]> git.karo-electronics.de Git - karo-tx-linux.git/blob - fs/btrfs/disk-io.c
Btrfs: Add extra checks to avoid removing extent_state from pages we can't free
[karo-tx-linux.git] / fs / btrfs / disk-io.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/crc32c.h>
22 #include <linux/scatterlist.h>
23 #include <linux/swap.h>
24 #include <linux/radix-tree.h>
25 #include <linux/writeback.h>
26 #include <linux/buffer_head.h> // for block_sync_page
27 #include <linux/workqueue.h>
28 #include "ctree.h"
29 #include "disk-io.h"
30 #include "transaction.h"
31 #include "btrfs_inode.h"
32 #include "volumes.h"
33 #include "print-tree.h"
34
35 #if 0
36 static int check_tree_block(struct btrfs_root *root, struct extent_buffer *buf)
37 {
38         if (extent_buffer_blocknr(buf) != btrfs_header_blocknr(buf)) {
39                 printk(KERN_CRIT "buf blocknr(buf) is %llu, header is %llu\n",
40                        (unsigned long long)extent_buffer_blocknr(buf),
41                        (unsigned long long)btrfs_header_blocknr(buf));
42                 return 1;
43         }
44         return 0;
45 }
46 #endif
47
48 static struct extent_io_ops btree_extent_io_ops;
49 static struct workqueue_struct *end_io_workqueue;
50
51 struct end_io_wq {
52         struct bio *bio;
53         bio_end_io_t *end_io;
54         void *private;
55         struct btrfs_fs_info *info;
56         int error;
57         int metadata;
58         struct list_head list;
59 };
60
61 struct extent_map *btree_get_extent(struct inode *inode, struct page *page,
62                                     size_t page_offset, u64 start, u64 len,
63                                     int create)
64 {
65         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
66         struct extent_map *em;
67         int ret;
68
69 again:
70         spin_lock(&em_tree->lock);
71         em = lookup_extent_mapping(em_tree, start, len);
72         spin_unlock(&em_tree->lock);
73         if (em) {
74                 goto out;
75         }
76         em = alloc_extent_map(GFP_NOFS);
77         if (!em) {
78                 em = ERR_PTR(-ENOMEM);
79                 goto out;
80         }
81         em->start = 0;
82         em->len = i_size_read(inode);
83         em->block_start = 0;
84         em->bdev = inode->i_sb->s_bdev;
85
86         spin_lock(&em_tree->lock);
87         ret = add_extent_mapping(em_tree, em);
88         spin_unlock(&em_tree->lock);
89
90         if (ret == -EEXIST) {
91                 free_extent_map(em);
92                 em = NULL;
93                 goto again;
94         } else if (ret) {
95                 em = ERR_PTR(ret);
96         }
97 out:
98         return em;
99 }
100
101 u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
102 {
103         return crc32c(seed, data, len);
104 }
105
106 void btrfs_csum_final(u32 crc, char *result)
107 {
108         *(__le32 *)result = ~cpu_to_le32(crc);
109 }
110
111 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
112                            int verify)
113 {
114         char result[BTRFS_CRC32_SIZE];
115         unsigned long len;
116         unsigned long cur_len;
117         unsigned long offset = BTRFS_CSUM_SIZE;
118         char *map_token = NULL;
119         char *kaddr;
120         unsigned long map_start;
121         unsigned long map_len;
122         int err;
123         u32 crc = ~(u32)0;
124
125         len = buf->len - offset;
126         while(len > 0) {
127                 err = map_private_extent_buffer(buf, offset, 32,
128                                         &map_token, &kaddr,
129                                         &map_start, &map_len, KM_USER0);
130                 if (err) {
131                         printk("failed to map extent buffer! %lu\n",
132                                offset);
133                         return 1;
134                 }
135                 cur_len = min(len, map_len - (offset - map_start));
136                 crc = btrfs_csum_data(root, kaddr + offset - map_start,
137                                       crc, cur_len);
138                 len -= cur_len;
139                 offset += cur_len;
140                 unmap_extent_buffer(buf, map_token, KM_USER0);
141         }
142         btrfs_csum_final(crc, result);
143
144         if (verify) {
145                 int from_this_trans = 0;
146
147                 if (root->fs_info->running_transaction &&
148                     btrfs_header_generation(buf) ==
149                     root->fs_info->running_transaction->transid)
150                         from_this_trans = 1;
151
152                 /* FIXME, this is not good */
153                 if (memcmp_extent_buffer(buf, result, 0, BTRFS_CRC32_SIZE)) {
154                         u32 val;
155                         u32 found = 0;
156                         memcpy(&found, result, BTRFS_CRC32_SIZE);
157
158                         read_extent_buffer(buf, &val, 0, BTRFS_CRC32_SIZE);
159                         printk("btrfs: %s checksum verify failed on %llu "
160                                "wanted %X found %X from_this_trans %d "
161                                "level %d\n",
162                                root->fs_info->sb->s_id,
163                                buf->start, val, found, from_this_trans,
164                                btrfs_header_level(buf));
165                         return 1;
166                 }
167         } else {
168                 write_extent_buffer(buf, result, 0, BTRFS_CRC32_SIZE);
169         }
170         return 0;
171 }
172
173 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
174                                           struct extent_buffer *eb,
175                                           u64 start)
176 {
177         struct extent_io_tree *io_tree;
178         int ret;
179         int num_copies = 0;
180         int mirror_num = 0;
181
182         io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
183         while (1) {
184                 ret = read_extent_buffer_pages(io_tree, eb, start, 1,
185                                                btree_get_extent, mirror_num);
186                 if (!ret) {
187                         if (mirror_num)
188 printk("good read %Lu mirror %d total %d\n", eb->start, mirror_num, num_copies);
189                         return ret;
190                 }
191                 num_copies = btrfs_num_copies(&root->fs_info->mapping_tree,
192                                               eb->start, eb->len);
193 printk("failed to read %Lu mirror %d total %d\n", eb->start, mirror_num, num_copies);
194                 if (num_copies == 1) {
195 printk("reading %Lu failed only one copy\n", eb->start);
196                         return ret;
197                 }
198                 mirror_num++;
199                 if (mirror_num > num_copies) {
200 printk("bailing at mirror %d of %d\n", mirror_num, num_copies);
201                         return ret;
202                 }
203         }
204 printk("read extent buffer page last\n");
205         return -EIO;
206 }
207
208 int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
209 {
210         struct extent_io_tree *tree;
211         u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
212         u64 found_start;
213         int found_level;
214         unsigned long len;
215         struct extent_buffer *eb;
216         int ret;
217
218         tree = &BTRFS_I(page->mapping->host)->io_tree;
219
220         if (page->private == EXTENT_PAGE_PRIVATE)
221                 goto out;
222         if (!page->private)
223                 goto out;
224         len = page->private >> 2;
225         if (len == 0) {
226                 WARN_ON(1);
227         }
228         eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS);
229         ret = btree_read_extent_buffer_pages(root, eb, start + PAGE_CACHE_SIZE);
230         BUG_ON(ret);
231         btrfs_clear_buffer_defrag(eb);
232         found_start = btrfs_header_bytenr(eb);
233         if (found_start != start) {
234                 printk("warning: eb start incorrect %Lu buffer %Lu len %lu\n",
235                        start, found_start, len);
236                 WARN_ON(1);
237                 goto err;
238         }
239         if (eb->first_page != page) {
240                 printk("bad first page %lu %lu\n", eb->first_page->index,
241                        page->index);
242                 WARN_ON(1);
243                 goto err;
244         }
245         if (!PageUptodate(page)) {
246                 printk("csum not up to date page %lu\n", page->index);
247                 WARN_ON(1);
248                 goto err;
249         }
250         found_level = btrfs_header_level(eb);
251         spin_lock(&root->fs_info->hash_lock);
252         btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
253         spin_unlock(&root->fs_info->hash_lock);
254         csum_tree_block(root, eb, 0);
255 err:
256         free_extent_buffer(eb);
257 out:
258         return 0;
259 }
260
261 static int btree_writepage_io_hook(struct page *page, u64 start, u64 end)
262 {
263         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
264
265         csum_dirty_buffer(root, page);
266         return 0;
267 }
268
269 int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
270                                struct extent_state *state)
271 {
272         struct extent_io_tree *tree;
273         u64 found_start;
274         int found_level;
275         unsigned long len;
276         struct extent_buffer *eb;
277         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
278         int ret = 0;
279
280         tree = &BTRFS_I(page->mapping->host)->io_tree;
281         if (page->private == EXTENT_PAGE_PRIVATE)
282                 goto out;
283         if (!page->private)
284                 goto out;
285         len = page->private >> 2;
286         if (len == 0) {
287                 WARN_ON(1);
288         }
289         eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS);
290
291         btrfs_clear_buffer_defrag(eb);
292         found_start = btrfs_header_bytenr(eb);
293         if (found_start != start) {
294 printk("bad start on %Lu found %Lu\n", eb->start, found_start);
295                 ret = -EIO;
296                 goto err;
297         }
298         if (eb->first_page != page) {
299                 printk("bad first page %lu %lu\n", eb->first_page->index,
300                        page->index);
301                 WARN_ON(1);
302                 ret = -EIO;
303                 goto err;
304         }
305         found_level = btrfs_header_level(eb);
306
307         ret = csum_tree_block(root, eb, 1);
308         if (ret)
309                 ret = -EIO;
310
311         end = min_t(u64, eb->len, PAGE_CACHE_SIZE);
312         end = eb->start + end - 1;
313         release_extent_buffer_tail_pages(eb);
314 err:
315         free_extent_buffer(eb);
316 out:
317         return ret;
318 }
319
320 #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,23)
321 static void end_workqueue_bio(struct bio *bio, int err)
322 #else
323 static int end_workqueue_bio(struct bio *bio,
324                                    unsigned int bytes_done, int err)
325 #endif
326 {
327         struct end_io_wq *end_io_wq = bio->bi_private;
328         struct btrfs_fs_info *fs_info;
329         unsigned long flags;
330
331 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
332         if (bio->bi_size)
333                 return 1;
334 #endif
335
336         fs_info = end_io_wq->info;
337         spin_lock_irqsave(&fs_info->end_io_work_lock, flags);
338         end_io_wq->error = err;
339         list_add_tail(&end_io_wq->list, &fs_info->end_io_work_list);
340         spin_unlock_irqrestore(&fs_info->end_io_work_lock, flags);
341         queue_work(end_io_workqueue, &fs_info->end_io_work);
342
343 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
344         return 0;
345 #endif
346 }
347
348 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
349                         int metadata)
350 {
351         struct end_io_wq *end_io_wq;
352         end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
353         if (!end_io_wq)
354                 return -ENOMEM;
355
356         end_io_wq->private = bio->bi_private;
357         end_io_wq->end_io = bio->bi_end_io;
358         end_io_wq->info = info;
359         end_io_wq->error = 0;
360         end_io_wq->bio = bio;
361         end_io_wq->metadata = metadata;
362
363         bio->bi_private = end_io_wq;
364         bio->bi_end_io = end_workqueue_bio;
365         return 0;
366 }
367
368 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
369                                  int mirror_num)
370 {
371         struct btrfs_root *root = BTRFS_I(inode)->root;
372         u64 offset;
373         int ret;
374
375         offset = bio->bi_sector << 9;
376
377         if (rw & (1 << BIO_RW)) {
378                 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num);
379         }
380
381         ret = btrfs_bio_wq_end_io(root->fs_info, bio, 1);
382         BUG_ON(ret);
383
384         if (offset == BTRFS_SUPER_INFO_OFFSET) {
385                 bio->bi_bdev = root->fs_info->fs_devices->latest_bdev;
386                 submit_bio(rw, bio);
387                 return 0;
388         }
389         return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num);
390 }
391
392 static int btree_writepage(struct page *page, struct writeback_control *wbc)
393 {
394         struct extent_io_tree *tree;
395         tree = &BTRFS_I(page->mapping->host)->io_tree;
396         return extent_write_full_page(tree, page, btree_get_extent, wbc);
397 }
398
399 static int btree_writepages(struct address_space *mapping,
400                             struct writeback_control *wbc)
401 {
402         struct extent_io_tree *tree;
403         tree = &BTRFS_I(mapping->host)->io_tree;
404         if (wbc->sync_mode == WB_SYNC_NONE) {
405                 u64 num_dirty;
406                 u64 start = 0;
407                 unsigned long thresh = 96 * 1024 * 1024;
408
409                 if (wbc->for_kupdate)
410                         return 0;
411
412                 if (current_is_pdflush()) {
413                         thresh = 96 * 1024 * 1024;
414                 } else {
415                         thresh = 8 * 1024 * 1024;
416                 }
417                 num_dirty = count_range_bits(tree, &start, (u64)-1,
418                                              thresh, EXTENT_DIRTY);
419                 if (num_dirty < thresh) {
420                         return 0;
421                 }
422         }
423         return extent_writepages(tree, mapping, btree_get_extent, wbc);
424 }
425
426 int btree_readpage(struct file *file, struct page *page)
427 {
428         struct extent_io_tree *tree;
429         tree = &BTRFS_I(page->mapping->host)->io_tree;
430         return extent_read_full_page(tree, page, btree_get_extent);
431 }
432
433 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
434 {
435         struct extent_io_tree *tree;
436         struct extent_map_tree *map;
437         int ret;
438
439         if (page_count(page) > 3) {
440                 /* once for page->private, once for the caller, once
441                  * once for the page cache
442                  */
443                 return 0;
444         }
445         tree = &BTRFS_I(page->mapping->host)->io_tree;
446         map = &BTRFS_I(page->mapping->host)->extent_tree;
447         ret = try_release_extent_mapping(map, tree, page, gfp_flags);
448         if (ret == 1) {
449                 invalidate_extent_lru(tree, page_offset(page), PAGE_CACHE_SIZE);
450                 ClearPagePrivate(page);
451                 set_page_private(page, 0);
452                 page_cache_release(page);
453         }
454         return ret;
455 }
456
457 static void btree_invalidatepage(struct page *page, unsigned long offset)
458 {
459         struct extent_io_tree *tree;
460         tree = &BTRFS_I(page->mapping->host)->io_tree;
461         extent_invalidatepage(tree, page, offset);
462         btree_releasepage(page, GFP_NOFS);
463 }
464
465 #if 0
466 static int btree_writepage(struct page *page, struct writeback_control *wbc)
467 {
468         struct buffer_head *bh;
469         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
470         struct buffer_head *head;
471         if (!page_has_buffers(page)) {
472                 create_empty_buffers(page, root->fs_info->sb->s_blocksize,
473                                         (1 << BH_Dirty)|(1 << BH_Uptodate));
474         }
475         head = page_buffers(page);
476         bh = head;
477         do {
478                 if (buffer_dirty(bh))
479                         csum_tree_block(root, bh, 0);
480                 bh = bh->b_this_page;
481         } while (bh != head);
482         return block_write_full_page(page, btree_get_block, wbc);
483 }
484 #endif
485
486 static struct address_space_operations btree_aops = {
487         .readpage       = btree_readpage,
488         .writepage      = btree_writepage,
489         .writepages     = btree_writepages,
490         .releasepage    = btree_releasepage,
491         .invalidatepage = btree_invalidatepage,
492         .sync_page      = block_sync_page,
493 };
494
495 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize)
496 {
497         struct extent_buffer *buf = NULL;
498         struct inode *btree_inode = root->fs_info->btree_inode;
499         int ret = 0;
500
501         buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
502         if (!buf)
503                 return 0;
504         read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
505                                  buf, 0, 0, btree_get_extent, 0);
506         free_extent_buffer(buf);
507         return ret;
508 }
509
510 static int close_all_devices(struct btrfs_fs_info *fs_info)
511 {
512         struct list_head *list;
513         struct list_head *next;
514         struct btrfs_device *device;
515
516         list = &fs_info->fs_devices->devices;
517         list_for_each(next, list) {
518                 device = list_entry(next, struct btrfs_device, dev_list);
519                 if (device->bdev && device->bdev != fs_info->sb->s_bdev)
520                         close_bdev_excl(device->bdev);
521                 device->bdev = NULL;
522         }
523         return 0;
524 }
525
526 int btrfs_verify_block_csum(struct btrfs_root *root,
527                             struct extent_buffer *buf)
528 {
529         return btrfs_buffer_uptodate(buf);
530 }
531
532 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
533                                             u64 bytenr, u32 blocksize)
534 {
535         struct inode *btree_inode = root->fs_info->btree_inode;
536         struct extent_buffer *eb;
537         eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
538                                 bytenr, blocksize, GFP_NOFS);
539         return eb;
540 }
541
542 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
543                                                  u64 bytenr, u32 blocksize)
544 {
545         struct inode *btree_inode = root->fs_info->btree_inode;
546         struct extent_buffer *eb;
547
548         eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
549                                  bytenr, blocksize, NULL, GFP_NOFS);
550         return eb;
551 }
552
553
554 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
555                                       u32 blocksize)
556 {
557         struct extent_buffer *buf = NULL;
558         struct inode *btree_inode = root->fs_info->btree_inode;
559         struct extent_io_tree *io_tree;
560         int ret;
561
562         io_tree = &BTRFS_I(btree_inode)->io_tree;
563
564         buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
565         if (!buf)
566                 return NULL;
567
568         ret = btree_read_extent_buffer_pages(root, buf, 0);
569
570         if (ret == 0) {
571                 buf->flags |= EXTENT_UPTODATE;
572         }
573         return buf;
574
575 }
576
577 int clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
578                      struct extent_buffer *buf)
579 {
580         struct inode *btree_inode = root->fs_info->btree_inode;
581         if (btrfs_header_generation(buf) ==
582             root->fs_info->running_transaction->transid)
583                 clear_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
584                                           buf);
585         return 0;
586 }
587
588 int wait_on_tree_block_writeback(struct btrfs_root *root,
589                                  struct extent_buffer *buf)
590 {
591         struct inode *btree_inode = root->fs_info->btree_inode;
592         wait_on_extent_buffer_writeback(&BTRFS_I(btree_inode)->io_tree,
593                                         buf);
594         return 0;
595 }
596
597 static int __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
598                         u32 stripesize, struct btrfs_root *root,
599                         struct btrfs_fs_info *fs_info,
600                         u64 objectid)
601 {
602         root->node = NULL;
603         root->inode = NULL;
604         root->commit_root = NULL;
605         root->sectorsize = sectorsize;
606         root->nodesize = nodesize;
607         root->leafsize = leafsize;
608         root->stripesize = stripesize;
609         root->ref_cows = 0;
610         root->track_dirty = 0;
611
612         root->fs_info = fs_info;
613         root->objectid = objectid;
614         root->last_trans = 0;
615         root->highest_inode = 0;
616         root->last_inode_alloc = 0;
617         root->name = NULL;
618         root->in_sysfs = 0;
619
620         INIT_LIST_HEAD(&root->dirty_list);
621         memset(&root->root_key, 0, sizeof(root->root_key));
622         memset(&root->root_item, 0, sizeof(root->root_item));
623         memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
624         memset(&root->root_kobj, 0, sizeof(root->root_kobj));
625         init_completion(&root->kobj_unregister);
626         root->defrag_running = 0;
627         root->defrag_level = 0;
628         root->root_key.objectid = objectid;
629         return 0;
630 }
631
632 static int find_and_setup_root(struct btrfs_root *tree_root,
633                                struct btrfs_fs_info *fs_info,
634                                u64 objectid,
635                                struct btrfs_root *root)
636 {
637         int ret;
638         u32 blocksize;
639
640         __setup_root(tree_root->nodesize, tree_root->leafsize,
641                      tree_root->sectorsize, tree_root->stripesize,
642                      root, fs_info, objectid);
643         ret = btrfs_find_last_root(tree_root, objectid,
644                                    &root->root_item, &root->root_key);
645         BUG_ON(ret);
646
647         blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
648         root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
649                                      blocksize);
650         BUG_ON(!root->node);
651         return 0;
652 }
653
654 struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_fs_info *fs_info,
655                                                struct btrfs_key *location)
656 {
657         struct btrfs_root *root;
658         struct btrfs_root *tree_root = fs_info->tree_root;
659         struct btrfs_path *path;
660         struct extent_buffer *l;
661         u64 highest_inode;
662         u32 blocksize;
663         int ret = 0;
664
665         root = kzalloc(sizeof(*root), GFP_NOFS);
666         if (!root)
667                 return ERR_PTR(-ENOMEM);
668         if (location->offset == (u64)-1) {
669                 ret = find_and_setup_root(tree_root, fs_info,
670                                           location->objectid, root);
671                 if (ret) {
672                         kfree(root);
673                         return ERR_PTR(ret);
674                 }
675                 goto insert;
676         }
677
678         __setup_root(tree_root->nodesize, tree_root->leafsize,
679                      tree_root->sectorsize, tree_root->stripesize,
680                      root, fs_info, location->objectid);
681
682         path = btrfs_alloc_path();
683         BUG_ON(!path);
684         ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
685         if (ret != 0) {
686                 if (ret > 0)
687                         ret = -ENOENT;
688                 goto out;
689         }
690         l = path->nodes[0];
691         read_extent_buffer(l, &root->root_item,
692                btrfs_item_ptr_offset(l, path->slots[0]),
693                sizeof(root->root_item));
694         memcpy(&root->root_key, location, sizeof(*location));
695         ret = 0;
696 out:
697         btrfs_release_path(root, path);
698         btrfs_free_path(path);
699         if (ret) {
700                 kfree(root);
701                 return ERR_PTR(ret);
702         }
703         blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
704         root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
705                                      blocksize);
706         BUG_ON(!root->node);
707 insert:
708         root->ref_cows = 1;
709         ret = btrfs_find_highest_inode(root, &highest_inode);
710         if (ret == 0) {
711                 root->highest_inode = highest_inode;
712                 root->last_inode_alloc = highest_inode;
713         }
714         return root;
715 }
716
717 struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
718                                         u64 root_objectid)
719 {
720         struct btrfs_root *root;
721
722         if (root_objectid == BTRFS_ROOT_TREE_OBJECTID)
723                 return fs_info->tree_root;
724         if (root_objectid == BTRFS_EXTENT_TREE_OBJECTID)
725                 return fs_info->extent_root;
726
727         root = radix_tree_lookup(&fs_info->fs_roots_radix,
728                                  (unsigned long)root_objectid);
729         return root;
730 }
731
732 struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
733                                               struct btrfs_key *location)
734 {
735         struct btrfs_root *root;
736         int ret;
737
738         if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
739                 return fs_info->tree_root;
740         if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
741                 return fs_info->extent_root;
742
743         root = radix_tree_lookup(&fs_info->fs_roots_radix,
744                                  (unsigned long)location->objectid);
745         if (root)
746                 return root;
747
748         root = btrfs_read_fs_root_no_radix(fs_info, location);
749         if (IS_ERR(root))
750                 return root;
751         ret = radix_tree_insert(&fs_info->fs_roots_radix,
752                                 (unsigned long)root->root_key.objectid,
753                                 root);
754         if (ret) {
755                 free_extent_buffer(root->node);
756                 kfree(root);
757                 return ERR_PTR(ret);
758         }
759         ret = btrfs_find_dead_roots(fs_info->tree_root,
760                                     root->root_key.objectid, root);
761         BUG_ON(ret);
762
763         return root;
764 }
765
766 struct btrfs_root *btrfs_read_fs_root(struct btrfs_fs_info *fs_info,
767                                       struct btrfs_key *location,
768                                       const char *name, int namelen)
769 {
770         struct btrfs_root *root;
771         int ret;
772
773         root = btrfs_read_fs_root_no_name(fs_info, location);
774         if (!root)
775                 return NULL;
776
777         if (root->in_sysfs)
778                 return root;
779
780         ret = btrfs_set_root_name(root, name, namelen);
781         if (ret) {
782                 free_extent_buffer(root->node);
783                 kfree(root);
784                 return ERR_PTR(ret);
785         }
786
787         ret = btrfs_sysfs_add_root(root);
788         if (ret) {
789                 free_extent_buffer(root->node);
790                 kfree(root->name);
791                 kfree(root);
792                 return ERR_PTR(ret);
793         }
794         root->in_sysfs = 1;
795         return root;
796 }
797 #if 0
798 static int add_hasher(struct btrfs_fs_info *info, char *type) {
799         struct btrfs_hasher *hasher;
800
801         hasher = kmalloc(sizeof(*hasher), GFP_NOFS);
802         if (!hasher)
803                 return -ENOMEM;
804         hasher->hash_tfm = crypto_alloc_hash(type, 0, CRYPTO_ALG_ASYNC);
805         if (!hasher->hash_tfm) {
806                 kfree(hasher);
807                 return -EINVAL;
808         }
809         spin_lock(&info->hash_lock);
810         list_add(&hasher->list, &info->hashers);
811         spin_unlock(&info->hash_lock);
812         return 0;
813 }
814 #endif
815
816 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
817 {
818         struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
819         int ret = 0;
820         struct list_head *cur;
821         struct btrfs_device *device;
822         struct backing_dev_info *bdi;
823
824         list_for_each(cur, &info->fs_devices->devices) {
825                 device = list_entry(cur, struct btrfs_device, dev_list);
826                 bdi = blk_get_backing_dev_info(device->bdev);
827                 if (bdi && bdi_congested(bdi, bdi_bits)) {
828                         ret = 1;
829                         break;
830                 }
831         }
832         return ret;
833 }
834
835 void btrfs_unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
836 {
837         struct list_head *cur;
838         struct btrfs_device *device;
839         struct btrfs_fs_info *info;
840
841         info = (struct btrfs_fs_info *)bdi->unplug_io_data;
842         list_for_each(cur, &info->fs_devices->devices) {
843                 device = list_entry(cur, struct btrfs_device, dev_list);
844                 bdi = blk_get_backing_dev_info(device->bdev);
845                 if (bdi->unplug_io_fn) {
846                         bdi->unplug_io_fn(bdi, page);
847                 }
848         }
849 }
850
851 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
852 {
853         bdi_init(bdi);
854         bdi->ra_pages   = default_backing_dev_info.ra_pages * 4;
855         bdi->state              = 0;
856         bdi->capabilities       = default_backing_dev_info.capabilities;
857         bdi->unplug_io_fn       = btrfs_unplug_io_fn;
858         bdi->unplug_io_data     = info;
859         bdi->congested_fn       = btrfs_congested_fn;
860         bdi->congested_data     = info;
861         return 0;
862 }
863
864 static int bio_ready_for_csum(struct bio *bio)
865 {
866         u64 length = 0;
867         u64 buf_len = 0;
868         u64 start = 0;
869         struct page *page;
870         struct extent_io_tree *io_tree = NULL;
871         struct btrfs_fs_info *info = NULL;
872         struct bio_vec *bvec;
873         int i;
874         int ret;
875
876         bio_for_each_segment(bvec, bio, i) {
877                 page = bvec->bv_page;
878                 if (page->private == EXTENT_PAGE_PRIVATE) {
879                         length += bvec->bv_len;
880                         continue;
881                 }
882                 if (!page->private) {
883                         length += bvec->bv_len;
884                         continue;
885                 }
886                 length = bvec->bv_len;
887                 buf_len = page->private >> 2;
888                 start = page_offset(page) + bvec->bv_offset;
889                 io_tree = &BTRFS_I(page->mapping->host)->io_tree;
890                 info = BTRFS_I(page->mapping->host)->root->fs_info;
891         }
892         /* are we fully contained in this bio? */
893         if (buf_len <= length)
894                 return 1;
895
896         ret = extent_range_uptodate(io_tree, start + length,
897                                     start + buf_len - 1);
898         if (ret == 1)
899                 return ret;
900         return ret;
901 }
902
903 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,18)
904 void btrfs_end_io_csum(void *p)
905 #else
906 void btrfs_end_io_csum(struct work_struct *work)
907 #endif
908 {
909 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,18)
910         struct btrfs_fs_info *fs_info = p;
911 #else
912         struct btrfs_fs_info *fs_info = container_of(work,
913                                                      struct btrfs_fs_info,
914                                                      end_io_work);
915 #endif
916         unsigned long flags;
917         struct end_io_wq *end_io_wq;
918         struct bio *bio;
919         struct list_head *next;
920         int error;
921         int was_empty;
922
923         while(1) {
924                 spin_lock_irqsave(&fs_info->end_io_work_lock, flags);
925                 if (list_empty(&fs_info->end_io_work_list)) {
926                         spin_unlock_irqrestore(&fs_info->end_io_work_lock,
927                                                flags);
928                         return;
929                 }
930                 next = fs_info->end_io_work_list.next;
931                 list_del(next);
932                 spin_unlock_irqrestore(&fs_info->end_io_work_lock, flags);
933
934                 end_io_wq = list_entry(next, struct end_io_wq, list);
935
936                 bio = end_io_wq->bio;
937                 if (end_io_wq->metadata && !bio_ready_for_csum(bio)) {
938                         spin_lock_irqsave(&fs_info->end_io_work_lock, flags);
939                         was_empty = list_empty(&fs_info->end_io_work_list);
940                         list_add_tail(&end_io_wq->list,
941                                       &fs_info->end_io_work_list);
942                         spin_unlock_irqrestore(&fs_info->end_io_work_lock,
943                                                flags);
944                         if (was_empty)
945                                 return;
946                         continue;
947                 }
948                 error = end_io_wq->error;
949                 bio->bi_private = end_io_wq->private;
950                 bio->bi_end_io = end_io_wq->end_io;
951                 kfree(end_io_wq);
952                 bio_endio(bio, error);
953         }
954 }
955
956
957 struct btrfs_root *open_ctree(struct super_block *sb,
958                               struct btrfs_fs_devices *fs_devices)
959 {
960         u32 sectorsize;
961         u32 nodesize;
962         u32 leafsize;
963         u32 blocksize;
964         u32 stripesize;
965         struct btrfs_root *extent_root = kmalloc(sizeof(struct btrfs_root),
966                                                  GFP_NOFS);
967         struct btrfs_root *tree_root = kmalloc(sizeof(struct btrfs_root),
968                                                GFP_NOFS);
969         struct btrfs_fs_info *fs_info = kzalloc(sizeof(*fs_info),
970                                                 GFP_NOFS);
971         struct btrfs_root *chunk_root = kmalloc(sizeof(struct btrfs_root),
972                                                 GFP_NOFS);
973         struct btrfs_root *dev_root = kmalloc(sizeof(struct btrfs_root),
974                                               GFP_NOFS);
975         int ret;
976         int err = -EINVAL;
977         struct btrfs_super_block *disk_super;
978
979         if (!extent_root || !tree_root || !fs_info) {
980                 err = -ENOMEM;
981                 goto fail;
982         }
983         end_io_workqueue = create_workqueue("btrfs-end-io");
984         BUG_ON(!end_io_workqueue);
985
986         INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_NOFS);
987         INIT_LIST_HEAD(&fs_info->trans_list);
988         INIT_LIST_HEAD(&fs_info->dead_roots);
989         INIT_LIST_HEAD(&fs_info->hashers);
990         INIT_LIST_HEAD(&fs_info->end_io_work_list);
991         spin_lock_init(&fs_info->hash_lock);
992         spin_lock_init(&fs_info->end_io_work_lock);
993         spin_lock_init(&fs_info->delalloc_lock);
994         spin_lock_init(&fs_info->new_trans_lock);
995
996         init_completion(&fs_info->kobj_unregister);
997         sb_set_blocksize(sb, BTRFS_SUPER_INFO_SIZE);
998         fs_info->tree_root = tree_root;
999         fs_info->extent_root = extent_root;
1000         fs_info->chunk_root = chunk_root;
1001         fs_info->dev_root = dev_root;
1002         fs_info->fs_devices = fs_devices;
1003         INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
1004         INIT_LIST_HEAD(&fs_info->space_info);
1005         btrfs_mapping_init(&fs_info->mapping_tree);
1006         fs_info->sb = sb;
1007         fs_info->max_extent = (u64)-1;
1008         fs_info->max_inline = 8192 * 1024;
1009         setup_bdi(fs_info, &fs_info->bdi);
1010         fs_info->btree_inode = new_inode(sb);
1011         fs_info->btree_inode->i_ino = 1;
1012         fs_info->btree_inode->i_nlink = 1;
1013         fs_info->btree_inode->i_size = sb->s_bdev->bd_inode->i_size;
1014         fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
1015         fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
1016
1017         extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
1018                              fs_info->btree_inode->i_mapping,
1019                              GFP_NOFS);
1020         extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree,
1021                              GFP_NOFS);
1022
1023         BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
1024
1025         extent_io_tree_init(&fs_info->free_space_cache,
1026                              fs_info->btree_inode->i_mapping, GFP_NOFS);
1027         extent_io_tree_init(&fs_info->block_group_cache,
1028                              fs_info->btree_inode->i_mapping, GFP_NOFS);
1029         extent_io_tree_init(&fs_info->pinned_extents,
1030                              fs_info->btree_inode->i_mapping, GFP_NOFS);
1031         extent_io_tree_init(&fs_info->pending_del,
1032                              fs_info->btree_inode->i_mapping, GFP_NOFS);
1033         extent_io_tree_init(&fs_info->extent_ins,
1034                              fs_info->btree_inode->i_mapping, GFP_NOFS);
1035         fs_info->do_barriers = 1;
1036
1037         INIT_WORK(&fs_info->end_io_work, btrfs_end_io_csum);
1038 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,18)
1039         INIT_WORK(&fs_info->trans_work, btrfs_transaction_cleaner, fs_info);
1040 #else
1041         INIT_DELAYED_WORK(&fs_info->trans_work, btrfs_transaction_cleaner);
1042 #endif
1043         BTRFS_I(fs_info->btree_inode)->root = tree_root;
1044         memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
1045                sizeof(struct btrfs_key));
1046         insert_inode_hash(fs_info->btree_inode);
1047         mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
1048
1049         mutex_init(&fs_info->trans_mutex);
1050         mutex_init(&fs_info->fs_mutex);
1051
1052 #if 0
1053         ret = add_hasher(fs_info, "crc32c");
1054         if (ret) {
1055                 printk("btrfs: failed hash setup, modprobe cryptomgr?\n");
1056                 err = -ENOMEM;
1057                 goto fail_iput;
1058         }
1059 #endif
1060         __setup_root(4096, 4096, 4096, 4096, tree_root,
1061                      fs_info, BTRFS_ROOT_TREE_OBJECTID);
1062
1063         fs_info->sb_buffer = read_tree_block(tree_root,
1064                                              BTRFS_SUPER_INFO_OFFSET,
1065                                              4096);
1066
1067         if (!fs_info->sb_buffer)
1068                 goto fail_iput;
1069
1070         read_extent_buffer(fs_info->sb_buffer, &fs_info->super_copy, 0,
1071                            sizeof(fs_info->super_copy));
1072
1073         read_extent_buffer(fs_info->sb_buffer, fs_info->fsid,
1074                            (unsigned long)btrfs_super_fsid(fs_info->sb_buffer),
1075                            BTRFS_FSID_SIZE);
1076
1077         disk_super = &fs_info->super_copy;
1078         if (!btrfs_super_root(disk_super))
1079                 goto fail_sb_buffer;
1080
1081         if (btrfs_super_num_devices(disk_super) != fs_devices->num_devices) {
1082                 printk("Btrfs: wanted %llu devices, but found %llu\n",
1083                        (unsigned long long)btrfs_super_num_devices(disk_super),
1084                        (unsigned long long)fs_devices->num_devices);
1085                 goto fail_sb_buffer;
1086         }
1087         nodesize = btrfs_super_nodesize(disk_super);
1088         leafsize = btrfs_super_leafsize(disk_super);
1089         sectorsize = btrfs_super_sectorsize(disk_super);
1090         stripesize = btrfs_super_stripesize(disk_super);
1091         tree_root->nodesize = nodesize;
1092         tree_root->leafsize = leafsize;
1093         tree_root->sectorsize = sectorsize;
1094         tree_root->stripesize = stripesize;
1095         sb_set_blocksize(sb, sectorsize);
1096
1097         i_size_write(fs_info->btree_inode,
1098                      btrfs_super_total_bytes(disk_super));
1099
1100         if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
1101                     sizeof(disk_super->magic))) {
1102                 printk("btrfs: valid FS not found on %s\n", sb->s_id);
1103                 goto fail_sb_buffer;
1104         }
1105
1106         mutex_lock(&fs_info->fs_mutex);
1107
1108         ret = btrfs_read_sys_array(tree_root);
1109         BUG_ON(ret);
1110
1111         blocksize = btrfs_level_size(tree_root,
1112                                      btrfs_super_chunk_root_level(disk_super));
1113
1114         __setup_root(nodesize, leafsize, sectorsize, stripesize,
1115                      chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
1116
1117         chunk_root->node = read_tree_block(chunk_root,
1118                                            btrfs_super_chunk_root(disk_super),
1119                                            blocksize);
1120         BUG_ON(!chunk_root->node);
1121
1122         ret = btrfs_read_chunk_tree(chunk_root);
1123         BUG_ON(ret);
1124
1125         blocksize = btrfs_level_size(tree_root,
1126                                      btrfs_super_root_level(disk_super));
1127
1128
1129         tree_root->node = read_tree_block(tree_root,
1130                                           btrfs_super_root(disk_super),
1131                                           blocksize);
1132         if (!tree_root->node)
1133                 goto fail_sb_buffer;
1134
1135
1136         ret = find_and_setup_root(tree_root, fs_info,
1137                                   BTRFS_EXTENT_TREE_OBJECTID, extent_root);
1138         if (ret)
1139                 goto fail_tree_root;
1140         extent_root->track_dirty = 1;
1141
1142         ret = find_and_setup_root(tree_root, fs_info,
1143                                   BTRFS_DEV_TREE_OBJECTID, dev_root);
1144         dev_root->track_dirty = 1;
1145
1146         if (ret)
1147                 goto fail_extent_root;
1148
1149         btrfs_read_block_groups(extent_root);
1150
1151         fs_info->generation = btrfs_super_generation(disk_super) + 1;
1152         fs_info->data_alloc_profile = (u64)-1;
1153         fs_info->metadata_alloc_profile = (u64)-1;
1154         fs_info->system_alloc_profile = fs_info->metadata_alloc_profile;
1155
1156         mutex_unlock(&fs_info->fs_mutex);
1157         return tree_root;
1158
1159 fail_extent_root:
1160         free_extent_buffer(extent_root->node);
1161 fail_tree_root:
1162         mutex_unlock(&fs_info->fs_mutex);
1163         free_extent_buffer(tree_root->node);
1164 fail_sb_buffer:
1165         free_extent_buffer(fs_info->sb_buffer);
1166         extent_io_tree_empty_lru(&BTRFS_I(fs_info->btree_inode)->io_tree);
1167 fail_iput:
1168         iput(fs_info->btree_inode);
1169 fail:
1170         close_all_devices(fs_info);
1171         kfree(extent_root);
1172         kfree(tree_root);
1173         bdi_destroy(&fs_info->bdi);
1174         kfree(fs_info);
1175         return ERR_PTR(err);
1176 }
1177
1178 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
1179 {
1180         char b[BDEVNAME_SIZE];
1181
1182         if (uptodate) {
1183                 set_buffer_uptodate(bh);
1184         } else {
1185                 if (!buffer_eopnotsupp(bh) && printk_ratelimit()) {
1186                         printk(KERN_WARNING "lost page write due to "
1187                                         "I/O error on %s\n",
1188                                        bdevname(bh->b_bdev, b));
1189                 }
1190                 set_buffer_write_io_error(bh);
1191                 clear_buffer_uptodate(bh);
1192         }
1193         unlock_buffer(bh);
1194         put_bh(bh);
1195 }
1196
1197 int write_all_supers(struct btrfs_root *root)
1198 {
1199         struct list_head *cur;
1200         struct list_head *head = &root->fs_info->fs_devices->devices;
1201         struct btrfs_device *dev;
1202         struct extent_buffer *sb;
1203         struct btrfs_dev_item *dev_item;
1204         struct buffer_head *bh;
1205         int ret;
1206         int do_barriers;
1207
1208         do_barriers = !btrfs_test_opt(root, NOBARRIER);
1209
1210         sb = root->fs_info->sb_buffer;
1211         dev_item = (struct btrfs_dev_item *)offsetof(struct btrfs_super_block,
1212                                                       dev_item);
1213         list_for_each(cur, head) {
1214                 dev = list_entry(cur, struct btrfs_device, dev_list);
1215                 btrfs_set_device_type(sb, dev_item, dev->type);
1216                 btrfs_set_device_id(sb, dev_item, dev->devid);
1217                 btrfs_set_device_total_bytes(sb, dev_item, dev->total_bytes);
1218                 btrfs_set_device_bytes_used(sb, dev_item, dev->bytes_used);
1219                 btrfs_set_device_io_align(sb, dev_item, dev->io_align);
1220                 btrfs_set_device_io_width(sb, dev_item, dev->io_width);
1221                 btrfs_set_device_sector_size(sb, dev_item, dev->sector_size);
1222                 write_extent_buffer(sb, dev->uuid,
1223                                     (unsigned long)btrfs_device_uuid(dev_item),
1224                                     BTRFS_DEV_UUID_SIZE);
1225
1226                 btrfs_set_header_flag(sb, BTRFS_HEADER_FLAG_WRITTEN);
1227                 csum_tree_block(root, sb, 0);
1228
1229                 bh = __getblk(dev->bdev, BTRFS_SUPER_INFO_OFFSET /
1230                               root->fs_info->sb->s_blocksize,
1231                               BTRFS_SUPER_INFO_SIZE);
1232
1233                 read_extent_buffer(sb, bh->b_data, 0, BTRFS_SUPER_INFO_SIZE);
1234                 dev->pending_io = bh;
1235
1236                 get_bh(bh);
1237                 set_buffer_uptodate(bh);
1238                 lock_buffer(bh);
1239                 bh->b_end_io = btrfs_end_buffer_write_sync;
1240
1241                 if (do_barriers && dev->barriers) {
1242                         ret = submit_bh(WRITE_BARRIER, bh);
1243                         if (ret == -EOPNOTSUPP) {
1244                                 printk("btrfs: disabling barriers on dev %s\n",
1245                                        dev->name);
1246                                 set_buffer_uptodate(bh);
1247                                 dev->barriers = 0;
1248                                 get_bh(bh);
1249                                 lock_buffer(bh);
1250                                 ret = submit_bh(WRITE, bh);
1251                         }
1252                 } else {
1253                         ret = submit_bh(WRITE, bh);
1254                 }
1255                 BUG_ON(ret);
1256         }
1257
1258         list_for_each(cur, head) {
1259                 dev = list_entry(cur, struct btrfs_device, dev_list);
1260                 BUG_ON(!dev->pending_io);
1261                 bh = dev->pending_io;
1262                 wait_on_buffer(bh);
1263                 if (!buffer_uptodate(dev->pending_io)) {
1264                         if (do_barriers && dev->barriers) {
1265                                 printk("btrfs: disabling barriers on dev %s\n",
1266                                        dev->name);
1267                                 set_buffer_uptodate(bh);
1268                                 get_bh(bh);
1269                                 lock_buffer(bh);
1270                                 dev->barriers = 0;
1271                                 ret = submit_bh(WRITE, bh);
1272                                 BUG_ON(ret);
1273                                 wait_on_buffer(bh);
1274                                 BUG_ON(!buffer_uptodate(bh));
1275                         } else {
1276                                 BUG();
1277                         }
1278
1279                 }
1280                 dev->pending_io = NULL;
1281                 brelse(bh);
1282         }
1283         return 0;
1284 }
1285
1286 int write_ctree_super(struct btrfs_trans_handle *trans, struct btrfs_root
1287                       *root)
1288 {
1289         int ret;
1290
1291         ret = write_all_supers(root);
1292 #if 0
1293         if (!btrfs_test_opt(root, NOBARRIER))
1294                 blkdev_issue_flush(sb->s_bdev, NULL);
1295         set_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree, super);
1296         ret = sync_page_range_nolock(btree_inode, btree_inode->i_mapping,
1297                                      super->start, super->len);
1298         if (!btrfs_test_opt(root, NOBARRIER))
1299                 blkdev_issue_flush(sb->s_bdev, NULL);
1300 #endif
1301         return ret;
1302 }
1303
1304 int btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
1305 {
1306         radix_tree_delete(&fs_info->fs_roots_radix,
1307                           (unsigned long)root->root_key.objectid);
1308         if (root->in_sysfs)
1309                 btrfs_sysfs_del_root(root);
1310         if (root->inode)
1311                 iput(root->inode);
1312         if (root->node)
1313                 free_extent_buffer(root->node);
1314         if (root->commit_root)
1315                 free_extent_buffer(root->commit_root);
1316         if (root->name)
1317                 kfree(root->name);
1318         kfree(root);
1319         return 0;
1320 }
1321
1322 static int del_fs_roots(struct btrfs_fs_info *fs_info)
1323 {
1324         int ret;
1325         struct btrfs_root *gang[8];
1326         int i;
1327
1328         while(1) {
1329                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
1330                                              (void **)gang, 0,
1331                                              ARRAY_SIZE(gang));
1332                 if (!ret)
1333                         break;
1334                 for (i = 0; i < ret; i++)
1335                         btrfs_free_fs_root(fs_info, gang[i]);
1336         }
1337         return 0;
1338 }
1339
1340 int close_ctree(struct btrfs_root *root)
1341 {
1342         int ret;
1343         struct btrfs_trans_handle *trans;
1344         struct btrfs_fs_info *fs_info = root->fs_info;
1345
1346         fs_info->closing = 1;
1347         btrfs_transaction_flush_work(root);
1348         mutex_lock(&fs_info->fs_mutex);
1349         btrfs_defrag_dirty_roots(root->fs_info);
1350         trans = btrfs_start_transaction(root, 1);
1351         ret = btrfs_commit_transaction(trans, root);
1352         /* run commit again to  drop the original snapshot */
1353         trans = btrfs_start_transaction(root, 1);
1354         btrfs_commit_transaction(trans, root);
1355         ret = btrfs_write_and_wait_transaction(NULL, root);
1356         BUG_ON(ret);
1357         write_ctree_super(NULL, root);
1358         mutex_unlock(&fs_info->fs_mutex);
1359
1360         if (fs_info->delalloc_bytes) {
1361                 printk("btrfs: at unmount delalloc count %Lu\n",
1362                        fs_info->delalloc_bytes);
1363         }
1364         if (fs_info->extent_root->node)
1365                 free_extent_buffer(fs_info->extent_root->node);
1366
1367         if (fs_info->tree_root->node)
1368                 free_extent_buffer(fs_info->tree_root->node);
1369
1370         if (root->fs_info->chunk_root->node);
1371                 free_extent_buffer(root->fs_info->chunk_root->node);
1372
1373         if (root->fs_info->dev_root->node);
1374                 free_extent_buffer(root->fs_info->dev_root->node);
1375
1376         free_extent_buffer(fs_info->sb_buffer);
1377
1378         btrfs_free_block_groups(root->fs_info);
1379         del_fs_roots(fs_info);
1380
1381         filemap_write_and_wait(fs_info->btree_inode->i_mapping);
1382
1383         extent_io_tree_empty_lru(&fs_info->free_space_cache);
1384         extent_io_tree_empty_lru(&fs_info->block_group_cache);
1385         extent_io_tree_empty_lru(&fs_info->pinned_extents);
1386         extent_io_tree_empty_lru(&fs_info->pending_del);
1387         extent_io_tree_empty_lru(&fs_info->extent_ins);
1388         extent_io_tree_empty_lru(&BTRFS_I(fs_info->btree_inode)->io_tree);
1389
1390         truncate_inode_pages(fs_info->btree_inode->i_mapping, 0);
1391         flush_workqueue(end_io_workqueue);
1392         destroy_workqueue(end_io_workqueue);
1393
1394         iput(fs_info->btree_inode);
1395 #if 0
1396         while(!list_empty(&fs_info->hashers)) {
1397                 struct btrfs_hasher *hasher;
1398                 hasher = list_entry(fs_info->hashers.next, struct btrfs_hasher,
1399                                     hashers);
1400                 list_del(&hasher->hashers);
1401                 crypto_free_hash(&fs_info->hash_tfm);
1402                 kfree(hasher);
1403         }
1404 #endif
1405         close_all_devices(fs_info);
1406         btrfs_mapping_tree_free(&fs_info->mapping_tree);
1407         bdi_destroy(&fs_info->bdi);
1408
1409         kfree(fs_info->extent_root);
1410         kfree(fs_info->tree_root);
1411         kfree(fs_info->chunk_root);
1412         kfree(fs_info->dev_root);
1413         return 0;
1414 }
1415
1416 int btrfs_buffer_uptodate(struct extent_buffer *buf)
1417 {
1418         struct inode *btree_inode = buf->first_page->mapping->host;
1419         return extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree, buf);
1420 }
1421
1422 int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
1423 {
1424         struct inode *btree_inode = buf->first_page->mapping->host;
1425         return set_extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree,
1426                                           buf);
1427 }
1428
1429 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
1430 {
1431         struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
1432         u64 transid = btrfs_header_generation(buf);
1433         struct inode *btree_inode = root->fs_info->btree_inode;
1434
1435         if (transid != root->fs_info->generation) {
1436                 printk(KERN_CRIT "transid mismatch buffer %llu, found %Lu running %Lu\n",
1437                         (unsigned long long)buf->start,
1438                         transid, root->fs_info->generation);
1439                 WARN_ON(1);
1440         }
1441         set_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree, buf);
1442 }
1443
1444 void btrfs_throttle(struct btrfs_root *root)
1445 {
1446         struct backing_dev_info *bdi;
1447
1448         bdi = root->fs_info->sb->s_bdev->bd_inode->i_mapping->backing_dev_info;
1449         if (root->fs_info->throttles && bdi_write_congested(bdi)) {
1450 #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,18)
1451                 congestion_wait(WRITE, HZ/20);
1452 #else
1453                 blk_congestion_wait(WRITE, HZ/20);
1454 #endif
1455         }
1456 }
1457
1458 void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
1459 {
1460         balance_dirty_pages_ratelimited_nr(
1461                                    root->fs_info->btree_inode->i_mapping, 1);
1462 }
1463
1464 void btrfs_set_buffer_defrag(struct extent_buffer *buf)
1465 {
1466         struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
1467         struct inode *btree_inode = root->fs_info->btree_inode;
1468         set_extent_bits(&BTRFS_I(btree_inode)->io_tree, buf->start,
1469                         buf->start + buf->len - 1, EXTENT_DEFRAG, GFP_NOFS);
1470 }
1471
1472 void btrfs_set_buffer_defrag_done(struct extent_buffer *buf)
1473 {
1474         struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
1475         struct inode *btree_inode = root->fs_info->btree_inode;
1476         set_extent_bits(&BTRFS_I(btree_inode)->io_tree, buf->start,
1477                         buf->start + buf->len - 1, EXTENT_DEFRAG_DONE,
1478                         GFP_NOFS);
1479 }
1480
1481 int btrfs_buffer_defrag(struct extent_buffer *buf)
1482 {
1483         struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
1484         struct inode *btree_inode = root->fs_info->btree_inode;
1485         return test_range_bit(&BTRFS_I(btree_inode)->io_tree,
1486                      buf->start, buf->start + buf->len - 1, EXTENT_DEFRAG, 0);
1487 }
1488
1489 int btrfs_buffer_defrag_done(struct extent_buffer *buf)
1490 {
1491         struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
1492         struct inode *btree_inode = root->fs_info->btree_inode;
1493         return test_range_bit(&BTRFS_I(btree_inode)->io_tree,
1494                      buf->start, buf->start + buf->len - 1,
1495                      EXTENT_DEFRAG_DONE, 0);
1496 }
1497
1498 int btrfs_clear_buffer_defrag_done(struct extent_buffer *buf)
1499 {
1500         struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
1501         struct inode *btree_inode = root->fs_info->btree_inode;
1502         return clear_extent_bits(&BTRFS_I(btree_inode)->io_tree,
1503                      buf->start, buf->start + buf->len - 1,
1504                      EXTENT_DEFRAG_DONE, GFP_NOFS);
1505 }
1506
1507 int btrfs_clear_buffer_defrag(struct extent_buffer *buf)
1508 {
1509         struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
1510         struct inode *btree_inode = root->fs_info->btree_inode;
1511         return clear_extent_bits(&BTRFS_I(btree_inode)->io_tree,
1512                      buf->start, buf->start + buf->len - 1,
1513                      EXTENT_DEFRAG, GFP_NOFS);
1514 }
1515
1516 int btrfs_read_buffer(struct extent_buffer *buf)
1517 {
1518         struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
1519         int ret;
1520         ret = btree_read_extent_buffer_pages(root, buf, 0);
1521         if (ret == 0) {
1522                 buf->flags |= EXTENT_UPTODATE;
1523         }
1524         return ret;
1525 }
1526
1527 static struct extent_io_ops btree_extent_io_ops = {
1528         .writepage_io_hook = btree_writepage_io_hook,
1529         .readpage_end_io_hook = btree_readpage_end_io_hook,
1530         .submit_bio_hook = btree_submit_bio_hook,
1531         /* note we're sharing with inode.c for the merge bio hook */
1532         .merge_bio_hook = btrfs_merge_bio_hook,
1533 };