root it belongs to and
118  * the level the eb occupies in the tree.
119  *
120  * Different roots are used for different purposes and may nest inside each
121  * other and they require separate keysets.  As lockdep keys should be
122  * static, assign keysets according to the purpose of the root as indicated
123  * by btrfs_root->objectid.  This ensures that all special purpose roots
124  * have separate keysets.
125  *
126  * Lock-nesting across peer nodes is always done with the immediate parent
127  * node locked thus preventing deadlock.  As lockdep doesn't know this, use
128  * subclass to avoid triggering lockdep warning in such cases.
129  *
130  * The key is set by the readpage_end_io_hook after the buffer has passed
131  * csum validation but before the pages are unlocked.  It is also set by
132  * btrfs_init_new_buffer on freshly allocated blocks.
133  *
134  * We also add a check to make sure the highest level of the tree is the
135  * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
136  * needs update as well.
137  */
138 #ifdef CONFIG_DEBUG_LOCK_ALLOC
139 # if BTRFS_MAX_LEVEL != 8
140 #  error
141 # endif
142
143 static struct btrfs_lockdep_keyset {
144         u64                     id;             /* root objectid */
145         const char              *name_stem;     /* lock name stem */
146         char                    names[BTRFS_MAX_LEVEL + 1][20];
147         struct lock_class_key   keys[BTRFS_MAX_LEVEL + 1];
148 } btrfs_lockdep_keysets[] = {
149         { .id = BTRFS_ROOT_TREE_OBJECTID,       .name_stem = "root"     },
150         { .id = BTRFS_EXTENT_TREE_OBJECTID,     .name_stem = "extent"   },
151         { .id = BTRFS_CHUNK_TREE_OBJECTID,      .name_stem = "chunk"    },
152         { .id = BTRFS_DEV_TREE_OBJECTID,        .name_stem = "dev"      },
153         { .id = BTRFS_FS_TREE_OBJECTID,         .name_stem = "fs"       },
154         { .id = BTRFS_CSUM_TREE_OBJECTID,       .name_stem = "csum"     },
155         { .id = BTRFS_QUOTA_TREE_OBJECTID,      .name_stem = "quota"    },
156         { .id = BTRFS_TREE_LOG_OBJECTID,        .name_stem = "log"      },
157         { .id = BTRFS_TREE_RELOC_OBJECTID,      .name_stem = "treloc"   },
158         { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc"   },
159         { .id = BTRFS_UUID_TREE_OBJECTID,       .name_stem = "uuid"     },
160         { .id = 0,                              .name_stem = "tree"     },
161 };
162
163 void __init btrfs_init_lockdep(void)
164 {
165         int i, j;
166
167         /* initialize lockdep class names */
168         for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
169                 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
170
171                 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
172                         snprintf(ks->names[j], sizeof(ks->names[j]),
173                                  "btrfs-%s-%02d", ks->name_stem, j);
174         }
175 }
176
177 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
178                                     int level)
179 {
180         struct btrfs_lockdep_keyset *ks;
181
182         BUG_ON(level >= ARRAY_SIZE(ks->keys));
183
184         /* find the matching keyset, id 0 is the default entry */
185         for (ks = btrfs_lockdep_keysets; ks->id; ks++)
186                 if (ks->id == objectid)
187                         break;
188
189         lockdep_set_class_and_name(&eb->lock,
190                                    &ks->keys[level], ks->names[level]);
191 }
192
193 #endif
194
195 /*
196  * extents on the btree inode are pretty simple, there's one extent
197  * that covers the entire device
198  */
199 static struct extent_map *btree_get_extent(struct inode *inode,
200                 struct page *page, size_t pg_offset, u64 start, u64 len,
201                 int create)
202 {
203         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
204         struct extent_map *em;
205         int ret;
206
207         read_lock(&em_tree->lock);
208         em = lookup_extent_mapping(em_tree, start, len);
209         if (em) {
210                 em->bdev =
211                         BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
212                 read_unlock(&em_tree->lock);
213                 goto out;
214         }
215         read_unlock(&em_tree->lock);
216
217         em = alloc_extent_map();
218         if (!em) {
219                 em = ERR_PTR(-ENOMEM);
220                 goto out;
221         }
222         em->start = 0;
223         em->len = (u64)-1;
224         em->block_len = (u64)-1;
225         em->block_start = 0;
226         em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
227
228         write_lock(&em_tree->lock);
229         ret = add_extent_mapping(em_tree, em, 0);
230         if (ret == -EEXIST) {
231                 free_extent_map(em);
232                 em = lookup_extent_mapping(em_tree, start, len);
233                 if (!em)
234                         em = ERR_PTR(-EIO);
235         } else if (ret) {
236                 free_extent_map(em);
237                 em = ERR_PTR(ret);
238         }
239         write_unlock(&em_tree->lock);
240
241 out:
242         return em;
243 }
244
245 u32 btrfs_csum_data(char *data, u32 seed, size_t len)
246 {
247         return crc32c(seed, data, len);
248 }
249
250 void btrfs_csum_final(u32 crc, char *result)
251 {
252         put_unaligned_le32(~crc, result);
253 }
254
255 /*
256  * compute the csum for a btree block, and either verify it or write it
257  * into the csum field of the block.
258  */
259 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
260                            int verify)
261 {
262         u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
263         char *result = NULL;
264         unsigned long len;
265         unsigned long cur_len;
266         unsigned long offset = BTRFS_CSUM_SIZE;
267         char *kaddr;
268         unsigned long map_start;
269         unsigned long map_len;
270         int err;
271         u32 crc = ~(u32)0;
272         unsigned long inline_result;
273
274         len = buf->len - offset;
275         while (len > 0) {
276                 err = map_private_extent_buffer(buf, offset, 32,
277                                         &kaddr, &map_start, &map_len);
278                 if (err)
279                         return 1;
280                 cur_len = min(len, map_len - (offset - map_start));
281                 crc = btrfs_csum_data(kaddr + offset - map_start,
282                                       crc, cur_len);
283                 len -= cur_len;
284                 offset += cur_len;
285         }
286         if (csum_size > sizeof(inline_result)) {
287                 result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
288                 if (!result)
289                         return 1;
290         } else {
291                 result = (char *)&inline_result;
292         }
293
294         btrfs_csum_final(crc, result);
295
296         if (verify) {
297                 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
298                         u32 val;
299                         u32 found = 0;
300                         memcpy(&found, result, csum_size);
301
302                         read_extent_buffer(buf, &val, 0, csum_size);
303                         printk_ratelimited(KERN_INFO "btrfs: %s checksum verify "
304                                        "failed on %llu wanted %X found %X "
305                                        "level %d\n",
306                                        root->fs_info->sb->s_id, buf->start,
307                                        val, found, btrfs_header_level(buf));
308                         if (result != (char *)&inline_result)
309                                 kfree(result);
310                         return 1;
311                 }
312         } else {
313                 write_extent_buffer(buf, result, 0, csum_size);
314         }
315         if (result != (char *)&inline_result)
316                 kfree(result);
317         return 0;
318 }
319
320 /*
321  * we can't consider a given block up to date unless the transid of the
322  * block matches the transid in the parent node's pointer.  This is how we
323  * detect blocks that either didn't get written at all or got written
324  * in the wrong place.
325  */
326 static int verify_parent_transid(struct extent_io_tree *io_tree,
327                                  struct extent_buffer *eb, u64 parent_transid,
328                                  int atomic)
329 {
330         struct extent_state *cached_state = NULL;
331         int ret;
332
333         if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
334                 return 0;
335
336         if (atomic)
337                 return -EAGAIN;
338
339         lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
340                          0, &cached_state);
341         if (extent_buffer_uptodate(eb) &&
342             btrfs_header_generation(eb) == parent_transid) {
343                 ret = 0;
344                 goto out;
345         }
346         printk_ratelimited("parent transid verify failed on %llu wanted %llu "
347                        "found %llu\n",
348                        eb->start, parent_transid, btrfs_header_generation(eb));
349         ret = 1;
350         clear_extent_buffer_uptodate(eb);
351 out:
352         unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
353                              &cached_state, GFP_NOFS);
354         return ret;
355 }
356
357 /*
358  * Return 0 if the superblock checksum type matches the checksum value of that
359  * algorithm. Pass the raw disk superblock data.
360  */
361 static int btrfs_check_super_csum(char *raw_disk_sb)
362 {
363         struct btrfs_super_block *disk_sb =
364                 (struct btrfs_super_block *)raw_disk_sb;
365         u16 csum_type = btrfs_super_csum_type(disk_sb);
366         int ret = 0;
367
368         if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
369                 u32 crc = ~(u32)0;
370                 const int csum_size = sizeof(crc);
371                 char result[csum_size];
372
373                 /*
374                  * The super_block structure does not span the whole
375                  * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
376                  * is filled with zeros and is included in the checkum.
377                  */
378                 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
379                                 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
380                 btrfs_csum_final(crc, result);
381
382                 if (memcmp(raw_disk_sb, result, csum_size))
383                         ret = 1;
384
385                 if (ret && btrfs_super_generation(disk_sb) < 10) {
386                         printk(KERN_WARNING "btrfs: super block crcs don't match, older mkfs detected\n");
387                         ret = 0;
388                 }
389         }
390
391         if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
392                 printk(KERN_ERR "btrfs: unsupported checksum algorithm %u\n",
393                                 csum_type);
394                 ret = 1;
395         }
396
397         return ret;
398 }
399
400 /*
401  * helper to read a given tree block, doing retries as required when
402  * the checksums don't match and we have alternate mirrors to try.
403  */
404 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
405                                           struct extent_buffer *eb,
406                                           u64 start, u64 parent_transid)
407 {
408         struct extent_io_tree *io_tree;
409         int failed = 0;
410         int ret;
411         int num_copies = 0;
412         int mirror_num = 0;
413         int failed_mirror = 0;
414
415         clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
416         io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
417         while (1) {
418                 ret = read_extent_buffer_pages(io_tree, eb, start,
419                                                WAIT_COMPLETE,
420                                                btree_get_extent, mirror_num);
421                 if (!ret) {
422                         if (!verify_parent_transid(io_tree, eb,
423                                                    parent_transid, 0))
424                                 break;
425                         else
426                                 ret = -EIO;
427                 }
428
429                 /*
430                  * This buffer's crc is fine, but its contents are corrupted, so
431                  * there is no reason to read the other copies, they won't be
432                  * any less wrong.
433                  */
434                 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
435                         break;
436
437                 num_copies = btrfs_num_copies(root->fs_info,
438                                               eb->start, eb->len);
439                 if (num_copies == 1)
440                         break;
441
442                 if (!failed_mirror) {
443                         failed = 1;
444                         failed_mirror = eb->read_mirror;
445                 }
446
447                 mirror_num++;
448                 if (mirror_num == failed_mirror)
449                         mirror_num++;
450
451                 if (mirror_num > num_copies)
452                         break;
453         }
454
455         if (failed && !ret && failed_mirror)
456                 repair_eb_io_failure(root, eb, failed_mirror);
457
458         return ret;
459 }
460
461 /*
462  * checksum a dirty tree block before IO.  This has extra checks to make sure
463  * we only fill in the checksum field in the first page of a multi-page block
464  */
465
466 static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
467 {
468         struct extent_io_tree *tree;
469         u64 start = page_offset(page);
470         u64 found_start;
471         struct extent_buffer *eb;
472
473         tree = &BTRFS_I(page->mapping->host)->io_tree;
474
475         eb = (struct extent_buffer *)page->private;
476         if (page != eb->pages[0])
477                 return 0;
478         found_start = btrfs_header_bytenr(eb);
479         if (found_start != start) {
480                 WARN_ON(1);
481                 return 0;
482         }
483         if (!PageUptodate(page)) {
484                 WARN_ON(1);
485                 return 0;
486         }
487         csum_tree_block(root, eb, 0);
488         return 0;
489 }
490
491 static int check_tree_block_fsid(struct btrfs_root *root,
492                                  struct extent_buffer *eb)
493 {
494         struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
495         u8 fsid[BTRFS_UUID_SIZE];
496         int ret = 1;
497
498         read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
499         while (fs_devices) {
500                 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
501                         ret = 0;
502                         break;
503                 }
504                 fs_devices = fs_devices->seed;
505         }
506         return ret;
507 }
508
509 #define CORRUPT(reason, eb, root, slot)                         \
510         printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu," \
511                "root=%llu, slot=%d\n", reason,                  \
512                btrfs_header_bytenr(eb), root->objectid, slot)
513
514 static noinline int check_leaf(struct btrfs_root *root,
515                                struct extent_buffer *leaf)
516 {
517         struct btrfs_key key;
518         struct btrfs_key leaf_key;
519         u32 nritems = btrfs_header_nritems(leaf);
520         int slot;
521
522         if (nritems == 0)
523                 return 0;
524
525         /* Check the 0 item */
526         if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
527             BTRFS_LEAF_DATA_SIZE(root)) {
528                 CORRUPT("invalid item offset size pair", leaf, root, 0);
529                 return -EIO;
530         }
531
532         /*
533          * Check to make sure each items keys are in the correct order and their
534          * offsets make sense.  We only have to loop through nritems-1 because
535          * we check the current slot against the next slot, which verifies the
536          * next slot's offset+size makes sense and that the current's slot
537          * offset is correct.
538          */
539         for (slot = 0; slot < nritems - 1; slot++) {
540                 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
541                 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
542
543                 /* Make sure the keys are in the right order */
544                 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
545                         CORRUPT("bad key order", leaf, root, slot);
546                         return -EIO;
547                 }
548
549                 /*
550                  * Make sure the offset and ends are right, remember that the
551                  * item data starts at the end of the leaf and grows towards the
552                  * front.
553                  */
554                 if (btrfs_item_offset_nr(leaf, slot) !=
555                         btrfs_item_end_nr(leaf, slot + 1)) {
556                         CORRUPT("slot offset bad", leaf, root, slot);
557                         return -EIO;
558                 }
559
560                 /*
561                  * Check to make sure that we don't point outside of the leaf,
562                  * just incase all the items are consistent to eachother, but
563                  * all point outside of the leaf.
564                  */
565                 if (btrfs_item_end_nr(leaf, slot) >
566                     BTRFS_LEAF_DATA_SIZE(root)) {
567                         CORRUPT("slot end outside of leaf", leaf, root, slot);
568                         return -EIO;
569                 }
570         }
571
572         return 0;
573 }
574
575 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
576                                       u64 phy_offset, struct page *page,
577                                       u64 start, u64 end, int mirror)
578 {
579         struct extent_io_tree *tree;
580         u64 found_start;
581         int found_level;
582         struct extent_buffer *eb;
583         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
584         int ret = 0;
585         int reads_done;
586
587         if (!page->private)
588                 goto out;
589
590         tree = &BTRFS_I(page->mapping->host)->io_tree;
591         eb = (struct extent_buffer *)page->private;
592
593         /* the pending IO might have been the only thing that kept this buffer
594          * in memory.  Make sure we have a ref for all this other checks
595          */
596         extent_buffer_get(eb);
597
598         reads_done = atomic_dec_and_test(&eb->io_pages);
599         if (!reads_done)
600                 goto err;
601
602         eb->read_mirror = mirror;
603         if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
604                 ret = -EIO;
605                 goto err;
606         }
607
608         found_start = btrfs_header_bytenr(eb);
609         if (found_start != eb->start) {
610                 printk_ratelimited(KERN_INFO "btrfs bad tree block start "
611                                "%llu %llu\n",
612                                found_start, eb->start);
613                 ret = -EIO;
614                 goto err;
615         }
616         if (check_tree_block_fsid(root, eb)) {
617                 printk_ratelimited(KERN_INFO "btrfs bad fsid on block %llu\n",
618                                eb->start);
619                 ret = -EIO;
620                 goto err;
621         }
622         found_level = btrfs_header_level(eb);
623         if (found_level >= BTRFS_MAX_LEVEL) {
624                 btrfs_info(root->fs_info, "bad tree block level %d\n",
625                            (int)btrfs_header_level(eb));
626                 ret = -EIO;
627                 goto err;
628         }
629
630         btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
631                                        eb, found_level);
632
633         ret = csum_tree_block(root, eb, 1);
634         if (ret) {
635                 ret = -EIO;
636                 goto err;
637         }
638
639         /*
640          * If this is a leaf block and it is corrupt, set the corrupt bit so
641          * that we don't try and read the other copies of this block, just
642          * return -EIO.
643          */
644         if (found_level == 0 && check_leaf(root, eb)) {
645                 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
646                 ret = -EIO;
647         }
648
649         if (!ret)
650                 set_extent_buffer_uptodate(eb);
651 err:
652         if (reads_done &&
653             test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
654                 btree_readahead_hook(root, eb, eb->start, ret);
655
656         if (ret) {
657                 /*
658                  * our io error hook is going to dec the io pages
659                  * again, we have to make sure it has something
660                  * to decrement
661                  */
662                 atomic_inc(&eb->io_pages);
663                 clear_extent_buffer_uptodate(eb);
664         }
665         free_extent_buffer(eb);
666 out:
667         return ret;
668 }
669
670 static int btree_io_failed_hook(struct page *page, int failed_mirror)
671 {
672         struct extent_buffer *eb;
673         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
674
675         eb = (struct extent_buffer *)page->private;
676         set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
677         eb->read_mirror = failed_mirror;
678         atomic_dec(&eb->io_pages);
679         if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
680                 btree_readahead_hook(root, eb, eb->start, -EIO);
681         return -EIO;    /* we fixed nothing */
682 }
683
684 static void end_workqueue_bio(struct bio *bio, int err)
685 {
686         struct end_io_wq *end_io_wq = bio->bi_private;
687         struct btrfs_fs_info *fs_info;
688
689         fs_info = end_io_wq->info;
690         end_io_wq->error = err;
691         end_io_wq->work.func = end_workqueue_fn;
692         end_io_wq->work.flags = 0;
693
694         if (bio->bi_rw & REQ_WRITE) {
695                 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
696                         btrfs_queue_worker(&fs_info->endio_meta_write_workers,
697                                            &end_io_wq->work);
698                 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
699                         btrfs_queue_worker(&fs_info->endio_freespace_worker,
700                                            &end_io_wq->work);
701                 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
702                         btrfs_queue_worker(&fs_info->endio_raid56_workers,
703                                            &end_io_wq->work);
704                 else
705                         btrfs_queue_worker(&fs_info->endio_write_workers,
706                                            &end_io_wq->work);
707         } else {
708                 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
709                         btrfs_queue_worker(&fs_info->endio_raid56_workers,
710                                            &end_io_wq->work);
711                 else if (end_io_wq->metadata)
712                         btrfs_queue_worker(&fs_info->endio_meta_workers,
713                                            &end_io_wq->work);
714                 else
715                         btrfs_queue_worker(&fs_info->endio_workers,
716                                            &end_io_wq->work);
717         }
718 }
719
720 /*
721  * For the metadata arg you want
722  *
723  * 0 - if data
724  * 1 - if normal metadta
725  * 2 - if writing to the free space cache area
726  * 3 - raid parity work
727  */
728 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
729                         int metadata)
730 {
731         struct end_io_wq *end_io_wq;
732         end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
733         if (!end_io_wq)
734                 return -ENOMEM;
735
736         end_io_wq->private = bio->bi_private;
737         end_io_wq->end_io = bio->bi_end_io;
738         end_io_wq->info = info;
739         end_io_wq->error = 0;
740         end_io_wq->bio = bio;
741         end_io_wq->metadata = metadata;
742
743         bio->bi_private = end_io_wq;
744         bio->bi_end_io = end_workqueue_bio;
745         return 0;
746 }
747
748 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
749 {
750         unsigned long limit = min_t(unsigned long,
751                                     info->workers.max_workers,
752                                     info->fs_devices->open_devices);
753         return 256 * limit;
754 }
755
756 static void run_one_async_start(struct btrfs_work *work)
757 {
758         struct async_submit_bio *async;
759         int ret;
760
761         async = container_of(work, struct  async_submit_bio, work);
762         ret = async->submit_bio_start(async->inode, async->rw, async->bio,
763                                       async->mirror_num, async->bio_flags,
764                                       async->bio_offset);
765         if (ret)
766                 async->error = ret;
767 }
768
769 static void run_one_async_done(struct btrfs_work *work)
770 {
771         struct btrfs_fs_info *fs_info;
772         struct async_submit_bio *async;
773         int limit;
774
775         async = container_of(work, struct  async_submit_bio, work);
776         fs_info = BTRFS_I(async->inode)->root->fs_info;
777
778         limit = btrfs_async_submit_limit(fs_info);
779         limit = limit * 2 / 3;
780
781         if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
782             waitqueue_active(&fs_info->async_submit_wait))
783                 wake_up(&fs_info->async_submit_wait);
784
785         /* If an error occured we just want to clean up the bio and move on */
786         if (async->error) {
787                 bio_endio(async->bio, async->error);
788                 return;
789         }
790
791         async->submit_bio_done(async->inode, async->rw, async->bio,
792                                async->mirror_num, async->bio_flags,
793                                async->bio_offset);
794 }
795
796 static void run_one_async_free(struct btrfs_work *work)
797 {
798         struct async_submit_bio *async;
799
800         async = container_of(work, struct  async_submit_bio, work);
801         kfree(async);
802 }
803
804 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
805                         int rw, struct bio *bio, int mirror_num,
806                         unsigned long bio_flags,
807                         u64 bio_offset,
808                         extent_submit_bio_hook_t *submit_bio_start,
809                         extent_submit_bio_hook_t *submit_bio_done)
810 {
811         struct async_submit_bio *async;
812
813         async = kmalloc(sizeof(*async), GFP_NOFS);
814         if (!async)
815                 return -ENOMEM;
816
817         async->inode = inode;
818         async->rw = rw;
819         async->bio = bio;
820         async->mirror_num = mirror_num;
821         async->submit_bio_start = submit_bio_start;
822         async->submit_bio_done = submit_bio_done;
823
824         async->work.func = run_one_async_start;
825         async->work.ordered_func = run_one_async_done;
826         async->work.ordered_free = run_one_async_free;
827
828         async->work.flags = 0;
829         async->bio_flags = bio_flags;
830         async->bio_offset = bio_offset;
831
832         async->error = 0;
833
834         atomic_inc(&fs_info->nr_async_submits);
835
836         if (rw & REQ_SYNC)
837                 btrfs_set_work_high_prio(&async->work);
838
839         btrfs_queue_worker(&fs_info->workers, &async->work);
840
841         while (atomic_read(&fs_info->async_submit_draining) &&
842               atomic_read(&fs_info->nr_async_submits)) {
843                 wait_event(fs_info->async_submit_wait,
844                            (atomic_read(&fs_info->nr_async_submits) == 0));
845         }
846
847         return 0;
848 }
849
850 static int btree_csum_one_bio(struct bio *bio)
851 {
852         struct bio_vec *bvec = bio->bi_io_vec;
853         int bio_index = 0;
854         struct btrfs_root *root;
855         int ret = 0;
856
857         WARN_ON(bio->bi_vcnt <= 0);
858         while (bio_index < bio->bi_vcnt) {
859                 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
860                 ret = csum_dirty_buffer(root, bvec->bv_page);
861                 if (ret)
862                         break;
863                 bio_index++;
864                 bvec++;
865         }
866         return ret;
867 }
868
869 static int __btree_submit_bio_start(struct inode *inode, int rw,
870                                     struct bio *bio, int mirror_num,
871                                     unsigned long bio_flags,
872                                     u64 bio_offset)
873 {
874         /*
875          * when we're called for a write, we're already in the async
876          * submission context.  Just jump into btrfs_map_bio
877          */
878         return btree_csum_one_bio(bio);
879 }
880
881 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
882                                  int mirror_num, unsigned long bio_flags,
883                                  u64 bio_offset)
884 {
885         int ret;
886
887         /*
888          * when we're called for a write, we're already in the async
889          * submission context.  Just jump into btrfs_map_bio
890          */
891         ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
892         if (ret)
893                 bio_endio(bio, ret);
894         return ret;
895 }
896
897 static int check_async_write(struct inode *inode, unsigned long bio_flags)
898 {
899         if (bio_flags & EXTENT_BIO_TREE_LOG)
900                 return 0;
901 #ifdef CONFIG_X86
902         if (cpu_has_xmm4_2)
903                 return 0;
904 #endif
905         return 1;
906 }
907
908 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
909                                  int mirror_num, unsigned long bio_flags,
910                                  u64 bio_offset)
911 {
912         int async = check_async_write(inode, bio_flags);
913         int ret;
914
915         if (!(rw & REQ_WRITE)) {
916                 /*
917                  * called for a read, do the setup so that checksum validation
918                  * can happen in the async kernel threads
919                  */
920                 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
921                                           bio, 1);
922                 if (ret)
923                         goto out_w_error;
924                 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
925                                     mirror_num, 0);
926         } else if (!async) {
927                 ret = btree_csum_one_bio(bio);
928                 if (ret)
929                         goto out_w_error;
930                 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
931                                     mirror_num, 0);
932         } else {
933                 /*
934                  * kthread helpers are used to submit writes so that
935                  * checksumming can happen in parallel across all CPUs
936                  */
937                 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
938                                           inode, rw, bio, mirror_num, 0,
939                                           bio_offset,
940                                           __btree_submit_bio_start,
941                                           __btree_submit_bio_done);
942         }
943
944         if (ret) {
945 out_w_error:
946                 bio_endio(bio, ret);
947         }
948         return ret;
949 }
950
951 #ifdef CONFIG_MIGRATION
952 static int btree_migratepage(struct address_space *mapping,
953                         struct page *newpage, struct page *page,
954                         enum migrate_mode mode)
955 {
956         /*
957          * we can't safely write a btree page from here,
958          * we haven't done the locking hook
959          */
960         if (PageDirty(page))
961                 return -EAGAIN;
962         /*
963          * Buffers may be managed in a filesystem specific way.
964          * We must have no buffers or drop them.
965          */
966         if (page_has_private(page) &&
967             !try_to_release_page(page, GFP_KERNEL))
968                 return -EAGAIN;
969         return migrate_page(mapping, newpage, page, mode);
970 }
971 #endif
972
973
974 static int btree_writepages(struct address_space *mapping,
975                             struct writeback_control *wbc)
976 {
977         struct extent_io_tree *tree;
978         struct btrfs_fs_info *fs_info;
979         int ret;
980
981         tree = &BTRFS_I(mapping->host)->io_tree;
982         if (wbc->sync_mode == WB_SYNC_NONE) {
983
984                 if (wbc->for_kupdate)
985                         return 0;
986
987                 fs_info = BTRFS_I(mapping->host)->root->fs_info;
988                 /* this is a bit racy, but that's ok */
989                 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
990                                              BTRFS_DIRTY_METADATA_THRESH);
991                 if (ret < 0)
992                         return 0;
993         }
994         return btree_write_cache_pages(mapping, wbc);
995 }
996
997 static int btree_readpage(struct file *file, struct page *page)
998 {
999         struct extent_io_tree *tree;
1000         tree = &BTRFS_I(page->mapping->host)->io_tree;
1001         return extent_read_full_page(tree, page, btree_get_extent, 0);
1002 }
1003
1004 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
1005 {
1006         if (PageWriteback(page) || PageDirty(page))
1007                 return 0;
1008
1009         return try_release_extent_buffer(page);
1010 }
1011
1012 static void btree_invalidatepage(struct page *page, unsigned int offset,
1013                                  unsigned int length)
1014 {
1015         struct extent_io_tree *tree;
1016         tree = &BTRFS_I(page->mapping->host)->io_tree;
1017         extent_invalidatepage(tree, page, offset);
1018         btree_releasepage(page, GFP_NOFS);
1019         if (PagePrivate(page)) {
1020                 printk(KERN_WARNING "btrfs warning page private not zero "
1021                        "on page %llu\n", (unsigned long long)page_offset(page));
1022                 ClearPagePrivate(page);
1023                 set_page_private(page, 0);
1024                 page_cache_release(page);
1025         }
1026 }
1027
1028 static int btree_set_page_dirty(struct page *page)
1029 {
1030 #ifdef DEBUG
1031         struct extent_buffer *eb;
1032
1033         BUG_ON(!PagePrivate(page));
1034         eb = (struct extent_buffer *)page->private;
1035         BUG_ON(!eb);
1036         BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1037         BUG_ON(!atomic_read(&eb->refs));
1038         btrfs_assert_tree_locked(eb);
1039 #endif
1040         return __set_page_dirty_nobuffers(page);
1041 }
1042
1043 static const struct address_space_operations btree_aops = {
1044         .readpage       = btree_readpage,
1045         .writepages     = btree_writepages,
1046         .releasepage    = btree_releasepage,
1047         .invalidatepage = btree_invalidatepage,
1048 #ifdef CONFIG_MIGRATION
1049         .migratepage    = btree_migratepage,
1050 #endif
1051         .set_page_dirty = btree_set_page_dirty,
1052 };
1053
1054 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1055                          u64 parent_transid)
1056 {
1057         struct extent_buffer *buf = NULL;
1058         struct inode *btree_inode = root->fs_info->btree_inode;
1059         int ret = 0;
1060
1061         buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1062         if (!buf)
1063                 return 0;
1064         read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1065                                  buf, 0, WAIT_NONE, btree_get_extent, 0);
1066         free_extent_buffer(buf);
1067         return ret;
1068 }
1069
1070 int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1071                          int mirror_num, struct extent_buffer **eb)
1072 {
1073         struct extent_buffer *buf = NULL;
1074         struct inode *btree_inode = root->fs_info->btree_inode;
1075         struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1076         int ret;
1077
1078         buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1079         if (!buf)
1080                 return 0;
1081
1082         set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1083
1084         ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1085                                        btree_get_extent, mirror_num);
1086         if (ret) {
1087                 free_extent_buffer(buf);
1088                 return ret;
1089         }
1090
1091         if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1092                 free_extent_buffer(buf);
1093                 return -EIO;
1094         } else if (extent_buffer_uptodate(buf)) {
1095                 *eb = buf;
1096         } else {
1097                 free_extent_buffer(buf);
1098         }
1099         return 0;
1100 }
1101
1102 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
1103                                             u64 bytenr, u32 blocksize)
1104 {
1105         struct inode *btree_inode = root->fs_info->btree_inode;
1106         struct extent_buffer *eb;
1107         eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
1108                                 bytenr, blocksize);
1109         return eb;
1110 }
1111
1112 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1113                                                  u64 bytenr, u32 blocksize)
1114 {
1115         struct inode *btree_inode = root->fs_info->btree_inode;
1116         struct extent_buffer *eb;
1117
1118         eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
1119                                  bytenr, blocksize);
1120         return eb;
1121 }
1122
1123
1124 int btrfs_write_tree_block(struct extent_buffer *buf)
1125 {
1126         return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1127                                         buf->start + buf->len - 1);
1128 }
1129
1130 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1131 {
1132         return filemap_fdatawait_range(buf->pages[0]->mapping,
1133                                        buf->start, buf->start + buf->len - 1);
1134 }
1135
1136 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
1137                                       u32 blocksize, u64 parent_transid)
1138 {
1139         struct extent_buffer *buf = NULL;
1140         int ret;
1141
1142         buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1143         if (!buf)
1144                 return NULL;
1145
1146         ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
1147         if (ret) {
1148                 free_extent_buffer(buf);
1149                 return NULL;
1150         }
1151         return buf;
1152
1153 }
1154
1155 void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1156                       struct extent_buffer *buf)
1157 {
1158         struct btrfs_fs_info *fs_info = root->fs_info;
1159
1160         if (btrfs_header_generation(buf) ==
1161             fs_info->running_transaction->transid) {
1162                 btrfs_assert_tree_locked(buf);
1163
1164                 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1165                         __percpu_counter_add(&fs_info->dirty_metadata_bytes,
1166                                              -buf->len,
1167                                              fs_info->dirty_metadata_batch);
1168                         /* ugh, clear_extent_buffer_dirty needs to lock the page */
1169                         btrfs_set_lock_blocking(buf);
1170                         clear_extent_buffer_dirty(buf);
1171                 }
1172         }
1173 }
1174
1175 static void __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
1176                          u32 stripesize, struct btrfs_root *root,
1177                          struct btrfs_fs_info *fs_info,
1178                          u64 objectid)
1179 {
1180         root->node = NULL;
1181         root->commit_root = NULL;
1182         root->sectorsize = sectorsize;
1183         root->nodesize = nodesize;
1184         root->leafsize = leafsize;
1185         root->stripesize = stripesize;
1186         root->ref_cows = 0;
1187         root->track_dirty = 0;
1188         root->in_radix = 0;
1189         root->orphan_item_inserted = 0;
1190         root->orphan_cleanup_state = 0;
1191
1192         root->objectid = objectid;
1193         root->last_trans = 0;
1194         root->highest_objectid = 0;
1195         root->nr_delalloc_inodes = 0;
1196         root->nr_ordered_extents = 0;
1197         root->name = NULL;
1198         root->inode_tree = RB_ROOT;
1199         INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1200         root->block_rsv = NULL;
1201         root->orphan_block_rsv = NULL;
1202
1203         INIT_LIST_HEAD(&root->dirty_list);
1204         INIT_LIST_HEAD(&root->root_list);
1205         INIT_LIST_HEAD(&root->delalloc_inodes);
1206         INIT_LIST_HEAD(&root->delalloc_root);
1207         INIT_LIST_HEAD(&root->ordered_extents);
1208         INIT_LIST_HEAD(&root->ordered_root);
1209         INIT_LIST_HEAD(&root->logged_list[0]);
1210         INIT_LIST_HEAD(&root->logged_list[1]);
1211         spin_lock_init(&root->orphan_lock);
1212         spin_lock_init(&root->inode_lock);
1213         spin_lock_init(&root->delalloc_lock);
1214         spin_lock_init(&root->ordered_extent_lock);
1215         spin_lock_init(&root->accounting_lock);
1216         spin_lock_init(&root->log_extents_lock[0]);
1217         spin_lock_init(&root->log_extents_lock[1]);
1218         mutex_init(&root->objectid_mutex);
1219         mutex_init(&root->log_mutex);
1220         init_waitqueue_head(&root->log_writer_wait);
1221         init_waitqueue_head(&root->log_commit_wait[0]);
1222         init_waitqueue_head(&root->log_commit_wait[1]);
1223         atomic_set(&root->log_commit[0], 0);
1224         atomic_set(&root->log_commit[1], 0);
1225         atomic_set(&root->log_writers, 0);
1226         atomic_set(&root->log_batch, 0);
1227         atomic_set(&root->orphan_inodes, 0);
1228         atomic_set(&root->refs, 1);
1229         root->log_transid = 0;
1230         root->last_log_commit = 0;
1231         if (fs_info)
1232                 extent_io_tree_init(&root->dirty_log_pages,
1233                                      fs_info->btree_inode->i_mapping);
1234
1235         memset(&root->root_key, 0, sizeof(root->root_key));
1236         memset(&root->root_item, 0, sizeof(root->root_item));
1237         memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1238         memset(&root->root_kobj, 0, sizeof(root->root_kobj));
1239         if (fs_info)
1240                 root->defrag_trans_start = fs_info->generation;
1241         else
1242                 root->defrag_trans_start = 0;
1243         init_completion(&root->kobj_unregister);
1244         root->defrag_running = 0;
1245         root->root_key.objectid = objectid;
1246         root->anon_dev = 0;
1247
1248         spin_lock_init(&root->root_item_lock);
1249 }
1250
1251 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
1252 {
1253         struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
1254         if (root)
1255                 root->fs_info = fs_info;
1256         return root;
1257 }
1258
1259 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1260 /* Should only be used by the testing infrastructure */
1261 struct btrfs_root *btrfs_alloc_dummy_root(void)
1262 {
1263         struct btrfs_root *root;
1264
1265         root = btrfs_alloc_root(NULL);
1266         if (!root)
1267                 return ERR_PTR(-ENOMEM);
1268         __setup_root(4096, 4096, 4096, 4096, root, NULL, 1);
1269         root->dummy_root = 1;
1270
1271         return root;
1272 }
1273 #endif
1274
1275 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1276                                      struct btrfs_fs_info *fs_info,
1277                                      u64 objectid)
1278 {
1279         struct extent_buffer *leaf;
1280         struct btrfs_root *tree_root = fs_info->tree_root;
1281         struct btrfs_root *root;
1282         struct btrfs_key key;
1283         int ret = 0;
1284         u64 bytenr;
1285         uuid_le uuid;
1286
1287         root = btrfs_alloc_root(fs_info);
1288         if (!root)
1289                 return ERR_PTR(-ENOMEM);
1290
1291         __setup_root(tree_root->nodesize, tree_root->leafsize,
1292                      tree_root->sectorsize, tree_root->stripesize,
1293                      root, fs_info, objectid);
1294         root->root_key.objectid = objectid;
1295         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1296         root->root_key.offset = 0;
1297
1298         leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
1299                                       0, objectid, NULL, 0, 0, 0);
1300         if (IS_ERR(leaf)) {
1301                 ret = PTR_ERR(leaf);
1302                 leaf = NULL;
1303                 goto fail;
1304         }
1305
1306         bytenr = leaf->start;
1307         memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1308         btrfs_set_header_bytenr(leaf, leaf->start);
1309         btrfs_set_header_generation(leaf, trans->transid);
1310         btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1311         btrfs_set_header_owner(leaf, objectid);
1312         root->node = leaf;
1313
1314         write_extent_buffer(leaf, fs_info->fsid, btrfs_header_fsid(),
1315                             BTRFS_FSID_SIZE);
1316         write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
1317                             btrfs_header_chunk_tree_uuid(leaf),
1318                             BTRFS_UUID_SIZE);
1319         btrfs_mark_buffer_dirty(leaf);
1320
1321         root->commit_root = btrfs_root_node(root);
1322         root->track_dirty = 1;
1323
1324
1325         root->root_item.flags = 0;
1326         root->root_item.byte_limit = 0;
1327         btrfs_set_root_bytenr(&root->root_item, leaf->start);
1328         btrfs_set_root_generation(&root->root_item, trans->transid);
1329         btrfs_set_root_level(&root->root_item, 0);
1330         btrfs_set_root_refs(&root->root_item, 1);
1331         btrfs_set_root_used(&root->root_item, leaf->len);
1332         btrfs_set_root_last_snapshot(&root->root_item, 0);
1333         btrfs_set_root_dirid(&root->root_item, 0);
1334         uuid_le_gen(&uuid);
1335         memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
1336         root->root_item.drop_level = 0;
1337
1338         key.objectid = objectid;
1339         key.type = BTRFS_ROOT_ITEM_KEY;
1340         key.offset = 0;
1341         ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1342         if (ret)
1343                 goto fail;
1344
1345         btrfs_tree_unlock(leaf);
1346
1347         return root;
1348
1349 fail:
1350         if (leaf) {
1351                 btrfs_tree_unlock(leaf);
1352                 free_extent_buffer(leaf);
1353         }
1354         kfree(root);
1355
1356         return ERR_PTR(ret);
1357 }
1358
1359 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1360                                          struct btrfs_fs_info *fs_info)
1361 {
1362         struct btrfs_root *root;
1363         struct btrfs_root *tree_root = fs_info->tree_root;
1364         struct extent_buffer *leaf;
1365
1366         root = btrfs_alloc_root(fs_info);
1367         if (!root)
1368                 return ERR_PTR(-ENOMEM);
1369
1370         __setup_root(tree_root->nodesize, tree_root->leafsize,
1371                      tree_root->sectorsize, tree_root->stripesize,
1372                      root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1373
1374         root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1375         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1376         root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1377         /*
1378          * log trees do not get reference counted because they go away
1379          * before a real commit is actually done.  They do store pointers
1380          * to file data extents, and those reference counts still get
1381          * updated (along with back refs to the log tree).
1382          */
1383         root->ref_cows = 0;
1384
1385         leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
1386                                       BTRFS_TREE_LOG_OBJECTID, NULL,
1387                                       0, 0, 0);
1388         if (IS_ERR(leaf)) {
1389                 kfree(root);
1390                 return ERR_CAST(leaf);
1391         }
1392
1393         memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1394         btrfs_set_header_bytenr(leaf, leaf->start);
1395         btrfs_set_header_generation(leaf, trans->transid);
1396         btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1397         btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1398         root->node = leaf;
1399
1400         write_extent_buffer(root->node, root->fs_info->fsid,
1401                             btrfs_header_fsid(), BTRFS_FSID_SIZE);
1402         btrfs_mark_buffer_dirty(root->node);
1403         btrfs_tree_unlock(root->node);
1404         return root;
1405 }
1406
1407 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1408                              struct btrfs_fs_info *fs_info)
1409 {
1410         struct btrfs_root *log_root;
1411
1412         log_root = alloc_log_tree(trans, fs_info);
1413         if (IS_ERR(log_root))
1414                 return PTR_ERR(log_root);
1415         WARN_ON(fs_info->log_root_tree);
1416         fs_info->log_root_tree = log_root;
1417         return 0;
1418 }
1419
1420 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1421                        struct btrfs_root *root)
1422 {
1423         struct btrfs_root *log_root;
1424         struct btrfs_inode_item *inode_item;
1425
1426         log_root = alloc_log_tree(trans, root->fs_info);
1427         if (IS_ERR(log_root))
1428                 return PTR_ERR(log_root);
1429
1430         log_root->last_trans = trans->transid;
1431         log_root->root_key.offset = root->root_key.objectid;
1432
1433         inode_item = &log_root->root_item.inode;
1434         btrfs_set_stack_inode_generation(inode_item, 1);
1435         btrfs_set_stack_inode_size(inode_item, 3);
1436         btrfs_set_stack_inode_nlink(inode_item, 1);
1437         btrfs_set_stack_inode_nbytes(inode_item, root->leafsize);
1438         btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1439
1440         btrfs_set_root_node(&log_root->root_item, log_root->node);
1441
1442         WARN_ON(root->log_root);
1443         root->log_root = log_root;
1444         root->log_transid = 0;
1445         root->last_log_commit = 0;
1446         return 0;
1447 }
1448
1449 static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1450                                                struct btrfs_key *key)
1451 {
1452         struct btrfs_root *root;
1453         struct btrfs_fs_info *fs_info = tree_root->fs_info;
1454         struct btrfs_path *path;
1455         u64 generation;
1456         u32 blocksize;
1457         int ret;
1458
1459         path = btrfs_alloc_path();
1460         if (!path)
1461                 return ERR_PTR(-ENOMEM);
1462
1463         root = btrfs_alloc_root(fs_info);
1464         if (!root) {
1465                 ret = -ENOMEM;
1466                 goto alloc_fail;
1467         }
1468
1469         __setup_root(tree_root->nodesize, tree_root->leafsize,
1470                      tree_root->sectorsize, tree_root->stripesize,
1471                      root, fs_info, key->objectid);
1472
1473         ret = btrfs_find_root(tree_root, key, path,
1474                               &root->root_item, &root->root_key);
1475         if (ret) {
1476                 if (ret > 0)
1477                         ret = -ENOENT;
1478                 goto find_fail;
1479         }
1480
1481         generation = btrfs_root_generation(&root->root_item);
1482         blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1483         root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1484                                      blocksize, generation);
1485         if (!root->node) {
1486                 ret = -ENOMEM;
1487                 goto find_fail;
1488         } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1489                 ret = -EIO;
1490                 goto read_fail;
1491         }
1492         root->commit_root = btrfs_root_node(root);
1493 out:
1494         btrfs_free_path(path);
1495         return root;
1496
1497 read_fail:
1498         free_extent_buffer(root->node);
1499 find_fail:
1500         kfree(root);
1501 alloc_fail:
1502         root = ERR_PTR(ret);
1503         goto out;
1504 }
1505
1506 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1507                                       struct btrfs_key *location)
1508 {
1509         struct btrfs_root *root;
1510
1511         root = btrfs_read_tree_root(tree_root, location);
1512         if (IS_ERR(root))
1513                 return root;
1514
1515         if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1516                 root->ref_cows = 1;
1517                 btrfs_check_and_init_root_item(&root->root_item);
1518         }
1519
1520         return root;
1521 }
1522
1523 int btrfs_init_fs_root(struct btrfs_root *root)
1524 {
1525         int ret;
1526
1527         root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1528         root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1529                                         GFP_NOFS);
1530         if (!root->free_ino_pinned || !root->free_ino_ctl) {
1531                 ret = -ENOMEM;
1532                 goto fail;
1533         }
1534
1535         btrfs_init_free_ino_ctl(root);
1536         mutex_init(&root->fs_commit_mutex);
1537         spin_lock_init(&root->cache_lock);
1538         init_waitqueue_head(&root->cache_wait);
1539
1540         ret = get_anon_bdev(&root->anon_dev);
1541         if (ret)
1542                 goto fail;
1543         return 0;
1544 fail:
1545         kfree(root->free_ino_ctl);
1546         kfree(root->free_ino_pinned);
1547         return ret;
1548 }
1549
1550 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1551                                                u64 root_id)
1552 {
1553         struct btrfs_root *root;
1554
1555         spin_lock(&fs_info->fs_roots_radix_lock);
1556         root = radix_tree_lookup(&fs_info->fs_roots_radix,
1557                                  (unsigned long)root_id);
1558         spin_unlock(&fs_info->fs_roots_radix_lock);
1559         return root;
1560 }
1561
1562 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1563                          struct btrfs_root *root)
1564 {
1565         int ret;
1566
1567         ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1568         if (ret)
1569                 return ret;
1570
1571         spin_lock(&fs_info->fs_roots_radix_lock);
1572         ret = radix_tree_insert(&fs_info->fs_roots_radix,
1573                                 (unsigned long)root->root_key.objectid,
1574                                 root);
1575         if (ret == 0)
1576                 root->in_radix = 1;
1577         spin_unlock(&fs_info->fs_roots_radix_lock);
1578         radix_tree_preload_end();
1579
1580         return ret;
1581 }
1582
1583 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1584                                      struct btrfs_key *location,
1585                                      bool check_ref)
1586 {
1587         struct btrfs_root *root;
1588         int ret;
1589
1590         if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1591                 return fs_info->tree_root;
1592         if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1593                 return fs_info->extent_root;
1594         if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1595                 return fs_info->chunk_root;
1596         if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1597                 return fs_info->dev_root;
1598         if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1599                 return fs_info->csum_root;
1600         if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1601                 return fs_info->quota_root ? fs_info->quota_root :
1602                                              ERR_PTR(-ENOENT);
1603         if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1604                 return fs_info->uuid_root ? fs_info->uuid_root :
1605                                             ERR_PTR(-ENOENT);
1606 again:
1607         root = btrfs_lookup_fs_root(fs_info, location->objectid);
1608         if (root) {
1609                 if (check_ref && btrfs_root_refs(&root->root_item) == 0)
1610                         return ERR_PTR(-ENOENT);
1611                 return root;
1612         }
1613
1614         root = btrfs_read_fs_root(fs_info->tree_root, location);
1615         if (IS_ERR(root))
1616                 return root;
1617
1618         if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1619                 ret = -ENOENT;
1620                 goto fail;
1621         }
1622
1623         ret = btrfs_init_fs_root(root);
1624         if (ret)
1625                 goto fail;
1626
1627         ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid);
1628         if (ret < 0)
1629                 goto fail;
1630         if (ret == 0)
1631                 root->orphan_item_inserted = 1;
1632
1633         ret = btrfs_insert_fs_root(fs_info, root);
1634         if (ret) {
1635                 if (ret == -EEXIST) {
1636                         free_fs_root(root);
1637                         goto again;
1638                 }
1639                 goto fail;
1640         }
1641         return root;
1642 fail:
1643         free_fs_root(root);
1644         return ERR_PTR(ret);
1645 }
1646
1647 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1648 {
1649         struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1650         int ret = 0;
1651         struct btrfs_device *device;
1652         struct backing_dev_info *bdi;
1653
1654         rcu_read_lock();
1655         list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1656                 if (!device->bdev)
1657                         continue;
1658                 bdi = blk_get_backing_dev_info(device->bdev);
1659                 if (bdi && bdi_congested(bdi, bdi_bits)) {
1660                         ret = 1;
1661                         break;
1662                 }
1663         }
1664         rcu_read_unlock();
1665         return ret;
1666 }
1667
1668 /*
1669  * If this fails, caller must call bdi_destroy() to get rid of the
1670  * bdi again.
1671  */
1672 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1673 {
1674         int err;
1675
1676         bdi->capabilities = BDI_CAP_MAP_COPY;
1677         err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
1678         if (err)
1679                 return err;
1680
1681         bdi->ra_pages   = default_backing_dev_info.ra_pages;
1682         bdi->congested_fn       = btrfs_congested_fn;
1683         bdi->congested_data     = info;
1684         return 0;
1685 }
1686
1687 /*
1688  * called by the kthread helper functions to finally call the bio end_io
1689  * functions.  This is where read checksum verification actually happens
1690  */
1691 static void end_workqueue_fn(struct btrfs_work *work)
1692 {
1693         struct bio *bio;
1694         struct end_io_wq *end_io_wq;
1695         struct btrfs_fs_info *fs_info;
1696         int error;
1697
1698         end_io_wq = container_of(work, struct end_io_wq, work);
1699         bio = end_io_wq->bio;
1700         fs_info = end_io_wq->info;
1701
1702         error = end_io_wq->error;
1703         bio->bi_private = end_io_wq->private;
1704         bio->bi_end_io = end_io_wq->end_io;
1705         kfree(end_io_wq);
1706         bio_endio(bio, error);
1707 }
1708
1709 static int cleaner_kthread(void *arg)
1710 {
1711         struct btrfs_root *root = arg;
1712         int again;
1713
1714         do {
1715                 again = 0;
1716
1717                 /* Make the cleaner go to sleep early. */
1718                 if (btrfs_need_cleaner_sleep(root))
1719                         goto sleep;
1720
1721                 if (!mutex_trylock(&root->fs_info->cleaner_mutex))
1722                         goto sleep;
1723
1724                 /*
1725                  * Avoid the problem that we change the status of the fs
1726                  * during the above check and trylock.
1727                  */
1728                 if (btrfs_need_cleaner_sleep(root)) {
1729                         mutex_unlock(&root->fs_info->cleaner_mutex);
1730                         goto sleep;
1731                 }
1732
1733                 btrfs_run_delayed_iputs(root);
1734                 again = btrfs_clean_one_deleted_snapshot(root);
1735                 mutex_unlock(&root->fs_info->cleaner_mutex);
1736
1737                 /*
1738                  * The defragger has dealt with the R/O remount and umount,
1739                  * needn't do anything special here.
1740                  */
1741                 btrfs_run_defrag_inodes(root->fs_info);
1742 sleep:
1743                 if (!try_to_freeze() && !again) {
1744                         set_current_state(TASK_INTERRUPTIBLE);
1745                         if (!kthread_should_stop())
1746                                 schedule();
1747                         __set_current_state(TASK_RUNNING);
1748                 }
1749         } while (!kthread_should_stop());
1750         return 0;
1751 }
1752
1753 static int transaction_kthread(void *arg)
1754 {
1755         struct btrfs_root *root = arg;
1756         struct btrfs_trans_handle *trans;
1757         struct btrfs_transaction *cur;
1758         u64 transid;
1759         unsigned long now;
1760         unsigned long delay;
1761         bool cannot_commit;
1762
1763         do {
1764                 cannot_commit = false;
1765                 delay = HZ * root->fs_info->commit_interval;
1766                 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1767
1768                 spin_lock(&root->fs_info->trans_lock);
1769                 cur = root->fs_info->running_transaction;
1770                 if (!cur) {
1771                         spin_unlock(&root->fs_info->trans_lock);
1772                         goto sleep;
1773                 }
1774
1775                 now = get_seconds();
1776                 if (cur->state < TRANS_STATE_BLOCKED &&
1777                     (now < cur->start_time ||
1778                      now - cur->start_time < root->fs_info->commit_interval)) {
1779                         spin_unlock(&root->fs_info->trans_lock);
1780                         delay = HZ * 5;
1781                         goto sleep;
1782                 }
1783                 transid = cur->transid;
1784                 spin_unlock(&root->fs_info->trans_lock);
1785
1786                 /* If the file system is aborted, this will always fail. */
1787                 trans = btrfs_attach_transaction(root);
1788                 if (IS_ERR(trans)) {
1789                         if (PTR_ERR(trans) != -ENOENT)
1790                                 cannot_commit = true;
1791                         goto sleep;
1792                 }
1793                 if (transid == trans->transid) {
1794                         btrfs_commit_transaction(trans, root);
1795                 } else {
1796                         btrfs_end_transaction(trans, root);
1797                 }
1798 sleep:
1799                 wake_up_process(root->fs_info->cleaner_kthread);
1800                 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1801
1802                 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1803                                       &root->fs_info->fs_state)))
1804                         btrfs_cleanup_transaction(root);
1805                 if (!try_to_freeze()) {
1806                         set_current_state(TASK_INTERRUPTIBLE);
1807                         if (!kthread_should_stop() &&
1808                             (!btrfs_transaction_blocked(root->fs_info) ||
1809                              cannot_commit))
1810                                 schedule_timeout(delay);
1811                         __set_current_state(TASK_RUNNING);
1812                 }
1813         } while (!kthread_should_stop());
1814         return 0;
1815 }
1816
1817 /*
1818  * this will find the highest generation in the array of
1819  * root backups.  The index of the highest array is returned,
1820  * or -1 if we can't find anything.
1821  *
1822  * We check to make sure the array is valid by comparing the
1823  * generation of the latest  root in the array with the generation
1824  * in the super block.  If they don't match we pitch it.
1825  */
1826 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1827 {
1828         u64 cur;
1829         int newest_index = -1;
1830         struct btrfs_root_backup *root_backup;
1831         int i;
1832
1833         for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1834                 root_backup = info->super_copy->super_roots + i;
1835                 cur = btrfs_backup_tree_root_gen(root_backup);
1836                 if (cur == newest_gen)
1837                         newest_index = i;
1838         }
1839
1840         /* check to see if we actually wrapped around */
1841         if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1842                 root_backup = info->super_copy->super_roots;
1843                 cur = btrfs_backup_tree_root_gen(root_backup);
1844                 if (cur == newest_gen)
1845                         newest_index = 0;
1846         }
1847         return newest_index;
1848 }
1849
1850
1851 /*
1852  * find the oldest backup so we know where to store new entries
1853  * in the backup array.  This will set the backup_root_index
1854  * field in the fs_info struct
1855  */
1856 static void find_oldest_super_backup(struct btrfs_fs_info *info,
1857                                      u64 newest_gen)
1858 {
1859         int newest_index = -1;
1860
1861         newest_index = find_newest_super_backup(info, newest_gen);
1862         /* if there was garbage in there, just move along */
1863         if (newest_index == -1) {
1864                 info->backup_root_index = 0;
1865         } else {
1866                 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1867         }
1868 }
1869
1870 /*
1871  * copy all the root pointers into the super backup array.
1872  * this will bump the backup pointer by one when it is
1873  * done
1874  */
1875 static void backup_super_roots(struct btrfs_fs_info *info)
1876 {
1877         int next_backup;
1878         struct btrfs_root_backup *root_backup;
1879         int last_backup;
1880
1881         next_backup = info->backup_root_index;
1882         last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1883                 BTRFS_NUM_BACKUP_ROOTS;
1884
1885         /*
1886          * just overwrite the last backup if we're at the same generation
1887          * this happens only at umount
1888          */
1889         root_backup = info->super_for_commit->super_roots + last_backup;
1890         if (btrfs_backup_tree_root_gen(root_backup) ==
1891             btrfs_header_generation(info->tree_root->node))
1892                 next_backup = last_backup;
1893
1894         root_backup = info->super_for_commit->super_roots + next_backup;
1895
1896         /*
1897          * make sure all of our padding and empty slots get zero filled
1898          * regardless of which ones we use today
1899          */
1900         memset(root_backup, 0, sizeof(*root_backup));
1901
1902         info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1903
1904         btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1905         btrfs_set_backup_tree_root_gen(root_backup,
1906                                btrfs_header_generation(info->tree_root->node));
1907
1908         btrfs_set_backup_tree_root_level(root_backup,
1909                                btrfs_header_level(info->tree_root->node));
1910
1911         btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1912         btrfs_set_backup_chunk_root_gen(root_backup,
1913                                btrfs_header_generation(info->chunk_root->node));
1914         btrfs_set_backup_chunk_root_level(root_backup,
1915                                btrfs_header_level(info->chunk_root->node));
1916
1917         btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1918         btrfs_set_backup_extent_root_gen(root_backup,
1919                                btrfs_header_generation(info->extent_root->node));
1920         btrfs_set_backup_extent_root_level(root_backup,
1921                                btrfs_header_level(info->extent_root->node));
1922
1923         /*
1924          * we might commit during log recovery, which happens before we set
1925          * the fs_root.  Make sure it is valid before we fill it in.
1926          */
1927         if (info->fs_root && info->fs_root->node) {
1928                 btrfs_set_backup_fs_root(root_backup,
1929                                          info->fs_root->node->start);
1930                 btrfs_set_backup_fs_root_gen(root_backup,
1931                                btrfs_header_generation(info->fs_root->node));
1932                 btrfs_set_backup_fs_root_level(root_backup,
1933                                btrfs_header_level(info->fs_root->node));
1934         }
1935
1936         btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1937         btrfs_set_backup_dev_root_gen(root_backup,
1938                                btrfs_header_generation(info->dev_root->node));
1939         btrfs_set_backup_dev_root_level(root_backup,
1940                                        btrfs_header_level(info->dev_root->node));
1941
1942         btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1943         btrfs_set_backup_csum_root_gen(root_backup,
1944                                btrfs_header_generation(info->csum_root->node));
1945         btrfs_set_backup_csum_root_level(root_backup,
1946                                btrfs_header_level(info->csum_root->node));
1947
1948         btrfs_set_backup_total_bytes(root_backup,
1949                              btrfs_super_total_bytes(info->super_copy));
1950         btrfs_set_backup_bytes_used(root_backup,
1951                              btrfs_super_bytes_used(info->super_copy));
1952         btrfs_set_backup_num_devices(root_backup,
1953                              btrfs_super_num_devices(info->super_copy));
1954
1955         /*
1956          * if we don't copy this out to the super_copy, it won't get remembered
1957          * for the next commit
1958          */
1959         memcpy(&info->super_copy->super_roots,
1960                &info->super_for_commit->super_roots,
1961                sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1962 }
1963
1964 /*
1965  * this copies info out of the root backup array and back into
1966  * the in-memory super block.  It is meant to help iterate through
1967  * the array, so you send it the number of backups you've already
1968  * tried and the last backup index you used.
1969  *
1970  * this returns -1 when it has tried all the backups
1971  */
1972 static noinline int next_root_backup(struct btrfs_fs_info *info,
1973                                      struct btrfs_super_block *super,
1974                                      int *num_backups_tried, int *backup_index)
1975 {
1976         struct btrfs_root_backup *root_backup;
1977         int newest = *backup_index;
1978
1979         if (*num_backups_tried == 0) {
1980                 u64 gen = btrfs_super_generation(super);
1981
1982                 newest = find_newest_super_backup(info, gen);
1983                 if (newest == -1)
1984                         return -1;
1985
1986                 *backup_index = newest;
1987                 *num_backups_tried = 1;
1988         } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
1989                 /* we've tried all the backups, all done */
1990                 return -1;
1991         } else {
1992                 /* jump to the next oldest backup */
1993                 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
1994                         BTRFS_NUM_BACKUP_ROOTS;
1995                 *backup_index = newest;
1996                 *num_backups_tried += 1;
1997         }
1998         root_backup = super->super_roots + newest;
1999
2000         btrfs_set_super_generation(super,
2001                                    btrfs_backup_tree_root_gen(root_backup));
2002         btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2003         btrfs_set_super_root_level(super,
2004                                    btrfs_backup_tree_root_level(root_backup));
2005         btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2006
2007         /*
2008          * fixme: the total bytes and num_devices need to match or we should
2009          * need a fsck
2010          */
2011         btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2012         btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2013         return 0;
2014 }
2015
2016 /* helper to cleanup workers */
2017 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2018 {
2019         btrfs_stop_workers(&fs_info->generic_worker);
2020         btrfs_stop_workers(&fs_info->fixup_workers);
2021         btrfs_stop_workers(&fs_info->delalloc_workers);
2022         btrfs_stop_workers(&fs_info->workers);
2023         btrfs_stop_workers(&fs_info->endio_workers);
2024         btrfs_stop_workers(&fs_info->endio_meta_workers);
2025         btrfs_stop_workers(&fs_info->endio_raid56_workers);
2026         btrfs_stop_workers(&fs_info->rmw_workers);
2027         btrfs_stop_workers(&fs_info->endio_meta_write_workers);
2028         btrfs_stop_workers(&fs_info->endio_write_workers);
2029         btrfs_stop_workers(&fs_info->endio_freespace_worker);
2030         btrfs_stop_workers(&fs_info->submit_workers);
2031         btrfs_stop_workers(&fs_info->delayed_workers);
2032         btrfs_stop_workers(&fs_info->caching_workers);
2033         btrfs_stop_workers(&fs_info->readahead_workers);
2034         btrfs_stop_workers(&fs_info->flush_workers);
2035         btrfs_stop_workers(&fs_info->qgroup_rescan_workers);
2036 }
2037
2038 /* helper to cleanup tree roots */
2039 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2040 {
2041         free_extent_buffer(info->tree_root->node);
2042         free_extent_buffer(info->tree_root->commit_root);
2043         info->tree_root->node = NULL;
2044         info->tree_root->commit_root = NULL;
2045
2046         if (info->dev_root) {
2047                 free_extent_buffer(info->dev_root->node);
2048                 free_extent_buffer(info->dev_root->commit_root);
2049                 info->dev_root->node = NULL;
2050                 info->dev_root->commit_root = NULL;
2051         }
2052         if (info->extent_root) {
2053                 free_extent_buffer(info->extent_root->node);
2054                 free_extent_buffer(info->extent_root->commit_root);
2055                 info->extent_root->node = NULL;
2056                 info->extent_root->commit_root = NULL;
2057         }
2058         if (info->csum_root) {
2059                 free_extent_buffer(info->csum_root->node);
2060                 free_extent_buffer(info->csum_root->commit_root);
2061                 info->csum_root->node = NULL;
2062                 info->csum_root->commit_root = NULL;
2063         }
2064         if (info->quota_root) {
2065                 free_extent_buffer(info->quota_root->node);
2066                 free_extent_buffer(info->quota_root->commit_root);
2067                 info->quota_root->node = NULL;
2068                 info->quota_root->commit_root = NULL;
2069         }
2070         if (info->uuid_root) {
2071                 free_extent_buffer(info->uuid_root->node);
2072                 free_extent_buffer(info->uuid_root->commit_root);
2073                 info->uuid_root->node = NULL;
2074                 info->uuid_root->commit_root = NULL;
2075         }
2076         if (chunk_root) {
2077                 free_extent_buffer(info->chunk_root->node);
2078                 free_extent_buffer(info->chunk_root->commit_root);
2079                 info->chunk_root->node = NULL;
2080                 info->chunk_root->commit_root = NULL;
2081         }
2082 }
2083
2084 static void del_fs_roots(struct btrfs_fs_info *fs_info)
2085 {
2086         int ret;
2087         struct btrfs_root *gang[8];
2088         int i;
2089
2090         while (!list_empty(&fs_info->dead_roots)) {
2091                 gang[0] = list_entry(fs_info->dead_roots.next,
2092                                      struct btrfs_root, root_list);
2093                 list_del(&gang[0]->root_list);
2094
2095                 if (gang[0]->in_radix) {
2096                         btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2097                 } else {
2098                         free_extent_buffer(gang[0]->node);
2099                         free_extent_buffer(gang[0]->commit_root);
2100                         btrfs_put_fs_root(gang[0]);
2101                 }
2102         }
2103
2104         while (1) {
2105                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2106                                              (void **)gang, 0,
2107                                              ARRAY_SIZE(gang));
2108                 if (!ret)
2109                         break;
2110                 for (i = 0; i < ret; i++)
2111                         btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2112         }
2113 }
2114
2115 int open_ctree(struct super_block *sb,
2116                struct btrfs_fs_devices *fs_devices,
2117                char *options)
2118 {
2119         u32 sectorsize;
2120         u32 nodesize;
2121         u32 leafsize;
2122         u32 blocksize;
2123         u32 stripesize;
2124         u64 generation;
2125         u64 features;
2126         struct btrfs_key location;
2127         struct buffer_head *bh;
2128         struct btrfs_super_block *disk_super;
2129         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2130         struct btrfs_root *tree_root;
2131         struct btrfs_root *extent_root;
2132         struct btrfs_root *csum_root;
2133         struct btrfs_root *chunk_root;
2134         struct btrfs_root *dev_root;
2135         struct btrfs_root *quota_root;
2136         struct btrfs_root *uuid_root;
2137         struct btrfs_root *log_tree_root;
2138         int ret;
2139         int err = -EINVAL;
2140         int num_backups_tried = 0;
2141         int backup_index = 0;
2142         bool create_uuid_tree;
2143         bool check_uuid_tree;
2144
2145         tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
2146         chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
2147         if (!tree_root || !chunk_root) {
2148                 err = -ENOMEM;
2149                 goto fail;
2150         }
2151
2152         ret = init_srcu_struct(&fs_info->subvol_srcu);
2153         if (ret) {
2154                 err = ret;
2155                 goto fail;
2156         }
2157
2158         ret = setup_bdi(fs_info, &fs_info->bdi);
2159         if (ret) {
2160                 err = ret;
2161                 goto fail_srcu;
2162         }
2163
2164         ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0);
2165         if (ret) {
2166                 err = ret;
2167                 goto fail_bdi;
2168         }
2169         fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE *
2170                                         (1 + ilog2(nr_cpu_ids));
2171
2172         ret = percpu_counter_init(&fs_info->delalloc_bytes, 0);
2173         if (ret) {
2174                 err = ret;
2175                 goto fail_dirty_metadata_bytes;
2176         }
2177
2178         fs_info->btree_inode = new_inode(sb);
2179         if (!fs_info->btree_inode) {
2180                 err = -ENOMEM;
2181                 goto fail_delalloc_bytes;
2182         }
2183
2184         mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2185
2186         INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2187         INIT_LIST_HEAD(&fs_info->trans_list);
2188         INIT_LIST_HEAD(&fs_info->dead_roots);
2189         INIT_LIST_HEAD(&fs_info->delayed_iputs);
2190         INIT_LIST_HEAD(&fs_info->delalloc_roots);
2191         INIT_LIST_HEAD(&fs_info->caching_block_groups);
2192         spin_lock_init(&fs_info->delalloc_root_lock);
2193         spin_lock_init(&fs_info->trans_lock);
2194         spin_lock_init(&fs_info->fs_roots_radix_lock);
2195         spin_lock_init(&fs_info->delayed_iput_lock);
2196         spin_lock_init(&fs_info->defrag_inodes_lock);
2197         spin_lock_init(&fs_info->free_chunk_lock);
2198         spin_lock_init(&fs_info->tree_mod_seq_lock);
2199         spin_lock_init(&fs_info->super_lock);
2200         rwlock_init(&fs_info->tree_mod_log_lock);
2201         mutex_init(&fs_info->reloc_mutex);
2202         seqlock_init(&fs_info->profiles_lock);
2203
2204         init_completion(&fs_info->kobj_unregister);
2205         INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2206         INIT_LIST_HEAD(&fs_info->space_info);
2207         INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2208         btrfs_mapping_init(&fs_info->mapping_tree);
2209         btrfs_init_block_rsv(&fs_info->global_block_rsv,
2210                              BTRFS_BLOCK_RSV_GLOBAL);
2211         btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2212                              BTRFS_BLOCK_RSV_DELALLOC);
2213         btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2214         btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2215         btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2216         btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2217                              BTRFS_BLOCK_RSV_DELOPS);
2218         atomic_set(&fs_info->nr_async_submits, 0);
2219         atomic_set(&fs_info->async_delalloc_pages, 0);
2220         atomic_set(&fs_info->async_submit_draining, 0);
2221         atomic_set(&fs_info->nr_async_bios, 0);
2222         atomic_set(&fs_info->defrag_running, 0);
2223         atomic64_set(&fs_info->tree_mod_seq, 0);
2224         fs_info->sb = sb;
2225         fs_info->max_inline = 8192 * 1024;
2226         fs_info->metadata_ratio = 0;
2227         fs_info->defrag_inodes = RB_ROOT;
2228         fs_info->free_chunk_space = 0;
2229         fs_info->tree_mod_log = RB_ROOT;
2230         fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2231
2232         /* readahead state */
2233         INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
2234         spin_lock_init(&fs_info->reada_lock);
2235
2236         fs_info->thread_pool_size = min_t(unsigned long,
2237                                           num_online_cpus() + 2, 8);
2238
2239         INIT_LIST_HEAD(&fs_info->ordered_roots);
2240         spin_lock_init(&fs_info->ordered_root_lock);
2241         fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2242                                         GFP_NOFS);
2243         if (!fs_info->delayed_root) {
2244                 err = -ENOMEM;
2245                 goto fail_iput;
2246         }
2247         btrfs_init_delayed_root(fs_info->delayed_root);
2248
2249         mutex_init(&fs_info->scrub_lock);
2250         atomic_set(&fs_info->scrubs_running, 0);
2251         atomic_set(&fs_info->scrub_pause_req, 0);
2252         atomic_set(&fs_info->scrubs_paused, 0);
2253         atomic_set(&fs_info->scrub_cancel_req, 0);
2254         init_waitqueue_head(&fs_info->scrub_pause_wait);
2255         init_rwsem(&fs_info->scrub_super_lock);
2256         fs_info->scrub_workers_refcnt = 0;
2257 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2258         fs_info->check_integrity_print_mask = 0;
2259 #endif
2260
2261         spin_lock_init(&fs_info->balance_lock);
2262         mutex_init(&fs_info->balance_mutex);
2263         atomic_set(&fs_info->balance_running, 0);
2264         atomic_set(&fs_info->balance_pause_req, 0);
2265         atomic_set(&fs_info->balance_cancel_req, 0);
2266         fs_info->balance_ctl = NULL;
2267         init_waitqueue_head(&fs_info->balance_wait_q);
2268
2269         sb->s_blocksize = 4096;
2270         sb->s_blocksize_bits = blksize_bits(4096);
2271         sb->s_bdi = &fs_info->bdi;
2272
2273         fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2274         set_nlink(fs_info->btree_inode, 1);
2275         /*
2276          * we set the i_size on the btree inode to the max possible int.
2277          * the real end of the address space is determined by all of
2278          * the devices in the system
2279          */
2280         fs_info->btree_inode->i_size = OFFSET_MAX;
2281         fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
2282         fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
2283
2284         RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
2285         extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
2286                              fs_info->btree_inode->i_mapping);
2287         BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
2288         extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
2289
2290         BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
2291
2292         BTRFS_I(fs_info->btree_inode)->root = tree_root;
2293         memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2294                sizeof(struct btrfs_key));
2295         set_bit(BTRFS_INODE_DUMMY,
2296                 &BTRFS_I(fs_info->btree_inode)->runtime_flags);
2297         btrfs_insert_inode_hash(fs_info->btree_inode);
2298
2299         spin_lock_init(&fs_info->block_group_cache_lock);
2300         fs_info->block_group_cache_tree = RB_ROOT;
2301         fs_info->first_logical_byte = (u64)-1;
2302
2303         extent_io_tree_init(&fs_info->freed_extents[0],
2304                              fs_info->btree_inode->i_mapping);
2305         extent_io_tree_init(&fs_info->freed_extents[1],
2306                              fs_info->btree_inode->i_mapping);
2307         fs_info->pinned_extents = &fs_info->freed_extents[0];
2308         fs_info->do_barriers = 1;
2309
2310
2311         mutex_init(&fs_info->ordered_operations_mutex);
2312         mutex_init(&fs_info->ordered_extent_flush_mutex);
2313         mutex_init(&fs_info->tree_log_mutex);
2314         mutex_init(&fs_info->chunk_mutex);
2315         mutex_init(&fs_info->transaction_kthread_mutex);
2316         mutex_init(&fs_info->cleaner_mutex);
2317         mutex_init(&fs_info->volume_mutex);
2318         init_rwsem(&fs_info->extent_commit_sem);
2319         init_rwsem(&fs_info->cleanup_work_sem);
2320         init_rwsem(&fs_info->subvol_sem);
2321         sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2322         fs_info->dev_replace.lock_owner = 0;
2323         atomic_set(&fs_info->dev_replace.nesting_level, 0);
2324         mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2325         mutex_init(&fs_info->dev_replace.lock_management_lock);
2326         mutex_init(&fs_info->dev_replace.lock);
2327
2328         spin_lock_init(&fs_info->qgroup_lock);
2329         mutex_init(&fs_info->qgroup_ioctl_lock);
2330         fs_info->qgroup_tree = RB_ROOT;
2331         INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2332         fs_info->qgroup_seq = 1;
2333         fs_info->quota_enabled = 0;
2334         fs_info->pending_quota_state = 0;
2335         fs_info->qgroup_ulist = NULL;
2336         mutex_init(&fs_info->qgroup_rescan_lock);
2337
2338         btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2339         btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2340
2341         init_waitqueue_head(&fs_info->transaction_throttle);
2342         init_waitqueue_head(&fs_info->transaction_wait);
2343         init_waitqueue_head(&fs_info->transaction_blocked_wait);
2344         init_waitqueue_head(&fs_info->async_submit_wait);
2345
2346         ret = btrfs_alloc_stripe_hash_table(fs_info);
2347         if (ret) {
2348                 err = ret;
2349                 goto fail_alloc;
2350         }
2351
2352         __setup_root(4096, 4096, 4096, 4096, tree_root,
2353                      fs_info, BTRFS_ROOT_TREE_OBJECTID);
2354
2355         invalidate_bdev(fs_devices->latest_bdev);
2356
2357         /*
2358          * Read super block and check the signature bytes only
2359          */
2360         bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2361         if (!bh) {
2362                 err = -EINVAL;
2363                 goto fail_alloc;
2364         }
2365
2366         /*
2367          * We want to check superblock checksum, the type is stored inside.
2368          * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2369          */
2370         if (btrfs_check_super_csum(bh->b_data)) {
2371                 printk(KERN_ERR "btrfs: superblock checksum mismatch\n");
2372                 err = -EINVAL;
2373                 goto fail_alloc;
2374         }
2375
2376         /*
2377          * super_copy is zeroed at allocation time and we never touch the
2378          * following bytes up to INFO_SIZE, the checksum is calculated from
2379          * the whole block of INFO_SIZE
2380          */
2381         memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2382         memcpy(fs_info->super_for_commit, fs_info->super_copy,
2383                sizeof(*fs_info->super_for_commit));
2384         brelse(bh);
2385
2386         memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2387
2388         ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2389         if (ret) {
2390                 printk(KERN_ERR "btrfs: superblock contains fatal errors\n");
2391                 err = -EINVAL;
2392                 goto fail_alloc;
2393         }
2394
2395         disk_super = fs_info->super_copy;
2396         if (!btrfs_super_root(disk_super))
2397                 goto fail_alloc;
2398
2399         /* check FS state, whether FS is broken. */
2400         if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2401                 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2402
2403         /*
2404          * run through our array of backup supers and setup
2405          * our ring pointer to the oldest one
2406          */
2407         generation = btrfs_super_generation(disk_super);
2408         find_oldest_super_backup(fs_info, generation);
2409
2410         /*
2411          * In the long term, we'll store the compression type in the super
2412          * block, and it'll be used for per file compression control.
2413          */
2414         fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2415
2416         ret = btrfs_parse_options(tree_root, options);
2417         if (ret) {
2418                 err = ret;
2419                 goto fail_alloc;
2420         }
2421
2422         features = btrfs_super_incompat_flags(disk_super) &
2423                 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2424         if (features) {
2425                 printk(KERN_ERR "BTRFS: couldn't mount because of "
2426                        "unsupported optional features (%Lx).\n",
2427                        features);
2428                 err = -EINVAL;
2429                 goto fail_alloc;
2430         }
2431
2432         if (btrfs_super_leafsize(disk_super) !=
2433             btrfs_super_nodesize(disk_super)) {
2434                 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2435                        "blocksizes don't match.  node %d leaf %d\n",
2436                        btrfs_super_nodesize(disk_super),
2437                        btrfs_super_leafsize(disk_super));
2438                 err = -EINVAL;
2439                 goto fail_alloc;
2440         }
2441         if (btrfs_super_leafsize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
2442                 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2443                        "blocksize (%d) was too large\n",
2444                        btrfs_super_leafsize(disk_super));
2445                 err = -EINVAL;
2446                 goto fail_alloc;
2447         }
2448
2449         features = btrfs_super_incompat_flags(disk_super);
2450         features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2451         if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
2452                 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2453
2454         if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2455                 printk(KERN_ERR "btrfs: has skinny extents\n");
2456
2457         /*
2458          * flag our filesystem as having big metadata blocks if
2459          * they are bigger than the page size
2460          */
2461         if (btrfs_super_leafsize(disk_super) > PAGE_CACHE_SIZE) {
2462                 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2463                         printk(KERN_INFO "btrfs flagging fs with big metadata feature\n");
2464                 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2465         }
2466
2467         nodesize = btrfs_super_nodesize(disk_super);
2468         leafsize = btrfs_super_leafsize(disk_super);
2469         sectorsize = btrfs_super_sectorsize(disk_super);
2470         stripesize = btrfs_super_stripesize(disk_super);
2471         fs_info->dirty_metadata_batch = leafsize * (1 + ilog2(nr_cpu_ids));
2472         fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2473
2474         /*
2475          * mixed block groups end up with duplicate but slightly offset
2476          * extent buffers for the same range.  It leads to corruptions
2477          */
2478         if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2479             (sectorsize != leafsize)) {
2480                 printk(KERN_WARNING "btrfs: unequal leaf/node/sector sizes "
2481                                 "are not allowed for mixed block groups on %s\n",
2482                                 sb->s_id);
2483                 goto fail_alloc;
2484         }
2485
2486         /*
2487          * Needn't use the lock because there is no other task which will
2488          * update the flag.
2489          */
2490         btrfs_set_super_incompat_flags(disk_super, features);
2491
2492         features = btrfs_super_compat_ro_flags(disk_super) &
2493                 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2494         if (!(sb->s_flags & MS_RDONLY) && features) {
2495                 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2496                        "unsupported option features (%Lx).\n",
2497                        features);
2498                 err = -EINVAL;
2499                 goto fail_alloc;
2500         }
2501
2502         btrfs_init_workers(&fs_info->generic_worker,
2503                            "genwork", 1, NULL);
2504
2505         btrfs_init_workers(&fs_info->workers, "worker",
2506                            fs_info->thread_pool_size,
2507                            &fs_info->generic_worker);
2508
2509         btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
2510                            fs_info->thread_pool_size, NULL);
2511
2512         btrfs_init_workers(&fs_info->flush_workers, "flush_delalloc",
2513                            fs_info->thread_pool_size, NULL);
2514
2515         btrfs_init_workers(&fs_info->submit_workers, "submit",
2516                            min_t(u64, fs_devices->num_devices,
2517                            fs_info->thread_pool_size), NULL);
2518
2519         btrfs_init_workers(&fs_info->caching_workers, "cache",
2520                            fs_info->thread_pool_size, NULL);
2521
2522         /* a higher idle thresh on the submit workers makes it much more
2523          * likely that bios will be send down in a sane order to the
2524          * devices
2525          */
2526         fs_info->submit_workers.idle_thresh = 64;
2527
2528         fs_info->workers.idle_thresh = 16;
2529         fs_info->workers.ordered = 1;
2530
2531         fs_info->delalloc_workers.idle_thresh = 2;
2532         fs_info->delalloc_workers.ordered = 1;
2533
2534         btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
2535                            &fs_info->generic_worker);
2536         btrfs_init_workers(&fs_info->endio_workers, "endio",
2537                            fs_info->thread_pool_size,
2538                            &fs_info->generic_worker);
2539         btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
2540                            fs_info->thread_pool_size,
2541                            &fs_info->generic_worker);
2542         btrfs_init_workers(&fs_info->endio_meta_write_workers,
2543                            "endio-meta-write", fs_info->thread_pool_size,
2544                            &fs_info->generic_worker);
2545         btrfs_init_workers(&fs_info->endio_raid56_workers,
2546                            "endio-raid56", fs_info->thread_pool_size,
2547                            &fs_info->generic_worker);
2548         btrfs_init_workers(&fs_info->rmw_workers,
2549                            "rmw", fs_info->thread_pool_size,
2550                            &fs_info->generic_worker);
2551         btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
2552                            fs_info->thread_pool_size,
2553                            &fs_info->generic_worker);
2554         btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write",
2555                            1, &fs_info->generic_worker);
2556         btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta",
2557                            fs_info->thread_pool_size,
2558                            &fs_info->generic_worker);
2559         btrfs_init_workers(&fs_info->readahead_workers, "readahead",
2560                            fs_info->thread_pool_size,
2561                            &fs_info->generic_worker);
2562         btrfs_init_workers(&fs_info->qgroup_rescan_workers, "qgroup-rescan", 1,
2563                            &fs_info->generic_worker);
2564
2565         /*
2566          * endios are largely parallel and should have a very
2567          * low idle thresh
2568          */
2569         fs_info->endio_workers.idle_thresh = 4;
2570         fs_info->endio_meta_workers.idle_thresh = 4;
2571         fs_info->endio_raid56_workers.idle_thresh = 4;
2572         fs_info->rmw_workers.idle_thresh = 2;
2573
2574         fs_info->endio_write_workers.idle_thresh = 2;
2575         fs_info->endio_meta_write_workers.idle_thresh = 2;
2576         fs_info->readahead_workers.idle_thresh = 2;
2577
2578         /*
2579          * btrfs_start_workers can really only fail because of ENOMEM so just
2580          * return -ENOMEM if any of these fail.
2581          */
2582         ret = btrfs_start_workers(&fs_info->workers);
2583         ret |= btrfs_start_workers(&fs_info->generic_worker);
2584         ret |= btrfs_start_workers(&fs_info->submit_workers);
2585         ret |= btrfs_start_workers(&fs_info->delalloc_workers);
2586         ret |= btrfs_start_workers(&fs_info->fixup_workers);
2587         ret |= btrfs_start_workers(&fs_info->endio_workers);
2588         ret |= btrfs_start_workers(&fs_info->endio_meta_workers);
2589         ret |= btrfs_start_workers(&fs_info->rmw_workers);
2590         ret |= btrfs_start_workers(&fs_info->endio_raid56_workers);
2591         ret |= btrfs_start_workers(&fs_info->endio_meta_write_workers);
2592         ret |= btrfs_start_workers(&fs_info->endio_write_workers);
2593         ret |= btrfs_start_workers(&fs_info->endio_freespace_worker);
2594         ret |= btrfs_start_workers(&fs_info->delayed_workers);
2595         ret |= btrfs_start_workers(&fs_info->caching_workers);
2596         ret |= btrfs_start_workers(&fs_info->readahead_workers);
2597         ret |= btrfs_start_workers(&fs_info->flush_workers);
2598         ret |= btrfs_start_workers(&fs_info->qgroup_rescan_workers);
2599         if (ret) {
2600                 err = -ENOMEM;
2601                 goto fail_sb_buffer;
2602         }
2603
2604         fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
2605         fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2606                                     4 * 1024 * 1024 / PAGE_CACHE_SIZE);
2607
2608         tree_root->nodesize = nodesize;
2609         tree_root->leafsize = leafsize;
2610         tree_root->sectorsize = sectorsize;
2611         tree_root->stripesize = stripesize;
2612
2613         sb->s_blocksize = sectorsize;
2614         sb->s_blocksize_bits = blksize_bits(sectorsize);
2615
2616         if (btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
2617                 printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
2618                 goto fail_sb_buffer;
2619         }
2620
2621         if (sectorsize != PAGE_SIZE) {
2622                 printk(KERN_WARNING "btrfs: Incompatible sector size(%lu) "
2623                        "found on %s\n", (unsigned long)sectorsize, sb->s_id);
2624                 goto fail_sb_buffer;
2625         }
2626
2627         mutex_lock(&fs_info->chunk_mutex);
2628         ret = btrfs_read_sys_array(tree_root);
2629         mutex_unlock(&fs_info->chunk_mutex);
2630         if (ret) {
2631                 printk(KERN_WARNING "btrfs: failed to read the system "
2632                        "array on %s\n", sb->s_id);
2633                 goto fail_sb_buffer;
2634         }
2635
2636         blocksize = btrfs_level_size(tree_root,
2637                                      btrfs_super_chunk_root_level(disk_super));
2638         generation = btrfs_super_chunk_root_generation(disk_super);
2639
2640         __setup_root(nodesize, leafsize, sectorsize, stripesize,
2641                      chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2642
2643         chunk_root->node = read_tree_block(chunk_root,
2644                                            btrfs_super_chunk_root(disk_super),
2645                                            blocksize, generation);
2646         if (!chunk_root->node ||
2647             !test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
2648                 printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
2649                        sb->s_id);
2650                 goto fail_tree_roots;
2651         }
2652         btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2653         chunk_root->commit_root = btrfs_root_node(chunk_root);
2654
2655         read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2656            btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
2657
2658         ret = btrfs_read_chunk_tree(chunk_root);
2659         if (ret) {
2660                 printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
2661                        sb->s_id);
2662                 goto fail_tree_roots;
2663         }
2664
2665         /*
2666          * keep the device that is marked to be the target device for the
2667          * dev_replace procedure
2668          */
2669         btrfs_close_extra_devices(fs_info, fs_devices, 0);
2670
2671         if (!fs_devices->latest_bdev) {
2672                 printk(KERN_CRIT "btrfs: failed to read devices on %s\n",
2673                        sb->s_id);
2674                 goto fail_tree_roots;
2675         }
2676
2677 retry_root_backup:
2678         blocksize = btrfs_level_size(tree_root,
2679                                      btrfs_super_root_level(disk_super));
2680         generation = btrfs_super_generation(disk_super);
2681
2682         tree_root->node = read_tree_block(tree_root,
2683                                           btrfs_super_root(disk_super),
2684                                           blocksize, generation);
2685         if (!tree_root->node ||
2686             !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
2687                 printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
2688                        sb->s_id);
2689
2690                 goto recovery_tree_root;
2691         }
2692
2693         btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2694         tree_root->commit_root = btrfs_root_node(tree_root);
2695         btrfs_set_root_refs(&tree_root->root_item, 1);
2696
2697         location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2698         location.type = BTRFS_ROOT_ITEM_KEY;
2699         location.offset = 0;
2700
2701         extent_root = btrfs_read_tree_root(tree_root, &location);
2702         if (IS_ERR(extent_root)) {
2703                 ret = PTR_ERR(extent_root);
2704                 goto recovery_tree_root;
2705         }
2706         extent_root->track_dirty = 1;
2707         fs_info->extent_root = extent_root;
2708
2709         location.objectid = BTRFS_DEV_TREE_OBJECTID;
2710         dev_root = btrfs_read_tree_root(tree_root, &location);
2711         if (IS_ERR(dev_root)) {
2712                 ret = PTR_ERR(dev_root);
2713                 goto recovery_tree_root;
2714         }
2715         dev_root->track_dirty = 1;
2716         fs_info->dev_root = dev_root;
2717         btrfs_init_devices_late(fs_info);
2718
2719         location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2720         csum_root = btrfs_read_tree_root(tree_root, &location);
2721         if (IS_ERR(csum_root)) {
2722                 ret = PTR_ERR(csum_root);
2723                 goto recovery_tree_root;
2724         }
2725         csum_root->track_dirty = 1;
2726         fs_info->csum_root = csum_root;
2727
2728         location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2729         quota_root = btrfs_read_tree_root(tree_root, &location);
2730         if (!IS_ERR(quota_root)) {
2731                 quota_root->track_dirty = 1;
2732                 fs_info->quota_enabled = 1;
2733                 fs_info->pending_quota_state = 1;
2734                 fs_info->quota_root = quota_root;
2735         }
2736
2737         location.objectid = BTRFS_UUID_TREE_OBJECTID;
2738         uuid_root = btrfs_read_tree_root(tree_root, &location);
2739         if (IS_ERR(uuid_root)) {
2740                 ret = PTR_ERR(uuid_root);
2741                 if (ret != -ENOENT)
2742                         goto recovery_tree_root;
2743                 create_uuid_tree = true;
2744                 check_uuid_tree = false;
2745         } else {
2746                 uuid_root->track_dirty = 1;
2747                 fs_info->uuid_root = uuid_root;
2748                 create_uuid_tree = false;
2749                 check_uuid_tree =
2750                     generation != btrfs_super_uuid_tree_generation(disk_super);
2751         }
2752
2753         fs_info->generation = generation;
2754         fs_info->last_trans_committed = generation;
2755
2756         ret = btrfs_recover_balance(fs_info);
2757         if (ret) {
2758                 printk(KERN_WARNING "btrfs: failed to recover balance\n");
2759                 goto fail_block_groups;
2760         }
2761
2762         ret = btrfs_init_dev_stats(fs_info);
2763         if (ret) {
2764                 printk(KERN_ERR "btrfs: failed to init dev_stats: %d\n",
2765                        ret);
2766                 goto fail_block_groups;
2767         }
2768
2769         ret = btrfs_init_dev_replace(fs_info);
2770         if (ret) {
2771                 pr_err("btrfs: failed to init dev_replace: %d\n", ret);
2772                 goto fail_block_groups;
2773         }
2774
2775         btrfs_close_extra_devices(fs_info, fs_devices, 1);
2776
2777         ret = btrfs_init_space_info(fs_info);
2778         if (ret) {
2779                 printk(KERN_ERR "Failed to initial space info: %d\n", ret);
2780                 goto fail_block_groups;
2781         }
2782
2783         ret = btrfs_read_block_groups(extent_root);
2784         if (ret) {
2785                 printk(KERN_ERR "Failed to read block groups: %d\n", ret);
2786                 goto fail_block_groups;
2787         }
2788         fs_info->num_tolerated_disk_barrier_failures =
2789                 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
2790         if (fs_info->fs_devices->missing_devices >
2791              fs_info->num_tolerated_disk_barrier_failures &&
2792             !(sb->s_flags & MS_RDONLY)) {
2793                 printk(KERN_WARNING
2794                        "Btrfs: too many missing devices, writeable mount is not allowed\n");
2795                 goto fail_block_groups;
2796         }
2797
2798         fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2799                                                "btrfs-cleaner");
2800         if (IS_ERR(fs_info->cleaner_kthread))
2801                 goto fail_block_groups;
2802
2803         fs_info->transaction_kthread = kthread_run(transaction_kthread,
2804                                                    tree_root,
2805                                                    "btrfs-transaction");
2806         if (IS_ERR(fs_info->transaction_kthread))
2807                 goto fail_cleaner;
2808
2809         if (!btrfs_test_opt(tree_root, SSD) &&
2810             !btrfs_test_opt(tree_root, NOSSD) &&
2811             !fs_info->fs_devices->rotating) {
2812                 printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
2813                        "mode\n");
2814                 btrfs_set_opt(fs_info->mount_opt, SSD);
2815         }
2816
2817 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2818         if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
2819                 ret = btrfsic_mount(tree_root, fs_devices,
2820                                     btrfs_test_opt(tree_root,
2821                                         CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2822                                     1 : 0,
2823                                     fs_info->check_integrity_print_mask);
2824                 if (ret)
2825                         printk(KERN_WARNING "btrfs: failed to initialize"
2826                                " integrity check module %s\n", sb->s_id);
2827         }
2828 #endif
2829         ret = btrfs_read_qgroup_config(fs_info);
2830         if (ret)
2831                 goto fail_trans_kthread;
2832
2833         /* do not make disk changes in broken FS */
2834         if (btrfs_super_log_root(disk_super) != 0) {
2835                 u64 bytenr = btrfs_super_log_root(disk_super);
2836
2837                 if (fs_devices->rw_devices == 0) {
2838                         printk(KERN_WARNING "Btrfs log replay required "
2839                                "on RO media\n");
2840                         err = -EIO;
2841                         goto fail_qgroup;
2842                 }
2843                 blocksize =
2844                      btrfs_level_size(tree_root,
2845                                       btrfs_super_log_root_level(disk_super));
2846
2847                 log_tree_root = btrfs_alloc_root(fs_info);
2848                 if (!log_tree_root) {
2849                         err = -ENOMEM;
2850                         goto fail_qgroup;
2851                 }
2852
2853                 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2854                              log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2855
2856                 log_tree_root->node = read_tree_block(tree_root, bytenr,
2857                                                       blocksize,
2858                                                       generation + 1);
2859                 if (!log_tree_root->node ||
2860                     !extent_buffer_uptodate(log_tree_root->node)) {
2861                         printk(KERN_ERR "btrfs: failed to read log tree\n");
2862                         free_extent_buffer(log_tree_root->node);
2863                         kfree(log_tree_root);
2864                         goto fail_trans_kthread;
2865                 }
2866                 /* returns with log_tree_root freed on success */
2867                 ret = btrfs_recover_log_trees(log_tree_root);
2868                 if (ret) {
2869                         btrfs_error(tree_root->fs_info, ret,
2870                                     "Failed to recover log tree");
2871                         free_extent_buffer(log_tree_root->node);
2872                         kfree(log_tree_root);
2873                         goto fail_trans_kthread;
2874                 }
2875
2876                 if (sb->s_flags & MS_RDONLY) {
2877                         ret = btrfs_commit_super(tree_root);
2878                         if (ret)
2879                                 goto fail_trans_kthread;
2880                 }
2881         }
2882
2883         ret = btrfs_find_orphan_roots(tree_root);
2884         if (ret)
2885                 goto fail_trans_kthread;
2886
2887         if (!(sb->s_flags & MS_RDONLY)) {
2888                 ret = btrfs_cleanup_fs_roots(fs_info);
2889                 if (ret)
2890                         goto fail_trans_kthread;
2891
2892                 ret = btrfs_recover_relocation(tree_root);
2893                 if (ret < 0) {
2894                         printk(KERN_WARNING
2895                                "btrfs: failed to recover relocation\n");
2896                         err = -EINVAL;
2897                         goto fail_qgroup;
2898                 }
2899         }
2900
2901         location.objectid = BTRFS_FS_TREE_OBJECTID;
2902         location.type = BTRFS_ROOT_ITEM_KEY;
2903         location.offset = 0;
2904
2905         fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
2906         if (IS_ERR(fs_info->fs_root)) {
2907                 err = PTR_ERR(fs_info->fs_root);
2908                 goto fail_qgroup;
2909         }
2910
2911         if (sb->s_flags & MS_RDONLY)
2912                 return 0;
2913
2914         down_read(&fs_info->cleanup_work_sem);
2915         if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
2916             (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
2917                 up_read(&fs_info->cleanup_work_sem);
2918                 close_ctree(tree_root);
2919                 return ret;
2920         }
2921         up_read(&fs_info->cleanup_work_sem);
2922
2923         ret = btrfs_resume_balance_async(fs_info);
2924         if (ret) {
2925                 printk(KERN_WARNING "btrfs: failed to resume balance\n");
2926                 close_ctree(tree_root);
2927                 return ret;
2928         }
2929
2930         ret = btrfs_resume_dev_replace_async(fs_info);
2931         if (ret) {
2932                 pr_warn("btrfs: failed to resume dev_replace\n");
2933                 close_ctree(tree_root);
2934                 return ret;
2935         }
2936
2937         btrfs_qgroup_rescan_resume(fs_info);
2938
2939         if (create_uuid_tree) {
2940                 pr_info("btrfs: creating UUID tree\n");
2941                 ret = btrfs_create_uuid_tree(fs_info);
2942                 if (ret) {
2943                         pr_warn("btrfs: failed to create the UUID tree %d\n",
2944                                 ret);
2945                         close_ctree(tree_root);
2946                         return ret;
2947                 }
2948         } else if (check_uuid_tree ||
2949                    btrfs_test_opt(tree_root, RESCAN_UUID_TREE)) {
2950                 pr_info("btrfs: checking UUID tree\n");
2951                 ret = btrfs_check_uuid_tree(fs_info);
2952                 if (ret) {
2953                         pr_warn("btrfs: failed to check the UUID tree %d\n",
2954                                 ret);
2955                         close_ctree(tree_root);
2956                         return ret;
2957                 }
2958         } else {
2959                 fs_info->update_uuid_tree_gen = 1;
2960         }
2961
2962         return 0;
2963
2964 fail_qgroup:
2965         btrfs_free_qgroup_config(fs_info);
2966 fail_trans_kthread:
2967         kthread_stop(fs_info->transaction_kthread);
2968         btrfs_cleanup_transaction(fs_info->tree_root);
2969         del_fs_roots(fs_info);
2970 fail_cleaner:
2971         kthread_stop(fs_info->cleaner_kthread);
2972
2973         /*
2974          * make sure we're done with the btree inode before we stop our
2975          * kthreads
2976          */
2977         filemap_write_and_wait(fs_info->btree_inode->i_mapping);
2978
2979 fail_block_groups:
2980         btrfs_put_block_group_cache(fs_info);
2981         btrfs_free_block_groups(fs_info);
2982
2983 fail_tree_roots:
2984         free_root_pointers(fs_info, 1);
2985         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2986
2987 fail_sb_buffer:
2988         btrfs_stop_all_workers(fs_info);
2989 fail_alloc:
2990 fail_iput:
2991         btrfs_mapping_tree_free(&fs_info->mapping_tree);
2992
2993         iput(fs_info->btree_inode);
2994 fail_delalloc_bytes:
2995         percpu_counter_destroy(&fs_info->delalloc_bytes);
2996 fail_dirty_metadata_bytes:
2997         percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
2998 fail_bdi:
2999         bdi_destroy(&fs_info->bdi);
3000 fail_srcu:
3001         cleanup_srcu_struct(&fs_info->subvol_srcu);
3002 fail:
3003         btrfs_free_stripe_hash_table(fs_info);
3004         btrfs_close_devices(fs_info->fs_devices);
3005         return err;
3006
3007 recovery_tree_root:
3008         if (!btrfs_test_opt(tree_root, RECOVERY))
3009                 goto fail_tree_roots;
3010
3011         free_root_pointers(fs_info, 0);
3012
3013         /* don't use the log in recovery mode, it won't be valid */
3014         btrfs_set_super_log_root(disk_super, 0);
3015
3016         /* we can't trust the free space cache either */
3017         btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3018
3019         ret = next_root_backup(fs_info, fs_info->super_copy,
3020                                &num_backups_tried, &backup_index);
3021         if (ret == -1)
3022                 goto fail_block_groups;
3023         goto retry_root_backup;
3024 }
3025
3026 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3027 {
3028         if (uptodate) {
3029                 set_buffer_uptodate(bh);
3030         } else {
3031                 struct btrfs_device *device = (struct btrfs_device *)
3032                         bh->b_private;
3033
3034                 printk_ratelimited_in_rcu(KERN_WARNING "lost page write due to "
3035                                           "I/O error on %s\n",
3036                                           rcu_str_deref(device->name));
3037                 /* note, we dont' set_buffer_write_io_error because we have
3038                  * our own ways of dealing with the IO errors
3039                  */
3040                 clear_buffer_uptodate(bh);
3041                 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
3042         }
3043         unlock_buffer(bh);
3044         put_bh(bh);
3045 }
3046
3047 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3048 {
3049         struct buffer_head *bh;
3050         struct buffer_head *latest = NULL;
3051         struct btrfs_super_block *super;
3052         int i;
3053         u64 transid = 0;
3054         u64 bytenr;
3055
3056         /* we would like to check all the supers, but that would make
3057          * a btrfs mount succeed after a mkfs from a different FS.
3058          * So, we need to add a special mount option to scan for
3059          * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3060          */
3061         for (i = 0; i < 1; i++) {
3062                 bytenr = btrfs_sb_offset(i);
3063                 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3064                                         i_size_read(bdev->bd_inode))
3065                         break;
3066                 bh = __bread(bdev, bytenr / 4096,
3067                                         BTRFS_SUPER_INFO_SIZE);
3068                 if (!bh)
3069                         continue;
3070
3071                 super = (struct btrfs_super_block *)bh->b_data;
3072                 if (btrfs_super_bytenr(super) != bytenr ||
3073                     btrfs_super_magic(super) != BTRFS_MAGIC) {
3074                         brelse(bh);
3075                         continue;
3076                 }
3077
3078                 if (!latest || btrfs_super_generation(super) > transid) {
3079                         brelse(latest);
3080                         latest = bh;
3081                         transid = btrfs_super_generation(super);
3082                 } else {
3083                         brelse(bh);
3084                 }
3085         }
3086         return latest;
3087 }
3088
3089 /*
3090  * this should be called twice, once with wait == 0 and
3091  * once with wait == 1.  When wait == 0 is done, all the buffer heads
3092  * we write are pinned.
3093  *
3094  * They are released when wait == 1 is done.
3095  * max_mirrors must be the same for both runs, and it indicates how
3096  * many supers on this one device should be written.
3097  *
3098  * max_mirrors == 0 means to write them all.
3099  */
3100 static int write_dev_supers(struct btrfs_device *device,
3101                             struct btrfs_super_block *sb,
3102                             int do_barriers, int wait, int max_mirrors)
3103 {
3104         struct buffer_head *bh;
3105         int i;
3106         int ret;
3107         int errors = 0;
3108         u32 crc;
3109         u64 bytenr;
3110
3111         if (max_mirrors == 0)
3112                 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3113
3114         for (i = 0; i < max_mirrors; i++) {
3115                 bytenr = btrfs_sb_offset(i);
3116                 if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
3117                         break;
3118
3119                 if (wait) {
3120                         bh = __find_get_block(device->bdev, bytenr / 4096,
3121                                               BTRFS_SUPER_INFO_SIZE);
3122                         if (!bh) {
3123                                 errors++;
3124                                 continue;
3125                         }
3126                         wait_on_buffer(bh);
3127                         if (!buffer_uptodate(bh))
3128                                 errors++;
3129
3130                         /* drop our reference */
3131                         brelse(bh);
3132
3133                         /* drop the reference from the wait == 0 run */
3134                         brelse(bh);
3135                         continue;
3136                 } else {
3137                         btrfs_set_super_bytenr(sb, bytenr);
3138
3139                         crc = ~(u32)0;
3140                         crc = btrfs_csum_data((char *)sb +
3141                                               BTRFS_CSUM_SIZE, crc,
3142                                               BTRFS_SUPER_INFO_SIZE -
3143                                               BTRFS_CSUM_SIZE);
3144                         btrfs_csum_final(crc, sb->csum);
3145
3146                         /*
3147                          * one reference for us, and we leave it for the
3148                          * caller
3149                          */
3150                         bh = __getblk(device->bdev, bytenr / 4096,
3151                                       BTRFS_SUPER_INFO_SIZE);
3152                         if (!bh) {
3153                                 printk(KERN_ERR "btrfs: couldn't get super "
3154                                        "buffer head for bytenr %Lu\n", bytenr);
3155                                 errors++;
3156                                 continue;
3157                         }
3158
3159                         memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3160
3161                         /* one reference for submit_bh */
3162                         get_bh(bh);
3163
3164                         set_buffer_uptodate(bh);
3165                         lock_buffer(bh);
3166                         bh->b_end_io = btrfs_end_buffer_write_sync;
3167                         bh->b_private = device;
3168                 }
3169
3170                 /*
3171                  * we fua the first super.  The others we allow
3172                  * to go down lazy.
3173                  */
3174                 ret = btrfsic_submit_bh(WRITE_FUA, bh);
3175                 if (ret)
3176                         errors++;
3177         }
3178         return errors < i ? 0 : -1;
3179 }
3180
3181 /*
3182  * endio for the write_dev_flush, this will wake anyone waiting
3183  * for the barrier when it is done
3184  */
3185 static void btrfs_end_empty_barrier(struct bio *bio, int err)
3186 {
3187         if (err) {
3188                 if (err == -EOPNOTSUPP)
3189                         set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
3190                 clear_bit(BIO_UPTODATE, &bio->bi_flags);
3191         }
3192         if (bio->bi_private)
3193                 complete(bio->bi_private);
3194         bio_put(bio);
3195 }
3196
3197 /*
3198  * trigger flushes for one the devices.  If you pass wait == 0, the flushes are
3199  * sent down.  With wait == 1, it waits for the previous flush.
3200  *
3201  * any device where the flush fails with eopnotsupp are flagged as not-barrier
3202  * capable
3203  */
3204 static int write_dev_flush(struct btrfs_device *device, int wait)
3205 {
3206         struct bio *bio;
3207         int ret = 0;
3208
3209         if (device->nobarriers)
3210                 return 0;
3211
3212         if (wait) {
3213                 bio = device->flush_bio;
3214                 if (!bio)
3215                         return 0;
3216
3217                 wait_for_completion(&device->flush_wait);
3218
3219                 if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
3220                         printk_in_rcu("btrfs: disabling barriers on dev %s\n",
3221                                       rcu_str_deref(device->name));
3222                         device->nobarriers = 1;
3223                 } else if (!bio_flagged(bio, BIO_UPTODATE)) {
3224                         ret = -EIO;
3225                         btrfs_dev_stat_inc_and_print(device,
3226                                 BTRFS_DEV_STAT_FLUSH_ERRS);
3227                 }
3228
3229                 /* drop the reference from the wait == 0 run */
3230                 bio_put(bio);
3231                 device->flush_bio = NULL;
3232
3233                 return ret;
3234         }
3235
3236         /*
3237          * one reference for us, and we leave it for the
3238          * caller
3239          */
3240         device->flush_bio = NULL;
3241         bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
3242         if (!bio)
3243                 return -ENOMEM;
3244
3245         bio->bi_end_io = btrfs_end_empty_barrier;
3246         bio->bi_bdev = device->bdev;
3247         init_completion(&device->flush_wait);
3248         bio->bi_private = &device->flush_wait;
3249         device->flush_bio = bio;
3250
3251         bio_get(bio);
3252         btrfsic_submit_bio(WRITE_FLUSH, bio);
3253
3254         return 0;
3255 }
3256
3257 /*
3258  * send an empty flush down to each device in parallel,
3259  * then wait for them
3260  */
3261 static int barrier_all_devices(struct btrfs_fs_info *info)
3262 {
3263         struct list_head *head;
3264         struct btrfs_device *dev;
3265         int errors_send = 0;
3266         int errors_wait = 0;
3267         int ret;
3268
3269         /* send down all the barriers */
3270         head = &info->fs_devices->devices;
3271         list_for_each_entry_rcu(dev, head, dev_list) {
3272                 if (!dev->bdev) {
3273                         errors_send++;
3274                         continue;
3275                 }
3276                 if (!dev->in_fs_metadata || !dev->writeable)
3277                         continue;
3278
3279                 ret = write_dev_flush(dev, 0);
3280                 if (ret)
3281                         errors_send++;
3282         }
3283
3284         /* wait for all the barriers */
3285         list_for_each_entry_rcu(dev, head, dev_list) {
3286                 if (!dev->bdev) {
3287                         errors_wait++;
3288                         continue;
3289                 }
3290                 if (!dev->in_fs_metadata || !dev->writeable)
3291                         continue;
3292
3293                 ret = write_dev_flush(dev, 1);
3294                 if (ret)
3295                         errors_wait++;
3296         }
3297         if (errors_send > info->num_tolerated_disk_barrier_failures ||
3298             errors_wait > info->num_tolerated_disk_barrier_failures)
3299                 return -EIO;
3300         return 0;
3301 }
3302
3303 int btrfs_calc_num_tolerated_disk_barrier_failures(
3304         struct btrfs_fs_info *fs_info)
3305 {
3306         struct btrfs_ioctl_space_info space;
3307         struct btrfs_space_info *sinfo;
3308         u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3309                        BTRFS_BLOCK_GROUP_SYSTEM,
3310                        BTRFS_BLOCK_GROUP_METADATA,
3311                        BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3312         int num_types = 4;
3313         int i;
3314         int c;
3315         int num_tolerated_disk_barrier_failures =
3316                 (int)fs_info->fs_devices->num_devices;
3317
3318         for (i = 0; i < num_types; i++) {
3319                 struct btrfs_space_info *tmp;
3320
3321                 sinfo = NULL;
3322                 rcu_read_lock();
3323                 list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
3324                         if (tmp->flags == types[i]) {
3325                                 sinfo = tmp;
3326                                 break;
3327                         }
3328                 }
3329                 rcu_read_unlock();
3330
3331                 if (!sinfo)
3332                         continue;
3333
3334                 down_read(&sinfo->groups_sem);
3335                 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3336                         if (!list_empty(&sinfo->block_groups[c])) {
3337                                 u64 flags;
3338
3339                                 btrfs_get_block_group_info(
3340                                         &sinfo->block_groups[c], &space);
3341                                 if (space.total_bytes == 0 ||
3342                                     space.used_bytes == 0)
3343                                         continue;
3344                                 flags = space.flags;
3345                                 /*
3346                                  * return
3347                                  * 0: if dup, single or RAID0 is configured for
3348                                  *    any of metadata, system or data, else
3349                                  * 1: if RAID5 is configured, or if RAID1 or
3350                                  *    RAID10 is configured and only two mirrors
3351                                  *    are used, else
3352                                  * 2: if RAID6 is configured, else
3353                                  * num_mirrors - 1: if RAID1 or RAID10 is
3354                                  *                  configured and more than
3355                                  *                  2 mirrors are used.
3356                                  */
3357                                 if (num_tolerated_disk_barrier_failures > 0 &&
3358                                     ((flags & (BTRFS_BLOCK_GROUP_DUP |
3359                                                BTRFS_BLOCK_GROUP_RAID0)) ||
3360                                      ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK)
3361                                       == 0)))
3362                                         num_tolerated_disk_barrier_failures = 0;
3363                                 else if (num_tolerated_disk_barrier_failures > 1) {
3364                                         if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
3365                                             BTRFS_BLOCK_GROUP_RAID5 |
3366                                             BTRFS_BLOCK_GROUP_RAID10)) {
3367                                                 num_tolerated_disk_barrier_failures = 1;
3368                                         } else if (flags &
3369                                                    BTRFS_BLOCK_GROUP_RAID6) {
3370                                                 num_tolerated_disk_barrier_failures = 2;
3371                                         }
3372                                 }
3373                         }
3374                 }
3375                 up_read(&sinfo->groups_sem);
3376         }
3377
3378         return num_tolerated_disk_barrier_failures;
3379 }
3380
3381 static int write_all_supers(struct btrfs_root *root, int max_mirrors)
3382 {
3383         struct list_head *head;
3384         struct btrfs_device *dev;
3385         struct btrfs_super_block *sb;
3386         struct btrfs_dev_item *dev_item;
3387         int ret;
3388         int do_barriers;
3389         int max_errors;
3390         int total_errors = 0;
3391         u64 flags;
3392
3393         do_barriers = !btrfs_test_opt(root, NOBARRIER);
3394         backup_super_roots(root->fs_info);
3395
3396         sb = root->fs_info->super_for_commit;
3397         dev_item = &sb->dev_item;
3398
3399         mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
3400         head = &root->fs_info->fs_devices->devices;
3401         max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
3402
3403         if (do_barriers) {
3404                 ret = barrier_all_devices(root->fs_info);
3405                 if (ret) {
3406                         mutex_unlock(
3407                                 &root->fs_info->fs_devices->device_list_mutex);
3408                         btrfs_error(root->fs_info, ret,
3409                                     "errors while submitting device barriers.");
3410                         return ret;
3411                 }
3412         }
3413
3414         list_for_each_entry_rcu(dev, head, dev_list) {
3415                 if (!dev->bdev) {
3416                         total_errors++;
3417                         continue;
3418                 }
3419                 if (!dev->in_fs_metadata || !dev->writeable)
3420                         continue;
3421
3422                 btrfs_set_stack_device_generation(dev_item, 0);
3423                 btrfs_set_stack_device_type(dev_item, dev->type);
3424                 btrfs_set_stack_device_id(dev_item, dev->devid);
3425                 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
3426                 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
3427                 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3428                 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3429                 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3430                 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3431                 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
3432
3433                 flags = btrfs_super_flags(sb);
3434                 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3435
3436                 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
3437                 if (ret)
3438                         total_errors++;
3439         }
3440         if (total_errors > max_errors) {
3441                 printk(KERN_ERR "btrfs: %d errors while writing supers\n",
3442                        total_errors);
3443                 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3444
3445                 /* FUA is masked off if unsupported and can't be the reason */
3446                 btrfs_error(root->fs_info, -EIO,
3447                             "%d errors while writing supers", total_errors);
3448                 return -EIO;
3449         }
3450
3451         total_errors = 0;
3452         list_for_each_entry_rcu(dev, head, dev_list) {
3453                 if (!dev->bdev)
3454                         continue;
3455                 if (!dev->in_fs_metadata || !dev->writeable)
3456                         continue;
3457
3458                 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3459                 if (ret)
3460                         total_errors++;
3461         }
3462         mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3463         if (total_errors > max_errors) {
3464                 btrfs_error(root->fs_info, -EIO,
3465                             "%d errors while writing supers", total_errors);
3466                 return -EIO;
3467         }
3468         return 0;
3469 }
3470
3471 int write_ctree_super(struct btrfs_trans_handle *trans,
3472                       struct btrfs_root *root, int max_mirrors)
3473 {
3474         int ret;
3475
3476         ret = write_all_supers(root, max_mirrors);
3477         return ret;
3478 }
3479
3480 /* Drop a fs root from the radix tree and free it. */
3481 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3482                                   struct btrfs_root *root)
3483 {
3484         spin_lock(&fs_info->fs_roots_radix_lock);
3485         radix_tree_delete(&fs_info->fs_roots_radix,
3486                           (unsigned long)root->root_key.objectid);
3487         spin_unlock(&fs_info->fs_roots_radix_lock);
3488
3489         if (btrfs_root_refs(&root->root_item) == 0)
3490                 synchronize_srcu(&fs_info->subvol_srcu);
3491
3492         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3493                 btrfs_free_log(NULL, root);
3494                 btrfs_free_log_root_tree(NULL, fs_info);
3495         }
3496
3497         __btrfs_remove_free_space_cache(root->free_ino_pinned);
3498         __btrfs_remove_free_space_cache(root->free_ino_ctl);
3499         free_fs_root(root);
3500 }
3501
3502 static void free_fs_root(struct btrfs_root *root)
3503 {
3504         iput(root->cache_inode);
3505         WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3506         btrfs_free_block_rsv(root, root->orphan_block_rsv);
3507         root->orphan_block_rsv = NULL;
3508         if (root->anon_dev)
3509                 free_anon_bdev(root->anon_dev);
3510         free_extent_buffer(root->node);
3511         free_extent_buffer(root->commit_root);
3512         kfree(root->free_ino_ctl);
3513         kfree(root->free_ino_pinned);
3514         kfree(root->name);
3515         btrfs_put_fs_root(root);
3516 }
3517
3518 void btrfs_free_fs_root(struct btrfs_root *root)
3519 {
3520         free_fs_root(root);
3521 }
3522
3523 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3524 {
3525         u64 root_objectid = 0;
3526         struct btrfs_root *gang[8];
3527         int i;
3528         int ret;
3529
3530         while (1) {
3531                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3532                                              (void **)gang, root_objectid,
3533                                              ARRAY_SIZE(gang));
3534                 if (!ret)
3535                         break;
3536
3537                 root_objectid = gang[ret - 1]->root_key.objectid + 1;
3538                 for (i = 0; i < ret; i++) {
3539                         int err;
3540
3541                         root_objectid = gang[i]->root_key.objectid;
3542                         err = btrfs_orphan_cleanup(gang[i]);
3543                         if (err)
3544                                 return err;
3545                 }
3546                 root_objectid++;
3547         }
3548         return 0;
3549 }
3550
3551 int btrfs_commit_super(struct btrfs_root *root)
3552 {
3553         struct btrfs_trans_handle *trans;
3554         int ret;
3555
3556         mutex_lock(&root->fs_info->cleaner_mutex);
3557         btrfs_run_delayed_iputs(root);
3558         mutex_unlock(&root->fs_info->cleaner_mutex);
3559         wake_up_process(root->fs_info->cleaner_kthread);
3560
3561         /* wait until ongoing cleanup work done */
3562         down_write(&root->fs_info->cleanup_work_sem);
3563         up_write(&root->fs_info->cleanup_work_sem);
3564
3565         trans = btrfs_join_transaction(root);
3566         if (IS_ERR(trans))
3567                 return PTR_ERR(trans);
3568         ret = btrfs_commit_transaction(trans, root);
3569         if (ret)
3570                 return ret;
3571         /* run commit again to drop the original snapshot */
3572         trans = btrfs_join_transaction(root);
3573         if (IS_ERR(trans))
3574                 return PTR_ERR(trans);
3575         ret = btrfs_commit_transaction(trans, root);
3576         if (ret)
3577                 return ret;
3578         ret = btrfs_write_and_wait_transaction(NULL, root);
3579         if (ret) {
3580                 btrfs_error(root->fs_info, ret,
3581                             "Failed to sync btree inode to disk.");
3582                 return ret;
3583         }
3584
3585         ret = write_ctree_super(NULL, root, 0);
3586         return ret;
3587 }
3588
3589 int close_ctree(struct btrfs_root *root)
3590 {
3591         struct btrfs_fs_info *fs_info = root->fs_info;
3592         int ret;
3593
3594         fs_info->closing = 1;
3595         smp_mb();
3596
3597         /* wait for the uuid_scan task to finish */
3598         down(&fs_info->uuid_tree_rescan_sem);
3599         /* avoid complains from lockdep et al., set sem back to initial state */
3600         up(&fs_info->uuid_tree_rescan_sem);
3601
3602         /* pause restriper - we want to resume on mount */
3603         btrfs_pause_balance(fs_info);
3604
3605         btrfs_dev_replace_suspend_for_unmount(fs_info);
3606
3607         btrfs_scrub_cancel(fs_info);
3608
3609         /* wait for any defraggers to finish */
3610         wait_event(fs_info->transaction_wait,
3611                    (atomic_read(&fs_info->defrag_running) == 0));
3612
3613         /* clear out the rbtree of defraggable inodes */
3614         btrfs_cleanup_defrag_inodes(fs_info);
3615
3616         if (!(fs_info->sb->s_flags & MS_RDONLY)) {
3617                 ret = btrfs_commit_super(root);
3618                 if (ret)
3619                         printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
3620         }
3621
3622         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3623                 btrfs_error_commit_super(root);
3624
3625         btrfs_put_block_group_cache(fs_info);
3626
3627         kthread_stop(fs_info->transaction_kthread);
3628         kthread_stop(fs_info->cleaner_kthread);
3629
3630         fs_info->closing = 2;
3631         smp_mb();
3632
3633         btrfs_free_qgroup_config(root->fs_info);
3634
3635         if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
3636                 printk(KERN_INFO "btrfs: at unmount delalloc count %lld\n",
3637                        percpu_counter_sum(&fs_info->delalloc_bytes));
3638         }
3639
3640         btrfs_stop_all_workers(fs_info);
3641
3642         del_fs_roots(fs_info);
3643
3644         btrfs_free_block_groups(fs_info);
3645
3646         free_root_pointers(fs_info, 1);
3647
3648         iput(fs_info->btree_inode);
3649
3650 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3651         if (btrfs_test_opt(root, CHECK_INTEGRITY))
3652                 btrfsic_unmount(root, fs_info->fs_devices);
3653 #endif
3654
3655         btrfs_close_devices(fs_info->fs_devices);
3656         btrfs_mapping_tree_free(&fs_info->mapping_tree);
3657
3658         percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3659         percpu_counter_destroy(&fs_info->delalloc_bytes);
3660         bdi_destroy(&fs_info->bdi);
3661         cleanup_srcu_struct(&fs_info->subvol_srcu);
3662
3663         btrfs_free_stripe_hash_table(fs_info);
3664
3665         btrfs_free_block_rsv(root, root->orphan_block_rsv);
3666         root->orphan_block_rsv = NULL;
3667
3668         return 0;
3669 }
3670
3671 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3672                           int atomic)
3673 {
3674         int ret;
3675         struct inode *btree_inode = buf->pages[0]->mapping->host;
3676
3677         ret = extent_buffer_uptodate(buf);
3678         if (!ret)
3679                 return ret;
3680
3681         ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
3682                                     parent_transid, atomic);
3683         if (ret == -EAGAIN)
3684                 return ret;
3685         return !ret;
3686 }
3687
3688 int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
3689 {
3690         return set_extent_buffer_uptodate(buf);
3691 }
3692
3693 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3694 {
3695         struct btrfs_root *root;
3696         u64 transid = btrfs_header_generation(buf);
3697         int was_dirty;
3698
3699 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3700         /*
3701          * This is a fast path so only do this check if we have sanity tests
3702          * enabled.  Normal people shouldn't be marking dummy buffers as dirty
3703          * outside of the sanity tests.
3704          */
3705         if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
3706                 return;
3707 #endif
3708         root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3709         btrfs_assert_tree_locked(buf);
3710         if (transid != root->fs_info->generation)
3711                 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
3712                        "found %llu running %llu\n",
3713                         buf->start, transid, root->fs_info->generation);
3714         was_dirty = set_extent_buffer_dirty(buf);
3715         if (!was_dirty)
3716                 __percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
3717                                      buf->len,
3718                                      root->fs_info->dirty_metadata_batch);
3719 }
3720
3721 static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
3722                                         int flush_delayed)
3723 {
3724         /*
3725          * looks as though older kernels can get into trouble with
3726          * this code, they end up stuck in balance_dirty_pages forever
3727          */
3728         int ret;
3729
3730         if (current->flags & PF_MEMALLOC)
3731                 return;
3732
3733         if (flush_delayed)
3734                 btrfs_balance_delayed_items(root);
3735
3736         ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
3737                                      BTRFS_DIRTY_METADATA_THRESH);
3738         if (ret > 0) {
3739                 balance_dirty_pages_ratelimited(
3740                                    root->fs_info->btree_inode->i_mapping);
3741         }
3742         return;
3743 }
3744
3745 void btrfs_btree_balance_dirty(struct btrfs_root *root)
3746 {
3747         __btrfs_btree_balance_dirty(root, 1);
3748 }
3749
3750 void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
3751 {
3752         __btrfs_btree_balance_dirty(root, 0);
3753 }
3754
3755 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
3756 {
3757         struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3758         return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
3759 }
3760
3761 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
3762                               int read_only)
3763 {
3764         /*
3765          * Placeholder for checks
3766          */
3767         return 0;
3768 }
3769
3770 static void btrfs_error_commit_super(struct btrfs_root *root)
3771 {
3772         mutex_lock(&root->fs_info->cleaner_mutex);
3773         btrfs_run_delayed_iputs(root);
3774         mutex_unlock(&root->fs_info->cleaner_mutex);
3775
3776         down_write(&root->fs_info->cleanup_work_sem);
3777         up_write(&root->fs_info->cleanup_work_sem);
3778
3779         /* cleanup FS via transaction */
3780         btrfs_cleanup_transaction(root);
3781 }
3782
3783 static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
3784                                              struct btrfs_root *root)
3785 {
3786         struct btrfs_inode *btrfs_inode;
3787         struct list_head splice;
3788
3789         INIT_LIST_HEAD(&splice);
3790
3791         mutex_lock(&root->fs_info->ordered_operations_mutex);
3792         spin_lock(&root->fs_info->ordered_root_lock);
3793
3794         list_splice_init(&t->ordered_operations, &splice);
3795         while (!list_empty(&splice)) {
3796                 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3797                                          ordered_operations);
3798
3799                 list_del_init(&btrfs_inode->ordered_operations);
3800                 spin_unlock(&root->fs_info->ordered_root_lock);
3801
3802                 btrfs_invalidate_inodes(btrfs_inode->root);
3803
3804                 spin_lock(&root->fs_info->ordered_root_lock);
3805         }
3806
3807         spin_unlock(&root->fs_info->ordered_root_lock);
3808         mutex_unlock(&root->fs_info->ordered_operations_mutex);
3809 }
3810
3811 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
3812 {
3813         struct btrfs_ordered_extent *ordered;
3814
3815         spin_lock(&root->ordered_extent_lock);
3816         /*
3817          * This will just short circuit the ordered completion stuff which will
3818          * make sure the ordered extent gets properly cleaned up.
3819          */
3820         list_for_each_entry(ordered, &root->ordered_extents,
3821                             root_extent_list)
3822                 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
3823         spin_unlock(&root->ordered_extent_lock);
3824 }
3825
3826 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
3827 {
3828         struct btrfs_root *root;
3829         struct list_head splice;
3830
3831         INIT_LIST_HEAD(&splice);
3832
3833         spin_lock(&fs_info->ordered_root_lock);
3834         list_splice_init(&fs_info->ordered_roots, &splice);
3835         while (!list_empty(&splice)) {
3836                 root = list_first_entry(&splice, struct btrfs_root,
3837                                         ordered_root);
3838                 list_move_tail(&root->ordered_root,
3839                                &fs_info->ordered_roots);
3840
3841                 btrfs_destroy_ordered_extents(root);
3842
3843                 cond_resched_lock(&fs_info->ordered_root_lock);
3844         }
3845         spin_unlock(&fs_info->ordered_root_lock);
3846 }
3847
3848 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
3849                                       struct btrfs_root *root)
3850 {
3851         struct rb_node *node;
3852         struct btrfs_delayed_ref_root *delayed_refs;
3853         struct btrfs_delayed_ref_node *ref;
3854         int ret = 0;
3855
3856         delayed_refs = &trans->delayed_refs;
3857
3858         spin_lock(&delayed_refs->lock);
3859         if (delayed_refs->num_entries == 0) {
3860                 spin_unlock(&delayed_refs->lock);
3861                 printk(KERN_INFO "delayed_refs has NO entry\n");
3862                 return ret;
3863         }
3864
3865         while ((node = rb_first(&delayed_refs->root)) != NULL) {
3866                 struct btrfs_delayed_ref_head *head = NULL;
3867                 bool pin_bytes = false;
3868
3869                 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
3870                 atomic_set(&ref->refs, 1);
3871                 if (btrfs_delayed_ref_is_head(ref)) {
3872
3873                         head = btrfs_delayed_node_to_head(ref);
3874                         if (!mutex_trylock(&head->mutex)) {
3875                                 atomic_inc(&ref->refs);
3876                                 spin_unlock(&delayed_refs->lock);
3877
3878                                 /* Need to wait for the delayed ref to run */
3879                                 mutex_lock(&head->mutex);
3880                                 mutex_unlock(&head->mutex);
3881                                 btrfs_put_delayed_ref(ref);
3882
3883                                 spin_lock(&delayed_refs->lock);
3884                                 continue;
3885                         }
3886
3887                         if (head->must_insert_reserved)
3888                                 pin_bytes = true;
3889                         btrfs_free_delayed_extent_op(head->extent_op);
3890                         delayed_refs->num_heads--;
3891                         if (list_empty(&head->cluster))
3892                                 delayed_refs->num_heads_ready--;
3893                         list_del_init(&head->cluster);
3894                 }
3895
3896                 ref->in_tree = 0;
3897                 rb_erase(&ref->rb_node, &delayed_refs->root);
3898                 delayed_refs->num_entries--;
3899                 spin_unlock(&delayed_refs->lock);
3900                 if (head) {
3901                         if (pin_bytes)
3902                                 btrfs_pin_extent(root, ref->bytenr,
3903                                                  ref->num_bytes, 1);
3904                         mutex_unlock(&head->mutex);
3905                 }
3906                 btrfs_put_delayed_ref(ref);
3907
3908                 cond_resched();
3909                 spin_lock(&delayed_refs->lock);
3910         }
3911
3912         spin_unlock(&delayed_refs->lock);
3913
3914         return ret;
3915 }
3916
3917 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
3918 {
3919         struct btrfs_inode *btrfs_inode;
3920         struct list_head splice;
3921
3922         INIT_LIST_HEAD(&splice);
3923
3924         spin_lock(&root->delalloc_lock);
3925         list_splice_init(&root->delalloc_inodes, &splice);
3926
3927         while (!list_empty(&splice)) {
3928                 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
3929                                                delalloc_inodes);
3930
3931                 list_del_init(&btrfs_inode->delalloc_inodes);
3932                 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
3933                           &btrfs_inode->runtime_flags);
3934                 spin_unlock(&root->delalloc_lock);
3935
3936                 btrfs_invalidate_inodes(btrfs_inode->root);
3937
3938                 spin_lock(&root->delalloc_lock);
3939         }
3940
3941         spin_unlock(&root->delalloc_lock);
3942 }
3943
3944 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
3945 {
3946         struct btrfs_root *root;
3947         struct list_head splice;
3948
3949         INIT_LIST_HEAD(&splice);
3950
3951         spin_lock(&fs_info->delalloc_root_lock);
3952         list_splice_init(&fs_info->delalloc_roots, &splice);
3953         while (!list_empty(&splice)) {
3954                 root = list_first_entry(&splice, struct btrfs_root,
3955                                          delalloc_root);
3956                 list_del_init(&root->delalloc_root);
3957                 root = btrfs_grab_fs_root(root);
3958                 BUG_ON(!root);
3959                 spin_unlock(&fs_info->delalloc_root_lock);
3960
3961                 btrfs_destroy_delalloc_inodes(root);
3962                 btrfs_put_fs_root(root);
3963
3964                 spin_lock(&fs_info->delalloc_root_lock);
3965         }
3966         spin_unlock(&fs_info->delalloc_root_lock);
3967 }
3968
3969 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
3970                                         struct extent_io_tree *dirty_pages,
3971                                         int mark)
3972 {
3973         int ret;
3974         struct extent_buffer *eb;
3975         u64 start = 0;
3976         u64 end;
3977
3978         while (1) {
3979                 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
3980                                             mark, NULL);
3981                 if (ret)
3982                         break;
3983
3984                 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
3985                 while (start <= end) {
3986                         eb = btrfs_find_tree_block(root, start,
3987                                                    root->leafsize);
3988                         start += root->leafsize;
3989                         if (!eb)
3990                                 continue;
3991                         wait_on_extent_buffer_writeback(eb);
3992
3993                         if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
3994                                                &eb->bflags))
3995                                 clear_extent_buffer_dirty(eb);
3996                         free_extent_buffer_stale(eb);
3997                 }
3998         }
3999
4000         return ret;
4001 }
4002
4003 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
4004                                        struct extent_io_tree *pinned_extents)
4005 {
4006         struct extent_io_tree *unpin;
4007         u64 start;
4008         u64 end;
4009         int ret;
4010         bool loop = true;
4011
4012         unpin = pinned_extents;
4013 again:
4014         while (1) {
4015                 ret = find_first_extent_bit(unpin, 0, &start, &end,
4016                                             EXTENT_DIRTY, NULL);
4017                 if (ret)
4018                         break;
4019
4020                 /* opt_discard */
4021                 if (btrfs_test_opt(root, DISCARD))
4022                         ret = btrfs_error_discard_extent(root, start,
4023                                                          end + 1 - start,
4024                                                          NULL);
4025
4026                 clear_extent_dirty(unpin, start, end, GFP_NOFS);
4027                 btrfs_error_unpin_extent_range(root, start, end);
4028                 cond_resched();
4029         }
4030
4031         if (loop) {
4032                 if (unpin == &root->fs_info->freed_extents[0])
4033                         unpin = &root->fs_info->freed_extents[1];
4034                 else
4035                         unpin = &root->fs_info->freed_extents[0];
4036                 loop = false;
4037                 goto again;
4038         }
4039
4040         return 0;
4041 }
4042
4043 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4044                                    struct btrfs_root *root)
4045 {
4046         btrfs_destroy_ordered_operations(cur_trans, root);
4047
4048         btrfs_destroy_delayed_refs(cur_trans, root);
4049
4050         cur_trans->state = TRANS_STATE_COMMIT_START;
4051         wake_up(&root->fs_info->transaction_blocked_wait);
4052
4053         cur_trans->state = TRANS_STATE_UNBLOCKED;
4054         wake_up(&root->fs_info->transaction_wait);
4055
4056         btrfs_destroy_delayed_inodes(root);
4057         btrfs_assert_delayed_root_empty(root);
4058
4059         btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
4060                                      EXTENT_DIRTY);
4061         btrfs_destroy_pinned_extent(root,
4062                                     root->fs_info->pinned_extents);
4063
4064         cur_trans->state =TRANS_STATE_COMPLETED;
4065         wake_up(&cur_trans->commit_wait);
4066
4067         /*
4068         memset(cur_trans, 0, sizeof(*cur_trans));
4069         kmem_cache_free(btrfs_transaction_cachep, cur_trans);
4070         */
4071 }
4072
4073 static int btrfs_cleanup_transaction(struct btrfs_root *root)
4074 {
4075         struct btrfs_transaction *t;
4076
4077         mutex_lock(&root->fs_info->transaction_kthread_mutex);
4078
4079         spin_lock(&root->fs_info->trans_lock);
4080         while (!list_empty(&root->fs_info->trans_list)) {
4081                 t = list_first_entry(&root->fs_info->trans_list,
4082                                      struct btrfs_transaction, list);
4083                 if (t->state >= TRANS_STATE_COMMIT_START) {
4084                         atomic_inc(&t->use_count);
4085                         spin_unlock(&root->fs_info->trans_lock);
4086                         btrfs_wait_for_commit(root, t->transid);
4087                         btrfs_put_transaction(t);
4088                         spin_lock(&root->fs_info->trans_lock);
4089                         continue;
4090                 }
4091                 if (t == root->fs_info->running_transaction) {
4092                         t->state = TRANS_STATE_COMMIT_DOING;
4093                         spin_unlock(&root->fs_info->trans_lock);
4094                         /*
4095                          * We wait for 0 num_writers since we don't hold a trans
4096                          * handle open currently for this transaction.
4097                          */
4098                         wait_event(t->writer_wait,
4099                                    atomic_read(&t->num_writers) == 0);
4100                 } else {
4101                         spin_unlock(&root->fs_info->trans_lock);
4102                 }
4103                 btrfs_cleanup_one_transaction(t, root);
4104
4105                 spin_lock(&root->fs_info->trans_lock);
4106                 if (t == root->fs_info->running_transaction)
4107                         root->fs_info->running_transaction = NULL;
4108                 list_del_init(&t->list);
4109                 spin_unlock(&root->fs_info->trans_lock);
4110
4111                 btrfs_put_transaction(t);
4112                 trace_btrfs_transaction_commit(root);
4113                 spin_lock(&root->fs_info->trans_lock);
4114         }
4115         spin_unlock(&root->fs_info->trans_lock);
4116         btrfs_destroy_all_ordered_extents(root->fs_info);
4117         btrfs_destroy_delayed_inodes(root);
4118         btrfs_assert_delayed_root_empty(root);
4119         btrfs_destroy_pinned_extent(root, root->fs_info->pinned_extents);
4120         btrfs_destroy_all_delalloc_inodes(root->fs_info);
4121         mutex_unlock(&root->fs_info->transaction_kthread_mutex);
4122
4123         return 0;
4124 }
4125
4126 static struct extent_io_ops btree_extent_io_ops = {
4127         .readpage_end_io_hook = btree_readpage_end_io_hook,
4128         .readpage_io_failed_hook = btree_io_failed_hook,
4129         .submit_bio_hook = btree_submit_bio_hook,
4130         /* note we're sharing with inode.c for the merge bio hook */
4131         .merge_bio_hook = btrfs_merge_bio_hook,
4132 };