2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
29 #include <linux/slab.h>
30 #include <linux/migrate.h>
31 #include <linux/ratelimit.h>
32 #include <linux/uuid.h>
33 #include <linux/semaphore.h>
34 #include <asm/unaligned.h>
38 #include "transaction.h"
39 #include "btrfs_inode.h"
41 #include "print-tree.h"
44 #include "free-space-cache.h"
45 #include "inode-map.h"
46 #include "check-integrity.h"
47 #include "rcu-string.h"
48 #include "dev-replace.h"
54 #include <asm/cpufeature.h>
57 static struct extent_io_ops btree_extent_io_ops;
58 static void end_workqueue_fn(struct btrfs_work *work);
59 static void free_fs_root(struct btrfs_root *root);
60 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
62 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
63 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
64 struct btrfs_root *root);
65 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
66 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
67 struct extent_io_tree *dirty_pages,
69 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
70 struct extent_io_tree *pinned_extents);
71 static int btrfs_cleanup_transaction(struct btrfs_root *root);
72 static void btrfs_error_commit_super(struct btrfs_root *root);
75 * end_io_wq structs are used to do processing in task context when an IO is
76 * complete. This is used during reads to verify checksums, and it is used
77 * by writes to insert metadata for new file extents after IO is complete.
83 struct btrfs_fs_info *info;
86 struct list_head list;
87 struct btrfs_work work;
91 * async submit bios are used to offload expensive checksumming
92 * onto the worker threads. They checksum file and metadata bios
93 * just before they are sent down the IO stack.
95 struct async_submit_bio {
98 struct list_head list;
99 extent_submit_bio_hook_t *submit_bio_start;
100 extent_submit_bio_hook_t *submit_bio_done;
103 unsigned long bio_flags;
105 * bio_offset is optional, can be used if the pages in the bio
106 * can't tell us where in the file the bio should go
109 struct btrfs_work work;
114 * Lockdep class keys for extent_buffer->lock's in this root. For a given
115 * eb, the lockdep key is determined by the btrfs_root it belongs to and
116 * the level the eb occupies in the tree.
118 * Different roots are used for different purposes and may nest inside each
119 * other and they require separate keysets. As lockdep keys should be
120 * static, assign keysets according to the purpose of the root as indicated
121 * by btrfs_root->objectid. This ensures that all special purpose roots
122 * have separate keysets.
124 * Lock-nesting across peer nodes is always done with the immediate parent
125 * node locked thus preventing deadlock. As lockdep doesn't know this, use
126 * subclass to avoid triggering lockdep warning in such cases.
128 * The key is set by the readpage_end_io_hook after the buffer has passed
129 * csum validation but before the pages are unlocked. It is also set by
130 * btrfs_init_new_buffer on freshly allocated blocks.
132 * We also add a check to make sure the highest level of the tree is the
133 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
134 * needs update as well.
136 #ifdef CONFIG_DEBUG_LOCK_ALLOC
137 # if BTRFS_MAX_LEVEL != 8
141 static struct btrfs_lockdep_keyset {
142 u64 id; /* root objectid */
143 const char *name_stem; /* lock name stem */
144 char names[BTRFS_MAX_LEVEL + 1][20];
145 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
146 } btrfs_lockdep_keysets[] = {
147 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
148 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
149 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
150 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
151 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
152 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
153 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
154 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
155 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
156 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
157 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" },
158 { .id = 0, .name_stem = "tree" },
161 void __init btrfs_init_lockdep(void)
165 /* initialize lockdep class names */
166 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
167 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
169 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
170 snprintf(ks->names[j], sizeof(ks->names[j]),
171 "btrfs-%s-%02d", ks->name_stem, j);
175 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
178 struct btrfs_lockdep_keyset *ks;
180 BUG_ON(level >= ARRAY_SIZE(ks->keys));
182 /* find the matching keyset, id 0 is the default entry */
183 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
184 if (ks->id == objectid)
187 lockdep_set_class_and_name(&eb->lock,
188 &ks->keys[level], ks->names[level]);
194 * extents on the btree inode are pretty simple, there's one extent
195 * that covers the entire device
197 static struct extent_map *btree_get_extent(struct inode *inode,
198 struct page *page, size_t pg_offset, u64 start, u64 len,
201 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
202 struct extent_map *em;
205 read_lock(&em_tree->lock);
206 em = lookup_extent_mapping(em_tree, start, len);
209 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
210 read_unlock(&em_tree->lock);
213 read_unlock(&em_tree->lock);
215 em = alloc_extent_map();
217 em = ERR_PTR(-ENOMEM);
222 em->block_len = (u64)-1;
224 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
226 write_lock(&em_tree->lock);
227 ret = add_extent_mapping(em_tree, em, 0);
228 if (ret == -EEXIST) {
230 em = lookup_extent_mapping(em_tree, start, len);
237 write_unlock(&em_tree->lock);
243 u32 btrfs_csum_data(char *data, u32 seed, size_t len)
245 return btrfs_crc32c(seed, data, len);
248 void btrfs_csum_final(u32 crc, char *result)
250 put_unaligned_le32(~crc, result);
254 * compute the csum for a btree block, and either verify it or write it
255 * into the csum field of the block.
257 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
260 u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
263 unsigned long cur_len;
264 unsigned long offset = BTRFS_CSUM_SIZE;
266 unsigned long map_start;
267 unsigned long map_len;
270 unsigned long inline_result;
272 len = buf->len - offset;
274 err = map_private_extent_buffer(buf, offset, 32,
275 &kaddr, &map_start, &map_len);
278 cur_len = min(len, map_len - (offset - map_start));
279 crc = btrfs_csum_data(kaddr + offset - map_start,
284 if (csum_size > sizeof(inline_result)) {
285 result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
289 result = (char *)&inline_result;
292 btrfs_csum_final(crc, result);
295 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
298 memcpy(&found, result, csum_size);
300 read_extent_buffer(buf, &val, 0, csum_size);
301 printk_ratelimited(KERN_INFO
302 "BTRFS: %s checksum verify failed on %llu wanted %X found %X "
304 root->fs_info->sb->s_id, buf->start,
305 val, found, btrfs_header_level(buf));
306 if (result != (char *)&inline_result)
311 write_extent_buffer(buf, result, 0, csum_size);
313 if (result != (char *)&inline_result)
319 * we can't consider a given block up to date unless the transid of the
320 * block matches the transid in the parent node's pointer. This is how we
321 * detect blocks that either didn't get written at all or got written
322 * in the wrong place.
324 static int verify_parent_transid(struct extent_io_tree *io_tree,
325 struct extent_buffer *eb, u64 parent_transid,
328 struct extent_state *cached_state = NULL;
330 bool need_lock = (current->journal_info ==
331 (void *)BTRFS_SEND_TRANS_STUB);
333 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
340 btrfs_tree_read_lock(eb);
341 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
344 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
346 if (extent_buffer_uptodate(eb) &&
347 btrfs_header_generation(eb) == parent_transid) {
351 printk_ratelimited(KERN_INFO "BTRFS (device %s): parent transid verify failed on %llu wanted %llu found %llu\n",
352 eb->fs_info->sb->s_id, eb->start,
353 parent_transid, btrfs_header_generation(eb));
357 * Things reading via commit roots that don't have normal protection,
358 * like send, can have a really old block in cache that may point at a
359 * block that has been free'd and re-allocated. So don't clear uptodate
360 * if we find an eb that is under IO (dirty/writeback) because we could
361 * end up reading in the stale data and then writing it back out and
362 * making everybody very sad.
364 if (!extent_buffer_under_io(eb))
365 clear_extent_buffer_uptodate(eb);
367 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
368 &cached_state, GFP_NOFS);
370 btrfs_tree_read_unlock_blocking(eb);
375 * Return 0 if the superblock checksum type matches the checksum value of that
376 * algorithm. Pass the raw disk superblock data.
378 static int btrfs_check_super_csum(char *raw_disk_sb)
380 struct btrfs_super_block *disk_sb =
381 (struct btrfs_super_block *)raw_disk_sb;
382 u16 csum_type = btrfs_super_csum_type(disk_sb);
385 if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
387 const int csum_size = sizeof(crc);
388 char result[csum_size];
391 * The super_block structure does not span the whole
392 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
393 * is filled with zeros and is included in the checkum.
395 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
396 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
397 btrfs_csum_final(crc, result);
399 if (memcmp(raw_disk_sb, result, csum_size))
402 if (ret && btrfs_super_generation(disk_sb) < 10) {
404 "BTRFS: super block crcs don't match, older mkfs detected\n");
409 if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
410 printk(KERN_ERR "BTRFS: unsupported checksum algorithm %u\n",
419 * helper to read a given tree block, doing retries as required when
420 * the checksums don't match and we have alternate mirrors to try.
422 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
423 struct extent_buffer *eb,
424 u64 start, u64 parent_transid)
426 struct extent_io_tree *io_tree;
431 int failed_mirror = 0;
433 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
434 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
436 ret = read_extent_buffer_pages(io_tree, eb, start,
438 btree_get_extent, mirror_num);
440 if (!verify_parent_transid(io_tree, eb,
448 * This buffer's crc is fine, but its contents are corrupted, so
449 * there is no reason to read the other copies, they won't be
452 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
455 num_copies = btrfs_num_copies(root->fs_info,
460 if (!failed_mirror) {
462 failed_mirror = eb->read_mirror;
466 if (mirror_num == failed_mirror)
469 if (mirror_num > num_copies)
473 if (failed && !ret && failed_mirror)
474 repair_eb_io_failure(root, eb, failed_mirror);
480 * checksum a dirty tree block before IO. This has extra checks to make sure
481 * we only fill in the checksum field in the first page of a multi-page block
484 static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
486 u64 start = page_offset(page);
488 struct extent_buffer *eb;
490 eb = (struct extent_buffer *)page->private;
491 if (page != eb->pages[0])
493 found_start = btrfs_header_bytenr(eb);
494 if (WARN_ON(found_start != start || !PageUptodate(page)))
496 csum_tree_block(root, eb, 0);
500 static int check_tree_block_fsid(struct btrfs_root *root,
501 struct extent_buffer *eb)
503 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
504 u8 fsid[BTRFS_UUID_SIZE];
507 read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
509 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
513 fs_devices = fs_devices->seed;
518 #define CORRUPT(reason, eb, root, slot) \
519 btrfs_crit(root->fs_info, "corrupt leaf, %s: block=%llu," \
520 "root=%llu, slot=%d", reason, \
521 btrfs_header_bytenr(eb), root->objectid, slot)
523 static noinline int check_leaf(struct btrfs_root *root,
524 struct extent_buffer *leaf)
526 struct btrfs_key key;
527 struct btrfs_key leaf_key;
528 u32 nritems = btrfs_header_nritems(leaf);
534 /* Check the 0 item */
535 if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
536 BTRFS_LEAF_DATA_SIZE(root)) {
537 CORRUPT("invalid item offset size pair", leaf, root, 0);
542 * Check to make sure each items keys are in the correct order and their
543 * offsets make sense. We only have to loop through nritems-1 because
544 * we check the current slot against the next slot, which verifies the
545 * next slot's offset+size makes sense and that the current's slot
548 for (slot = 0; slot < nritems - 1; slot++) {
549 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
550 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
552 /* Make sure the keys are in the right order */
553 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
554 CORRUPT("bad key order", leaf, root, slot);
559 * Make sure the offset and ends are right, remember that the
560 * item data starts at the end of the leaf and grows towards the
563 if (btrfs_item_offset_nr(leaf, slot) !=
564 btrfs_item_end_nr(leaf, slot + 1)) {
565 CORRUPT("slot offset bad", leaf, root, slot);
570 * Check to make sure that we don't point outside of the leaf,
571 * just incase all the items are consistent to eachother, but
572 * all point outside of the leaf.
574 if (btrfs_item_end_nr(leaf, slot) >
575 BTRFS_LEAF_DATA_SIZE(root)) {
576 CORRUPT("slot end outside of leaf", leaf, root, slot);
584 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
585 u64 phy_offset, struct page *page,
586 u64 start, u64 end, int mirror)
590 struct extent_buffer *eb;
591 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
598 eb = (struct extent_buffer *)page->private;
600 /* the pending IO might have been the only thing that kept this buffer
601 * in memory. Make sure we have a ref for all this other checks
603 extent_buffer_get(eb);
605 reads_done = atomic_dec_and_test(&eb->io_pages);
609 eb->read_mirror = mirror;
610 if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
615 found_start = btrfs_header_bytenr(eb);
616 if (found_start != eb->start) {
617 printk_ratelimited(KERN_INFO "BTRFS (device %s): bad tree block start "
619 eb->fs_info->sb->s_id, found_start, eb->start);
623 if (check_tree_block_fsid(root, eb)) {
624 printk_ratelimited(KERN_INFO "BTRFS (device %s): bad fsid on block %llu\n",
625 eb->fs_info->sb->s_id, eb->start);
629 found_level = btrfs_header_level(eb);
630 if (found_level >= BTRFS_MAX_LEVEL) {
631 btrfs_info(root->fs_info, "bad tree block level %d",
632 (int)btrfs_header_level(eb));
637 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
640 ret = csum_tree_block(root, eb, 1);
647 * If this is a leaf block and it is corrupt, set the corrupt bit so
648 * that we don't try and read the other copies of this block, just
651 if (found_level == 0 && check_leaf(root, eb)) {
652 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
657 set_extent_buffer_uptodate(eb);
660 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
661 btree_readahead_hook(root, eb, eb->start, ret);
665 * our io error hook is going to dec the io pages
666 * again, we have to make sure it has something
669 atomic_inc(&eb->io_pages);
670 clear_extent_buffer_uptodate(eb);
672 free_extent_buffer(eb);
677 static int btree_io_failed_hook(struct page *page, int failed_mirror)
679 struct extent_buffer *eb;
680 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
682 eb = (struct extent_buffer *)page->private;
683 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
684 eb->read_mirror = failed_mirror;
685 atomic_dec(&eb->io_pages);
686 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
687 btree_readahead_hook(root, eb, eb->start, -EIO);
688 return -EIO; /* we fixed nothing */
691 static void end_workqueue_bio(struct bio *bio, int err)
693 struct end_io_wq *end_io_wq = bio->bi_private;
694 struct btrfs_fs_info *fs_info;
695 struct btrfs_workqueue *wq;
696 btrfs_work_func_t func;
698 fs_info = end_io_wq->info;
699 end_io_wq->error = err;
701 if (bio->bi_rw & REQ_WRITE) {
702 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
703 wq = fs_info->endio_meta_write_workers;
704 func = btrfs_endio_meta_write_helper;
705 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
706 wq = fs_info->endio_freespace_worker;
707 func = btrfs_freespace_write_helper;
708 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
709 wq = fs_info->endio_raid56_workers;
710 func = btrfs_endio_raid56_helper;
712 wq = fs_info->endio_write_workers;
713 func = btrfs_endio_write_helper;
716 if (unlikely(end_io_wq->metadata ==
717 BTRFS_WQ_ENDIO_DIO_REPAIR)) {
718 wq = fs_info->endio_repair_workers;
719 func = btrfs_endio_repair_helper;
720 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
721 wq = fs_info->endio_raid56_workers;
722 func = btrfs_endio_raid56_helper;
723 } else if (end_io_wq->metadata) {
724 wq = fs_info->endio_meta_workers;
725 func = btrfs_endio_meta_helper;
727 wq = fs_info->endio_workers;
728 func = btrfs_endio_helper;
732 btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
733 btrfs_queue_work(wq, &end_io_wq->work);
737 * For the metadata arg you want
740 * 1 - if normal metadta
741 * 2 - if writing to the free space cache area
742 * 3 - raid parity work
744 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
747 struct end_io_wq *end_io_wq;
749 end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
753 end_io_wq->private = bio->bi_private;
754 end_io_wq->end_io = bio->bi_end_io;
755 end_io_wq->info = info;
756 end_io_wq->error = 0;
757 end_io_wq->bio = bio;
758 end_io_wq->metadata = metadata;
760 bio->bi_private = end_io_wq;
761 bio->bi_end_io = end_workqueue_bio;
765 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
767 unsigned long limit = min_t(unsigned long,
768 info->thread_pool_size,
769 info->fs_devices->open_devices);
773 static void run_one_async_start(struct btrfs_work *work)
775 struct async_submit_bio *async;
778 async = container_of(work, struct async_submit_bio, work);
779 ret = async->submit_bio_start(async->inode, async->rw, async->bio,
780 async->mirror_num, async->bio_flags,
786 static void run_one_async_done(struct btrfs_work *work)
788 struct btrfs_fs_info *fs_info;
789 struct async_submit_bio *async;
792 async = container_of(work, struct async_submit_bio, work);
793 fs_info = BTRFS_I(async->inode)->root->fs_info;
795 limit = btrfs_async_submit_limit(fs_info);
796 limit = limit * 2 / 3;
798 if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
799 waitqueue_active(&fs_info->async_submit_wait))
800 wake_up(&fs_info->async_submit_wait);
802 /* If an error occured we just want to clean up the bio and move on */
804 bio_endio(async->bio, async->error);
808 async->submit_bio_done(async->inode, async->rw, async->bio,
809 async->mirror_num, async->bio_flags,
813 static void run_one_async_free(struct btrfs_work *work)
815 struct async_submit_bio *async;
817 async = container_of(work, struct async_submit_bio, work);
821 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
822 int rw, struct bio *bio, int mirror_num,
823 unsigned long bio_flags,
825 extent_submit_bio_hook_t *submit_bio_start,
826 extent_submit_bio_hook_t *submit_bio_done)
828 struct async_submit_bio *async;
830 async = kmalloc(sizeof(*async), GFP_NOFS);
834 async->inode = inode;
837 async->mirror_num = mirror_num;
838 async->submit_bio_start = submit_bio_start;
839 async->submit_bio_done = submit_bio_done;
841 btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
842 run_one_async_done, run_one_async_free);
844 async->bio_flags = bio_flags;
845 async->bio_offset = bio_offset;
849 atomic_inc(&fs_info->nr_async_submits);
852 btrfs_set_work_high_priority(&async->work);
854 btrfs_queue_work(fs_info->workers, &async->work);
856 while (atomic_read(&fs_info->async_submit_draining) &&
857 atomic_read(&fs_info->nr_async_submits)) {
858 wait_event(fs_info->async_submit_wait,
859 (atomic_read(&fs_info->nr_async_submits) == 0));
865 static int btree_csum_one_bio(struct bio *bio)
867 struct bio_vec *bvec;
868 struct btrfs_root *root;
871 bio_for_each_segment_all(bvec, bio, i) {
872 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
873 ret = csum_dirty_buffer(root, bvec->bv_page);
881 static int __btree_submit_bio_start(struct inode *inode, int rw,
882 struct bio *bio, int mirror_num,
883 unsigned long bio_flags,
887 * when we're called for a write, we're already in the async
888 * submission context. Just jump into btrfs_map_bio
890 return btree_csum_one_bio(bio);
893 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
894 int mirror_num, unsigned long bio_flags,
900 * when we're called for a write, we're already in the async
901 * submission context. Just jump into btrfs_map_bio
903 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
909 static int check_async_write(struct inode *inode, unsigned long bio_flags)
911 if (bio_flags & EXTENT_BIO_TREE_LOG)
920 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
921 int mirror_num, unsigned long bio_flags,
924 int async = check_async_write(inode, bio_flags);
927 if (!(rw & REQ_WRITE)) {
929 * called for a read, do the setup so that checksum validation
930 * can happen in the async kernel threads
932 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
936 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
939 ret = btree_csum_one_bio(bio);
942 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
946 * kthread helpers are used to submit writes so that
947 * checksumming can happen in parallel across all CPUs
949 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
950 inode, rw, bio, mirror_num, 0,
952 __btree_submit_bio_start,
953 __btree_submit_bio_done);
963 #ifdef CONFIG_MIGRATION
964 static int btree_migratepage(struct address_space *mapping,
965 struct page *newpage, struct page *page,
966 enum migrate_mode mode)
969 * we can't safely write a btree page from here,
970 * we haven't done the locking hook
975 * Buffers may be managed in a filesystem specific way.
976 * We must have no buffers or drop them.
978 if (page_has_private(page) &&
979 !try_to_release_page(page, GFP_KERNEL))
981 return migrate_page(mapping, newpage, page, mode);
986 static int btree_writepages(struct address_space *mapping,
987 struct writeback_control *wbc)
989 struct btrfs_fs_info *fs_info;
992 if (wbc->sync_mode == WB_SYNC_NONE) {
994 if (wbc->for_kupdate)
997 fs_info = BTRFS_I(mapping->host)->root->fs_info;
998 /* this is a bit racy, but that's ok */
999 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
1000 BTRFS_DIRTY_METADATA_THRESH);
1004 return btree_write_cache_pages(mapping, wbc);
1007 static int btree_readpage(struct file *file, struct page *page)
1009 struct extent_io_tree *tree;
1010 tree = &BTRFS_I(page->mapping->host)->io_tree;
1011 return extent_read_full_page(tree, page, btree_get_extent, 0);
1014 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
1016 if (PageWriteback(page) || PageDirty(page))
1019 return try_release_extent_buffer(page);
1022 static void btree_invalidatepage(struct page *page, unsigned int offset,
1023 unsigned int length)
1025 struct extent_io_tree *tree;
1026 tree = &BTRFS_I(page->mapping->host)->io_tree;
1027 extent_invalidatepage(tree, page, offset);
1028 btree_releasepage(page, GFP_NOFS);
1029 if (PagePrivate(page)) {
1030 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
1031 "page private not zero on page %llu",
1032 (unsigned long long)page_offset(page));
1033 ClearPagePrivate(page);
1034 set_page_private(page, 0);
1035 page_cache_release(page);
1039 static int btree_set_page_dirty(struct page *page)
1042 struct extent_buffer *eb;
1044 BUG_ON(!PagePrivate(page));
1045 eb = (struct extent_buffer *)page->private;
1047 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1048 BUG_ON(!atomic_read(&eb->refs));
1049 btrfs_assert_tree_locked(eb);
1051 return __set_page_dirty_nobuffers(page);
1054 static const struct address_space_operations btree_aops = {
1055 .readpage = btree_readpage,
1056 .writepages = btree_writepages,
1057 .releasepage = btree_releasepage,
1058 .invalidatepage = btree_invalidatepage,
1059 #ifdef CONFIG_MIGRATION
1060 .migratepage = btree_migratepage,
1062 .set_page_dirty = btree_set_page_dirty,
1065 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1068 struct extent_buffer *buf = NULL;
1069 struct inode *btree_inode = root->fs_info->btree_inode;
1072 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1075 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1076 buf, 0, WAIT_NONE, btree_get_extent, 0);
1077 free_extent_buffer(buf);
1081 int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1082 int mirror_num, struct extent_buffer **eb)
1084 struct extent_buffer *buf = NULL;
1085 struct inode *btree_inode = root->fs_info->btree_inode;
1086 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1089 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1093 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1095 ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1096 btree_get_extent, mirror_num);
1098 free_extent_buffer(buf);
1102 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1103 free_extent_buffer(buf);
1105 } else if (extent_buffer_uptodate(buf)) {
1108 free_extent_buffer(buf);
1113 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
1114 u64 bytenr, u32 blocksize)
1116 return find_extent_buffer(root->fs_info, bytenr);
1119 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1120 u64 bytenr, u32 blocksize)
1122 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1123 if (unlikely(test_bit(BTRFS_ROOT_DUMMY_ROOT, &root->state)))
1124 return alloc_test_extent_buffer(root->fs_info, bytenr,
1127 return alloc_extent_buffer(root->fs_info, bytenr, blocksize);
1131 int btrfs_write_tree_block(struct extent_buffer *buf)
1133 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1134 buf->start + buf->len - 1);
1137 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1139 return filemap_fdatawait_range(buf->pages[0]->mapping,
1140 buf->start, buf->start + buf->len - 1);
1143 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
1144 u32 blocksize, u64 parent_transid)
1146 struct extent_buffer *buf = NULL;
1149 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1153 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
1155 free_extent_buffer(buf);
1162 void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1163 struct extent_buffer *buf)
1165 struct btrfs_fs_info *fs_info = root->fs_info;
1167 if (btrfs_header_generation(buf) ==
1168 fs_info->running_transaction->transid) {
1169 btrfs_assert_tree_locked(buf);
1171 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1172 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
1174 fs_info->dirty_metadata_batch);
1175 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1176 btrfs_set_lock_blocking(buf);
1177 clear_extent_buffer_dirty(buf);
1182 static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1184 struct btrfs_subvolume_writers *writers;
1187 writers = kmalloc(sizeof(*writers), GFP_NOFS);
1189 return ERR_PTR(-ENOMEM);
1191 ret = percpu_counter_init(&writers->counter, 0);
1194 return ERR_PTR(ret);
1197 init_waitqueue_head(&writers->wait);
1202 btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1204 percpu_counter_destroy(&writers->counter);
1208 static void __setup_root(u32 nodesize, u32 sectorsize, u32 stripesize,
1209 struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1213 root->commit_root = NULL;
1214 root->sectorsize = sectorsize;
1215 root->nodesize = nodesize;
1216 root->stripesize = stripesize;
1218 root->orphan_cleanup_state = 0;
1220 root->objectid = objectid;
1221 root->last_trans = 0;
1222 root->highest_objectid = 0;
1223 root->nr_delalloc_inodes = 0;
1224 root->nr_ordered_extents = 0;
1226 root->inode_tree = RB_ROOT;
1227 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1228 root->block_rsv = NULL;
1229 root->orphan_block_rsv = NULL;
1231 INIT_LIST_HEAD(&root->dirty_list);
1232 INIT_LIST_HEAD(&root->root_list);
1233 INIT_LIST_HEAD(&root->delalloc_inodes);
1234 INIT_LIST_HEAD(&root->delalloc_root);
1235 INIT_LIST_HEAD(&root->ordered_extents);
1236 INIT_LIST_HEAD(&root->ordered_root);
1237 INIT_LIST_HEAD(&root->logged_list[0]);
1238 INIT_LIST_HEAD(&root->logged_list[1]);
1239 spin_lock_init(&root->orphan_lock);
1240 spin_lock_init(&root->inode_lock);
1241 spin_lock_init(&root->delalloc_lock);
1242 spin_lock_init(&root->ordered_extent_lock);
1243 spin_lock_init(&root->accounting_lock);
1244 spin_lock_init(&root->log_extents_lock[0]);
1245 spin_lock_init(&root->log_extents_lock[1]);
1246 mutex_init(&root->objectid_mutex);
1247 mutex_init(&root->log_mutex);
1248 mutex_init(&root->ordered_extent_mutex);
1249 mutex_init(&root->delalloc_mutex);
1250 init_waitqueue_head(&root->log_writer_wait);
1251 init_waitqueue_head(&root->log_commit_wait[0]);
1252 init_waitqueue_head(&root->log_commit_wait[1]);
1253 INIT_LIST_HEAD(&root->log_ctxs[0]);
1254 INIT_LIST_HEAD(&root->log_ctxs[1]);
1255 atomic_set(&root->log_commit[0], 0);
1256 atomic_set(&root->log_commit[1], 0);
1257 atomic_set(&root->log_writers, 0);
1258 atomic_set(&root->log_batch, 0);
1259 atomic_set(&root->orphan_inodes, 0);
1260 atomic_set(&root->refs, 1);
1261 atomic_set(&root->will_be_snapshoted, 0);
1262 root->log_transid = 0;
1263 root->log_transid_committed = -1;
1264 root->last_log_commit = 0;
1266 extent_io_tree_init(&root->dirty_log_pages,
1267 fs_info->btree_inode->i_mapping);
1269 memset(&root->root_key, 0, sizeof(root->root_key));
1270 memset(&root->root_item, 0, sizeof(root->root_item));
1271 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1272 memset(&root->root_kobj, 0, sizeof(root->root_kobj));
1274 root->defrag_trans_start = fs_info->generation;
1276 root->defrag_trans_start = 0;
1277 init_completion(&root->kobj_unregister);
1278 root->root_key.objectid = objectid;
1281 spin_lock_init(&root->root_item_lock);
1284 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
1286 struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
1288 root->fs_info = fs_info;
1292 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1293 /* Should only be used by the testing infrastructure */
1294 struct btrfs_root *btrfs_alloc_dummy_root(void)
1296 struct btrfs_root *root;
1298 root = btrfs_alloc_root(NULL);
1300 return ERR_PTR(-ENOMEM);
1301 __setup_root(4096, 4096, 4096, root, NULL, 1);
1302 set_bit(BTRFS_ROOT_DUMMY_ROOT, &root->state);
1303 root->alloc_bytenr = 0;
1309 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1310 struct btrfs_fs_info *fs_info,
1313 struct extent_buffer *leaf;
1314 struct btrfs_root *tree_root = fs_info->tree_root;
1315 struct btrfs_root *root;
1316 struct btrfs_key key;
1320 root = btrfs_alloc_root(fs_info);
1322 return ERR_PTR(-ENOMEM);
1324 __setup_root(tree_root->nodesize, tree_root->sectorsize,
1325 tree_root->stripesize, root, fs_info, objectid);
1326 root->root_key.objectid = objectid;
1327 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1328 root->root_key.offset = 0;
1330 leaf = btrfs_alloc_free_block(trans, root, root->nodesize,
1331 0, objectid, NULL, 0, 0, 0);
1333 ret = PTR_ERR(leaf);
1338 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1339 btrfs_set_header_bytenr(leaf, leaf->start);
1340 btrfs_set_header_generation(leaf, trans->transid);
1341 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1342 btrfs_set_header_owner(leaf, objectid);
1345 write_extent_buffer(leaf, fs_info->fsid, btrfs_header_fsid(),
1347 write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
1348 btrfs_header_chunk_tree_uuid(leaf),
1350 btrfs_mark_buffer_dirty(leaf);
1352 root->commit_root = btrfs_root_node(root);
1353 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1355 root->root_item.flags = 0;
1356 root->root_item.byte_limit = 0;
1357 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1358 btrfs_set_root_generation(&root->root_item, trans->transid);
1359 btrfs_set_root_level(&root->root_item, 0);
1360 btrfs_set_root_refs(&root->root_item, 1);
1361 btrfs_set_root_used(&root->root_item, leaf->len);
1362 btrfs_set_root_last_snapshot(&root->root_item, 0);
1363 btrfs_set_root_dirid(&root->root_item, 0);
1365 memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
1366 root->root_item.drop_level = 0;
1368 key.objectid = objectid;
1369 key.type = BTRFS_ROOT_ITEM_KEY;
1371 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1375 btrfs_tree_unlock(leaf);
1381 btrfs_tree_unlock(leaf);
1382 free_extent_buffer(root->commit_root);
1383 free_extent_buffer(leaf);
1387 return ERR_PTR(ret);
1390 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1391 struct btrfs_fs_info *fs_info)
1393 struct btrfs_root *root;
1394 struct btrfs_root *tree_root = fs_info->tree_root;
1395 struct extent_buffer *leaf;
1397 root = btrfs_alloc_root(fs_info);
1399 return ERR_PTR(-ENOMEM);
1401 __setup_root(tree_root->nodesize, tree_root->sectorsize,
1402 tree_root->stripesize, root, fs_info,
1403 BTRFS_TREE_LOG_OBJECTID);
1405 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1406 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1407 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1410 * DON'T set REF_COWS for log trees
1412 * log trees do not get reference counted because they go away
1413 * before a real commit is actually done. They do store pointers
1414 * to file data extents, and those reference counts still get
1415 * updated (along with back refs to the log tree).
1418 leaf = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
1419 BTRFS_TREE_LOG_OBJECTID, NULL,
1423 return ERR_CAST(leaf);
1426 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1427 btrfs_set_header_bytenr(leaf, leaf->start);
1428 btrfs_set_header_generation(leaf, trans->transid);
1429 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1430 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1433 write_extent_buffer(root->node, root->fs_info->fsid,
1434 btrfs_header_fsid(), BTRFS_FSID_SIZE);
1435 btrfs_mark_buffer_dirty(root->node);
1436 btrfs_tree_unlock(root->node);
1440 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1441 struct btrfs_fs_info *fs_info)
1443 struct btrfs_root *log_root;
1445 log_root = alloc_log_tree(trans, fs_info);
1446 if (IS_ERR(log_root))
1447 return PTR_ERR(log_root);
1448 WARN_ON(fs_info->log_root_tree);
1449 fs_info->log_root_tree = log_root;
1453 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1454 struct btrfs_root *root)
1456 struct btrfs_root *log_root;
1457 struct btrfs_inode_item *inode_item;
1459 log_root = alloc_log_tree(trans, root->fs_info);
1460 if (IS_ERR(log_root))
1461 return PTR_ERR(log_root);
1463 log_root->last_trans = trans->transid;
1464 log_root->root_key.offset = root->root_key.objectid;
1466 inode_item = &log_root->root_item.inode;
1467 btrfs_set_stack_inode_generation(inode_item, 1);
1468 btrfs_set_stack_inode_size(inode_item, 3);
1469 btrfs_set_stack_inode_nlink(inode_item, 1);
1470 btrfs_set_stack_inode_nbytes(inode_item, root->nodesize);
1471 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1473 btrfs_set_root_node(&log_root->root_item, log_root->node);
1475 WARN_ON(root->log_root);
1476 root->log_root = log_root;
1477 root->log_transid = 0;
1478 root->log_transid_committed = -1;
1479 root->last_log_commit = 0;
1483 static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1484 struct btrfs_key *key)
1486 struct btrfs_root *root;
1487 struct btrfs_fs_info *fs_info = tree_root->fs_info;
1488 struct btrfs_path *path;
1493 path = btrfs_alloc_path();
1495 return ERR_PTR(-ENOMEM);
1497 root = btrfs_alloc_root(fs_info);
1503 __setup_root(tree_root->nodesize, tree_root->sectorsize,
1504 tree_root->stripesize, root, fs_info, key->objectid);
1506 ret = btrfs_find_root(tree_root, key, path,
1507 &root->root_item, &root->root_key);
1514 generation = btrfs_root_generation(&root->root_item);
1515 blocksize = root->nodesize;
1516 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1517 blocksize, generation);
1521 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1525 root->commit_root = btrfs_root_node(root);
1527 btrfs_free_path(path);
1531 free_extent_buffer(root->node);
1535 root = ERR_PTR(ret);
1539 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1540 struct btrfs_key *location)
1542 struct btrfs_root *root;
1544 root = btrfs_read_tree_root(tree_root, location);
1548 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1549 set_bit(BTRFS_ROOT_REF_COWS, &root->state);
1550 btrfs_check_and_init_root_item(&root->root_item);
1556 int btrfs_init_fs_root(struct btrfs_root *root)
1559 struct btrfs_subvolume_writers *writers;
1561 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1562 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1564 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1569 writers = btrfs_alloc_subvolume_writers();
1570 if (IS_ERR(writers)) {
1571 ret = PTR_ERR(writers);
1574 root->subv_writers = writers;
1576 btrfs_init_free_ino_ctl(root);
1577 spin_lock_init(&root->ino_cache_lock);
1578 init_waitqueue_head(&root->ino_cache_wait);
1580 ret = get_anon_bdev(&root->anon_dev);
1586 btrfs_free_subvolume_writers(root->subv_writers);
1588 kfree(root->free_ino_ctl);
1589 kfree(root->free_ino_pinned);
1593 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1596 struct btrfs_root *root;
1598 spin_lock(&fs_info->fs_roots_radix_lock);
1599 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1600 (unsigned long)root_id);
1601 spin_unlock(&fs_info->fs_roots_radix_lock);
1605 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1606 struct btrfs_root *root)
1610 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1614 spin_lock(&fs_info->fs_roots_radix_lock);
1615 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1616 (unsigned long)root->root_key.objectid,
1619 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1620 spin_unlock(&fs_info->fs_roots_radix_lock);
1621 radix_tree_preload_end();
1626 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1627 struct btrfs_key *location,
1630 struct btrfs_root *root;
1633 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1634 return fs_info->tree_root;
1635 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1636 return fs_info->extent_root;
1637 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1638 return fs_info->chunk_root;
1639 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1640 return fs_info->dev_root;
1641 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1642 return fs_info->csum_root;
1643 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1644 return fs_info->quota_root ? fs_info->quota_root :
1646 if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1647 return fs_info->uuid_root ? fs_info->uuid_root :
1650 root = btrfs_lookup_fs_root(fs_info, location->objectid);
1652 if (check_ref && btrfs_root_refs(&root->root_item) == 0)
1653 return ERR_PTR(-ENOENT);
1657 root = btrfs_read_fs_root(fs_info->tree_root, location);
1661 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1666 ret = btrfs_init_fs_root(root);
1670 ret = btrfs_find_item(fs_info->tree_root, NULL, BTRFS_ORPHAN_OBJECTID,
1671 location->objectid, BTRFS_ORPHAN_ITEM_KEY, NULL);
1675 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1677 ret = btrfs_insert_fs_root(fs_info, root);
1679 if (ret == -EEXIST) {
1688 return ERR_PTR(ret);
1691 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1693 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1695 struct btrfs_device *device;
1696 struct backing_dev_info *bdi;
1699 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1702 bdi = blk_get_backing_dev_info(device->bdev);
1703 if (bdi && bdi_congested(bdi, bdi_bits)) {
1712 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1716 bdi->capabilities = BDI_CAP_MAP_COPY;
1717 err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
1721 bdi->ra_pages = default_backing_dev_info.ra_pages;
1722 bdi->congested_fn = btrfs_congested_fn;
1723 bdi->congested_data = info;
1728 * called by the kthread helper functions to finally call the bio end_io
1729 * functions. This is where read checksum verification actually happens
1731 static void end_workqueue_fn(struct btrfs_work *work)
1734 struct end_io_wq *end_io_wq;
1737 end_io_wq = container_of(work, struct end_io_wq, work);
1738 bio = end_io_wq->bio;
1740 error = end_io_wq->error;
1741 bio->bi_private = end_io_wq->private;
1742 bio->bi_end_io = end_io_wq->end_io;
1744 bio_endio_nodec(bio, error);
1747 static int cleaner_kthread(void *arg)
1749 struct btrfs_root *root = arg;
1755 /* Make the cleaner go to sleep early. */
1756 if (btrfs_need_cleaner_sleep(root))
1759 if (!mutex_trylock(&root->fs_info->cleaner_mutex))
1763 * Avoid the problem that we change the status of the fs
1764 * during the above check and trylock.
1766 if (btrfs_need_cleaner_sleep(root)) {
1767 mutex_unlock(&root->fs_info->cleaner_mutex);
1771 btrfs_run_delayed_iputs(root);
1772 btrfs_delete_unused_bgs(root->fs_info);
1773 again = btrfs_clean_one_deleted_snapshot(root);
1774 mutex_unlock(&root->fs_info->cleaner_mutex);
1777 * The defragger has dealt with the R/O remount and umount,
1778 * needn't do anything special here.
1780 btrfs_run_defrag_inodes(root->fs_info);
1782 if (!try_to_freeze() && !again) {
1783 set_current_state(TASK_INTERRUPTIBLE);
1784 if (!kthread_should_stop())
1786 __set_current_state(TASK_RUNNING);
1788 } while (!kthread_should_stop());
1792 static int transaction_kthread(void *arg)
1794 struct btrfs_root *root = arg;
1795 struct btrfs_trans_handle *trans;
1796 struct btrfs_transaction *cur;
1799 unsigned long delay;
1803 cannot_commit = false;
1804 delay = HZ * root->fs_info->commit_interval;
1805 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1807 spin_lock(&root->fs_info->trans_lock);
1808 cur = root->fs_info->running_transaction;
1810 spin_unlock(&root->fs_info->trans_lock);
1814 now = get_seconds();
1815 if (cur->state < TRANS_STATE_BLOCKED &&
1816 (now < cur->start_time ||
1817 now - cur->start_time < root->fs_info->commit_interval)) {
1818 spin_unlock(&root->fs_info->trans_lock);
1822 transid = cur->transid;
1823 spin_unlock(&root->fs_info->trans_lock);
1825 /* If the file system is aborted, this will always fail. */
1826 trans = btrfs_attach_transaction(root);
1827 if (IS_ERR(trans)) {
1828 if (PTR_ERR(trans) != -ENOENT)
1829 cannot_commit = true;
1832 if (transid == trans->transid) {
1833 btrfs_commit_transaction(trans, root);
1835 btrfs_end_transaction(trans, root);
1838 wake_up_process(root->fs_info->cleaner_kthread);
1839 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1841 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1842 &root->fs_info->fs_state)))
1843 btrfs_cleanup_transaction(root);
1844 if (!try_to_freeze()) {
1845 set_current_state(TASK_INTERRUPTIBLE);
1846 if (!kthread_should_stop() &&
1847 (!btrfs_transaction_blocked(root->fs_info) ||
1849 schedule_timeout(delay);
1850 __set_current_state(TASK_RUNNING);
1852 } while (!kthread_should_stop());
1857 * this will find the highest generation in the array of
1858 * root backups. The index of the highest array is returned,
1859 * or -1 if we can't find anything.
1861 * We check to make sure the array is valid by comparing the
1862 * generation of the latest root in the array with the generation
1863 * in the super block. If they don't match we pitch it.
1865 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1868 int newest_index = -1;
1869 struct btrfs_root_backup *root_backup;
1872 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1873 root_backup = info->super_copy->super_roots + i;
1874 cur = btrfs_backup_tree_root_gen(root_backup);
1875 if (cur == newest_gen)
1879 /* check to see if we actually wrapped around */
1880 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1881 root_backup = info->super_copy->super_roots;
1882 cur = btrfs_backup_tree_root_gen(root_backup);
1883 if (cur == newest_gen)
1886 return newest_index;
1891 * find the oldest backup so we know where to store new entries
1892 * in the backup array. This will set the backup_root_index
1893 * field in the fs_info struct
1895 static void find_oldest_super_backup(struct btrfs_fs_info *info,
1898 int newest_index = -1;
1900 newest_index = find_newest_super_backup(info, newest_gen);
1901 /* if there was garbage in there, just move along */
1902 if (newest_index == -1) {
1903 info->backup_root_index = 0;
1905 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1910 * copy all the root pointers into the super backup array.
1911 * this will bump the backup pointer by one when it is
1914 static void backup_super_roots(struct btrfs_fs_info *info)
1917 struct btrfs_root_backup *root_backup;
1920 next_backup = info->backup_root_index;
1921 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1922 BTRFS_NUM_BACKUP_ROOTS;
1925 * just overwrite the last backup if we're at the same generation
1926 * this happens only at umount
1928 root_backup = info->super_for_commit->super_roots + last_backup;
1929 if (btrfs_backup_tree_root_gen(root_backup) ==
1930 btrfs_header_generation(info->tree_root->node))
1931 next_backup = last_backup;
1933 root_backup = info->super_for_commit->super_roots + next_backup;
1936 * make sure all of our padding and empty slots get zero filled
1937 * regardless of which ones we use today
1939 memset(root_backup, 0, sizeof(*root_backup));
1941 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1943 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1944 btrfs_set_backup_tree_root_gen(root_backup,
1945 btrfs_header_generation(info->tree_root->node));
1947 btrfs_set_backup_tree_root_level(root_backup,
1948 btrfs_header_level(info->tree_root->node));
1950 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1951 btrfs_set_backup_chunk_root_gen(root_backup,
1952 btrfs_header_generation(info->chunk_root->node));
1953 btrfs_set_backup_chunk_root_level(root_backup,
1954 btrfs_header_level(info->chunk_root->node));
1956 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1957 btrfs_set_backup_extent_root_gen(root_backup,
1958 btrfs_header_generation(info->extent_root->node));
1959 btrfs_set_backup_extent_root_level(root_backup,
1960 btrfs_header_level(info->extent_root->node));
1963 * we might commit during log recovery, which happens before we set
1964 * the fs_root. Make sure it is valid before we fill it in.
1966 if (info->fs_root && info->fs_root->node) {
1967 btrfs_set_backup_fs_root(root_backup,
1968 info->fs_root->node->start);
1969 btrfs_set_backup_fs_root_gen(root_backup,
1970 btrfs_header_generation(info->fs_root->node));
1971 btrfs_set_backup_fs_root_level(root_backup,
1972 btrfs_header_level(info->fs_root->node));
1975 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1976 btrfs_set_backup_dev_root_gen(root_backup,
1977 btrfs_header_generation(info->dev_root->node));
1978 btrfs_set_backup_dev_root_level(root_backup,
1979 btrfs_header_level(info->dev_root->node));
1981 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1982 btrfs_set_backup_csum_root_gen(root_backup,
1983 btrfs_header_generation(info->csum_root->node));
1984 btrfs_set_backup_csum_root_level(root_backup,
1985 btrfs_header_level(info->csum_root->node));
1987 btrfs_set_backup_total_bytes(root_backup,
1988 btrfs_super_total_bytes(info->super_copy));
1989 btrfs_set_backup_bytes_used(root_backup,
1990 btrfs_super_bytes_used(info->super_copy));
1991 btrfs_set_backup_num_devices(root_backup,
1992 btrfs_super_num_devices(info->super_copy));
1995 * if we don't copy this out to the super_copy, it won't get remembered
1996 * for the next commit
1998 memcpy(&info->super_copy->super_roots,
1999 &info->super_for_commit->super_roots,
2000 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
2004 * this copies info out of the root backup array and back into
2005 * the in-memory super block. It is meant to help iterate through
2006 * the array, so you send it the number of backups you've already
2007 * tried and the last backup index you used.
2009 * this returns -1 when it has tried all the backups
2011 static noinline int next_root_backup(struct btrfs_fs_info *info,
2012 struct btrfs_super_block *super,
2013 int *num_backups_tried, int *backup_index)
2015 struct btrfs_root_backup *root_backup;
2016 int newest = *backup_index;
2018 if (*num_backups_tried == 0) {
2019 u64 gen = btrfs_super_generation(super);
2021 newest = find_newest_super_backup(info, gen);
2025 *backup_index = newest;
2026 *num_backups_tried = 1;
2027 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
2028 /* we've tried all the backups, all done */
2031 /* jump to the next oldest backup */
2032 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
2033 BTRFS_NUM_BACKUP_ROOTS;
2034 *backup_index = newest;
2035 *num_backups_tried += 1;
2037 root_backup = super->super_roots + newest;
2039 btrfs_set_super_generation(super,
2040 btrfs_backup_tree_root_gen(root_backup));
2041 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2042 btrfs_set_super_root_level(super,
2043 btrfs_backup_tree_root_level(root_backup));
2044 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2047 * fixme: the total bytes and num_devices need to match or we should
2050 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2051 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2055 /* helper to cleanup workers */
2056 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2058 btrfs_destroy_workqueue(fs_info->fixup_workers);
2059 btrfs_destroy_workqueue(fs_info->delalloc_workers);
2060 btrfs_destroy_workqueue(fs_info->workers);
2061 btrfs_destroy_workqueue(fs_info->endio_workers);
2062 btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2063 btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
2064 btrfs_destroy_workqueue(fs_info->endio_repair_workers);
2065 btrfs_destroy_workqueue(fs_info->rmw_workers);
2066 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2067 btrfs_destroy_workqueue(fs_info->endio_write_workers);
2068 btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
2069 btrfs_destroy_workqueue(fs_info->submit_workers);
2070 btrfs_destroy_workqueue(fs_info->delayed_workers);
2071 btrfs_destroy_workqueue(fs_info->caching_workers);
2072 btrfs_destroy_workqueue(fs_info->readahead_workers);
2073 btrfs_destroy_workqueue(fs_info->flush_workers);
2074 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
2075 btrfs_destroy_workqueue(fs_info->extent_workers);
2078 static void free_root_extent_buffers(struct btrfs_root *root)
2081 free_extent_buffer(root->node);
2082 free_extent_buffer(root->commit_root);
2084 root->commit_root = NULL;
2088 /* helper to cleanup tree roots */
2089 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2091 free_root_extent_buffers(info->tree_root);
2093 free_root_extent_buffers(info->dev_root);
2094 free_root_extent_buffers(info->extent_root);
2095 free_root_extent_buffers(info->csum_root);
2096 free_root_extent_buffers(info->quota_root);
2097 free_root_extent_buffers(info->uuid_root);
2099 free_root_extent_buffers(info->chunk_root);
2102 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2105 struct btrfs_root *gang[8];
2108 while (!list_empty(&fs_info->dead_roots)) {
2109 gang[0] = list_entry(fs_info->dead_roots.next,
2110 struct btrfs_root, root_list);
2111 list_del(&gang[0]->root_list);
2113 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
2114 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2116 free_extent_buffer(gang[0]->node);
2117 free_extent_buffer(gang[0]->commit_root);
2118 btrfs_put_fs_root(gang[0]);
2123 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2128 for (i = 0; i < ret; i++)
2129 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2132 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2133 btrfs_free_log_root_tree(NULL, fs_info);
2134 btrfs_destroy_pinned_extent(fs_info->tree_root,
2135 fs_info->pinned_extents);
2139 int open_ctree(struct super_block *sb,
2140 struct btrfs_fs_devices *fs_devices,
2149 struct btrfs_key location;
2150 struct buffer_head *bh;
2151 struct btrfs_super_block *disk_super;
2152 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2153 struct btrfs_root *tree_root;
2154 struct btrfs_root *extent_root;
2155 struct btrfs_root *csum_root;
2156 struct btrfs_root *chunk_root;
2157 struct btrfs_root *dev_root;
2158 struct btrfs_root *quota_root;
2159 struct btrfs_root *uuid_root;
2160 struct btrfs_root *log_tree_root;
2163 int num_backups_tried = 0;
2164 int backup_index = 0;
2166 int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2167 bool create_uuid_tree;
2168 bool check_uuid_tree;
2170 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
2171 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
2172 if (!tree_root || !chunk_root) {
2177 ret = init_srcu_struct(&fs_info->subvol_srcu);
2183 ret = setup_bdi(fs_info, &fs_info->bdi);
2189 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0);
2194 fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE *
2195 (1 + ilog2(nr_cpu_ids));
2197 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0);
2200 goto fail_dirty_metadata_bytes;
2203 ret = percpu_counter_init(&fs_info->bio_counter, 0);
2206 goto fail_delalloc_bytes;
2209 fs_info->btree_inode = new_inode(sb);
2210 if (!fs_info->btree_inode) {
2212 goto fail_bio_counter;
2215 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2217 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2218 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2219 INIT_LIST_HEAD(&fs_info->trans_list);
2220 INIT_LIST_HEAD(&fs_info->dead_roots);
2221 INIT_LIST_HEAD(&fs_info->delayed_iputs);
2222 INIT_LIST_HEAD(&fs_info->delalloc_roots);
2223 INIT_LIST_HEAD(&fs_info->caching_block_groups);
2224 spin_lock_init(&fs_info->delalloc_root_lock);
2225 spin_lock_init(&fs_info->trans_lock);
2226 spin_lock_init(&fs_info->fs_roots_radix_lock);
2227 spin_lock_init(&fs_info->delayed_iput_lock);
2228 spin_lock_init(&fs_info->defrag_inodes_lock);
2229 spin_lock_init(&fs_info->free_chunk_lock);
2230 spin_lock_init(&fs_info->tree_mod_seq_lock);
2231 spin_lock_init(&fs_info->super_lock);
2232 spin_lock_init(&fs_info->qgroup_op_lock);
2233 spin_lock_init(&fs_info->buffer_lock);
2234 spin_lock_init(&fs_info->unused_bgs_lock);
2235 rwlock_init(&fs_info->tree_mod_log_lock);
2236 mutex_init(&fs_info->reloc_mutex);
2237 mutex_init(&fs_info->delalloc_root_mutex);
2238 seqlock_init(&fs_info->profiles_lock);
2240 init_completion(&fs_info->kobj_unregister);
2241 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2242 INIT_LIST_HEAD(&fs_info->space_info);
2243 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2244 INIT_LIST_HEAD(&fs_info->unused_bgs);
2245 btrfs_mapping_init(&fs_info->mapping_tree);
2246 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2247 BTRFS_BLOCK_RSV_GLOBAL);
2248 btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2249 BTRFS_BLOCK_RSV_DELALLOC);
2250 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2251 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2252 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2253 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2254 BTRFS_BLOCK_RSV_DELOPS);
2255 atomic_set(&fs_info->nr_async_submits, 0);
2256 atomic_set(&fs_info->async_delalloc_pages, 0);
2257 atomic_set(&fs_info->async_submit_draining, 0);
2258 atomic_set(&fs_info->nr_async_bios, 0);
2259 atomic_set(&fs_info->defrag_running, 0);
2260 atomic_set(&fs_info->qgroup_op_seq, 0);
2261 atomic64_set(&fs_info->tree_mod_seq, 0);
2263 fs_info->max_inline = 8192 * 1024;
2264 fs_info->metadata_ratio = 0;
2265 fs_info->defrag_inodes = RB_ROOT;
2266 fs_info->free_chunk_space = 0;
2267 fs_info->tree_mod_log = RB_ROOT;
2268 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2269 fs_info->avg_delayed_ref_runtime = div64_u64(NSEC_PER_SEC, 64);
2270 /* readahead state */
2271 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
2272 spin_lock_init(&fs_info->reada_lock);
2274 fs_info->thread_pool_size = min_t(unsigned long,
2275 num_online_cpus() + 2, 8);
2277 INIT_LIST_HEAD(&fs_info->ordered_roots);
2278 spin_lock_init(&fs_info->ordered_root_lock);
2279 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2281 if (!fs_info->delayed_root) {
2285 btrfs_init_delayed_root(fs_info->delayed_root);
2287 mutex_init(&fs_info->scrub_lock);
2288 atomic_set(&fs_info->scrubs_running, 0);
2289 atomic_set(&fs_info->scrub_pause_req, 0);
2290 atomic_set(&fs_info->scrubs_paused, 0);
2291 atomic_set(&fs_info->scrub_cancel_req, 0);
2292 init_waitqueue_head(&fs_info->replace_wait);
2293 init_waitqueue_head(&fs_info->scrub_pause_wait);
2294 fs_info->scrub_workers_refcnt = 0;
2295 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2296 fs_info->check_integrity_print_mask = 0;
2299 spin_lock_init(&fs_info->balance_lock);
2300 mutex_init(&fs_info->balance_mutex);
2301 atomic_set(&fs_info->balance_running, 0);
2302 atomic_set(&fs_info->balance_pause_req, 0);
2303 atomic_set(&fs_info->balance_cancel_req, 0);
2304 fs_info->balance_ctl = NULL;
2305 init_waitqueue_head(&fs_info->balance_wait_q);
2306 btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
2308 sb->s_blocksize = 4096;
2309 sb->s_blocksize_bits = blksize_bits(4096);
2310 sb->s_bdi = &fs_info->bdi;
2312 fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2313 set_nlink(fs_info->btree_inode, 1);
2315 * we set the i_size on the btree inode to the max possible int.
2316 * the real end of the address space is determined by all of
2317 * the devices in the system
2319 fs_info->btree_inode->i_size = OFFSET_MAX;
2320 fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
2321 fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
2323 RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
2324 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
2325 fs_info->btree_inode->i_mapping);
2326 BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
2327 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
2329 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
2331 BTRFS_I(fs_info->btree_inode)->root = tree_root;
2332 memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2333 sizeof(struct btrfs_key));
2334 set_bit(BTRFS_INODE_DUMMY,
2335 &BTRFS_I(fs_info->btree_inode)->runtime_flags);
2336 btrfs_insert_inode_hash(fs_info->btree_inode);
2338 spin_lock_init(&fs_info->block_group_cache_lock);
2339 fs_info->block_group_cache_tree = RB_ROOT;
2340 fs_info->first_logical_byte = (u64)-1;
2342 extent_io_tree_init(&fs_info->freed_extents[0],
2343 fs_info->btree_inode->i_mapping);
2344 extent_io_tree_init(&fs_info->freed_extents[1],
2345 fs_info->btree_inode->i_mapping);
2346 fs_info->pinned_extents = &fs_info->freed_extents[0];
2347 fs_info->do_barriers = 1;
2350 mutex_init(&fs_info->ordered_operations_mutex);
2351 mutex_init(&fs_info->ordered_extent_flush_mutex);
2352 mutex_init(&fs_info->tree_log_mutex);
2353 mutex_init(&fs_info->chunk_mutex);
2354 mutex_init(&fs_info->transaction_kthread_mutex);
2355 mutex_init(&fs_info->cleaner_mutex);
2356 mutex_init(&fs_info->volume_mutex);
2357 init_rwsem(&fs_info->commit_root_sem);
2358 init_rwsem(&fs_info->cleanup_work_sem);
2359 init_rwsem(&fs_info->subvol_sem);
2360 sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2361 fs_info->dev_replace.lock_owner = 0;
2362 atomic_set(&fs_info->dev_replace.nesting_level, 0);
2363 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2364 mutex_init(&fs_info->dev_replace.lock_management_lock);
2365 mutex_init(&fs_info->dev_replace.lock);
2367 spin_lock_init(&fs_info->qgroup_lock);
2368 mutex_init(&fs_info->qgroup_ioctl_lock);
2369 fs_info->qgroup_tree = RB_ROOT;
2370 fs_info->qgroup_op_tree = RB_ROOT;
2371 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2372 fs_info->qgroup_seq = 1;
2373 fs_info->quota_enabled = 0;
2374 fs_info->pending_quota_state = 0;
2375 fs_info->qgroup_ulist = NULL;
2376 mutex_init(&fs_info->qgroup_rescan_lock);
2378 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2379 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2381 init_waitqueue_head(&fs_info->transaction_throttle);
2382 init_waitqueue_head(&fs_info->transaction_wait);
2383 init_waitqueue_head(&fs_info->transaction_blocked_wait);
2384 init_waitqueue_head(&fs_info->async_submit_wait);
2386 ret = btrfs_alloc_stripe_hash_table(fs_info);
2392 __setup_root(4096, 4096, 4096, tree_root,
2393 fs_info, BTRFS_ROOT_TREE_OBJECTID);
2395 invalidate_bdev(fs_devices->latest_bdev);
2398 * Read super block and check the signature bytes only
2400 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2407 * We want to check superblock checksum, the type is stored inside.
2408 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2410 if (btrfs_check_super_csum(bh->b_data)) {
2411 printk(KERN_ERR "BTRFS: superblock checksum mismatch\n");
2417 * super_copy is zeroed at allocation time and we never touch the
2418 * following bytes up to INFO_SIZE, the checksum is calculated from
2419 * the whole block of INFO_SIZE
2421 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2422 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2423 sizeof(*fs_info->super_for_commit));
2426 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2428 ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2430 printk(KERN_ERR "BTRFS: superblock contains fatal errors\n");
2435 disk_super = fs_info->super_copy;
2436 if (!btrfs_super_root(disk_super))
2439 /* check FS state, whether FS is broken. */
2440 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2441 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2444 * run through our array of backup supers and setup
2445 * our ring pointer to the oldest one
2447 generation = btrfs_super_generation(disk_super);
2448 find_oldest_super_backup(fs_info, generation);
2451 * In the long term, we'll store the compression type in the super
2452 * block, and it'll be used for per file compression control.
2454 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2456 ret = btrfs_parse_options(tree_root, options);
2462 features = btrfs_super_incompat_flags(disk_super) &
2463 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2465 printk(KERN_ERR "BTRFS: couldn't mount because of "
2466 "unsupported optional features (%Lx).\n",
2473 * Leafsize and nodesize were always equal, this is only a sanity check.
2475 if (le32_to_cpu(disk_super->__unused_leafsize) !=
2476 btrfs_super_nodesize(disk_super)) {
2477 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2478 "blocksizes don't match. node %d leaf %d\n",
2479 btrfs_super_nodesize(disk_super),
2480 le32_to_cpu(disk_super->__unused_leafsize));
2484 if (btrfs_super_nodesize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
2485 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2486 "blocksize (%d) was too large\n",
2487 btrfs_super_nodesize(disk_super));
2492 features = btrfs_super_incompat_flags(disk_super);
2493 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2494 if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
2495 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2497 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2498 printk(KERN_ERR "BTRFS: has skinny extents\n");
2501 * flag our filesystem as having big metadata blocks if
2502 * they are bigger than the page size
2504 if (btrfs_super_nodesize(disk_super) > PAGE_CACHE_SIZE) {
2505 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2506 printk(KERN_INFO "BTRFS: flagging fs with big metadata feature\n");
2507 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2510 nodesize = btrfs_super_nodesize(disk_super);
2511 sectorsize = btrfs_super_sectorsize(disk_super);
2512 stripesize = btrfs_super_stripesize(disk_super);
2513 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
2514 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2517 * mixed block groups end up with duplicate but slightly offset
2518 * extent buffers for the same range. It leads to corruptions
2520 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2521 (sectorsize != nodesize)) {
2522 printk(KERN_WARNING "BTRFS: unequal leaf/node/sector sizes "
2523 "are not allowed for mixed block groups on %s\n",
2529 * Needn't use the lock because there is no other task which will
2532 btrfs_set_super_incompat_flags(disk_super, features);
2534 features = btrfs_super_compat_ro_flags(disk_super) &
2535 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2536 if (!(sb->s_flags & MS_RDONLY) && features) {
2537 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2538 "unsupported option features (%Lx).\n",
2544 max_active = fs_info->thread_pool_size;
2547 btrfs_alloc_workqueue("worker", flags | WQ_HIGHPRI,
2550 fs_info->delalloc_workers =
2551 btrfs_alloc_workqueue("delalloc", flags, max_active, 2);
2553 fs_info->flush_workers =
2554 btrfs_alloc_workqueue("flush_delalloc", flags, max_active, 0);
2556 fs_info->caching_workers =
2557 btrfs_alloc_workqueue("cache", flags, max_active, 0);
2560 * a higher idle thresh on the submit workers makes it much more
2561 * likely that bios will be send down in a sane order to the
2564 fs_info->submit_workers =
2565 btrfs_alloc_workqueue("submit", flags,
2566 min_t(u64, fs_devices->num_devices,
2569 fs_info->fixup_workers =
2570 btrfs_alloc_workqueue("fixup", flags, 1, 0);
2573 * endios are largely parallel and should have a very
2576 fs_info->endio_workers =
2577 btrfs_alloc_workqueue("endio", flags, max_active, 4);
2578 fs_info->endio_meta_workers =
2579 btrfs_alloc_workqueue("endio-meta", flags, max_active, 4);
2580 fs_info->endio_meta_write_workers =
2581 btrfs_alloc_workqueue("endio-meta-write", flags, max_active, 2);
2582 fs_info->endio_raid56_workers =
2583 btrfs_alloc_workqueue("endio-raid56", flags, max_active, 4);
2584 fs_info->endio_repair_workers =
2585 btrfs_alloc_workqueue("endio-repair", flags, 1, 0);
2586 fs_info->rmw_workers =
2587 btrfs_alloc_workqueue("rmw", flags, max_active, 2);
2588 fs_info->endio_write_workers =
2589 btrfs_alloc_workqueue("endio-write", flags, max_active, 2);
2590 fs_info->endio_freespace_worker =
2591 btrfs_alloc_workqueue("freespace-write", flags, max_active, 0);
2592 fs_info->delayed_workers =
2593 btrfs_alloc_workqueue("delayed-meta", flags, max_active, 0);
2594 fs_info->readahead_workers =
2595 btrfs_alloc_workqueue("readahead", flags, max_active, 2);
2596 fs_info->qgroup_rescan_workers =
2597 btrfs_alloc_workqueue("qgroup-rescan", flags, 1, 0);
2598 fs_info->extent_workers =
2599 btrfs_alloc_workqueue("extent-refs", flags,
2600 min_t(u64, fs_devices->num_devices,
2603 if (!(fs_info->workers && fs_info->delalloc_workers &&
2604 fs_info->submit_workers && fs_info->flush_workers &&
2605 fs_info->endio_workers && fs_info->endio_meta_workers &&
2606 fs_info->endio_meta_write_workers &&
2607 fs_info->endio_repair_workers &&
2608 fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2609 fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2610 fs_info->caching_workers && fs_info->readahead_workers &&
2611 fs_info->fixup_workers && fs_info->delayed_workers &&
2612 fs_info->extent_workers &&
2613 fs_info->qgroup_rescan_workers)) {
2615 goto fail_sb_buffer;
2618 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
2619 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2620 4 * 1024 * 1024 / PAGE_CACHE_SIZE);
2622 tree_root->nodesize = nodesize;
2623 tree_root->sectorsize = sectorsize;
2624 tree_root->stripesize = stripesize;
2626 sb->s_blocksize = sectorsize;
2627 sb->s_blocksize_bits = blksize_bits(sectorsize);
2629 if (btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
2630 printk(KERN_INFO "BTRFS: valid FS not found on %s\n", sb->s_id);
2631 goto fail_sb_buffer;
2634 if (sectorsize != PAGE_SIZE) {
2635 printk(KERN_WARNING "BTRFS: Incompatible sector size(%lu) "
2636 "found on %s\n", (unsigned long)sectorsize, sb->s_id);
2637 goto fail_sb_buffer;
2640 mutex_lock(&fs_info->chunk_mutex);
2641 ret = btrfs_read_sys_array(tree_root);
2642 mutex_unlock(&fs_info->chunk_mutex);
2644 printk(KERN_WARNING "BTRFS: failed to read the system "
2645 "array on %s\n", sb->s_id);
2646 goto fail_sb_buffer;
2649 blocksize = tree_root->nodesize;
2650 generation = btrfs_super_chunk_root_generation(disk_super);
2652 __setup_root(nodesize, sectorsize, stripesize, chunk_root,
2653 fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2655 chunk_root->node = read_tree_block(chunk_root,
2656 btrfs_super_chunk_root(disk_super),
2657 blocksize, generation);
2658 if (!chunk_root->node ||
2659 !test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
2660 printk(KERN_WARNING "BTRFS: failed to read chunk root on %s\n",
2662 goto fail_tree_roots;
2664 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2665 chunk_root->commit_root = btrfs_root_node(chunk_root);
2667 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2668 btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
2670 ret = btrfs_read_chunk_tree(chunk_root);
2672 printk(KERN_WARNING "BTRFS: failed to read chunk tree on %s\n",
2674 goto fail_tree_roots;
2678 * keep the device that is marked to be the target device for the
2679 * dev_replace procedure
2681 btrfs_close_extra_devices(fs_info, fs_devices, 0);
2683 if (!fs_devices->latest_bdev) {
2684 printk(KERN_CRIT "BTRFS: failed to read devices on %s\n",
2686 goto fail_tree_roots;
2690 blocksize = tree_root->nodesize;
2691 generation = btrfs_super_generation(disk_super);
2693 tree_root->node = read_tree_block(tree_root,
2694 btrfs_super_root(disk_super),
2695 blocksize, generation);
2696 if (!tree_root->node ||
2697 !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
2698 printk(KERN_WARNING "BTRFS: failed to read tree root on %s\n",
2701 goto recovery_tree_root;
2704 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2705 tree_root->commit_root = btrfs_root_node(tree_root);
2706 btrfs_set_root_refs(&tree_root->root_item, 1);
2708 location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2709 location.type = BTRFS_ROOT_ITEM_KEY;
2710 location.offset = 0;
2712 extent_root = btrfs_read_tree_root(tree_root, &location);
2713 if (IS_ERR(extent_root)) {
2714 ret = PTR_ERR(extent_root);
2715 goto recovery_tree_root;
2717 set_bit(BTRFS_ROOT_TRACK_DIRTY, &extent_root->state);
2718 fs_info->extent_root = extent_root;
2720 location.objectid = BTRFS_DEV_TREE_OBJECTID;
2721 dev_root = btrfs_read_tree_root(tree_root, &location);
2722 if (IS_ERR(dev_root)) {
2723 ret = PTR_ERR(dev_root);
2724 goto recovery_tree_root;
2726 set_bit(BTRFS_ROOT_TRACK_DIRTY, &dev_root->state);
2727 fs_info->dev_root = dev_root;
2728 btrfs_init_devices_late(fs_info);
2730 location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2731 csum_root = btrfs_read_tree_root(tree_root, &location);
2732 if (IS_ERR(csum_root)) {
2733 ret = PTR_ERR(csum_root);
2734 goto recovery_tree_root;
2736 set_bit(BTRFS_ROOT_TRACK_DIRTY, &csum_root->state);
2737 fs_info->csum_root = csum_root;
2739 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2740 quota_root = btrfs_read_tree_root(tree_root, &location);
2741 if (!IS_ERR(quota_root)) {
2742 set_bit(BTRFS_ROOT_TRACK_DIRTY, "a_root->state);
2743 fs_info->quota_enabled = 1;
2744 fs_info->pending_quota_state = 1;
2745 fs_info->quota_root = quota_root;
2748 location.objectid = BTRFS_UUID_TREE_OBJECTID;
2749 uuid_root = btrfs_read_tree_root(tree_root, &location);
2750 if (IS_ERR(uuid_root)) {
2751 ret = PTR_ERR(uuid_root);
2753 goto recovery_tree_root;
2754 create_uuid_tree = true;
2755 check_uuid_tree = false;
2757 set_bit(BTRFS_ROOT_TRACK_DIRTY, &uuid_root->state);
2758 fs_info->uuid_root = uuid_root;
2759 create_uuid_tree = false;
2761 generation != btrfs_super_uuid_tree_generation(disk_super);
2764 fs_info->generation = generation;
2765 fs_info->last_trans_committed = generation;
2767 ret = btrfs_recover_balance(fs_info);
2769 printk(KERN_WARNING "BTRFS: failed to recover balance\n");
2770 goto fail_block_groups;
2773 ret = btrfs_init_dev_stats(fs_info);
2775 printk(KERN_ERR "BTRFS: failed to init dev_stats: %d\n",
2777 goto fail_block_groups;
2780 ret = btrfs_init_dev_replace(fs_info);
2782 pr_err("BTRFS: failed to init dev_replace: %d\n", ret);
2783 goto fail_block_groups;
2786 btrfs_close_extra_devices(fs_info, fs_devices, 1);
2788 ret = btrfs_sysfs_add_one(fs_info);
2790 pr_err("BTRFS: failed to init sysfs interface: %d\n", ret);
2791 goto fail_block_groups;
2794 ret = btrfs_init_space_info(fs_info);
2796 printk(KERN_ERR "BTRFS: Failed to initial space info: %d\n", ret);
2800 ret = btrfs_read_block_groups(extent_root);
2802 printk(KERN_ERR "BTRFS: Failed to read block groups: %d\n", ret);
2805 fs_info->num_tolerated_disk_barrier_failures =
2806 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
2807 if (fs_info->fs_devices->missing_devices >
2808 fs_info->num_tolerated_disk_barrier_failures &&
2809 !(sb->s_flags & MS_RDONLY)) {
2810 printk(KERN_WARNING "BTRFS: "
2811 "too many missing devices, writeable mount is not allowed\n");
2815 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2817 if (IS_ERR(fs_info->cleaner_kthread))
2820 fs_info->transaction_kthread = kthread_run(transaction_kthread,
2822 "btrfs-transaction");
2823 if (IS_ERR(fs_info->transaction_kthread))
2826 if (!btrfs_test_opt(tree_root, SSD) &&
2827 !btrfs_test_opt(tree_root, NOSSD) &&
2828 !fs_info->fs_devices->rotating) {
2829 printk(KERN_INFO "BTRFS: detected SSD devices, enabling SSD "
2831 btrfs_set_opt(fs_info->mount_opt, SSD);
2834 /* Set the real inode map cache flag */
2835 if (btrfs_test_opt(tree_root, CHANGE_INODE_CACHE))
2836 btrfs_set_opt(tree_root->fs_info->mount_opt, INODE_MAP_CACHE);
2838 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2839 if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
2840 ret = btrfsic_mount(tree_root, fs_devices,
2841 btrfs_test_opt(tree_root,
2842 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2844 fs_info->check_integrity_print_mask);
2846 printk(KERN_WARNING "BTRFS: failed to initialize"
2847 " integrity check module %s\n", sb->s_id);
2850 ret = btrfs_read_qgroup_config(fs_info);
2852 goto fail_trans_kthread;
2854 /* do not make disk changes in broken FS */
2855 if (btrfs_super_log_root(disk_super) != 0) {
2856 u64 bytenr = btrfs_super_log_root(disk_super);
2858 if (fs_devices->rw_devices == 0) {
2859 printk(KERN_WARNING "BTRFS: log replay required "
2864 blocksize = tree_root->nodesize;
2866 log_tree_root = btrfs_alloc_root(fs_info);
2867 if (!log_tree_root) {
2872 __setup_root(nodesize, sectorsize, stripesize,
2873 log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2875 log_tree_root->node = read_tree_block(tree_root, bytenr,
2878 if (!log_tree_root->node ||
2879 !extent_buffer_uptodate(log_tree_root->node)) {
2880 printk(KERN_ERR "BTRFS: failed to read log tree\n");
2881 free_extent_buffer(log_tree_root->node);
2882 kfree(log_tree_root);
2885 /* returns with log_tree_root freed on success */
2886 ret = btrfs_recover_log_trees(log_tree_root);
2888 btrfs_error(tree_root->fs_info, ret,
2889 "Failed to recover log tree");
2890 free_extent_buffer(log_tree_root->node);
2891 kfree(log_tree_root);
2895 if (sb->s_flags & MS_RDONLY) {
2896 ret = btrfs_commit_super(tree_root);
2902 ret = btrfs_find_orphan_roots(tree_root);
2906 if (!(sb->s_flags & MS_RDONLY)) {
2907 ret = btrfs_cleanup_fs_roots(fs_info);
2911 mutex_lock(&fs_info->cleaner_mutex);
2912 ret = btrfs_recover_relocation(tree_root);
2913 mutex_unlock(&fs_info->cleaner_mutex);
2916 "BTRFS: failed to recover relocation\n");
2922 location.objectid = BTRFS_FS_TREE_OBJECTID;
2923 location.type = BTRFS_ROOT_ITEM_KEY;
2924 location.offset = 0;
2926 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
2927 if (IS_ERR(fs_info->fs_root)) {
2928 err = PTR_ERR(fs_info->fs_root);
2932 if (sb->s_flags & MS_RDONLY)
2935 down_read(&fs_info->cleanup_work_sem);
2936 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
2937 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
2938 up_read(&fs_info->cleanup_work_sem);
2939 close_ctree(tree_root);
2942 up_read(&fs_info->cleanup_work_sem);
2944 ret = btrfs_resume_balance_async(fs_info);
2946 printk(KERN_WARNING "BTRFS: failed to resume balance\n");
2947 close_ctree(tree_root);
2951 ret = btrfs_resume_dev_replace_async(fs_info);
2953 pr_warn("BTRFS: failed to resume dev_replace\n");
2954 close_ctree(tree_root);
2958 btrfs_qgroup_rescan_resume(fs_info);
2960 if (create_uuid_tree) {
2961 pr_info("BTRFS: creating UUID tree\n");
2962 ret = btrfs_create_uuid_tree(fs_info);
2964 pr_warn("BTRFS: failed to create the UUID tree %d\n",
2966 close_ctree(tree_root);
2969 } else if (check_uuid_tree ||
2970 btrfs_test_opt(tree_root, RESCAN_UUID_TREE)) {
2971 pr_info("BTRFS: checking UUID tree\n");
2972 ret = btrfs_check_uuid_tree(fs_info);
2974 pr_warn("BTRFS: failed to check the UUID tree %d\n",
2976 close_ctree(tree_root);
2980 fs_info->update_uuid_tree_gen = 1;
2988 btrfs_free_qgroup_config(fs_info);
2990 kthread_stop(fs_info->transaction_kthread);
2991 btrfs_cleanup_transaction(fs_info->tree_root);
2992 btrfs_free_fs_roots(fs_info);
2994 kthread_stop(fs_info->cleaner_kthread);
2997 * make sure we're done with the btree inode before we stop our
3000 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3003 btrfs_sysfs_remove_one(fs_info);
3006 btrfs_put_block_group_cache(fs_info);
3007 btrfs_free_block_groups(fs_info);
3010 free_root_pointers(fs_info, 1);
3011 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3014 btrfs_stop_all_workers(fs_info);
3017 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3019 iput(fs_info->btree_inode);
3021 percpu_counter_destroy(&fs_info->bio_counter);
3022 fail_delalloc_bytes:
3023 percpu_counter_destroy(&fs_info->delalloc_bytes);
3024 fail_dirty_metadata_bytes:
3025 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3027 bdi_destroy(&fs_info->bdi);
3029 cleanup_srcu_struct(&fs_info->subvol_srcu);
3031 btrfs_free_stripe_hash_table(fs_info);
3032 btrfs_close_devices(fs_info->fs_devices);
3036 if (!btrfs_test_opt(tree_root, RECOVERY))
3037 goto fail_tree_roots;
3039 free_root_pointers(fs_info, 0);
3041 /* don't use the log in recovery mode, it won't be valid */
3042 btrfs_set_super_log_root(disk_super, 0);
3044 /* we can't trust the free space cache either */
3045 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3047 ret = next_root_backup(fs_info, fs_info->super_copy,
3048 &num_backups_tried, &backup_index);
3050 goto fail_block_groups;
3051 goto retry_root_backup;
3054 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3057 set_buffer_uptodate(bh);
3059 struct btrfs_device *device = (struct btrfs_device *)
3062 printk_ratelimited_in_rcu(KERN_WARNING "BTRFS: lost page write due to "
3063 "I/O error on %s\n",
3064 rcu_str_deref(device->name));
3065 /* note, we dont' set_buffer_write_io_error because we have
3066 * our own ways of dealing with the IO errors
3068 clear_buffer_uptodate(bh);
3069 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
3075 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3077 struct buffer_head *bh;
3078 struct buffer_head *latest = NULL;
3079 struct btrfs_super_block *super;
3084 /* we would like to check all the supers, but that would make
3085 * a btrfs mount succeed after a mkfs from a different FS.
3086 * So, we need to add a special mount option to scan for
3087 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3089 for (i = 0; i < 1; i++) {
3090 bytenr = btrfs_sb_offset(i);
3091 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3092 i_size_read(bdev->bd_inode))
3094 bh = __bread(bdev, bytenr / 4096,
3095 BTRFS_SUPER_INFO_SIZE);
3099 super = (struct btrfs_super_block *)bh->b_data;
3100 if (btrfs_super_bytenr(super) != bytenr ||
3101 btrfs_super_magic(super) != BTRFS_MAGIC) {
3106 if (!latest || btrfs_super_generation(super) > transid) {
3109 transid = btrfs_super_generation(super);
3118 * this should be called twice, once with wait == 0 and
3119 * once with wait == 1. When wait == 0 is done, all the buffer heads
3120 * we write are pinned.
3122 * They are released when wait == 1 is done.
3123 * max_mirrors must be the same for both runs, and it indicates how
3124 * many supers on this one device should be written.
3126 * max_mirrors == 0 means to write them all.
3128 static int write_dev_supers(struct btrfs_device *device,
3129 struct btrfs_super_block *sb,
3130 int do_barriers, int wait, int max_mirrors)
3132 struct buffer_head *bh;
3139 if (max_mirrors == 0)
3140 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3142 for (i = 0; i < max_mirrors; i++) {
3143 bytenr = btrfs_sb_offset(i);
3144 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3145 device->commit_total_bytes)
3149 bh = __find_get_block(device->bdev, bytenr / 4096,
3150 BTRFS_SUPER_INFO_SIZE);
3156 if (!buffer_uptodate(bh))
3159 /* drop our reference */
3162 /* drop the reference from the wait == 0 run */
3166 btrfs_set_super_bytenr(sb, bytenr);
3169 crc = btrfs_csum_data((char *)sb +
3170 BTRFS_CSUM_SIZE, crc,
3171 BTRFS_SUPER_INFO_SIZE -
3173 btrfs_csum_final(crc, sb->csum);
3176 * one reference for us, and we leave it for the
3179 bh = __getblk(device->bdev, bytenr / 4096,
3180 BTRFS_SUPER_INFO_SIZE);
3182 printk(KERN_ERR "BTRFS: couldn't get super "
3183 "buffer head for bytenr %Lu\n", bytenr);
3188 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3190 /* one reference for submit_bh */
3193 set_buffer_uptodate(bh);
3195 bh->b_end_io = btrfs_end_buffer_write_sync;
3196 bh->b_private = device;
3200 * we fua the first super. The others we allow
3204 ret = btrfsic_submit_bh(WRITE_FUA, bh);
3206 ret = btrfsic_submit_bh(WRITE_SYNC, bh);
3210 return errors < i ? 0 : -1;
3214 * endio for the write_dev_flush, this will wake anyone waiting
3215 * for the barrier when it is done
3217 static void btrfs_end_empty_barrier(struct bio *bio, int err)
3220 if (err == -EOPNOTSUPP)
3221 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
3222 clear_bit(BIO_UPTODATE, &bio->bi_flags);
3224 if (bio->bi_private)
3225 complete(bio->bi_private);
3230 * trigger flushes for one the devices. If you pass wait == 0, the flushes are
3231 * sent down. With wait == 1, it waits for the previous flush.
3233 * any device where the flush fails with eopnotsupp are flagged as not-barrier
3236 static int write_dev_flush(struct btrfs_device *device, int wait)
3241 if (device->nobarriers)
3245 bio = device->flush_bio;
3249 wait_for_completion(&device->flush_wait);
3251 if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
3252 printk_in_rcu("BTRFS: disabling barriers on dev %s\n",
3253 rcu_str_deref(device->name));
3254 device->nobarriers = 1;
3255 } else if (!bio_flagged(bio, BIO_UPTODATE)) {
3257 btrfs_dev_stat_inc_and_print(device,
3258 BTRFS_DEV_STAT_FLUSH_ERRS);
3261 /* drop the reference from the wait == 0 run */
3263 device->flush_bio = NULL;
3269 * one reference for us, and we leave it for the
3272 device->flush_bio = NULL;
3273 bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
3277 bio->bi_end_io = btrfs_end_empty_barrier;
3278 bio->bi_bdev = device->bdev;
3279 init_completion(&device->flush_wait);
3280 bio->bi_private = &device->flush_wait;
3281 device->flush_bio = bio;
3284 btrfsic_submit_bio(WRITE_FLUSH, bio);
3290 * send an empty flush down to each device in parallel,
3291 * then wait for them
3293 static int barrier_all_devices(struct btrfs_fs_info *info)
3295 struct list_head *head;
3296 struct btrfs_device *dev;
3297 int errors_send = 0;
3298 int errors_wait = 0;
3301 /* send down all the barriers */
3302 head = &info->fs_devices->devices;
3303 list_for_each_entry_rcu(dev, head, dev_list) {
3310 if (!dev->in_fs_metadata || !dev->writeable)
3313 ret = write_dev_flush(dev, 0);
3318 /* wait for all the barriers */
3319 list_for_each_entry_rcu(dev, head, dev_list) {
3326 if (!dev->in_fs_metadata || !dev->writeable)
3329 ret = write_dev_flush(dev, 1);
3333 if (errors_send > info->num_tolerated_disk_barrier_failures ||
3334 errors_wait > info->num_tolerated_disk_barrier_failures)
3339 int btrfs_calc_num_tolerated_disk_barrier_failures(
3340 struct btrfs_fs_info *fs_info)
3342 struct btrfs_ioctl_space_info space;
3343 struct btrfs_space_info *sinfo;
3344 u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3345 BTRFS_BLOCK_GROUP_SYSTEM,
3346 BTRFS_BLOCK_GROUP_METADATA,
3347 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3351 int num_tolerated_disk_barrier_failures =
3352 (int)fs_info->fs_devices->num_devices;
3354 for (i = 0; i < num_types; i++) {
3355 struct btrfs_space_info *tmp;
3359 list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
3360 if (tmp->flags == types[i]) {
3370 down_read(&sinfo->groups_sem);
3371 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3372 if (!list_empty(&sinfo->block_groups[c])) {
3375 btrfs_get_block_group_info(
3376 &sinfo->block_groups[c], &space);
3377 if (space.total_bytes == 0 ||
3378 space.used_bytes == 0)
3380 flags = space.flags;
3383 * 0: if dup, single or RAID0 is configured for
3384 * any of metadata, system or data, else
3385 * 1: if RAID5 is configured, or if RAID1 or
3386 * RAID10 is configured and only two mirrors
3388 * 2: if RAID6 is configured, else
3389 * num_mirrors - 1: if RAID1 or RAID10 is
3390 * configured and more than
3391 * 2 mirrors are used.
3393 if (num_tolerated_disk_barrier_failures > 0 &&
3394 ((flags & (BTRFS_BLOCK_GROUP_DUP |
3395 BTRFS_BLOCK_GROUP_RAID0)) ||
3396 ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK)
3398 num_tolerated_disk_barrier_failures = 0;
3399 else if (num_tolerated_disk_barrier_failures > 1) {
3400 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
3401 BTRFS_BLOCK_GROUP_RAID5 |
3402 BTRFS_BLOCK_GROUP_RAID10)) {
3403 num_tolerated_disk_barrier_failures = 1;
3405 BTRFS_BLOCK_GROUP_RAID6) {
3406 num_tolerated_disk_barrier_failures = 2;
3411 up_read(&sinfo->groups_sem);
3414 return num_tolerated_disk_barrier_failures;
3417 static int write_all_supers(struct btrfs_root *root, int max_mirrors)
3419 struct list_head *head;
3420 struct btrfs_device *dev;
3421 struct btrfs_super_block *sb;
3422 struct btrfs_dev_item *dev_item;
3426 int total_errors = 0;
3429 do_barriers = !btrfs_test_opt(root, NOBARRIER);
3430 backup_super_roots(root->fs_info);
3432 sb = root->fs_info->super_for_commit;
3433 dev_item = &sb->dev_item;
3435 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
3436 head = &root->fs_info->fs_devices->devices;
3437 max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
3440 ret = barrier_all_devices(root->fs_info);
3443 &root->fs_info->fs_devices->device_list_mutex);
3444 btrfs_error(root->fs_info, ret,
3445 "errors while submitting device barriers.");
3450 list_for_each_entry_rcu(dev, head, dev_list) {
3455 if (!dev->in_fs_metadata || !dev->writeable)
3458 btrfs_set_stack_device_generation(dev_item, 0);
3459 btrfs_set_stack_device_type(dev_item, dev->type);
3460 btrfs_set_stack_device_id(dev_item, dev->devid);
3461 btrfs_set_stack_device_total_bytes(dev_item,
3462 dev->commit_total_bytes);
3463 btrfs_set_stack_device_bytes_used(dev_item,
3464 dev->commit_bytes_used);
3465 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3466 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3467 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3468 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3469 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
3471 flags = btrfs_super_flags(sb);
3472 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3474 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
3478 if (total_errors > max_errors) {
3479 btrfs_err(root->fs_info, "%d errors while writing supers",
3481 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3483 /* FUA is masked off if unsupported and can't be the reason */
3484 btrfs_error(root->fs_info, -EIO,
3485 "%d errors while writing supers", total_errors);
3490 list_for_each_entry_rcu(dev, head, dev_list) {
3493 if (!dev->in_fs_metadata || !dev->writeable)
3496 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3500 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3501 if (total_errors > max_errors) {
3502 btrfs_error(root->fs_info, -EIO,
3503 "%d errors while writing supers", total_errors);
3509 int write_ctree_super(struct btrfs_trans_handle *trans,
3510 struct btrfs_root *root, int max_mirrors)
3512 return write_all_supers(root, max_mirrors);
3515 /* Drop a fs root from the radix tree and free it. */
3516 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3517 struct btrfs_root *root)
3519 spin_lock(&fs_info->fs_roots_radix_lock);
3520 radix_tree_delete(&fs_info->fs_roots_radix,
3521 (unsigned long)root->root_key.objectid);
3522 spin_unlock(&fs_info->fs_roots_radix_lock);
3524 if (btrfs_root_refs(&root->root_item) == 0)
3525 synchronize_srcu(&fs_info->subvol_srcu);
3527 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3528 btrfs_free_log(NULL, root);
3530 if (root->free_ino_pinned)
3531 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3532 if (root->free_ino_ctl)
3533 __btrfs_remove_free_space_cache(root->free_ino_ctl);
3537 static void free_fs_root(struct btrfs_root *root)
3539 iput(root->ino_cache_inode);
3540 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3541 btrfs_free_block_rsv(root, root->orphan_block_rsv);
3542 root->orphan_block_rsv = NULL;
3544 free_anon_bdev(root->anon_dev);
3545 if (root->subv_writers)
3546 btrfs_free_subvolume_writers(root->subv_writers);
3547 free_extent_buffer(root->node);
3548 free_extent_buffer(root->commit_root);
3549 kfree(root->free_ino_ctl);
3550 kfree(root->free_ino_pinned);
3552 btrfs_put_fs_root(root);
3555 void btrfs_free_fs_root(struct btrfs_root *root)
3560 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3562 u64 root_objectid = 0;
3563 struct btrfs_root *gang[8];
3566 unsigned int ret = 0;
3570 index = srcu_read_lock(&fs_info->subvol_srcu);
3571 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3572 (void **)gang, root_objectid,
3575 srcu_read_unlock(&fs_info->subvol_srcu, index);
3578 root_objectid = gang[ret - 1]->root_key.objectid + 1;
3580 for (i = 0; i < ret; i++) {
3581 /* Avoid to grab roots in dead_roots */
3582 if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3586 /* grab all the search result for later use */
3587 gang[i] = btrfs_grab_fs_root(gang[i]);
3589 srcu_read_unlock(&fs_info->subvol_srcu, index);
3591 for (i = 0; i < ret; i++) {
3594 root_objectid = gang[i]->root_key.objectid;
3595 err = btrfs_orphan_cleanup(gang[i]);
3598 btrfs_put_fs_root(gang[i]);
3603 /* release the uncleaned roots due to error */
3604 for (; i < ret; i++) {
3606 btrfs_put_fs_root(gang[i]);
3611 int btrfs_commit_super(struct btrfs_root *root)
3613 struct btrfs_trans_handle *trans;
3615 mutex_lock(&root->fs_info->cleaner_mutex);
3616 btrfs_run_delayed_iputs(root);
3617 mutex_unlock(&root->fs_info->cleaner_mutex);
3618 wake_up_process(root->fs_info->cleaner_kthread);
3620 /* wait until ongoing cleanup work done */
3621 down_write(&root->fs_info->cleanup_work_sem);
3622 up_write(&root->fs_info->cleanup_work_sem);
3624 trans = btrfs_join_transaction(root);
3626 return PTR_ERR(trans);
3627 return btrfs_commit_transaction(trans, root);
3630 void close_ctree(struct btrfs_root *root)
3632 struct btrfs_fs_info *fs_info = root->fs_info;
3635 fs_info->closing = 1;
3638 /* wait for the uuid_scan task to finish */
3639 down(&fs_info->uuid_tree_rescan_sem);
3640 /* avoid complains from lockdep et al., set sem back to initial state */
3641 up(&fs_info->uuid_tree_rescan_sem);
3643 /* pause restriper - we want to resume on mount */
3644 btrfs_pause_balance(fs_info);
3646 btrfs_dev_replace_suspend_for_unmount(fs_info);
3648 btrfs_scrub_cancel(fs_info);
3650 /* wait for any defraggers to finish */
3651 wait_event(fs_info->transaction_wait,
3652 (atomic_read(&fs_info->defrag_running) == 0));
3654 /* clear out the rbtree of defraggable inodes */
3655 btrfs_cleanup_defrag_inodes(fs_info);
3657 cancel_work_sync(&fs_info->async_reclaim_work);
3659 if (!(fs_info->sb->s_flags & MS_RDONLY)) {
3660 ret = btrfs_commit_super(root);
3662 btrfs_err(root->fs_info, "commit super ret %d", ret);
3665 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3666 btrfs_error_commit_super(root);
3668 kthread_stop(fs_info->transaction_kthread);
3669 kthread_stop(fs_info->cleaner_kthread);
3671 fs_info->closing = 2;
3674 btrfs_free_qgroup_config(root->fs_info);
3676 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
3677 btrfs_info(root->fs_info, "at unmount delalloc count %lld",
3678 percpu_counter_sum(&fs_info->delalloc_bytes));
3681 btrfs_sysfs_remove_one(fs_info);
3683 btrfs_free_fs_roots(fs_info);
3685 btrfs_put_block_group_cache(fs_info);
3687 btrfs_free_block_groups(fs_info);
3690 * we must make sure there is not any read request to
3691 * submit after we stopping all workers.
3693 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3694 btrfs_stop_all_workers(fs_info);
3697 free_root_pointers(fs_info, 1);
3699 iput(fs_info->btree_inode);
3701 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3702 if (btrfs_test_opt(root, CHECK_INTEGRITY))
3703 btrfsic_unmount(root, fs_info->fs_devices);
3706 btrfs_close_devices(fs_info->fs_devices);
3707 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3709 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3710 percpu_counter_destroy(&fs_info->delalloc_bytes);
3711 percpu_counter_destroy(&fs_info->bio_counter);
3712 bdi_destroy(&fs_info->bdi);
3713 cleanup_srcu_struct(&fs_info->subvol_srcu);
3715 btrfs_free_stripe_hash_table(fs_info);
3717 btrfs_free_block_rsv(root, root->orphan_block_rsv);
3718 root->orphan_block_rsv = NULL;
3721 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3725 struct inode *btree_inode = buf->pages[0]->mapping->host;
3727 ret = extent_buffer_uptodate(buf);
3731 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
3732 parent_transid, atomic);
3738 int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
3740 return set_extent_buffer_uptodate(buf);
3743 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3745 struct btrfs_root *root;
3746 u64 transid = btrfs_header_generation(buf);
3749 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3751 * This is a fast path so only do this check if we have sanity tests
3752 * enabled. Normal people shouldn't be marking dummy buffers as dirty
3753 * outside of the sanity tests.
3755 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
3758 root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3759 btrfs_assert_tree_locked(buf);
3760 if (transid != root->fs_info->generation)
3761 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
3762 "found %llu running %llu\n",
3763 buf->start, transid, root->fs_info->generation);
3764 was_dirty = set_extent_buffer_dirty(buf);
3766 __percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
3768 root->fs_info->dirty_metadata_batch);
3769 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3770 if (btrfs_header_level(buf) == 0 && check_leaf(root, buf)) {
3771 btrfs_print_leaf(root, buf);
3777 static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
3781 * looks as though older kernels can get into trouble with
3782 * this code, they end up stuck in balance_dirty_pages forever
3786 if (current->flags & PF_MEMALLOC)
3790 btrfs_balance_delayed_items(root);
3792 ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
3793 BTRFS_DIRTY_METADATA_THRESH);
3795 balance_dirty_pages_ratelimited(
3796 root->fs_info->btree_inode->i_mapping);
3801 void btrfs_btree_balance_dirty(struct btrfs_root *root)
3803 __btrfs_btree_balance_dirty(root, 1);
3806 void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
3808 __btrfs_btree_balance_dirty(root, 0);
3811 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
3813 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3814 return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
3817 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
3821 * Placeholder for checks
3826 static void btrfs_error_commit_super(struct btrfs_root *root)
3828 mutex_lock(&root->fs_info->cleaner_mutex);
3829 btrfs_run_delayed_iputs(root);
3830 mutex_unlock(&root->fs_info->cleaner_mutex);
3832 down_write(&root->fs_info->cleanup_work_sem);
3833 up_write(&root->fs_info->cleanup_work_sem);
3835 /* cleanup FS via transaction */
3836 btrfs_cleanup_transaction(root);
3839 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
3841 struct btrfs_ordered_extent *ordered;
3843 spin_lock(&root->ordered_extent_lock);
3845 * This will just short circuit the ordered completion stuff which will
3846 * make sure the ordered extent gets properly cleaned up.
3848 list_for_each_entry(ordered, &root->ordered_extents,
3850 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
3851 spin_unlock(&root->ordered_extent_lock);
3854 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
3856 struct btrfs_root *root;
3857 struct list_head splice;
3859 INIT_LIST_HEAD(&splice);
3861 spin_lock(&fs_info->ordered_root_lock);
3862 list_splice_init(&fs_info->ordered_roots, &splice);
3863 while (!list_empty(&splice)) {
3864 root = list_first_entry(&splice, struct btrfs_root,
3866 list_move_tail(&root->ordered_root,
3867 &fs_info->ordered_roots);
3869 spin_unlock(&fs_info->ordered_root_lock);
3870 btrfs_destroy_ordered_extents(root);
3873 spin_lock(&fs_info->ordered_root_lock);
3875 spin_unlock(&fs_info->ordered_root_lock);
3878 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
3879 struct btrfs_root *root)
3881 struct rb_node *node;
3882 struct btrfs_delayed_ref_root *delayed_refs;
3883 struct btrfs_delayed_ref_node *ref;
3886 delayed_refs = &trans->delayed_refs;
3888 spin_lock(&delayed_refs->lock);
3889 if (atomic_read(&delayed_refs->num_entries) == 0) {
3890 spin_unlock(&delayed_refs->lock);
3891 btrfs_info(root->fs_info, "delayed_refs has NO entry");
3895 while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
3896 struct btrfs_delayed_ref_head *head;
3897 bool pin_bytes = false;
3899 head = rb_entry(node, struct btrfs_delayed_ref_head,
3901 if (!mutex_trylock(&head->mutex)) {
3902 atomic_inc(&head->node.refs);
3903 spin_unlock(&delayed_refs->lock);
3905 mutex_lock(&head->mutex);
3906 mutex_unlock(&head->mutex);
3907 btrfs_put_delayed_ref(&head->node);
3908 spin_lock(&delayed_refs->lock);
3911 spin_lock(&head->lock);
3912 while ((node = rb_first(&head->ref_root)) != NULL) {
3913 ref = rb_entry(node, struct btrfs_delayed_ref_node,
3916 rb_erase(&ref->rb_node, &head->ref_root);
3917 atomic_dec(&delayed_refs->num_entries);
3918 btrfs_put_delayed_ref(ref);
3920 if (head->must_insert_reserved)
3922 btrfs_free_delayed_extent_op(head->extent_op);
3923 delayed_refs->num_heads--;
3924 if (head->processing == 0)
3925 delayed_refs->num_heads_ready--;
3926 atomic_dec(&delayed_refs->num_entries);
3927 head->node.in_tree = 0;
3928 rb_erase(&head->href_node, &delayed_refs->href_root);
3929 spin_unlock(&head->lock);
3930 spin_unlock(&delayed_refs->lock);
3931 mutex_unlock(&head->mutex);
3934 btrfs_pin_extent(root, head->node.bytenr,
3935 head->node.num_bytes, 1);
3936 btrfs_put_delayed_ref(&head->node);
3938 spin_lock(&delayed_refs->lock);
3941 spin_unlock(&delayed_refs->lock);
3946 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
3948 struct btrfs_inode *btrfs_inode;
3949 struct list_head splice;
3951 INIT_LIST_HEAD(&splice);
3953 spin_lock(&root->delalloc_lock);
3954 list_splice_init(&root->delalloc_inodes, &splice);
3956 while (!list_empty(&splice)) {
3957 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
3960 list_del_init(&btrfs_inode->delalloc_inodes);
3961 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
3962 &btrfs_inode->runtime_flags);
3963 spin_unlock(&root->delalloc_lock);
3965 btrfs_invalidate_inodes(btrfs_inode->root);
3967 spin_lock(&root->delalloc_lock);
3970 spin_unlock(&root->delalloc_lock);
3973 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
3975 struct btrfs_root *root;
3976 struct list_head splice;
3978 INIT_LIST_HEAD(&splice);
3980 spin_lock(&fs_info->delalloc_root_lock);
3981 list_splice_init(&fs_info->delalloc_roots, &splice);
3982 while (!list_empty(&splice)) {
3983 root = list_first_entry(&splice, struct btrfs_root,
3985 list_del_init(&root->delalloc_root);
3986 root = btrfs_grab_fs_root(root);
3988 spin_unlock(&fs_info->delalloc_root_lock);
3990 btrfs_destroy_delalloc_inodes(root);
3991 btrfs_put_fs_root(root);
3993 spin_lock(&fs_info->delalloc_root_lock);
3995 spin_unlock(&fs_info->delalloc_root_lock);
3998 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
3999 struct extent_io_tree *dirty_pages,
4003 struct extent_buffer *eb;
4008 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4013 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
4014 while (start <= end) {
4015 eb = btrfs_find_tree_block(root, start,
4017 start += root->nodesize;
4020 wait_on_extent_buffer_writeback(eb);
4022 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4024 clear_extent_buffer_dirty(eb);
4025 free_extent_buffer_stale(eb);
4032 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
4033 struct extent_io_tree *pinned_extents)
4035 struct extent_io_tree *unpin;
4041 unpin = pinned_extents;
4044 ret = find_first_extent_bit(unpin, 0, &start, &end,
4045 EXTENT_DIRTY, NULL);
4050 if (btrfs_test_opt(root, DISCARD))
4051 ret = btrfs_error_discard_extent(root, start,
4055 clear_extent_dirty(unpin, start, end, GFP_NOFS);
4056 btrfs_error_unpin_extent_range(root, start, end);
4061 if (unpin == &root->fs_info->freed_extents[0])
4062 unpin = &root->fs_info->freed_extents[1];
4064 unpin = &root->fs_info->freed_extents[0];
4072 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4073 struct btrfs_root *root)
4075 btrfs_destroy_delayed_refs(cur_trans, root);
4077 cur_trans->state = TRANS_STATE_COMMIT_START;
4078 wake_up(&root->fs_info->transaction_blocked_wait);
4080 cur_trans->state = TRANS_STATE_UNBLOCKED;
4081 wake_up(&root->fs_info->transaction_wait);
4083 btrfs_destroy_delayed_inodes(root);
4084 btrfs_assert_delayed_root_empty(root);
4086 btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
4088 btrfs_destroy_pinned_extent(root,
4089 root->fs_info->pinned_extents);
4091 cur_trans->state =TRANS_STATE_COMPLETED;
4092 wake_up(&cur_trans->commit_wait);
4095 memset(cur_trans, 0, sizeof(*cur_trans));
4096 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
4100 static int btrfs_cleanup_transaction(struct btrfs_root *root)
4102 struct btrfs_transaction *t;
4104 mutex_lock(&root->fs_info->transaction_kthread_mutex);
4106 spin_lock(&root->fs_info->trans_lock);
4107 while (!list_empty(&root->fs_info->trans_list)) {
4108 t = list_first_entry(&root->fs_info->trans_list,
4109 struct btrfs_transaction, list);
4110 if (t->state >= TRANS_STATE_COMMIT_START) {
4111 atomic_inc(&t->use_count);
4112 spin_unlock(&root->fs_info->trans_lock);
4113 btrfs_wait_for_commit(root, t->transid);
4114 btrfs_put_transaction(t);
4115 spin_lock(&root->fs_info->trans_lock);
4118 if (t == root->fs_info->running_transaction) {
4119 t->state = TRANS_STATE_COMMIT_DOING;
4120 spin_unlock(&root->fs_info->trans_lock);
4122 * We wait for 0 num_writers since we don't hold a trans
4123 * handle open currently for this transaction.
4125 wait_event(t->writer_wait,
4126 atomic_read(&t->num_writers) == 0);
4128 spin_unlock(&root->fs_info->trans_lock);
4130 btrfs_cleanup_one_transaction(t, root);
4132 spin_lock(&root->fs_info->trans_lock);
4133 if (t == root->fs_info->running_transaction)
4134 root->fs_info->running_transaction = NULL;
4135 list_del_init(&t->list);
4136 spin_unlock(&root->fs_info->trans_lock);
4138 btrfs_put_transaction(t);
4139 trace_btrfs_transaction_commit(root);
4140 spin_lock(&root->fs_info->trans_lock);
4142 spin_unlock(&root->fs_info->trans_lock);
4143 btrfs_destroy_all_ordered_extents(root->fs_info);
4144 btrfs_destroy_delayed_inodes(root);
4145 btrfs_assert_delayed_root_empty(root);
4146 btrfs_destroy_pinned_extent(root, root->fs_info->pinned_extents);
4147 btrfs_destroy_all_delalloc_inodes(root->fs_info);
4148 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
4153 static struct extent_io_ops btree_extent_io_ops = {
4154 .readpage_end_io_hook = btree_readpage_end_io_hook,
4155 .readpage_io_failed_hook = btree_io_failed_hook,
4156 .submit_bio_hook = btree_submit_bio_hook,
4157 /* note we're sharing with inode.c for the merge bio hook */
4158 .merge_bio_hook = btrfs_merge_bio_hook,