2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
29 #include <linux/crc32c.h>
30 #include <linux/slab.h>
31 #include <linux/migrate.h>
32 #include <linux/ratelimit.h>
33 #include <asm/unaligned.h>
37 #include "transaction.h"
38 #include "btrfs_inode.h"
40 #include "print-tree.h"
41 #include "async-thread.h"
44 #include "free-space-cache.h"
45 #include "inode-map.h"
46 #include "check-integrity.h"
47 #include "rcu-string.h"
50 #include <asm/cpufeature.h>
53 static struct extent_io_ops btree_extent_io_ops;
54 static void end_workqueue_fn(struct btrfs_work *work);
55 static void free_fs_root(struct btrfs_root *root);
56 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
58 static void btrfs_destroy_ordered_operations(struct btrfs_root *root);
59 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
60 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
61 struct btrfs_root *root);
62 static void btrfs_destroy_pending_snapshots(struct btrfs_transaction *t);
63 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
64 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
65 struct extent_io_tree *dirty_pages,
67 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
68 struct extent_io_tree *pinned_extents);
71 * end_io_wq structs are used to do processing in task context when an IO is
72 * complete. This is used during reads to verify checksums, and it is used
73 * by writes to insert metadata for new file extents after IO is complete.
79 struct btrfs_fs_info *info;
82 struct list_head list;
83 struct btrfs_work work;
87 * async submit bios are used to offload expensive checksumming
88 * onto the worker threads. They checksum file and metadata bios
89 * just before they are sent down the IO stack.
91 struct async_submit_bio {
94 struct list_head list;
95 extent_submit_bio_hook_t *submit_bio_start;
96 extent_submit_bio_hook_t *submit_bio_done;
99 unsigned long bio_flags;
101 * bio_offset is optional, can be used if the pages in the bio
102 * can't tell us where in the file the bio should go
105 struct btrfs_work work;
110 * Lockdep class keys for extent_buffer->lock's in this root. For a given
111 * eb, the lockdep key is determined by the btrfs_root it belongs to and
112 * the level the eb occupies in the tree.
114 * Different roots are used for different purposes and may nest inside each
115 * other and they require separate keysets. As lockdep keys should be
116 * static, assign keysets according to the purpose of the root as indicated
117 * by btrfs_root->objectid. This ensures that all special purpose roots
118 * have separate keysets.
120 * Lock-nesting across peer nodes is always done with the immediate parent
121 * node locked thus preventing deadlock. As lockdep doesn't know this, use
122 * subclass to avoid triggering lockdep warning in such cases.
124 * The key is set by the readpage_end_io_hook after the buffer has passed
125 * csum validation but before the pages are unlocked. It is also set by
126 * btrfs_init_new_buffer on freshly allocated blocks.
128 * We also add a check to make sure the highest level of the tree is the
129 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
130 * needs update as well.
132 #ifdef CONFIG_DEBUG_LOCK_ALLOC
133 # if BTRFS_MAX_LEVEL != 8
137 static struct btrfs_lockdep_keyset {
138 u64 id; /* root objectid */
139 const char *name_stem; /* lock name stem */
140 char names[BTRFS_MAX_LEVEL + 1][20];
141 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
142 } btrfs_lockdep_keysets[] = {
143 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
144 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
145 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
146 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
147 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
148 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
149 { .id = BTRFS_ORPHAN_OBJECTID, .name_stem = "orphan" },
150 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
151 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
152 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
153 { .id = 0, .name_stem = "tree" },
156 void __init btrfs_init_lockdep(void)
160 /* initialize lockdep class names */
161 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
162 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
164 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
165 snprintf(ks->names[j], sizeof(ks->names[j]),
166 "btrfs-%s-%02d", ks->name_stem, j);
170 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
173 struct btrfs_lockdep_keyset *ks;
175 BUG_ON(level >= ARRAY_SIZE(ks->keys));
177 /* find the matching keyset, id 0 is the default entry */
178 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
179 if (ks->id == objectid)
182 lockdep_set_class_and_name(&eb->lock,
183 &ks->keys[level], ks->names[level]);
189 * extents on the btree inode are pretty simple, there's one extent
190 * that covers the entire device
192 static struct extent_map *btree_get_extent(struct inode *inode,
193 struct page *page, size_t pg_offset, u64 start, u64 len,
196 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
197 struct extent_map *em;
200 read_lock(&em_tree->lock);
201 em = lookup_extent_mapping(em_tree, start, len);
204 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
205 read_unlock(&em_tree->lock);
208 read_unlock(&em_tree->lock);
210 em = alloc_extent_map();
212 em = ERR_PTR(-ENOMEM);
217 em->block_len = (u64)-1;
219 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
221 write_lock(&em_tree->lock);
222 ret = add_extent_mapping(em_tree, em);
223 if (ret == -EEXIST) {
225 em = lookup_extent_mapping(em_tree, start, len);
232 write_unlock(&em_tree->lock);
238 u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
240 return crc32c(seed, data, len);
243 void btrfs_csum_final(u32 crc, char *result)
245 put_unaligned_le32(~crc, result);
249 * compute the csum for a btree block, and either verify it or write it
250 * into the csum field of the block.
252 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
255 u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
258 unsigned long cur_len;
259 unsigned long offset = BTRFS_CSUM_SIZE;
261 unsigned long map_start;
262 unsigned long map_len;
265 unsigned long inline_result;
267 len = buf->len - offset;
269 err = map_private_extent_buffer(buf, offset, 32,
270 &kaddr, &map_start, &map_len);
273 cur_len = min(len, map_len - (offset - map_start));
274 crc = btrfs_csum_data(root, kaddr + offset - map_start,
279 if (csum_size > sizeof(inline_result)) {
280 result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
284 result = (char *)&inline_result;
287 btrfs_csum_final(crc, result);
290 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
293 memcpy(&found, result, csum_size);
295 read_extent_buffer(buf, &val, 0, csum_size);
296 printk_ratelimited(KERN_INFO "btrfs: %s checksum verify "
297 "failed on %llu wanted %X found %X "
299 root->fs_info->sb->s_id,
300 (unsigned long long)buf->start, val, found,
301 btrfs_header_level(buf));
302 if (result != (char *)&inline_result)
307 write_extent_buffer(buf, result, 0, csum_size);
309 if (result != (char *)&inline_result)
315 * we can't consider a given block up to date unless the transid of the
316 * block matches the transid in the parent node's pointer. This is how we
317 * detect blocks that either didn't get written at all or got written
318 * in the wrong place.
320 static int verify_parent_transid(struct extent_io_tree *io_tree,
321 struct extent_buffer *eb, u64 parent_transid,
324 struct extent_state *cached_state = NULL;
327 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
333 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
335 if (extent_buffer_uptodate(eb) &&
336 btrfs_header_generation(eb) == parent_transid) {
340 printk_ratelimited("parent transid verify failed on %llu wanted %llu "
342 (unsigned long long)eb->start,
343 (unsigned long long)parent_transid,
344 (unsigned long long)btrfs_header_generation(eb));
346 clear_extent_buffer_uptodate(eb);
348 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
349 &cached_state, GFP_NOFS);
354 * helper to read a given tree block, doing retries as required when
355 * the checksums don't match and we have alternate mirrors to try.
357 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
358 struct extent_buffer *eb,
359 u64 start, u64 parent_transid)
361 struct extent_io_tree *io_tree;
366 int failed_mirror = 0;
368 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
369 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
371 ret = read_extent_buffer_pages(io_tree, eb, start,
373 btree_get_extent, mirror_num);
375 if (!verify_parent_transid(io_tree, eb,
383 * This buffer's crc is fine, but its contents are corrupted, so
384 * there is no reason to read the other copies, they won't be
387 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
390 num_copies = btrfs_num_copies(&root->fs_info->mapping_tree,
395 if (!failed_mirror) {
397 failed_mirror = eb->read_mirror;
401 if (mirror_num == failed_mirror)
404 if (mirror_num > num_copies)
408 if (failed && !ret && failed_mirror)
409 repair_eb_io_failure(root, eb, failed_mirror);
415 * checksum a dirty tree block before IO. This has extra checks to make sure
416 * we only fill in the checksum field in the first page of a multi-page block
419 static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
421 struct extent_io_tree *tree;
422 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
424 struct extent_buffer *eb;
426 tree = &BTRFS_I(page->mapping->host)->io_tree;
428 eb = (struct extent_buffer *)page->private;
429 if (page != eb->pages[0])
431 found_start = btrfs_header_bytenr(eb);
432 if (found_start != start) {
436 if (!PageUptodate(page)) {
440 csum_tree_block(root, eb, 0);
444 static int check_tree_block_fsid(struct btrfs_root *root,
445 struct extent_buffer *eb)
447 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
448 u8 fsid[BTRFS_UUID_SIZE];
451 read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
454 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
458 fs_devices = fs_devices->seed;
463 #define CORRUPT(reason, eb, root, slot) \
464 printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu," \
465 "root=%llu, slot=%d\n", reason, \
466 (unsigned long long)btrfs_header_bytenr(eb), \
467 (unsigned long long)root->objectid, slot)
469 static noinline int check_leaf(struct btrfs_root *root,
470 struct extent_buffer *leaf)
472 struct btrfs_key key;
473 struct btrfs_key leaf_key;
474 u32 nritems = btrfs_header_nritems(leaf);
480 /* Check the 0 item */
481 if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
482 BTRFS_LEAF_DATA_SIZE(root)) {
483 CORRUPT("invalid item offset size pair", leaf, root, 0);
488 * Check to make sure each items keys are in the correct order and their
489 * offsets make sense. We only have to loop through nritems-1 because
490 * we check the current slot against the next slot, which verifies the
491 * next slot's offset+size makes sense and that the current's slot
494 for (slot = 0; slot < nritems - 1; slot++) {
495 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
496 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
498 /* Make sure the keys are in the right order */
499 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
500 CORRUPT("bad key order", leaf, root, slot);
505 * Make sure the offset and ends are right, remember that the
506 * item data starts at the end of the leaf and grows towards the
509 if (btrfs_item_offset_nr(leaf, slot) !=
510 btrfs_item_end_nr(leaf, slot + 1)) {
511 CORRUPT("slot offset bad", leaf, root, slot);
516 * Check to make sure that we don't point outside of the leaf,
517 * just incase all the items are consistent to eachother, but
518 * all point outside of the leaf.
520 if (btrfs_item_end_nr(leaf, slot) >
521 BTRFS_LEAF_DATA_SIZE(root)) {
522 CORRUPT("slot end outside of leaf", leaf, root, slot);
530 struct extent_buffer *find_eb_for_page(struct extent_io_tree *tree,
531 struct page *page, int max_walk)
533 struct extent_buffer *eb;
534 u64 start = page_offset(page);
538 if (start < max_walk)
541 min_start = start - max_walk;
543 while (start >= min_start) {
544 eb = find_extent_buffer(tree, start, 0);
547 * we found an extent buffer and it contains our page
550 if (eb->start <= target &&
551 eb->start + eb->len > target)
554 /* we found an extent buffer that wasn't for us */
555 free_extent_buffer(eb);
560 start -= PAGE_CACHE_SIZE;
565 static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
566 struct extent_state *state, int mirror)
568 struct extent_io_tree *tree;
571 struct extent_buffer *eb;
572 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
579 tree = &BTRFS_I(page->mapping->host)->io_tree;
580 eb = (struct extent_buffer *)page->private;
582 /* the pending IO might have been the only thing that kept this buffer
583 * in memory. Make sure we have a ref for all this other checks
585 extent_buffer_get(eb);
587 reads_done = atomic_dec_and_test(&eb->io_pages);
591 eb->read_mirror = mirror;
592 if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
597 found_start = btrfs_header_bytenr(eb);
598 if (found_start != eb->start) {
599 printk_ratelimited(KERN_INFO "btrfs bad tree block start "
601 (unsigned long long)found_start,
602 (unsigned long long)eb->start);
606 if (check_tree_block_fsid(root, eb)) {
607 printk_ratelimited(KERN_INFO "btrfs bad fsid on block %llu\n",
608 (unsigned long long)eb->start);
612 found_level = btrfs_header_level(eb);
614 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
617 ret = csum_tree_block(root, eb, 1);
624 * If this is a leaf block and it is corrupt, set the corrupt bit so
625 * that we don't try and read the other copies of this block, just
628 if (found_level == 0 && check_leaf(root, eb)) {
629 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
634 set_extent_buffer_uptodate(eb);
636 if (test_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) {
637 clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags);
638 btree_readahead_hook(root, eb, eb->start, ret);
642 clear_extent_buffer_uptodate(eb);
643 free_extent_buffer(eb);
648 static int btree_io_failed_hook(struct page *page, int failed_mirror)
650 struct extent_buffer *eb;
651 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
653 eb = (struct extent_buffer *)page->private;
654 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
655 eb->read_mirror = failed_mirror;
656 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
657 btree_readahead_hook(root, eb, eb->start, -EIO);
658 return -EIO; /* we fixed nothing */
661 static void end_workqueue_bio(struct bio *bio, int err)
663 struct end_io_wq *end_io_wq = bio->bi_private;
664 struct btrfs_fs_info *fs_info;
666 fs_info = end_io_wq->info;
667 end_io_wq->error = err;
668 end_io_wq->work.func = end_workqueue_fn;
669 end_io_wq->work.flags = 0;
671 if (bio->bi_rw & REQ_WRITE) {
672 if (end_io_wq->metadata == 1)
673 btrfs_queue_worker(&fs_info->endio_meta_write_workers,
675 else if (end_io_wq->metadata == 2)
676 btrfs_queue_worker(&fs_info->endio_freespace_worker,
679 btrfs_queue_worker(&fs_info->endio_write_workers,
682 if (end_io_wq->metadata)
683 btrfs_queue_worker(&fs_info->endio_meta_workers,
686 btrfs_queue_worker(&fs_info->endio_workers,
692 * For the metadata arg you want
695 * 1 - if normal metadta
696 * 2 - if writing to the free space cache area
698 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
701 struct end_io_wq *end_io_wq;
702 end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
706 end_io_wq->private = bio->bi_private;
707 end_io_wq->end_io = bio->bi_end_io;
708 end_io_wq->info = info;
709 end_io_wq->error = 0;
710 end_io_wq->bio = bio;
711 end_io_wq->metadata = metadata;
713 bio->bi_private = end_io_wq;
714 bio->bi_end_io = end_workqueue_bio;
718 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
720 unsigned long limit = min_t(unsigned long,
721 info->workers.max_workers,
722 info->fs_devices->open_devices);
726 static void run_one_async_start(struct btrfs_work *work)
728 struct async_submit_bio *async;
731 async = container_of(work, struct async_submit_bio, work);
732 ret = async->submit_bio_start(async->inode, async->rw, async->bio,
733 async->mirror_num, async->bio_flags,
739 static void run_one_async_done(struct btrfs_work *work)
741 struct btrfs_fs_info *fs_info;
742 struct async_submit_bio *async;
745 async = container_of(work, struct async_submit_bio, work);
746 fs_info = BTRFS_I(async->inode)->root->fs_info;
748 limit = btrfs_async_submit_limit(fs_info);
749 limit = limit * 2 / 3;
751 if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
752 waitqueue_active(&fs_info->async_submit_wait))
753 wake_up(&fs_info->async_submit_wait);
755 /* If an error occured we just want to clean up the bio and move on */
757 bio_endio(async->bio, async->error);
761 async->submit_bio_done(async->inode, async->rw, async->bio,
762 async->mirror_num, async->bio_flags,
766 static void run_one_async_free(struct btrfs_work *work)
768 struct async_submit_bio *async;
770 async = container_of(work, struct async_submit_bio, work);
774 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
775 int rw, struct bio *bio, int mirror_num,
776 unsigned long bio_flags,
778 extent_submit_bio_hook_t *submit_bio_start,
779 extent_submit_bio_hook_t *submit_bio_done)
781 struct async_submit_bio *async;
783 async = kmalloc(sizeof(*async), GFP_NOFS);
787 async->inode = inode;
790 async->mirror_num = mirror_num;
791 async->submit_bio_start = submit_bio_start;
792 async->submit_bio_done = submit_bio_done;
794 async->work.func = run_one_async_start;
795 async->work.ordered_func = run_one_async_done;
796 async->work.ordered_free = run_one_async_free;
798 async->work.flags = 0;
799 async->bio_flags = bio_flags;
800 async->bio_offset = bio_offset;
804 atomic_inc(&fs_info->nr_async_submits);
807 btrfs_set_work_high_prio(&async->work);
809 btrfs_queue_worker(&fs_info->workers, &async->work);
811 while (atomic_read(&fs_info->async_submit_draining) &&
812 atomic_read(&fs_info->nr_async_submits)) {
813 wait_event(fs_info->async_submit_wait,
814 (atomic_read(&fs_info->nr_async_submits) == 0));
820 static int btree_csum_one_bio(struct bio *bio)
822 struct bio_vec *bvec = bio->bi_io_vec;
824 struct btrfs_root *root;
827 WARN_ON(bio->bi_vcnt <= 0);
828 while (bio_index < bio->bi_vcnt) {
829 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
830 ret = csum_dirty_buffer(root, bvec->bv_page);
839 static int __btree_submit_bio_start(struct inode *inode, int rw,
840 struct bio *bio, int mirror_num,
841 unsigned long bio_flags,
845 * when we're called for a write, we're already in the async
846 * submission context. Just jump into btrfs_map_bio
848 return btree_csum_one_bio(bio);
851 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
852 int mirror_num, unsigned long bio_flags,
856 * when we're called for a write, we're already in the async
857 * submission context. Just jump into btrfs_map_bio
859 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
862 static int check_async_write(struct inode *inode, unsigned long bio_flags)
864 if (bio_flags & EXTENT_BIO_TREE_LOG)
873 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
874 int mirror_num, unsigned long bio_flags,
877 int async = check_async_write(inode, bio_flags);
880 if (!(rw & REQ_WRITE)) {
883 * called for a read, do the setup so that checksum validation
884 * can happen in the async kernel threads
886 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
890 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
893 ret = btree_csum_one_bio(bio);
896 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
901 * kthread helpers are used to submit writes so that checksumming
902 * can happen in parallel across all CPUs
904 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
905 inode, rw, bio, mirror_num, 0,
907 __btree_submit_bio_start,
908 __btree_submit_bio_done);
911 #ifdef CONFIG_MIGRATION
912 static int btree_migratepage(struct address_space *mapping,
913 struct page *newpage, struct page *page,
914 enum migrate_mode mode)
917 * we can't safely write a btree page from here,
918 * we haven't done the locking hook
923 * Buffers may be managed in a filesystem specific way.
924 * We must have no buffers or drop them.
926 if (page_has_private(page) &&
927 !try_to_release_page(page, GFP_KERNEL))
929 return migrate_page(mapping, newpage, page, mode);
934 static int btree_writepages(struct address_space *mapping,
935 struct writeback_control *wbc)
937 struct extent_io_tree *tree;
938 tree = &BTRFS_I(mapping->host)->io_tree;
939 if (wbc->sync_mode == WB_SYNC_NONE) {
940 struct btrfs_root *root = BTRFS_I(mapping->host)->root;
942 unsigned long thresh = 32 * 1024 * 1024;
944 if (wbc->for_kupdate)
947 /* this is a bit racy, but that's ok */
948 num_dirty = root->fs_info->dirty_metadata_bytes;
949 if (num_dirty < thresh)
952 return btree_write_cache_pages(mapping, wbc);
955 static int btree_readpage(struct file *file, struct page *page)
957 struct extent_io_tree *tree;
958 tree = &BTRFS_I(page->mapping->host)->io_tree;
959 return extent_read_full_page(tree, page, btree_get_extent, 0);
962 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
964 if (PageWriteback(page) || PageDirty(page))
967 * We need to mask out eg. __GFP_HIGHMEM and __GFP_DMA32 as we're doing
968 * slab allocation from alloc_extent_state down the callchain where
969 * it'd hit a BUG_ON as those flags are not allowed.
971 gfp_flags &= ~GFP_SLAB_BUG_MASK;
973 return try_release_extent_buffer(page, gfp_flags);
976 static void btree_invalidatepage(struct page *page, unsigned long offset)
978 struct extent_io_tree *tree;
979 tree = &BTRFS_I(page->mapping->host)->io_tree;
980 extent_invalidatepage(tree, page, offset);
981 btree_releasepage(page, GFP_NOFS);
982 if (PagePrivate(page)) {
983 printk(KERN_WARNING "btrfs warning page private not zero "
984 "on page %llu\n", (unsigned long long)page_offset(page));
985 ClearPagePrivate(page);
986 set_page_private(page, 0);
987 page_cache_release(page);
991 static int btree_set_page_dirty(struct page *page)
993 struct extent_buffer *eb;
995 BUG_ON(!PagePrivate(page));
996 eb = (struct extent_buffer *)page->private;
998 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
999 BUG_ON(!atomic_read(&eb->refs));
1000 btrfs_assert_tree_locked(eb);
1001 return __set_page_dirty_nobuffers(page);
1004 static const struct address_space_operations btree_aops = {
1005 .readpage = btree_readpage,
1006 .writepages = btree_writepages,
1007 .releasepage = btree_releasepage,
1008 .invalidatepage = btree_invalidatepage,
1009 #ifdef CONFIG_MIGRATION
1010 .migratepage = btree_migratepage,
1012 .set_page_dirty = btree_set_page_dirty,
1015 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1018 struct extent_buffer *buf = NULL;
1019 struct inode *btree_inode = root->fs_info->btree_inode;
1022 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1025 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1026 buf, 0, WAIT_NONE, btree_get_extent, 0);
1027 free_extent_buffer(buf);
1031 int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1032 int mirror_num, struct extent_buffer **eb)
1034 struct extent_buffer *buf = NULL;
1035 struct inode *btree_inode = root->fs_info->btree_inode;
1036 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1039 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1043 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1045 ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1046 btree_get_extent, mirror_num);
1048 free_extent_buffer(buf);
1052 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1053 free_extent_buffer(buf);
1055 } else if (extent_buffer_uptodate(buf)) {
1058 free_extent_buffer(buf);
1063 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
1064 u64 bytenr, u32 blocksize)
1066 struct inode *btree_inode = root->fs_info->btree_inode;
1067 struct extent_buffer *eb;
1068 eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
1073 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1074 u64 bytenr, u32 blocksize)
1076 struct inode *btree_inode = root->fs_info->btree_inode;
1077 struct extent_buffer *eb;
1079 eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
1085 int btrfs_write_tree_block(struct extent_buffer *buf)
1087 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1088 buf->start + buf->len - 1);
1091 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1093 return filemap_fdatawait_range(buf->pages[0]->mapping,
1094 buf->start, buf->start + buf->len - 1);
1097 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
1098 u32 blocksize, u64 parent_transid)
1100 struct extent_buffer *buf = NULL;
1103 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1107 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
1112 void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1113 struct extent_buffer *buf)
1115 if (btrfs_header_generation(buf) ==
1116 root->fs_info->running_transaction->transid) {
1117 btrfs_assert_tree_locked(buf);
1119 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1120 spin_lock(&root->fs_info->delalloc_lock);
1121 if (root->fs_info->dirty_metadata_bytes >= buf->len)
1122 root->fs_info->dirty_metadata_bytes -= buf->len;
1124 spin_unlock(&root->fs_info->delalloc_lock);
1125 btrfs_panic(root->fs_info, -EOVERFLOW,
1126 "Can't clear %lu bytes from "
1127 " dirty_mdatadata_bytes (%llu)",
1129 root->fs_info->dirty_metadata_bytes);
1131 spin_unlock(&root->fs_info->delalloc_lock);
1134 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1135 btrfs_set_lock_blocking(buf);
1136 clear_extent_buffer_dirty(buf);
1140 static void __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
1141 u32 stripesize, struct btrfs_root *root,
1142 struct btrfs_fs_info *fs_info,
1146 root->commit_root = NULL;
1147 root->sectorsize = sectorsize;
1148 root->nodesize = nodesize;
1149 root->leafsize = leafsize;
1150 root->stripesize = stripesize;
1152 root->track_dirty = 0;
1154 root->orphan_item_inserted = 0;
1155 root->orphan_cleanup_state = 0;
1157 root->objectid = objectid;
1158 root->last_trans = 0;
1159 root->highest_objectid = 0;
1161 root->inode_tree = RB_ROOT;
1162 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1163 root->block_rsv = NULL;
1164 root->orphan_block_rsv = NULL;
1166 INIT_LIST_HEAD(&root->dirty_list);
1167 INIT_LIST_HEAD(&root->root_list);
1168 spin_lock_init(&root->orphan_lock);
1169 spin_lock_init(&root->inode_lock);
1170 spin_lock_init(&root->accounting_lock);
1171 mutex_init(&root->objectid_mutex);
1172 mutex_init(&root->log_mutex);
1173 init_waitqueue_head(&root->log_writer_wait);
1174 init_waitqueue_head(&root->log_commit_wait[0]);
1175 init_waitqueue_head(&root->log_commit_wait[1]);
1176 atomic_set(&root->log_commit[0], 0);
1177 atomic_set(&root->log_commit[1], 0);
1178 atomic_set(&root->log_writers, 0);
1179 atomic_set(&root->log_batch, 0);
1180 atomic_set(&root->orphan_inodes, 0);
1181 root->log_transid = 0;
1182 root->last_log_commit = 0;
1183 extent_io_tree_init(&root->dirty_log_pages,
1184 fs_info->btree_inode->i_mapping);
1186 memset(&root->root_key, 0, sizeof(root->root_key));
1187 memset(&root->root_item, 0, sizeof(root->root_item));
1188 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1189 memset(&root->root_kobj, 0, sizeof(root->root_kobj));
1190 root->defrag_trans_start = fs_info->generation;
1191 init_completion(&root->kobj_unregister);
1192 root->defrag_running = 0;
1193 root->root_key.objectid = objectid;
1196 spin_lock_init(&root->root_times_lock);
1199 static int __must_check find_and_setup_root(struct btrfs_root *tree_root,
1200 struct btrfs_fs_info *fs_info,
1202 struct btrfs_root *root)
1208 __setup_root(tree_root->nodesize, tree_root->leafsize,
1209 tree_root->sectorsize, tree_root->stripesize,
1210 root, fs_info, objectid);
1211 ret = btrfs_find_last_root(tree_root, objectid,
1212 &root->root_item, &root->root_key);
1218 generation = btrfs_root_generation(&root->root_item);
1219 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1220 root->commit_root = NULL;
1221 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1222 blocksize, generation);
1223 if (!root->node || !btrfs_buffer_uptodate(root->node, generation, 0)) {
1224 free_extent_buffer(root->node);
1228 root->commit_root = btrfs_root_node(root);
1232 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
1234 struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
1236 root->fs_info = fs_info;
1240 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1241 struct btrfs_fs_info *fs_info,
1244 struct extent_buffer *leaf;
1245 struct btrfs_root *tree_root = fs_info->tree_root;
1246 struct btrfs_root *root;
1247 struct btrfs_key key;
1251 root = btrfs_alloc_root(fs_info);
1253 return ERR_PTR(-ENOMEM);
1255 __setup_root(tree_root->nodesize, tree_root->leafsize,
1256 tree_root->sectorsize, tree_root->stripesize,
1257 root, fs_info, objectid);
1258 root->root_key.objectid = objectid;
1259 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1260 root->root_key.offset = 0;
1262 leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
1263 0, objectid, NULL, 0, 0, 0);
1265 ret = PTR_ERR(leaf);
1269 bytenr = leaf->start;
1270 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1271 btrfs_set_header_bytenr(leaf, leaf->start);
1272 btrfs_set_header_generation(leaf, trans->transid);
1273 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1274 btrfs_set_header_owner(leaf, objectid);
1277 write_extent_buffer(leaf, fs_info->fsid,
1278 (unsigned long)btrfs_header_fsid(leaf),
1280 write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
1281 (unsigned long)btrfs_header_chunk_tree_uuid(leaf),
1283 btrfs_mark_buffer_dirty(leaf);
1285 root->commit_root = btrfs_root_node(root);
1286 root->track_dirty = 1;
1289 root->root_item.flags = 0;
1290 root->root_item.byte_limit = 0;
1291 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1292 btrfs_set_root_generation(&root->root_item, trans->transid);
1293 btrfs_set_root_level(&root->root_item, 0);
1294 btrfs_set_root_refs(&root->root_item, 1);
1295 btrfs_set_root_used(&root->root_item, leaf->len);
1296 btrfs_set_root_last_snapshot(&root->root_item, 0);
1297 btrfs_set_root_dirid(&root->root_item, 0);
1298 root->root_item.drop_level = 0;
1300 key.objectid = objectid;
1301 key.type = BTRFS_ROOT_ITEM_KEY;
1303 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1307 btrfs_tree_unlock(leaf);
1311 return ERR_PTR(ret);
1316 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1317 struct btrfs_fs_info *fs_info)
1319 struct btrfs_root *root;
1320 struct btrfs_root *tree_root = fs_info->tree_root;
1321 struct extent_buffer *leaf;
1323 root = btrfs_alloc_root(fs_info);
1325 return ERR_PTR(-ENOMEM);
1327 __setup_root(tree_root->nodesize, tree_root->leafsize,
1328 tree_root->sectorsize, tree_root->stripesize,
1329 root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1331 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1332 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1333 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1335 * log trees do not get reference counted because they go away
1336 * before a real commit is actually done. They do store pointers
1337 * to file data extents, and those reference counts still get
1338 * updated (along with back refs to the log tree).
1342 leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
1343 BTRFS_TREE_LOG_OBJECTID, NULL,
1347 return ERR_CAST(leaf);
1350 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1351 btrfs_set_header_bytenr(leaf, leaf->start);
1352 btrfs_set_header_generation(leaf, trans->transid);
1353 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1354 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1357 write_extent_buffer(root->node, root->fs_info->fsid,
1358 (unsigned long)btrfs_header_fsid(root->node),
1360 btrfs_mark_buffer_dirty(root->node);
1361 btrfs_tree_unlock(root->node);
1365 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1366 struct btrfs_fs_info *fs_info)
1368 struct btrfs_root *log_root;
1370 log_root = alloc_log_tree(trans, fs_info);
1371 if (IS_ERR(log_root))
1372 return PTR_ERR(log_root);
1373 WARN_ON(fs_info->log_root_tree);
1374 fs_info->log_root_tree = log_root;
1378 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1379 struct btrfs_root *root)
1381 struct btrfs_root *log_root;
1382 struct btrfs_inode_item *inode_item;
1384 log_root = alloc_log_tree(trans, root->fs_info);
1385 if (IS_ERR(log_root))
1386 return PTR_ERR(log_root);
1388 log_root->last_trans = trans->transid;
1389 log_root->root_key.offset = root->root_key.objectid;
1391 inode_item = &log_root->root_item.inode;
1392 inode_item->generation = cpu_to_le64(1);
1393 inode_item->size = cpu_to_le64(3);
1394 inode_item->nlink = cpu_to_le32(1);
1395 inode_item->nbytes = cpu_to_le64(root->leafsize);
1396 inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
1398 btrfs_set_root_node(&log_root->root_item, log_root->node);
1400 WARN_ON(root->log_root);
1401 root->log_root = log_root;
1402 root->log_transid = 0;
1403 root->last_log_commit = 0;
1407 struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
1408 struct btrfs_key *location)
1410 struct btrfs_root *root;
1411 struct btrfs_fs_info *fs_info = tree_root->fs_info;
1412 struct btrfs_path *path;
1413 struct extent_buffer *l;
1419 root = btrfs_alloc_root(fs_info);
1421 return ERR_PTR(-ENOMEM);
1422 if (location->offset == (u64)-1) {
1423 ret = find_and_setup_root(tree_root, fs_info,
1424 location->objectid, root);
1427 return ERR_PTR(ret);
1432 __setup_root(tree_root->nodesize, tree_root->leafsize,
1433 tree_root->sectorsize, tree_root->stripesize,
1434 root, fs_info, location->objectid);
1436 path = btrfs_alloc_path();
1439 return ERR_PTR(-ENOMEM);
1441 ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
1444 slot = path->slots[0];
1445 btrfs_read_root_item(tree_root, l, slot, &root->root_item);
1446 memcpy(&root->root_key, location, sizeof(*location));
1448 btrfs_free_path(path);
1453 return ERR_PTR(ret);
1456 generation = btrfs_root_generation(&root->root_item);
1457 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1458 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1459 blocksize, generation);
1460 root->commit_root = btrfs_root_node(root);
1461 BUG_ON(!root->node); /* -ENOMEM */
1463 if (location->objectid != BTRFS_TREE_LOG_OBJECTID) {
1465 btrfs_check_and_init_root_item(&root->root_item);
1471 struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
1472 struct btrfs_key *location)
1474 struct btrfs_root *root;
1477 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1478 return fs_info->tree_root;
1479 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1480 return fs_info->extent_root;
1481 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1482 return fs_info->chunk_root;
1483 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1484 return fs_info->dev_root;
1485 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1486 return fs_info->csum_root;
1487 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1488 return fs_info->quota_root ? fs_info->quota_root :
1491 spin_lock(&fs_info->fs_roots_radix_lock);
1492 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1493 (unsigned long)location->objectid);
1494 spin_unlock(&fs_info->fs_roots_radix_lock);
1498 root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
1502 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1503 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1505 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1510 btrfs_init_free_ino_ctl(root);
1511 mutex_init(&root->fs_commit_mutex);
1512 spin_lock_init(&root->cache_lock);
1513 init_waitqueue_head(&root->cache_wait);
1515 ret = get_anon_bdev(&root->anon_dev);
1519 if (btrfs_root_refs(&root->root_item) == 0) {
1524 ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid);
1528 root->orphan_item_inserted = 1;
1530 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1534 spin_lock(&fs_info->fs_roots_radix_lock);
1535 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1536 (unsigned long)root->root_key.objectid,
1541 spin_unlock(&fs_info->fs_roots_radix_lock);
1542 radix_tree_preload_end();
1544 if (ret == -EEXIST) {
1551 ret = btrfs_find_dead_roots(fs_info->tree_root,
1552 root->root_key.objectid);
1557 return ERR_PTR(ret);
1560 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1562 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1564 struct btrfs_device *device;
1565 struct backing_dev_info *bdi;
1568 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1571 bdi = blk_get_backing_dev_info(device->bdev);
1572 if (bdi && bdi_congested(bdi, bdi_bits)) {
1582 * If this fails, caller must call bdi_destroy() to get rid of the
1585 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1589 bdi->capabilities = BDI_CAP_MAP_COPY;
1590 err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
1594 bdi->ra_pages = default_backing_dev_info.ra_pages;
1595 bdi->congested_fn = btrfs_congested_fn;
1596 bdi->congested_data = info;
1601 * called by the kthread helper functions to finally call the bio end_io
1602 * functions. This is where read checksum verification actually happens
1604 static void end_workqueue_fn(struct btrfs_work *work)
1607 struct end_io_wq *end_io_wq;
1608 struct btrfs_fs_info *fs_info;
1611 end_io_wq = container_of(work, struct end_io_wq, work);
1612 bio = end_io_wq->bio;
1613 fs_info = end_io_wq->info;
1615 error = end_io_wq->error;
1616 bio->bi_private = end_io_wq->private;
1617 bio->bi_end_io = end_io_wq->end_io;
1619 bio_endio(bio, error);
1622 static int cleaner_kthread(void *arg)
1624 struct btrfs_root *root = arg;
1627 if (!(root->fs_info->sb->s_flags & MS_RDONLY) &&
1628 mutex_trylock(&root->fs_info->cleaner_mutex)) {
1629 btrfs_run_delayed_iputs(root);
1630 btrfs_clean_old_snapshots(root);
1631 mutex_unlock(&root->fs_info->cleaner_mutex);
1632 btrfs_run_defrag_inodes(root->fs_info);
1635 if (!try_to_freeze()) {
1636 set_current_state(TASK_INTERRUPTIBLE);
1637 if (!kthread_should_stop())
1639 __set_current_state(TASK_RUNNING);
1641 } while (!kthread_should_stop());
1645 static int transaction_kthread(void *arg)
1647 struct btrfs_root *root = arg;
1648 struct btrfs_trans_handle *trans;
1649 struct btrfs_transaction *cur;
1652 unsigned long delay;
1656 cannot_commit = false;
1658 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1660 spin_lock(&root->fs_info->trans_lock);
1661 cur = root->fs_info->running_transaction;
1663 spin_unlock(&root->fs_info->trans_lock);
1667 now = get_seconds();
1668 if (!cur->blocked &&
1669 (now < cur->start_time || now - cur->start_time < 30)) {
1670 spin_unlock(&root->fs_info->trans_lock);
1674 transid = cur->transid;
1675 spin_unlock(&root->fs_info->trans_lock);
1677 /* If the file system is aborted, this will always fail. */
1678 trans = btrfs_attach_transaction(root);
1679 if (IS_ERR(trans)) {
1680 if (PTR_ERR(trans) != -ENOENT)
1681 cannot_commit = true;
1684 if (transid == trans->transid) {
1685 btrfs_commit_transaction(trans, root);
1687 btrfs_end_transaction(trans, root);
1690 wake_up_process(root->fs_info->cleaner_kthread);
1691 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1693 if (!try_to_freeze()) {
1694 set_current_state(TASK_INTERRUPTIBLE);
1695 if (!kthread_should_stop() &&
1696 (!btrfs_transaction_blocked(root->fs_info) ||
1698 schedule_timeout(delay);
1699 __set_current_state(TASK_RUNNING);
1701 } while (!kthread_should_stop());
1706 * this will find the highest generation in the array of
1707 * root backups. The index of the highest array is returned,
1708 * or -1 if we can't find anything.
1710 * We check to make sure the array is valid by comparing the
1711 * generation of the latest root in the array with the generation
1712 * in the super block. If they don't match we pitch it.
1714 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1717 int newest_index = -1;
1718 struct btrfs_root_backup *root_backup;
1721 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1722 root_backup = info->super_copy->super_roots + i;
1723 cur = btrfs_backup_tree_root_gen(root_backup);
1724 if (cur == newest_gen)
1728 /* check to see if we actually wrapped around */
1729 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1730 root_backup = info->super_copy->super_roots;
1731 cur = btrfs_backup_tree_root_gen(root_backup);
1732 if (cur == newest_gen)
1735 return newest_index;
1740 * find the oldest backup so we know where to store new entries
1741 * in the backup array. This will set the backup_root_index
1742 * field in the fs_info struct
1744 static void find_oldest_super_backup(struct btrfs_fs_info *info,
1747 int newest_index = -1;
1749 newest_index = find_newest_super_backup(info, newest_gen);
1750 /* if there was garbage in there, just move along */
1751 if (newest_index == -1) {
1752 info->backup_root_index = 0;
1754 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1759 * copy all the root pointers into the super backup array.
1760 * this will bump the backup pointer by one when it is
1763 static void backup_super_roots(struct btrfs_fs_info *info)
1766 struct btrfs_root_backup *root_backup;
1769 next_backup = info->backup_root_index;
1770 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1771 BTRFS_NUM_BACKUP_ROOTS;
1774 * just overwrite the last backup if we're at the same generation
1775 * this happens only at umount
1777 root_backup = info->super_for_commit->super_roots + last_backup;
1778 if (btrfs_backup_tree_root_gen(root_backup) ==
1779 btrfs_header_generation(info->tree_root->node))
1780 next_backup = last_backup;
1782 root_backup = info->super_for_commit->super_roots + next_backup;
1785 * make sure all of our padding and empty slots get zero filled
1786 * regardless of which ones we use today
1788 memset(root_backup, 0, sizeof(*root_backup));
1790 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1792 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1793 btrfs_set_backup_tree_root_gen(root_backup,
1794 btrfs_header_generation(info->tree_root->node));
1796 btrfs_set_backup_tree_root_level(root_backup,
1797 btrfs_header_level(info->tree_root->node));
1799 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1800 btrfs_set_backup_chunk_root_gen(root_backup,
1801 btrfs_header_generation(info->chunk_root->node));
1802 btrfs_set_backup_chunk_root_level(root_backup,
1803 btrfs_header_level(info->chunk_root->node));
1805 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1806 btrfs_set_backup_extent_root_gen(root_backup,
1807 btrfs_header_generation(info->extent_root->node));
1808 btrfs_set_backup_extent_root_level(root_backup,
1809 btrfs_header_level(info->extent_root->node));
1812 * we might commit during log recovery, which happens before we set
1813 * the fs_root. Make sure it is valid before we fill it in.
1815 if (info->fs_root && info->fs_root->node) {
1816 btrfs_set_backup_fs_root(root_backup,
1817 info->fs_root->node->start);
1818 btrfs_set_backup_fs_root_gen(root_backup,
1819 btrfs_header_generation(info->fs_root->node));
1820 btrfs_set_backup_fs_root_level(root_backup,
1821 btrfs_header_level(info->fs_root->node));
1824 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1825 btrfs_set_backup_dev_root_gen(root_backup,
1826 btrfs_header_generation(info->dev_root->node));
1827 btrfs_set_backup_dev_root_level(root_backup,
1828 btrfs_header_level(info->dev_root->node));
1830 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1831 btrfs_set_backup_csum_root_gen(root_backup,
1832 btrfs_header_generation(info->csum_root->node));
1833 btrfs_set_backup_csum_root_level(root_backup,
1834 btrfs_header_level(info->csum_root->node));
1836 btrfs_set_backup_total_bytes(root_backup,
1837 btrfs_super_total_bytes(info->super_copy));
1838 btrfs_set_backup_bytes_used(root_backup,
1839 btrfs_super_bytes_used(info->super_copy));
1840 btrfs_set_backup_num_devices(root_backup,
1841 btrfs_super_num_devices(info->super_copy));
1844 * if we don't copy this out to the super_copy, it won't get remembered
1845 * for the next commit
1847 memcpy(&info->super_copy->super_roots,
1848 &info->super_for_commit->super_roots,
1849 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1853 * this copies info out of the root backup array and back into
1854 * the in-memory super block. It is meant to help iterate through
1855 * the array, so you send it the number of backups you've already
1856 * tried and the last backup index you used.
1858 * this returns -1 when it has tried all the backups
1860 static noinline int next_root_backup(struct btrfs_fs_info *info,
1861 struct btrfs_super_block *super,
1862 int *num_backups_tried, int *backup_index)
1864 struct btrfs_root_backup *root_backup;
1865 int newest = *backup_index;
1867 if (*num_backups_tried == 0) {
1868 u64 gen = btrfs_super_generation(super);
1870 newest = find_newest_super_backup(info, gen);
1874 *backup_index = newest;
1875 *num_backups_tried = 1;
1876 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
1877 /* we've tried all the backups, all done */
1880 /* jump to the next oldest backup */
1881 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
1882 BTRFS_NUM_BACKUP_ROOTS;
1883 *backup_index = newest;
1884 *num_backups_tried += 1;
1886 root_backup = super->super_roots + newest;
1888 btrfs_set_super_generation(super,
1889 btrfs_backup_tree_root_gen(root_backup));
1890 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1891 btrfs_set_super_root_level(super,
1892 btrfs_backup_tree_root_level(root_backup));
1893 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1896 * fixme: the total bytes and num_devices need to match or we should
1899 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1900 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1904 /* helper to cleanup tree roots */
1905 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
1907 free_extent_buffer(info->tree_root->node);
1908 free_extent_buffer(info->tree_root->commit_root);
1909 free_extent_buffer(info->dev_root->node);
1910 free_extent_buffer(info->dev_root->commit_root);
1911 free_extent_buffer(info->extent_root->node);
1912 free_extent_buffer(info->extent_root->commit_root);
1913 free_extent_buffer(info->csum_root->node);
1914 free_extent_buffer(info->csum_root->commit_root);
1915 if (info->quota_root) {
1916 free_extent_buffer(info->quota_root->node);
1917 free_extent_buffer(info->quota_root->commit_root);
1920 info->tree_root->node = NULL;
1921 info->tree_root->commit_root = NULL;
1922 info->dev_root->node = NULL;
1923 info->dev_root->commit_root = NULL;
1924 info->extent_root->node = NULL;
1925 info->extent_root->commit_root = NULL;
1926 info->csum_root->node = NULL;
1927 info->csum_root->commit_root = NULL;
1928 if (info->quota_root) {
1929 info->quota_root->node = NULL;
1930 info->quota_root->commit_root = NULL;
1934 free_extent_buffer(info->chunk_root->node);
1935 free_extent_buffer(info->chunk_root->commit_root);
1936 info->chunk_root->node = NULL;
1937 info->chunk_root->commit_root = NULL;
1942 int open_ctree(struct super_block *sb,
1943 struct btrfs_fs_devices *fs_devices,
1953 struct btrfs_key location;
1954 struct buffer_head *bh;
1955 struct btrfs_super_block *disk_super;
1956 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1957 struct btrfs_root *tree_root;
1958 struct btrfs_root *extent_root;
1959 struct btrfs_root *csum_root;
1960 struct btrfs_root *chunk_root;
1961 struct btrfs_root *dev_root;
1962 struct btrfs_root *quota_root;
1963 struct btrfs_root *log_tree_root;
1966 int num_backups_tried = 0;
1967 int backup_index = 0;
1969 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
1970 extent_root = fs_info->extent_root = btrfs_alloc_root(fs_info);
1971 csum_root = fs_info->csum_root = btrfs_alloc_root(fs_info);
1972 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
1973 dev_root = fs_info->dev_root = btrfs_alloc_root(fs_info);
1974 quota_root = fs_info->quota_root = btrfs_alloc_root(fs_info);
1976 if (!tree_root || !extent_root || !csum_root ||
1977 !chunk_root || !dev_root || !quota_root) {
1982 ret = init_srcu_struct(&fs_info->subvol_srcu);
1988 ret = setup_bdi(fs_info, &fs_info->bdi);
1994 fs_info->btree_inode = new_inode(sb);
1995 if (!fs_info->btree_inode) {
2000 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2002 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2003 INIT_LIST_HEAD(&fs_info->trans_list);
2004 INIT_LIST_HEAD(&fs_info->dead_roots);
2005 INIT_LIST_HEAD(&fs_info->delayed_iputs);
2006 INIT_LIST_HEAD(&fs_info->delalloc_inodes);
2007 INIT_LIST_HEAD(&fs_info->ordered_operations);
2008 INIT_LIST_HEAD(&fs_info->caching_block_groups);
2009 spin_lock_init(&fs_info->delalloc_lock);
2010 spin_lock_init(&fs_info->trans_lock);
2011 spin_lock_init(&fs_info->fs_roots_radix_lock);
2012 spin_lock_init(&fs_info->delayed_iput_lock);
2013 spin_lock_init(&fs_info->defrag_inodes_lock);
2014 spin_lock_init(&fs_info->free_chunk_lock);
2015 spin_lock_init(&fs_info->tree_mod_seq_lock);
2016 rwlock_init(&fs_info->tree_mod_log_lock);
2017 mutex_init(&fs_info->reloc_mutex);
2019 init_completion(&fs_info->kobj_unregister);
2020 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2021 INIT_LIST_HEAD(&fs_info->space_info);
2022 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2023 btrfs_mapping_init(&fs_info->mapping_tree);
2024 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2025 BTRFS_BLOCK_RSV_GLOBAL);
2026 btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2027 BTRFS_BLOCK_RSV_DELALLOC);
2028 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2029 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2030 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2031 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2032 BTRFS_BLOCK_RSV_DELOPS);
2033 atomic_set(&fs_info->nr_async_submits, 0);
2034 atomic_set(&fs_info->async_delalloc_pages, 0);
2035 atomic_set(&fs_info->async_submit_draining, 0);
2036 atomic_set(&fs_info->nr_async_bios, 0);
2037 atomic_set(&fs_info->defrag_running, 0);
2038 atomic_set(&fs_info->tree_mod_seq, 0);
2040 fs_info->max_inline = 8192 * 1024;
2041 fs_info->metadata_ratio = 0;
2042 fs_info->defrag_inodes = RB_ROOT;
2043 fs_info->trans_no_join = 0;
2044 fs_info->free_chunk_space = 0;
2045 fs_info->tree_mod_log = RB_ROOT;
2047 /* readahead state */
2048 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
2049 spin_lock_init(&fs_info->reada_lock);
2051 fs_info->thread_pool_size = min_t(unsigned long,
2052 num_online_cpus() + 2, 8);
2054 INIT_LIST_HEAD(&fs_info->ordered_extents);
2055 spin_lock_init(&fs_info->ordered_extent_lock);
2056 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2058 if (!fs_info->delayed_root) {
2062 btrfs_init_delayed_root(fs_info->delayed_root);
2064 mutex_init(&fs_info->scrub_lock);
2065 atomic_set(&fs_info->scrubs_running, 0);
2066 atomic_set(&fs_info->scrub_pause_req, 0);
2067 atomic_set(&fs_info->scrubs_paused, 0);
2068 atomic_set(&fs_info->scrub_cancel_req, 0);
2069 init_waitqueue_head(&fs_info->scrub_pause_wait);
2070 init_rwsem(&fs_info->scrub_super_lock);
2071 fs_info->scrub_workers_refcnt = 0;
2072 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2073 fs_info->check_integrity_print_mask = 0;
2076 spin_lock_init(&fs_info->balance_lock);
2077 mutex_init(&fs_info->balance_mutex);
2078 atomic_set(&fs_info->balance_running, 0);
2079 atomic_set(&fs_info->balance_pause_req, 0);
2080 atomic_set(&fs_info->balance_cancel_req, 0);
2081 fs_info->balance_ctl = NULL;
2082 init_waitqueue_head(&fs_info->balance_wait_q);
2084 sb->s_blocksize = 4096;
2085 sb->s_blocksize_bits = blksize_bits(4096);
2086 sb->s_bdi = &fs_info->bdi;
2088 fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2089 set_nlink(fs_info->btree_inode, 1);
2091 * we set the i_size on the btree inode to the max possible int.
2092 * the real end of the address space is determined by all of
2093 * the devices in the system
2095 fs_info->btree_inode->i_size = OFFSET_MAX;
2096 fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
2097 fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
2099 RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
2100 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
2101 fs_info->btree_inode->i_mapping);
2102 BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
2103 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
2105 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
2107 BTRFS_I(fs_info->btree_inode)->root = tree_root;
2108 memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2109 sizeof(struct btrfs_key));
2110 set_bit(BTRFS_INODE_DUMMY,
2111 &BTRFS_I(fs_info->btree_inode)->runtime_flags);
2112 insert_inode_hash(fs_info->btree_inode);
2114 spin_lock_init(&fs_info->block_group_cache_lock);
2115 fs_info->block_group_cache_tree = RB_ROOT;
2117 extent_io_tree_init(&fs_info->freed_extents[0],
2118 fs_info->btree_inode->i_mapping);
2119 extent_io_tree_init(&fs_info->freed_extents[1],
2120 fs_info->btree_inode->i_mapping);
2121 fs_info->pinned_extents = &fs_info->freed_extents[0];
2122 fs_info->do_barriers = 1;
2125 mutex_init(&fs_info->ordered_operations_mutex);
2126 mutex_init(&fs_info->tree_log_mutex);
2127 mutex_init(&fs_info->chunk_mutex);
2128 mutex_init(&fs_info->transaction_kthread_mutex);
2129 mutex_init(&fs_info->cleaner_mutex);
2130 mutex_init(&fs_info->volume_mutex);
2131 init_rwsem(&fs_info->extent_commit_sem);
2132 init_rwsem(&fs_info->cleanup_work_sem);
2133 init_rwsem(&fs_info->subvol_sem);
2135 spin_lock_init(&fs_info->qgroup_lock);
2136 fs_info->qgroup_tree = RB_ROOT;
2137 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2138 fs_info->qgroup_seq = 1;
2139 fs_info->quota_enabled = 0;
2140 fs_info->pending_quota_state = 0;
2142 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2143 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2145 init_waitqueue_head(&fs_info->transaction_throttle);
2146 init_waitqueue_head(&fs_info->transaction_wait);
2147 init_waitqueue_head(&fs_info->transaction_blocked_wait);
2148 init_waitqueue_head(&fs_info->async_submit_wait);
2150 __setup_root(4096, 4096, 4096, 4096, tree_root,
2151 fs_info, BTRFS_ROOT_TREE_OBJECTID);
2153 invalidate_bdev(fs_devices->latest_bdev);
2154 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2160 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2161 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2162 sizeof(*fs_info->super_for_commit));
2165 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2167 disk_super = fs_info->super_copy;
2168 if (!btrfs_super_root(disk_super))
2171 /* check FS state, whether FS is broken. */
2172 fs_info->fs_state |= btrfs_super_flags(disk_super);
2174 ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2176 printk(KERN_ERR "btrfs: superblock contains fatal errors\n");
2182 * run through our array of backup supers and setup
2183 * our ring pointer to the oldest one
2185 generation = btrfs_super_generation(disk_super);
2186 find_oldest_super_backup(fs_info, generation);
2189 * In the long term, we'll store the compression type in the super
2190 * block, and it'll be used for per file compression control.
2192 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2194 ret = btrfs_parse_options(tree_root, options);
2200 features = btrfs_super_incompat_flags(disk_super) &
2201 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2203 printk(KERN_ERR "BTRFS: couldn't mount because of "
2204 "unsupported optional features (%Lx).\n",
2205 (unsigned long long)features);
2210 if (btrfs_super_leafsize(disk_super) !=
2211 btrfs_super_nodesize(disk_super)) {
2212 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2213 "blocksizes don't match. node %d leaf %d\n",
2214 btrfs_super_nodesize(disk_super),
2215 btrfs_super_leafsize(disk_super));
2219 if (btrfs_super_leafsize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
2220 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2221 "blocksize (%d) was too large\n",
2222 btrfs_super_leafsize(disk_super));
2227 features = btrfs_super_incompat_flags(disk_super);
2228 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2229 if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
2230 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2233 * flag our filesystem as having big metadata blocks if
2234 * they are bigger than the page size
2236 if (btrfs_super_leafsize(disk_super) > PAGE_CACHE_SIZE) {
2237 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2238 printk(KERN_INFO "btrfs flagging fs with big metadata feature\n");
2239 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2242 nodesize = btrfs_super_nodesize(disk_super);
2243 leafsize = btrfs_super_leafsize(disk_super);
2244 sectorsize = btrfs_super_sectorsize(disk_super);
2245 stripesize = btrfs_super_stripesize(disk_super);
2248 * mixed block groups end up with duplicate but slightly offset
2249 * extent buffers for the same range. It leads to corruptions
2251 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2252 (sectorsize != leafsize)) {
2253 printk(KERN_WARNING "btrfs: unequal leaf/node/sector sizes "
2254 "are not allowed for mixed block groups on %s\n",
2259 btrfs_set_super_incompat_flags(disk_super, features);
2261 features = btrfs_super_compat_ro_flags(disk_super) &
2262 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2263 if (!(sb->s_flags & MS_RDONLY) && features) {
2264 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2265 "unsupported option features (%Lx).\n",
2266 (unsigned long long)features);
2271 btrfs_init_workers(&fs_info->generic_worker,
2272 "genwork", 1, NULL);
2274 btrfs_init_workers(&fs_info->workers, "worker",
2275 fs_info->thread_pool_size,
2276 &fs_info->generic_worker);
2278 btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
2279 fs_info->thread_pool_size,
2280 &fs_info->generic_worker);
2282 btrfs_init_workers(&fs_info->submit_workers, "submit",
2283 min_t(u64, fs_devices->num_devices,
2284 fs_info->thread_pool_size),
2285 &fs_info->generic_worker);
2287 btrfs_init_workers(&fs_info->caching_workers, "cache",
2288 2, &fs_info->generic_worker);
2290 /* a higher idle thresh on the submit workers makes it much more
2291 * likely that bios will be send down in a sane order to the
2294 fs_info->submit_workers.idle_thresh = 64;
2296 fs_info->workers.idle_thresh = 16;
2297 fs_info->workers.ordered = 1;
2299 fs_info->delalloc_workers.idle_thresh = 2;
2300 fs_info->delalloc_workers.ordered = 1;
2302 btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
2303 &fs_info->generic_worker);
2304 btrfs_init_workers(&fs_info->endio_workers, "endio",
2305 fs_info->thread_pool_size,
2306 &fs_info->generic_worker);
2307 btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
2308 fs_info->thread_pool_size,
2309 &fs_info->generic_worker);
2310 btrfs_init_workers(&fs_info->endio_meta_write_workers,
2311 "endio-meta-write", fs_info->thread_pool_size,
2312 &fs_info->generic_worker);
2313 btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
2314 fs_info->thread_pool_size,
2315 &fs_info->generic_worker);
2316 btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write",
2317 1, &fs_info->generic_worker);
2318 btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta",
2319 fs_info->thread_pool_size,
2320 &fs_info->generic_worker);
2321 btrfs_init_workers(&fs_info->readahead_workers, "readahead",
2322 fs_info->thread_pool_size,
2323 &fs_info->generic_worker);
2326 * endios are largely parallel and should have a very
2329 fs_info->endio_workers.idle_thresh = 4;
2330 fs_info->endio_meta_workers.idle_thresh = 4;
2332 fs_info->endio_write_workers.idle_thresh = 2;
2333 fs_info->endio_meta_write_workers.idle_thresh = 2;
2334 fs_info->readahead_workers.idle_thresh = 2;
2337 * btrfs_start_workers can really only fail because of ENOMEM so just
2338 * return -ENOMEM if any of these fail.
2340 ret = btrfs_start_workers(&fs_info->workers);
2341 ret |= btrfs_start_workers(&fs_info->generic_worker);
2342 ret |= btrfs_start_workers(&fs_info->submit_workers);
2343 ret |= btrfs_start_workers(&fs_info->delalloc_workers);
2344 ret |= btrfs_start_workers(&fs_info->fixup_workers);
2345 ret |= btrfs_start_workers(&fs_info->endio_workers);
2346 ret |= btrfs_start_workers(&fs_info->endio_meta_workers);
2347 ret |= btrfs_start_workers(&fs_info->endio_meta_write_workers);
2348 ret |= btrfs_start_workers(&fs_info->endio_write_workers);
2349 ret |= btrfs_start_workers(&fs_info->endio_freespace_worker);
2350 ret |= btrfs_start_workers(&fs_info->delayed_workers);
2351 ret |= btrfs_start_workers(&fs_info->caching_workers);
2352 ret |= btrfs_start_workers(&fs_info->readahead_workers);
2355 goto fail_sb_buffer;
2358 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
2359 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2360 4 * 1024 * 1024 / PAGE_CACHE_SIZE);
2362 tree_root->nodesize = nodesize;
2363 tree_root->leafsize = leafsize;
2364 tree_root->sectorsize = sectorsize;
2365 tree_root->stripesize = stripesize;
2367 sb->s_blocksize = sectorsize;
2368 sb->s_blocksize_bits = blksize_bits(sectorsize);
2370 if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
2371 sizeof(disk_super->magic))) {
2372 printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
2373 goto fail_sb_buffer;
2376 if (sectorsize != PAGE_SIZE) {
2377 printk(KERN_WARNING "btrfs: Incompatible sector size(%lu) "
2378 "found on %s\n", (unsigned long)sectorsize, sb->s_id);
2379 goto fail_sb_buffer;
2382 mutex_lock(&fs_info->chunk_mutex);
2383 ret = btrfs_read_sys_array(tree_root);
2384 mutex_unlock(&fs_info->chunk_mutex);
2386 printk(KERN_WARNING "btrfs: failed to read the system "
2387 "array on %s\n", sb->s_id);
2388 goto fail_sb_buffer;
2391 blocksize = btrfs_level_size(tree_root,
2392 btrfs_super_chunk_root_level(disk_super));
2393 generation = btrfs_super_chunk_root_generation(disk_super);
2395 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2396 chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2398 chunk_root->node = read_tree_block(chunk_root,
2399 btrfs_super_chunk_root(disk_super),
2400 blocksize, generation);
2401 BUG_ON(!chunk_root->node); /* -ENOMEM */
2402 if (!test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
2403 printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
2405 goto fail_tree_roots;
2407 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2408 chunk_root->commit_root = btrfs_root_node(chunk_root);
2410 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2411 (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
2414 ret = btrfs_read_chunk_tree(chunk_root);
2416 printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
2418 goto fail_tree_roots;
2421 btrfs_close_extra_devices(fs_devices);
2423 if (!fs_devices->latest_bdev) {
2424 printk(KERN_CRIT "btrfs: failed to read devices on %s\n",
2426 goto fail_tree_roots;
2430 blocksize = btrfs_level_size(tree_root,
2431 btrfs_super_root_level(disk_super));
2432 generation = btrfs_super_generation(disk_super);
2434 tree_root->node = read_tree_block(tree_root,
2435 btrfs_super_root(disk_super),
2436 blocksize, generation);
2437 if (!tree_root->node ||
2438 !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
2439 printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
2442 goto recovery_tree_root;
2445 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2446 tree_root->commit_root = btrfs_root_node(tree_root);
2448 ret = find_and_setup_root(tree_root, fs_info,
2449 BTRFS_EXTENT_TREE_OBJECTID, extent_root);
2451 goto recovery_tree_root;
2452 extent_root->track_dirty = 1;
2454 ret = find_and_setup_root(tree_root, fs_info,
2455 BTRFS_DEV_TREE_OBJECTID, dev_root);
2457 goto recovery_tree_root;
2458 dev_root->track_dirty = 1;
2460 ret = find_and_setup_root(tree_root, fs_info,
2461 BTRFS_CSUM_TREE_OBJECTID, csum_root);
2463 goto recovery_tree_root;
2464 csum_root->track_dirty = 1;
2466 ret = find_and_setup_root(tree_root, fs_info,
2467 BTRFS_QUOTA_TREE_OBJECTID, quota_root);
2470 quota_root = fs_info->quota_root = NULL;
2472 quota_root->track_dirty = 1;
2473 fs_info->quota_enabled = 1;
2474 fs_info->pending_quota_state = 1;
2477 fs_info->generation = generation;
2478 fs_info->last_trans_committed = generation;
2480 ret = btrfs_recover_balance(fs_info);
2482 printk(KERN_WARNING "btrfs: failed to recover balance\n");
2483 goto fail_block_groups;
2486 ret = btrfs_init_dev_stats(fs_info);
2488 printk(KERN_ERR "btrfs: failed to init dev_stats: %d\n",
2490 goto fail_block_groups;
2493 ret = btrfs_init_space_info(fs_info);
2495 printk(KERN_ERR "Failed to initial space info: %d\n", ret);
2496 goto fail_block_groups;
2499 ret = btrfs_read_block_groups(extent_root);
2501 printk(KERN_ERR "Failed to read block groups: %d\n", ret);
2502 goto fail_block_groups;
2504 fs_info->num_tolerated_disk_barrier_failures =
2505 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
2507 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2509 if (IS_ERR(fs_info->cleaner_kthread))
2510 goto fail_block_groups;
2512 fs_info->transaction_kthread = kthread_run(transaction_kthread,
2514 "btrfs-transaction");
2515 if (IS_ERR(fs_info->transaction_kthread))
2518 if (!btrfs_test_opt(tree_root, SSD) &&
2519 !btrfs_test_opt(tree_root, NOSSD) &&
2520 !fs_info->fs_devices->rotating) {
2521 printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
2523 btrfs_set_opt(fs_info->mount_opt, SSD);
2526 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2527 if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
2528 ret = btrfsic_mount(tree_root, fs_devices,
2529 btrfs_test_opt(tree_root,
2530 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2532 fs_info->check_integrity_print_mask);
2534 printk(KERN_WARNING "btrfs: failed to initialize"
2535 " integrity check module %s\n", sb->s_id);
2538 ret = btrfs_read_qgroup_config(fs_info);
2540 goto fail_trans_kthread;
2542 /* do not make disk changes in broken FS */
2543 if (btrfs_super_log_root(disk_super) != 0) {
2544 u64 bytenr = btrfs_super_log_root(disk_super);
2546 if (fs_devices->rw_devices == 0) {
2547 printk(KERN_WARNING "Btrfs log replay required "
2553 btrfs_level_size(tree_root,
2554 btrfs_super_log_root_level(disk_super));
2556 log_tree_root = btrfs_alloc_root(fs_info);
2557 if (!log_tree_root) {
2562 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2563 log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2565 log_tree_root->node = read_tree_block(tree_root, bytenr,
2568 /* returns with log_tree_root freed on success */
2569 ret = btrfs_recover_log_trees(log_tree_root);
2571 btrfs_error(tree_root->fs_info, ret,
2572 "Failed to recover log tree");
2573 free_extent_buffer(log_tree_root->node);
2574 kfree(log_tree_root);
2575 goto fail_trans_kthread;
2578 if (sb->s_flags & MS_RDONLY) {
2579 ret = btrfs_commit_super(tree_root);
2581 goto fail_trans_kthread;
2585 ret = btrfs_find_orphan_roots(tree_root);
2587 goto fail_trans_kthread;
2589 if (!(sb->s_flags & MS_RDONLY)) {
2590 ret = btrfs_cleanup_fs_roots(fs_info);
2592 goto fail_trans_kthread;
2594 ret = btrfs_recover_relocation(tree_root);
2597 "btrfs: failed to recover relocation\n");
2603 location.objectid = BTRFS_FS_TREE_OBJECTID;
2604 location.type = BTRFS_ROOT_ITEM_KEY;
2605 location.offset = (u64)-1;
2607 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
2608 if (!fs_info->fs_root)
2610 if (IS_ERR(fs_info->fs_root)) {
2611 err = PTR_ERR(fs_info->fs_root);
2615 if (sb->s_flags & MS_RDONLY)
2618 down_read(&fs_info->cleanup_work_sem);
2619 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
2620 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
2621 up_read(&fs_info->cleanup_work_sem);
2622 close_ctree(tree_root);
2625 up_read(&fs_info->cleanup_work_sem);
2627 ret = btrfs_resume_balance_async(fs_info);
2629 printk(KERN_WARNING "btrfs: failed to resume balance\n");
2630 close_ctree(tree_root);
2637 btrfs_free_qgroup_config(fs_info);
2639 kthread_stop(fs_info->transaction_kthread);
2641 kthread_stop(fs_info->cleaner_kthread);
2644 * make sure we're done with the btree inode before we stop our
2647 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
2648 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2651 btrfs_free_block_groups(fs_info);
2654 free_root_pointers(fs_info, 1);
2657 btrfs_stop_workers(&fs_info->generic_worker);
2658 btrfs_stop_workers(&fs_info->readahead_workers);
2659 btrfs_stop_workers(&fs_info->fixup_workers);
2660 btrfs_stop_workers(&fs_info->delalloc_workers);
2661 btrfs_stop_workers(&fs_info->workers);
2662 btrfs_stop_workers(&fs_info->endio_workers);
2663 btrfs_stop_workers(&fs_info->endio_meta_workers);
2664 btrfs_stop_workers(&fs_info->endio_meta_write_workers);
2665 btrfs_stop_workers(&fs_info->endio_write_workers);
2666 btrfs_stop_workers(&fs_info->endio_freespace_worker);
2667 btrfs_stop_workers(&fs_info->submit_workers);
2668 btrfs_stop_workers(&fs_info->delayed_workers);
2669 btrfs_stop_workers(&fs_info->caching_workers);
2672 btrfs_mapping_tree_free(&fs_info->mapping_tree);
2674 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2675 iput(fs_info->btree_inode);
2677 bdi_destroy(&fs_info->bdi);
2679 cleanup_srcu_struct(&fs_info->subvol_srcu);
2681 btrfs_close_devices(fs_info->fs_devices);
2685 if (!btrfs_test_opt(tree_root, RECOVERY))
2686 goto fail_tree_roots;
2688 free_root_pointers(fs_info, 0);
2690 /* don't use the log in recovery mode, it won't be valid */
2691 btrfs_set_super_log_root(disk_super, 0);
2693 /* we can't trust the free space cache either */
2694 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2696 ret = next_root_backup(fs_info, fs_info->super_copy,
2697 &num_backups_tried, &backup_index);
2699 goto fail_block_groups;
2700 goto retry_root_backup;
2703 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
2706 set_buffer_uptodate(bh);
2708 struct btrfs_device *device = (struct btrfs_device *)
2711 printk_ratelimited_in_rcu(KERN_WARNING "lost page write due to "
2712 "I/O error on %s\n",
2713 rcu_str_deref(device->name));
2714 /* note, we dont' set_buffer_write_io_error because we have
2715 * our own ways of dealing with the IO errors
2717 clear_buffer_uptodate(bh);
2718 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
2724 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
2726 struct buffer_head *bh;
2727 struct buffer_head *latest = NULL;
2728 struct btrfs_super_block *super;
2733 /* we would like to check all the supers, but that would make
2734 * a btrfs mount succeed after a mkfs from a different FS.
2735 * So, we need to add a special mount option to scan for
2736 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
2738 for (i = 0; i < 1; i++) {
2739 bytenr = btrfs_sb_offset(i);
2740 if (bytenr + 4096 >= i_size_read(bdev->bd_inode))
2742 bh = __bread(bdev, bytenr / 4096, 4096);
2746 super = (struct btrfs_super_block *)bh->b_data;
2747 if (btrfs_super_bytenr(super) != bytenr ||
2748 strncmp((char *)(&super->magic), BTRFS_MAGIC,
2749 sizeof(super->magic))) {
2754 if (!latest || btrfs_super_generation(super) > transid) {
2757 transid = btrfs_super_generation(super);
2766 * this should be called twice, once with wait == 0 and
2767 * once with wait == 1. When wait == 0 is done, all the buffer heads
2768 * we write are pinned.
2770 * They are released when wait == 1 is done.
2771 * max_mirrors must be the same for both runs, and it indicates how
2772 * many supers on this one device should be written.
2774 * max_mirrors == 0 means to write them all.
2776 static int write_dev_supers(struct btrfs_device *device,
2777 struct btrfs_super_block *sb,
2778 int do_barriers, int wait, int max_mirrors)
2780 struct buffer_head *bh;
2787 if (max_mirrors == 0)
2788 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
2790 for (i = 0; i < max_mirrors; i++) {
2791 bytenr = btrfs_sb_offset(i);
2792 if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
2796 bh = __find_get_block(device->bdev, bytenr / 4096,
2797 BTRFS_SUPER_INFO_SIZE);
2800 if (!buffer_uptodate(bh))
2803 /* drop our reference */
2806 /* drop the reference from the wait == 0 run */
2810 btrfs_set_super_bytenr(sb, bytenr);
2813 crc = btrfs_csum_data(NULL, (char *)sb +
2814 BTRFS_CSUM_SIZE, crc,
2815 BTRFS_SUPER_INFO_SIZE -
2817 btrfs_csum_final(crc, sb->csum);
2820 * one reference for us, and we leave it for the
2823 bh = __getblk(device->bdev, bytenr / 4096,
2824 BTRFS_SUPER_INFO_SIZE);
2825 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
2827 /* one reference for submit_bh */
2830 set_buffer_uptodate(bh);
2832 bh->b_end_io = btrfs_end_buffer_write_sync;
2833 bh->b_private = device;
2837 * we fua the first super. The others we allow
2840 ret = btrfsic_submit_bh(WRITE_FUA, bh);
2844 return errors < i ? 0 : -1;
2848 * endio for the write_dev_flush, this will wake anyone waiting
2849 * for the barrier when it is done
2851 static void btrfs_end_empty_barrier(struct bio *bio, int err)
2854 if (err == -EOPNOTSUPP)
2855 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2856 clear_bit(BIO_UPTODATE, &bio->bi_flags);
2858 if (bio->bi_private)
2859 complete(bio->bi_private);
2864 * trigger flushes for one the devices. If you pass wait == 0, the flushes are
2865 * sent down. With wait == 1, it waits for the previous flush.
2867 * any device where the flush fails with eopnotsupp are flagged as not-barrier
2870 static int write_dev_flush(struct btrfs_device *device, int wait)
2875 if (device->nobarriers)
2879 bio = device->flush_bio;
2883 wait_for_completion(&device->flush_wait);
2885 if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
2886 printk_in_rcu("btrfs: disabling barriers on dev %s\n",
2887 rcu_str_deref(device->name));
2888 device->nobarriers = 1;
2889 } else if (!bio_flagged(bio, BIO_UPTODATE)) {
2891 btrfs_dev_stat_inc_and_print(device,
2892 BTRFS_DEV_STAT_FLUSH_ERRS);
2895 /* drop the reference from the wait == 0 run */
2897 device->flush_bio = NULL;
2903 * one reference for us, and we leave it for the
2906 device->flush_bio = NULL;
2907 bio = bio_alloc(GFP_NOFS, 0);
2911 bio->bi_end_io = btrfs_end_empty_barrier;
2912 bio->bi_bdev = device->bdev;
2913 init_completion(&device->flush_wait);
2914 bio->bi_private = &device->flush_wait;
2915 device->flush_bio = bio;
2918 btrfsic_submit_bio(WRITE_FLUSH, bio);
2924 * send an empty flush down to each device in parallel,
2925 * then wait for them
2927 static int barrier_all_devices(struct btrfs_fs_info *info)
2929 struct list_head *head;
2930 struct btrfs_device *dev;
2931 int errors_send = 0;
2932 int errors_wait = 0;
2935 /* send down all the barriers */
2936 head = &info->fs_devices->devices;
2937 list_for_each_entry_rcu(dev, head, dev_list) {
2942 if (!dev->in_fs_metadata || !dev->writeable)
2945 ret = write_dev_flush(dev, 0);
2950 /* wait for all the barriers */
2951 list_for_each_entry_rcu(dev, head, dev_list) {
2956 if (!dev->in_fs_metadata || !dev->writeable)
2959 ret = write_dev_flush(dev, 1);
2963 if (errors_send > info->num_tolerated_disk_barrier_failures ||
2964 errors_wait > info->num_tolerated_disk_barrier_failures)
2969 int btrfs_calc_num_tolerated_disk_barrier_failures(
2970 struct btrfs_fs_info *fs_info)
2972 struct btrfs_ioctl_space_info space;
2973 struct btrfs_space_info *sinfo;
2974 u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
2975 BTRFS_BLOCK_GROUP_SYSTEM,
2976 BTRFS_BLOCK_GROUP_METADATA,
2977 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
2981 int num_tolerated_disk_barrier_failures =
2982 (int)fs_info->fs_devices->num_devices;
2984 for (i = 0; i < num_types; i++) {
2985 struct btrfs_space_info *tmp;
2989 list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
2990 if (tmp->flags == types[i]) {
3000 down_read(&sinfo->groups_sem);
3001 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3002 if (!list_empty(&sinfo->block_groups[c])) {
3005 btrfs_get_block_group_info(
3006 &sinfo->block_groups[c], &space);
3007 if (space.total_bytes == 0 ||
3008 space.used_bytes == 0)
3010 flags = space.flags;
3013 * 0: if dup, single or RAID0 is configured for
3014 * any of metadata, system or data, else
3015 * 1: if RAID5 is configured, or if RAID1 or
3016 * RAID10 is configured and only two mirrors
3018 * 2: if RAID6 is configured, else
3019 * num_mirrors - 1: if RAID1 or RAID10 is
3020 * configured and more than
3021 * 2 mirrors are used.
3023 if (num_tolerated_disk_barrier_failures > 0 &&
3024 ((flags & (BTRFS_BLOCK_GROUP_DUP |
3025 BTRFS_BLOCK_GROUP_RAID0)) ||
3026 ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK)
3028 num_tolerated_disk_barrier_failures = 0;
3029 else if (num_tolerated_disk_barrier_failures > 1
3031 (flags & (BTRFS_BLOCK_GROUP_RAID1 |
3032 BTRFS_BLOCK_GROUP_RAID10)))
3033 num_tolerated_disk_barrier_failures = 1;
3036 up_read(&sinfo->groups_sem);
3039 return num_tolerated_disk_barrier_failures;
3042 int write_all_supers(struct btrfs_root *root, int max_mirrors)
3044 struct list_head *head;
3045 struct btrfs_device *dev;
3046 struct btrfs_super_block *sb;
3047 struct btrfs_dev_item *dev_item;
3051 int total_errors = 0;
3054 max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
3055 do_barriers = !btrfs_test_opt(root, NOBARRIER);
3056 backup_super_roots(root->fs_info);
3058 sb = root->fs_info->super_for_commit;
3059 dev_item = &sb->dev_item;
3061 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
3062 head = &root->fs_info->fs_devices->devices;
3065 ret = barrier_all_devices(root->fs_info);
3068 &root->fs_info->fs_devices->device_list_mutex);
3069 btrfs_error(root->fs_info, ret,
3070 "errors while submitting device barriers.");
3075 list_for_each_entry_rcu(dev, head, dev_list) {
3080 if (!dev->in_fs_metadata || !dev->writeable)
3083 btrfs_set_stack_device_generation(dev_item, 0);
3084 btrfs_set_stack_device_type(dev_item, dev->type);
3085 btrfs_set_stack_device_id(dev_item, dev->devid);
3086 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
3087 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
3088 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3089 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3090 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3091 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3092 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
3094 flags = btrfs_super_flags(sb);
3095 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3097 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
3101 if (total_errors > max_errors) {
3102 printk(KERN_ERR "btrfs: %d errors while writing supers\n",
3105 /* This shouldn't happen. FUA is masked off if unsupported */
3110 list_for_each_entry_rcu(dev, head, dev_list) {
3113 if (!dev->in_fs_metadata || !dev->writeable)
3116 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3120 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3121 if (total_errors > max_errors) {
3122 btrfs_error(root->fs_info, -EIO,
3123 "%d errors while writing supers", total_errors);
3129 int write_ctree_super(struct btrfs_trans_handle *trans,
3130 struct btrfs_root *root, int max_mirrors)
3134 ret = write_all_supers(root, max_mirrors);
3138 void btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
3140 spin_lock(&fs_info->fs_roots_radix_lock);
3141 radix_tree_delete(&fs_info->fs_roots_radix,
3142 (unsigned long)root->root_key.objectid);
3143 spin_unlock(&fs_info->fs_roots_radix_lock);
3145 if (btrfs_root_refs(&root->root_item) == 0)
3146 synchronize_srcu(&fs_info->subvol_srcu);
3148 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3149 __btrfs_remove_free_space_cache(root->free_ino_ctl);
3153 static void free_fs_root(struct btrfs_root *root)
3155 iput(root->cache_inode);
3156 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3158 free_anon_bdev(root->anon_dev);
3159 free_extent_buffer(root->node);
3160 free_extent_buffer(root->commit_root);
3161 kfree(root->free_ino_ctl);
3162 kfree(root->free_ino_pinned);
3167 static void del_fs_roots(struct btrfs_fs_info *fs_info)
3170 struct btrfs_root *gang[8];
3173 while (!list_empty(&fs_info->dead_roots)) {
3174 gang[0] = list_entry(fs_info->dead_roots.next,
3175 struct btrfs_root, root_list);
3176 list_del(&gang[0]->root_list);
3178 if (gang[0]->in_radix) {
3179 btrfs_free_fs_root(fs_info, gang[0]);
3181 free_extent_buffer(gang[0]->node);
3182 free_extent_buffer(gang[0]->commit_root);
3188 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3193 for (i = 0; i < ret; i++)
3194 btrfs_free_fs_root(fs_info, gang[i]);
3198 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3200 u64 root_objectid = 0;
3201 struct btrfs_root *gang[8];
3206 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3207 (void **)gang, root_objectid,
3212 root_objectid = gang[ret - 1]->root_key.objectid + 1;
3213 for (i = 0; i < ret; i++) {
3216 root_objectid = gang[i]->root_key.objectid;
3217 err = btrfs_orphan_cleanup(gang[i]);
3226 int btrfs_commit_super(struct btrfs_root *root)
3228 struct btrfs_trans_handle *trans;
3231 mutex_lock(&root->fs_info->cleaner_mutex);
3232 btrfs_run_delayed_iputs(root);
3233 btrfs_clean_old_snapshots(root);
3234 mutex_unlock(&root->fs_info->cleaner_mutex);
3236 /* wait until ongoing cleanup work done */
3237 down_write(&root->fs_info->cleanup_work_sem);
3238 up_write(&root->fs_info->cleanup_work_sem);
3240 trans = btrfs_join_transaction(root);
3242 return PTR_ERR(trans);
3243 ret = btrfs_commit_transaction(trans, root);
3246 /* run commit again to drop the original snapshot */
3247 trans = btrfs_join_transaction(root);
3249 return PTR_ERR(trans);
3250 ret = btrfs_commit_transaction(trans, root);
3253 ret = btrfs_write_and_wait_transaction(NULL, root);
3255 btrfs_error(root->fs_info, ret,
3256 "Failed to sync btree inode to disk.");
3260 ret = write_ctree_super(NULL, root, 0);
3264 int close_ctree(struct btrfs_root *root)
3266 struct btrfs_fs_info *fs_info = root->fs_info;
3269 fs_info->closing = 1;
3272 /* pause restriper - we want to resume on mount */
3273 btrfs_pause_balance(root->fs_info);
3275 btrfs_scrub_cancel(root);
3277 /* wait for any defraggers to finish */
3278 wait_event(fs_info->transaction_wait,
3279 (atomic_read(&fs_info->defrag_running) == 0));
3281 /* clear out the rbtree of defraggable inodes */
3282 btrfs_run_defrag_inodes(fs_info);
3284 if (!(fs_info->sb->s_flags & MS_RDONLY)) {
3285 ret = btrfs_commit_super(root);
3287 printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
3290 if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)
3291 btrfs_error_commit_super(root);
3293 btrfs_put_block_group_cache(fs_info);
3295 kthread_stop(fs_info->transaction_kthread);
3296 kthread_stop(fs_info->cleaner_kthread);
3298 fs_info->closing = 2;
3301 btrfs_free_qgroup_config(root->fs_info);
3303 if (fs_info->delalloc_bytes) {
3304 printk(KERN_INFO "btrfs: at unmount delalloc count %llu\n",
3305 (unsigned long long)fs_info->delalloc_bytes);
3308 free_extent_buffer(fs_info->extent_root->node);
3309 free_extent_buffer(fs_info->extent_root->commit_root);
3310 free_extent_buffer(fs_info->tree_root->node);
3311 free_extent_buffer(fs_info->tree_root->commit_root);
3312 free_extent_buffer(fs_info->chunk_root->node);
3313 free_extent_buffer(fs_info->chunk_root->commit_root);
3314 free_extent_buffer(fs_info->dev_root->node);
3315 free_extent_buffer(fs_info->dev_root->commit_root);
3316 free_extent_buffer(fs_info->csum_root->node);
3317 free_extent_buffer(fs_info->csum_root->commit_root);
3318 if (fs_info->quota_root) {
3319 free_extent_buffer(fs_info->quota_root->node);
3320 free_extent_buffer(fs_info->quota_root->commit_root);
3323 btrfs_free_block_groups(fs_info);
3325 del_fs_roots(fs_info);
3327 iput(fs_info->btree_inode);
3329 btrfs_stop_workers(&fs_info->generic_worker);
3330 btrfs_stop_workers(&fs_info->fixup_workers);
3331 btrfs_stop_workers(&fs_info->delalloc_workers);
3332 btrfs_stop_workers(&fs_info->workers);
3333 btrfs_stop_workers(&fs_info->endio_workers);
3334 btrfs_stop_workers(&fs_info->endio_meta_workers);
3335 btrfs_stop_workers(&fs_info->endio_meta_write_workers);
3336 btrfs_stop_workers(&fs_info->endio_write_workers);
3337 btrfs_stop_workers(&fs_info->endio_freespace_worker);
3338 btrfs_stop_workers(&fs_info->submit_workers);
3339 btrfs_stop_workers(&fs_info->delayed_workers);
3340 btrfs_stop_workers(&fs_info->caching_workers);
3341 btrfs_stop_workers(&fs_info->readahead_workers);
3343 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3344 if (btrfs_test_opt(root, CHECK_INTEGRITY))
3345 btrfsic_unmount(root, fs_info->fs_devices);
3348 btrfs_close_devices(fs_info->fs_devices);
3349 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3351 bdi_destroy(&fs_info->bdi);
3352 cleanup_srcu_struct(&fs_info->subvol_srcu);
3357 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3361 struct inode *btree_inode = buf->pages[0]->mapping->host;
3363 ret = extent_buffer_uptodate(buf);
3367 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
3368 parent_transid, atomic);
3374 int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
3376 return set_extent_buffer_uptodate(buf);
3379 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3381 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3382 u64 transid = btrfs_header_generation(buf);
3385 btrfs_assert_tree_locked(buf);
3386 if (transid != root->fs_info->generation) {
3387 printk(KERN_CRIT "btrfs transid mismatch buffer %llu, "
3388 "found %llu running %llu\n",
3389 (unsigned long long)buf->start,
3390 (unsigned long long)transid,
3391 (unsigned long long)root->fs_info->generation);
3394 was_dirty = set_extent_buffer_dirty(buf);
3396 spin_lock(&root->fs_info->delalloc_lock);
3397 root->fs_info->dirty_metadata_bytes += buf->len;
3398 spin_unlock(&root->fs_info->delalloc_lock);
3402 void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
3405 * looks as though older kernels can get into trouble with
3406 * this code, they end up stuck in balance_dirty_pages forever
3409 unsigned long thresh = 32 * 1024 * 1024;
3411 if (current->flags & PF_MEMALLOC)
3414 btrfs_balance_delayed_items(root);
3416 num_dirty = root->fs_info->dirty_metadata_bytes;
3418 if (num_dirty > thresh) {
3419 balance_dirty_pages_ratelimited_nr(
3420 root->fs_info->btree_inode->i_mapping, 1);
3425 void __btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
3428 * looks as though older kernels can get into trouble with
3429 * this code, they end up stuck in balance_dirty_pages forever
3432 unsigned long thresh = 32 * 1024 * 1024;
3434 if (current->flags & PF_MEMALLOC)
3437 num_dirty = root->fs_info->dirty_metadata_bytes;
3439 if (num_dirty > thresh) {
3440 balance_dirty_pages_ratelimited_nr(
3441 root->fs_info->btree_inode->i_mapping, 1);
3446 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
3448 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3449 return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
3452 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
3455 if (btrfs_super_csum_type(fs_info->super_copy) >= ARRAY_SIZE(btrfs_csum_sizes)) {
3456 printk(KERN_ERR "btrfs: unsupported checksum algorithm\n");
3466 void btrfs_error_commit_super(struct btrfs_root *root)
3468 mutex_lock(&root->fs_info->cleaner_mutex);
3469 btrfs_run_delayed_iputs(root);
3470 mutex_unlock(&root->fs_info->cleaner_mutex);
3472 down_write(&root->fs_info->cleanup_work_sem);
3473 up_write(&root->fs_info->cleanup_work_sem);
3475 /* cleanup FS via transaction */
3476 btrfs_cleanup_transaction(root);
3479 static void btrfs_destroy_ordered_operations(struct btrfs_root *root)
3481 struct btrfs_inode *btrfs_inode;
3482 struct list_head splice;
3484 INIT_LIST_HEAD(&splice);
3486 mutex_lock(&root->fs_info->ordered_operations_mutex);
3487 spin_lock(&root->fs_info->ordered_extent_lock);
3489 list_splice_init(&root->fs_info->ordered_operations, &splice);
3490 while (!list_empty(&splice)) {
3491 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3492 ordered_operations);
3494 list_del_init(&btrfs_inode->ordered_operations);
3496 btrfs_invalidate_inodes(btrfs_inode->root);
3499 spin_unlock(&root->fs_info->ordered_extent_lock);
3500 mutex_unlock(&root->fs_info->ordered_operations_mutex);
3503 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
3505 struct list_head splice;
3506 struct btrfs_ordered_extent *ordered;
3507 struct inode *inode;
3509 INIT_LIST_HEAD(&splice);
3511 spin_lock(&root->fs_info->ordered_extent_lock);
3513 list_splice_init(&root->fs_info->ordered_extents, &splice);
3514 while (!list_empty(&splice)) {
3515 ordered = list_entry(splice.next, struct btrfs_ordered_extent,
3518 list_del_init(&ordered->root_extent_list);
3519 atomic_inc(&ordered->refs);
3521 /* the inode may be getting freed (in sys_unlink path). */
3522 inode = igrab(ordered->inode);
3524 spin_unlock(&root->fs_info->ordered_extent_lock);
3528 atomic_set(&ordered->refs, 1);
3529 btrfs_put_ordered_extent(ordered);
3531 spin_lock(&root->fs_info->ordered_extent_lock);
3534 spin_unlock(&root->fs_info->ordered_extent_lock);
3537 int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
3538 struct btrfs_root *root)
3540 struct rb_node *node;
3541 struct btrfs_delayed_ref_root *delayed_refs;
3542 struct btrfs_delayed_ref_node *ref;
3545 delayed_refs = &trans->delayed_refs;
3547 spin_lock(&delayed_refs->lock);
3548 if (delayed_refs->num_entries == 0) {
3549 spin_unlock(&delayed_refs->lock);
3550 printk(KERN_INFO "delayed_refs has NO entry\n");
3554 while ((node = rb_first(&delayed_refs->root)) != NULL) {
3555 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
3557 atomic_set(&ref->refs, 1);
3558 if (btrfs_delayed_ref_is_head(ref)) {
3559 struct btrfs_delayed_ref_head *head;
3561 head = btrfs_delayed_node_to_head(ref);
3562 if (!mutex_trylock(&head->mutex)) {
3563 atomic_inc(&ref->refs);
3564 spin_unlock(&delayed_refs->lock);
3566 /* Need to wait for the delayed ref to run */
3567 mutex_lock(&head->mutex);
3568 mutex_unlock(&head->mutex);
3569 btrfs_put_delayed_ref(ref);
3571 spin_lock(&delayed_refs->lock);
3575 kfree(head->extent_op);
3576 delayed_refs->num_heads--;
3577 if (list_empty(&head->cluster))
3578 delayed_refs->num_heads_ready--;
3579 list_del_init(&head->cluster);
3582 rb_erase(&ref->rb_node, &delayed_refs->root);
3583 delayed_refs->num_entries--;
3585 spin_unlock(&delayed_refs->lock);
3586 btrfs_put_delayed_ref(ref);
3589 spin_lock(&delayed_refs->lock);
3592 spin_unlock(&delayed_refs->lock);
3597 static void btrfs_destroy_pending_snapshots(struct btrfs_transaction *t)
3599 struct btrfs_pending_snapshot *snapshot;
3600 struct list_head splice;
3602 INIT_LIST_HEAD(&splice);
3604 list_splice_init(&t->pending_snapshots, &splice);
3606 while (!list_empty(&splice)) {
3607 snapshot = list_entry(splice.next,
3608 struct btrfs_pending_snapshot,
3611 list_del_init(&snapshot->list);
3617 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
3619 struct btrfs_inode *btrfs_inode;
3620 struct list_head splice;
3622 INIT_LIST_HEAD(&splice);
3624 spin_lock(&root->fs_info->delalloc_lock);
3625 list_splice_init(&root->fs_info->delalloc_inodes, &splice);
3627 while (!list_empty(&splice)) {
3628 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3631 list_del_init(&btrfs_inode->delalloc_inodes);
3633 btrfs_invalidate_inodes(btrfs_inode->root);
3636 spin_unlock(&root->fs_info->delalloc_lock);
3639 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
3640 struct extent_io_tree *dirty_pages,
3645 struct inode *btree_inode = root->fs_info->btree_inode;
3646 struct extent_buffer *eb;
3650 unsigned long index;
3653 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
3658 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
3659 while (start <= end) {
3660 index = start >> PAGE_CACHE_SHIFT;
3661 start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
3662 page = find_get_page(btree_inode->i_mapping, index);
3665 offset = page_offset(page);
3667 spin_lock(&dirty_pages->buffer_lock);
3668 eb = radix_tree_lookup(
3669 &(&BTRFS_I(page->mapping->host)->io_tree)->buffer,
3670 offset >> PAGE_CACHE_SHIFT);
3671 spin_unlock(&dirty_pages->buffer_lock);
3673 ret = test_and_clear_bit(EXTENT_BUFFER_DIRTY,
3675 if (PageWriteback(page))
3676 end_page_writeback(page);
3679 if (PageDirty(page)) {
3680 clear_page_dirty_for_io(page);
3681 spin_lock_irq(&page->mapping->tree_lock);
3682 radix_tree_tag_clear(&page->mapping->page_tree,
3684 PAGECACHE_TAG_DIRTY);
3685 spin_unlock_irq(&page->mapping->tree_lock);
3689 page_cache_release(page);
3696 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
3697 struct extent_io_tree *pinned_extents)
3699 struct extent_io_tree *unpin;
3705 unpin = pinned_extents;
3708 ret = find_first_extent_bit(unpin, 0, &start, &end,
3709 EXTENT_DIRTY, NULL);
3714 if (btrfs_test_opt(root, DISCARD))
3715 ret = btrfs_error_discard_extent(root, start,
3719 clear_extent_dirty(unpin, start, end, GFP_NOFS);
3720 btrfs_error_unpin_extent_range(root, start, end);
3725 if (unpin == &root->fs_info->freed_extents[0])
3726 unpin = &root->fs_info->freed_extents[1];
3728 unpin = &root->fs_info->freed_extents[0];
3736 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
3737 struct btrfs_root *root)
3739 btrfs_destroy_delayed_refs(cur_trans, root);
3740 btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
3741 cur_trans->dirty_pages.dirty_bytes);
3743 /* FIXME: cleanup wait for commit */
3744 cur_trans->in_commit = 1;
3745 cur_trans->blocked = 1;
3746 wake_up(&root->fs_info->transaction_blocked_wait);
3748 cur_trans->blocked = 0;
3749 wake_up(&root->fs_info->transaction_wait);
3751 cur_trans->commit_done = 1;
3752 wake_up(&cur_trans->commit_wait);
3754 btrfs_destroy_delayed_inodes(root);
3755 btrfs_assert_delayed_root_empty(root);
3757 btrfs_destroy_pending_snapshots(cur_trans);
3759 btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
3761 btrfs_destroy_pinned_extent(root,
3762 root->fs_info->pinned_extents);
3765 memset(cur_trans, 0, sizeof(*cur_trans));
3766 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
3770 int btrfs_cleanup_transaction(struct btrfs_root *root)
3772 struct btrfs_transaction *t;
3775 mutex_lock(&root->fs_info->transaction_kthread_mutex);
3777 spin_lock(&root->fs_info->trans_lock);
3778 list_splice_init(&root->fs_info->trans_list, &list);
3779 root->fs_info->trans_no_join = 1;
3780 spin_unlock(&root->fs_info->trans_lock);
3782 while (!list_empty(&list)) {
3783 t = list_entry(list.next, struct btrfs_transaction, list);
3787 btrfs_destroy_ordered_operations(root);
3789 btrfs_destroy_ordered_extents(root);
3791 btrfs_destroy_delayed_refs(t, root);
3793 btrfs_block_rsv_release(root,
3794 &root->fs_info->trans_block_rsv,
3795 t->dirty_pages.dirty_bytes);
3797 /* FIXME: cleanup wait for commit */
3801 if (waitqueue_active(&root->fs_info->transaction_blocked_wait))
3802 wake_up(&root->fs_info->transaction_blocked_wait);
3806 if (waitqueue_active(&root->fs_info->transaction_wait))
3807 wake_up(&root->fs_info->transaction_wait);
3811 if (waitqueue_active(&t->commit_wait))
3812 wake_up(&t->commit_wait);
3814 btrfs_destroy_delayed_inodes(root);
3815 btrfs_assert_delayed_root_empty(root);
3817 btrfs_destroy_pending_snapshots(t);
3819 btrfs_destroy_delalloc_inodes(root);
3821 spin_lock(&root->fs_info->trans_lock);
3822 root->fs_info->running_transaction = NULL;
3823 spin_unlock(&root->fs_info->trans_lock);
3825 btrfs_destroy_marked_extents(root, &t->dirty_pages,
3828 btrfs_destroy_pinned_extent(root,
3829 root->fs_info->pinned_extents);
3831 atomic_set(&t->use_count, 0);
3832 list_del_init(&t->list);
3833 memset(t, 0, sizeof(*t));
3834 kmem_cache_free(btrfs_transaction_cachep, t);
3837 spin_lock(&root->fs_info->trans_lock);
3838 root->fs_info->trans_no_join = 0;
3839 spin_unlock(&root->fs_info->trans_lock);
3840 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
3845 static struct extent_io_ops btree_extent_io_ops = {
3846 .readpage_end_io_hook = btree_readpage_end_io_hook,
3847 .readpage_io_failed_hook = btree_io_failed_hook,
3848 .submit_bio_hook = btree_submit_bio_hook,
3849 /* note we're sharing with inode.c for the merge bio hook */
3850 .merge_bio_hook = btrfs_merge_bio_hook,