2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
29 #include <linux/slab.h>
30 #include <linux/migrate.h>
31 #include <linux/ratelimit.h>
32 #include <linux/uuid.h>
33 #include <linux/semaphore.h>
34 #include <asm/unaligned.h>
38 #include "transaction.h"
39 #include "btrfs_inode.h"
41 #include "print-tree.h"
42 #include "async-thread.h"
45 #include "free-space-cache.h"
46 #include "inode-map.h"
47 #include "check-integrity.h"
48 #include "rcu-string.h"
49 #include "dev-replace.h"
54 #include <asm/cpufeature.h>
57 static struct extent_io_ops btree_extent_io_ops;
58 static void end_workqueue_fn(struct btrfs_work *work);
59 static void free_fs_root(struct btrfs_root *root);
60 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
62 static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
63 struct btrfs_root *root);
64 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
65 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
66 struct btrfs_root *root);
67 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
68 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
69 struct extent_io_tree *dirty_pages,
71 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
72 struct extent_io_tree *pinned_extents);
73 static int btrfs_cleanup_transaction(struct btrfs_root *root);
74 static void btrfs_error_commit_super(struct btrfs_root *root);
77 * end_io_wq structs are used to do processing in task context when an IO is
78 * complete. This is used during reads to verify checksums, and it is used
79 * by writes to insert metadata for new file extents after IO is complete.
85 struct btrfs_fs_info *info;
88 struct list_head list;
89 struct btrfs_work work;
93 * async submit bios are used to offload expensive checksumming
94 * onto the worker threads. They checksum file and metadata bios
95 * just before they are sent down the IO stack.
97 struct async_submit_bio {
100 struct list_head list;
101 extent_submit_bio_hook_t *submit_bio_start;
102 extent_submit_bio_hook_t *submit_bio_done;
105 unsigned long bio_flags;
107 * bio_offset is optional, can be used if the pages in the bio
108 * can't tell us where in the file the bio should go
111 struct btrfs_work work;
116 * Lockdep class keys for extent_buffer->lock's in this root. For a given
117 * eb, the lockdep key is determined by the btrfs_root it belongs to and
118 * the level the eb occupies in the tree.
120 * Different roots are used for different purposes and may nest inside each
121 * other and they require separate keysets. As lockdep keys should be
122 * static, assign keysets according to the purpose of the root as indicated
123 * by btrfs_root->objectid. This ensures that all special purpose roots
124 * have separate keysets.
126 * Lock-nesting across peer nodes is always done with the immediate parent
127 * node locked thus preventing deadlock. As lockdep doesn't know this, use
128 * subclass to avoid triggering lockdep warning in such cases.
130 * The key is set by the readpage_end_io_hook after the buffer has passed
131 * csum validation but before the pages are unlocked. It is also set by
132 * btrfs_init_new_buffer on freshly allocated blocks.
134 * We also add a check to make sure the highest level of the tree is the
135 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
136 * needs update as well.
138 #ifdef CONFIG_DEBUG_LOCK_ALLOC
139 # if BTRFS_MAX_LEVEL != 8
143 static struct btrfs_lockdep_keyset {
144 u64 id; /* root objectid */
145 const char *name_stem; /* lock name stem */
146 char names[BTRFS_MAX_LEVEL + 1][20];
147 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
148 } btrfs_lockdep_keysets[] = {
149 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
150 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
151 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
152 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
153 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
154 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
155 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
156 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
157 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
158 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
159 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" },
160 { .id = 0, .name_stem = "tree" },
163 void __init btrfs_init_lockdep(void)
167 /* initialize lockdep class names */
168 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
169 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
171 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
172 snprintf(ks->names[j], sizeof(ks->names[j]),
173 "btrfs-%s-%02d", ks->name_stem, j);
177 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
180 struct btrfs_lockdep_keyset *ks;
182 BUG_ON(level >= ARRAY_SIZE(ks->keys));
184 /* find the matching keyset, id 0 is the default entry */
185 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
186 if (ks->id == objectid)
189 lockdep_set_class_and_name(&eb->lock,
190 &ks->keys[level], ks->names[level]);
196 * extents on the btree inode are pretty simple, there's one extent
197 * that covers the entire device
199 static struct extent_map *btree_get_extent(struct inode *inode,
200 struct page *page, size_t pg_offset, u64 start, u64 len,
203 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
204 struct extent_map *em;
207 read_lock(&em_tree->lock);
208 em = lookup_extent_mapping(em_tree, start, len);
211 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
212 read_unlock(&em_tree->lock);
215 read_unlock(&em_tree->lock);
217 em = alloc_extent_map();
219 em = ERR_PTR(-ENOMEM);
224 em->block_len = (u64)-1;
226 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
228 write_lock(&em_tree->lock);
229 ret = add_extent_mapping(em_tree, em, 0);
230 if (ret == -EEXIST) {
232 em = lookup_extent_mapping(em_tree, start, len);
239 write_unlock(&em_tree->lock);
245 u32 btrfs_csum_data(char *data, u32 seed, size_t len)
247 return btrfs_crc32c(seed, data, len);
250 void btrfs_csum_final(u32 crc, char *result)
252 put_unaligned_le32(~crc, result);
256 * compute the csum for a btree block, and either verify it or write it
257 * into the csum field of the block.
259 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
262 u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
265 unsigned long cur_len;
266 unsigned long offset = BTRFS_CSUM_SIZE;
268 unsigned long map_start;
269 unsigned long map_len;
272 unsigned long inline_result;
274 len = buf->len - offset;
276 err = map_private_extent_buffer(buf, offset, 32,
277 &kaddr, &map_start, &map_len);
280 cur_len = min(len, map_len - (offset - map_start));
281 crc = btrfs_csum_data(kaddr + offset - map_start,
286 if (csum_size > sizeof(inline_result)) {
287 result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
291 result = (char *)&inline_result;
294 btrfs_csum_final(crc, result);
297 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
300 memcpy(&found, result, csum_size);
302 read_extent_buffer(buf, &val, 0, csum_size);
303 printk_ratelimited(KERN_INFO
304 "BTRFS: %s checksum verify failed on %llu wanted %X found %X "
306 root->fs_info->sb->s_id, buf->start,
307 val, found, btrfs_header_level(buf));
308 if (result != (char *)&inline_result)
313 write_extent_buffer(buf, result, 0, csum_size);
315 if (result != (char *)&inline_result)
321 * we can't consider a given block up to date unless the transid of the
322 * block matches the transid in the parent node's pointer. This is how we
323 * detect blocks that either didn't get written at all or got written
324 * in the wrong place.
326 static int verify_parent_transid(struct extent_io_tree *io_tree,
327 struct extent_buffer *eb, u64 parent_transid,
330 struct extent_state *cached_state = NULL;
332 bool need_lock = (current->journal_info ==
333 (void *)BTRFS_SEND_TRANS_STUB);
335 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
342 btrfs_tree_read_lock(eb);
343 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
346 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
348 if (extent_buffer_uptodate(eb) &&
349 btrfs_header_generation(eb) == parent_transid) {
353 printk_ratelimited("parent transid verify failed on %llu wanted %llu "
355 eb->start, parent_transid, btrfs_header_generation(eb));
359 * Things reading via commit roots that don't have normal protection,
360 * like send, can have a really old block in cache that may point at a
361 * block that has been free'd and re-allocated. So don't clear uptodate
362 * if we find an eb that is under IO (dirty/writeback) because we could
363 * end up reading in the stale data and then writing it back out and
364 * making everybody very sad.
366 if (!extent_buffer_under_io(eb))
367 clear_extent_buffer_uptodate(eb);
369 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
370 &cached_state, GFP_NOFS);
371 btrfs_tree_read_unlock_blocking(eb);
376 * Return 0 if the superblock checksum type matches the checksum value of that
377 * algorithm. Pass the raw disk superblock data.
379 static int btrfs_check_super_csum(char *raw_disk_sb)
381 struct btrfs_super_block *disk_sb =
382 (struct btrfs_super_block *)raw_disk_sb;
383 u16 csum_type = btrfs_super_csum_type(disk_sb);
386 if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
388 const int csum_size = sizeof(crc);
389 char result[csum_size];
392 * The super_block structure does not span the whole
393 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
394 * is filled with zeros and is included in the checkum.
396 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
397 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
398 btrfs_csum_final(crc, result);
400 if (memcmp(raw_disk_sb, result, csum_size))
403 if (ret && btrfs_super_generation(disk_sb) < 10) {
405 "BTRFS: super block crcs don't match, older mkfs detected\n");
410 if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
411 printk(KERN_ERR "BTRFS: unsupported checksum algorithm %u\n",
420 * helper to read a given tree block, doing retries as required when
421 * the checksums don't match and we have alternate mirrors to try.
423 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
424 struct extent_buffer *eb,
425 u64 start, u64 parent_transid)
427 struct extent_io_tree *io_tree;
432 int failed_mirror = 0;
434 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
435 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
437 ret = read_extent_buffer_pages(io_tree, eb, start,
439 btree_get_extent, mirror_num);
441 if (!verify_parent_transid(io_tree, eb,
449 * This buffer's crc is fine, but its contents are corrupted, so
450 * there is no reason to read the other copies, they won't be
453 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
456 num_copies = btrfs_num_copies(root->fs_info,
461 if (!failed_mirror) {
463 failed_mirror = eb->read_mirror;
467 if (mirror_num == failed_mirror)
470 if (mirror_num > num_copies)
474 if (failed && !ret && failed_mirror)
475 repair_eb_io_failure(root, eb, failed_mirror);
481 * checksum a dirty tree block before IO. This has extra checks to make sure
482 * we only fill in the checksum field in the first page of a multi-page block
485 static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
487 u64 start = page_offset(page);
489 struct extent_buffer *eb;
491 eb = (struct extent_buffer *)page->private;
492 if (page != eb->pages[0])
494 found_start = btrfs_header_bytenr(eb);
495 if (WARN_ON(found_start != start || !PageUptodate(page)))
497 csum_tree_block(root, eb, 0);
501 static int check_tree_block_fsid(struct btrfs_root *root,
502 struct extent_buffer *eb)
504 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
505 u8 fsid[BTRFS_UUID_SIZE];
508 read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
510 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
514 fs_devices = fs_devices->seed;
519 #define CORRUPT(reason, eb, root, slot) \
520 btrfs_crit(root->fs_info, "corrupt leaf, %s: block=%llu," \
521 "root=%llu, slot=%d", reason, \
522 btrfs_header_bytenr(eb), root->objectid, slot)
524 static noinline int check_leaf(struct btrfs_root *root,
525 struct extent_buffer *leaf)
527 struct btrfs_key key;
528 struct btrfs_key leaf_key;
529 u32 nritems = btrfs_header_nritems(leaf);
535 /* Check the 0 item */
536 if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
537 BTRFS_LEAF_DATA_SIZE(root)) {
538 CORRUPT("invalid item offset size pair", leaf, root, 0);
543 * Check to make sure each items keys are in the correct order and their
544 * offsets make sense. We only have to loop through nritems-1 because
545 * we check the current slot against the next slot, which verifies the
546 * next slot's offset+size makes sense and that the current's slot
549 for (slot = 0; slot < nritems - 1; slot++) {
550 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
551 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
553 /* Make sure the keys are in the right order */
554 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
555 CORRUPT("bad key order", leaf, root, slot);
560 * Make sure the offset and ends are right, remember that the
561 * item data starts at the end of the leaf and grows towards the
564 if (btrfs_item_offset_nr(leaf, slot) !=
565 btrfs_item_end_nr(leaf, slot + 1)) {
566 CORRUPT("slot offset bad", leaf, root, slot);
571 * Check to make sure that we don't point outside of the leaf,
572 * just incase all the items are consistent to eachother, but
573 * all point outside of the leaf.
575 if (btrfs_item_end_nr(leaf, slot) >
576 BTRFS_LEAF_DATA_SIZE(root)) {
577 CORRUPT("slot end outside of leaf", leaf, root, slot);
585 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
586 u64 phy_offset, struct page *page,
587 u64 start, u64 end, int mirror)
591 struct extent_buffer *eb;
592 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
599 eb = (struct extent_buffer *)page->private;
601 /* the pending IO might have been the only thing that kept this buffer
602 * in memory. Make sure we have a ref for all this other checks
604 extent_buffer_get(eb);
606 reads_done = atomic_dec_and_test(&eb->io_pages);
610 eb->read_mirror = mirror;
611 if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
616 found_start = btrfs_header_bytenr(eb);
617 if (found_start != eb->start) {
618 printk_ratelimited(KERN_INFO "BTRFS: bad tree block start "
620 found_start, eb->start);
624 if (check_tree_block_fsid(root, eb)) {
625 printk_ratelimited(KERN_INFO "BTRFS: bad fsid on block %llu\n",
630 found_level = btrfs_header_level(eb);
631 if (found_level >= BTRFS_MAX_LEVEL) {
632 btrfs_info(root->fs_info, "bad tree block level %d",
633 (int)btrfs_header_level(eb));
638 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
641 ret = csum_tree_block(root, eb, 1);
648 * If this is a leaf block and it is corrupt, set the corrupt bit so
649 * that we don't try and read the other copies of this block, just
652 if (found_level == 0 && check_leaf(root, eb)) {
653 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
658 set_extent_buffer_uptodate(eb);
661 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
662 btree_readahead_hook(root, eb, eb->start, ret);
666 * our io error hook is going to dec the io pages
667 * again, we have to make sure it has something
670 atomic_inc(&eb->io_pages);
671 clear_extent_buffer_uptodate(eb);
673 free_extent_buffer(eb);
678 static int btree_io_failed_hook(struct page *page, int failed_mirror)
680 struct extent_buffer *eb;
681 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
683 eb = (struct extent_buffer *)page->private;
684 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
685 eb->read_mirror = failed_mirror;
686 atomic_dec(&eb->io_pages);
687 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
688 btree_readahead_hook(root, eb, eb->start, -EIO);
689 return -EIO; /* we fixed nothing */
692 static void end_workqueue_bio(struct bio *bio, int err)
694 struct end_io_wq *end_io_wq = bio->bi_private;
695 struct btrfs_fs_info *fs_info;
697 fs_info = end_io_wq->info;
698 end_io_wq->error = err;
699 btrfs_init_work(&end_io_wq->work, end_workqueue_fn, NULL, NULL);
701 if (bio->bi_rw & REQ_WRITE) {
702 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
703 btrfs_queue_work(fs_info->endio_meta_write_workers,
705 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
706 btrfs_queue_work(fs_info->endio_freespace_worker,
708 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
709 btrfs_queue_work(fs_info->endio_raid56_workers,
712 btrfs_queue_work(fs_info->endio_write_workers,
715 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
716 btrfs_queue_work(fs_info->endio_raid56_workers,
718 else if (end_io_wq->metadata)
719 btrfs_queue_work(fs_info->endio_meta_workers,
722 btrfs_queue_work(fs_info->endio_workers,
728 * For the metadata arg you want
731 * 1 - if normal metadta
732 * 2 - if writing to the free space cache area
733 * 3 - raid parity work
735 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
738 struct end_io_wq *end_io_wq;
739 end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
743 end_io_wq->private = bio->bi_private;
744 end_io_wq->end_io = bio->bi_end_io;
745 end_io_wq->info = info;
746 end_io_wq->error = 0;
747 end_io_wq->bio = bio;
748 end_io_wq->metadata = metadata;
750 bio->bi_private = end_io_wq;
751 bio->bi_end_io = end_workqueue_bio;
755 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
757 unsigned long limit = min_t(unsigned long,
758 info->thread_pool_size,
759 info->fs_devices->open_devices);
763 static void run_one_async_start(struct btrfs_work *work)
765 struct async_submit_bio *async;
768 async = container_of(work, struct async_submit_bio, work);
769 ret = async->submit_bio_start(async->inode, async->rw, async->bio,
770 async->mirror_num, async->bio_flags,
776 static void run_one_async_done(struct btrfs_work *work)
778 struct btrfs_fs_info *fs_info;
779 struct async_submit_bio *async;
782 async = container_of(work, struct async_submit_bio, work);
783 fs_info = BTRFS_I(async->inode)->root->fs_info;
785 limit = btrfs_async_submit_limit(fs_info);
786 limit = limit * 2 / 3;
788 if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
789 waitqueue_active(&fs_info->async_submit_wait))
790 wake_up(&fs_info->async_submit_wait);
792 /* If an error occured we just want to clean up the bio and move on */
794 bio_endio(async->bio, async->error);
798 async->submit_bio_done(async->inode, async->rw, async->bio,
799 async->mirror_num, async->bio_flags,
803 static void run_one_async_free(struct btrfs_work *work)
805 struct async_submit_bio *async;
807 async = container_of(work, struct async_submit_bio, work);
811 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
812 int rw, struct bio *bio, int mirror_num,
813 unsigned long bio_flags,
815 extent_submit_bio_hook_t *submit_bio_start,
816 extent_submit_bio_hook_t *submit_bio_done)
818 struct async_submit_bio *async;
820 async = kmalloc(sizeof(*async), GFP_NOFS);
824 async->inode = inode;
827 async->mirror_num = mirror_num;
828 async->submit_bio_start = submit_bio_start;
829 async->submit_bio_done = submit_bio_done;
831 btrfs_init_work(&async->work, run_one_async_start,
832 run_one_async_done, run_one_async_free);
834 async->bio_flags = bio_flags;
835 async->bio_offset = bio_offset;
839 atomic_inc(&fs_info->nr_async_submits);
842 btrfs_set_work_high_priority(&async->work);
844 btrfs_queue_work(fs_info->workers, &async->work);
846 while (atomic_read(&fs_info->async_submit_draining) &&
847 atomic_read(&fs_info->nr_async_submits)) {
848 wait_event(fs_info->async_submit_wait,
849 (atomic_read(&fs_info->nr_async_submits) == 0));
855 static int btree_csum_one_bio(struct bio *bio)
857 struct bio_vec *bvec;
858 struct btrfs_root *root;
861 bio_for_each_segment_all(bvec, bio, i) {
862 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
863 ret = csum_dirty_buffer(root, bvec->bv_page);
871 static int __btree_submit_bio_start(struct inode *inode, int rw,
872 struct bio *bio, int mirror_num,
873 unsigned long bio_flags,
877 * when we're called for a write, we're already in the async
878 * submission context. Just jump into btrfs_map_bio
880 return btree_csum_one_bio(bio);
883 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
884 int mirror_num, unsigned long bio_flags,
890 * when we're called for a write, we're already in the async
891 * submission context. Just jump into btrfs_map_bio
893 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
899 static int check_async_write(struct inode *inode, unsigned long bio_flags)
901 if (bio_flags & EXTENT_BIO_TREE_LOG)
910 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
911 int mirror_num, unsigned long bio_flags,
914 int async = check_async_write(inode, bio_flags);
917 if (!(rw & REQ_WRITE)) {
919 * called for a read, do the setup so that checksum validation
920 * can happen in the async kernel threads
922 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
926 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
929 ret = btree_csum_one_bio(bio);
932 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
936 * kthread helpers are used to submit writes so that
937 * checksumming can happen in parallel across all CPUs
939 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
940 inode, rw, bio, mirror_num, 0,
942 __btree_submit_bio_start,
943 __btree_submit_bio_done);
953 #ifdef CONFIG_MIGRATION
954 static int btree_migratepage(struct address_space *mapping,
955 struct page *newpage, struct page *page,
956 enum migrate_mode mode)
959 * we can't safely write a btree page from here,
960 * we haven't done the locking hook
965 * Buffers may be managed in a filesystem specific way.
966 * We must have no buffers or drop them.
968 if (page_has_private(page) &&
969 !try_to_release_page(page, GFP_KERNEL))
971 return migrate_page(mapping, newpage, page, mode);
976 static int btree_writepages(struct address_space *mapping,
977 struct writeback_control *wbc)
979 struct btrfs_fs_info *fs_info;
982 if (wbc->sync_mode == WB_SYNC_NONE) {
984 if (wbc->for_kupdate)
987 fs_info = BTRFS_I(mapping->host)->root->fs_info;
988 /* this is a bit racy, but that's ok */
989 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
990 BTRFS_DIRTY_METADATA_THRESH);
994 return btree_write_cache_pages(mapping, wbc);
997 static int btree_readpage(struct file *file, struct page *page)
999 struct extent_io_tree *tree;
1000 tree = &BTRFS_I(page->mapping->host)->io_tree;
1001 return extent_read_full_page(tree, page, btree_get_extent, 0);
1004 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
1006 if (PageWriteback(page) || PageDirty(page))
1009 return try_release_extent_buffer(page);
1012 static void btree_invalidatepage(struct page *page, unsigned int offset,
1013 unsigned int length)
1015 struct extent_io_tree *tree;
1016 tree = &BTRFS_I(page->mapping->host)->io_tree;
1017 extent_invalidatepage(tree, page, offset);
1018 btree_releasepage(page, GFP_NOFS);
1019 if (PagePrivate(page)) {
1020 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
1021 "page private not zero on page %llu",
1022 (unsigned long long)page_offset(page));
1023 ClearPagePrivate(page);
1024 set_page_private(page, 0);
1025 page_cache_release(page);
1029 static int btree_set_page_dirty(struct page *page)
1032 struct extent_buffer *eb;
1034 BUG_ON(!PagePrivate(page));
1035 eb = (struct extent_buffer *)page->private;
1037 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1038 BUG_ON(!atomic_read(&eb->refs));
1039 btrfs_assert_tree_locked(eb);
1041 return __set_page_dirty_nobuffers(page);
1044 static const struct address_space_operations btree_aops = {
1045 .readpage = btree_readpage,
1046 .writepages = btree_writepages,
1047 .releasepage = btree_releasepage,
1048 .invalidatepage = btree_invalidatepage,
1049 #ifdef CONFIG_MIGRATION
1050 .migratepage = btree_migratepage,
1052 .set_page_dirty = btree_set_page_dirty,
1055 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1058 struct extent_buffer *buf = NULL;
1059 struct inode *btree_inode = root->fs_info->btree_inode;
1062 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1065 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1066 buf, 0, WAIT_NONE, btree_get_extent, 0);
1067 free_extent_buffer(buf);
1071 int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1072 int mirror_num, struct extent_buffer **eb)
1074 struct extent_buffer *buf = NULL;
1075 struct inode *btree_inode = root->fs_info->btree_inode;
1076 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1079 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1083 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1085 ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1086 btree_get_extent, mirror_num);
1088 free_extent_buffer(buf);
1092 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1093 free_extent_buffer(buf);
1095 } else if (extent_buffer_uptodate(buf)) {
1098 free_extent_buffer(buf);
1103 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
1104 u64 bytenr, u32 blocksize)
1106 return find_extent_buffer(root->fs_info, bytenr);
1109 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1110 u64 bytenr, u32 blocksize)
1112 return alloc_extent_buffer(root->fs_info, bytenr, blocksize);
1116 int btrfs_write_tree_block(struct extent_buffer *buf)
1118 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1119 buf->start + buf->len - 1);
1122 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1124 return filemap_fdatawait_range(buf->pages[0]->mapping,
1125 buf->start, buf->start + buf->len - 1);
1128 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
1129 u32 blocksize, u64 parent_transid)
1131 struct extent_buffer *buf = NULL;
1134 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1138 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
1140 free_extent_buffer(buf);
1147 void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1148 struct extent_buffer *buf)
1150 struct btrfs_fs_info *fs_info = root->fs_info;
1152 if (btrfs_header_generation(buf) ==
1153 fs_info->running_transaction->transid) {
1154 btrfs_assert_tree_locked(buf);
1156 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1157 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
1159 fs_info->dirty_metadata_batch);
1160 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1161 btrfs_set_lock_blocking(buf);
1162 clear_extent_buffer_dirty(buf);
1167 static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1169 struct btrfs_subvolume_writers *writers;
1172 writers = kmalloc(sizeof(*writers), GFP_NOFS);
1174 return ERR_PTR(-ENOMEM);
1176 ret = percpu_counter_init(&writers->counter, 0);
1179 return ERR_PTR(ret);
1182 init_waitqueue_head(&writers->wait);
1187 btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1189 percpu_counter_destroy(&writers->counter);
1193 static void __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
1194 u32 stripesize, struct btrfs_root *root,
1195 struct btrfs_fs_info *fs_info,
1199 root->commit_root = NULL;
1200 root->sectorsize = sectorsize;
1201 root->nodesize = nodesize;
1202 root->leafsize = leafsize;
1203 root->stripesize = stripesize;
1205 root->track_dirty = 0;
1207 root->orphan_item_inserted = 0;
1208 root->orphan_cleanup_state = 0;
1210 root->objectid = objectid;
1211 root->last_trans = 0;
1212 root->highest_objectid = 0;
1213 root->nr_delalloc_inodes = 0;
1214 root->nr_ordered_extents = 0;
1216 root->inode_tree = RB_ROOT;
1217 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1218 root->block_rsv = NULL;
1219 root->orphan_block_rsv = NULL;
1221 INIT_LIST_HEAD(&root->dirty_list);
1222 INIT_LIST_HEAD(&root->root_list);
1223 INIT_LIST_HEAD(&root->delalloc_inodes);
1224 INIT_LIST_HEAD(&root->delalloc_root);
1225 INIT_LIST_HEAD(&root->ordered_extents);
1226 INIT_LIST_HEAD(&root->ordered_root);
1227 INIT_LIST_HEAD(&root->logged_list[0]);
1228 INIT_LIST_HEAD(&root->logged_list[1]);
1229 spin_lock_init(&root->orphan_lock);
1230 spin_lock_init(&root->inode_lock);
1231 spin_lock_init(&root->delalloc_lock);
1232 spin_lock_init(&root->ordered_extent_lock);
1233 spin_lock_init(&root->accounting_lock);
1234 spin_lock_init(&root->log_extents_lock[0]);
1235 spin_lock_init(&root->log_extents_lock[1]);
1236 mutex_init(&root->objectid_mutex);
1237 mutex_init(&root->log_mutex);
1238 mutex_init(&root->ordered_extent_mutex);
1239 mutex_init(&root->delalloc_mutex);
1240 init_waitqueue_head(&root->log_writer_wait);
1241 init_waitqueue_head(&root->log_commit_wait[0]);
1242 init_waitqueue_head(&root->log_commit_wait[1]);
1243 INIT_LIST_HEAD(&root->log_ctxs[0]);
1244 INIT_LIST_HEAD(&root->log_ctxs[1]);
1245 atomic_set(&root->log_commit[0], 0);
1246 atomic_set(&root->log_commit[1], 0);
1247 atomic_set(&root->log_writers, 0);
1248 atomic_set(&root->log_batch, 0);
1249 atomic_set(&root->orphan_inodes, 0);
1250 atomic_set(&root->refs, 1);
1251 atomic_set(&root->will_be_snapshoted, 0);
1252 root->log_transid = 0;
1253 root->log_transid_committed = -1;
1254 root->last_log_commit = 0;
1256 extent_io_tree_init(&root->dirty_log_pages,
1257 fs_info->btree_inode->i_mapping);
1259 memset(&root->root_key, 0, sizeof(root->root_key));
1260 memset(&root->root_item, 0, sizeof(root->root_item));
1261 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1262 memset(&root->root_kobj, 0, sizeof(root->root_kobj));
1264 root->defrag_trans_start = fs_info->generation;
1266 root->defrag_trans_start = 0;
1267 init_completion(&root->kobj_unregister);
1268 root->defrag_running = 0;
1269 root->root_key.objectid = objectid;
1272 spin_lock_init(&root->root_item_lock);
1275 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
1277 struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
1279 root->fs_info = fs_info;
1283 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1284 /* Should only be used by the testing infrastructure */
1285 struct btrfs_root *btrfs_alloc_dummy_root(void)
1287 struct btrfs_root *root;
1289 root = btrfs_alloc_root(NULL);
1291 return ERR_PTR(-ENOMEM);
1292 __setup_root(4096, 4096, 4096, 4096, root, NULL, 1);
1293 root->dummy_root = 1;
1299 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1300 struct btrfs_fs_info *fs_info,
1303 struct extent_buffer *leaf;
1304 struct btrfs_root *tree_root = fs_info->tree_root;
1305 struct btrfs_root *root;
1306 struct btrfs_key key;
1310 root = btrfs_alloc_root(fs_info);
1312 return ERR_PTR(-ENOMEM);
1314 __setup_root(tree_root->nodesize, tree_root->leafsize,
1315 tree_root->sectorsize, tree_root->stripesize,
1316 root, fs_info, objectid);
1317 root->root_key.objectid = objectid;
1318 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1319 root->root_key.offset = 0;
1321 leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
1322 0, objectid, NULL, 0, 0, 0);
1324 ret = PTR_ERR(leaf);
1329 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1330 btrfs_set_header_bytenr(leaf, leaf->start);
1331 btrfs_set_header_generation(leaf, trans->transid);
1332 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1333 btrfs_set_header_owner(leaf, objectid);
1336 write_extent_buffer(leaf, fs_info->fsid, btrfs_header_fsid(),
1338 write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
1339 btrfs_header_chunk_tree_uuid(leaf),
1341 btrfs_mark_buffer_dirty(leaf);
1343 root->commit_root = btrfs_root_node(root);
1344 root->track_dirty = 1;
1347 root->root_item.flags = 0;
1348 root->root_item.byte_limit = 0;
1349 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1350 btrfs_set_root_generation(&root->root_item, trans->transid);
1351 btrfs_set_root_level(&root->root_item, 0);
1352 btrfs_set_root_refs(&root->root_item, 1);
1353 btrfs_set_root_used(&root->root_item, leaf->len);
1354 btrfs_set_root_last_snapshot(&root->root_item, 0);
1355 btrfs_set_root_dirid(&root->root_item, 0);
1357 memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
1358 root->root_item.drop_level = 0;
1360 key.objectid = objectid;
1361 key.type = BTRFS_ROOT_ITEM_KEY;
1363 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1367 btrfs_tree_unlock(leaf);
1373 btrfs_tree_unlock(leaf);
1374 free_extent_buffer(leaf);
1378 return ERR_PTR(ret);
1381 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1382 struct btrfs_fs_info *fs_info)
1384 struct btrfs_root *root;
1385 struct btrfs_root *tree_root = fs_info->tree_root;
1386 struct extent_buffer *leaf;
1388 root = btrfs_alloc_root(fs_info);
1390 return ERR_PTR(-ENOMEM);
1392 __setup_root(tree_root->nodesize, tree_root->leafsize,
1393 tree_root->sectorsize, tree_root->stripesize,
1394 root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1396 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1397 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1398 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1400 * log trees do not get reference counted because they go away
1401 * before a real commit is actually done. They do store pointers
1402 * to file data extents, and those reference counts still get
1403 * updated (along with back refs to the log tree).
1407 leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
1408 BTRFS_TREE_LOG_OBJECTID, NULL,
1412 return ERR_CAST(leaf);
1415 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1416 btrfs_set_header_bytenr(leaf, leaf->start);
1417 btrfs_set_header_generation(leaf, trans->transid);
1418 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1419 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1422 write_extent_buffer(root->node, root->fs_info->fsid,
1423 btrfs_header_fsid(), BTRFS_FSID_SIZE);
1424 btrfs_mark_buffer_dirty(root->node);
1425 btrfs_tree_unlock(root->node);
1429 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1430 struct btrfs_fs_info *fs_info)
1432 struct btrfs_root *log_root;
1434 log_root = alloc_log_tree(trans, fs_info);
1435 if (IS_ERR(log_root))
1436 return PTR_ERR(log_root);
1437 WARN_ON(fs_info->log_root_tree);
1438 fs_info->log_root_tree = log_root;
1442 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1443 struct btrfs_root *root)
1445 struct btrfs_root *log_root;
1446 struct btrfs_inode_item *inode_item;
1448 log_root = alloc_log_tree(trans, root->fs_info);
1449 if (IS_ERR(log_root))
1450 return PTR_ERR(log_root);
1452 log_root->last_trans = trans->transid;
1453 log_root->root_key.offset = root->root_key.objectid;
1455 inode_item = &log_root->root_item.inode;
1456 btrfs_set_stack_inode_generation(inode_item, 1);
1457 btrfs_set_stack_inode_size(inode_item, 3);
1458 btrfs_set_stack_inode_nlink(inode_item, 1);
1459 btrfs_set_stack_inode_nbytes(inode_item, root->leafsize);
1460 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1462 btrfs_set_root_node(&log_root->root_item, log_root->node);
1464 WARN_ON(root->log_root);
1465 root->log_root = log_root;
1466 root->log_transid = 0;
1467 root->log_transid_committed = -1;
1468 root->last_log_commit = 0;
1472 static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1473 struct btrfs_key *key)
1475 struct btrfs_root *root;
1476 struct btrfs_fs_info *fs_info = tree_root->fs_info;
1477 struct btrfs_path *path;
1482 path = btrfs_alloc_path();
1484 return ERR_PTR(-ENOMEM);
1486 root = btrfs_alloc_root(fs_info);
1492 __setup_root(tree_root->nodesize, tree_root->leafsize,
1493 tree_root->sectorsize, tree_root->stripesize,
1494 root, fs_info, key->objectid);
1496 ret = btrfs_find_root(tree_root, key, path,
1497 &root->root_item, &root->root_key);
1504 generation = btrfs_root_generation(&root->root_item);
1505 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1506 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1507 blocksize, generation);
1511 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1515 root->commit_root = btrfs_root_node(root);
1517 btrfs_free_path(path);
1521 free_extent_buffer(root->node);
1525 root = ERR_PTR(ret);
1529 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1530 struct btrfs_key *location)
1532 struct btrfs_root *root;
1534 root = btrfs_read_tree_root(tree_root, location);
1538 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1540 btrfs_check_and_init_root_item(&root->root_item);
1546 int btrfs_init_fs_root(struct btrfs_root *root)
1549 struct btrfs_subvolume_writers *writers;
1551 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1552 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1554 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1559 writers = btrfs_alloc_subvolume_writers();
1560 if (IS_ERR(writers)) {
1561 ret = PTR_ERR(writers);
1564 root->subv_writers = writers;
1566 btrfs_init_free_ino_ctl(root);
1567 spin_lock_init(&root->cache_lock);
1568 init_waitqueue_head(&root->cache_wait);
1570 ret = get_anon_bdev(&root->anon_dev);
1576 btrfs_free_subvolume_writers(root->subv_writers);
1578 kfree(root->free_ino_ctl);
1579 kfree(root->free_ino_pinned);
1583 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1586 struct btrfs_root *root;
1588 spin_lock(&fs_info->fs_roots_radix_lock);
1589 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1590 (unsigned long)root_id);
1591 spin_unlock(&fs_info->fs_roots_radix_lock);
1595 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1596 struct btrfs_root *root)
1600 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1604 spin_lock(&fs_info->fs_roots_radix_lock);
1605 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1606 (unsigned long)root->root_key.objectid,
1610 spin_unlock(&fs_info->fs_roots_radix_lock);
1611 radix_tree_preload_end();
1616 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1617 struct btrfs_key *location,
1620 struct btrfs_root *root;
1623 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1624 return fs_info->tree_root;
1625 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1626 return fs_info->extent_root;
1627 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1628 return fs_info->chunk_root;
1629 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1630 return fs_info->dev_root;
1631 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1632 return fs_info->csum_root;
1633 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1634 return fs_info->quota_root ? fs_info->quota_root :
1636 if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1637 return fs_info->uuid_root ? fs_info->uuid_root :
1640 root = btrfs_lookup_fs_root(fs_info, location->objectid);
1642 if (check_ref && btrfs_root_refs(&root->root_item) == 0)
1643 return ERR_PTR(-ENOENT);
1647 root = btrfs_read_fs_root(fs_info->tree_root, location);
1651 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1656 ret = btrfs_init_fs_root(root);
1660 ret = btrfs_find_item(fs_info->tree_root, NULL, BTRFS_ORPHAN_OBJECTID,
1661 location->objectid, BTRFS_ORPHAN_ITEM_KEY, NULL);
1665 root->orphan_item_inserted = 1;
1667 ret = btrfs_insert_fs_root(fs_info, root);
1669 if (ret == -EEXIST) {
1678 return ERR_PTR(ret);
1681 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1683 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1685 struct btrfs_device *device;
1686 struct backing_dev_info *bdi;
1689 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1692 bdi = blk_get_backing_dev_info(device->bdev);
1693 if (bdi && bdi_congested(bdi, bdi_bits)) {
1703 * If this fails, caller must call bdi_destroy() to get rid of the
1706 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1710 bdi->capabilities = BDI_CAP_MAP_COPY;
1711 err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
1715 bdi->ra_pages = default_backing_dev_info.ra_pages;
1716 bdi->congested_fn = btrfs_congested_fn;
1717 bdi->congested_data = info;
1722 * called by the kthread helper functions to finally call the bio end_io
1723 * functions. This is where read checksum verification actually happens
1725 static void end_workqueue_fn(struct btrfs_work *work)
1728 struct end_io_wq *end_io_wq;
1731 end_io_wq = container_of(work, struct end_io_wq, work);
1732 bio = end_io_wq->bio;
1734 error = end_io_wq->error;
1735 bio->bi_private = end_io_wq->private;
1736 bio->bi_end_io = end_io_wq->end_io;
1738 bio_endio_nodec(bio, error);
1741 static int cleaner_kthread(void *arg)
1743 struct btrfs_root *root = arg;
1749 /* Make the cleaner go to sleep early. */
1750 if (btrfs_need_cleaner_sleep(root))
1753 if (!mutex_trylock(&root->fs_info->cleaner_mutex))
1757 * Avoid the problem that we change the status of the fs
1758 * during the above check and trylock.
1760 if (btrfs_need_cleaner_sleep(root)) {
1761 mutex_unlock(&root->fs_info->cleaner_mutex);
1765 btrfs_run_delayed_iputs(root);
1766 again = btrfs_clean_one_deleted_snapshot(root);
1767 mutex_unlock(&root->fs_info->cleaner_mutex);
1770 * The defragger has dealt with the R/O remount and umount,
1771 * needn't do anything special here.
1773 btrfs_run_defrag_inodes(root->fs_info);
1775 if (!try_to_freeze() && !again) {
1776 set_current_state(TASK_INTERRUPTIBLE);
1777 if (!kthread_should_stop())
1779 __set_current_state(TASK_RUNNING);
1781 } while (!kthread_should_stop());
1785 static int transaction_kthread(void *arg)
1787 struct btrfs_root *root = arg;
1788 struct btrfs_trans_handle *trans;
1789 struct btrfs_transaction *cur;
1792 unsigned long delay;
1796 cannot_commit = false;
1797 delay = HZ * root->fs_info->commit_interval;
1798 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1800 spin_lock(&root->fs_info->trans_lock);
1801 cur = root->fs_info->running_transaction;
1803 spin_unlock(&root->fs_info->trans_lock);
1807 now = get_seconds();
1808 if (cur->state < TRANS_STATE_BLOCKED &&
1809 (now < cur->start_time ||
1810 now - cur->start_time < root->fs_info->commit_interval)) {
1811 spin_unlock(&root->fs_info->trans_lock);
1815 transid = cur->transid;
1816 spin_unlock(&root->fs_info->trans_lock);
1818 /* If the file system is aborted, this will always fail. */
1819 trans = btrfs_attach_transaction(root);
1820 if (IS_ERR(trans)) {
1821 if (PTR_ERR(trans) != -ENOENT)
1822 cannot_commit = true;
1825 if (transid == trans->transid) {
1826 btrfs_commit_transaction(trans, root);
1828 btrfs_end_transaction(trans, root);
1831 wake_up_process(root->fs_info->cleaner_kthread);
1832 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1834 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1835 &root->fs_info->fs_state)))
1836 btrfs_cleanup_transaction(root);
1837 if (!try_to_freeze()) {
1838 set_current_state(TASK_INTERRUPTIBLE);
1839 if (!kthread_should_stop() &&
1840 (!btrfs_transaction_blocked(root->fs_info) ||
1842 schedule_timeout(delay);
1843 __set_current_state(TASK_RUNNING);
1845 } while (!kthread_should_stop());
1850 * this will find the highest generation in the array of
1851 * root backups. The index of the highest array is returned,
1852 * or -1 if we can't find anything.
1854 * We check to make sure the array is valid by comparing the
1855 * generation of the latest root in the array with the generation
1856 * in the super block. If they don't match we pitch it.
1858 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1861 int newest_index = -1;
1862 struct btrfs_root_backup *root_backup;
1865 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1866 root_backup = info->super_copy->super_roots + i;
1867 cur = btrfs_backup_tree_root_gen(root_backup);
1868 if (cur == newest_gen)
1872 /* check to see if we actually wrapped around */
1873 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1874 root_backup = info->super_copy->super_roots;
1875 cur = btrfs_backup_tree_root_gen(root_backup);
1876 if (cur == newest_gen)
1879 return newest_index;
1884 * find the oldest backup so we know where to store new entries
1885 * in the backup array. This will set the backup_root_index
1886 * field in the fs_info struct
1888 static void find_oldest_super_backup(struct btrfs_fs_info *info,
1891 int newest_index = -1;
1893 newest_index = find_newest_super_backup(info, newest_gen);
1894 /* if there was garbage in there, just move along */
1895 if (newest_index == -1) {
1896 info->backup_root_index = 0;
1898 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1903 * copy all the root pointers into the super backup array.
1904 * this will bump the backup pointer by one when it is
1907 static void backup_super_roots(struct btrfs_fs_info *info)
1910 struct btrfs_root_backup *root_backup;
1913 next_backup = info->backup_root_index;
1914 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1915 BTRFS_NUM_BACKUP_ROOTS;
1918 * just overwrite the last backup if we're at the same generation
1919 * this happens only at umount
1921 root_backup = info->super_for_commit->super_roots + last_backup;
1922 if (btrfs_backup_tree_root_gen(root_backup) ==
1923 btrfs_header_generation(info->tree_root->node))
1924 next_backup = last_backup;
1926 root_backup = info->super_for_commit->super_roots + next_backup;
1929 * make sure all of our padding and empty slots get zero filled
1930 * regardless of which ones we use today
1932 memset(root_backup, 0, sizeof(*root_backup));
1934 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1936 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1937 btrfs_set_backup_tree_root_gen(root_backup,
1938 btrfs_header_generation(info->tree_root->node));
1940 btrfs_set_backup_tree_root_level(root_backup,
1941 btrfs_header_level(info->tree_root->node));
1943 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1944 btrfs_set_backup_chunk_root_gen(root_backup,
1945 btrfs_header_generation(info->chunk_root->node));
1946 btrfs_set_backup_chunk_root_level(root_backup,
1947 btrfs_header_level(info->chunk_root->node));
1949 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1950 btrfs_set_backup_extent_root_gen(root_backup,
1951 btrfs_header_generation(info->extent_root->node));
1952 btrfs_set_backup_extent_root_level(root_backup,
1953 btrfs_header_level(info->extent_root->node));
1956 * we might commit during log recovery, which happens before we set
1957 * the fs_root. Make sure it is valid before we fill it in.
1959 if (info->fs_root && info->fs_root->node) {
1960 btrfs_set_backup_fs_root(root_backup,
1961 info->fs_root->node->start);
1962 btrfs_set_backup_fs_root_gen(root_backup,
1963 btrfs_header_generation(info->fs_root->node));
1964 btrfs_set_backup_fs_root_level(root_backup,
1965 btrfs_header_level(info->fs_root->node));
1968 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1969 btrfs_set_backup_dev_root_gen(root_backup,
1970 btrfs_header_generation(info->dev_root->node));
1971 btrfs_set_backup_dev_root_level(root_backup,
1972 btrfs_header_level(info->dev_root->node));
1974 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1975 btrfs_set_backup_csum_root_gen(root_backup,
1976 btrfs_header_generation(info->csum_root->node));
1977 btrfs_set_backup_csum_root_level(root_backup,
1978 btrfs_header_level(info->csum_root->node));
1980 btrfs_set_backup_total_bytes(root_backup,
1981 btrfs_super_total_bytes(info->super_copy));
1982 btrfs_set_backup_bytes_used(root_backup,
1983 btrfs_super_bytes_used(info->super_copy));
1984 btrfs_set_backup_num_devices(root_backup,
1985 btrfs_super_num_devices(info->super_copy));
1988 * if we don't copy this out to the super_copy, it won't get remembered
1989 * for the next commit
1991 memcpy(&info->super_copy->super_roots,
1992 &info->super_for_commit->super_roots,
1993 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1997 * this copies info out of the root backup array and back into
1998 * the in-memory super block. It is meant to help iterate through
1999 * the array, so you send it the number of backups you've already
2000 * tried and the last backup index you used.
2002 * this returns -1 when it has tried all the backups
2004 static noinline int next_root_backup(struct btrfs_fs_info *info,
2005 struct btrfs_super_block *super,
2006 int *num_backups_tried, int *backup_index)
2008 struct btrfs_root_backup *root_backup;
2009 int newest = *backup_index;
2011 if (*num_backups_tried == 0) {
2012 u64 gen = btrfs_super_generation(super);
2014 newest = find_newest_super_backup(info, gen);
2018 *backup_index = newest;
2019 *num_backups_tried = 1;
2020 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
2021 /* we've tried all the backups, all done */
2024 /* jump to the next oldest backup */
2025 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
2026 BTRFS_NUM_BACKUP_ROOTS;
2027 *backup_index = newest;
2028 *num_backups_tried += 1;
2030 root_backup = super->super_roots + newest;
2032 btrfs_set_super_generation(super,
2033 btrfs_backup_tree_root_gen(root_backup));
2034 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2035 btrfs_set_super_root_level(super,
2036 btrfs_backup_tree_root_level(root_backup));
2037 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2040 * fixme: the total bytes and num_devices need to match or we should
2043 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2044 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2048 /* helper to cleanup workers */
2049 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2051 btrfs_destroy_workqueue(fs_info->fixup_workers);
2052 btrfs_destroy_workqueue(fs_info->delalloc_workers);
2053 btrfs_destroy_workqueue(fs_info->workers);
2054 btrfs_destroy_workqueue(fs_info->endio_workers);
2055 btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2056 btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
2057 btrfs_destroy_workqueue(fs_info->rmw_workers);
2058 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2059 btrfs_destroy_workqueue(fs_info->endio_write_workers);
2060 btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
2061 btrfs_destroy_workqueue(fs_info->submit_workers);
2062 btrfs_destroy_workqueue(fs_info->delayed_workers);
2063 btrfs_destroy_workqueue(fs_info->caching_workers);
2064 btrfs_destroy_workqueue(fs_info->readahead_workers);
2065 btrfs_destroy_workqueue(fs_info->flush_workers);
2066 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
2069 static void free_root_extent_buffers(struct btrfs_root *root)
2072 free_extent_buffer(root->node);
2073 free_extent_buffer(root->commit_root);
2075 root->commit_root = NULL;
2079 /* helper to cleanup tree roots */
2080 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2082 free_root_extent_buffers(info->tree_root);
2084 free_root_extent_buffers(info->dev_root);
2085 free_root_extent_buffers(info->extent_root);
2086 free_root_extent_buffers(info->csum_root);
2087 free_root_extent_buffers(info->quota_root);
2088 free_root_extent_buffers(info->uuid_root);
2090 free_root_extent_buffers(info->chunk_root);
2093 static void del_fs_roots(struct btrfs_fs_info *fs_info)
2096 struct btrfs_root *gang[8];
2099 while (!list_empty(&fs_info->dead_roots)) {
2100 gang[0] = list_entry(fs_info->dead_roots.next,
2101 struct btrfs_root, root_list);
2102 list_del(&gang[0]->root_list);
2104 if (gang[0]->in_radix) {
2105 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2107 free_extent_buffer(gang[0]->node);
2108 free_extent_buffer(gang[0]->commit_root);
2109 btrfs_put_fs_root(gang[0]);
2114 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2119 for (i = 0; i < ret; i++)
2120 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2123 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2124 btrfs_free_log_root_tree(NULL, fs_info);
2125 btrfs_destroy_pinned_extent(fs_info->tree_root,
2126 fs_info->pinned_extents);
2130 int open_ctree(struct super_block *sb,
2131 struct btrfs_fs_devices *fs_devices,
2141 struct btrfs_key location;
2142 struct buffer_head *bh;
2143 struct btrfs_super_block *disk_super;
2144 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2145 struct btrfs_root *tree_root;
2146 struct btrfs_root *extent_root;
2147 struct btrfs_root *csum_root;
2148 struct btrfs_root *chunk_root;
2149 struct btrfs_root *dev_root;
2150 struct btrfs_root *quota_root;
2151 struct btrfs_root *uuid_root;
2152 struct btrfs_root *log_tree_root;
2155 int num_backups_tried = 0;
2156 int backup_index = 0;
2158 int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2159 bool create_uuid_tree;
2160 bool check_uuid_tree;
2162 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
2163 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
2164 if (!tree_root || !chunk_root) {
2169 ret = init_srcu_struct(&fs_info->subvol_srcu);
2175 ret = setup_bdi(fs_info, &fs_info->bdi);
2181 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0);
2186 fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE *
2187 (1 + ilog2(nr_cpu_ids));
2189 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0);
2192 goto fail_dirty_metadata_bytes;
2195 ret = percpu_counter_init(&fs_info->bio_counter, 0);
2198 goto fail_delalloc_bytes;
2201 fs_info->btree_inode = new_inode(sb);
2202 if (!fs_info->btree_inode) {
2204 goto fail_bio_counter;
2207 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2209 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2210 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2211 INIT_LIST_HEAD(&fs_info->trans_list);
2212 INIT_LIST_HEAD(&fs_info->dead_roots);
2213 INIT_LIST_HEAD(&fs_info->delayed_iputs);
2214 INIT_LIST_HEAD(&fs_info->delalloc_roots);
2215 INIT_LIST_HEAD(&fs_info->caching_block_groups);
2216 spin_lock_init(&fs_info->delalloc_root_lock);
2217 spin_lock_init(&fs_info->trans_lock);
2218 spin_lock_init(&fs_info->fs_roots_radix_lock);
2219 spin_lock_init(&fs_info->delayed_iput_lock);
2220 spin_lock_init(&fs_info->defrag_inodes_lock);
2221 spin_lock_init(&fs_info->free_chunk_lock);
2222 spin_lock_init(&fs_info->tree_mod_seq_lock);
2223 spin_lock_init(&fs_info->super_lock);
2224 spin_lock_init(&fs_info->buffer_lock);
2225 rwlock_init(&fs_info->tree_mod_log_lock);
2226 mutex_init(&fs_info->reloc_mutex);
2227 mutex_init(&fs_info->delalloc_root_mutex);
2228 seqlock_init(&fs_info->profiles_lock);
2230 init_completion(&fs_info->kobj_unregister);
2231 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2232 INIT_LIST_HEAD(&fs_info->space_info);
2233 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2234 btrfs_mapping_init(&fs_info->mapping_tree);
2235 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2236 BTRFS_BLOCK_RSV_GLOBAL);
2237 btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2238 BTRFS_BLOCK_RSV_DELALLOC);
2239 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2240 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2241 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2242 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2243 BTRFS_BLOCK_RSV_DELOPS);
2244 atomic_set(&fs_info->nr_async_submits, 0);
2245 atomic_set(&fs_info->async_delalloc_pages, 0);
2246 atomic_set(&fs_info->async_submit_draining, 0);
2247 atomic_set(&fs_info->nr_async_bios, 0);
2248 atomic_set(&fs_info->defrag_running, 0);
2249 atomic64_set(&fs_info->tree_mod_seq, 0);
2251 fs_info->max_inline = 8192 * 1024;
2252 fs_info->metadata_ratio = 0;
2253 fs_info->defrag_inodes = RB_ROOT;
2254 fs_info->free_chunk_space = 0;
2255 fs_info->tree_mod_log = RB_ROOT;
2256 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2257 fs_info->avg_delayed_ref_runtime = div64_u64(NSEC_PER_SEC, 64);
2258 /* readahead state */
2259 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
2260 spin_lock_init(&fs_info->reada_lock);
2262 fs_info->thread_pool_size = min_t(unsigned long,
2263 num_online_cpus() + 2, 8);
2265 INIT_LIST_HEAD(&fs_info->ordered_roots);
2266 spin_lock_init(&fs_info->ordered_root_lock);
2267 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2269 if (!fs_info->delayed_root) {
2273 btrfs_init_delayed_root(fs_info->delayed_root);
2275 mutex_init(&fs_info->scrub_lock);
2276 atomic_set(&fs_info->scrubs_running, 0);
2277 atomic_set(&fs_info->scrub_pause_req, 0);
2278 atomic_set(&fs_info->scrubs_paused, 0);
2279 atomic_set(&fs_info->scrub_cancel_req, 0);
2280 init_waitqueue_head(&fs_info->replace_wait);
2281 init_waitqueue_head(&fs_info->scrub_pause_wait);
2282 fs_info->scrub_workers_refcnt = 0;
2283 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2284 fs_info->check_integrity_print_mask = 0;
2287 spin_lock_init(&fs_info->balance_lock);
2288 mutex_init(&fs_info->balance_mutex);
2289 atomic_set(&fs_info->balance_running, 0);
2290 atomic_set(&fs_info->balance_pause_req, 0);
2291 atomic_set(&fs_info->balance_cancel_req, 0);
2292 fs_info->balance_ctl = NULL;
2293 init_waitqueue_head(&fs_info->balance_wait_q);
2295 sb->s_blocksize = 4096;
2296 sb->s_blocksize_bits = blksize_bits(4096);
2297 sb->s_bdi = &fs_info->bdi;
2299 fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2300 set_nlink(fs_info->btree_inode, 1);
2302 * we set the i_size on the btree inode to the max possible int.
2303 * the real end of the address space is determined by all of
2304 * the devices in the system
2306 fs_info->btree_inode->i_size = OFFSET_MAX;
2307 fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
2308 fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
2310 RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
2311 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
2312 fs_info->btree_inode->i_mapping);
2313 BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
2314 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
2316 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
2318 BTRFS_I(fs_info->btree_inode)->root = tree_root;
2319 memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2320 sizeof(struct btrfs_key));
2321 set_bit(BTRFS_INODE_DUMMY,
2322 &BTRFS_I(fs_info->btree_inode)->runtime_flags);
2323 btrfs_insert_inode_hash(fs_info->btree_inode);
2325 spin_lock_init(&fs_info->block_group_cache_lock);
2326 fs_info->block_group_cache_tree = RB_ROOT;
2327 fs_info->first_logical_byte = (u64)-1;
2329 extent_io_tree_init(&fs_info->freed_extents[0],
2330 fs_info->btree_inode->i_mapping);
2331 extent_io_tree_init(&fs_info->freed_extents[1],
2332 fs_info->btree_inode->i_mapping);
2333 fs_info->pinned_extents = &fs_info->freed_extents[0];
2334 fs_info->do_barriers = 1;
2337 mutex_init(&fs_info->ordered_operations_mutex);
2338 mutex_init(&fs_info->ordered_extent_flush_mutex);
2339 mutex_init(&fs_info->tree_log_mutex);
2340 mutex_init(&fs_info->chunk_mutex);
2341 mutex_init(&fs_info->transaction_kthread_mutex);
2342 mutex_init(&fs_info->cleaner_mutex);
2343 mutex_init(&fs_info->volume_mutex);
2344 init_rwsem(&fs_info->commit_root_sem);
2345 init_rwsem(&fs_info->cleanup_work_sem);
2346 init_rwsem(&fs_info->subvol_sem);
2347 sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2348 fs_info->dev_replace.lock_owner = 0;
2349 atomic_set(&fs_info->dev_replace.nesting_level, 0);
2350 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2351 mutex_init(&fs_info->dev_replace.lock_management_lock);
2352 mutex_init(&fs_info->dev_replace.lock);
2354 spin_lock_init(&fs_info->qgroup_lock);
2355 mutex_init(&fs_info->qgroup_ioctl_lock);
2356 fs_info->qgroup_tree = RB_ROOT;
2357 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2358 fs_info->qgroup_seq = 1;
2359 fs_info->quota_enabled = 0;
2360 fs_info->pending_quota_state = 0;
2361 fs_info->qgroup_ulist = NULL;
2362 mutex_init(&fs_info->qgroup_rescan_lock);
2364 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2365 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2367 init_waitqueue_head(&fs_info->transaction_throttle);
2368 init_waitqueue_head(&fs_info->transaction_wait);
2369 init_waitqueue_head(&fs_info->transaction_blocked_wait);
2370 init_waitqueue_head(&fs_info->async_submit_wait);
2372 ret = btrfs_alloc_stripe_hash_table(fs_info);
2378 __setup_root(4096, 4096, 4096, 4096, tree_root,
2379 fs_info, BTRFS_ROOT_TREE_OBJECTID);
2381 invalidate_bdev(fs_devices->latest_bdev);
2384 * Read super block and check the signature bytes only
2386 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2393 * We want to check superblock checksum, the type is stored inside.
2394 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2396 if (btrfs_check_super_csum(bh->b_data)) {
2397 printk(KERN_ERR "BTRFS: superblock checksum mismatch\n");
2403 * super_copy is zeroed at allocation time and we never touch the
2404 * following bytes up to INFO_SIZE, the checksum is calculated from
2405 * the whole block of INFO_SIZE
2407 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2408 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2409 sizeof(*fs_info->super_for_commit));
2412 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2414 ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2416 printk(KERN_ERR "BTRFS: superblock contains fatal errors\n");
2421 disk_super = fs_info->super_copy;
2422 if (!btrfs_super_root(disk_super))
2425 /* check FS state, whether FS is broken. */
2426 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2427 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2430 * run through our array of backup supers and setup
2431 * our ring pointer to the oldest one
2433 generation = btrfs_super_generation(disk_super);
2434 find_oldest_super_backup(fs_info, generation);
2437 * In the long term, we'll store the compression type in the super
2438 * block, and it'll be used for per file compression control.
2440 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2442 ret = btrfs_parse_options(tree_root, options);
2448 features = btrfs_super_incompat_flags(disk_super) &
2449 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2451 printk(KERN_ERR "BTRFS: couldn't mount because of "
2452 "unsupported optional features (%Lx).\n",
2458 if (btrfs_super_leafsize(disk_super) !=
2459 btrfs_super_nodesize(disk_super)) {
2460 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2461 "blocksizes don't match. node %d leaf %d\n",
2462 btrfs_super_nodesize(disk_super),
2463 btrfs_super_leafsize(disk_super));
2467 if (btrfs_super_leafsize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
2468 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2469 "blocksize (%d) was too large\n",
2470 btrfs_super_leafsize(disk_super));
2475 features = btrfs_super_incompat_flags(disk_super);
2476 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2477 if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
2478 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2480 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2481 printk(KERN_ERR "BTRFS: has skinny extents\n");
2484 * flag our filesystem as having big metadata blocks if
2485 * they are bigger than the page size
2487 if (btrfs_super_leafsize(disk_super) > PAGE_CACHE_SIZE) {
2488 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2489 printk(KERN_INFO "BTRFS: flagging fs with big metadata feature\n");
2490 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2493 nodesize = btrfs_super_nodesize(disk_super);
2494 leafsize = btrfs_super_leafsize(disk_super);
2495 sectorsize = btrfs_super_sectorsize(disk_super);
2496 stripesize = btrfs_super_stripesize(disk_super);
2497 fs_info->dirty_metadata_batch = leafsize * (1 + ilog2(nr_cpu_ids));
2498 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2501 * mixed block groups end up with duplicate but slightly offset
2502 * extent buffers for the same range. It leads to corruptions
2504 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2505 (sectorsize != leafsize)) {
2506 printk(KERN_WARNING "BTRFS: unequal leaf/node/sector sizes "
2507 "are not allowed for mixed block groups on %s\n",
2513 * Needn't use the lock because there is no other task which will
2516 btrfs_set_super_incompat_flags(disk_super, features);
2518 features = btrfs_super_compat_ro_flags(disk_super) &
2519 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2520 if (!(sb->s_flags & MS_RDONLY) && features) {
2521 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2522 "unsupported option features (%Lx).\n",
2528 max_active = fs_info->thread_pool_size;
2531 btrfs_alloc_workqueue("worker", flags | WQ_HIGHPRI,
2534 fs_info->delalloc_workers =
2535 btrfs_alloc_workqueue("delalloc", flags, max_active, 2);
2537 fs_info->flush_workers =
2538 btrfs_alloc_workqueue("flush_delalloc", flags, max_active, 0);
2540 fs_info->caching_workers =
2541 btrfs_alloc_workqueue("cache", flags, max_active, 0);
2544 * a higher idle thresh on the submit workers makes it much more
2545 * likely that bios will be send down in a sane order to the
2548 fs_info->submit_workers =
2549 btrfs_alloc_workqueue("submit", flags,
2550 min_t(u64, fs_devices->num_devices,
2553 fs_info->fixup_workers =
2554 btrfs_alloc_workqueue("fixup", flags, 1, 0);
2557 * endios are largely parallel and should have a very
2560 fs_info->endio_workers =
2561 btrfs_alloc_workqueue("endio", flags, max_active, 4);
2562 fs_info->endio_meta_workers =
2563 btrfs_alloc_workqueue("endio-meta", flags, max_active, 4);
2564 fs_info->endio_meta_write_workers =
2565 btrfs_alloc_workqueue("endio-meta-write", flags, max_active, 2);
2566 fs_info->endio_raid56_workers =
2567 btrfs_alloc_workqueue("endio-raid56", flags, max_active, 4);
2568 fs_info->rmw_workers =
2569 btrfs_alloc_workqueue("rmw", flags, max_active, 2);
2570 fs_info->endio_write_workers =
2571 btrfs_alloc_workqueue("endio-write", flags, max_active, 2);
2572 fs_info->endio_freespace_worker =
2573 btrfs_alloc_workqueue("freespace-write", flags, max_active, 0);
2574 fs_info->delayed_workers =
2575 btrfs_alloc_workqueue("delayed-meta", flags, max_active, 0);
2576 fs_info->readahead_workers =
2577 btrfs_alloc_workqueue("readahead", flags, max_active, 2);
2578 fs_info->qgroup_rescan_workers =
2579 btrfs_alloc_workqueue("qgroup-rescan", flags, 1, 0);
2581 if (!(fs_info->workers && fs_info->delalloc_workers &&
2582 fs_info->submit_workers && fs_info->flush_workers &&
2583 fs_info->endio_workers && fs_info->endio_meta_workers &&
2584 fs_info->endio_meta_write_workers &&
2585 fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2586 fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2587 fs_info->caching_workers && fs_info->readahead_workers &&
2588 fs_info->fixup_workers && fs_info->delayed_workers &&
2589 fs_info->qgroup_rescan_workers)) {
2591 goto fail_sb_buffer;
2594 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
2595 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2596 4 * 1024 * 1024 / PAGE_CACHE_SIZE);
2598 tree_root->nodesize = nodesize;
2599 tree_root->leafsize = leafsize;
2600 tree_root->sectorsize = sectorsize;
2601 tree_root->stripesize = stripesize;
2603 sb->s_blocksize = sectorsize;
2604 sb->s_blocksize_bits = blksize_bits(sectorsize);
2606 if (btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
2607 printk(KERN_INFO "BTRFS: valid FS not found on %s\n", sb->s_id);
2608 goto fail_sb_buffer;
2611 if (sectorsize != PAGE_SIZE) {
2612 printk(KERN_WARNING "BTRFS: Incompatible sector size(%lu) "
2613 "found on %s\n", (unsigned long)sectorsize, sb->s_id);
2614 goto fail_sb_buffer;
2617 mutex_lock(&fs_info->chunk_mutex);
2618 ret = btrfs_read_sys_array(tree_root);
2619 mutex_unlock(&fs_info->chunk_mutex);
2621 printk(KERN_WARNING "BTRFS: failed to read the system "
2622 "array on %s\n", sb->s_id);
2623 goto fail_sb_buffer;
2626 blocksize = btrfs_level_size(tree_root,
2627 btrfs_super_chunk_root_level(disk_super));
2628 generation = btrfs_super_chunk_root_generation(disk_super);
2630 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2631 chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2633 chunk_root->node = read_tree_block(chunk_root,
2634 btrfs_super_chunk_root(disk_super),
2635 blocksize, generation);
2636 if (!chunk_root->node ||
2637 !test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
2638 printk(KERN_WARNING "BTRFS: failed to read chunk root on %s\n",
2640 goto fail_tree_roots;
2642 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2643 chunk_root->commit_root = btrfs_root_node(chunk_root);
2645 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2646 btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
2648 ret = btrfs_read_chunk_tree(chunk_root);
2650 printk(KERN_WARNING "BTRFS: failed to read chunk tree on %s\n",
2652 goto fail_tree_roots;
2656 * keep the device that is marked to be the target device for the
2657 * dev_replace procedure
2659 btrfs_close_extra_devices(fs_info, fs_devices, 0);
2661 if (!fs_devices->latest_bdev) {
2662 printk(KERN_CRIT "BTRFS: failed to read devices on %s\n",
2664 goto fail_tree_roots;
2668 blocksize = btrfs_level_size(tree_root,
2669 btrfs_super_root_level(disk_super));
2670 generation = btrfs_super_generation(disk_super);
2672 tree_root->node = read_tree_block(tree_root,
2673 btrfs_super_root(disk_super),
2674 blocksize, generation);
2675 if (!tree_root->node ||
2676 !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
2677 printk(KERN_WARNING "BTRFS: failed to read tree root on %s\n",
2680 goto recovery_tree_root;
2683 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2684 tree_root->commit_root = btrfs_root_node(tree_root);
2685 btrfs_set_root_refs(&tree_root->root_item, 1);
2687 location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2688 location.type = BTRFS_ROOT_ITEM_KEY;
2689 location.offset = 0;
2691 extent_root = btrfs_read_tree_root(tree_root, &location);
2692 if (IS_ERR(extent_root)) {
2693 ret = PTR_ERR(extent_root);
2694 goto recovery_tree_root;
2696 extent_root->track_dirty = 1;
2697 fs_info->extent_root = extent_root;
2699 location.objectid = BTRFS_DEV_TREE_OBJECTID;
2700 dev_root = btrfs_read_tree_root(tree_root, &location);
2701 if (IS_ERR(dev_root)) {
2702 ret = PTR_ERR(dev_root);
2703 goto recovery_tree_root;
2705 dev_root->track_dirty = 1;
2706 fs_info->dev_root = dev_root;
2707 btrfs_init_devices_late(fs_info);
2709 location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2710 csum_root = btrfs_read_tree_root(tree_root, &location);
2711 if (IS_ERR(csum_root)) {
2712 ret = PTR_ERR(csum_root);
2713 goto recovery_tree_root;
2715 csum_root->track_dirty = 1;
2716 fs_info->csum_root = csum_root;
2718 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2719 quota_root = btrfs_read_tree_root(tree_root, &location);
2720 if (!IS_ERR(quota_root)) {
2721 quota_root->track_dirty = 1;
2722 fs_info->quota_enabled = 1;
2723 fs_info->pending_quota_state = 1;
2724 fs_info->quota_root = quota_root;
2727 location.objectid = BTRFS_UUID_TREE_OBJECTID;
2728 uuid_root = btrfs_read_tree_root(tree_root, &location);
2729 if (IS_ERR(uuid_root)) {
2730 ret = PTR_ERR(uuid_root);
2732 goto recovery_tree_root;
2733 create_uuid_tree = true;
2734 check_uuid_tree = false;
2736 uuid_root->track_dirty = 1;
2737 fs_info->uuid_root = uuid_root;
2738 create_uuid_tree = false;
2740 generation != btrfs_super_uuid_tree_generation(disk_super);
2743 fs_info->generation = generation;
2744 fs_info->last_trans_committed = generation;
2746 ret = btrfs_recover_balance(fs_info);
2748 printk(KERN_WARNING "BTRFS: failed to recover balance\n");
2749 goto fail_block_groups;
2752 ret = btrfs_init_dev_stats(fs_info);
2754 printk(KERN_ERR "BTRFS: failed to init dev_stats: %d\n",
2756 goto fail_block_groups;
2759 ret = btrfs_init_dev_replace(fs_info);
2761 pr_err("BTRFS: failed to init dev_replace: %d\n", ret);
2762 goto fail_block_groups;
2765 btrfs_close_extra_devices(fs_info, fs_devices, 1);
2767 ret = btrfs_sysfs_add_one(fs_info);
2769 pr_err("BTRFS: failed to init sysfs interface: %d\n", ret);
2770 goto fail_block_groups;
2773 ret = btrfs_init_space_info(fs_info);
2775 printk(KERN_ERR "BTRFS: Failed to initial space info: %d\n", ret);
2779 ret = btrfs_read_block_groups(extent_root);
2781 printk(KERN_ERR "BTRFS: Failed to read block groups: %d\n", ret);
2784 fs_info->num_tolerated_disk_barrier_failures =
2785 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
2786 if (fs_info->fs_devices->missing_devices >
2787 fs_info->num_tolerated_disk_barrier_failures &&
2788 !(sb->s_flags & MS_RDONLY)) {
2789 printk(KERN_WARNING "BTRFS: "
2790 "too many missing devices, writeable mount is not allowed\n");
2794 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2796 if (IS_ERR(fs_info->cleaner_kthread))
2799 fs_info->transaction_kthread = kthread_run(transaction_kthread,
2801 "btrfs-transaction");
2802 if (IS_ERR(fs_info->transaction_kthread))
2805 if (!btrfs_test_opt(tree_root, SSD) &&
2806 !btrfs_test_opt(tree_root, NOSSD) &&
2807 !fs_info->fs_devices->rotating) {
2808 printk(KERN_INFO "BTRFS: detected SSD devices, enabling SSD "
2810 btrfs_set_opt(fs_info->mount_opt, SSD);
2813 /* Set the real inode map cache flag */
2814 if (btrfs_test_opt(tree_root, CHANGE_INODE_CACHE))
2815 btrfs_set_opt(tree_root->fs_info->mount_opt, INODE_MAP_CACHE);
2817 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2818 if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
2819 ret = btrfsic_mount(tree_root, fs_devices,
2820 btrfs_test_opt(tree_root,
2821 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2823 fs_info->check_integrity_print_mask);
2825 printk(KERN_WARNING "BTRFS: failed to initialize"
2826 " integrity check module %s\n", sb->s_id);
2829 ret = btrfs_read_qgroup_config(fs_info);
2831 goto fail_trans_kthread;
2833 /* do not make disk changes in broken FS */
2834 if (btrfs_super_log_root(disk_super) != 0) {
2835 u64 bytenr = btrfs_super_log_root(disk_super);
2837 if (fs_devices->rw_devices == 0) {
2838 printk(KERN_WARNING "BTRFS: log replay required "
2844 btrfs_level_size(tree_root,
2845 btrfs_super_log_root_level(disk_super));
2847 log_tree_root = btrfs_alloc_root(fs_info);
2848 if (!log_tree_root) {
2853 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2854 log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2856 log_tree_root->node = read_tree_block(tree_root, bytenr,
2859 if (!log_tree_root->node ||
2860 !extent_buffer_uptodate(log_tree_root->node)) {
2861 printk(KERN_ERR "BTRFS: failed to read log tree\n");
2862 free_extent_buffer(log_tree_root->node);
2863 kfree(log_tree_root);
2866 /* returns with log_tree_root freed on success */
2867 ret = btrfs_recover_log_trees(log_tree_root);
2869 btrfs_error(tree_root->fs_info, ret,
2870 "Failed to recover log tree");
2871 free_extent_buffer(log_tree_root->node);
2872 kfree(log_tree_root);
2876 if (sb->s_flags & MS_RDONLY) {
2877 ret = btrfs_commit_super(tree_root);
2883 ret = btrfs_find_orphan_roots(tree_root);
2887 if (!(sb->s_flags & MS_RDONLY)) {
2888 ret = btrfs_cleanup_fs_roots(fs_info);
2892 ret = btrfs_recover_relocation(tree_root);
2895 "BTRFS: failed to recover relocation\n");
2901 location.objectid = BTRFS_FS_TREE_OBJECTID;
2902 location.type = BTRFS_ROOT_ITEM_KEY;
2903 location.offset = 0;
2905 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
2906 if (IS_ERR(fs_info->fs_root)) {
2907 err = PTR_ERR(fs_info->fs_root);
2911 if (sb->s_flags & MS_RDONLY)
2914 down_read(&fs_info->cleanup_work_sem);
2915 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
2916 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
2917 up_read(&fs_info->cleanup_work_sem);
2918 close_ctree(tree_root);
2921 up_read(&fs_info->cleanup_work_sem);
2923 ret = btrfs_resume_balance_async(fs_info);
2925 printk(KERN_WARNING "BTRFS: failed to resume balance\n");
2926 close_ctree(tree_root);
2930 ret = btrfs_resume_dev_replace_async(fs_info);
2932 pr_warn("BTRFS: failed to resume dev_replace\n");
2933 close_ctree(tree_root);
2937 btrfs_qgroup_rescan_resume(fs_info);
2939 if (create_uuid_tree) {
2940 pr_info("BTRFS: creating UUID tree\n");
2941 ret = btrfs_create_uuid_tree(fs_info);
2943 pr_warn("BTRFS: failed to create the UUID tree %d\n",
2945 close_ctree(tree_root);
2948 } else if (check_uuid_tree ||
2949 btrfs_test_opt(tree_root, RESCAN_UUID_TREE)) {
2950 pr_info("BTRFS: checking UUID tree\n");
2951 ret = btrfs_check_uuid_tree(fs_info);
2953 pr_warn("BTRFS: failed to check the UUID tree %d\n",
2955 close_ctree(tree_root);
2959 fs_info->update_uuid_tree_gen = 1;
2965 btrfs_free_qgroup_config(fs_info);
2967 kthread_stop(fs_info->transaction_kthread);
2968 btrfs_cleanup_transaction(fs_info->tree_root);
2969 del_fs_roots(fs_info);
2971 kthread_stop(fs_info->cleaner_kthread);
2974 * make sure we're done with the btree inode before we stop our
2977 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
2980 btrfs_sysfs_remove_one(fs_info);
2983 btrfs_put_block_group_cache(fs_info);
2984 btrfs_free_block_groups(fs_info);
2987 free_root_pointers(fs_info, 1);
2988 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2991 btrfs_stop_all_workers(fs_info);
2994 btrfs_mapping_tree_free(&fs_info->mapping_tree);
2996 iput(fs_info->btree_inode);
2998 percpu_counter_destroy(&fs_info->bio_counter);
2999 fail_delalloc_bytes:
3000 percpu_counter_destroy(&fs_info->delalloc_bytes);
3001 fail_dirty_metadata_bytes:
3002 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3004 bdi_destroy(&fs_info->bdi);
3006 cleanup_srcu_struct(&fs_info->subvol_srcu);
3008 btrfs_free_stripe_hash_table(fs_info);
3009 btrfs_close_devices(fs_info->fs_devices);
3013 if (!btrfs_test_opt(tree_root, RECOVERY))
3014 goto fail_tree_roots;
3016 free_root_pointers(fs_info, 0);
3018 /* don't use the log in recovery mode, it won't be valid */
3019 btrfs_set_super_log_root(disk_super, 0);
3021 /* we can't trust the free space cache either */
3022 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3024 ret = next_root_backup(fs_info, fs_info->super_copy,
3025 &num_backups_tried, &backup_index);
3027 goto fail_block_groups;
3028 goto retry_root_backup;
3031 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3034 set_buffer_uptodate(bh);
3036 struct btrfs_device *device = (struct btrfs_device *)
3039 printk_ratelimited_in_rcu(KERN_WARNING "BTRFS: lost page write due to "
3040 "I/O error on %s\n",
3041 rcu_str_deref(device->name));
3042 /* note, we dont' set_buffer_write_io_error because we have
3043 * our own ways of dealing with the IO errors
3045 clear_buffer_uptodate(bh);
3046 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
3052 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3054 struct buffer_head *bh;
3055 struct buffer_head *latest = NULL;
3056 struct btrfs_super_block *super;
3061 /* we would like to check all the supers, but that would make
3062 * a btrfs mount succeed after a mkfs from a different FS.
3063 * So, we need to add a special mount option to scan for
3064 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3066 for (i = 0; i < 1; i++) {
3067 bytenr = btrfs_sb_offset(i);
3068 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3069 i_size_read(bdev->bd_inode))
3071 bh = __bread(bdev, bytenr / 4096,
3072 BTRFS_SUPER_INFO_SIZE);
3076 super = (struct btrfs_super_block *)bh->b_data;
3077 if (btrfs_super_bytenr(super) != bytenr ||
3078 btrfs_super_magic(super) != BTRFS_MAGIC) {
3083 if (!latest || btrfs_super_generation(super) > transid) {
3086 transid = btrfs_super_generation(super);
3095 * this should be called twice, once with wait == 0 and
3096 * once with wait == 1. When wait == 0 is done, all the buffer heads
3097 * we write are pinned.
3099 * They are released when wait == 1 is done.
3100 * max_mirrors must be the same for both runs, and it indicates how
3101 * many supers on this one device should be written.
3103 * max_mirrors == 0 means to write them all.
3105 static int write_dev_supers(struct btrfs_device *device,
3106 struct btrfs_super_block *sb,
3107 int do_barriers, int wait, int max_mirrors)
3109 struct buffer_head *bh;
3116 if (max_mirrors == 0)
3117 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3119 for (i = 0; i < max_mirrors; i++) {
3120 bytenr = btrfs_sb_offset(i);
3121 if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
3125 bh = __find_get_block(device->bdev, bytenr / 4096,
3126 BTRFS_SUPER_INFO_SIZE);
3132 if (!buffer_uptodate(bh))
3135 /* drop our reference */
3138 /* drop the reference from the wait == 0 run */
3142 btrfs_set_super_bytenr(sb, bytenr);
3145 crc = btrfs_csum_data((char *)sb +
3146 BTRFS_CSUM_SIZE, crc,
3147 BTRFS_SUPER_INFO_SIZE -
3149 btrfs_csum_final(crc, sb->csum);
3152 * one reference for us, and we leave it for the
3155 bh = __getblk(device->bdev, bytenr / 4096,
3156 BTRFS_SUPER_INFO_SIZE);
3158 printk(KERN_ERR "BTRFS: couldn't get super "
3159 "buffer head for bytenr %Lu\n", bytenr);
3164 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3166 /* one reference for submit_bh */
3169 set_buffer_uptodate(bh);
3171 bh->b_end_io = btrfs_end_buffer_write_sync;
3172 bh->b_private = device;
3176 * we fua the first super. The others we allow
3180 ret = btrfsic_submit_bh(WRITE_FUA, bh);
3182 ret = btrfsic_submit_bh(WRITE_SYNC, bh);
3186 return errors < i ? 0 : -1;
3190 * endio for the write_dev_flush, this will wake anyone waiting
3191 * for the barrier when it is done
3193 static void btrfs_end_empty_barrier(struct bio *bio, int err)
3196 if (err == -EOPNOTSUPP)
3197 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
3198 clear_bit(BIO_UPTODATE, &bio->bi_flags);
3200 if (bio->bi_private)
3201 complete(bio->bi_private);
3206 * trigger flushes for one the devices. If you pass wait == 0, the flushes are
3207 * sent down. With wait == 1, it waits for the previous flush.
3209 * any device where the flush fails with eopnotsupp are flagged as not-barrier
3212 static int write_dev_flush(struct btrfs_device *device, int wait)
3217 if (device->nobarriers)
3221 bio = device->flush_bio;
3225 wait_for_completion(&device->flush_wait);
3227 if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
3228 printk_in_rcu("BTRFS: disabling barriers on dev %s\n",
3229 rcu_str_deref(device->name));
3230 device->nobarriers = 1;
3231 } else if (!bio_flagged(bio, BIO_UPTODATE)) {
3233 btrfs_dev_stat_inc_and_print(device,
3234 BTRFS_DEV_STAT_FLUSH_ERRS);
3237 /* drop the reference from the wait == 0 run */
3239 device->flush_bio = NULL;
3245 * one reference for us, and we leave it for the
3248 device->flush_bio = NULL;
3249 bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
3253 bio->bi_end_io = btrfs_end_empty_barrier;
3254 bio->bi_bdev = device->bdev;
3255 init_completion(&device->flush_wait);
3256 bio->bi_private = &device->flush_wait;
3257 device->flush_bio = bio;
3260 btrfsic_submit_bio(WRITE_FLUSH, bio);
3266 * send an empty flush down to each device in parallel,
3267 * then wait for them
3269 static int barrier_all_devices(struct btrfs_fs_info *info)
3271 struct list_head *head;
3272 struct btrfs_device *dev;
3273 int errors_send = 0;
3274 int errors_wait = 0;
3277 /* send down all the barriers */
3278 head = &info->fs_devices->devices;
3279 list_for_each_entry_rcu(dev, head, dev_list) {
3286 if (!dev->in_fs_metadata || !dev->writeable)
3289 ret = write_dev_flush(dev, 0);
3294 /* wait for all the barriers */
3295 list_for_each_entry_rcu(dev, head, dev_list) {
3302 if (!dev->in_fs_metadata || !dev->writeable)
3305 ret = write_dev_flush(dev, 1);
3309 if (errors_send > info->num_tolerated_disk_barrier_failures ||
3310 errors_wait > info->num_tolerated_disk_barrier_failures)
3315 int btrfs_calc_num_tolerated_disk_barrier_failures(
3316 struct btrfs_fs_info *fs_info)
3318 struct btrfs_ioctl_space_info space;
3319 struct btrfs_space_info *sinfo;
3320 u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3321 BTRFS_BLOCK_GROUP_SYSTEM,
3322 BTRFS_BLOCK_GROUP_METADATA,
3323 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3327 int num_tolerated_disk_barrier_failures =
3328 (int)fs_info->fs_devices->num_devices;
3330 for (i = 0; i < num_types; i++) {
3331 struct btrfs_space_info *tmp;
3335 list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
3336 if (tmp->flags == types[i]) {
3346 down_read(&sinfo->groups_sem);
3347 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3348 if (!list_empty(&sinfo->block_groups[c])) {
3351 btrfs_get_block_group_info(
3352 &sinfo->block_groups[c], &space);
3353 if (space.total_bytes == 0 ||
3354 space.used_bytes == 0)
3356 flags = space.flags;
3359 * 0: if dup, single or RAID0 is configured for
3360 * any of metadata, system or data, else
3361 * 1: if RAID5 is configured, or if RAID1 or
3362 * RAID10 is configured and only two mirrors
3364 * 2: if RAID6 is configured, else
3365 * num_mirrors - 1: if RAID1 or RAID10 is
3366 * configured and more than
3367 * 2 mirrors are used.
3369 if (num_tolerated_disk_barrier_failures > 0 &&
3370 ((flags & (BTRFS_BLOCK_GROUP_DUP |
3371 BTRFS_BLOCK_GROUP_RAID0)) ||
3372 ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK)
3374 num_tolerated_disk_barrier_failures = 0;
3375 else if (num_tolerated_disk_barrier_failures > 1) {
3376 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
3377 BTRFS_BLOCK_GROUP_RAID5 |
3378 BTRFS_BLOCK_GROUP_RAID10)) {
3379 num_tolerated_disk_barrier_failures = 1;
3381 BTRFS_BLOCK_GROUP_RAID6) {
3382 num_tolerated_disk_barrier_failures = 2;
3387 up_read(&sinfo->groups_sem);
3390 return num_tolerated_disk_barrier_failures;
3393 static int write_all_supers(struct btrfs_root *root, int max_mirrors)
3395 struct list_head *head;
3396 struct btrfs_device *dev;
3397 struct btrfs_super_block *sb;
3398 struct btrfs_dev_item *dev_item;
3402 int total_errors = 0;
3405 do_barriers = !btrfs_test_opt(root, NOBARRIER);
3406 backup_super_roots(root->fs_info);
3408 sb = root->fs_info->super_for_commit;
3409 dev_item = &sb->dev_item;
3411 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
3412 head = &root->fs_info->fs_devices->devices;
3413 max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
3416 ret = barrier_all_devices(root->fs_info);
3419 &root->fs_info->fs_devices->device_list_mutex);
3420 btrfs_error(root->fs_info, ret,
3421 "errors while submitting device barriers.");
3426 list_for_each_entry_rcu(dev, head, dev_list) {
3431 if (!dev->in_fs_metadata || !dev->writeable)
3434 btrfs_set_stack_device_generation(dev_item, 0);
3435 btrfs_set_stack_device_type(dev_item, dev->type);
3436 btrfs_set_stack_device_id(dev_item, dev->devid);
3437 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
3438 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
3439 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3440 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3441 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3442 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3443 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
3445 flags = btrfs_super_flags(sb);
3446 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3448 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
3452 if (total_errors > max_errors) {
3453 btrfs_err(root->fs_info, "%d errors while writing supers",
3455 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3457 /* FUA is masked off if unsupported and can't be the reason */
3458 btrfs_error(root->fs_info, -EIO,
3459 "%d errors while writing supers", total_errors);
3464 list_for_each_entry_rcu(dev, head, dev_list) {
3467 if (!dev->in_fs_metadata || !dev->writeable)
3470 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3474 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3475 if (total_errors > max_errors) {
3476 btrfs_error(root->fs_info, -EIO,
3477 "%d errors while writing supers", total_errors);
3483 int write_ctree_super(struct btrfs_trans_handle *trans,
3484 struct btrfs_root *root, int max_mirrors)
3486 return write_all_supers(root, max_mirrors);
3489 /* Drop a fs root from the radix tree and free it. */
3490 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3491 struct btrfs_root *root)
3493 spin_lock(&fs_info->fs_roots_radix_lock);
3494 radix_tree_delete(&fs_info->fs_roots_radix,
3495 (unsigned long)root->root_key.objectid);
3496 spin_unlock(&fs_info->fs_roots_radix_lock);
3498 if (btrfs_root_refs(&root->root_item) == 0)
3499 synchronize_srcu(&fs_info->subvol_srcu);
3501 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3502 btrfs_free_log(NULL, root);
3504 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3505 __btrfs_remove_free_space_cache(root->free_ino_ctl);
3509 static void free_fs_root(struct btrfs_root *root)
3511 iput(root->cache_inode);
3512 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3513 btrfs_free_block_rsv(root, root->orphan_block_rsv);
3514 root->orphan_block_rsv = NULL;
3516 free_anon_bdev(root->anon_dev);
3517 if (root->subv_writers)
3518 btrfs_free_subvolume_writers(root->subv_writers);
3519 free_extent_buffer(root->node);
3520 free_extent_buffer(root->commit_root);
3521 kfree(root->free_ino_ctl);
3522 kfree(root->free_ino_pinned);
3524 btrfs_put_fs_root(root);
3527 void btrfs_free_fs_root(struct btrfs_root *root)
3532 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3534 u64 root_objectid = 0;
3535 struct btrfs_root *gang[8];
3540 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3541 (void **)gang, root_objectid,
3546 root_objectid = gang[ret - 1]->root_key.objectid + 1;
3547 for (i = 0; i < ret; i++) {
3550 root_objectid = gang[i]->root_key.objectid;
3551 err = btrfs_orphan_cleanup(gang[i]);
3560 int btrfs_commit_super(struct btrfs_root *root)
3562 struct btrfs_trans_handle *trans;
3564 mutex_lock(&root->fs_info->cleaner_mutex);
3565 btrfs_run_delayed_iputs(root);
3566 mutex_unlock(&root->fs_info->cleaner_mutex);
3567 wake_up_process(root->fs_info->cleaner_kthread);
3569 /* wait until ongoing cleanup work done */
3570 down_write(&root->fs_info->cleanup_work_sem);
3571 up_write(&root->fs_info->cleanup_work_sem);
3573 trans = btrfs_join_transaction(root);
3575 return PTR_ERR(trans);
3576 return btrfs_commit_transaction(trans, root);
3579 int close_ctree(struct btrfs_root *root)
3581 struct btrfs_fs_info *fs_info = root->fs_info;
3584 fs_info->closing = 1;
3587 /* wait for the uuid_scan task to finish */
3588 down(&fs_info->uuid_tree_rescan_sem);
3589 /* avoid complains from lockdep et al., set sem back to initial state */
3590 up(&fs_info->uuid_tree_rescan_sem);
3592 /* pause restriper - we want to resume on mount */
3593 btrfs_pause_balance(fs_info);
3595 btrfs_dev_replace_suspend_for_unmount(fs_info);
3597 btrfs_scrub_cancel(fs_info);
3599 /* wait for any defraggers to finish */
3600 wait_event(fs_info->transaction_wait,
3601 (atomic_read(&fs_info->defrag_running) == 0));
3603 /* clear out the rbtree of defraggable inodes */
3604 btrfs_cleanup_defrag_inodes(fs_info);
3606 if (!(fs_info->sb->s_flags & MS_RDONLY)) {
3607 ret = btrfs_commit_super(root);
3609 btrfs_err(root->fs_info, "commit super ret %d", ret);
3612 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3613 btrfs_error_commit_super(root);
3615 kthread_stop(fs_info->transaction_kthread);
3616 kthread_stop(fs_info->cleaner_kthread);
3618 fs_info->closing = 2;
3621 btrfs_free_qgroup_config(root->fs_info);
3623 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
3624 btrfs_info(root->fs_info, "at unmount delalloc count %lld",
3625 percpu_counter_sum(&fs_info->delalloc_bytes));
3628 btrfs_sysfs_remove_one(fs_info);
3630 del_fs_roots(fs_info);
3632 btrfs_put_block_group_cache(fs_info);
3634 btrfs_free_block_groups(fs_info);
3636 btrfs_stop_all_workers(fs_info);
3638 free_root_pointers(fs_info, 1);
3640 iput(fs_info->btree_inode);
3642 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3643 if (btrfs_test_opt(root, CHECK_INTEGRITY))
3644 btrfsic_unmount(root, fs_info->fs_devices);
3647 btrfs_close_devices(fs_info->fs_devices);
3648 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3650 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3651 percpu_counter_destroy(&fs_info->delalloc_bytes);
3652 percpu_counter_destroy(&fs_info->bio_counter);
3653 bdi_destroy(&fs_info->bdi);
3654 cleanup_srcu_struct(&fs_info->subvol_srcu);
3656 btrfs_free_stripe_hash_table(fs_info);
3658 btrfs_free_block_rsv(root, root->orphan_block_rsv);
3659 root->orphan_block_rsv = NULL;
3664 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3668 struct inode *btree_inode = buf->pages[0]->mapping->host;
3670 ret = extent_buffer_uptodate(buf);
3674 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
3675 parent_transid, atomic);
3681 int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
3683 return set_extent_buffer_uptodate(buf);
3686 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3688 struct btrfs_root *root;
3689 u64 transid = btrfs_header_generation(buf);
3692 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3694 * This is a fast path so only do this check if we have sanity tests
3695 * enabled. Normal people shouldn't be marking dummy buffers as dirty
3696 * outside of the sanity tests.
3698 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
3701 root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3702 btrfs_assert_tree_locked(buf);
3703 if (transid != root->fs_info->generation)
3704 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
3705 "found %llu running %llu\n",
3706 buf->start, transid, root->fs_info->generation);
3707 was_dirty = set_extent_buffer_dirty(buf);
3709 __percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
3711 root->fs_info->dirty_metadata_batch);
3714 static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
3718 * looks as though older kernels can get into trouble with
3719 * this code, they end up stuck in balance_dirty_pages forever
3723 if (current->flags & PF_MEMALLOC)
3727 btrfs_balance_delayed_items(root);
3729 ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
3730 BTRFS_DIRTY_METADATA_THRESH);
3732 balance_dirty_pages_ratelimited(
3733 root->fs_info->btree_inode->i_mapping);
3738 void btrfs_btree_balance_dirty(struct btrfs_root *root)
3740 __btrfs_btree_balance_dirty(root, 1);
3743 void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
3745 __btrfs_btree_balance_dirty(root, 0);
3748 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
3750 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3751 return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
3754 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
3758 * Placeholder for checks
3763 static void btrfs_error_commit_super(struct btrfs_root *root)
3765 mutex_lock(&root->fs_info->cleaner_mutex);
3766 btrfs_run_delayed_iputs(root);
3767 mutex_unlock(&root->fs_info->cleaner_mutex);
3769 down_write(&root->fs_info->cleanup_work_sem);
3770 up_write(&root->fs_info->cleanup_work_sem);
3772 /* cleanup FS via transaction */
3773 btrfs_cleanup_transaction(root);
3776 static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
3777 struct btrfs_root *root)
3779 struct btrfs_inode *btrfs_inode;
3780 struct list_head splice;
3782 INIT_LIST_HEAD(&splice);
3784 mutex_lock(&root->fs_info->ordered_operations_mutex);
3785 spin_lock(&root->fs_info->ordered_root_lock);
3787 list_splice_init(&t->ordered_operations, &splice);
3788 while (!list_empty(&splice)) {
3789 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3790 ordered_operations);
3792 list_del_init(&btrfs_inode->ordered_operations);
3793 spin_unlock(&root->fs_info->ordered_root_lock);
3795 btrfs_invalidate_inodes(btrfs_inode->root);
3797 spin_lock(&root->fs_info->ordered_root_lock);
3800 spin_unlock(&root->fs_info->ordered_root_lock);
3801 mutex_unlock(&root->fs_info->ordered_operations_mutex);
3804 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
3806 struct btrfs_ordered_extent *ordered;
3808 spin_lock(&root->ordered_extent_lock);
3810 * This will just short circuit the ordered completion stuff which will
3811 * make sure the ordered extent gets properly cleaned up.
3813 list_for_each_entry(ordered, &root->ordered_extents,
3815 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
3816 spin_unlock(&root->ordered_extent_lock);
3819 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
3821 struct btrfs_root *root;
3822 struct list_head splice;
3824 INIT_LIST_HEAD(&splice);
3826 spin_lock(&fs_info->ordered_root_lock);
3827 list_splice_init(&fs_info->ordered_roots, &splice);
3828 while (!list_empty(&splice)) {
3829 root = list_first_entry(&splice, struct btrfs_root,
3831 list_move_tail(&root->ordered_root,
3832 &fs_info->ordered_roots);
3834 spin_unlock(&fs_info->ordered_root_lock);
3835 btrfs_destroy_ordered_extents(root);
3838 spin_lock(&fs_info->ordered_root_lock);
3840 spin_unlock(&fs_info->ordered_root_lock);
3843 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
3844 struct btrfs_root *root)
3846 struct rb_node *node;
3847 struct btrfs_delayed_ref_root *delayed_refs;
3848 struct btrfs_delayed_ref_node *ref;
3851 delayed_refs = &trans->delayed_refs;
3853 spin_lock(&delayed_refs->lock);
3854 if (atomic_read(&delayed_refs->num_entries) == 0) {
3855 spin_unlock(&delayed_refs->lock);
3856 btrfs_info(root->fs_info, "delayed_refs has NO entry");
3860 while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
3861 struct btrfs_delayed_ref_head *head;
3862 bool pin_bytes = false;
3864 head = rb_entry(node, struct btrfs_delayed_ref_head,
3866 if (!mutex_trylock(&head->mutex)) {
3867 atomic_inc(&head->node.refs);
3868 spin_unlock(&delayed_refs->lock);
3870 mutex_lock(&head->mutex);
3871 mutex_unlock(&head->mutex);
3872 btrfs_put_delayed_ref(&head->node);
3873 spin_lock(&delayed_refs->lock);
3876 spin_lock(&head->lock);
3877 while ((node = rb_first(&head->ref_root)) != NULL) {
3878 ref = rb_entry(node, struct btrfs_delayed_ref_node,
3881 rb_erase(&ref->rb_node, &head->ref_root);
3882 atomic_dec(&delayed_refs->num_entries);
3883 btrfs_put_delayed_ref(ref);
3885 if (head->must_insert_reserved)
3887 btrfs_free_delayed_extent_op(head->extent_op);
3888 delayed_refs->num_heads--;
3889 if (head->processing == 0)
3890 delayed_refs->num_heads_ready--;
3891 atomic_dec(&delayed_refs->num_entries);
3892 head->node.in_tree = 0;
3893 rb_erase(&head->href_node, &delayed_refs->href_root);
3894 spin_unlock(&head->lock);
3895 spin_unlock(&delayed_refs->lock);
3896 mutex_unlock(&head->mutex);
3899 btrfs_pin_extent(root, head->node.bytenr,
3900 head->node.num_bytes, 1);
3901 btrfs_put_delayed_ref(&head->node);
3903 spin_lock(&delayed_refs->lock);
3906 spin_unlock(&delayed_refs->lock);
3911 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
3913 struct btrfs_inode *btrfs_inode;
3914 struct list_head splice;
3916 INIT_LIST_HEAD(&splice);
3918 spin_lock(&root->delalloc_lock);
3919 list_splice_init(&root->delalloc_inodes, &splice);
3921 while (!list_empty(&splice)) {
3922 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
3925 list_del_init(&btrfs_inode->delalloc_inodes);
3926 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
3927 &btrfs_inode->runtime_flags);
3928 spin_unlock(&root->delalloc_lock);
3930 btrfs_invalidate_inodes(btrfs_inode->root);
3932 spin_lock(&root->delalloc_lock);
3935 spin_unlock(&root->delalloc_lock);
3938 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
3940 struct btrfs_root *root;
3941 struct list_head splice;
3943 INIT_LIST_HEAD(&splice);
3945 spin_lock(&fs_info->delalloc_root_lock);
3946 list_splice_init(&fs_info->delalloc_roots, &splice);
3947 while (!list_empty(&splice)) {
3948 root = list_first_entry(&splice, struct btrfs_root,
3950 list_del_init(&root->delalloc_root);
3951 root = btrfs_grab_fs_root(root);
3953 spin_unlock(&fs_info->delalloc_root_lock);
3955 btrfs_destroy_delalloc_inodes(root);
3956 btrfs_put_fs_root(root);
3958 spin_lock(&fs_info->delalloc_root_lock);
3960 spin_unlock(&fs_info->delalloc_root_lock);
3963 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
3964 struct extent_io_tree *dirty_pages,
3968 struct extent_buffer *eb;
3973 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
3978 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
3979 while (start <= end) {
3980 eb = btrfs_find_tree_block(root, start,
3982 start += root->leafsize;
3985 wait_on_extent_buffer_writeback(eb);
3987 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
3989 clear_extent_buffer_dirty(eb);
3990 free_extent_buffer_stale(eb);
3997 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
3998 struct extent_io_tree *pinned_extents)
4000 struct extent_io_tree *unpin;
4006 unpin = pinned_extents;
4009 ret = find_first_extent_bit(unpin, 0, &start, &end,
4010 EXTENT_DIRTY, NULL);
4015 if (btrfs_test_opt(root, DISCARD))
4016 ret = btrfs_error_discard_extent(root, start,
4020 clear_extent_dirty(unpin, start, end, GFP_NOFS);
4021 btrfs_error_unpin_extent_range(root, start, end);
4026 if (unpin == &root->fs_info->freed_extents[0])
4027 unpin = &root->fs_info->freed_extents[1];
4029 unpin = &root->fs_info->freed_extents[0];
4037 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4038 struct btrfs_root *root)
4040 btrfs_destroy_ordered_operations(cur_trans, root);
4042 btrfs_destroy_delayed_refs(cur_trans, root);
4044 cur_trans->state = TRANS_STATE_COMMIT_START;
4045 wake_up(&root->fs_info->transaction_blocked_wait);
4047 cur_trans->state = TRANS_STATE_UNBLOCKED;
4048 wake_up(&root->fs_info->transaction_wait);
4050 btrfs_destroy_delayed_inodes(root);
4051 btrfs_assert_delayed_root_empty(root);
4053 btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
4055 btrfs_destroy_pinned_extent(root,
4056 root->fs_info->pinned_extents);
4058 cur_trans->state =TRANS_STATE_COMPLETED;
4059 wake_up(&cur_trans->commit_wait);
4062 memset(cur_trans, 0, sizeof(*cur_trans));
4063 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
4067 static int btrfs_cleanup_transaction(struct btrfs_root *root)
4069 struct btrfs_transaction *t;
4071 mutex_lock(&root->fs_info->transaction_kthread_mutex);
4073 spin_lock(&root->fs_info->trans_lock);
4074 while (!list_empty(&root->fs_info->trans_list)) {
4075 t = list_first_entry(&root->fs_info->trans_list,
4076 struct btrfs_transaction, list);
4077 if (t->state >= TRANS_STATE_COMMIT_START) {
4078 atomic_inc(&t->use_count);
4079 spin_unlock(&root->fs_info->trans_lock);
4080 btrfs_wait_for_commit(root, t->transid);
4081 btrfs_put_transaction(t);
4082 spin_lock(&root->fs_info->trans_lock);
4085 if (t == root->fs_info->running_transaction) {
4086 t->state = TRANS_STATE_COMMIT_DOING;
4087 spin_unlock(&root->fs_info->trans_lock);
4089 * We wait for 0 num_writers since we don't hold a trans
4090 * handle open currently for this transaction.
4092 wait_event(t->writer_wait,
4093 atomic_read(&t->num_writers) == 0);
4095 spin_unlock(&root->fs_info->trans_lock);
4097 btrfs_cleanup_one_transaction(t, root);
4099 spin_lock(&root->fs_info->trans_lock);
4100 if (t == root->fs_info->running_transaction)
4101 root->fs_info->running_transaction = NULL;
4102 list_del_init(&t->list);
4103 spin_unlock(&root->fs_info->trans_lock);
4105 btrfs_put_transaction(t);
4106 trace_btrfs_transaction_commit(root);
4107 spin_lock(&root->fs_info->trans_lock);
4109 spin_unlock(&root->fs_info->trans_lock);
4110 btrfs_destroy_all_ordered_extents(root->fs_info);
4111 btrfs_destroy_delayed_inodes(root);
4112 btrfs_assert_delayed_root_empty(root);
4113 btrfs_destroy_pinned_extent(root, root->fs_info->pinned_extents);
4114 btrfs_destroy_all_delalloc_inodes(root->fs_info);
4115 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
4120 static struct extent_io_ops btree_extent_io_ops = {
4121 .readpage_end_io_hook = btree_readpage_end_io_hook,
4122 .readpage_io_failed_hook = btree_io_failed_hook,
4123 .submit_bio_hook = btree_submit_bio_hook,
4124 /* note we're sharing with inode.c for the merge bio hook */
4125 .merge_bio_hook = btrfs_merge_bio_hook,