]> git.karo-electronics.de Git - karo-tx-linux.git/blob - fs/btrfs/disk-io.c
Btrfs: Create orphan inode records to prevent lost files after a crash
[karo-tx-linux.git] / fs / btrfs / disk-io.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/version.h>
20 #include <linux/fs.h>
21 #include <linux/blkdev.h>
22 #include <linux/scatterlist.h>
23 #include <linux/swap.h>
24 #include <linux/radix-tree.h>
25 #include <linux/writeback.h>
26 #include <linux/buffer_head.h> // for block_sync_page
27 #include <linux/workqueue.h>
28 #include <linux/kthread.h>
29 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,20)
30 # include <linux/freezer.h>
31 #else
32 # include <linux/sched.h>
33 #endif
34 #include "crc32c.h"
35 #include "ctree.h"
36 #include "disk-io.h"
37 #include "transaction.h"
38 #include "btrfs_inode.h"
39 #include "volumes.h"
40 #include "print-tree.h"
41 #include "async-thread.h"
42 #include "locking.h"
43
44 #if 0
45 static int check_tree_block(struct btrfs_root *root, struct extent_buffer *buf)
46 {
47         if (extent_buffer_blocknr(buf) != btrfs_header_blocknr(buf)) {
48                 printk(KERN_CRIT "buf blocknr(buf) is %llu, header is %llu\n",
49                        (unsigned long long)extent_buffer_blocknr(buf),
50                        (unsigned long long)btrfs_header_blocknr(buf));
51                 return 1;
52         }
53         return 0;
54 }
55 #endif
56
57 static struct extent_io_ops btree_extent_io_ops;
58 static void end_workqueue_fn(struct btrfs_work *work);
59
60 struct end_io_wq {
61         struct bio *bio;
62         bio_end_io_t *end_io;
63         void *private;
64         struct btrfs_fs_info *info;
65         int error;
66         int metadata;
67         struct list_head list;
68         struct btrfs_work work;
69 };
70
71 struct async_submit_bio {
72         struct inode *inode;
73         struct bio *bio;
74         struct list_head list;
75         extent_submit_bio_hook_t *submit_bio_hook;
76         int rw;
77         int mirror_num;
78         struct btrfs_work work;
79 };
80
81 struct extent_map *btree_get_extent(struct inode *inode, struct page *page,
82                                     size_t page_offset, u64 start, u64 len,
83                                     int create)
84 {
85         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
86         struct extent_map *em;
87         int ret;
88
89         spin_lock(&em_tree->lock);
90         em = lookup_extent_mapping(em_tree, start, len);
91         if (em) {
92                 em->bdev =
93                         BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
94                 spin_unlock(&em_tree->lock);
95                 goto out;
96         }
97         spin_unlock(&em_tree->lock);
98
99         em = alloc_extent_map(GFP_NOFS);
100         if (!em) {
101                 em = ERR_PTR(-ENOMEM);
102                 goto out;
103         }
104         em->start = 0;
105         em->len = (u64)-1;
106         em->block_start = 0;
107         em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
108
109         spin_lock(&em_tree->lock);
110         ret = add_extent_mapping(em_tree, em);
111         if (ret == -EEXIST) {
112                 u64 failed_start = em->start;
113                 u64 failed_len = em->len;
114
115                 printk("failed to insert %Lu %Lu -> %Lu into tree\n",
116                        em->start, em->len, em->block_start);
117                 free_extent_map(em);
118                 em = lookup_extent_mapping(em_tree, start, len);
119                 if (em) {
120                         printk("after failing, found %Lu %Lu %Lu\n",
121                                em->start, em->len, em->block_start);
122                         ret = 0;
123                 } else {
124                         em = lookup_extent_mapping(em_tree, failed_start,
125                                                    failed_len);
126                         if (em) {
127                                 printk("double failure lookup gives us "
128                                        "%Lu %Lu -> %Lu\n", em->start,
129                                        em->len, em->block_start);
130                                 free_extent_map(em);
131                         }
132                         ret = -EIO;
133                 }
134         } else if (ret) {
135                 free_extent_map(em);
136                 em = NULL;
137         }
138         spin_unlock(&em_tree->lock);
139
140         if (ret)
141                 em = ERR_PTR(ret);
142 out:
143         return em;
144 }
145
146 u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
147 {
148         return btrfs_crc32c(seed, data, len);
149 }
150
151 void btrfs_csum_final(u32 crc, char *result)
152 {
153         *(__le32 *)result = ~cpu_to_le32(crc);
154 }
155
156 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
157                            int verify)
158 {
159         char result[BTRFS_CRC32_SIZE];
160         unsigned long len;
161         unsigned long cur_len;
162         unsigned long offset = BTRFS_CSUM_SIZE;
163         char *map_token = NULL;
164         char *kaddr;
165         unsigned long map_start;
166         unsigned long map_len;
167         int err;
168         u32 crc = ~(u32)0;
169
170         len = buf->len - offset;
171         while(len > 0) {
172                 err = map_private_extent_buffer(buf, offset, 32,
173                                         &map_token, &kaddr,
174                                         &map_start, &map_len, KM_USER0);
175                 if (err) {
176                         printk("failed to map extent buffer! %lu\n",
177                                offset);
178                         return 1;
179                 }
180                 cur_len = min(len, map_len - (offset - map_start));
181                 crc = btrfs_csum_data(root, kaddr + offset - map_start,
182                                       crc, cur_len);
183                 len -= cur_len;
184                 offset += cur_len;
185                 unmap_extent_buffer(buf, map_token, KM_USER0);
186         }
187         btrfs_csum_final(crc, result);
188
189         if (verify) {
190                 int from_this_trans = 0;
191
192                 if (root->fs_info->running_transaction &&
193                     btrfs_header_generation(buf) ==
194                     root->fs_info->running_transaction->transid)
195                         from_this_trans = 1;
196
197                 /* FIXME, this is not good */
198                 if (memcmp_extent_buffer(buf, result, 0, BTRFS_CRC32_SIZE)) {
199                         u32 val;
200                         u32 found = 0;
201                         memcpy(&found, result, BTRFS_CRC32_SIZE);
202
203                         read_extent_buffer(buf, &val, 0, BTRFS_CRC32_SIZE);
204                         printk("btrfs: %s checksum verify failed on %llu "
205                                "wanted %X found %X from_this_trans %d "
206                                "level %d\n",
207                                root->fs_info->sb->s_id,
208                                buf->start, val, found, from_this_trans,
209                                btrfs_header_level(buf));
210                         return 1;
211                 }
212         } else {
213                 write_extent_buffer(buf, result, 0, BTRFS_CRC32_SIZE);
214         }
215         return 0;
216 }
217
218 static int verify_parent_transid(struct extent_io_tree *io_tree,
219                                  struct extent_buffer *eb, u64 parent_transid)
220 {
221         int ret;
222
223         if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
224                 return 0;
225
226         lock_extent(io_tree, eb->start, eb->start + eb->len - 1, GFP_NOFS);
227         if (extent_buffer_uptodate(io_tree, eb) &&
228             btrfs_header_generation(eb) == parent_transid) {
229                 ret = 0;
230                 goto out;
231         }
232         printk("parent transid verify failed on %llu wanted %llu found %llu\n",
233                (unsigned long long)eb->start,
234                (unsigned long long)parent_transid,
235                (unsigned long long)btrfs_header_generation(eb));
236         ret = 1;
237 out:
238         clear_extent_buffer_uptodate(io_tree, eb);
239         unlock_extent(io_tree, eb->start, eb->start + eb->len - 1,
240                       GFP_NOFS);
241         return ret;
242
243 }
244
245 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
246                                           struct extent_buffer *eb,
247                                           u64 start, u64 parent_transid)
248 {
249         struct extent_io_tree *io_tree;
250         int ret;
251         int num_copies = 0;
252         int mirror_num = 0;
253
254         io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
255         while (1) {
256                 ret = read_extent_buffer_pages(io_tree, eb, start, 1,
257                                                btree_get_extent, mirror_num);
258                 if (!ret &&
259                     !verify_parent_transid(io_tree, eb, parent_transid))
260                         return ret;
261
262                 num_copies = btrfs_num_copies(&root->fs_info->mapping_tree,
263                                               eb->start, eb->len);
264                 if (num_copies == 1)
265                         return ret;
266
267                 mirror_num++;
268                 if (mirror_num > num_copies)
269                         return ret;
270         }
271         return -EIO;
272 }
273
274 int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
275 {
276         struct extent_io_tree *tree;
277         u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
278         u64 found_start;
279         int found_level;
280         unsigned long len;
281         struct extent_buffer *eb;
282         int ret;
283
284         tree = &BTRFS_I(page->mapping->host)->io_tree;
285
286         if (page->private == EXTENT_PAGE_PRIVATE)
287                 goto out;
288         if (!page->private)
289                 goto out;
290         len = page->private >> 2;
291         if (len == 0) {
292                 WARN_ON(1);
293         }
294         eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS);
295         ret = btree_read_extent_buffer_pages(root, eb, start + PAGE_CACHE_SIZE,
296                                              btrfs_header_generation(eb));
297         BUG_ON(ret);
298         found_start = btrfs_header_bytenr(eb);
299         if (found_start != start) {
300                 printk("warning: eb start incorrect %Lu buffer %Lu len %lu\n",
301                        start, found_start, len);
302                 WARN_ON(1);
303                 goto err;
304         }
305         if (eb->first_page != page) {
306                 printk("bad first page %lu %lu\n", eb->first_page->index,
307                        page->index);
308                 WARN_ON(1);
309                 goto err;
310         }
311         if (!PageUptodate(page)) {
312                 printk("csum not up to date page %lu\n", page->index);
313                 WARN_ON(1);
314                 goto err;
315         }
316         found_level = btrfs_header_level(eb);
317         spin_lock(&root->fs_info->hash_lock);
318         btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
319         spin_unlock(&root->fs_info->hash_lock);
320         csum_tree_block(root, eb, 0);
321 err:
322         free_extent_buffer(eb);
323 out:
324         return 0;
325 }
326
327 static int btree_writepage_io_hook(struct page *page, u64 start, u64 end)
328 {
329         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
330
331         csum_dirty_buffer(root, page);
332         return 0;
333 }
334
335 int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
336                                struct extent_state *state)
337 {
338         struct extent_io_tree *tree;
339         u64 found_start;
340         int found_level;
341         unsigned long len;
342         struct extent_buffer *eb;
343         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
344         int ret = 0;
345
346         tree = &BTRFS_I(page->mapping->host)->io_tree;
347         if (page->private == EXTENT_PAGE_PRIVATE)
348                 goto out;
349         if (!page->private)
350                 goto out;
351         len = page->private >> 2;
352         if (len == 0) {
353                 WARN_ON(1);
354         }
355         eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS);
356
357         found_start = btrfs_header_bytenr(eb);
358         if (found_start != start) {
359                 ret = -EIO;
360                 goto err;
361         }
362         if (eb->first_page != page) {
363                 printk("bad first page %lu %lu\n", eb->first_page->index,
364                        page->index);
365                 WARN_ON(1);
366                 ret = -EIO;
367                 goto err;
368         }
369         if (memcmp_extent_buffer(eb, root->fs_info->fsid,
370                                  (unsigned long)btrfs_header_fsid(eb),
371                                  BTRFS_FSID_SIZE)) {
372                 printk("bad fsid on block %Lu\n", eb->start);
373                 ret = -EIO;
374                 goto err;
375         }
376         found_level = btrfs_header_level(eb);
377
378         ret = csum_tree_block(root, eb, 1);
379         if (ret)
380                 ret = -EIO;
381
382         end = min_t(u64, eb->len, PAGE_CACHE_SIZE);
383         end = eb->start + end - 1;
384 err:
385         free_extent_buffer(eb);
386 out:
387         return ret;
388 }
389
390 #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,23)
391 static void end_workqueue_bio(struct bio *bio, int err)
392 #else
393 static int end_workqueue_bio(struct bio *bio,
394                                    unsigned int bytes_done, int err)
395 #endif
396 {
397         struct end_io_wq *end_io_wq = bio->bi_private;
398         struct btrfs_fs_info *fs_info;
399
400 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
401         if (bio->bi_size)
402                 return 1;
403 #endif
404
405         fs_info = end_io_wq->info;
406         end_io_wq->error = err;
407         end_io_wq->work.func = end_workqueue_fn;
408         end_io_wq->work.flags = 0;
409         if (bio->bi_rw & (1 << BIO_RW))
410                 btrfs_queue_worker(&fs_info->endio_write_workers,
411                                    &end_io_wq->work);
412         else
413                 btrfs_queue_worker(&fs_info->endio_workers, &end_io_wq->work);
414
415 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
416         return 0;
417 #endif
418 }
419
420 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
421                         int metadata)
422 {
423         struct end_io_wq *end_io_wq;
424         end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
425         if (!end_io_wq)
426                 return -ENOMEM;
427
428         end_io_wq->private = bio->bi_private;
429         end_io_wq->end_io = bio->bi_end_io;
430         end_io_wq->info = info;
431         end_io_wq->error = 0;
432         end_io_wq->bio = bio;
433         end_io_wq->metadata = metadata;
434
435         bio->bi_private = end_io_wq;
436         bio->bi_end_io = end_workqueue_bio;
437         return 0;
438 }
439
440 static void run_one_async_submit(struct btrfs_work *work)
441 {
442         struct btrfs_fs_info *fs_info;
443         struct async_submit_bio *async;
444
445         async = container_of(work, struct  async_submit_bio, work);
446         fs_info = BTRFS_I(async->inode)->root->fs_info;
447         atomic_dec(&fs_info->nr_async_submits);
448         async->submit_bio_hook(async->inode, async->rw, async->bio,
449                                async->mirror_num);
450         kfree(async);
451 }
452
453 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
454                         int rw, struct bio *bio, int mirror_num,
455                         extent_submit_bio_hook_t *submit_bio_hook)
456 {
457         struct async_submit_bio *async;
458
459         async = kmalloc(sizeof(*async), GFP_NOFS);
460         if (!async)
461                 return -ENOMEM;
462
463         async->inode = inode;
464         async->rw = rw;
465         async->bio = bio;
466         async->mirror_num = mirror_num;
467         async->submit_bio_hook = submit_bio_hook;
468         async->work.func = run_one_async_submit;
469         async->work.flags = 0;
470         atomic_inc(&fs_info->nr_async_submits);
471         btrfs_queue_worker(&fs_info->workers, &async->work);
472         return 0;
473 }
474
475 static int __btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
476                                  int mirror_num)
477 {
478         struct btrfs_root *root = BTRFS_I(inode)->root;
479         u64 offset;
480         int ret;
481
482         offset = bio->bi_sector << 9;
483
484         /*
485          * when we're called for a write, we're already in the async
486          * submission context.  Just jump ingo btrfs_map_bio
487          */
488         if (rw & (1 << BIO_RW)) {
489                 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
490                                      mirror_num, 0);
491         }
492
493         /*
494          * called for a read, do the setup so that checksum validation
495          * can happen in the async kernel threads
496          */
497         ret = btrfs_bio_wq_end_io(root->fs_info, bio, 1);
498         BUG_ON(ret);
499
500         return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
501 }
502
503 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
504                                  int mirror_num)
505 {
506         /*
507          * kthread helpers are used to submit writes so that checksumming
508          * can happen in parallel across all CPUs
509          */
510         if (!(rw & (1 << BIO_RW))) {
511                 return __btree_submit_bio_hook(inode, rw, bio, mirror_num);
512         }
513         return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
514                                    inode, rw, bio, mirror_num,
515                                    __btree_submit_bio_hook);
516 }
517
518 static int btree_writepage(struct page *page, struct writeback_control *wbc)
519 {
520         struct extent_io_tree *tree;
521         tree = &BTRFS_I(page->mapping->host)->io_tree;
522         return extent_write_full_page(tree, page, btree_get_extent, wbc);
523 }
524
525 static int btree_writepages(struct address_space *mapping,
526                             struct writeback_control *wbc)
527 {
528         struct extent_io_tree *tree;
529         tree = &BTRFS_I(mapping->host)->io_tree;
530         if (wbc->sync_mode == WB_SYNC_NONE) {
531                 u64 num_dirty;
532                 u64 start = 0;
533                 unsigned long thresh = 96 * 1024 * 1024;
534
535                 if (wbc->for_kupdate)
536                         return 0;
537
538                 if (current_is_pdflush()) {
539                         thresh = 96 * 1024 * 1024;
540                 } else {
541                         thresh = 8 * 1024 * 1024;
542                 }
543                 num_dirty = count_range_bits(tree, &start, (u64)-1,
544                                              thresh, EXTENT_DIRTY);
545                 if (num_dirty < thresh) {
546                         return 0;
547                 }
548         }
549         return extent_writepages(tree, mapping, btree_get_extent, wbc);
550 }
551
552 int btree_readpage(struct file *file, struct page *page)
553 {
554         struct extent_io_tree *tree;
555         tree = &BTRFS_I(page->mapping->host)->io_tree;
556         return extent_read_full_page(tree, page, btree_get_extent);
557 }
558
559 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
560 {
561         struct extent_io_tree *tree;
562         struct extent_map_tree *map;
563         int ret;
564
565         tree = &BTRFS_I(page->mapping->host)->io_tree;
566         map = &BTRFS_I(page->mapping->host)->extent_tree;
567
568         ret = try_release_extent_state(map, tree, page, gfp_flags);
569         if (!ret) {
570                 return 0;
571         }
572
573         ret = try_release_extent_buffer(tree, page);
574         if (ret == 1) {
575                 ClearPagePrivate(page);
576                 set_page_private(page, 0);
577                 page_cache_release(page);
578         }
579
580         return ret;
581 }
582
583 static void btree_invalidatepage(struct page *page, unsigned long offset)
584 {
585         struct extent_io_tree *tree;
586         tree = &BTRFS_I(page->mapping->host)->io_tree;
587         extent_invalidatepage(tree, page, offset);
588         btree_releasepage(page, GFP_NOFS);
589         if (PagePrivate(page)) {
590                 printk("warning page private not zero on page %Lu\n",
591                        page_offset(page));
592                 ClearPagePrivate(page);
593                 set_page_private(page, 0);
594                 page_cache_release(page);
595         }
596 }
597
598 #if 0
599 static int btree_writepage(struct page *page, struct writeback_control *wbc)
600 {
601         struct buffer_head *bh;
602         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
603         struct buffer_head *head;
604         if (!page_has_buffers(page)) {
605                 create_empty_buffers(page, root->fs_info->sb->s_blocksize,
606                                         (1 << BH_Dirty)|(1 << BH_Uptodate));
607         }
608         head = page_buffers(page);
609         bh = head;
610         do {
611                 if (buffer_dirty(bh))
612                         csum_tree_block(root, bh, 0);
613                 bh = bh->b_this_page;
614         } while (bh != head);
615         return block_write_full_page(page, btree_get_block, wbc);
616 }
617 #endif
618
619 static struct address_space_operations btree_aops = {
620         .readpage       = btree_readpage,
621         .writepage      = btree_writepage,
622         .writepages     = btree_writepages,
623         .releasepage    = btree_releasepage,
624         .invalidatepage = btree_invalidatepage,
625         .sync_page      = block_sync_page,
626 };
627
628 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
629                          u64 parent_transid)
630 {
631         struct extent_buffer *buf = NULL;
632         struct inode *btree_inode = root->fs_info->btree_inode;
633         int ret = 0;
634
635         buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
636         if (!buf)
637                 return 0;
638         read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
639                                  buf, 0, 0, btree_get_extent, 0);
640         free_extent_buffer(buf);
641         return ret;
642 }
643
644 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
645                                             u64 bytenr, u32 blocksize)
646 {
647         struct inode *btree_inode = root->fs_info->btree_inode;
648         struct extent_buffer *eb;
649         eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
650                                 bytenr, blocksize, GFP_NOFS);
651         return eb;
652 }
653
654 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
655                                                  u64 bytenr, u32 blocksize)
656 {
657         struct inode *btree_inode = root->fs_info->btree_inode;
658         struct extent_buffer *eb;
659
660         eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
661                                  bytenr, blocksize, NULL, GFP_NOFS);
662         return eb;
663 }
664
665
666 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
667                                       u32 blocksize, u64 parent_transid)
668 {
669         struct extent_buffer *buf = NULL;
670         struct inode *btree_inode = root->fs_info->btree_inode;
671         struct extent_io_tree *io_tree;
672         int ret;
673
674         io_tree = &BTRFS_I(btree_inode)->io_tree;
675
676         buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
677         if (!buf)
678                 return NULL;
679
680         ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
681
682         if (ret == 0) {
683                 buf->flags |= EXTENT_UPTODATE;
684         }
685         return buf;
686
687 }
688
689 int clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
690                      struct extent_buffer *buf)
691 {
692         struct inode *btree_inode = root->fs_info->btree_inode;
693         if (btrfs_header_generation(buf) ==
694             root->fs_info->running_transaction->transid) {
695                 WARN_ON(!btrfs_tree_locked(buf));
696                 clear_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
697                                           buf);
698         }
699         return 0;
700 }
701
702 int wait_on_tree_block_writeback(struct btrfs_root *root,
703                                  struct extent_buffer *buf)
704 {
705         struct inode *btree_inode = root->fs_info->btree_inode;
706         wait_on_extent_buffer_writeback(&BTRFS_I(btree_inode)->io_tree,
707                                         buf);
708         return 0;
709 }
710
711 static int __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
712                         u32 stripesize, struct btrfs_root *root,
713                         struct btrfs_fs_info *fs_info,
714                         u64 objectid)
715 {
716         root->node = NULL;
717         root->inode = NULL;
718         root->commit_root = NULL;
719         root->sectorsize = sectorsize;
720         root->nodesize = nodesize;
721         root->leafsize = leafsize;
722         root->stripesize = stripesize;
723         root->ref_cows = 0;
724         root->track_dirty = 0;
725
726         root->fs_info = fs_info;
727         root->objectid = objectid;
728         root->last_trans = 0;
729         root->highest_inode = 0;
730         root->last_inode_alloc = 0;
731         root->name = NULL;
732         root->in_sysfs = 0;
733
734         INIT_LIST_HEAD(&root->dirty_list);
735         INIT_LIST_HEAD(&root->orphan_list);
736         spin_lock_init(&root->node_lock);
737         spin_lock_init(&root->orphan_lock);
738         mutex_init(&root->objectid_mutex);
739         memset(&root->root_key, 0, sizeof(root->root_key));
740         memset(&root->root_item, 0, sizeof(root->root_item));
741         memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
742         memset(&root->root_kobj, 0, sizeof(root->root_kobj));
743         root->defrag_trans_start = fs_info->generation;
744         init_completion(&root->kobj_unregister);
745         root->defrag_running = 0;
746         root->defrag_level = 0;
747         root->root_key.objectid = objectid;
748         return 0;
749 }
750
751 static int find_and_setup_root(struct btrfs_root *tree_root,
752                                struct btrfs_fs_info *fs_info,
753                                u64 objectid,
754                                struct btrfs_root *root)
755 {
756         int ret;
757         u32 blocksize;
758
759         __setup_root(tree_root->nodesize, tree_root->leafsize,
760                      tree_root->sectorsize, tree_root->stripesize,
761                      root, fs_info, objectid);
762         ret = btrfs_find_last_root(tree_root, objectid,
763                                    &root->root_item, &root->root_key);
764         BUG_ON(ret);
765
766         blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
767         root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
768                                      blocksize, 0);
769         BUG_ON(!root->node);
770         return 0;
771 }
772
773 struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_fs_info *fs_info,
774                                                struct btrfs_key *location)
775 {
776         struct btrfs_root *root;
777         struct btrfs_root *tree_root = fs_info->tree_root;
778         struct btrfs_path *path;
779         struct extent_buffer *l;
780         u64 highest_inode;
781         u32 blocksize;
782         int ret = 0;
783
784         root = kzalloc(sizeof(*root), GFP_NOFS);
785         if (!root)
786                 return ERR_PTR(-ENOMEM);
787         if (location->offset == (u64)-1) {
788                 ret = find_and_setup_root(tree_root, fs_info,
789                                           location->objectid, root);
790                 if (ret) {
791                         kfree(root);
792                         return ERR_PTR(ret);
793                 }
794                 goto insert;
795         }
796
797         __setup_root(tree_root->nodesize, tree_root->leafsize,
798                      tree_root->sectorsize, tree_root->stripesize,
799                      root, fs_info, location->objectid);
800
801         path = btrfs_alloc_path();
802         BUG_ON(!path);
803         ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
804         if (ret != 0) {
805                 if (ret > 0)
806                         ret = -ENOENT;
807                 goto out;
808         }
809         l = path->nodes[0];
810         read_extent_buffer(l, &root->root_item,
811                btrfs_item_ptr_offset(l, path->slots[0]),
812                sizeof(root->root_item));
813         memcpy(&root->root_key, location, sizeof(*location));
814         ret = 0;
815 out:
816         btrfs_release_path(root, path);
817         btrfs_free_path(path);
818         if (ret) {
819                 kfree(root);
820                 return ERR_PTR(ret);
821         }
822         blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
823         root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
824                                      blocksize, 0);
825         BUG_ON(!root->node);
826 insert:
827         root->ref_cows = 1;
828         ret = btrfs_find_highest_inode(root, &highest_inode);
829         if (ret == 0) {
830                 root->highest_inode = highest_inode;
831                 root->last_inode_alloc = highest_inode;
832         }
833         return root;
834 }
835
836 struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
837                                         u64 root_objectid)
838 {
839         struct btrfs_root *root;
840
841         if (root_objectid == BTRFS_ROOT_TREE_OBJECTID)
842                 return fs_info->tree_root;
843         if (root_objectid == BTRFS_EXTENT_TREE_OBJECTID)
844                 return fs_info->extent_root;
845
846         root = radix_tree_lookup(&fs_info->fs_roots_radix,
847                                  (unsigned long)root_objectid);
848         return root;
849 }
850
851 struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
852                                               struct btrfs_key *location)
853 {
854         struct btrfs_root *root;
855         int ret;
856
857         if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
858                 return fs_info->tree_root;
859         if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
860                 return fs_info->extent_root;
861         if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
862                 return fs_info->chunk_root;
863         if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
864                 return fs_info->dev_root;
865
866         root = radix_tree_lookup(&fs_info->fs_roots_radix,
867                                  (unsigned long)location->objectid);
868         if (root)
869                 return root;
870
871         root = btrfs_read_fs_root_no_radix(fs_info, location);
872         if (IS_ERR(root))
873                 return root;
874         ret = radix_tree_insert(&fs_info->fs_roots_radix,
875                                 (unsigned long)root->root_key.objectid,
876                                 root);
877         if (ret) {
878                 free_extent_buffer(root->node);
879                 kfree(root);
880                 return ERR_PTR(ret);
881         }
882         ret = btrfs_find_dead_roots(fs_info->tree_root,
883                                     root->root_key.objectid, root);
884         BUG_ON(ret);
885
886         return root;
887 }
888
889 struct btrfs_root *btrfs_read_fs_root(struct btrfs_fs_info *fs_info,
890                                       struct btrfs_key *location,
891                                       const char *name, int namelen)
892 {
893         struct btrfs_root *root;
894         int ret;
895
896         root = btrfs_read_fs_root_no_name(fs_info, location);
897         if (!root)
898                 return NULL;
899
900         if (root->in_sysfs)
901                 return root;
902
903         ret = btrfs_set_root_name(root, name, namelen);
904         if (ret) {
905                 free_extent_buffer(root->node);
906                 kfree(root);
907                 return ERR_PTR(ret);
908         }
909
910         ret = btrfs_sysfs_add_root(root);
911         if (ret) {
912                 free_extent_buffer(root->node);
913                 kfree(root->name);
914                 kfree(root);
915                 return ERR_PTR(ret);
916         }
917         root->in_sysfs = 1;
918         return root;
919 }
920 #if 0
921 static int add_hasher(struct btrfs_fs_info *info, char *type) {
922         struct btrfs_hasher *hasher;
923
924         hasher = kmalloc(sizeof(*hasher), GFP_NOFS);
925         if (!hasher)
926                 return -ENOMEM;
927         hasher->hash_tfm = crypto_alloc_hash(type, 0, CRYPTO_ALG_ASYNC);
928         if (!hasher->hash_tfm) {
929                 kfree(hasher);
930                 return -EINVAL;
931         }
932         spin_lock(&info->hash_lock);
933         list_add(&hasher->list, &info->hashers);
934         spin_unlock(&info->hash_lock);
935         return 0;
936 }
937 #endif
938
939 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
940 {
941         struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
942         int ret = 0;
943         int limit = 256 * info->fs_devices->open_devices;
944         struct list_head *cur;
945         struct btrfs_device *device;
946         struct backing_dev_info *bdi;
947
948         if ((bdi_bits & (1 << BDI_write_congested)) &&
949             atomic_read(&info->nr_async_submits) > limit) {
950                 return 1;
951         }
952
953         list_for_each(cur, &info->fs_devices->devices) {
954                 device = list_entry(cur, struct btrfs_device, dev_list);
955                 if (!device->bdev)
956                         continue;
957                 bdi = blk_get_backing_dev_info(device->bdev);
958                 if (bdi && bdi_congested(bdi, bdi_bits)) {
959                         ret = 1;
960                         break;
961                 }
962         }
963         return ret;
964 }
965
966 /*
967  * this unplugs every device on the box, and it is only used when page
968  * is null
969  */
970 static void __unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
971 {
972         struct list_head *cur;
973         struct btrfs_device *device;
974         struct btrfs_fs_info *info;
975
976         info = (struct btrfs_fs_info *)bdi->unplug_io_data;
977         list_for_each(cur, &info->fs_devices->devices) {
978                 device = list_entry(cur, struct btrfs_device, dev_list);
979                 bdi = blk_get_backing_dev_info(device->bdev);
980                 if (bdi->unplug_io_fn) {
981                         bdi->unplug_io_fn(bdi, page);
982                 }
983         }
984 }
985
986 void btrfs_unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
987 {
988         struct inode *inode;
989         struct extent_map_tree *em_tree;
990         struct extent_map *em;
991         struct address_space *mapping;
992         u64 offset;
993
994         /* the generic O_DIRECT read code does this */
995         if (!page) {
996                 __unplug_io_fn(bdi, page);
997                 return;
998         }
999
1000         /*
1001          * page->mapping may change at any time.  Get a consistent copy
1002          * and use that for everything below
1003          */
1004         smp_mb();
1005         mapping = page->mapping;
1006         if (!mapping)
1007                 return;
1008
1009         inode = mapping->host;
1010         offset = page_offset(page);
1011
1012         em_tree = &BTRFS_I(inode)->extent_tree;
1013         spin_lock(&em_tree->lock);
1014         em = lookup_extent_mapping(em_tree, offset, PAGE_CACHE_SIZE);
1015         spin_unlock(&em_tree->lock);
1016         if (!em) {
1017                 __unplug_io_fn(bdi, page);
1018                 return;
1019         }
1020
1021         if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
1022                 free_extent_map(em);
1023                 __unplug_io_fn(bdi, page);
1024                 return;
1025         }
1026         offset = offset - em->start;
1027         btrfs_unplug_page(&BTRFS_I(inode)->root->fs_info->mapping_tree,
1028                           em->block_start + offset, page);
1029         free_extent_map(em);
1030 }
1031
1032 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1033 {
1034 #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,23)
1035         bdi_init(bdi);
1036 #endif
1037         bdi->ra_pages   = default_backing_dev_info.ra_pages;
1038         bdi->state              = 0;
1039         bdi->capabilities       = default_backing_dev_info.capabilities;
1040         bdi->unplug_io_fn       = btrfs_unplug_io_fn;
1041         bdi->unplug_io_data     = info;
1042         bdi->congested_fn       = btrfs_congested_fn;
1043         bdi->congested_data     = info;
1044         return 0;
1045 }
1046
1047 static int bio_ready_for_csum(struct bio *bio)
1048 {
1049         u64 length = 0;
1050         u64 buf_len = 0;
1051         u64 start = 0;
1052         struct page *page;
1053         struct extent_io_tree *io_tree = NULL;
1054         struct btrfs_fs_info *info = NULL;
1055         struct bio_vec *bvec;
1056         int i;
1057         int ret;
1058
1059         bio_for_each_segment(bvec, bio, i) {
1060                 page = bvec->bv_page;
1061                 if (page->private == EXTENT_PAGE_PRIVATE) {
1062                         length += bvec->bv_len;
1063                         continue;
1064                 }
1065                 if (!page->private) {
1066                         length += bvec->bv_len;
1067                         continue;
1068                 }
1069                 length = bvec->bv_len;
1070                 buf_len = page->private >> 2;
1071                 start = page_offset(page) + bvec->bv_offset;
1072                 io_tree = &BTRFS_I(page->mapping->host)->io_tree;
1073                 info = BTRFS_I(page->mapping->host)->root->fs_info;
1074         }
1075         /* are we fully contained in this bio? */
1076         if (buf_len <= length)
1077                 return 1;
1078
1079         ret = extent_range_uptodate(io_tree, start + length,
1080                                     start + buf_len - 1);
1081         if (ret == 1)
1082                 return ret;
1083         return ret;
1084 }
1085
1086 /*
1087  * called by the kthread helper functions to finally call the bio end_io
1088  * functions.  This is where read checksum verification actually happens
1089  */
1090 static void end_workqueue_fn(struct btrfs_work *work)
1091 {
1092         struct bio *bio;
1093         struct end_io_wq *end_io_wq;
1094         struct btrfs_fs_info *fs_info;
1095         int error;
1096
1097         end_io_wq = container_of(work, struct end_io_wq, work);
1098         bio = end_io_wq->bio;
1099         fs_info = end_io_wq->info;
1100
1101         /* metadata bios are special because the whole tree block must
1102          * be checksummed at once.  This makes sure the entire block is in
1103          * ram and up to date before trying to verify things.  For
1104          * blocksize <= pagesize, it is basically a noop
1105          */
1106         if (end_io_wq->metadata && !bio_ready_for_csum(bio)) {
1107                 btrfs_queue_worker(&fs_info->endio_workers,
1108                                    &end_io_wq->work);
1109                 return;
1110         }
1111         error = end_io_wq->error;
1112         bio->bi_private = end_io_wq->private;
1113         bio->bi_end_io = end_io_wq->end_io;
1114         kfree(end_io_wq);
1115 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
1116         bio_endio(bio, bio->bi_size, error);
1117 #else
1118         bio_endio(bio, error);
1119 #endif
1120 }
1121
1122 static int cleaner_kthread(void *arg)
1123 {
1124         struct btrfs_root *root = arg;
1125
1126         do {
1127                 smp_mb();
1128                 if (root->fs_info->closing)
1129                         break;
1130
1131                 vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
1132                 mutex_lock(&root->fs_info->cleaner_mutex);
1133                 btrfs_clean_old_snapshots(root);
1134                 mutex_unlock(&root->fs_info->cleaner_mutex);
1135
1136                 if (freezing(current)) {
1137                         refrigerator();
1138                 } else {
1139                         smp_mb();
1140                         if (root->fs_info->closing)
1141                                 break;
1142                         set_current_state(TASK_INTERRUPTIBLE);
1143                         schedule();
1144                         __set_current_state(TASK_RUNNING);
1145                 }
1146         } while (!kthread_should_stop());
1147         return 0;
1148 }
1149
1150 static int transaction_kthread(void *arg)
1151 {
1152         struct btrfs_root *root = arg;
1153         struct btrfs_trans_handle *trans;
1154         struct btrfs_transaction *cur;
1155         unsigned long now;
1156         unsigned long delay;
1157         int ret;
1158
1159         do {
1160                 smp_mb();
1161                 if (root->fs_info->closing)
1162                         break;
1163
1164                 delay = HZ * 30;
1165                 vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
1166                 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1167
1168                 mutex_lock(&root->fs_info->trans_mutex);
1169                 cur = root->fs_info->running_transaction;
1170                 if (!cur) {
1171                         mutex_unlock(&root->fs_info->trans_mutex);
1172                         goto sleep;
1173                 }
1174                 now = get_seconds();
1175                 if (now < cur->start_time || now - cur->start_time < 30) {
1176                         mutex_unlock(&root->fs_info->trans_mutex);
1177                         delay = HZ * 5;
1178                         goto sleep;
1179                 }
1180                 mutex_unlock(&root->fs_info->trans_mutex);
1181                 trans = btrfs_start_transaction(root, 1);
1182                 ret = btrfs_commit_transaction(trans, root);
1183 sleep:
1184                 wake_up_process(root->fs_info->cleaner_kthread);
1185                 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1186
1187                 if (freezing(current)) {
1188                         refrigerator();
1189                 } else {
1190                         if (root->fs_info->closing)
1191                                 break;
1192                         set_current_state(TASK_INTERRUPTIBLE);
1193                         schedule_timeout(delay);
1194                         __set_current_state(TASK_RUNNING);
1195                 }
1196         } while (!kthread_should_stop());
1197         return 0;
1198 }
1199
1200 struct btrfs_root *open_ctree(struct super_block *sb,
1201                               struct btrfs_fs_devices *fs_devices,
1202                               char *options)
1203 {
1204         u32 sectorsize;
1205         u32 nodesize;
1206         u32 leafsize;
1207         u32 blocksize;
1208         u32 stripesize;
1209         struct buffer_head *bh;
1210         struct btrfs_root *extent_root = kmalloc(sizeof(struct btrfs_root),
1211                                                  GFP_NOFS);
1212         struct btrfs_root *tree_root = kmalloc(sizeof(struct btrfs_root),
1213                                                GFP_NOFS);
1214         struct btrfs_fs_info *fs_info = kzalloc(sizeof(*fs_info),
1215                                                 GFP_NOFS);
1216         struct btrfs_root *chunk_root = kmalloc(sizeof(struct btrfs_root),
1217                                                 GFP_NOFS);
1218         struct btrfs_root *dev_root = kmalloc(sizeof(struct btrfs_root),
1219                                               GFP_NOFS);
1220         int ret;
1221         int err = -EINVAL;
1222
1223         struct btrfs_super_block *disk_super;
1224
1225         if (!extent_root || !tree_root || !fs_info) {
1226                 err = -ENOMEM;
1227                 goto fail;
1228         }
1229         INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_NOFS);
1230         INIT_LIST_HEAD(&fs_info->trans_list);
1231         INIT_LIST_HEAD(&fs_info->dead_roots);
1232         INIT_LIST_HEAD(&fs_info->hashers);
1233         spin_lock_init(&fs_info->hash_lock);
1234         spin_lock_init(&fs_info->delalloc_lock);
1235         spin_lock_init(&fs_info->new_trans_lock);
1236
1237         init_completion(&fs_info->kobj_unregister);
1238         fs_info->tree_root = tree_root;
1239         fs_info->extent_root = extent_root;
1240         fs_info->chunk_root = chunk_root;
1241         fs_info->dev_root = dev_root;
1242         fs_info->fs_devices = fs_devices;
1243         INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
1244         INIT_LIST_HEAD(&fs_info->space_info);
1245         btrfs_mapping_init(&fs_info->mapping_tree);
1246         atomic_set(&fs_info->nr_async_submits, 0);
1247         atomic_set(&fs_info->throttles, 0);
1248         fs_info->sb = sb;
1249         fs_info->max_extent = (u64)-1;
1250         fs_info->max_inline = 8192 * 1024;
1251         setup_bdi(fs_info, &fs_info->bdi);
1252         fs_info->btree_inode = new_inode(sb);
1253         fs_info->btree_inode->i_ino = 1;
1254         fs_info->btree_inode->i_nlink = 1;
1255         fs_info->thread_pool_size = min(num_online_cpus() + 2, 8);
1256
1257         INIT_LIST_HEAD(&fs_info->ordered_extents);
1258         spin_lock_init(&fs_info->ordered_extent_lock);
1259
1260         sb->s_blocksize = 4096;
1261         sb->s_blocksize_bits = blksize_bits(4096);
1262
1263         /*
1264          * we set the i_size on the btree inode to the max possible int.
1265          * the real end of the address space is determined by all of
1266          * the devices in the system
1267          */
1268         fs_info->btree_inode->i_size = OFFSET_MAX;
1269         fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
1270         fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
1271
1272         extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
1273                              fs_info->btree_inode->i_mapping,
1274                              GFP_NOFS);
1275         extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree,
1276                              GFP_NOFS);
1277
1278         BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
1279
1280         extent_io_tree_init(&fs_info->free_space_cache,
1281                              fs_info->btree_inode->i_mapping, GFP_NOFS);
1282         extent_io_tree_init(&fs_info->block_group_cache,
1283                              fs_info->btree_inode->i_mapping, GFP_NOFS);
1284         extent_io_tree_init(&fs_info->pinned_extents,
1285                              fs_info->btree_inode->i_mapping, GFP_NOFS);
1286         extent_io_tree_init(&fs_info->pending_del,
1287                              fs_info->btree_inode->i_mapping, GFP_NOFS);
1288         extent_io_tree_init(&fs_info->extent_ins,
1289                              fs_info->btree_inode->i_mapping, GFP_NOFS);
1290         fs_info->do_barriers = 1;
1291
1292         BTRFS_I(fs_info->btree_inode)->root = tree_root;
1293         memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
1294                sizeof(struct btrfs_key));
1295         insert_inode_hash(fs_info->btree_inode);
1296         mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
1297
1298         mutex_init(&fs_info->trans_mutex);
1299         mutex_init(&fs_info->drop_mutex);
1300         mutex_init(&fs_info->alloc_mutex);
1301         mutex_init(&fs_info->chunk_mutex);
1302         mutex_init(&fs_info->transaction_kthread_mutex);
1303         mutex_init(&fs_info->cleaner_mutex);
1304         mutex_init(&fs_info->volume_mutex);
1305         init_waitqueue_head(&fs_info->transaction_throttle);
1306         init_waitqueue_head(&fs_info->transaction_wait);
1307
1308 #if 0
1309         ret = add_hasher(fs_info, "crc32c");
1310         if (ret) {
1311                 printk("btrfs: failed hash setup, modprobe cryptomgr?\n");
1312                 err = -ENOMEM;
1313                 goto fail_iput;
1314         }
1315 #endif
1316         __setup_root(4096, 4096, 4096, 4096, tree_root,
1317                      fs_info, BTRFS_ROOT_TREE_OBJECTID);
1318
1319
1320         bh = __bread(fs_devices->latest_bdev,
1321                      BTRFS_SUPER_INFO_OFFSET / 4096, 4096);
1322         if (!bh)
1323                 goto fail_iput;
1324
1325         memcpy(&fs_info->super_copy, bh->b_data, sizeof(fs_info->super_copy));
1326         brelse(bh);
1327
1328         memcpy(fs_info->fsid, fs_info->super_copy.fsid, BTRFS_FSID_SIZE);
1329
1330         disk_super = &fs_info->super_copy;
1331         if (!btrfs_super_root(disk_super))
1332                 goto fail_sb_buffer;
1333
1334         err = btrfs_parse_options(tree_root, options);
1335         if (err)
1336                 goto fail_sb_buffer;
1337
1338         /*
1339          * we need to start all the end_io workers up front because the
1340          * queue work function gets called at interrupt time, and so it
1341          * cannot dynamically grow.
1342          */
1343         btrfs_init_workers(&fs_info->workers, fs_info->thread_pool_size);
1344         btrfs_init_workers(&fs_info->submit_workers, fs_info->thread_pool_size);
1345         btrfs_init_workers(&fs_info->fixup_workers, 1);
1346         btrfs_init_workers(&fs_info->endio_workers, fs_info->thread_pool_size);
1347         btrfs_init_workers(&fs_info->endio_write_workers,
1348                            fs_info->thread_pool_size);
1349         btrfs_start_workers(&fs_info->workers, 1);
1350         btrfs_start_workers(&fs_info->submit_workers, 1);
1351         btrfs_start_workers(&fs_info->fixup_workers, 1);
1352         btrfs_start_workers(&fs_info->endio_workers, fs_info->thread_pool_size);
1353         btrfs_start_workers(&fs_info->endio_write_workers,
1354                             fs_info->thread_pool_size);
1355
1356         err = -EINVAL;
1357         if (btrfs_super_num_devices(disk_super) > fs_devices->open_devices) {
1358                 printk("Btrfs: wanted %llu devices, but found %llu\n",
1359                        (unsigned long long)btrfs_super_num_devices(disk_super),
1360                        (unsigned long long)fs_devices->open_devices);
1361                 if (btrfs_test_opt(tree_root, DEGRADED))
1362                         printk("continuing in degraded mode\n");
1363                 else {
1364                         goto fail_sb_buffer;
1365                 }
1366         }
1367
1368         fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
1369
1370         nodesize = btrfs_super_nodesize(disk_super);
1371         leafsize = btrfs_super_leafsize(disk_super);
1372         sectorsize = btrfs_super_sectorsize(disk_super);
1373         stripesize = btrfs_super_stripesize(disk_super);
1374         tree_root->nodesize = nodesize;
1375         tree_root->leafsize = leafsize;
1376         tree_root->sectorsize = sectorsize;
1377         tree_root->stripesize = stripesize;
1378
1379         sb->s_blocksize = sectorsize;
1380         sb->s_blocksize_bits = blksize_bits(sectorsize);
1381
1382         if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
1383                     sizeof(disk_super->magic))) {
1384                 printk("btrfs: valid FS not found on %s\n", sb->s_id);
1385                 goto fail_sb_buffer;
1386         }
1387
1388         mutex_lock(&fs_info->chunk_mutex);
1389         ret = btrfs_read_sys_array(tree_root);
1390         mutex_unlock(&fs_info->chunk_mutex);
1391         if (ret) {
1392                 printk("btrfs: failed to read the system array on %s\n",
1393                        sb->s_id);
1394                 goto fail_sys_array;
1395         }
1396
1397         blocksize = btrfs_level_size(tree_root,
1398                                      btrfs_super_chunk_root_level(disk_super));
1399
1400         __setup_root(nodesize, leafsize, sectorsize, stripesize,
1401                      chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
1402
1403         chunk_root->node = read_tree_block(chunk_root,
1404                                            btrfs_super_chunk_root(disk_super),
1405                                            blocksize, 0);
1406         BUG_ON(!chunk_root->node);
1407
1408         read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
1409                  (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
1410                  BTRFS_UUID_SIZE);
1411
1412         mutex_lock(&fs_info->chunk_mutex);
1413         ret = btrfs_read_chunk_tree(chunk_root);
1414         mutex_unlock(&fs_info->chunk_mutex);
1415         BUG_ON(ret);
1416
1417         btrfs_close_extra_devices(fs_devices);
1418
1419         blocksize = btrfs_level_size(tree_root,
1420                                      btrfs_super_root_level(disk_super));
1421
1422
1423         tree_root->node = read_tree_block(tree_root,
1424                                           btrfs_super_root(disk_super),
1425                                           blocksize, 0);
1426         if (!tree_root->node)
1427                 goto fail_sb_buffer;
1428
1429
1430         ret = find_and_setup_root(tree_root, fs_info,
1431                                   BTRFS_EXTENT_TREE_OBJECTID, extent_root);
1432         if (ret)
1433                 goto fail_tree_root;
1434         extent_root->track_dirty = 1;
1435
1436         ret = find_and_setup_root(tree_root, fs_info,
1437                                   BTRFS_DEV_TREE_OBJECTID, dev_root);
1438         dev_root->track_dirty = 1;
1439
1440         if (ret)
1441                 goto fail_extent_root;
1442
1443         btrfs_read_block_groups(extent_root);
1444
1445         fs_info->generation = btrfs_super_generation(disk_super) + 1;
1446         fs_info->data_alloc_profile = (u64)-1;
1447         fs_info->metadata_alloc_profile = (u64)-1;
1448         fs_info->system_alloc_profile = fs_info->metadata_alloc_profile;
1449         fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
1450                                                "btrfs-cleaner");
1451         if (!fs_info->cleaner_kthread)
1452                 goto fail_extent_root;
1453
1454         fs_info->transaction_kthread = kthread_run(transaction_kthread,
1455                                                    tree_root,
1456                                                    "btrfs-transaction");
1457         if (!fs_info->transaction_kthread)
1458                 goto fail_cleaner;
1459
1460
1461         return tree_root;
1462
1463 fail_cleaner:
1464         kthread_stop(fs_info->cleaner_kthread);
1465 fail_extent_root:
1466         free_extent_buffer(extent_root->node);
1467 fail_tree_root:
1468         free_extent_buffer(tree_root->node);
1469 fail_sys_array:
1470 fail_sb_buffer:
1471         btrfs_stop_workers(&fs_info->fixup_workers);
1472         btrfs_stop_workers(&fs_info->workers);
1473         btrfs_stop_workers(&fs_info->endio_workers);
1474         btrfs_stop_workers(&fs_info->endio_write_workers);
1475         btrfs_stop_workers(&fs_info->submit_workers);
1476 fail_iput:
1477         iput(fs_info->btree_inode);
1478 fail:
1479         btrfs_close_devices(fs_info->fs_devices);
1480         btrfs_mapping_tree_free(&fs_info->mapping_tree);
1481
1482         kfree(extent_root);
1483         kfree(tree_root);
1484 #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,23)
1485         bdi_destroy(&fs_info->bdi);
1486 #endif
1487         kfree(fs_info);
1488         return ERR_PTR(err);
1489 }
1490
1491 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
1492 {
1493         char b[BDEVNAME_SIZE];
1494
1495         if (uptodate) {
1496                 set_buffer_uptodate(bh);
1497         } else {
1498                 if (!buffer_eopnotsupp(bh) && printk_ratelimit()) {
1499                         printk(KERN_WARNING "lost page write due to "
1500                                         "I/O error on %s\n",
1501                                        bdevname(bh->b_bdev, b));
1502                 }
1503                 /* note, we dont' set_buffer_write_io_error because we have
1504                  * our own ways of dealing with the IO errors
1505                  */
1506                 clear_buffer_uptodate(bh);
1507         }
1508         unlock_buffer(bh);
1509         put_bh(bh);
1510 }
1511
1512 int write_all_supers(struct btrfs_root *root)
1513 {
1514         struct list_head *cur;
1515         struct list_head *head = &root->fs_info->fs_devices->devices;
1516         struct btrfs_device *dev;
1517         struct btrfs_super_block *sb;
1518         struct btrfs_dev_item *dev_item;
1519         struct buffer_head *bh;
1520         int ret;
1521         int do_barriers;
1522         int max_errors;
1523         int total_errors = 0;
1524         u32 crc;
1525         u64 flags;
1526
1527         max_errors = btrfs_super_num_devices(&root->fs_info->super_copy) - 1;
1528         do_barriers = !btrfs_test_opt(root, NOBARRIER);
1529
1530         sb = &root->fs_info->super_for_commit;
1531         dev_item = &sb->dev_item;
1532         list_for_each(cur, head) {
1533                 dev = list_entry(cur, struct btrfs_device, dev_list);
1534                 if (!dev->bdev) {
1535                         total_errors++;
1536                         continue;
1537                 }
1538                 if (!dev->in_fs_metadata)
1539                         continue;
1540
1541                 btrfs_set_stack_device_type(dev_item, dev->type);
1542                 btrfs_set_stack_device_id(dev_item, dev->devid);
1543                 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
1544                 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
1545                 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
1546                 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
1547                 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
1548                 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
1549                 flags = btrfs_super_flags(sb);
1550                 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
1551
1552
1553                 crc = ~(u32)0;
1554                 crc = btrfs_csum_data(root, (char *)sb + BTRFS_CSUM_SIZE, crc,
1555                                       BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
1556                 btrfs_csum_final(crc, sb->csum);
1557
1558                 bh = __getblk(dev->bdev, BTRFS_SUPER_INFO_OFFSET / 4096,
1559                               BTRFS_SUPER_INFO_SIZE);
1560
1561                 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
1562                 dev->pending_io = bh;
1563
1564                 get_bh(bh);
1565                 set_buffer_uptodate(bh);
1566                 lock_buffer(bh);
1567                 bh->b_end_io = btrfs_end_buffer_write_sync;
1568
1569                 if (do_barriers && dev->barriers) {
1570                         ret = submit_bh(WRITE_BARRIER, bh);
1571                         if (ret == -EOPNOTSUPP) {
1572                                 printk("btrfs: disabling barriers on dev %s\n",
1573                                        dev->name);
1574                                 set_buffer_uptodate(bh);
1575                                 dev->barriers = 0;
1576                                 get_bh(bh);
1577                                 lock_buffer(bh);
1578                                 ret = submit_bh(WRITE, bh);
1579                         }
1580                 } else {
1581                         ret = submit_bh(WRITE, bh);
1582                 }
1583                 if (ret)
1584                         total_errors++;
1585         }
1586         if (total_errors > max_errors) {
1587                 printk("btrfs: %d errors while writing supers\n", total_errors);
1588                 BUG();
1589         }
1590         total_errors = 0;
1591
1592         list_for_each(cur, head) {
1593                 dev = list_entry(cur, struct btrfs_device, dev_list);
1594                 if (!dev->bdev)
1595                         continue;
1596                 if (!dev->in_fs_metadata)
1597                         continue;
1598
1599                 BUG_ON(!dev->pending_io);
1600                 bh = dev->pending_io;
1601                 wait_on_buffer(bh);
1602                 if (!buffer_uptodate(dev->pending_io)) {
1603                         if (do_barriers && dev->barriers) {
1604                                 printk("btrfs: disabling barriers on dev %s\n",
1605                                        dev->name);
1606                                 set_buffer_uptodate(bh);
1607                                 get_bh(bh);
1608                                 lock_buffer(bh);
1609                                 dev->barriers = 0;
1610                                 ret = submit_bh(WRITE, bh);
1611                                 BUG_ON(ret);
1612                                 wait_on_buffer(bh);
1613                                 if (!buffer_uptodate(bh))
1614                                         total_errors++;
1615                         } else {
1616                                 total_errors++;
1617                         }
1618
1619                 }
1620                 dev->pending_io = NULL;
1621                 brelse(bh);
1622         }
1623         if (total_errors > max_errors) {
1624                 printk("btrfs: %d errors while writing supers\n", total_errors);
1625                 BUG();
1626         }
1627         return 0;
1628 }
1629
1630 int write_ctree_super(struct btrfs_trans_handle *trans, struct btrfs_root
1631                       *root)
1632 {
1633         int ret;
1634
1635         ret = write_all_supers(root);
1636         return ret;
1637 }
1638
1639 int btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
1640 {
1641         radix_tree_delete(&fs_info->fs_roots_radix,
1642                           (unsigned long)root->root_key.objectid);
1643         if (root->in_sysfs)
1644                 btrfs_sysfs_del_root(root);
1645         if (root->inode)
1646                 iput(root->inode);
1647         if (root->node)
1648                 free_extent_buffer(root->node);
1649         if (root->commit_root)
1650                 free_extent_buffer(root->commit_root);
1651         if (root->name)
1652                 kfree(root->name);
1653         kfree(root);
1654         return 0;
1655 }
1656
1657 static int del_fs_roots(struct btrfs_fs_info *fs_info)
1658 {
1659         int ret;
1660         struct btrfs_root *gang[8];
1661         int i;
1662
1663         while(1) {
1664                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
1665                                              (void **)gang, 0,
1666                                              ARRAY_SIZE(gang));
1667                 if (!ret)
1668                         break;
1669                 for (i = 0; i < ret; i++)
1670                         btrfs_free_fs_root(fs_info, gang[i]);
1671         }
1672         return 0;
1673 }
1674
1675 int close_ctree(struct btrfs_root *root)
1676 {
1677         int ret;
1678         struct btrfs_trans_handle *trans;
1679         struct btrfs_fs_info *fs_info = root->fs_info;
1680
1681         fs_info->closing = 1;
1682         smp_mb();
1683
1684         kthread_stop(root->fs_info->transaction_kthread);
1685         kthread_stop(root->fs_info->cleaner_kthread);
1686
1687         btrfs_clean_old_snapshots(root);
1688         trans = btrfs_start_transaction(root, 1);
1689         ret = btrfs_commit_transaction(trans, root);
1690         /* run commit again to  drop the original snapshot */
1691         trans = btrfs_start_transaction(root, 1);
1692         btrfs_commit_transaction(trans, root);
1693         ret = btrfs_write_and_wait_transaction(NULL, root);
1694         BUG_ON(ret);
1695
1696         write_ctree_super(NULL, root);
1697
1698         if (fs_info->delalloc_bytes) {
1699                 printk("btrfs: at unmount delalloc count %Lu\n",
1700                        fs_info->delalloc_bytes);
1701         }
1702         if (fs_info->extent_root->node)
1703                 free_extent_buffer(fs_info->extent_root->node);
1704
1705         if (fs_info->tree_root->node)
1706                 free_extent_buffer(fs_info->tree_root->node);
1707
1708         if (root->fs_info->chunk_root->node);
1709                 free_extent_buffer(root->fs_info->chunk_root->node);
1710
1711         if (root->fs_info->dev_root->node);
1712                 free_extent_buffer(root->fs_info->dev_root->node);
1713
1714         btrfs_free_block_groups(root->fs_info);
1715         del_fs_roots(fs_info);
1716
1717         filemap_write_and_wait(fs_info->btree_inode->i_mapping);
1718
1719         truncate_inode_pages(fs_info->btree_inode->i_mapping, 0);
1720
1721         btrfs_stop_workers(&fs_info->fixup_workers);
1722         btrfs_stop_workers(&fs_info->workers);
1723         btrfs_stop_workers(&fs_info->endio_workers);
1724         btrfs_stop_workers(&fs_info->endio_write_workers);
1725         btrfs_stop_workers(&fs_info->submit_workers);
1726
1727         iput(fs_info->btree_inode);
1728 #if 0
1729         while(!list_empty(&fs_info->hashers)) {
1730                 struct btrfs_hasher *hasher;
1731                 hasher = list_entry(fs_info->hashers.next, struct btrfs_hasher,
1732                                     hashers);
1733                 list_del(&hasher->hashers);
1734                 crypto_free_hash(&fs_info->hash_tfm);
1735                 kfree(hasher);
1736         }
1737 #endif
1738         btrfs_close_devices(fs_info->fs_devices);
1739         btrfs_mapping_tree_free(&fs_info->mapping_tree);
1740
1741 #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,23)
1742         bdi_destroy(&fs_info->bdi);
1743 #endif
1744
1745         kfree(fs_info->extent_root);
1746         kfree(fs_info->tree_root);
1747         kfree(fs_info->chunk_root);
1748         kfree(fs_info->dev_root);
1749         return 0;
1750 }
1751
1752 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid)
1753 {
1754         int ret;
1755         struct inode *btree_inode = buf->first_page->mapping->host;
1756
1757         ret = extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree, buf);
1758         if (!ret)
1759                 return ret;
1760
1761         ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
1762                                     parent_transid);
1763         return !ret;
1764 }
1765
1766 int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
1767 {
1768         struct inode *btree_inode = buf->first_page->mapping->host;
1769         return set_extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree,
1770                                           buf);
1771 }
1772
1773 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
1774 {
1775         struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
1776         u64 transid = btrfs_header_generation(buf);
1777         struct inode *btree_inode = root->fs_info->btree_inode;
1778
1779         WARN_ON(!btrfs_tree_locked(buf));
1780         if (transid != root->fs_info->generation) {
1781                 printk(KERN_CRIT "transid mismatch buffer %llu, found %Lu running %Lu\n",
1782                         (unsigned long long)buf->start,
1783                         transid, root->fs_info->generation);
1784                 WARN_ON(1);
1785         }
1786         set_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree, buf);
1787 }
1788
1789 void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
1790 {
1791         /*
1792          * looks as though older kernels can get into trouble with
1793          * this code, they end up stuck in balance_dirty_pages forever
1794          */
1795         struct extent_io_tree *tree;
1796         u64 num_dirty;
1797         u64 start = 0;
1798         unsigned long thresh = 16 * 1024 * 1024;
1799         tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
1800
1801         if (current_is_pdflush())
1802                 return;
1803
1804         num_dirty = count_range_bits(tree, &start, (u64)-1,
1805                                      thresh, EXTENT_DIRTY);
1806         if (num_dirty > thresh) {
1807                 balance_dirty_pages_ratelimited_nr(
1808                                    root->fs_info->btree_inode->i_mapping, 1);
1809         }
1810         return;
1811 }
1812
1813 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
1814 {
1815         struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
1816         int ret;
1817         ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
1818         if (ret == 0) {
1819                 buf->flags |= EXTENT_UPTODATE;
1820         }
1821         return ret;
1822 }
1823
1824 static struct extent_io_ops btree_extent_io_ops = {
1825         .writepage_io_hook = btree_writepage_io_hook,
1826         .readpage_end_io_hook = btree_readpage_end_io_hook,
1827         .submit_bio_hook = btree_submit_bio_hook,
1828         /* note we're sharing with inode.c for the merge bio hook */
1829         .merge_bio_hook = btrfs_merge_bio_hook,
1830 };