]> git.karo-electronics.de Git - karo-tx-linux.git/blob - fs/btrfs/disk-io.c
btrfs: use bio fields for op and flags
[karo-tx-linux.git] / fs / btrfs / disk-io.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/slab.h>
29 #include <linux/migrate.h>
30 #include <linux/ratelimit.h>
31 #include <linux/uuid.h>
32 #include <linux/semaphore.h>
33 #include <asm/unaligned.h>
34 #include "ctree.h"
35 #include "disk-io.h"
36 #include "hash.h"
37 #include "transaction.h"
38 #include "btrfs_inode.h"
39 #include "volumes.h"
40 #include "print-tree.h"
41 #include "locking.h"
42 #include "tree-log.h"
43 #include "free-space-cache.h"
44 #include "free-space-tree.h"
45 #include "inode-map.h"
46 #include "check-integrity.h"
47 #include "rcu-string.h"
48 #include "dev-replace.h"
49 #include "raid56.h"
50 #include "sysfs.h"
51 #include "qgroup.h"
52 #include "compression.h"
53
54 #ifdef CONFIG_X86
55 #include <asm/cpufeature.h>
56 #endif
57
58 #define BTRFS_SUPER_FLAG_SUPP   (BTRFS_HEADER_FLAG_WRITTEN |\
59                                  BTRFS_HEADER_FLAG_RELOC |\
60                                  BTRFS_SUPER_FLAG_ERROR |\
61                                  BTRFS_SUPER_FLAG_SEEDING |\
62                                  BTRFS_SUPER_FLAG_METADUMP)
63
64 static const struct extent_io_ops btree_extent_io_ops;
65 static void end_workqueue_fn(struct btrfs_work *work);
66 static void free_fs_root(struct btrfs_root *root);
67 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
68                                     int read_only);
69 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
70 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
71                                       struct btrfs_root *root);
72 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
73 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
74                                         struct extent_io_tree *dirty_pages,
75                                         int mark);
76 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
77                                        struct extent_io_tree *pinned_extents);
78 static int btrfs_cleanup_transaction(struct btrfs_root *root);
79 static void btrfs_error_commit_super(struct btrfs_root *root);
80
81 /*
82  * btrfs_end_io_wq structs are used to do processing in task context when an IO
83  * is complete.  This is used during reads to verify checksums, and it is used
84  * by writes to insert metadata for new file extents after IO is complete.
85  */
86 struct btrfs_end_io_wq {
87         struct bio *bio;
88         bio_end_io_t *end_io;
89         void *private;
90         struct btrfs_fs_info *info;
91         int error;
92         enum btrfs_wq_endio_type metadata;
93         struct list_head list;
94         struct btrfs_work work;
95 };
96
97 static struct kmem_cache *btrfs_end_io_wq_cache;
98
99 int __init btrfs_end_io_wq_init(void)
100 {
101         btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
102                                         sizeof(struct btrfs_end_io_wq),
103                                         0,
104                                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
105                                         NULL);
106         if (!btrfs_end_io_wq_cache)
107                 return -ENOMEM;
108         return 0;
109 }
110
111 void btrfs_end_io_wq_exit(void)
112 {
113         kmem_cache_destroy(btrfs_end_io_wq_cache);
114 }
115
116 /*
117  * async submit bios are used to offload expensive checksumming
118  * onto the worker threads.  They checksum file and metadata bios
119  * just before they are sent down the IO stack.
120  */
121 struct async_submit_bio {
122         struct inode *inode;
123         struct bio *bio;
124         struct list_head list;
125         extent_submit_bio_hook_t *submit_bio_start;
126         extent_submit_bio_hook_t *submit_bio_done;
127         int mirror_num;
128         unsigned long bio_flags;
129         /*
130          * bio_offset is optional, can be used if the pages in the bio
131          * can't tell us where in the file the bio should go
132          */
133         u64 bio_offset;
134         struct btrfs_work work;
135         int error;
136 };
137
138 /*
139  * Lockdep class keys for extent_buffer->lock's in this root.  For a given
140  * eb, the lockdep key is determined by the btrfs_root it belongs to and
141  * the level the eb occupies in the tree.
142  *
143  * Different roots are used for different purposes and may nest inside each
144  * other and they require separate keysets.  As lockdep keys should be
145  * static, assign keysets according to the purpose of the root as indicated
146  * by btrfs_root->objectid.  This ensures that all special purpose roots
147  * have separate keysets.
148  *
149  * Lock-nesting across peer nodes is always done with the immediate parent
150  * node locked thus preventing deadlock.  As lockdep doesn't know this, use
151  * subclass to avoid triggering lockdep warning in such cases.
152  *
153  * The key is set by the readpage_end_io_hook after the buffer has passed
154  * csum validation but before the pages are unlocked.  It is also set by
155  * btrfs_init_new_buffer on freshly allocated blocks.
156  *
157  * We also add a check to make sure the highest level of the tree is the
158  * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
159  * needs update as well.
160  */
161 #ifdef CONFIG_DEBUG_LOCK_ALLOC
162 # if BTRFS_MAX_LEVEL != 8
163 #  error
164 # endif
165
166 static struct btrfs_lockdep_keyset {
167         u64                     id;             /* root objectid */
168         const char              *name_stem;     /* lock name stem */
169         char                    names[BTRFS_MAX_LEVEL + 1][20];
170         struct lock_class_key   keys[BTRFS_MAX_LEVEL + 1];
171 } btrfs_lockdep_keysets[] = {
172         { .id = BTRFS_ROOT_TREE_OBJECTID,       .name_stem = "root"     },
173         { .id = BTRFS_EXTENT_TREE_OBJECTID,     .name_stem = "extent"   },
174         { .id = BTRFS_CHUNK_TREE_OBJECTID,      .name_stem = "chunk"    },
175         { .id = BTRFS_DEV_TREE_OBJECTID,        .name_stem = "dev"      },
176         { .id = BTRFS_FS_TREE_OBJECTID,         .name_stem = "fs"       },
177         { .id = BTRFS_CSUM_TREE_OBJECTID,       .name_stem = "csum"     },
178         { .id = BTRFS_QUOTA_TREE_OBJECTID,      .name_stem = "quota"    },
179         { .id = BTRFS_TREE_LOG_OBJECTID,        .name_stem = "log"      },
180         { .id = BTRFS_TREE_RELOC_OBJECTID,      .name_stem = "treloc"   },
181         { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc"   },
182         { .id = BTRFS_UUID_TREE_OBJECTID,       .name_stem = "uuid"     },
183         { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" },
184         { .id = 0,                              .name_stem = "tree"     },
185 };
186
187 void __init btrfs_init_lockdep(void)
188 {
189         int i, j;
190
191         /* initialize lockdep class names */
192         for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
193                 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
194
195                 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
196                         snprintf(ks->names[j], sizeof(ks->names[j]),
197                                  "btrfs-%s-%02d", ks->name_stem, j);
198         }
199 }
200
201 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
202                                     int level)
203 {
204         struct btrfs_lockdep_keyset *ks;
205
206         BUG_ON(level >= ARRAY_SIZE(ks->keys));
207
208         /* find the matching keyset, id 0 is the default entry */
209         for (ks = btrfs_lockdep_keysets; ks->id; ks++)
210                 if (ks->id == objectid)
211                         break;
212
213         lockdep_set_class_and_name(&eb->lock,
214                                    &ks->keys[level], ks->names[level]);
215 }
216
217 #endif
218
219 /*
220  * extents on the btree inode are pretty simple, there's one extent
221  * that covers the entire device
222  */
223 static struct extent_map *btree_get_extent(struct inode *inode,
224                 struct page *page, size_t pg_offset, u64 start, u64 len,
225                 int create)
226 {
227         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
228         struct extent_map *em;
229         int ret;
230
231         read_lock(&em_tree->lock);
232         em = lookup_extent_mapping(em_tree, start, len);
233         if (em) {
234                 em->bdev =
235                         BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
236                 read_unlock(&em_tree->lock);
237                 goto out;
238         }
239         read_unlock(&em_tree->lock);
240
241         em = alloc_extent_map();
242         if (!em) {
243                 em = ERR_PTR(-ENOMEM);
244                 goto out;
245         }
246         em->start = 0;
247         em->len = (u64)-1;
248         em->block_len = (u64)-1;
249         em->block_start = 0;
250         em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
251
252         write_lock(&em_tree->lock);
253         ret = add_extent_mapping(em_tree, em, 0);
254         if (ret == -EEXIST) {
255                 free_extent_map(em);
256                 em = lookup_extent_mapping(em_tree, start, len);
257                 if (!em)
258                         em = ERR_PTR(-EIO);
259         } else if (ret) {
260                 free_extent_map(em);
261                 em = ERR_PTR(ret);
262         }
263         write_unlock(&em_tree->lock);
264
265 out:
266         return em;
267 }
268
269 u32 btrfs_csum_data(char *data, u32 seed, size_t len)
270 {
271         return btrfs_crc32c(seed, data, len);
272 }
273
274 void btrfs_csum_final(u32 crc, char *result)
275 {
276         put_unaligned_le32(~crc, result);
277 }
278
279 /*
280  * compute the csum for a btree block, and either verify it or write it
281  * into the csum field of the block.
282  */
283 static int csum_tree_block(struct btrfs_fs_info *fs_info,
284                            struct extent_buffer *buf,
285                            int verify)
286 {
287         u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
288         char *result = NULL;
289         unsigned long len;
290         unsigned long cur_len;
291         unsigned long offset = BTRFS_CSUM_SIZE;
292         char *kaddr;
293         unsigned long map_start;
294         unsigned long map_len;
295         int err;
296         u32 crc = ~(u32)0;
297         unsigned long inline_result;
298
299         len = buf->len - offset;
300         while (len > 0) {
301                 err = map_private_extent_buffer(buf, offset, 32,
302                                         &kaddr, &map_start, &map_len);
303                 if (err)
304                         return err;
305                 cur_len = min(len, map_len - (offset - map_start));
306                 crc = btrfs_csum_data(kaddr + offset - map_start,
307                                       crc, cur_len);
308                 len -= cur_len;
309                 offset += cur_len;
310         }
311         if (csum_size > sizeof(inline_result)) {
312                 result = kzalloc(csum_size, GFP_NOFS);
313                 if (!result)
314                         return -ENOMEM;
315         } else {
316                 result = (char *)&inline_result;
317         }
318
319         btrfs_csum_final(crc, result);
320
321         if (verify) {
322                 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
323                         u32 val;
324                         u32 found = 0;
325                         memcpy(&found, result, csum_size);
326
327                         read_extent_buffer(buf, &val, 0, csum_size);
328                         btrfs_warn_rl(fs_info,
329                                 "%s checksum verify failed on %llu wanted %X found %X "
330                                 "level %d",
331                                 fs_info->sb->s_id, buf->start,
332                                 val, found, btrfs_header_level(buf));
333                         if (result != (char *)&inline_result)
334                                 kfree(result);
335                         return -EUCLEAN;
336                 }
337         } else {
338                 write_extent_buffer(buf, result, 0, csum_size);
339         }
340         if (result != (char *)&inline_result)
341                 kfree(result);
342         return 0;
343 }
344
345 /*
346  * we can't consider a given block up to date unless the transid of the
347  * block matches the transid in the parent node's pointer.  This is how we
348  * detect blocks that either didn't get written at all or got written
349  * in the wrong place.
350  */
351 static int verify_parent_transid(struct extent_io_tree *io_tree,
352                                  struct extent_buffer *eb, u64 parent_transid,
353                                  int atomic)
354 {
355         struct extent_state *cached_state = NULL;
356         int ret;
357         bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
358
359         if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
360                 return 0;
361
362         if (atomic)
363                 return -EAGAIN;
364
365         if (need_lock) {
366                 btrfs_tree_read_lock(eb);
367                 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
368         }
369
370         lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
371                          &cached_state);
372         if (extent_buffer_uptodate(eb) &&
373             btrfs_header_generation(eb) == parent_transid) {
374                 ret = 0;
375                 goto out;
376         }
377         btrfs_err_rl(eb->fs_info,
378                 "parent transid verify failed on %llu wanted %llu found %llu",
379                         eb->start,
380                         parent_transid, btrfs_header_generation(eb));
381         ret = 1;
382
383         /*
384          * Things reading via commit roots that don't have normal protection,
385          * like send, can have a really old block in cache that may point at a
386          * block that has been freed and re-allocated.  So don't clear uptodate
387          * if we find an eb that is under IO (dirty/writeback) because we could
388          * end up reading in the stale data and then writing it back out and
389          * making everybody very sad.
390          */
391         if (!extent_buffer_under_io(eb))
392                 clear_extent_buffer_uptodate(eb);
393 out:
394         unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
395                              &cached_state, GFP_NOFS);
396         if (need_lock)
397                 btrfs_tree_read_unlock_blocking(eb);
398         return ret;
399 }
400
401 /*
402  * Return 0 if the superblock checksum type matches the checksum value of that
403  * algorithm. Pass the raw disk superblock data.
404  */
405 static int btrfs_check_super_csum(char *raw_disk_sb)
406 {
407         struct btrfs_super_block *disk_sb =
408                 (struct btrfs_super_block *)raw_disk_sb;
409         u16 csum_type = btrfs_super_csum_type(disk_sb);
410         int ret = 0;
411
412         if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
413                 u32 crc = ~(u32)0;
414                 const int csum_size = sizeof(crc);
415                 char result[csum_size];
416
417                 /*
418                  * The super_block structure does not span the whole
419                  * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
420                  * is filled with zeros and is included in the checksum.
421                  */
422                 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
423                                 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
424                 btrfs_csum_final(crc, result);
425
426                 if (memcmp(raw_disk_sb, result, csum_size))
427                         ret = 1;
428         }
429
430         if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
431                 printk(KERN_ERR "BTRFS: unsupported checksum algorithm %u\n",
432                                 csum_type);
433                 ret = 1;
434         }
435
436         return ret;
437 }
438
439 /*
440  * helper to read a given tree block, doing retries as required when
441  * the checksums don't match and we have alternate mirrors to try.
442  */
443 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
444                                           struct extent_buffer *eb,
445                                           u64 start, u64 parent_transid)
446 {
447         struct extent_io_tree *io_tree;
448         int failed = 0;
449         int ret;
450         int num_copies = 0;
451         int mirror_num = 0;
452         int failed_mirror = 0;
453
454         clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
455         io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
456         while (1) {
457                 ret = read_extent_buffer_pages(io_tree, eb, start,
458                                                WAIT_COMPLETE,
459                                                btree_get_extent, mirror_num);
460                 if (!ret) {
461                         if (!verify_parent_transid(io_tree, eb,
462                                                    parent_transid, 0))
463                                 break;
464                         else
465                                 ret = -EIO;
466                 }
467
468                 /*
469                  * This buffer's crc is fine, but its contents are corrupted, so
470                  * there is no reason to read the other copies, they won't be
471                  * any less wrong.
472                  */
473                 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
474                         break;
475
476                 num_copies = btrfs_num_copies(root->fs_info,
477                                               eb->start, eb->len);
478                 if (num_copies == 1)
479                         break;
480
481                 if (!failed_mirror) {
482                         failed = 1;
483                         failed_mirror = eb->read_mirror;
484                 }
485
486                 mirror_num++;
487                 if (mirror_num == failed_mirror)
488                         mirror_num++;
489
490                 if (mirror_num > num_copies)
491                         break;
492         }
493
494         if (failed && !ret && failed_mirror)
495                 repair_eb_io_failure(root, eb, failed_mirror);
496
497         return ret;
498 }
499
500 /*
501  * checksum a dirty tree block before IO.  This has extra checks to make sure
502  * we only fill in the checksum field in the first page of a multi-page block
503  */
504
505 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
506 {
507         u64 start = page_offset(page);
508         u64 found_start;
509         struct extent_buffer *eb;
510
511         eb = (struct extent_buffer *)page->private;
512         if (page != eb->pages[0])
513                 return 0;
514
515         found_start = btrfs_header_bytenr(eb);
516         /*
517          * Please do not consolidate these warnings into a single if.
518          * It is useful to know what went wrong.
519          */
520         if (WARN_ON(found_start != start))
521                 return -EUCLEAN;
522         if (WARN_ON(!PageUptodate(page)))
523                 return -EUCLEAN;
524
525         ASSERT(memcmp_extent_buffer(eb, fs_info->fsid,
526                         btrfs_header_fsid(), BTRFS_FSID_SIZE) == 0);
527
528         return csum_tree_block(fs_info, eb, 0);
529 }
530
531 static int check_tree_block_fsid(struct btrfs_fs_info *fs_info,
532                                  struct extent_buffer *eb)
533 {
534         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
535         u8 fsid[BTRFS_UUID_SIZE];
536         int ret = 1;
537
538         read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
539         while (fs_devices) {
540                 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
541                         ret = 0;
542                         break;
543                 }
544                 fs_devices = fs_devices->seed;
545         }
546         return ret;
547 }
548
549 #define CORRUPT(reason, eb, root, slot)                         \
550         btrfs_crit(root->fs_info, "corrupt leaf, %s: block=%llu,"       \
551                    "root=%llu, slot=%d", reason,                        \
552                btrfs_header_bytenr(eb), root->objectid, slot)
553
554 static noinline int check_leaf(struct btrfs_root *root,
555                                struct extent_buffer *leaf)
556 {
557         struct btrfs_key key;
558         struct btrfs_key leaf_key;
559         u32 nritems = btrfs_header_nritems(leaf);
560         int slot;
561
562         if (nritems == 0)
563                 return 0;
564
565         /* Check the 0 item */
566         if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
567             BTRFS_LEAF_DATA_SIZE(root)) {
568                 CORRUPT("invalid item offset size pair", leaf, root, 0);
569                 return -EIO;
570         }
571
572         /*
573          * Check to make sure each items keys are in the correct order and their
574          * offsets make sense.  We only have to loop through nritems-1 because
575          * we check the current slot against the next slot, which verifies the
576          * next slot's offset+size makes sense and that the current's slot
577          * offset is correct.
578          */
579         for (slot = 0; slot < nritems - 1; slot++) {
580                 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
581                 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
582
583                 /* Make sure the keys are in the right order */
584                 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
585                         CORRUPT("bad key order", leaf, root, slot);
586                         return -EIO;
587                 }
588
589                 /*
590                  * Make sure the offset and ends are right, remember that the
591                  * item data starts at the end of the leaf and grows towards the
592                  * front.
593                  */
594                 if (btrfs_item_offset_nr(leaf, slot) !=
595                         btrfs_item_end_nr(leaf, slot + 1)) {
596                         CORRUPT("slot offset bad", leaf, root, slot);
597                         return -EIO;
598                 }
599
600                 /*
601                  * Check to make sure that we don't point outside of the leaf,
602                  * just in case all the items are consistent to each other, but
603                  * all point outside of the leaf.
604                  */
605                 if (btrfs_item_end_nr(leaf, slot) >
606                     BTRFS_LEAF_DATA_SIZE(root)) {
607                         CORRUPT("slot end outside of leaf", leaf, root, slot);
608                         return -EIO;
609                 }
610         }
611
612         return 0;
613 }
614
615 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
616                                       u64 phy_offset, struct page *page,
617                                       u64 start, u64 end, int mirror)
618 {
619         u64 found_start;
620         int found_level;
621         struct extent_buffer *eb;
622         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
623         struct btrfs_fs_info *fs_info = root->fs_info;
624         int ret = 0;
625         int reads_done;
626
627         if (!page->private)
628                 goto out;
629
630         eb = (struct extent_buffer *)page->private;
631
632         /* the pending IO might have been the only thing that kept this buffer
633          * in memory.  Make sure we have a ref for all this other checks
634          */
635         extent_buffer_get(eb);
636
637         reads_done = atomic_dec_and_test(&eb->io_pages);
638         if (!reads_done)
639                 goto err;
640
641         eb->read_mirror = mirror;
642         if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
643                 ret = -EIO;
644                 goto err;
645         }
646
647         found_start = btrfs_header_bytenr(eb);
648         if (found_start != eb->start) {
649                 btrfs_err_rl(fs_info, "bad tree block start %llu %llu",
650                              found_start, eb->start);
651                 ret = -EIO;
652                 goto err;
653         }
654         if (check_tree_block_fsid(fs_info, eb)) {
655                 btrfs_err_rl(fs_info, "bad fsid on block %llu",
656                              eb->start);
657                 ret = -EIO;
658                 goto err;
659         }
660         found_level = btrfs_header_level(eb);
661         if (found_level >= BTRFS_MAX_LEVEL) {
662                 btrfs_err(fs_info, "bad tree block level %d",
663                           (int)btrfs_header_level(eb));
664                 ret = -EIO;
665                 goto err;
666         }
667
668         btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
669                                        eb, found_level);
670
671         ret = csum_tree_block(fs_info, eb, 1);
672         if (ret)
673                 goto err;
674
675         /*
676          * If this is a leaf block and it is corrupt, set the corrupt bit so
677          * that we don't try and read the other copies of this block, just
678          * return -EIO.
679          */
680         if (found_level == 0 && check_leaf(root, eb)) {
681                 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
682                 ret = -EIO;
683         }
684
685         if (!ret)
686                 set_extent_buffer_uptodate(eb);
687 err:
688         if (reads_done &&
689             test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
690                 btree_readahead_hook(fs_info, eb, eb->start, ret);
691
692         if (ret) {
693                 /*
694                  * our io error hook is going to dec the io pages
695                  * again, we have to make sure it has something
696                  * to decrement
697                  */
698                 atomic_inc(&eb->io_pages);
699                 clear_extent_buffer_uptodate(eb);
700         }
701         free_extent_buffer(eb);
702 out:
703         return ret;
704 }
705
706 static int btree_io_failed_hook(struct page *page, int failed_mirror)
707 {
708         struct extent_buffer *eb;
709
710         eb = (struct extent_buffer *)page->private;
711         set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
712         eb->read_mirror = failed_mirror;
713         atomic_dec(&eb->io_pages);
714         if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
715                 btree_readahead_hook(eb->fs_info, eb, eb->start, -EIO);
716         return -EIO;    /* we fixed nothing */
717 }
718
719 static void end_workqueue_bio(struct bio *bio)
720 {
721         struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
722         struct btrfs_fs_info *fs_info;
723         struct btrfs_workqueue *wq;
724         btrfs_work_func_t func;
725
726         fs_info = end_io_wq->info;
727         end_io_wq->error = bio->bi_error;
728
729         if (bio_op(bio) == REQ_OP_WRITE) {
730                 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
731                         wq = fs_info->endio_meta_write_workers;
732                         func = btrfs_endio_meta_write_helper;
733                 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
734                         wq = fs_info->endio_freespace_worker;
735                         func = btrfs_freespace_write_helper;
736                 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
737                         wq = fs_info->endio_raid56_workers;
738                         func = btrfs_endio_raid56_helper;
739                 } else {
740                         wq = fs_info->endio_write_workers;
741                         func = btrfs_endio_write_helper;
742                 }
743         } else {
744                 if (unlikely(end_io_wq->metadata ==
745                              BTRFS_WQ_ENDIO_DIO_REPAIR)) {
746                         wq = fs_info->endio_repair_workers;
747                         func = btrfs_endio_repair_helper;
748                 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
749                         wq = fs_info->endio_raid56_workers;
750                         func = btrfs_endio_raid56_helper;
751                 } else if (end_io_wq->metadata) {
752                         wq = fs_info->endio_meta_workers;
753                         func = btrfs_endio_meta_helper;
754                 } else {
755                         wq = fs_info->endio_workers;
756                         func = btrfs_endio_helper;
757                 }
758         }
759
760         btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
761         btrfs_queue_work(wq, &end_io_wq->work);
762 }
763
764 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
765                         enum btrfs_wq_endio_type metadata)
766 {
767         struct btrfs_end_io_wq *end_io_wq;
768
769         end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
770         if (!end_io_wq)
771                 return -ENOMEM;
772
773         end_io_wq->private = bio->bi_private;
774         end_io_wq->end_io = bio->bi_end_io;
775         end_io_wq->info = info;
776         end_io_wq->error = 0;
777         end_io_wq->bio = bio;
778         end_io_wq->metadata = metadata;
779
780         bio->bi_private = end_io_wq;
781         bio->bi_end_io = end_workqueue_bio;
782         return 0;
783 }
784
785 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
786 {
787         unsigned long limit = min_t(unsigned long,
788                                     info->thread_pool_size,
789                                     info->fs_devices->open_devices);
790         return 256 * limit;
791 }
792
793 static void run_one_async_start(struct btrfs_work *work)
794 {
795         struct async_submit_bio *async;
796         int ret;
797
798         async = container_of(work, struct  async_submit_bio, work);
799         ret = async->submit_bio_start(async->inode, async->bio,
800                                       async->mirror_num, async->bio_flags,
801                                       async->bio_offset);
802         if (ret)
803                 async->error = ret;
804 }
805
806 static void run_one_async_done(struct btrfs_work *work)
807 {
808         struct btrfs_fs_info *fs_info;
809         struct async_submit_bio *async;
810         int limit;
811
812         async = container_of(work, struct  async_submit_bio, work);
813         fs_info = BTRFS_I(async->inode)->root->fs_info;
814
815         limit = btrfs_async_submit_limit(fs_info);
816         limit = limit * 2 / 3;
817
818         /*
819          * atomic_dec_return implies a barrier for waitqueue_active
820          */
821         if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
822             waitqueue_active(&fs_info->async_submit_wait))
823                 wake_up(&fs_info->async_submit_wait);
824
825         /* If an error occurred we just want to clean up the bio and move on */
826         if (async->error) {
827                 async->bio->bi_error = async->error;
828                 bio_endio(async->bio);
829                 return;
830         }
831
832         async->submit_bio_done(async->inode, async->bio, async->mirror_num,
833                                async->bio_flags, async->bio_offset);
834 }
835
836 static void run_one_async_free(struct btrfs_work *work)
837 {
838         struct async_submit_bio *async;
839
840         async = container_of(work, struct  async_submit_bio, work);
841         kfree(async);
842 }
843
844 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
845                         struct bio *bio, int mirror_num,
846                         unsigned long bio_flags,
847                         u64 bio_offset,
848                         extent_submit_bio_hook_t *submit_bio_start,
849                         extent_submit_bio_hook_t *submit_bio_done)
850 {
851         struct async_submit_bio *async;
852
853         async = kmalloc(sizeof(*async), GFP_NOFS);
854         if (!async)
855                 return -ENOMEM;
856
857         async->inode = inode;
858         async->bio = bio;
859         async->mirror_num = mirror_num;
860         async->submit_bio_start = submit_bio_start;
861         async->submit_bio_done = submit_bio_done;
862
863         btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
864                         run_one_async_done, run_one_async_free);
865
866         async->bio_flags = bio_flags;
867         async->bio_offset = bio_offset;
868
869         async->error = 0;
870
871         atomic_inc(&fs_info->nr_async_submits);
872
873         if (bio->bi_rw & REQ_SYNC)
874                 btrfs_set_work_high_priority(&async->work);
875
876         btrfs_queue_work(fs_info->workers, &async->work);
877
878         while (atomic_read(&fs_info->async_submit_draining) &&
879               atomic_read(&fs_info->nr_async_submits)) {
880                 wait_event(fs_info->async_submit_wait,
881                            (atomic_read(&fs_info->nr_async_submits) == 0));
882         }
883
884         return 0;
885 }
886
887 static int btree_csum_one_bio(struct bio *bio)
888 {
889         struct bio_vec *bvec;
890         struct btrfs_root *root;
891         int i, ret = 0;
892
893         bio_for_each_segment_all(bvec, bio, i) {
894                 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
895                 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
896                 if (ret)
897                         break;
898         }
899
900         return ret;
901 }
902
903 static int __btree_submit_bio_start(struct inode *inode, struct bio *bio,
904                                     int mirror_num, unsigned long bio_flags,
905                                     u64 bio_offset)
906 {
907         /*
908          * when we're called for a write, we're already in the async
909          * submission context.  Just jump into btrfs_map_bio
910          */
911         return btree_csum_one_bio(bio);
912 }
913
914 static int __btree_submit_bio_done(struct inode *inode, struct bio *bio,
915                                  int mirror_num, unsigned long bio_flags,
916                                  u64 bio_offset)
917 {
918         int ret;
919
920         /*
921          * when we're called for a write, we're already in the async
922          * submission context.  Just jump into btrfs_map_bio
923          */
924         ret = btrfs_map_bio(BTRFS_I(inode)->root, bio, mirror_num, 1);
925         if (ret) {
926                 bio->bi_error = ret;
927                 bio_endio(bio);
928         }
929         return ret;
930 }
931
932 static int check_async_write(struct inode *inode, unsigned long bio_flags)
933 {
934         if (bio_flags & EXTENT_BIO_TREE_LOG)
935                 return 0;
936 #ifdef CONFIG_X86
937         if (static_cpu_has(X86_FEATURE_XMM4_2))
938                 return 0;
939 #endif
940         return 1;
941 }
942
943 static int btree_submit_bio_hook(struct inode *inode, struct bio *bio,
944                                  int mirror_num, unsigned long bio_flags,
945                                  u64 bio_offset)
946 {
947         int async = check_async_write(inode, bio_flags);
948         int ret;
949
950         if (bio_op(bio) != REQ_OP_WRITE) {
951                 /*
952                  * called for a read, do the setup so that checksum validation
953                  * can happen in the async kernel threads
954                  */
955                 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
956                                           bio, BTRFS_WQ_ENDIO_METADATA);
957                 if (ret)
958                         goto out_w_error;
959                 ret = btrfs_map_bio(BTRFS_I(inode)->root, bio, mirror_num, 0);
960         } else if (!async) {
961                 ret = btree_csum_one_bio(bio);
962                 if (ret)
963                         goto out_w_error;
964                 ret = btrfs_map_bio(BTRFS_I(inode)->root, bio, mirror_num, 0);
965         } else {
966                 /*
967                  * kthread helpers are used to submit writes so that
968                  * checksumming can happen in parallel across all CPUs
969                  */
970                 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
971                                           inode, bio, mirror_num, 0,
972                                           bio_offset,
973                                           __btree_submit_bio_start,
974                                           __btree_submit_bio_done);
975         }
976
977         if (ret)
978                 goto out_w_error;
979         return 0;
980
981 out_w_error:
982         bio->bi_error = ret;
983         bio_endio(bio);
984         return ret;
985 }
986
987 #ifdef CONFIG_MIGRATION
988 static int btree_migratepage(struct address_space *mapping,
989                         struct page *newpage, struct page *page,
990                         enum migrate_mode mode)
991 {
992         /*
993          * we can't safely write a btree page from here,
994          * we haven't done the locking hook
995          */
996         if (PageDirty(page))
997                 return -EAGAIN;
998         /*
999          * Buffers may be managed in a filesystem specific way.
1000          * We must have no buffers or drop them.
1001          */
1002         if (page_has_private(page) &&
1003             !try_to_release_page(page, GFP_KERNEL))
1004                 return -EAGAIN;
1005         return migrate_page(mapping, newpage, page, mode);
1006 }
1007 #endif
1008
1009
1010 static int btree_writepages(struct address_space *mapping,
1011                             struct writeback_control *wbc)
1012 {
1013         struct btrfs_fs_info *fs_info;
1014         int ret;
1015
1016         if (wbc->sync_mode == WB_SYNC_NONE) {
1017
1018                 if (wbc->for_kupdate)
1019                         return 0;
1020
1021                 fs_info = BTRFS_I(mapping->host)->root->fs_info;
1022                 /* this is a bit racy, but that's ok */
1023                 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
1024                                              BTRFS_DIRTY_METADATA_THRESH);
1025                 if (ret < 0)
1026                         return 0;
1027         }
1028         return btree_write_cache_pages(mapping, wbc);
1029 }
1030
1031 static int btree_readpage(struct file *file, struct page *page)
1032 {
1033         struct extent_io_tree *tree;
1034         tree = &BTRFS_I(page->mapping->host)->io_tree;
1035         return extent_read_full_page(tree, page, btree_get_extent, 0);
1036 }
1037
1038 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
1039 {
1040         if (PageWriteback(page) || PageDirty(page))
1041                 return 0;
1042
1043         return try_release_extent_buffer(page);
1044 }
1045
1046 static void btree_invalidatepage(struct page *page, unsigned int offset,
1047                                  unsigned int length)
1048 {
1049         struct extent_io_tree *tree;
1050         tree = &BTRFS_I(page->mapping->host)->io_tree;
1051         extent_invalidatepage(tree, page, offset);
1052         btree_releasepage(page, GFP_NOFS);
1053         if (PagePrivate(page)) {
1054                 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
1055                            "page private not zero on page %llu",
1056                            (unsigned long long)page_offset(page));
1057                 ClearPagePrivate(page);
1058                 set_page_private(page, 0);
1059                 put_page(page);
1060         }
1061 }
1062
1063 static int btree_set_page_dirty(struct page *page)
1064 {
1065 #ifdef DEBUG
1066         struct extent_buffer *eb;
1067
1068         BUG_ON(!PagePrivate(page));
1069         eb = (struct extent_buffer *)page->private;
1070         BUG_ON(!eb);
1071         BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1072         BUG_ON(!atomic_read(&eb->refs));
1073         btrfs_assert_tree_locked(eb);
1074 #endif
1075         return __set_page_dirty_nobuffers(page);
1076 }
1077
1078 static const struct address_space_operations btree_aops = {
1079         .readpage       = btree_readpage,
1080         .writepages     = btree_writepages,
1081         .releasepage    = btree_releasepage,
1082         .invalidatepage = btree_invalidatepage,
1083 #ifdef CONFIG_MIGRATION
1084         .migratepage    = btree_migratepage,
1085 #endif
1086         .set_page_dirty = btree_set_page_dirty,
1087 };
1088
1089 void readahead_tree_block(struct btrfs_root *root, u64 bytenr)
1090 {
1091         struct extent_buffer *buf = NULL;
1092         struct inode *btree_inode = root->fs_info->btree_inode;
1093
1094         buf = btrfs_find_create_tree_block(root, bytenr);
1095         if (!buf)
1096                 return;
1097         read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1098                                  buf, 0, WAIT_NONE, btree_get_extent, 0);
1099         free_extent_buffer(buf);
1100 }
1101
1102 int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr,
1103                          int mirror_num, struct extent_buffer **eb)
1104 {
1105         struct extent_buffer *buf = NULL;
1106         struct inode *btree_inode = root->fs_info->btree_inode;
1107         struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1108         int ret;
1109
1110         buf = btrfs_find_create_tree_block(root, bytenr);
1111         if (!buf)
1112                 return 0;
1113
1114         set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1115
1116         ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1117                                        btree_get_extent, mirror_num);
1118         if (ret) {
1119                 free_extent_buffer(buf);
1120                 return ret;
1121         }
1122
1123         if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1124                 free_extent_buffer(buf);
1125                 return -EIO;
1126         } else if (extent_buffer_uptodate(buf)) {
1127                 *eb = buf;
1128         } else {
1129                 free_extent_buffer(buf);
1130         }
1131         return 0;
1132 }
1133
1134 struct extent_buffer *btrfs_find_tree_block(struct btrfs_fs_info *fs_info,
1135                                             u64 bytenr)
1136 {
1137         return find_extent_buffer(fs_info, bytenr);
1138 }
1139
1140 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1141                                                  u64 bytenr)
1142 {
1143         if (btrfs_test_is_dummy_root(root))
1144                 return alloc_test_extent_buffer(root->fs_info, bytenr);
1145         return alloc_extent_buffer(root->fs_info, bytenr);
1146 }
1147
1148
1149 int btrfs_write_tree_block(struct extent_buffer *buf)
1150 {
1151         return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1152                                         buf->start + buf->len - 1);
1153 }
1154
1155 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1156 {
1157         return filemap_fdatawait_range(buf->pages[0]->mapping,
1158                                        buf->start, buf->start + buf->len - 1);
1159 }
1160
1161 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
1162                                       u64 parent_transid)
1163 {
1164         struct extent_buffer *buf = NULL;
1165         int ret;
1166
1167         buf = btrfs_find_create_tree_block(root, bytenr);
1168         if (!buf)
1169                 return ERR_PTR(-ENOMEM);
1170
1171         ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
1172         if (ret) {
1173                 free_extent_buffer(buf);
1174                 return ERR_PTR(ret);
1175         }
1176         return buf;
1177
1178 }
1179
1180 void clean_tree_block(struct btrfs_trans_handle *trans,
1181                       struct btrfs_fs_info *fs_info,
1182                       struct extent_buffer *buf)
1183 {
1184         if (btrfs_header_generation(buf) ==
1185             fs_info->running_transaction->transid) {
1186                 btrfs_assert_tree_locked(buf);
1187
1188                 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1189                         __percpu_counter_add(&fs_info->dirty_metadata_bytes,
1190                                              -buf->len,
1191                                              fs_info->dirty_metadata_batch);
1192                         /* ugh, clear_extent_buffer_dirty needs to lock the page */
1193                         btrfs_set_lock_blocking(buf);
1194                         clear_extent_buffer_dirty(buf);
1195                 }
1196         }
1197 }
1198
1199 static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1200 {
1201         struct btrfs_subvolume_writers *writers;
1202         int ret;
1203
1204         writers = kmalloc(sizeof(*writers), GFP_NOFS);
1205         if (!writers)
1206                 return ERR_PTR(-ENOMEM);
1207
1208         ret = percpu_counter_init(&writers->counter, 0, GFP_KERNEL);
1209         if (ret < 0) {
1210                 kfree(writers);
1211                 return ERR_PTR(ret);
1212         }
1213
1214         init_waitqueue_head(&writers->wait);
1215         return writers;
1216 }
1217
1218 static void
1219 btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1220 {
1221         percpu_counter_destroy(&writers->counter);
1222         kfree(writers);
1223 }
1224
1225 static void __setup_root(u32 nodesize, u32 sectorsize, u32 stripesize,
1226                          struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1227                          u64 objectid)
1228 {
1229         root->node = NULL;
1230         root->commit_root = NULL;
1231         root->sectorsize = sectorsize;
1232         root->nodesize = nodesize;
1233         root->stripesize = stripesize;
1234         root->state = 0;
1235         root->orphan_cleanup_state = 0;
1236
1237         root->objectid = objectid;
1238         root->last_trans = 0;
1239         root->highest_objectid = 0;
1240         root->nr_delalloc_inodes = 0;
1241         root->nr_ordered_extents = 0;
1242         root->name = NULL;
1243         root->inode_tree = RB_ROOT;
1244         INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1245         root->block_rsv = NULL;
1246         root->orphan_block_rsv = NULL;
1247
1248         INIT_LIST_HEAD(&root->dirty_list);
1249         INIT_LIST_HEAD(&root->root_list);
1250         INIT_LIST_HEAD(&root->delalloc_inodes);
1251         INIT_LIST_HEAD(&root->delalloc_root);
1252         INIT_LIST_HEAD(&root->ordered_extents);
1253         INIT_LIST_HEAD(&root->ordered_root);
1254         INIT_LIST_HEAD(&root->logged_list[0]);
1255         INIT_LIST_HEAD(&root->logged_list[1]);
1256         spin_lock_init(&root->orphan_lock);
1257         spin_lock_init(&root->inode_lock);
1258         spin_lock_init(&root->delalloc_lock);
1259         spin_lock_init(&root->ordered_extent_lock);
1260         spin_lock_init(&root->accounting_lock);
1261         spin_lock_init(&root->log_extents_lock[0]);
1262         spin_lock_init(&root->log_extents_lock[1]);
1263         mutex_init(&root->objectid_mutex);
1264         mutex_init(&root->log_mutex);
1265         mutex_init(&root->ordered_extent_mutex);
1266         mutex_init(&root->delalloc_mutex);
1267         init_waitqueue_head(&root->log_writer_wait);
1268         init_waitqueue_head(&root->log_commit_wait[0]);
1269         init_waitqueue_head(&root->log_commit_wait[1]);
1270         INIT_LIST_HEAD(&root->log_ctxs[0]);
1271         INIT_LIST_HEAD(&root->log_ctxs[1]);
1272         atomic_set(&root->log_commit[0], 0);
1273         atomic_set(&root->log_commit[1], 0);
1274         atomic_set(&root->log_writers, 0);
1275         atomic_set(&root->log_batch, 0);
1276         atomic_set(&root->orphan_inodes, 0);
1277         atomic_set(&root->refs, 1);
1278         atomic_set(&root->will_be_snapshoted, 0);
1279         atomic_set(&root->qgroup_meta_rsv, 0);
1280         root->log_transid = 0;
1281         root->log_transid_committed = -1;
1282         root->last_log_commit = 0;
1283         if (fs_info)
1284                 extent_io_tree_init(&root->dirty_log_pages,
1285                                      fs_info->btree_inode->i_mapping);
1286
1287         memset(&root->root_key, 0, sizeof(root->root_key));
1288         memset(&root->root_item, 0, sizeof(root->root_item));
1289         memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1290         if (fs_info)
1291                 root->defrag_trans_start = fs_info->generation;
1292         else
1293                 root->defrag_trans_start = 0;
1294         root->root_key.objectid = objectid;
1295         root->anon_dev = 0;
1296
1297         spin_lock_init(&root->root_item_lock);
1298 }
1299
1300 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1301                 gfp_t flags)
1302 {
1303         struct btrfs_root *root = kzalloc(sizeof(*root), flags);
1304         if (root)
1305                 root->fs_info = fs_info;
1306         return root;
1307 }
1308
1309 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1310 /* Should only be used by the testing infrastructure */
1311 struct btrfs_root *btrfs_alloc_dummy_root(void)
1312 {
1313         struct btrfs_root *root;
1314
1315         root = btrfs_alloc_root(NULL, GFP_KERNEL);
1316         if (!root)
1317                 return ERR_PTR(-ENOMEM);
1318         __setup_root(4096, 4096, 4096, root, NULL, 1);
1319         set_bit(BTRFS_ROOT_DUMMY_ROOT, &root->state);
1320         root->alloc_bytenr = 0;
1321
1322         return root;
1323 }
1324 #endif
1325
1326 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1327                                      struct btrfs_fs_info *fs_info,
1328                                      u64 objectid)
1329 {
1330         struct extent_buffer *leaf;
1331         struct btrfs_root *tree_root = fs_info->tree_root;
1332         struct btrfs_root *root;
1333         struct btrfs_key key;
1334         int ret = 0;
1335         uuid_le uuid;
1336
1337         root = btrfs_alloc_root(fs_info, GFP_KERNEL);
1338         if (!root)
1339                 return ERR_PTR(-ENOMEM);
1340
1341         __setup_root(tree_root->nodesize, tree_root->sectorsize,
1342                 tree_root->stripesize, root, fs_info, objectid);
1343         root->root_key.objectid = objectid;
1344         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1345         root->root_key.offset = 0;
1346
1347         leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
1348         if (IS_ERR(leaf)) {
1349                 ret = PTR_ERR(leaf);
1350                 leaf = NULL;
1351                 goto fail;
1352         }
1353
1354         memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1355         btrfs_set_header_bytenr(leaf, leaf->start);
1356         btrfs_set_header_generation(leaf, trans->transid);
1357         btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1358         btrfs_set_header_owner(leaf, objectid);
1359         root->node = leaf;
1360
1361         write_extent_buffer(leaf, fs_info->fsid, btrfs_header_fsid(),
1362                             BTRFS_FSID_SIZE);
1363         write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
1364                             btrfs_header_chunk_tree_uuid(leaf),
1365                             BTRFS_UUID_SIZE);
1366         btrfs_mark_buffer_dirty(leaf);
1367
1368         root->commit_root = btrfs_root_node(root);
1369         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1370
1371         root->root_item.flags = 0;
1372         root->root_item.byte_limit = 0;
1373         btrfs_set_root_bytenr(&root->root_item, leaf->start);
1374         btrfs_set_root_generation(&root->root_item, trans->transid);
1375         btrfs_set_root_level(&root->root_item, 0);
1376         btrfs_set_root_refs(&root->root_item, 1);
1377         btrfs_set_root_used(&root->root_item, leaf->len);
1378         btrfs_set_root_last_snapshot(&root->root_item, 0);
1379         btrfs_set_root_dirid(&root->root_item, 0);
1380         uuid_le_gen(&uuid);
1381         memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
1382         root->root_item.drop_level = 0;
1383
1384         key.objectid = objectid;
1385         key.type = BTRFS_ROOT_ITEM_KEY;
1386         key.offset = 0;
1387         ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1388         if (ret)
1389                 goto fail;
1390
1391         btrfs_tree_unlock(leaf);
1392
1393         return root;
1394
1395 fail:
1396         if (leaf) {
1397                 btrfs_tree_unlock(leaf);
1398                 free_extent_buffer(root->commit_root);
1399                 free_extent_buffer(leaf);
1400         }
1401         kfree(root);
1402
1403         return ERR_PTR(ret);
1404 }
1405
1406 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1407                                          struct btrfs_fs_info *fs_info)
1408 {
1409         struct btrfs_root *root;
1410         struct btrfs_root *tree_root = fs_info->tree_root;
1411         struct extent_buffer *leaf;
1412
1413         root = btrfs_alloc_root(fs_info, GFP_NOFS);
1414         if (!root)
1415                 return ERR_PTR(-ENOMEM);
1416
1417         __setup_root(tree_root->nodesize, tree_root->sectorsize,
1418                      tree_root->stripesize, root, fs_info,
1419                      BTRFS_TREE_LOG_OBJECTID);
1420
1421         root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1422         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1423         root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1424
1425         /*
1426          * DON'T set REF_COWS for log trees
1427          *
1428          * log trees do not get reference counted because they go away
1429          * before a real commit is actually done.  They do store pointers
1430          * to file data extents, and those reference counts still get
1431          * updated (along with back refs to the log tree).
1432          */
1433
1434         leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1435                         NULL, 0, 0, 0);
1436         if (IS_ERR(leaf)) {
1437                 kfree(root);
1438                 return ERR_CAST(leaf);
1439         }
1440
1441         memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1442         btrfs_set_header_bytenr(leaf, leaf->start);
1443         btrfs_set_header_generation(leaf, trans->transid);
1444         btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1445         btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1446         root->node = leaf;
1447
1448         write_extent_buffer(root->node, root->fs_info->fsid,
1449                             btrfs_header_fsid(), BTRFS_FSID_SIZE);
1450         btrfs_mark_buffer_dirty(root->node);
1451         btrfs_tree_unlock(root->node);
1452         return root;
1453 }
1454
1455 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1456                              struct btrfs_fs_info *fs_info)
1457 {
1458         struct btrfs_root *log_root;
1459
1460         log_root = alloc_log_tree(trans, fs_info);
1461         if (IS_ERR(log_root))
1462                 return PTR_ERR(log_root);
1463         WARN_ON(fs_info->log_root_tree);
1464         fs_info->log_root_tree = log_root;
1465         return 0;
1466 }
1467
1468 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1469                        struct btrfs_root *root)
1470 {
1471         struct btrfs_root *log_root;
1472         struct btrfs_inode_item *inode_item;
1473
1474         log_root = alloc_log_tree(trans, root->fs_info);
1475         if (IS_ERR(log_root))
1476                 return PTR_ERR(log_root);
1477
1478         log_root->last_trans = trans->transid;
1479         log_root->root_key.offset = root->root_key.objectid;
1480
1481         inode_item = &log_root->root_item.inode;
1482         btrfs_set_stack_inode_generation(inode_item, 1);
1483         btrfs_set_stack_inode_size(inode_item, 3);
1484         btrfs_set_stack_inode_nlink(inode_item, 1);
1485         btrfs_set_stack_inode_nbytes(inode_item, root->nodesize);
1486         btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1487
1488         btrfs_set_root_node(&log_root->root_item, log_root->node);
1489
1490         WARN_ON(root->log_root);
1491         root->log_root = log_root;
1492         root->log_transid = 0;
1493         root->log_transid_committed = -1;
1494         root->last_log_commit = 0;
1495         return 0;
1496 }
1497
1498 static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1499                                                struct btrfs_key *key)
1500 {
1501         struct btrfs_root *root;
1502         struct btrfs_fs_info *fs_info = tree_root->fs_info;
1503         struct btrfs_path *path;
1504         u64 generation;
1505         int ret;
1506
1507         path = btrfs_alloc_path();
1508         if (!path)
1509                 return ERR_PTR(-ENOMEM);
1510
1511         root = btrfs_alloc_root(fs_info, GFP_NOFS);
1512         if (!root) {
1513                 ret = -ENOMEM;
1514                 goto alloc_fail;
1515         }
1516
1517         __setup_root(tree_root->nodesize, tree_root->sectorsize,
1518                 tree_root->stripesize, root, fs_info, key->objectid);
1519
1520         ret = btrfs_find_root(tree_root, key, path,
1521                               &root->root_item, &root->root_key);
1522         if (ret) {
1523                 if (ret > 0)
1524                         ret = -ENOENT;
1525                 goto find_fail;
1526         }
1527
1528         generation = btrfs_root_generation(&root->root_item);
1529         root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1530                                      generation);
1531         if (IS_ERR(root->node)) {
1532                 ret = PTR_ERR(root->node);
1533                 goto find_fail;
1534         } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1535                 ret = -EIO;
1536                 free_extent_buffer(root->node);
1537                 goto find_fail;
1538         }
1539         root->commit_root = btrfs_root_node(root);
1540 out:
1541         btrfs_free_path(path);
1542         return root;
1543
1544 find_fail:
1545         kfree(root);
1546 alloc_fail:
1547         root = ERR_PTR(ret);
1548         goto out;
1549 }
1550
1551 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1552                                       struct btrfs_key *location)
1553 {
1554         struct btrfs_root *root;
1555
1556         root = btrfs_read_tree_root(tree_root, location);
1557         if (IS_ERR(root))
1558                 return root;
1559
1560         if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1561                 set_bit(BTRFS_ROOT_REF_COWS, &root->state);
1562                 btrfs_check_and_init_root_item(&root->root_item);
1563         }
1564
1565         return root;
1566 }
1567
1568 int btrfs_init_fs_root(struct btrfs_root *root)
1569 {
1570         int ret;
1571         struct btrfs_subvolume_writers *writers;
1572
1573         root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1574         root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1575                                         GFP_NOFS);
1576         if (!root->free_ino_pinned || !root->free_ino_ctl) {
1577                 ret = -ENOMEM;
1578                 goto fail;
1579         }
1580
1581         writers = btrfs_alloc_subvolume_writers();
1582         if (IS_ERR(writers)) {
1583                 ret = PTR_ERR(writers);
1584                 goto fail;
1585         }
1586         root->subv_writers = writers;
1587
1588         btrfs_init_free_ino_ctl(root);
1589         spin_lock_init(&root->ino_cache_lock);
1590         init_waitqueue_head(&root->ino_cache_wait);
1591
1592         ret = get_anon_bdev(&root->anon_dev);
1593         if (ret)
1594                 goto free_writers;
1595
1596         mutex_lock(&root->objectid_mutex);
1597         ret = btrfs_find_highest_objectid(root,
1598                                         &root->highest_objectid);
1599         if (ret) {
1600                 mutex_unlock(&root->objectid_mutex);
1601                 goto free_root_dev;
1602         }
1603
1604         ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1605
1606         mutex_unlock(&root->objectid_mutex);
1607
1608         return 0;
1609
1610 free_root_dev:
1611         free_anon_bdev(root->anon_dev);
1612 free_writers:
1613         btrfs_free_subvolume_writers(root->subv_writers);
1614 fail:
1615         kfree(root->free_ino_ctl);
1616         kfree(root->free_ino_pinned);
1617         return ret;
1618 }
1619
1620 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1621                                                u64 root_id)
1622 {
1623         struct btrfs_root *root;
1624
1625         spin_lock(&fs_info->fs_roots_radix_lock);
1626         root = radix_tree_lookup(&fs_info->fs_roots_radix,
1627                                  (unsigned long)root_id);
1628         spin_unlock(&fs_info->fs_roots_radix_lock);
1629         return root;
1630 }
1631
1632 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1633                          struct btrfs_root *root)
1634 {
1635         int ret;
1636
1637         ret = radix_tree_preload(GFP_NOFS);
1638         if (ret)
1639                 return ret;
1640
1641         spin_lock(&fs_info->fs_roots_radix_lock);
1642         ret = radix_tree_insert(&fs_info->fs_roots_radix,
1643                                 (unsigned long)root->root_key.objectid,
1644                                 root);
1645         if (ret == 0)
1646                 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1647         spin_unlock(&fs_info->fs_roots_radix_lock);
1648         radix_tree_preload_end();
1649
1650         return ret;
1651 }
1652
1653 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1654                                      struct btrfs_key *location,
1655                                      bool check_ref)
1656 {
1657         struct btrfs_root *root;
1658         struct btrfs_path *path;
1659         struct btrfs_key key;
1660         int ret;
1661
1662         if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1663                 return fs_info->tree_root;
1664         if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1665                 return fs_info->extent_root;
1666         if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1667                 return fs_info->chunk_root;
1668         if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1669                 return fs_info->dev_root;
1670         if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1671                 return fs_info->csum_root;
1672         if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1673                 return fs_info->quota_root ? fs_info->quota_root :
1674                                              ERR_PTR(-ENOENT);
1675         if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1676                 return fs_info->uuid_root ? fs_info->uuid_root :
1677                                             ERR_PTR(-ENOENT);
1678         if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1679                 return fs_info->free_space_root ? fs_info->free_space_root :
1680                                                   ERR_PTR(-ENOENT);
1681 again:
1682         root = btrfs_lookup_fs_root(fs_info, location->objectid);
1683         if (root) {
1684                 if (check_ref && btrfs_root_refs(&root->root_item) == 0)
1685                         return ERR_PTR(-ENOENT);
1686                 return root;
1687         }
1688
1689         root = btrfs_read_fs_root(fs_info->tree_root, location);
1690         if (IS_ERR(root))
1691                 return root;
1692
1693         if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1694                 ret = -ENOENT;
1695                 goto fail;
1696         }
1697
1698         ret = btrfs_init_fs_root(root);
1699         if (ret)
1700                 goto fail;
1701
1702         path = btrfs_alloc_path();
1703         if (!path) {
1704                 ret = -ENOMEM;
1705                 goto fail;
1706         }
1707         key.objectid = BTRFS_ORPHAN_OBJECTID;
1708         key.type = BTRFS_ORPHAN_ITEM_KEY;
1709         key.offset = location->objectid;
1710
1711         ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1712         btrfs_free_path(path);
1713         if (ret < 0)
1714                 goto fail;
1715         if (ret == 0)
1716                 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1717
1718         ret = btrfs_insert_fs_root(fs_info, root);
1719         if (ret) {
1720                 if (ret == -EEXIST) {
1721                         free_fs_root(root);
1722                         goto again;
1723                 }
1724                 goto fail;
1725         }
1726         return root;
1727 fail:
1728         free_fs_root(root);
1729         return ERR_PTR(ret);
1730 }
1731
1732 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1733 {
1734         struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1735         int ret = 0;
1736         struct btrfs_device *device;
1737         struct backing_dev_info *bdi;
1738
1739         rcu_read_lock();
1740         list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1741                 if (!device->bdev)
1742                         continue;
1743                 bdi = blk_get_backing_dev_info(device->bdev);
1744                 if (bdi_congested(bdi, bdi_bits)) {
1745                         ret = 1;
1746                         break;
1747                 }
1748         }
1749         rcu_read_unlock();
1750         return ret;
1751 }
1752
1753 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1754 {
1755         int err;
1756
1757         err = bdi_setup_and_register(bdi, "btrfs");
1758         if (err)
1759                 return err;
1760
1761         bdi->ra_pages = VM_MAX_READAHEAD * 1024 / PAGE_SIZE;
1762         bdi->congested_fn       = btrfs_congested_fn;
1763         bdi->congested_data     = info;
1764         bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
1765         return 0;
1766 }
1767
1768 /*
1769  * called by the kthread helper functions to finally call the bio end_io
1770  * functions.  This is where read checksum verification actually happens
1771  */
1772 static void end_workqueue_fn(struct btrfs_work *work)
1773 {
1774         struct bio *bio;
1775         struct btrfs_end_io_wq *end_io_wq;
1776
1777         end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
1778         bio = end_io_wq->bio;
1779
1780         bio->bi_error = end_io_wq->error;
1781         bio->bi_private = end_io_wq->private;
1782         bio->bi_end_io = end_io_wq->end_io;
1783         kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
1784         bio_endio(bio);
1785 }
1786
1787 static int cleaner_kthread(void *arg)
1788 {
1789         struct btrfs_root *root = arg;
1790         int again;
1791         struct btrfs_trans_handle *trans;
1792
1793         do {
1794                 again = 0;
1795
1796                 /* Make the cleaner go to sleep early. */
1797                 if (btrfs_need_cleaner_sleep(root))
1798                         goto sleep;
1799
1800                 if (!mutex_trylock(&root->fs_info->cleaner_mutex))
1801                         goto sleep;
1802
1803                 /*
1804                  * Avoid the problem that we change the status of the fs
1805                  * during the above check and trylock.
1806                  */
1807                 if (btrfs_need_cleaner_sleep(root)) {
1808                         mutex_unlock(&root->fs_info->cleaner_mutex);
1809                         goto sleep;
1810                 }
1811
1812                 mutex_lock(&root->fs_info->cleaner_delayed_iput_mutex);
1813                 btrfs_run_delayed_iputs(root);
1814                 mutex_unlock(&root->fs_info->cleaner_delayed_iput_mutex);
1815
1816                 again = btrfs_clean_one_deleted_snapshot(root);
1817                 mutex_unlock(&root->fs_info->cleaner_mutex);
1818
1819                 /*
1820                  * The defragger has dealt with the R/O remount and umount,
1821                  * needn't do anything special here.
1822                  */
1823                 btrfs_run_defrag_inodes(root->fs_info);
1824
1825                 /*
1826                  * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1827                  * with relocation (btrfs_relocate_chunk) and relocation
1828                  * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1829                  * after acquiring fs_info->delete_unused_bgs_mutex. So we
1830                  * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1831                  * unused block groups.
1832                  */
1833                 btrfs_delete_unused_bgs(root->fs_info);
1834 sleep:
1835                 if (!again) {
1836                         set_current_state(TASK_INTERRUPTIBLE);
1837                         if (!kthread_should_stop())
1838                                 schedule();
1839                         __set_current_state(TASK_RUNNING);
1840                 }
1841         } while (!kthread_should_stop());
1842
1843         /*
1844          * Transaction kthread is stopped before us and wakes us up.
1845          * However we might have started a new transaction and COWed some
1846          * tree blocks when deleting unused block groups for example. So
1847          * make sure we commit the transaction we started to have a clean
1848          * shutdown when evicting the btree inode - if it has dirty pages
1849          * when we do the final iput() on it, eviction will trigger a
1850          * writeback for it which will fail with null pointer dereferences
1851          * since work queues and other resources were already released and
1852          * destroyed by the time the iput/eviction/writeback is made.
1853          */
1854         trans = btrfs_attach_transaction(root);
1855         if (IS_ERR(trans)) {
1856                 if (PTR_ERR(trans) != -ENOENT)
1857                         btrfs_err(root->fs_info,
1858                                   "cleaner transaction attach returned %ld",
1859                                   PTR_ERR(trans));
1860         } else {
1861                 int ret;
1862
1863                 ret = btrfs_commit_transaction(trans, root);
1864                 if (ret)
1865                         btrfs_err(root->fs_info,
1866                                   "cleaner open transaction commit returned %d",
1867                                   ret);
1868         }
1869
1870         return 0;
1871 }
1872
1873 static int transaction_kthread(void *arg)
1874 {
1875         struct btrfs_root *root = arg;
1876         struct btrfs_trans_handle *trans;
1877         struct btrfs_transaction *cur;
1878         u64 transid;
1879         unsigned long now;
1880         unsigned long delay;
1881         bool cannot_commit;
1882
1883         do {
1884                 cannot_commit = false;
1885                 delay = HZ * root->fs_info->commit_interval;
1886                 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1887
1888                 spin_lock(&root->fs_info->trans_lock);
1889                 cur = root->fs_info->running_transaction;
1890                 if (!cur) {
1891                         spin_unlock(&root->fs_info->trans_lock);
1892                         goto sleep;
1893                 }
1894
1895                 now = get_seconds();
1896                 if (cur->state < TRANS_STATE_BLOCKED &&
1897                     (now < cur->start_time ||
1898                      now - cur->start_time < root->fs_info->commit_interval)) {
1899                         spin_unlock(&root->fs_info->trans_lock);
1900                         delay = HZ * 5;
1901                         goto sleep;
1902                 }
1903                 transid = cur->transid;
1904                 spin_unlock(&root->fs_info->trans_lock);
1905
1906                 /* If the file system is aborted, this will always fail. */
1907                 trans = btrfs_attach_transaction(root);
1908                 if (IS_ERR(trans)) {
1909                         if (PTR_ERR(trans) != -ENOENT)
1910                                 cannot_commit = true;
1911                         goto sleep;
1912                 }
1913                 if (transid == trans->transid) {
1914                         btrfs_commit_transaction(trans, root);
1915                 } else {
1916                         btrfs_end_transaction(trans, root);
1917                 }
1918 sleep:
1919                 wake_up_process(root->fs_info->cleaner_kthread);
1920                 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1921
1922                 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1923                                       &root->fs_info->fs_state)))
1924                         btrfs_cleanup_transaction(root);
1925                 set_current_state(TASK_INTERRUPTIBLE);
1926                 if (!kthread_should_stop() &&
1927                                 (!btrfs_transaction_blocked(root->fs_info) ||
1928                                  cannot_commit))
1929                         schedule_timeout(delay);
1930                 __set_current_state(TASK_RUNNING);
1931         } while (!kthread_should_stop());
1932         return 0;
1933 }
1934
1935 /*
1936  * this will find the highest generation in the array of
1937  * root backups.  The index of the highest array is returned,
1938  * or -1 if we can't find anything.
1939  *
1940  * We check to make sure the array is valid by comparing the
1941  * generation of the latest  root in the array with the generation
1942  * in the super block.  If they don't match we pitch it.
1943  */
1944 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1945 {
1946         u64 cur;
1947         int newest_index = -1;
1948         struct btrfs_root_backup *root_backup;
1949         int i;
1950
1951         for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1952                 root_backup = info->super_copy->super_roots + i;
1953                 cur = btrfs_backup_tree_root_gen(root_backup);
1954                 if (cur == newest_gen)
1955                         newest_index = i;
1956         }
1957
1958         /* check to see if we actually wrapped around */
1959         if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1960                 root_backup = info->super_copy->super_roots;
1961                 cur = btrfs_backup_tree_root_gen(root_backup);
1962                 if (cur == newest_gen)
1963                         newest_index = 0;
1964         }
1965         return newest_index;
1966 }
1967
1968
1969 /*
1970  * find the oldest backup so we know where to store new entries
1971  * in the backup array.  This will set the backup_root_index
1972  * field in the fs_info struct
1973  */
1974 static void find_oldest_super_backup(struct btrfs_fs_info *info,
1975                                      u64 newest_gen)
1976 {
1977         int newest_index = -1;
1978
1979         newest_index = find_newest_super_backup(info, newest_gen);
1980         /* if there was garbage in there, just move along */
1981         if (newest_index == -1) {
1982                 info->backup_root_index = 0;
1983         } else {
1984                 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1985         }
1986 }
1987
1988 /*
1989  * copy all the root pointers into the super backup array.
1990  * this will bump the backup pointer by one when it is
1991  * done
1992  */
1993 static void backup_super_roots(struct btrfs_fs_info *info)
1994 {
1995         int next_backup;
1996         struct btrfs_root_backup *root_backup;
1997         int last_backup;
1998
1999         next_backup = info->backup_root_index;
2000         last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
2001                 BTRFS_NUM_BACKUP_ROOTS;
2002
2003         /*
2004          * just overwrite the last backup if we're at the same generation
2005          * this happens only at umount
2006          */
2007         root_backup = info->super_for_commit->super_roots + last_backup;
2008         if (btrfs_backup_tree_root_gen(root_backup) ==
2009             btrfs_header_generation(info->tree_root->node))
2010                 next_backup = last_backup;
2011
2012         root_backup = info->super_for_commit->super_roots + next_backup;
2013
2014         /*
2015          * make sure all of our padding and empty slots get zero filled
2016          * regardless of which ones we use today
2017          */
2018         memset(root_backup, 0, sizeof(*root_backup));
2019
2020         info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
2021
2022         btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
2023         btrfs_set_backup_tree_root_gen(root_backup,
2024                                btrfs_header_generation(info->tree_root->node));
2025
2026         btrfs_set_backup_tree_root_level(root_backup,
2027                                btrfs_header_level(info->tree_root->node));
2028
2029         btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
2030         btrfs_set_backup_chunk_root_gen(root_backup,
2031                                btrfs_header_generation(info->chunk_root->node));
2032         btrfs_set_backup_chunk_root_level(root_backup,
2033                                btrfs_header_level(info->chunk_root->node));
2034
2035         btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
2036         btrfs_set_backup_extent_root_gen(root_backup,
2037                                btrfs_header_generation(info->extent_root->node));
2038         btrfs_set_backup_extent_root_level(root_backup,
2039                                btrfs_header_level(info->extent_root->node));
2040
2041         /*
2042          * we might commit during log recovery, which happens before we set
2043          * the fs_root.  Make sure it is valid before we fill it in.
2044          */
2045         if (info->fs_root && info->fs_root->node) {
2046                 btrfs_set_backup_fs_root(root_backup,
2047                                          info->fs_root->node->start);
2048                 btrfs_set_backup_fs_root_gen(root_backup,
2049                                btrfs_header_generation(info->fs_root->node));
2050                 btrfs_set_backup_fs_root_level(root_backup,
2051                                btrfs_header_level(info->fs_root->node));
2052         }
2053
2054         btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
2055         btrfs_set_backup_dev_root_gen(root_backup,
2056                                btrfs_header_generation(info->dev_root->node));
2057         btrfs_set_backup_dev_root_level(root_backup,
2058                                        btrfs_header_level(info->dev_root->node));
2059
2060         btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
2061         btrfs_set_backup_csum_root_gen(root_backup,
2062                                btrfs_header_generation(info->csum_root->node));
2063         btrfs_set_backup_csum_root_level(root_backup,
2064                                btrfs_header_level(info->csum_root->node));
2065
2066         btrfs_set_backup_total_bytes(root_backup,
2067                              btrfs_super_total_bytes(info->super_copy));
2068         btrfs_set_backup_bytes_used(root_backup,
2069                              btrfs_super_bytes_used(info->super_copy));
2070         btrfs_set_backup_num_devices(root_backup,
2071                              btrfs_super_num_devices(info->super_copy));
2072
2073         /*
2074          * if we don't copy this out to the super_copy, it won't get remembered
2075          * for the next commit
2076          */
2077         memcpy(&info->super_copy->super_roots,
2078                &info->super_for_commit->super_roots,
2079                sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
2080 }
2081
2082 /*
2083  * this copies info out of the root backup array and back into
2084  * the in-memory super block.  It is meant to help iterate through
2085  * the array, so you send it the number of backups you've already
2086  * tried and the last backup index you used.
2087  *
2088  * this returns -1 when it has tried all the backups
2089  */
2090 static noinline int next_root_backup(struct btrfs_fs_info *info,
2091                                      struct btrfs_super_block *super,
2092                                      int *num_backups_tried, int *backup_index)
2093 {
2094         struct btrfs_root_backup *root_backup;
2095         int newest = *backup_index;
2096
2097         if (*num_backups_tried == 0) {
2098                 u64 gen = btrfs_super_generation(super);
2099
2100                 newest = find_newest_super_backup(info, gen);
2101                 if (newest == -1)
2102                         return -1;
2103
2104                 *backup_index = newest;
2105                 *num_backups_tried = 1;
2106         } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
2107                 /* we've tried all the backups, all done */
2108                 return -1;
2109         } else {
2110                 /* jump to the next oldest backup */
2111                 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
2112                         BTRFS_NUM_BACKUP_ROOTS;
2113                 *backup_index = newest;
2114                 *num_backups_tried += 1;
2115         }
2116         root_backup = super->super_roots + newest;
2117
2118         btrfs_set_super_generation(super,
2119                                    btrfs_backup_tree_root_gen(root_backup));
2120         btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2121         btrfs_set_super_root_level(super,
2122                                    btrfs_backup_tree_root_level(root_backup));
2123         btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2124
2125         /*
2126          * fixme: the total bytes and num_devices need to match or we should
2127          * need a fsck
2128          */
2129         btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2130         btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2131         return 0;
2132 }
2133
2134 /* helper to cleanup workers */
2135 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2136 {
2137         btrfs_destroy_workqueue(fs_info->fixup_workers);
2138         btrfs_destroy_workqueue(fs_info->delalloc_workers);
2139         btrfs_destroy_workqueue(fs_info->workers);
2140         btrfs_destroy_workqueue(fs_info->endio_workers);
2141         btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2142         btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
2143         btrfs_destroy_workqueue(fs_info->endio_repair_workers);
2144         btrfs_destroy_workqueue(fs_info->rmw_workers);
2145         btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2146         btrfs_destroy_workqueue(fs_info->endio_write_workers);
2147         btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
2148         btrfs_destroy_workqueue(fs_info->submit_workers);
2149         btrfs_destroy_workqueue(fs_info->delayed_workers);
2150         btrfs_destroy_workqueue(fs_info->caching_workers);
2151         btrfs_destroy_workqueue(fs_info->readahead_workers);
2152         btrfs_destroy_workqueue(fs_info->flush_workers);
2153         btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
2154         btrfs_destroy_workqueue(fs_info->extent_workers);
2155 }
2156
2157 static void free_root_extent_buffers(struct btrfs_root *root)
2158 {
2159         if (root) {
2160                 free_extent_buffer(root->node);
2161                 free_extent_buffer(root->commit_root);
2162                 root->node = NULL;
2163                 root->commit_root = NULL;
2164         }
2165 }
2166
2167 /* helper to cleanup tree roots */
2168 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2169 {
2170         free_root_extent_buffers(info->tree_root);
2171
2172         free_root_extent_buffers(info->dev_root);
2173         free_root_extent_buffers(info->extent_root);
2174         free_root_extent_buffers(info->csum_root);
2175         free_root_extent_buffers(info->quota_root);
2176         free_root_extent_buffers(info->uuid_root);
2177         if (chunk_root)
2178                 free_root_extent_buffers(info->chunk_root);
2179         free_root_extent_buffers(info->free_space_root);
2180 }
2181
2182 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2183 {
2184         int ret;
2185         struct btrfs_root *gang[8];
2186         int i;
2187
2188         while (!list_empty(&fs_info->dead_roots)) {
2189                 gang[0] = list_entry(fs_info->dead_roots.next,
2190                                      struct btrfs_root, root_list);
2191                 list_del(&gang[0]->root_list);
2192
2193                 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
2194                         btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2195                 } else {
2196                         free_extent_buffer(gang[0]->node);
2197                         free_extent_buffer(gang[0]->commit_root);
2198                         btrfs_put_fs_root(gang[0]);
2199                 }
2200         }
2201
2202         while (1) {
2203                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2204                                              (void **)gang, 0,
2205                                              ARRAY_SIZE(gang));
2206                 if (!ret)
2207                         break;
2208                 for (i = 0; i < ret; i++)
2209                         btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2210         }
2211
2212         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2213                 btrfs_free_log_root_tree(NULL, fs_info);
2214                 btrfs_destroy_pinned_extent(fs_info->tree_root,
2215                                             fs_info->pinned_extents);
2216         }
2217 }
2218
2219 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2220 {
2221         mutex_init(&fs_info->scrub_lock);
2222         atomic_set(&fs_info->scrubs_running, 0);
2223         atomic_set(&fs_info->scrub_pause_req, 0);
2224         atomic_set(&fs_info->scrubs_paused, 0);
2225         atomic_set(&fs_info->scrub_cancel_req, 0);
2226         init_waitqueue_head(&fs_info->scrub_pause_wait);
2227         fs_info->scrub_workers_refcnt = 0;
2228 }
2229
2230 static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2231 {
2232         spin_lock_init(&fs_info->balance_lock);
2233         mutex_init(&fs_info->balance_mutex);
2234         atomic_set(&fs_info->balance_running, 0);
2235         atomic_set(&fs_info->balance_pause_req, 0);
2236         atomic_set(&fs_info->balance_cancel_req, 0);
2237         fs_info->balance_ctl = NULL;
2238         init_waitqueue_head(&fs_info->balance_wait_q);
2239 }
2240
2241 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info,
2242                                    struct btrfs_root *tree_root)
2243 {
2244         fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2245         set_nlink(fs_info->btree_inode, 1);
2246         /*
2247          * we set the i_size on the btree inode to the max possible int.
2248          * the real end of the address space is determined by all of
2249          * the devices in the system
2250          */
2251         fs_info->btree_inode->i_size = OFFSET_MAX;
2252         fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
2253
2254         RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
2255         extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
2256                              fs_info->btree_inode->i_mapping);
2257         BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
2258         extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
2259
2260         BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
2261
2262         BTRFS_I(fs_info->btree_inode)->root = tree_root;
2263         memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2264                sizeof(struct btrfs_key));
2265         set_bit(BTRFS_INODE_DUMMY,
2266                 &BTRFS_I(fs_info->btree_inode)->runtime_flags);
2267         btrfs_insert_inode_hash(fs_info->btree_inode);
2268 }
2269
2270 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2271 {
2272         fs_info->dev_replace.lock_owner = 0;
2273         atomic_set(&fs_info->dev_replace.nesting_level, 0);
2274         mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2275         rwlock_init(&fs_info->dev_replace.lock);
2276         atomic_set(&fs_info->dev_replace.read_locks, 0);
2277         atomic_set(&fs_info->dev_replace.blocking_readers, 0);
2278         init_waitqueue_head(&fs_info->replace_wait);
2279         init_waitqueue_head(&fs_info->dev_replace.read_lock_wq);
2280 }
2281
2282 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2283 {
2284         spin_lock_init(&fs_info->qgroup_lock);
2285         mutex_init(&fs_info->qgroup_ioctl_lock);
2286         fs_info->qgroup_tree = RB_ROOT;
2287         fs_info->qgroup_op_tree = RB_ROOT;
2288         INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2289         fs_info->qgroup_seq = 1;
2290         fs_info->quota_enabled = 0;
2291         fs_info->pending_quota_state = 0;
2292         fs_info->qgroup_ulist = NULL;
2293         mutex_init(&fs_info->qgroup_rescan_lock);
2294 }
2295
2296 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2297                 struct btrfs_fs_devices *fs_devices)
2298 {
2299         int max_active = fs_info->thread_pool_size;
2300         unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2301
2302         fs_info->workers =
2303                 btrfs_alloc_workqueue("worker", flags | WQ_HIGHPRI,
2304                                       max_active, 16);
2305
2306         fs_info->delalloc_workers =
2307                 btrfs_alloc_workqueue("delalloc", flags, max_active, 2);
2308
2309         fs_info->flush_workers =
2310                 btrfs_alloc_workqueue("flush_delalloc", flags, max_active, 0);
2311
2312         fs_info->caching_workers =
2313                 btrfs_alloc_workqueue("cache", flags, max_active, 0);
2314
2315         /*
2316          * a higher idle thresh on the submit workers makes it much more
2317          * likely that bios will be send down in a sane order to the
2318          * devices
2319          */
2320         fs_info->submit_workers =
2321                 btrfs_alloc_workqueue("submit", flags,
2322                                       min_t(u64, fs_devices->num_devices,
2323                                             max_active), 64);
2324
2325         fs_info->fixup_workers =
2326                 btrfs_alloc_workqueue("fixup", flags, 1, 0);
2327
2328         /*
2329          * endios are largely parallel and should have a very
2330          * low idle thresh
2331          */
2332         fs_info->endio_workers =
2333                 btrfs_alloc_workqueue("endio", flags, max_active, 4);
2334         fs_info->endio_meta_workers =
2335                 btrfs_alloc_workqueue("endio-meta", flags, max_active, 4);
2336         fs_info->endio_meta_write_workers =
2337                 btrfs_alloc_workqueue("endio-meta-write", flags, max_active, 2);
2338         fs_info->endio_raid56_workers =
2339                 btrfs_alloc_workqueue("endio-raid56", flags, max_active, 4);
2340         fs_info->endio_repair_workers =
2341                 btrfs_alloc_workqueue("endio-repair", flags, 1, 0);
2342         fs_info->rmw_workers =
2343                 btrfs_alloc_workqueue("rmw", flags, max_active, 2);
2344         fs_info->endio_write_workers =
2345                 btrfs_alloc_workqueue("endio-write", flags, max_active, 2);
2346         fs_info->endio_freespace_worker =
2347                 btrfs_alloc_workqueue("freespace-write", flags, max_active, 0);
2348         fs_info->delayed_workers =
2349                 btrfs_alloc_workqueue("delayed-meta", flags, max_active, 0);
2350         fs_info->readahead_workers =
2351                 btrfs_alloc_workqueue("readahead", flags, max_active, 2);
2352         fs_info->qgroup_rescan_workers =
2353                 btrfs_alloc_workqueue("qgroup-rescan", flags, 1, 0);
2354         fs_info->extent_workers =
2355                 btrfs_alloc_workqueue("extent-refs", flags,
2356                                       min_t(u64, fs_devices->num_devices,
2357                                             max_active), 8);
2358
2359         if (!(fs_info->workers && fs_info->delalloc_workers &&
2360               fs_info->submit_workers && fs_info->flush_workers &&
2361               fs_info->endio_workers && fs_info->endio_meta_workers &&
2362               fs_info->endio_meta_write_workers &&
2363               fs_info->endio_repair_workers &&
2364               fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2365               fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2366               fs_info->caching_workers && fs_info->readahead_workers &&
2367               fs_info->fixup_workers && fs_info->delayed_workers &&
2368               fs_info->extent_workers &&
2369               fs_info->qgroup_rescan_workers)) {
2370                 return -ENOMEM;
2371         }
2372
2373         return 0;
2374 }
2375
2376 static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2377                             struct btrfs_fs_devices *fs_devices)
2378 {
2379         int ret;
2380         struct btrfs_root *tree_root = fs_info->tree_root;
2381         struct btrfs_root *log_tree_root;
2382         struct btrfs_super_block *disk_super = fs_info->super_copy;
2383         u64 bytenr = btrfs_super_log_root(disk_super);
2384
2385         if (fs_devices->rw_devices == 0) {
2386                 btrfs_warn(fs_info, "log replay required on RO media");
2387                 return -EIO;
2388         }
2389
2390         log_tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2391         if (!log_tree_root)
2392                 return -ENOMEM;
2393
2394         __setup_root(tree_root->nodesize, tree_root->sectorsize,
2395                         tree_root->stripesize, log_tree_root, fs_info,
2396                         BTRFS_TREE_LOG_OBJECTID);
2397
2398         log_tree_root->node = read_tree_block(tree_root, bytenr,
2399                         fs_info->generation + 1);
2400         if (IS_ERR(log_tree_root->node)) {
2401                 btrfs_warn(fs_info, "failed to read log tree");
2402                 ret = PTR_ERR(log_tree_root->node);
2403                 kfree(log_tree_root);
2404                 return ret;
2405         } else if (!extent_buffer_uptodate(log_tree_root->node)) {
2406                 btrfs_err(fs_info, "failed to read log tree");
2407                 free_extent_buffer(log_tree_root->node);
2408                 kfree(log_tree_root);
2409                 return -EIO;
2410         }
2411         /* returns with log_tree_root freed on success */
2412         ret = btrfs_recover_log_trees(log_tree_root);
2413         if (ret) {
2414                 btrfs_handle_fs_error(tree_root->fs_info, ret,
2415                             "Failed to recover log tree");
2416                 free_extent_buffer(log_tree_root->node);
2417                 kfree(log_tree_root);
2418                 return ret;
2419         }
2420
2421         if (fs_info->sb->s_flags & MS_RDONLY) {
2422                 ret = btrfs_commit_super(tree_root);
2423                 if (ret)
2424                         return ret;
2425         }
2426
2427         return 0;
2428 }
2429
2430 static int btrfs_read_roots(struct btrfs_fs_info *fs_info,
2431                             struct btrfs_root *tree_root)
2432 {
2433         struct btrfs_root *root;
2434         struct btrfs_key location;
2435         int ret;
2436
2437         location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2438         location.type = BTRFS_ROOT_ITEM_KEY;
2439         location.offset = 0;
2440
2441         root = btrfs_read_tree_root(tree_root, &location);
2442         if (IS_ERR(root))
2443                 return PTR_ERR(root);
2444         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2445         fs_info->extent_root = root;
2446
2447         location.objectid = BTRFS_DEV_TREE_OBJECTID;
2448         root = btrfs_read_tree_root(tree_root, &location);
2449         if (IS_ERR(root))
2450                 return PTR_ERR(root);
2451         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2452         fs_info->dev_root = root;
2453         btrfs_init_devices_late(fs_info);
2454
2455         location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2456         root = btrfs_read_tree_root(tree_root, &location);
2457         if (IS_ERR(root))
2458                 return PTR_ERR(root);
2459         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2460         fs_info->csum_root = root;
2461
2462         location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2463         root = btrfs_read_tree_root(tree_root, &location);
2464         if (!IS_ERR(root)) {
2465                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2466                 fs_info->quota_enabled = 1;
2467                 fs_info->pending_quota_state = 1;
2468                 fs_info->quota_root = root;
2469         }
2470
2471         location.objectid = BTRFS_UUID_TREE_OBJECTID;
2472         root = btrfs_read_tree_root(tree_root, &location);
2473         if (IS_ERR(root)) {
2474                 ret = PTR_ERR(root);
2475                 if (ret != -ENOENT)
2476                         return ret;
2477         } else {
2478                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2479                 fs_info->uuid_root = root;
2480         }
2481
2482         if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2483                 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2484                 root = btrfs_read_tree_root(tree_root, &location);
2485                 if (IS_ERR(root))
2486                         return PTR_ERR(root);
2487                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2488                 fs_info->free_space_root = root;
2489         }
2490
2491         return 0;
2492 }
2493
2494 int open_ctree(struct super_block *sb,
2495                struct btrfs_fs_devices *fs_devices,
2496                char *options)
2497 {
2498         u32 sectorsize;
2499         u32 nodesize;
2500         u32 stripesize;
2501         u64 generation;
2502         u64 features;
2503         struct btrfs_key location;
2504         struct buffer_head *bh;
2505         struct btrfs_super_block *disk_super;
2506         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2507         struct btrfs_root *tree_root;
2508         struct btrfs_root *chunk_root;
2509         int ret;
2510         int err = -EINVAL;
2511         int num_backups_tried = 0;
2512         int backup_index = 0;
2513         int max_active;
2514         bool cleaner_mutex_locked = false;
2515
2516         tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2517         chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2518         if (!tree_root || !chunk_root) {
2519                 err = -ENOMEM;
2520                 goto fail;
2521         }
2522
2523         ret = init_srcu_struct(&fs_info->subvol_srcu);
2524         if (ret) {
2525                 err = ret;
2526                 goto fail;
2527         }
2528
2529         ret = setup_bdi(fs_info, &fs_info->bdi);
2530         if (ret) {
2531                 err = ret;
2532                 goto fail_srcu;
2533         }
2534
2535         ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2536         if (ret) {
2537                 err = ret;
2538                 goto fail_bdi;
2539         }
2540         fs_info->dirty_metadata_batch = PAGE_SIZE *
2541                                         (1 + ilog2(nr_cpu_ids));
2542
2543         ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2544         if (ret) {
2545                 err = ret;
2546                 goto fail_dirty_metadata_bytes;
2547         }
2548
2549         ret = percpu_counter_init(&fs_info->bio_counter, 0, GFP_KERNEL);
2550         if (ret) {
2551                 err = ret;
2552                 goto fail_delalloc_bytes;
2553         }
2554
2555         fs_info->btree_inode = new_inode(sb);
2556         if (!fs_info->btree_inode) {
2557                 err = -ENOMEM;
2558                 goto fail_bio_counter;
2559         }
2560
2561         mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2562
2563         INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2564         INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2565         INIT_LIST_HEAD(&fs_info->trans_list);
2566         INIT_LIST_HEAD(&fs_info->dead_roots);
2567         INIT_LIST_HEAD(&fs_info->delayed_iputs);
2568         INIT_LIST_HEAD(&fs_info->delalloc_roots);
2569         INIT_LIST_HEAD(&fs_info->caching_block_groups);
2570         spin_lock_init(&fs_info->delalloc_root_lock);
2571         spin_lock_init(&fs_info->trans_lock);
2572         spin_lock_init(&fs_info->fs_roots_radix_lock);
2573         spin_lock_init(&fs_info->delayed_iput_lock);
2574         spin_lock_init(&fs_info->defrag_inodes_lock);
2575         spin_lock_init(&fs_info->free_chunk_lock);
2576         spin_lock_init(&fs_info->tree_mod_seq_lock);
2577         spin_lock_init(&fs_info->super_lock);
2578         spin_lock_init(&fs_info->qgroup_op_lock);
2579         spin_lock_init(&fs_info->buffer_lock);
2580         spin_lock_init(&fs_info->unused_bgs_lock);
2581         rwlock_init(&fs_info->tree_mod_log_lock);
2582         mutex_init(&fs_info->unused_bg_unpin_mutex);
2583         mutex_init(&fs_info->delete_unused_bgs_mutex);
2584         mutex_init(&fs_info->reloc_mutex);
2585         mutex_init(&fs_info->delalloc_root_mutex);
2586         mutex_init(&fs_info->cleaner_delayed_iput_mutex);
2587         seqlock_init(&fs_info->profiles_lock);
2588
2589         INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2590         INIT_LIST_HEAD(&fs_info->space_info);
2591         INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2592         INIT_LIST_HEAD(&fs_info->unused_bgs);
2593         btrfs_mapping_init(&fs_info->mapping_tree);
2594         btrfs_init_block_rsv(&fs_info->global_block_rsv,
2595                              BTRFS_BLOCK_RSV_GLOBAL);
2596         btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2597                              BTRFS_BLOCK_RSV_DELALLOC);
2598         btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2599         btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2600         btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2601         btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2602                              BTRFS_BLOCK_RSV_DELOPS);
2603         atomic_set(&fs_info->nr_async_submits, 0);
2604         atomic_set(&fs_info->async_delalloc_pages, 0);
2605         atomic_set(&fs_info->async_submit_draining, 0);
2606         atomic_set(&fs_info->nr_async_bios, 0);
2607         atomic_set(&fs_info->defrag_running, 0);
2608         atomic_set(&fs_info->qgroup_op_seq, 0);
2609         atomic_set(&fs_info->reada_works_cnt, 0);
2610         atomic64_set(&fs_info->tree_mod_seq, 0);
2611         fs_info->sb = sb;
2612         fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2613         fs_info->metadata_ratio = 0;
2614         fs_info->defrag_inodes = RB_ROOT;
2615         fs_info->free_chunk_space = 0;
2616         fs_info->tree_mod_log = RB_ROOT;
2617         fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2618         fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
2619         /* readahead state */
2620         INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
2621         spin_lock_init(&fs_info->reada_lock);
2622
2623         fs_info->thread_pool_size = min_t(unsigned long,
2624                                           num_online_cpus() + 2, 8);
2625
2626         INIT_LIST_HEAD(&fs_info->ordered_roots);
2627         spin_lock_init(&fs_info->ordered_root_lock);
2628         fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2629                                         GFP_KERNEL);
2630         if (!fs_info->delayed_root) {
2631                 err = -ENOMEM;
2632                 goto fail_iput;
2633         }
2634         btrfs_init_delayed_root(fs_info->delayed_root);
2635
2636         btrfs_init_scrub(fs_info);
2637 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2638         fs_info->check_integrity_print_mask = 0;
2639 #endif
2640         btrfs_init_balance(fs_info);
2641         btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
2642
2643         sb->s_blocksize = 4096;
2644         sb->s_blocksize_bits = blksize_bits(4096);
2645         sb->s_bdi = &fs_info->bdi;
2646
2647         btrfs_init_btree_inode(fs_info, tree_root);
2648
2649         spin_lock_init(&fs_info->block_group_cache_lock);
2650         fs_info->block_group_cache_tree = RB_ROOT;
2651         fs_info->first_logical_byte = (u64)-1;
2652
2653         extent_io_tree_init(&fs_info->freed_extents[0],
2654                              fs_info->btree_inode->i_mapping);
2655         extent_io_tree_init(&fs_info->freed_extents[1],
2656                              fs_info->btree_inode->i_mapping);
2657         fs_info->pinned_extents = &fs_info->freed_extents[0];
2658         fs_info->do_barriers = 1;
2659
2660
2661         mutex_init(&fs_info->ordered_operations_mutex);
2662         mutex_init(&fs_info->tree_log_mutex);
2663         mutex_init(&fs_info->chunk_mutex);
2664         mutex_init(&fs_info->transaction_kthread_mutex);
2665         mutex_init(&fs_info->cleaner_mutex);
2666         mutex_init(&fs_info->volume_mutex);
2667         mutex_init(&fs_info->ro_block_group_mutex);
2668         init_rwsem(&fs_info->commit_root_sem);
2669         init_rwsem(&fs_info->cleanup_work_sem);
2670         init_rwsem(&fs_info->subvol_sem);
2671         sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2672
2673         btrfs_init_dev_replace_locks(fs_info);
2674         btrfs_init_qgroup(fs_info);
2675
2676         btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2677         btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2678
2679         init_waitqueue_head(&fs_info->transaction_throttle);
2680         init_waitqueue_head(&fs_info->transaction_wait);
2681         init_waitqueue_head(&fs_info->transaction_blocked_wait);
2682         init_waitqueue_head(&fs_info->async_submit_wait);
2683
2684         INIT_LIST_HEAD(&fs_info->pinned_chunks);
2685
2686         ret = btrfs_alloc_stripe_hash_table(fs_info);
2687         if (ret) {
2688                 err = ret;
2689                 goto fail_alloc;
2690         }
2691
2692         __setup_root(4096, 4096, 4096, tree_root,
2693                      fs_info, BTRFS_ROOT_TREE_OBJECTID);
2694
2695         invalidate_bdev(fs_devices->latest_bdev);
2696
2697         /*
2698          * Read super block and check the signature bytes only
2699          */
2700         bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2701         if (IS_ERR(bh)) {
2702                 err = PTR_ERR(bh);
2703                 goto fail_alloc;
2704         }
2705
2706         /*
2707          * We want to check superblock checksum, the type is stored inside.
2708          * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2709          */
2710         if (btrfs_check_super_csum(bh->b_data)) {
2711                 btrfs_err(fs_info, "superblock checksum mismatch");
2712                 err = -EINVAL;
2713                 brelse(bh);
2714                 goto fail_alloc;
2715         }
2716
2717         /*
2718          * super_copy is zeroed at allocation time and we never touch the
2719          * following bytes up to INFO_SIZE, the checksum is calculated from
2720          * the whole block of INFO_SIZE
2721          */
2722         memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2723         memcpy(fs_info->super_for_commit, fs_info->super_copy,
2724                sizeof(*fs_info->super_for_commit));
2725         brelse(bh);
2726
2727         memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2728
2729         ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2730         if (ret) {
2731                 btrfs_err(fs_info, "superblock contains fatal errors");
2732                 err = -EINVAL;
2733                 goto fail_alloc;
2734         }
2735
2736         disk_super = fs_info->super_copy;
2737         if (!btrfs_super_root(disk_super))
2738                 goto fail_alloc;
2739
2740         /* check FS state, whether FS is broken. */
2741         if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2742                 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2743
2744         /*
2745          * run through our array of backup supers and setup
2746          * our ring pointer to the oldest one
2747          */
2748         generation = btrfs_super_generation(disk_super);
2749         find_oldest_super_backup(fs_info, generation);
2750
2751         /*
2752          * In the long term, we'll store the compression type in the super
2753          * block, and it'll be used for per file compression control.
2754          */
2755         fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2756
2757         ret = btrfs_parse_options(tree_root, options, sb->s_flags);
2758         if (ret) {
2759                 err = ret;
2760                 goto fail_alloc;
2761         }
2762
2763         features = btrfs_super_incompat_flags(disk_super) &
2764                 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2765         if (features) {
2766                 btrfs_err(fs_info,
2767                     "cannot mount because of unsupported optional features (%llx)",
2768                     features);
2769                 err = -EINVAL;
2770                 goto fail_alloc;
2771         }
2772
2773         features = btrfs_super_incompat_flags(disk_super);
2774         features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2775         if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
2776                 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2777
2778         if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2779                 btrfs_info(fs_info, "has skinny extents");
2780
2781         /*
2782          * flag our filesystem as having big metadata blocks if
2783          * they are bigger than the page size
2784          */
2785         if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
2786                 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2787                         btrfs_info(fs_info,
2788                                 "flagging fs with big metadata feature");
2789                 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2790         }
2791
2792         nodesize = btrfs_super_nodesize(disk_super);
2793         sectorsize = btrfs_super_sectorsize(disk_super);
2794         stripesize = btrfs_super_stripesize(disk_super);
2795         fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
2796         fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2797
2798         /*
2799          * mixed block groups end up with duplicate but slightly offset
2800          * extent buffers for the same range.  It leads to corruptions
2801          */
2802         if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2803             (sectorsize != nodesize)) {
2804                 btrfs_err(fs_info,
2805 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
2806                         nodesize, sectorsize);
2807                 goto fail_alloc;
2808         }
2809
2810         /*
2811          * Needn't use the lock because there is no other task which will
2812          * update the flag.
2813          */
2814         btrfs_set_super_incompat_flags(disk_super, features);
2815
2816         features = btrfs_super_compat_ro_flags(disk_super) &
2817                 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2818         if (!(sb->s_flags & MS_RDONLY) && features) {
2819                 btrfs_err(fs_info,
2820         "cannot mount read-write because of unsupported optional features (%llx)",
2821                        features);
2822                 err = -EINVAL;
2823                 goto fail_alloc;
2824         }
2825
2826         max_active = fs_info->thread_pool_size;
2827
2828         ret = btrfs_init_workqueues(fs_info, fs_devices);
2829         if (ret) {
2830                 err = ret;
2831                 goto fail_sb_buffer;
2832         }
2833
2834         fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
2835         fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2836                                     SZ_4M / PAGE_SIZE);
2837
2838         tree_root->nodesize = nodesize;
2839         tree_root->sectorsize = sectorsize;
2840         tree_root->stripesize = stripesize;
2841
2842         sb->s_blocksize = sectorsize;
2843         sb->s_blocksize_bits = blksize_bits(sectorsize);
2844
2845         mutex_lock(&fs_info->chunk_mutex);
2846         ret = btrfs_read_sys_array(tree_root);
2847         mutex_unlock(&fs_info->chunk_mutex);
2848         if (ret) {
2849                 btrfs_err(fs_info, "failed to read the system array: %d", ret);
2850                 goto fail_sb_buffer;
2851         }
2852
2853         generation = btrfs_super_chunk_root_generation(disk_super);
2854
2855         __setup_root(nodesize, sectorsize, stripesize, chunk_root,
2856                      fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2857
2858         chunk_root->node = read_tree_block(chunk_root,
2859                                            btrfs_super_chunk_root(disk_super),
2860                                            generation);
2861         if (IS_ERR(chunk_root->node) ||
2862             !extent_buffer_uptodate(chunk_root->node)) {
2863                 btrfs_err(fs_info, "failed to read chunk root");
2864                 if (!IS_ERR(chunk_root->node))
2865                         free_extent_buffer(chunk_root->node);
2866                 chunk_root->node = NULL;
2867                 goto fail_tree_roots;
2868         }
2869         btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2870         chunk_root->commit_root = btrfs_root_node(chunk_root);
2871
2872         read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2873            btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
2874
2875         ret = btrfs_read_chunk_tree(chunk_root);
2876         if (ret) {
2877                 btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
2878                 goto fail_tree_roots;
2879         }
2880
2881         /*
2882          * keep the device that is marked to be the target device for the
2883          * dev_replace procedure
2884          */
2885         btrfs_close_extra_devices(fs_devices, 0);
2886
2887         if (!fs_devices->latest_bdev) {
2888                 btrfs_err(fs_info, "failed to read devices");
2889                 goto fail_tree_roots;
2890         }
2891
2892 retry_root_backup:
2893         generation = btrfs_super_generation(disk_super);
2894
2895         tree_root->node = read_tree_block(tree_root,
2896                                           btrfs_super_root(disk_super),
2897                                           generation);
2898         if (IS_ERR(tree_root->node) ||
2899             !extent_buffer_uptodate(tree_root->node)) {
2900                 btrfs_warn(fs_info, "failed to read tree root");
2901                 if (!IS_ERR(tree_root->node))
2902                         free_extent_buffer(tree_root->node);
2903                 tree_root->node = NULL;
2904                 goto recovery_tree_root;
2905         }
2906
2907         btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2908         tree_root->commit_root = btrfs_root_node(tree_root);
2909         btrfs_set_root_refs(&tree_root->root_item, 1);
2910
2911         mutex_lock(&tree_root->objectid_mutex);
2912         ret = btrfs_find_highest_objectid(tree_root,
2913                                         &tree_root->highest_objectid);
2914         if (ret) {
2915                 mutex_unlock(&tree_root->objectid_mutex);
2916                 goto recovery_tree_root;
2917         }
2918
2919         ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
2920
2921         mutex_unlock(&tree_root->objectid_mutex);
2922
2923         ret = btrfs_read_roots(fs_info, tree_root);
2924         if (ret)
2925                 goto recovery_tree_root;
2926
2927         fs_info->generation = generation;
2928         fs_info->last_trans_committed = generation;
2929
2930         ret = btrfs_recover_balance(fs_info);
2931         if (ret) {
2932                 btrfs_err(fs_info, "failed to recover balance: %d", ret);
2933                 goto fail_block_groups;
2934         }
2935
2936         ret = btrfs_init_dev_stats(fs_info);
2937         if (ret) {
2938                 btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
2939                 goto fail_block_groups;
2940         }
2941
2942         ret = btrfs_init_dev_replace(fs_info);
2943         if (ret) {
2944                 btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
2945                 goto fail_block_groups;
2946         }
2947
2948         btrfs_close_extra_devices(fs_devices, 1);
2949
2950         ret = btrfs_sysfs_add_fsid(fs_devices, NULL);
2951         if (ret) {
2952                 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
2953                                 ret);
2954                 goto fail_block_groups;
2955         }
2956
2957         ret = btrfs_sysfs_add_device(fs_devices);
2958         if (ret) {
2959                 btrfs_err(fs_info, "failed to init sysfs device interface: %d",
2960                                 ret);
2961                 goto fail_fsdev_sysfs;
2962         }
2963
2964         ret = btrfs_sysfs_add_mounted(fs_info);
2965         if (ret) {
2966                 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
2967                 goto fail_fsdev_sysfs;
2968         }
2969
2970         ret = btrfs_init_space_info(fs_info);
2971         if (ret) {
2972                 btrfs_err(fs_info, "failed to initialize space info: %d", ret);
2973                 goto fail_sysfs;
2974         }
2975
2976         ret = btrfs_read_block_groups(fs_info->extent_root);
2977         if (ret) {
2978                 btrfs_err(fs_info, "failed to read block groups: %d", ret);
2979                 goto fail_sysfs;
2980         }
2981         fs_info->num_tolerated_disk_barrier_failures =
2982                 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
2983         if (fs_info->fs_devices->missing_devices >
2984              fs_info->num_tolerated_disk_barrier_failures &&
2985             !(sb->s_flags & MS_RDONLY)) {
2986                 btrfs_warn(fs_info,
2987 "missing devices (%llu) exceeds the limit (%d), writeable mount is not allowed",
2988                         fs_info->fs_devices->missing_devices,
2989                         fs_info->num_tolerated_disk_barrier_failures);
2990                 goto fail_sysfs;
2991         }
2992
2993         /*
2994          * Hold the cleaner_mutex thread here so that we don't block
2995          * for a long time on btrfs_recover_relocation.  cleaner_kthread
2996          * will wait for us to finish mounting the filesystem.
2997          */
2998         mutex_lock(&fs_info->cleaner_mutex);
2999         cleaner_mutex_locked = true;
3000         fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
3001                                                "btrfs-cleaner");
3002         if (IS_ERR(fs_info->cleaner_kthread))
3003                 goto fail_sysfs;
3004
3005         fs_info->transaction_kthread = kthread_run(transaction_kthread,
3006                                                    tree_root,
3007                                                    "btrfs-transaction");
3008         if (IS_ERR(fs_info->transaction_kthread))
3009                 goto fail_cleaner;
3010
3011         if (!btrfs_test_opt(tree_root, SSD) &&
3012             !btrfs_test_opt(tree_root, NOSSD) &&
3013             !fs_info->fs_devices->rotating) {
3014                 btrfs_info(fs_info, "detected SSD devices, enabling SSD mode");
3015                 btrfs_set_opt(fs_info->mount_opt, SSD);
3016         }
3017
3018         /*
3019          * Mount does not set all options immediately, we can do it now and do
3020          * not have to wait for transaction commit
3021          */
3022         btrfs_apply_pending_changes(fs_info);
3023
3024 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3025         if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
3026                 ret = btrfsic_mount(tree_root, fs_devices,
3027                                     btrfs_test_opt(tree_root,
3028                                         CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
3029                                     1 : 0,
3030                                     fs_info->check_integrity_print_mask);
3031                 if (ret)
3032                         btrfs_warn(fs_info,
3033                                 "failed to initialize integrity check module: %d",
3034                                 ret);
3035         }
3036 #endif
3037         ret = btrfs_read_qgroup_config(fs_info);
3038         if (ret)
3039                 goto fail_trans_kthread;
3040
3041         /* do not make disk changes in broken FS or nologreplay is given */
3042         if (btrfs_super_log_root(disk_super) != 0 &&
3043             !btrfs_test_opt(tree_root, NOLOGREPLAY)) {
3044                 ret = btrfs_replay_log(fs_info, fs_devices);
3045                 if (ret) {
3046                         err = ret;
3047                         goto fail_qgroup;
3048                 }
3049         }
3050
3051         ret = btrfs_find_orphan_roots(tree_root);
3052         if (ret)
3053                 goto fail_qgroup;
3054
3055         if (!(sb->s_flags & MS_RDONLY)) {
3056                 ret = btrfs_cleanup_fs_roots(fs_info);
3057                 if (ret)
3058                         goto fail_qgroup;
3059                 /* We locked cleaner_mutex before creating cleaner_kthread. */
3060                 ret = btrfs_recover_relocation(tree_root);
3061                 if (ret < 0) {
3062                         btrfs_warn(fs_info, "failed to recover relocation: %d",
3063                                         ret);
3064                         err = -EINVAL;
3065                         goto fail_qgroup;
3066                 }
3067         }
3068         mutex_unlock(&fs_info->cleaner_mutex);
3069         cleaner_mutex_locked = false;
3070
3071         location.objectid = BTRFS_FS_TREE_OBJECTID;
3072         location.type = BTRFS_ROOT_ITEM_KEY;
3073         location.offset = 0;
3074
3075         fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
3076         if (IS_ERR(fs_info->fs_root)) {
3077                 err = PTR_ERR(fs_info->fs_root);
3078                 goto fail_qgroup;
3079         }
3080
3081         if (sb->s_flags & MS_RDONLY)
3082                 return 0;
3083
3084         if (btrfs_test_opt(tree_root, FREE_SPACE_TREE) &&
3085             !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3086                 btrfs_info(fs_info, "creating free space tree");
3087                 ret = btrfs_create_free_space_tree(fs_info);
3088                 if (ret) {
3089                         btrfs_warn(fs_info,
3090                                 "failed to create free space tree: %d", ret);
3091                         close_ctree(tree_root);
3092                         return ret;
3093                 }
3094         }
3095
3096         down_read(&fs_info->cleanup_work_sem);
3097         if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3098             (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3099                 up_read(&fs_info->cleanup_work_sem);
3100                 close_ctree(tree_root);
3101                 return ret;
3102         }
3103         up_read(&fs_info->cleanup_work_sem);
3104
3105         ret = btrfs_resume_balance_async(fs_info);
3106         if (ret) {
3107                 btrfs_warn(fs_info, "failed to resume balance: %d", ret);
3108                 close_ctree(tree_root);
3109                 return ret;
3110         }
3111
3112         ret = btrfs_resume_dev_replace_async(fs_info);
3113         if (ret) {
3114                 btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
3115                 close_ctree(tree_root);
3116                 return ret;
3117         }
3118
3119         btrfs_qgroup_rescan_resume(fs_info);
3120
3121         if (btrfs_test_opt(tree_root, CLEAR_CACHE) &&
3122             btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3123                 btrfs_info(fs_info, "clearing free space tree");
3124                 ret = btrfs_clear_free_space_tree(fs_info);
3125                 if (ret) {
3126                         btrfs_warn(fs_info,
3127                                 "failed to clear free space tree: %d", ret);
3128                         close_ctree(tree_root);
3129                         return ret;
3130                 }
3131         }
3132
3133         if (!fs_info->uuid_root) {
3134                 btrfs_info(fs_info, "creating UUID tree");
3135                 ret = btrfs_create_uuid_tree(fs_info);
3136                 if (ret) {
3137                         btrfs_warn(fs_info,
3138                                 "failed to create the UUID tree: %d", ret);
3139                         close_ctree(tree_root);
3140                         return ret;
3141                 }
3142         } else if (btrfs_test_opt(tree_root, RESCAN_UUID_TREE) ||
3143                    fs_info->generation !=
3144                                 btrfs_super_uuid_tree_generation(disk_super)) {
3145                 btrfs_info(fs_info, "checking UUID tree");
3146                 ret = btrfs_check_uuid_tree(fs_info);
3147                 if (ret) {
3148                         btrfs_warn(fs_info,
3149                                 "failed to check the UUID tree: %d", ret);
3150                         close_ctree(tree_root);
3151                         return ret;
3152                 }
3153         } else {
3154                 fs_info->update_uuid_tree_gen = 1;
3155         }
3156
3157         fs_info->open = 1;
3158
3159         /*
3160          * backuproot only affect mount behavior, and if open_ctree succeeded,
3161          * no need to keep the flag
3162          */
3163         btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3164
3165         return 0;
3166
3167 fail_qgroup:
3168         btrfs_free_qgroup_config(fs_info);
3169 fail_trans_kthread:
3170         kthread_stop(fs_info->transaction_kthread);
3171         btrfs_cleanup_transaction(fs_info->tree_root);
3172         btrfs_free_fs_roots(fs_info);
3173 fail_cleaner:
3174         kthread_stop(fs_info->cleaner_kthread);
3175
3176         /*
3177          * make sure we're done with the btree inode before we stop our
3178          * kthreads
3179          */
3180         filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3181
3182 fail_sysfs:
3183         if (cleaner_mutex_locked) {
3184                 mutex_unlock(&fs_info->cleaner_mutex);
3185                 cleaner_mutex_locked = false;
3186         }
3187         btrfs_sysfs_remove_mounted(fs_info);
3188
3189 fail_fsdev_sysfs:
3190         btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3191
3192 fail_block_groups:
3193         btrfs_put_block_group_cache(fs_info);
3194         btrfs_free_block_groups(fs_info);
3195
3196 fail_tree_roots:
3197         free_root_pointers(fs_info, 1);
3198         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3199
3200 fail_sb_buffer:
3201         btrfs_stop_all_workers(fs_info);
3202 fail_alloc:
3203 fail_iput:
3204         btrfs_mapping_tree_free(&fs_info->mapping_tree);
3205
3206         iput(fs_info->btree_inode);
3207 fail_bio_counter:
3208         percpu_counter_destroy(&fs_info->bio_counter);
3209 fail_delalloc_bytes:
3210         percpu_counter_destroy(&fs_info->delalloc_bytes);
3211 fail_dirty_metadata_bytes:
3212         percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3213 fail_bdi:
3214         bdi_destroy(&fs_info->bdi);
3215 fail_srcu:
3216         cleanup_srcu_struct(&fs_info->subvol_srcu);
3217 fail:
3218         btrfs_free_stripe_hash_table(fs_info);
3219         btrfs_close_devices(fs_info->fs_devices);
3220         return err;
3221
3222 recovery_tree_root:
3223         if (!btrfs_test_opt(tree_root, USEBACKUPROOT))
3224                 goto fail_tree_roots;
3225
3226         free_root_pointers(fs_info, 0);
3227
3228         /* don't use the log in recovery mode, it won't be valid */
3229         btrfs_set_super_log_root(disk_super, 0);
3230
3231         /* we can't trust the free space cache either */
3232         btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3233
3234         ret = next_root_backup(fs_info, fs_info->super_copy,
3235                                &num_backups_tried, &backup_index);
3236         if (ret == -1)
3237                 goto fail_block_groups;
3238         goto retry_root_backup;
3239 }
3240
3241 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3242 {
3243         if (uptodate) {
3244                 set_buffer_uptodate(bh);
3245         } else {
3246                 struct btrfs_device *device = (struct btrfs_device *)
3247                         bh->b_private;
3248
3249                 btrfs_warn_rl_in_rcu(device->dev_root->fs_info,
3250                                 "lost page write due to IO error on %s",
3251                                           rcu_str_deref(device->name));
3252                 /* note, we don't set_buffer_write_io_error because we have
3253                  * our own ways of dealing with the IO errors
3254                  */
3255                 clear_buffer_uptodate(bh);
3256                 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
3257         }
3258         unlock_buffer(bh);
3259         put_bh(bh);
3260 }
3261
3262 int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num,
3263                         struct buffer_head **bh_ret)
3264 {
3265         struct buffer_head *bh;
3266         struct btrfs_super_block *super;
3267         u64 bytenr;
3268
3269         bytenr = btrfs_sb_offset(copy_num);
3270         if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3271                 return -EINVAL;
3272
3273         bh = __bread(bdev, bytenr / 4096, BTRFS_SUPER_INFO_SIZE);
3274         /*
3275          * If we fail to read from the underlying devices, as of now
3276          * the best option we have is to mark it EIO.
3277          */
3278         if (!bh)
3279                 return -EIO;
3280
3281         super = (struct btrfs_super_block *)bh->b_data;
3282         if (btrfs_super_bytenr(super) != bytenr ||
3283                     btrfs_super_magic(super) != BTRFS_MAGIC) {
3284                 brelse(bh);
3285                 return -EINVAL;
3286         }
3287
3288         *bh_ret = bh;
3289         return 0;
3290 }
3291
3292
3293 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3294 {
3295         struct buffer_head *bh;
3296         struct buffer_head *latest = NULL;
3297         struct btrfs_super_block *super;
3298         int i;
3299         u64 transid = 0;
3300         int ret = -EINVAL;
3301
3302         /* we would like to check all the supers, but that would make
3303          * a btrfs mount succeed after a mkfs from a different FS.
3304          * So, we need to add a special mount option to scan for
3305          * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3306          */
3307         for (i = 0; i < 1; i++) {
3308                 ret = btrfs_read_dev_one_super(bdev, i, &bh);
3309                 if (ret)
3310                         continue;
3311
3312                 super = (struct btrfs_super_block *)bh->b_data;
3313
3314                 if (!latest || btrfs_super_generation(super) > transid) {
3315                         brelse(latest);
3316                         latest = bh;
3317                         transid = btrfs_super_generation(super);
3318                 } else {
3319                         brelse(bh);
3320                 }
3321         }
3322
3323         if (!latest)
3324                 return ERR_PTR(ret);
3325
3326         return latest;
3327 }
3328
3329 /*
3330  * this should be called twice, once with wait == 0 and
3331  * once with wait == 1.  When wait == 0 is done, all the buffer heads
3332  * we write are pinned.
3333  *
3334  * They are released when wait == 1 is done.
3335  * max_mirrors must be the same for both runs, and it indicates how
3336  * many supers on this one device should be written.
3337  *
3338  * max_mirrors == 0 means to write them all.
3339  */
3340 static int write_dev_supers(struct btrfs_device *device,
3341                             struct btrfs_super_block *sb,
3342                             int do_barriers, int wait, int max_mirrors)
3343 {
3344         struct buffer_head *bh;
3345         int i;
3346         int ret;
3347         int errors = 0;
3348         u32 crc;
3349         u64 bytenr;
3350
3351         if (max_mirrors == 0)
3352                 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3353
3354         for (i = 0; i < max_mirrors; i++) {
3355                 bytenr = btrfs_sb_offset(i);
3356                 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3357                     device->commit_total_bytes)
3358                         break;
3359
3360                 if (wait) {
3361                         bh = __find_get_block(device->bdev, bytenr / 4096,
3362                                               BTRFS_SUPER_INFO_SIZE);
3363                         if (!bh) {
3364                                 errors++;
3365                                 continue;
3366                         }
3367                         wait_on_buffer(bh);
3368                         if (!buffer_uptodate(bh))
3369                                 errors++;
3370
3371                         /* drop our reference */
3372                         brelse(bh);
3373
3374                         /* drop the reference from the wait == 0 run */
3375                         brelse(bh);
3376                         continue;
3377                 } else {
3378                         btrfs_set_super_bytenr(sb, bytenr);
3379
3380                         crc = ~(u32)0;
3381                         crc = btrfs_csum_data((char *)sb +
3382                                               BTRFS_CSUM_SIZE, crc,
3383                                               BTRFS_SUPER_INFO_SIZE -
3384                                               BTRFS_CSUM_SIZE);
3385                         btrfs_csum_final(crc, sb->csum);
3386
3387                         /*
3388                          * one reference for us, and we leave it for the
3389                          * caller
3390                          */
3391                         bh = __getblk(device->bdev, bytenr / 4096,
3392                                       BTRFS_SUPER_INFO_SIZE);
3393                         if (!bh) {
3394                                 btrfs_err(device->dev_root->fs_info,
3395                                     "couldn't get super buffer head for bytenr %llu",
3396                                     bytenr);
3397                                 errors++;
3398                                 continue;
3399                         }
3400
3401                         memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3402
3403                         /* one reference for submit_bh */
3404                         get_bh(bh);
3405
3406                         set_buffer_uptodate(bh);
3407                         lock_buffer(bh);
3408                         bh->b_end_io = btrfs_end_buffer_write_sync;
3409                         bh->b_private = device;
3410                 }
3411
3412                 /*
3413                  * we fua the first super.  The others we allow
3414                  * to go down lazy.
3415                  */
3416                 if (i == 0)
3417                         ret = btrfsic_submit_bh(REQ_OP_WRITE, WRITE_FUA, bh);
3418                 else
3419                         ret = btrfsic_submit_bh(REQ_OP_WRITE, WRITE_SYNC, bh);
3420                 if (ret)
3421                         errors++;
3422         }
3423         return errors < i ? 0 : -1;
3424 }
3425
3426 /*
3427  * endio for the write_dev_flush, this will wake anyone waiting
3428  * for the barrier when it is done
3429  */
3430 static void btrfs_end_empty_barrier(struct bio *bio)
3431 {
3432         if (bio->bi_private)
3433                 complete(bio->bi_private);
3434         bio_put(bio);
3435 }
3436
3437 /*
3438  * trigger flushes for one the devices.  If you pass wait == 0, the flushes are
3439  * sent down.  With wait == 1, it waits for the previous flush.
3440  *
3441  * any device where the flush fails with eopnotsupp are flagged as not-barrier
3442  * capable
3443  */
3444 static int write_dev_flush(struct btrfs_device *device, int wait)
3445 {
3446         struct bio *bio;
3447         int ret = 0;
3448
3449         if (device->nobarriers)
3450                 return 0;
3451
3452         if (wait) {
3453                 bio = device->flush_bio;
3454                 if (!bio)
3455                         return 0;
3456
3457                 wait_for_completion(&device->flush_wait);
3458
3459                 if (bio->bi_error) {
3460                         ret = bio->bi_error;
3461                         btrfs_dev_stat_inc_and_print(device,
3462                                 BTRFS_DEV_STAT_FLUSH_ERRS);
3463                 }
3464
3465                 /* drop the reference from the wait == 0 run */
3466                 bio_put(bio);
3467                 device->flush_bio = NULL;
3468
3469                 return ret;
3470         }
3471
3472         /*
3473          * one reference for us, and we leave it for the
3474          * caller
3475          */
3476         device->flush_bio = NULL;
3477         bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
3478         if (!bio)
3479                 return -ENOMEM;
3480
3481         bio->bi_end_io = btrfs_end_empty_barrier;
3482         bio->bi_bdev = device->bdev;
3483         bio_set_op_attrs(bio, REQ_OP_WRITE, WRITE_FLUSH);
3484         init_completion(&device->flush_wait);
3485         bio->bi_private = &device->flush_wait;
3486         device->flush_bio = bio;
3487
3488         bio_get(bio);
3489         btrfsic_submit_bio(bio);
3490
3491         return 0;
3492 }
3493
3494 /*
3495  * send an empty flush down to each device in parallel,
3496  * then wait for them
3497  */
3498 static int barrier_all_devices(struct btrfs_fs_info *info)
3499 {
3500         struct list_head *head;
3501         struct btrfs_device *dev;
3502         int errors_send = 0;
3503         int errors_wait = 0;
3504         int ret;
3505
3506         /* send down all the barriers */
3507         head = &info->fs_devices->devices;
3508         list_for_each_entry_rcu(dev, head, dev_list) {
3509                 if (dev->missing)
3510                         continue;
3511                 if (!dev->bdev) {
3512                         errors_send++;
3513                         continue;
3514                 }
3515                 if (!dev->in_fs_metadata || !dev->writeable)
3516                         continue;
3517
3518                 ret = write_dev_flush(dev, 0);
3519                 if (ret)
3520                         errors_send++;
3521         }
3522
3523         /* wait for all the barriers */
3524         list_for_each_entry_rcu(dev, head, dev_list) {
3525                 if (dev->missing)
3526                         continue;
3527                 if (!dev->bdev) {
3528                         errors_wait++;
3529                         continue;
3530                 }
3531                 if (!dev->in_fs_metadata || !dev->writeable)
3532                         continue;
3533
3534                 ret = write_dev_flush(dev, 1);
3535                 if (ret)
3536                         errors_wait++;
3537         }
3538         if (errors_send > info->num_tolerated_disk_barrier_failures ||
3539             errors_wait > info->num_tolerated_disk_barrier_failures)
3540                 return -EIO;
3541         return 0;
3542 }
3543
3544 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3545 {
3546         int raid_type;
3547         int min_tolerated = INT_MAX;
3548
3549         if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3550             (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3551                 min_tolerated = min(min_tolerated,
3552                                     btrfs_raid_array[BTRFS_RAID_SINGLE].
3553                                     tolerated_failures);
3554
3555         for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3556                 if (raid_type == BTRFS_RAID_SINGLE)
3557                         continue;
3558                 if (!(flags & btrfs_raid_group[raid_type]))
3559                         continue;
3560                 min_tolerated = min(min_tolerated,
3561                                     btrfs_raid_array[raid_type].
3562                                     tolerated_failures);
3563         }
3564
3565         if (min_tolerated == INT_MAX) {
3566                 pr_warn("BTRFS: unknown raid flag: %llu\n", flags);
3567                 min_tolerated = 0;
3568         }
3569
3570         return min_tolerated;
3571 }
3572
3573 int btrfs_calc_num_tolerated_disk_barrier_failures(
3574         struct btrfs_fs_info *fs_info)
3575 {
3576         struct btrfs_ioctl_space_info space;
3577         struct btrfs_space_info *sinfo;
3578         u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3579                        BTRFS_BLOCK_GROUP_SYSTEM,
3580                        BTRFS_BLOCK_GROUP_METADATA,
3581                        BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3582         int i;
3583         int c;
3584         int num_tolerated_disk_barrier_failures =
3585                 (int)fs_info->fs_devices->num_devices;
3586
3587         for (i = 0; i < ARRAY_SIZE(types); i++) {
3588                 struct btrfs_space_info *tmp;
3589
3590                 sinfo = NULL;
3591                 rcu_read_lock();
3592                 list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
3593                         if (tmp->flags == types[i]) {
3594                                 sinfo = tmp;
3595                                 break;
3596                         }
3597                 }
3598                 rcu_read_unlock();
3599
3600                 if (!sinfo)
3601                         continue;
3602
3603                 down_read(&sinfo->groups_sem);
3604                 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3605                         u64 flags;
3606
3607                         if (list_empty(&sinfo->block_groups[c]))
3608                                 continue;
3609
3610                         btrfs_get_block_group_info(&sinfo->block_groups[c],
3611                                                    &space);
3612                         if (space.total_bytes == 0 || space.used_bytes == 0)
3613                                 continue;
3614                         flags = space.flags;
3615
3616                         num_tolerated_disk_barrier_failures = min(
3617                                 num_tolerated_disk_barrier_failures,
3618                                 btrfs_get_num_tolerated_disk_barrier_failures(
3619                                         flags));
3620                 }
3621                 up_read(&sinfo->groups_sem);
3622         }
3623
3624         return num_tolerated_disk_barrier_failures;
3625 }
3626
3627 static int write_all_supers(struct btrfs_root *root, int max_mirrors)
3628 {
3629         struct list_head *head;
3630         struct btrfs_device *dev;
3631         struct btrfs_super_block *sb;
3632         struct btrfs_dev_item *dev_item;
3633         int ret;
3634         int do_barriers;
3635         int max_errors;
3636         int total_errors = 0;
3637         u64 flags;
3638
3639         do_barriers = !btrfs_test_opt(root, NOBARRIER);
3640         backup_super_roots(root->fs_info);
3641
3642         sb = root->fs_info->super_for_commit;
3643         dev_item = &sb->dev_item;
3644
3645         mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
3646         head = &root->fs_info->fs_devices->devices;
3647         max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
3648
3649         if (do_barriers) {
3650                 ret = barrier_all_devices(root->fs_info);
3651                 if (ret) {
3652                         mutex_unlock(
3653                                 &root->fs_info->fs_devices->device_list_mutex);
3654                         btrfs_handle_fs_error(root->fs_info, ret,
3655                                     "errors while submitting device barriers.");
3656                         return ret;
3657                 }
3658         }
3659
3660         list_for_each_entry_rcu(dev, head, dev_list) {
3661                 if (!dev->bdev) {
3662                         total_errors++;
3663                         continue;
3664                 }
3665                 if (!dev->in_fs_metadata || !dev->writeable)
3666                         continue;
3667
3668                 btrfs_set_stack_device_generation(dev_item, 0);
3669                 btrfs_set_stack_device_type(dev_item, dev->type);
3670                 btrfs_set_stack_device_id(dev_item, dev->devid);
3671                 btrfs_set_stack_device_total_bytes(dev_item,
3672                                                    dev->commit_total_bytes);
3673                 btrfs_set_stack_device_bytes_used(dev_item,
3674                                                   dev->commit_bytes_used);
3675                 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3676                 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3677                 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3678                 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3679                 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
3680
3681                 flags = btrfs_super_flags(sb);
3682                 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3683
3684                 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
3685                 if (ret)
3686                         total_errors++;
3687         }
3688         if (total_errors > max_errors) {
3689                 btrfs_err(root->fs_info, "%d errors while writing supers",
3690                        total_errors);
3691                 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3692
3693                 /* FUA is masked off if unsupported and can't be the reason */
3694                 btrfs_handle_fs_error(root->fs_info, -EIO,
3695                             "%d errors while writing supers", total_errors);
3696                 return -EIO;
3697         }
3698
3699         total_errors = 0;
3700         list_for_each_entry_rcu(dev, head, dev_list) {
3701                 if (!dev->bdev)
3702                         continue;
3703                 if (!dev->in_fs_metadata || !dev->writeable)
3704                         continue;
3705
3706                 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3707                 if (ret)
3708                         total_errors++;
3709         }
3710         mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3711         if (total_errors > max_errors) {
3712                 btrfs_handle_fs_error(root->fs_info, -EIO,
3713                             "%d errors while writing supers", total_errors);
3714                 return -EIO;
3715         }
3716         return 0;
3717 }
3718
3719 int write_ctree_super(struct btrfs_trans_handle *trans,
3720                       struct btrfs_root *root, int max_mirrors)
3721 {
3722         return write_all_supers(root, max_mirrors);
3723 }
3724
3725 /* Drop a fs root from the radix tree and free it. */
3726 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3727                                   struct btrfs_root *root)
3728 {
3729         spin_lock(&fs_info->fs_roots_radix_lock);
3730         radix_tree_delete(&fs_info->fs_roots_radix,
3731                           (unsigned long)root->root_key.objectid);
3732         spin_unlock(&fs_info->fs_roots_radix_lock);
3733
3734         if (btrfs_root_refs(&root->root_item) == 0)
3735                 synchronize_srcu(&fs_info->subvol_srcu);
3736
3737         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3738                 btrfs_free_log(NULL, root);
3739
3740         if (root->free_ino_pinned)
3741                 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3742         if (root->free_ino_ctl)
3743                 __btrfs_remove_free_space_cache(root->free_ino_ctl);
3744         free_fs_root(root);
3745 }
3746
3747 static void free_fs_root(struct btrfs_root *root)
3748 {
3749         iput(root->ino_cache_inode);
3750         WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3751         btrfs_free_block_rsv(root, root->orphan_block_rsv);
3752         root->orphan_block_rsv = NULL;
3753         if (root->anon_dev)
3754                 free_anon_bdev(root->anon_dev);
3755         if (root->subv_writers)
3756                 btrfs_free_subvolume_writers(root->subv_writers);
3757         free_extent_buffer(root->node);
3758         free_extent_buffer(root->commit_root);
3759         kfree(root->free_ino_ctl);
3760         kfree(root->free_ino_pinned);
3761         kfree(root->name);
3762         btrfs_put_fs_root(root);
3763 }
3764
3765 void btrfs_free_fs_root(struct btrfs_root *root)
3766 {
3767         free_fs_root(root);
3768 }
3769
3770 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3771 {
3772         u64 root_objectid = 0;
3773         struct btrfs_root *gang[8];
3774         int i = 0;
3775         int err = 0;
3776         unsigned int ret = 0;
3777         int index;
3778
3779         while (1) {
3780                 index = srcu_read_lock(&fs_info->subvol_srcu);
3781                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3782                                              (void **)gang, root_objectid,
3783                                              ARRAY_SIZE(gang));
3784                 if (!ret) {
3785                         srcu_read_unlock(&fs_info->subvol_srcu, index);
3786                         break;
3787                 }
3788                 root_objectid = gang[ret - 1]->root_key.objectid + 1;
3789
3790                 for (i = 0; i < ret; i++) {
3791                         /* Avoid to grab roots in dead_roots */
3792                         if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3793                                 gang[i] = NULL;
3794                                 continue;
3795                         }
3796                         /* grab all the search result for later use */
3797                         gang[i] = btrfs_grab_fs_root(gang[i]);
3798                 }
3799                 srcu_read_unlock(&fs_info->subvol_srcu, index);
3800
3801                 for (i = 0; i < ret; i++) {
3802                         if (!gang[i])
3803                                 continue;
3804                         root_objectid = gang[i]->root_key.objectid;
3805                         err = btrfs_orphan_cleanup(gang[i]);
3806                         if (err)
3807                                 break;
3808                         btrfs_put_fs_root(gang[i]);
3809                 }
3810                 root_objectid++;
3811         }
3812
3813         /* release the uncleaned roots due to error */
3814         for (; i < ret; i++) {
3815                 if (gang[i])
3816                         btrfs_put_fs_root(gang[i]);
3817         }
3818         return err;
3819 }
3820
3821 int btrfs_commit_super(struct btrfs_root *root)
3822 {
3823         struct btrfs_trans_handle *trans;
3824
3825         mutex_lock(&root->fs_info->cleaner_mutex);
3826         btrfs_run_delayed_iputs(root);
3827         mutex_unlock(&root->fs_info->cleaner_mutex);
3828         wake_up_process(root->fs_info->cleaner_kthread);
3829
3830         /* wait until ongoing cleanup work done */
3831         down_write(&root->fs_info->cleanup_work_sem);
3832         up_write(&root->fs_info->cleanup_work_sem);
3833
3834         trans = btrfs_join_transaction(root);
3835         if (IS_ERR(trans))
3836                 return PTR_ERR(trans);
3837         return btrfs_commit_transaction(trans, root);
3838 }
3839
3840 void close_ctree(struct btrfs_root *root)
3841 {
3842         struct btrfs_fs_info *fs_info = root->fs_info;
3843         int ret;
3844
3845         fs_info->closing = 1;
3846         smp_mb();
3847
3848         /* wait for the qgroup rescan worker to stop */
3849         btrfs_qgroup_wait_for_completion(fs_info);
3850
3851         /* wait for the uuid_scan task to finish */
3852         down(&fs_info->uuid_tree_rescan_sem);
3853         /* avoid complains from lockdep et al., set sem back to initial state */
3854         up(&fs_info->uuid_tree_rescan_sem);
3855
3856         /* pause restriper - we want to resume on mount */
3857         btrfs_pause_balance(fs_info);
3858
3859         btrfs_dev_replace_suspend_for_unmount(fs_info);
3860
3861         btrfs_scrub_cancel(fs_info);
3862
3863         /* wait for any defraggers to finish */
3864         wait_event(fs_info->transaction_wait,
3865                    (atomic_read(&fs_info->defrag_running) == 0));
3866
3867         /* clear out the rbtree of defraggable inodes */
3868         btrfs_cleanup_defrag_inodes(fs_info);
3869
3870         cancel_work_sync(&fs_info->async_reclaim_work);
3871
3872         if (!(fs_info->sb->s_flags & MS_RDONLY)) {
3873                 /*
3874                  * If the cleaner thread is stopped and there are
3875                  * block groups queued for removal, the deletion will be
3876                  * skipped when we quit the cleaner thread.
3877                  */
3878                 btrfs_delete_unused_bgs(root->fs_info);
3879
3880                 ret = btrfs_commit_super(root);
3881                 if (ret)
3882                         btrfs_err(fs_info, "commit super ret %d", ret);
3883         }
3884
3885         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3886                 btrfs_error_commit_super(root);
3887
3888         kthread_stop(fs_info->transaction_kthread);
3889         kthread_stop(fs_info->cleaner_kthread);
3890
3891         fs_info->closing = 2;
3892         smp_mb();
3893
3894         btrfs_free_qgroup_config(fs_info);
3895
3896         if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
3897                 btrfs_info(fs_info, "at unmount delalloc count %lld",
3898                        percpu_counter_sum(&fs_info->delalloc_bytes));
3899         }
3900
3901         btrfs_sysfs_remove_mounted(fs_info);
3902         btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3903
3904         btrfs_free_fs_roots(fs_info);
3905
3906         btrfs_put_block_group_cache(fs_info);
3907
3908         btrfs_free_block_groups(fs_info);
3909
3910         /*
3911          * we must make sure there is not any read request to
3912          * submit after we stopping all workers.
3913          */
3914         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3915         btrfs_stop_all_workers(fs_info);
3916
3917         fs_info->open = 0;
3918         free_root_pointers(fs_info, 1);
3919
3920         iput(fs_info->btree_inode);
3921
3922 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3923         if (btrfs_test_opt(root, CHECK_INTEGRITY))
3924                 btrfsic_unmount(root, fs_info->fs_devices);
3925 #endif
3926
3927         btrfs_close_devices(fs_info->fs_devices);
3928         btrfs_mapping_tree_free(&fs_info->mapping_tree);
3929
3930         percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3931         percpu_counter_destroy(&fs_info->delalloc_bytes);
3932         percpu_counter_destroy(&fs_info->bio_counter);
3933         bdi_destroy(&fs_info->bdi);
3934         cleanup_srcu_struct(&fs_info->subvol_srcu);
3935
3936         btrfs_free_stripe_hash_table(fs_info);
3937
3938         __btrfs_free_block_rsv(root->orphan_block_rsv);
3939         root->orphan_block_rsv = NULL;
3940
3941         lock_chunks(root);
3942         while (!list_empty(&fs_info->pinned_chunks)) {
3943                 struct extent_map *em;
3944
3945                 em = list_first_entry(&fs_info->pinned_chunks,
3946                                       struct extent_map, list);
3947                 list_del_init(&em->list);
3948                 free_extent_map(em);
3949         }
3950         unlock_chunks(root);
3951 }
3952
3953 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3954                           int atomic)
3955 {
3956         int ret;
3957         struct inode *btree_inode = buf->pages[0]->mapping->host;
3958
3959         ret = extent_buffer_uptodate(buf);
3960         if (!ret)
3961                 return ret;
3962
3963         ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
3964                                     parent_transid, atomic);
3965         if (ret == -EAGAIN)
3966                 return ret;
3967         return !ret;
3968 }
3969
3970 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3971 {
3972         struct btrfs_root *root;
3973         u64 transid = btrfs_header_generation(buf);
3974         int was_dirty;
3975
3976 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3977         /*
3978          * This is a fast path so only do this check if we have sanity tests
3979          * enabled.  Normal people shouldn't be marking dummy buffers as dirty
3980          * outside of the sanity tests.
3981          */
3982         if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
3983                 return;
3984 #endif
3985         root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3986         btrfs_assert_tree_locked(buf);
3987         if (transid != root->fs_info->generation)
3988                 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
3989                        "found %llu running %llu\n",
3990                         buf->start, transid, root->fs_info->generation);
3991         was_dirty = set_extent_buffer_dirty(buf);
3992         if (!was_dirty)
3993                 __percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
3994                                      buf->len,
3995                                      root->fs_info->dirty_metadata_batch);
3996 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3997         if (btrfs_header_level(buf) == 0 && check_leaf(root, buf)) {
3998                 btrfs_print_leaf(root, buf);
3999                 ASSERT(0);
4000         }
4001 #endif
4002 }
4003
4004 static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
4005                                         int flush_delayed)
4006 {
4007         /*
4008          * looks as though older kernels can get into trouble with
4009          * this code, they end up stuck in balance_dirty_pages forever
4010          */
4011         int ret;
4012
4013         if (current->flags & PF_MEMALLOC)
4014                 return;
4015
4016         if (flush_delayed)
4017                 btrfs_balance_delayed_items(root);
4018
4019         ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
4020                                      BTRFS_DIRTY_METADATA_THRESH);
4021         if (ret > 0) {
4022                 balance_dirty_pages_ratelimited(
4023                                    root->fs_info->btree_inode->i_mapping);
4024         }
4025 }
4026
4027 void btrfs_btree_balance_dirty(struct btrfs_root *root)
4028 {
4029         __btrfs_btree_balance_dirty(root, 1);
4030 }
4031
4032 void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
4033 {
4034         __btrfs_btree_balance_dirty(root, 0);
4035 }
4036
4037 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
4038 {
4039         struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
4040         return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
4041 }
4042
4043 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
4044                               int read_only)
4045 {
4046         struct btrfs_super_block *sb = fs_info->super_copy;
4047         u64 nodesize = btrfs_super_nodesize(sb);
4048         u64 sectorsize = btrfs_super_sectorsize(sb);
4049         int ret = 0;
4050
4051         if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
4052                 printk(KERN_ERR "BTRFS: no valid FS found\n");
4053                 ret = -EINVAL;
4054         }
4055         if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP)
4056                 printk(KERN_WARNING "BTRFS: unrecognized super flag: %llu\n",
4057                                 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
4058         if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
4059                 printk(KERN_ERR "BTRFS: tree_root level too big: %d >= %d\n",
4060                                 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
4061                 ret = -EINVAL;
4062         }
4063         if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
4064                 printk(KERN_ERR "BTRFS: chunk_root level too big: %d >= %d\n",
4065                                 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
4066                 ret = -EINVAL;
4067         }
4068         if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
4069                 printk(KERN_ERR "BTRFS: log_root level too big: %d >= %d\n",
4070                                 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
4071                 ret = -EINVAL;
4072         }
4073
4074         /*
4075          * Check sectorsize and nodesize first, other check will need it.
4076          * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
4077          */
4078         if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
4079             sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
4080                 printk(KERN_ERR "BTRFS: invalid sectorsize %llu\n", sectorsize);
4081                 ret = -EINVAL;
4082         }
4083         /* Only PAGE SIZE is supported yet */
4084         if (sectorsize != PAGE_SIZE) {
4085                 printk(KERN_ERR "BTRFS: sectorsize %llu not supported yet, only support %lu\n",
4086                                 sectorsize, PAGE_SIZE);
4087                 ret = -EINVAL;
4088         }
4089         if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
4090             nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
4091                 printk(KERN_ERR "BTRFS: invalid nodesize %llu\n", nodesize);
4092                 ret = -EINVAL;
4093         }
4094         if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
4095                 printk(KERN_ERR "BTRFS: invalid leafsize %u, should be %llu\n",
4096                                 le32_to_cpu(sb->__unused_leafsize),
4097                                 nodesize);
4098                 ret = -EINVAL;
4099         }
4100
4101         /* Root alignment check */
4102         if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
4103                 printk(KERN_WARNING "BTRFS: tree_root block unaligned: %llu\n",
4104                                 btrfs_super_root(sb));
4105                 ret = -EINVAL;
4106         }
4107         if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
4108                 printk(KERN_WARNING "BTRFS: chunk_root block unaligned: %llu\n",
4109                                 btrfs_super_chunk_root(sb));
4110                 ret = -EINVAL;
4111         }
4112         if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
4113                 printk(KERN_WARNING "BTRFS: log_root block unaligned: %llu\n",
4114                                 btrfs_super_log_root(sb));
4115                 ret = -EINVAL;
4116         }
4117
4118         if (memcmp(fs_info->fsid, sb->dev_item.fsid, BTRFS_UUID_SIZE) != 0) {
4119                 printk(KERN_ERR "BTRFS: dev_item UUID does not match fsid: %pU != %pU\n",
4120                                 fs_info->fsid, sb->dev_item.fsid);
4121                 ret = -EINVAL;
4122         }
4123
4124         /*
4125          * Hint to catch really bogus numbers, bitflips or so, more exact checks are
4126          * done later
4127          */
4128         if (btrfs_super_num_devices(sb) > (1UL << 31))
4129                 printk(KERN_WARNING "BTRFS: suspicious number of devices: %llu\n",
4130                                 btrfs_super_num_devices(sb));
4131         if (btrfs_super_num_devices(sb) == 0) {
4132                 printk(KERN_ERR "BTRFS: number of devices is 0\n");
4133                 ret = -EINVAL;
4134         }
4135
4136         if (btrfs_super_bytenr(sb) != BTRFS_SUPER_INFO_OFFSET) {
4137                 printk(KERN_ERR "BTRFS: super offset mismatch %llu != %u\n",
4138                                 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
4139                 ret = -EINVAL;
4140         }
4141
4142         /*
4143          * Obvious sys_chunk_array corruptions, it must hold at least one key
4144          * and one chunk
4145          */
4146         if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4147                 printk(KERN_ERR "BTRFS: system chunk array too big %u > %u\n",
4148                                 btrfs_super_sys_array_size(sb),
4149                                 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
4150                 ret = -EINVAL;
4151         }
4152         if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
4153                         + sizeof(struct btrfs_chunk)) {
4154                 printk(KERN_ERR "BTRFS: system chunk array too small %u < %zu\n",
4155                                 btrfs_super_sys_array_size(sb),
4156                                 sizeof(struct btrfs_disk_key)
4157                                 + sizeof(struct btrfs_chunk));
4158                 ret = -EINVAL;
4159         }
4160
4161         /*
4162          * The generation is a global counter, we'll trust it more than the others
4163          * but it's still possible that it's the one that's wrong.
4164          */
4165         if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
4166                 printk(KERN_WARNING
4167                         "BTRFS: suspicious: generation < chunk_root_generation: %llu < %llu\n",
4168                         btrfs_super_generation(sb), btrfs_super_chunk_root_generation(sb));
4169         if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
4170             && btrfs_super_cache_generation(sb) != (u64)-1)
4171                 printk(KERN_WARNING
4172                         "BTRFS: suspicious: generation < cache_generation: %llu < %llu\n",
4173                         btrfs_super_generation(sb), btrfs_super_cache_generation(sb));
4174
4175         return ret;
4176 }
4177
4178 static void btrfs_error_commit_super(struct btrfs_root *root)
4179 {
4180         mutex_lock(&root->fs_info->cleaner_mutex);
4181         btrfs_run_delayed_iputs(root);
4182         mutex_unlock(&root->fs_info->cleaner_mutex);
4183
4184         down_write(&root->fs_info->cleanup_work_sem);
4185         up_write(&root->fs_info->cleanup_work_sem);
4186
4187         /* cleanup FS via transaction */
4188         btrfs_cleanup_transaction(root);
4189 }
4190
4191 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4192 {
4193         struct btrfs_ordered_extent *ordered;
4194
4195         spin_lock(&root->ordered_extent_lock);
4196         /*
4197          * This will just short circuit the ordered completion stuff which will
4198          * make sure the ordered extent gets properly cleaned up.
4199          */
4200         list_for_each_entry(ordered, &root->ordered_extents,
4201                             root_extent_list)
4202                 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4203         spin_unlock(&root->ordered_extent_lock);
4204 }
4205
4206 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4207 {
4208         struct btrfs_root *root;
4209         struct list_head splice;
4210
4211         INIT_LIST_HEAD(&splice);
4212
4213         spin_lock(&fs_info->ordered_root_lock);
4214         list_splice_init(&fs_info->ordered_roots, &splice);
4215         while (!list_empty(&splice)) {
4216                 root = list_first_entry(&splice, struct btrfs_root,
4217                                         ordered_root);
4218                 list_move_tail(&root->ordered_root,
4219                                &fs_info->ordered_roots);
4220
4221                 spin_unlock(&fs_info->ordered_root_lock);
4222                 btrfs_destroy_ordered_extents(root);
4223
4224                 cond_resched();
4225                 spin_lock(&fs_info->ordered_root_lock);
4226         }
4227         spin_unlock(&fs_info->ordered_root_lock);
4228 }
4229
4230 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4231                                       struct btrfs_root *root)
4232 {
4233         struct rb_node *node;
4234         struct btrfs_delayed_ref_root *delayed_refs;
4235         struct btrfs_delayed_ref_node *ref;
4236         int ret = 0;
4237
4238         delayed_refs = &trans->delayed_refs;
4239
4240         spin_lock(&delayed_refs->lock);
4241         if (atomic_read(&delayed_refs->num_entries) == 0) {
4242                 spin_unlock(&delayed_refs->lock);
4243                 btrfs_info(root->fs_info, "delayed_refs has NO entry");
4244                 return ret;
4245         }
4246
4247         while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
4248                 struct btrfs_delayed_ref_head *head;
4249                 struct btrfs_delayed_ref_node *tmp;
4250                 bool pin_bytes = false;
4251
4252                 head = rb_entry(node, struct btrfs_delayed_ref_head,
4253                                 href_node);
4254                 if (!mutex_trylock(&head->mutex)) {
4255                         atomic_inc(&head->node.refs);
4256                         spin_unlock(&delayed_refs->lock);
4257
4258                         mutex_lock(&head->mutex);
4259                         mutex_unlock(&head->mutex);
4260                         btrfs_put_delayed_ref(&head->node);
4261                         spin_lock(&delayed_refs->lock);
4262                         continue;
4263                 }
4264                 spin_lock(&head->lock);
4265                 list_for_each_entry_safe_reverse(ref, tmp, &head->ref_list,
4266                                                  list) {
4267                         ref->in_tree = 0;
4268                         list_del(&ref->list);
4269                         atomic_dec(&delayed_refs->num_entries);
4270                         btrfs_put_delayed_ref(ref);
4271                 }
4272                 if (head->must_insert_reserved)
4273                         pin_bytes = true;
4274                 btrfs_free_delayed_extent_op(head->extent_op);
4275                 delayed_refs->num_heads--;
4276                 if (head->processing == 0)
4277                         delayed_refs->num_heads_ready--;
4278                 atomic_dec(&delayed_refs->num_entries);
4279                 head->node.in_tree = 0;
4280                 rb_erase(&head->href_node, &delayed_refs->href_root);
4281                 spin_unlock(&head->lock);
4282                 spin_unlock(&delayed_refs->lock);
4283                 mutex_unlock(&head->mutex);
4284
4285                 if (pin_bytes)
4286                         btrfs_pin_extent(root, head->node.bytenr,
4287                                          head->node.num_bytes, 1);
4288                 btrfs_put_delayed_ref(&head->node);
4289                 cond_resched();
4290                 spin_lock(&delayed_refs->lock);
4291         }
4292
4293         spin_unlock(&delayed_refs->lock);
4294
4295         return ret;
4296 }
4297
4298 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4299 {
4300         struct btrfs_inode *btrfs_inode;
4301         struct list_head splice;
4302
4303         INIT_LIST_HEAD(&splice);
4304
4305         spin_lock(&root->delalloc_lock);
4306         list_splice_init(&root->delalloc_inodes, &splice);
4307
4308         while (!list_empty(&splice)) {
4309                 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4310                                                delalloc_inodes);
4311
4312                 list_del_init(&btrfs_inode->delalloc_inodes);
4313                 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
4314                           &btrfs_inode->runtime_flags);
4315                 spin_unlock(&root->delalloc_lock);
4316
4317                 btrfs_invalidate_inodes(btrfs_inode->root);
4318
4319                 spin_lock(&root->delalloc_lock);
4320         }
4321
4322         spin_unlock(&root->delalloc_lock);
4323 }
4324
4325 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4326 {
4327         struct btrfs_root *root;
4328         struct list_head splice;
4329
4330         INIT_LIST_HEAD(&splice);
4331
4332         spin_lock(&fs_info->delalloc_root_lock);
4333         list_splice_init(&fs_info->delalloc_roots, &splice);
4334         while (!list_empty(&splice)) {
4335                 root = list_first_entry(&splice, struct btrfs_root,
4336                                          delalloc_root);
4337                 list_del_init(&root->delalloc_root);
4338                 root = btrfs_grab_fs_root(root);
4339                 BUG_ON(!root);
4340                 spin_unlock(&fs_info->delalloc_root_lock);
4341
4342                 btrfs_destroy_delalloc_inodes(root);
4343                 btrfs_put_fs_root(root);
4344
4345                 spin_lock(&fs_info->delalloc_root_lock);
4346         }
4347         spin_unlock(&fs_info->delalloc_root_lock);
4348 }
4349
4350 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
4351                                         struct extent_io_tree *dirty_pages,
4352                                         int mark)
4353 {
4354         int ret;
4355         struct extent_buffer *eb;
4356         u64 start = 0;
4357         u64 end;
4358
4359         while (1) {
4360                 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4361                                             mark, NULL);
4362                 if (ret)
4363                         break;
4364
4365                 clear_extent_bits(dirty_pages, start, end, mark);
4366                 while (start <= end) {
4367                         eb = btrfs_find_tree_block(root->fs_info, start);
4368                         start += root->nodesize;
4369                         if (!eb)
4370                                 continue;
4371                         wait_on_extent_buffer_writeback(eb);
4372
4373                         if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4374                                                &eb->bflags))
4375                                 clear_extent_buffer_dirty(eb);
4376                         free_extent_buffer_stale(eb);
4377                 }
4378         }
4379
4380         return ret;
4381 }
4382
4383 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
4384                                        struct extent_io_tree *pinned_extents)
4385 {
4386         struct extent_io_tree *unpin;
4387         u64 start;
4388         u64 end;
4389         int ret;
4390         bool loop = true;
4391
4392         unpin = pinned_extents;
4393 again:
4394         while (1) {
4395                 ret = find_first_extent_bit(unpin, 0, &start, &end,
4396                                             EXTENT_DIRTY, NULL);
4397                 if (ret)
4398                         break;
4399
4400                 clear_extent_dirty(unpin, start, end);
4401                 btrfs_error_unpin_extent_range(root, start, end);
4402                 cond_resched();
4403         }
4404
4405         if (loop) {
4406                 if (unpin == &root->fs_info->freed_extents[0])
4407                         unpin = &root->fs_info->freed_extents[1];
4408                 else
4409                         unpin = &root->fs_info->freed_extents[0];
4410                 loop = false;
4411                 goto again;
4412         }
4413
4414         return 0;
4415 }
4416
4417 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4418                                    struct btrfs_root *root)
4419 {
4420         btrfs_destroy_delayed_refs(cur_trans, root);
4421
4422         cur_trans->state = TRANS_STATE_COMMIT_START;
4423         wake_up(&root->fs_info->transaction_blocked_wait);
4424
4425         cur_trans->state = TRANS_STATE_UNBLOCKED;
4426         wake_up(&root->fs_info->transaction_wait);
4427
4428         btrfs_destroy_delayed_inodes(root);
4429         btrfs_assert_delayed_root_empty(root);
4430
4431         btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
4432                                      EXTENT_DIRTY);
4433         btrfs_destroy_pinned_extent(root,
4434                                     root->fs_info->pinned_extents);
4435
4436         cur_trans->state =TRANS_STATE_COMPLETED;
4437         wake_up(&cur_trans->commit_wait);
4438
4439         /*
4440         memset(cur_trans, 0, sizeof(*cur_trans));
4441         kmem_cache_free(btrfs_transaction_cachep, cur_trans);
4442         */
4443 }
4444
4445 static int btrfs_cleanup_transaction(struct btrfs_root *root)
4446 {
4447         struct btrfs_transaction *t;
4448
4449         mutex_lock(&root->fs_info->transaction_kthread_mutex);
4450
4451         spin_lock(&root->fs_info->trans_lock);
4452         while (!list_empty(&root->fs_info->trans_list)) {
4453                 t = list_first_entry(&root->fs_info->trans_list,
4454                                      struct btrfs_transaction, list);
4455                 if (t->state >= TRANS_STATE_COMMIT_START) {
4456                         atomic_inc(&t->use_count);
4457                         spin_unlock(&root->fs_info->trans_lock);
4458                         btrfs_wait_for_commit(root, t->transid);
4459                         btrfs_put_transaction(t);
4460                         spin_lock(&root->fs_info->trans_lock);
4461                         continue;
4462                 }
4463                 if (t == root->fs_info->running_transaction) {
4464                         t->state = TRANS_STATE_COMMIT_DOING;
4465                         spin_unlock(&root->fs_info->trans_lock);
4466                         /*
4467                          * We wait for 0 num_writers since we don't hold a trans
4468                          * handle open currently for this transaction.
4469                          */
4470                         wait_event(t->writer_wait,
4471                                    atomic_read(&t->num_writers) == 0);
4472                 } else {
4473                         spin_unlock(&root->fs_info->trans_lock);
4474                 }
4475                 btrfs_cleanup_one_transaction(t, root);
4476
4477                 spin_lock(&root->fs_info->trans_lock);
4478                 if (t == root->fs_info->running_transaction)
4479                         root->fs_info->running_transaction = NULL;
4480                 list_del_init(&t->list);
4481                 spin_unlock(&root->fs_info->trans_lock);
4482
4483                 btrfs_put_transaction(t);
4484                 trace_btrfs_transaction_commit(root);
4485                 spin_lock(&root->fs_info->trans_lock);
4486         }
4487         spin_unlock(&root->fs_info->trans_lock);
4488         btrfs_destroy_all_ordered_extents(root->fs_info);
4489         btrfs_destroy_delayed_inodes(root);
4490         btrfs_assert_delayed_root_empty(root);
4491         btrfs_destroy_pinned_extent(root, root->fs_info->pinned_extents);
4492         btrfs_destroy_all_delalloc_inodes(root->fs_info);
4493         mutex_unlock(&root->fs_info->transaction_kthread_mutex);
4494
4495         return 0;
4496 }
4497
4498 static const struct extent_io_ops btree_extent_io_ops = {
4499         .readpage_end_io_hook = btree_readpage_end_io_hook,
4500         .readpage_io_failed_hook = btree_io_failed_hook,
4501         .submit_bio_hook = btree_submit_bio_hook,
4502         /* note we're sharing with inode.c for the merge bio hook */
4503         .merge_bio_hook = btrfs_merge_bio_hook,
4504 };