]> git.karo-electronics.de Git - karo-tx-linux.git/blob - fs/btrfs/disk-io.c
Btrfs: Replace the transaction work queue with kthreads
[karo-tx-linux.git] / fs / btrfs / disk-io.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/version.h>
20 #include <linux/fs.h>
21 #include <linux/blkdev.h>
22 #include <linux/scatterlist.h>
23 #include <linux/swap.h>
24 #include <linux/radix-tree.h>
25 #include <linux/writeback.h>
26 #include <linux/buffer_head.h> // for block_sync_page
27 #include <linux/workqueue.h>
28 #include <linux/kthread.h>
29 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,20)
30 # include <linux/freezer.h>
31 #else
32 # include <linux/sched.h>
33 #endif
34 #include "crc32c.h"
35 #include "ctree.h"
36 #include "disk-io.h"
37 #include "transaction.h"
38 #include "btrfs_inode.h"
39 #include "volumes.h"
40 #include "print-tree.h"
41 #include "async-thread.h"
42 #include "locking.h"
43
44 #if 0
45 static int check_tree_block(struct btrfs_root *root, struct extent_buffer *buf)
46 {
47         if (extent_buffer_blocknr(buf) != btrfs_header_blocknr(buf)) {
48                 printk(KERN_CRIT "buf blocknr(buf) is %llu, header is %llu\n",
49                        (unsigned long long)extent_buffer_blocknr(buf),
50                        (unsigned long long)btrfs_header_blocknr(buf));
51                 return 1;
52         }
53         return 0;
54 }
55 #endif
56
57 static struct extent_io_ops btree_extent_io_ops;
58 static void end_workqueue_fn(struct btrfs_work *work);
59
60 struct end_io_wq {
61         struct bio *bio;
62         bio_end_io_t *end_io;
63         void *private;
64         struct btrfs_fs_info *info;
65         int error;
66         int metadata;
67         struct list_head list;
68         struct btrfs_work work;
69 };
70
71 struct async_submit_bio {
72         struct inode *inode;
73         struct bio *bio;
74         struct list_head list;
75         extent_submit_bio_hook_t *submit_bio_hook;
76         int rw;
77         int mirror_num;
78         struct btrfs_work work;
79 };
80
81 struct extent_map *btree_get_extent(struct inode *inode, struct page *page,
82                                     size_t page_offset, u64 start, u64 len,
83                                     int create)
84 {
85         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
86         struct extent_map *em;
87         int ret;
88
89         spin_lock(&em_tree->lock);
90         em = lookup_extent_mapping(em_tree, start, len);
91         if (em) {
92                 em->bdev =
93                         BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
94                 spin_unlock(&em_tree->lock);
95                 goto out;
96         }
97         spin_unlock(&em_tree->lock);
98
99         em = alloc_extent_map(GFP_NOFS);
100         if (!em) {
101                 em = ERR_PTR(-ENOMEM);
102                 goto out;
103         }
104         em->start = 0;
105         em->len = (u64)-1;
106         em->block_start = 0;
107         em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
108
109         spin_lock(&em_tree->lock);
110         ret = add_extent_mapping(em_tree, em);
111         if (ret == -EEXIST) {
112                 u64 failed_start = em->start;
113                 u64 failed_len = em->len;
114
115                 printk("failed to insert %Lu %Lu -> %Lu into tree\n",
116                        em->start, em->len, em->block_start);
117                 free_extent_map(em);
118                 em = lookup_extent_mapping(em_tree, start, len);
119                 if (em) {
120                         printk("after failing, found %Lu %Lu %Lu\n",
121                                em->start, em->len, em->block_start);
122                         ret = 0;
123                 } else {
124                         em = lookup_extent_mapping(em_tree, failed_start,
125                                                    failed_len);
126                         if (em) {
127                                 printk("double failure lookup gives us "
128                                        "%Lu %Lu -> %Lu\n", em->start,
129                                        em->len, em->block_start);
130                                 free_extent_map(em);
131                         }
132                         ret = -EIO;
133                 }
134         } else if (ret) {
135                 free_extent_map(em);
136                 em = NULL;
137         }
138         spin_unlock(&em_tree->lock);
139
140         if (ret)
141                 em = ERR_PTR(ret);
142 out:
143         return em;
144 }
145
146 u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
147 {
148         return btrfs_crc32c(seed, data, len);
149 }
150
151 void btrfs_csum_final(u32 crc, char *result)
152 {
153         *(__le32 *)result = ~cpu_to_le32(crc);
154 }
155
156 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
157                            int verify)
158 {
159         char result[BTRFS_CRC32_SIZE];
160         unsigned long len;
161         unsigned long cur_len;
162         unsigned long offset = BTRFS_CSUM_SIZE;
163         char *map_token = NULL;
164         char *kaddr;
165         unsigned long map_start;
166         unsigned long map_len;
167         int err;
168         u32 crc = ~(u32)0;
169
170         len = buf->len - offset;
171         while(len > 0) {
172                 err = map_private_extent_buffer(buf, offset, 32,
173                                         &map_token, &kaddr,
174                                         &map_start, &map_len, KM_USER0);
175                 if (err) {
176                         printk("failed to map extent buffer! %lu\n",
177                                offset);
178                         return 1;
179                 }
180                 cur_len = min(len, map_len - (offset - map_start));
181                 crc = btrfs_csum_data(root, kaddr + offset - map_start,
182                                       crc, cur_len);
183                 len -= cur_len;
184                 offset += cur_len;
185                 unmap_extent_buffer(buf, map_token, KM_USER0);
186         }
187         btrfs_csum_final(crc, result);
188
189         if (verify) {
190                 int from_this_trans = 0;
191
192                 if (root->fs_info->running_transaction &&
193                     btrfs_header_generation(buf) ==
194                     root->fs_info->running_transaction->transid)
195                         from_this_trans = 1;
196
197                 /* FIXME, this is not good */
198                 if (memcmp_extent_buffer(buf, result, 0, BTRFS_CRC32_SIZE)) {
199                         u32 val;
200                         u32 found = 0;
201                         memcpy(&found, result, BTRFS_CRC32_SIZE);
202
203                         read_extent_buffer(buf, &val, 0, BTRFS_CRC32_SIZE);
204                         printk("btrfs: %s checksum verify failed on %llu "
205                                "wanted %X found %X from_this_trans %d "
206                                "level %d\n",
207                                root->fs_info->sb->s_id,
208                                buf->start, val, found, from_this_trans,
209                                btrfs_header_level(buf));
210                         return 1;
211                 }
212         } else {
213                 write_extent_buffer(buf, result, 0, BTRFS_CRC32_SIZE);
214         }
215         return 0;
216 }
217
218 static int verify_parent_transid(struct extent_io_tree *io_tree,
219                                  struct extent_buffer *eb, u64 parent_transid)
220 {
221         int ret;
222
223         if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
224                 return 0;
225
226         lock_extent(io_tree, eb->start, eb->start + eb->len - 1, GFP_NOFS);
227         if (extent_buffer_uptodate(io_tree, eb) &&
228             btrfs_header_generation(eb) == parent_transid) {
229                 ret = 0;
230                 goto out;
231         }
232         printk("parent transid verify failed on %llu wanted %llu found %llu\n",
233                (unsigned long long)eb->start,
234                (unsigned long long)parent_transid,
235                (unsigned long long)btrfs_header_generation(eb));
236         ret = 1;
237 out:
238         clear_extent_buffer_uptodate(io_tree, eb);
239         unlock_extent(io_tree, eb->start, eb->start + eb->len - 1,
240                       GFP_NOFS);
241         return ret;
242
243 }
244
245 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
246                                           struct extent_buffer *eb,
247                                           u64 start, u64 parent_transid)
248 {
249         struct extent_io_tree *io_tree;
250         int ret;
251         int num_copies = 0;
252         int mirror_num = 0;
253
254         io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
255         while (1) {
256                 ret = read_extent_buffer_pages(io_tree, eb, start, 1,
257                                                btree_get_extent, mirror_num);
258                 if (!ret &&
259                     !verify_parent_transid(io_tree, eb, parent_transid))
260                         return ret;
261
262                 num_copies = btrfs_num_copies(&root->fs_info->mapping_tree,
263                                               eb->start, eb->len);
264                 if (num_copies == 1)
265                         return ret;
266
267                 mirror_num++;
268                 if (mirror_num > num_copies)
269                         return ret;
270         }
271         return -EIO;
272 }
273
274 int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
275 {
276         struct extent_io_tree *tree;
277         u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
278         u64 found_start;
279         int found_level;
280         unsigned long len;
281         struct extent_buffer *eb;
282         int ret;
283
284         tree = &BTRFS_I(page->mapping->host)->io_tree;
285
286         if (page->private == EXTENT_PAGE_PRIVATE)
287                 goto out;
288         if (!page->private)
289                 goto out;
290         len = page->private >> 2;
291         if (len == 0) {
292                 WARN_ON(1);
293         }
294         eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS);
295         ret = btree_read_extent_buffer_pages(root, eb, start + PAGE_CACHE_SIZE,
296                                              btrfs_header_generation(eb));
297         BUG_ON(ret);
298         btrfs_clear_buffer_defrag(eb);
299         found_start = btrfs_header_bytenr(eb);
300         if (found_start != start) {
301                 printk("warning: eb start incorrect %Lu buffer %Lu len %lu\n",
302                        start, found_start, len);
303                 WARN_ON(1);
304                 goto err;
305         }
306         if (eb->first_page != page) {
307                 printk("bad first page %lu %lu\n", eb->first_page->index,
308                        page->index);
309                 WARN_ON(1);
310                 goto err;
311         }
312         if (!PageUptodate(page)) {
313                 printk("csum not up to date page %lu\n", page->index);
314                 WARN_ON(1);
315                 goto err;
316         }
317         found_level = btrfs_header_level(eb);
318         spin_lock(&root->fs_info->hash_lock);
319         btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
320         spin_unlock(&root->fs_info->hash_lock);
321         csum_tree_block(root, eb, 0);
322 err:
323         free_extent_buffer(eb);
324 out:
325         return 0;
326 }
327
328 static int btree_writepage_io_hook(struct page *page, u64 start, u64 end)
329 {
330         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
331
332         csum_dirty_buffer(root, page);
333         return 0;
334 }
335
336 int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
337                                struct extent_state *state)
338 {
339         struct extent_io_tree *tree;
340         u64 found_start;
341         int found_level;
342         unsigned long len;
343         struct extent_buffer *eb;
344         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
345         int ret = 0;
346
347         tree = &BTRFS_I(page->mapping->host)->io_tree;
348         if (page->private == EXTENT_PAGE_PRIVATE)
349                 goto out;
350         if (!page->private)
351                 goto out;
352         len = page->private >> 2;
353         if (len == 0) {
354                 WARN_ON(1);
355         }
356         eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS);
357
358         btrfs_clear_buffer_defrag(eb);
359         found_start = btrfs_header_bytenr(eb);
360         if (found_start != start) {
361                 ret = -EIO;
362                 goto err;
363         }
364         if (eb->first_page != page) {
365                 printk("bad first page %lu %lu\n", eb->first_page->index,
366                        page->index);
367                 WARN_ON(1);
368                 ret = -EIO;
369                 goto err;
370         }
371         if (memcmp_extent_buffer(eb, root->fs_info->fsid,
372                                  (unsigned long)btrfs_header_fsid(eb),
373                                  BTRFS_FSID_SIZE)) {
374                 printk("bad fsid on block %Lu\n", eb->start);
375                 ret = -EIO;
376                 goto err;
377         }
378         found_level = btrfs_header_level(eb);
379
380         ret = csum_tree_block(root, eb, 1);
381         if (ret)
382                 ret = -EIO;
383
384         end = min_t(u64, eb->len, PAGE_CACHE_SIZE);
385         end = eb->start + end - 1;
386         release_extent_buffer_tail_pages(eb);
387 err:
388         free_extent_buffer(eb);
389 out:
390         return ret;
391 }
392
393 #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,23)
394 static void end_workqueue_bio(struct bio *bio, int err)
395 #else
396 static int end_workqueue_bio(struct bio *bio,
397                                    unsigned int bytes_done, int err)
398 #endif
399 {
400         struct end_io_wq *end_io_wq = bio->bi_private;
401         struct btrfs_fs_info *fs_info;
402
403 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
404         if (bio->bi_size)
405                 return 1;
406 #endif
407
408         fs_info = end_io_wq->info;
409         end_io_wq->error = err;
410         end_io_wq->work.func = end_workqueue_fn;
411         end_io_wq->work.flags = 0;
412         btrfs_queue_worker(&fs_info->endio_workers, &end_io_wq->work);
413
414 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
415         return 0;
416 #endif
417 }
418
419 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
420                         int metadata)
421 {
422         struct end_io_wq *end_io_wq;
423         end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
424         if (!end_io_wq)
425                 return -ENOMEM;
426
427         end_io_wq->private = bio->bi_private;
428         end_io_wq->end_io = bio->bi_end_io;
429         end_io_wq->info = info;
430         end_io_wq->error = 0;
431         end_io_wq->bio = bio;
432         end_io_wq->metadata = metadata;
433
434         bio->bi_private = end_io_wq;
435         bio->bi_end_io = end_workqueue_bio;
436         return 0;
437 }
438
439 static void run_one_async_submit(struct btrfs_work *work)
440 {
441         struct btrfs_fs_info *fs_info;
442         struct async_submit_bio *async;
443
444         async = container_of(work, struct  async_submit_bio, work);
445         fs_info = BTRFS_I(async->inode)->root->fs_info;
446         atomic_dec(&fs_info->nr_async_submits);
447         async->submit_bio_hook(async->inode, async->rw, async->bio,
448                                async->mirror_num);
449         kfree(async);
450 }
451
452 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
453                         int rw, struct bio *bio, int mirror_num,
454                         extent_submit_bio_hook_t *submit_bio_hook)
455 {
456         struct async_submit_bio *async;
457
458         async = kmalloc(sizeof(*async), GFP_NOFS);
459         if (!async)
460                 return -ENOMEM;
461
462         async->inode = inode;
463         async->rw = rw;
464         async->bio = bio;
465         async->mirror_num = mirror_num;
466         async->submit_bio_hook = submit_bio_hook;
467         async->work.func = run_one_async_submit;
468         async->work.flags = 0;
469         atomic_inc(&fs_info->nr_async_submits);
470         btrfs_queue_worker(&fs_info->workers, &async->work);
471         return 0;
472 }
473
474 static int __btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
475                                  int mirror_num)
476 {
477         struct btrfs_root *root = BTRFS_I(inode)->root;
478         u64 offset;
479         int ret;
480
481         offset = bio->bi_sector << 9;
482
483         /*
484          * when we're called for a write, we're already in the async
485          * submission context.  Just jump ingo btrfs_map_bio
486          */
487         if (rw & (1 << BIO_RW)) {
488                 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
489                                      mirror_num, 0);
490         }
491
492         /*
493          * called for a read, do the setup so that checksum validation
494          * can happen in the async kernel threads
495          */
496         ret = btrfs_bio_wq_end_io(root->fs_info, bio, 1);
497         BUG_ON(ret);
498
499         return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
500 }
501
502 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
503                                  int mirror_num)
504 {
505         /*
506          * kthread helpers are used to submit writes so that checksumming
507          * can happen in parallel across all CPUs
508          */
509         if (!(rw & (1 << BIO_RW))) {
510                 return __btree_submit_bio_hook(inode, rw, bio, mirror_num);
511         }
512         return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
513                                    inode, rw, bio, mirror_num,
514                                    __btree_submit_bio_hook);
515 }
516
517 static int btree_writepage(struct page *page, struct writeback_control *wbc)
518 {
519         struct extent_io_tree *tree;
520         tree = &BTRFS_I(page->mapping->host)->io_tree;
521         return extent_write_full_page(tree, page, btree_get_extent, wbc);
522 }
523
524 static int btree_writepages(struct address_space *mapping,
525                             struct writeback_control *wbc)
526 {
527         struct extent_io_tree *tree;
528         tree = &BTRFS_I(mapping->host)->io_tree;
529         if (wbc->sync_mode == WB_SYNC_NONE) {
530                 u64 num_dirty;
531                 u64 start = 0;
532                 unsigned long thresh = 96 * 1024 * 1024;
533
534                 if (wbc->for_kupdate)
535                         return 0;
536
537                 if (current_is_pdflush()) {
538                         thresh = 96 * 1024 * 1024;
539                 } else {
540                         thresh = 8 * 1024 * 1024;
541                 }
542                 num_dirty = count_range_bits(tree, &start, (u64)-1,
543                                              thresh, EXTENT_DIRTY);
544                 if (num_dirty < thresh) {
545                         return 0;
546                 }
547         }
548         return extent_writepages(tree, mapping, btree_get_extent, wbc);
549 }
550
551 int btree_readpage(struct file *file, struct page *page)
552 {
553         struct extent_io_tree *tree;
554         tree = &BTRFS_I(page->mapping->host)->io_tree;
555         return extent_read_full_page(tree, page, btree_get_extent);
556 }
557
558 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
559 {
560         struct extent_io_tree *tree;
561         struct extent_map_tree *map;
562         int ret;
563
564         if (page_count(page) > 3) {
565                 /* once for page->private, once for the caller, once
566                  * once for the page cache
567                  */
568                 return 0;
569         }
570         tree = &BTRFS_I(page->mapping->host)->io_tree;
571         map = &BTRFS_I(page->mapping->host)->extent_tree;
572         ret = try_release_extent_state(map, tree, page, gfp_flags);
573         if (ret == 1) {
574                 invalidate_extent_lru(tree, page_offset(page), PAGE_CACHE_SIZE);
575                 ClearPagePrivate(page);
576                 set_page_private(page, 0);
577                 page_cache_release(page);
578         }
579         return ret;
580 }
581
582 static void btree_invalidatepage(struct page *page, unsigned long offset)
583 {
584         struct extent_io_tree *tree;
585         tree = &BTRFS_I(page->mapping->host)->io_tree;
586         extent_invalidatepage(tree, page, offset);
587         btree_releasepage(page, GFP_NOFS);
588         if (PagePrivate(page)) {
589                 invalidate_extent_lru(tree, page_offset(page), PAGE_CACHE_SIZE);
590                 ClearPagePrivate(page);
591                 set_page_private(page, 0);
592                 page_cache_release(page);
593         }
594 }
595
596 #if 0
597 static int btree_writepage(struct page *page, struct writeback_control *wbc)
598 {
599         struct buffer_head *bh;
600         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
601         struct buffer_head *head;
602         if (!page_has_buffers(page)) {
603                 create_empty_buffers(page, root->fs_info->sb->s_blocksize,
604                                         (1 << BH_Dirty)|(1 << BH_Uptodate));
605         }
606         head = page_buffers(page);
607         bh = head;
608         do {
609                 if (buffer_dirty(bh))
610                         csum_tree_block(root, bh, 0);
611                 bh = bh->b_this_page;
612         } while (bh != head);
613         return block_write_full_page(page, btree_get_block, wbc);
614 }
615 #endif
616
617 static struct address_space_operations btree_aops = {
618         .readpage       = btree_readpage,
619         .writepage      = btree_writepage,
620         .writepages     = btree_writepages,
621         .releasepage    = btree_releasepage,
622         .invalidatepage = btree_invalidatepage,
623         .sync_page      = block_sync_page,
624 };
625
626 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
627                          u64 parent_transid)
628 {
629         struct extent_buffer *buf = NULL;
630         struct inode *btree_inode = root->fs_info->btree_inode;
631         int ret = 0;
632
633         buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
634         if (!buf)
635                 return 0;
636         read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
637                                  buf, 0, 0, btree_get_extent, 0);
638         free_extent_buffer(buf);
639         return ret;
640 }
641
642 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
643                                             u64 bytenr, u32 blocksize)
644 {
645         struct inode *btree_inode = root->fs_info->btree_inode;
646         struct extent_buffer *eb;
647         eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
648                                 bytenr, blocksize, GFP_NOFS);
649         return eb;
650 }
651
652 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
653                                                  u64 bytenr, u32 blocksize)
654 {
655         struct inode *btree_inode = root->fs_info->btree_inode;
656         struct extent_buffer *eb;
657
658         eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
659                                  bytenr, blocksize, NULL, GFP_NOFS);
660         return eb;
661 }
662
663
664 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
665                                       u32 blocksize, u64 parent_transid)
666 {
667         struct extent_buffer *buf = NULL;
668         struct inode *btree_inode = root->fs_info->btree_inode;
669         struct extent_io_tree *io_tree;
670         int ret;
671
672         io_tree = &BTRFS_I(btree_inode)->io_tree;
673
674         buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
675         if (!buf)
676                 return NULL;
677
678         ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
679
680         if (ret == 0) {
681                 buf->flags |= EXTENT_UPTODATE;
682         }
683         return buf;
684
685 }
686
687 int clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
688                      struct extent_buffer *buf)
689 {
690         struct inode *btree_inode = root->fs_info->btree_inode;
691         if (btrfs_header_generation(buf) ==
692             root->fs_info->running_transaction->transid) {
693                 WARN_ON(!btrfs_tree_locked(buf));
694                 clear_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
695                                           buf);
696         }
697         return 0;
698 }
699
700 int wait_on_tree_block_writeback(struct btrfs_root *root,
701                                  struct extent_buffer *buf)
702 {
703         struct inode *btree_inode = root->fs_info->btree_inode;
704         wait_on_extent_buffer_writeback(&BTRFS_I(btree_inode)->io_tree,
705                                         buf);
706         return 0;
707 }
708
709 static int __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
710                         u32 stripesize, struct btrfs_root *root,
711                         struct btrfs_fs_info *fs_info,
712                         u64 objectid)
713 {
714         root->node = NULL;
715         root->inode = NULL;
716         root->commit_root = NULL;
717         root->sectorsize = sectorsize;
718         root->nodesize = nodesize;
719         root->leafsize = leafsize;
720         root->stripesize = stripesize;
721         root->ref_cows = 0;
722         root->track_dirty = 0;
723
724         root->fs_info = fs_info;
725         root->objectid = objectid;
726         root->last_trans = 0;
727         root->highest_inode = 0;
728         root->last_inode_alloc = 0;
729         root->name = NULL;
730         root->in_sysfs = 0;
731
732         INIT_LIST_HEAD(&root->dirty_list);
733         spin_lock_init(&root->node_lock);
734         mutex_init(&root->objectid_mutex);
735         memset(&root->root_key, 0, sizeof(root->root_key));
736         memset(&root->root_item, 0, sizeof(root->root_item));
737         memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
738         memset(&root->root_kobj, 0, sizeof(root->root_kobj));
739         init_completion(&root->kobj_unregister);
740         root->defrag_running = 0;
741         root->defrag_level = 0;
742         root->root_key.objectid = objectid;
743         return 0;
744 }
745
746 static int find_and_setup_root(struct btrfs_root *tree_root,
747                                struct btrfs_fs_info *fs_info,
748                                u64 objectid,
749                                struct btrfs_root *root)
750 {
751         int ret;
752         u32 blocksize;
753
754         __setup_root(tree_root->nodesize, tree_root->leafsize,
755                      tree_root->sectorsize, tree_root->stripesize,
756                      root, fs_info, objectid);
757         ret = btrfs_find_last_root(tree_root, objectid,
758                                    &root->root_item, &root->root_key);
759         BUG_ON(ret);
760
761         blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
762         root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
763                                      blocksize, 0);
764         BUG_ON(!root->node);
765         return 0;
766 }
767
768 struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_fs_info *fs_info,
769                                                struct btrfs_key *location)
770 {
771         struct btrfs_root *root;
772         struct btrfs_root *tree_root = fs_info->tree_root;
773         struct btrfs_path *path;
774         struct extent_buffer *l;
775         u64 highest_inode;
776         u32 blocksize;
777         int ret = 0;
778
779         root = kzalloc(sizeof(*root), GFP_NOFS);
780         if (!root)
781                 return ERR_PTR(-ENOMEM);
782         if (location->offset == (u64)-1) {
783                 ret = find_and_setup_root(tree_root, fs_info,
784                                           location->objectid, root);
785                 if (ret) {
786                         kfree(root);
787                         return ERR_PTR(ret);
788                 }
789                 goto insert;
790         }
791
792         __setup_root(tree_root->nodesize, tree_root->leafsize,
793                      tree_root->sectorsize, tree_root->stripesize,
794                      root, fs_info, location->objectid);
795
796         path = btrfs_alloc_path();
797         BUG_ON(!path);
798         ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
799         if (ret != 0) {
800                 if (ret > 0)
801                         ret = -ENOENT;
802                 goto out;
803         }
804         l = path->nodes[0];
805         read_extent_buffer(l, &root->root_item,
806                btrfs_item_ptr_offset(l, path->slots[0]),
807                sizeof(root->root_item));
808         memcpy(&root->root_key, location, sizeof(*location));
809         ret = 0;
810 out:
811         btrfs_release_path(root, path);
812         btrfs_free_path(path);
813         if (ret) {
814                 kfree(root);
815                 return ERR_PTR(ret);
816         }
817         blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
818         root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
819                                      blocksize, 0);
820         BUG_ON(!root->node);
821 insert:
822         root->ref_cows = 1;
823         ret = btrfs_find_highest_inode(root, &highest_inode);
824         if (ret == 0) {
825                 root->highest_inode = highest_inode;
826                 root->last_inode_alloc = highest_inode;
827         }
828         return root;
829 }
830
831 struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
832                                         u64 root_objectid)
833 {
834         struct btrfs_root *root;
835
836         if (root_objectid == BTRFS_ROOT_TREE_OBJECTID)
837                 return fs_info->tree_root;
838         if (root_objectid == BTRFS_EXTENT_TREE_OBJECTID)
839                 return fs_info->extent_root;
840
841         root = radix_tree_lookup(&fs_info->fs_roots_radix,
842                                  (unsigned long)root_objectid);
843         return root;
844 }
845
846 struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
847                                               struct btrfs_key *location)
848 {
849         struct btrfs_root *root;
850         int ret;
851
852         if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
853                 return fs_info->tree_root;
854         if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
855                 return fs_info->extent_root;
856         if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
857                 return fs_info->chunk_root;
858         if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
859                 return fs_info->dev_root;
860
861         root = radix_tree_lookup(&fs_info->fs_roots_radix,
862                                  (unsigned long)location->objectid);
863         if (root)
864                 return root;
865
866         root = btrfs_read_fs_root_no_radix(fs_info, location);
867         if (IS_ERR(root))
868                 return root;
869         ret = radix_tree_insert(&fs_info->fs_roots_radix,
870                                 (unsigned long)root->root_key.objectid,
871                                 root);
872         if (ret) {
873                 free_extent_buffer(root->node);
874                 kfree(root);
875                 return ERR_PTR(ret);
876         }
877         ret = btrfs_find_dead_roots(fs_info->tree_root,
878                                     root->root_key.objectid, root);
879         BUG_ON(ret);
880
881         return root;
882 }
883
884 struct btrfs_root *btrfs_read_fs_root(struct btrfs_fs_info *fs_info,
885                                       struct btrfs_key *location,
886                                       const char *name, int namelen)
887 {
888         struct btrfs_root *root;
889         int ret;
890
891         root = btrfs_read_fs_root_no_name(fs_info, location);
892         if (!root)
893                 return NULL;
894
895         if (root->in_sysfs)
896                 return root;
897
898         ret = btrfs_set_root_name(root, name, namelen);
899         if (ret) {
900                 free_extent_buffer(root->node);
901                 kfree(root);
902                 return ERR_PTR(ret);
903         }
904
905         ret = btrfs_sysfs_add_root(root);
906         if (ret) {
907                 free_extent_buffer(root->node);
908                 kfree(root->name);
909                 kfree(root);
910                 return ERR_PTR(ret);
911         }
912         root->in_sysfs = 1;
913         return root;
914 }
915 #if 0
916 static int add_hasher(struct btrfs_fs_info *info, char *type) {
917         struct btrfs_hasher *hasher;
918
919         hasher = kmalloc(sizeof(*hasher), GFP_NOFS);
920         if (!hasher)
921                 return -ENOMEM;
922         hasher->hash_tfm = crypto_alloc_hash(type, 0, CRYPTO_ALG_ASYNC);
923         if (!hasher->hash_tfm) {
924                 kfree(hasher);
925                 return -EINVAL;
926         }
927         spin_lock(&info->hash_lock);
928         list_add(&hasher->list, &info->hashers);
929         spin_unlock(&info->hash_lock);
930         return 0;
931 }
932 #endif
933
934 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
935 {
936         struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
937         int ret = 0;
938         int limit = 256 * info->fs_devices->open_devices;
939         struct list_head *cur;
940         struct btrfs_device *device;
941         struct backing_dev_info *bdi;
942
943         if ((bdi_bits & (1 << BDI_write_congested)) &&
944             atomic_read(&info->nr_async_submits) > limit) {
945                 return 1;
946         }
947
948         list_for_each(cur, &info->fs_devices->devices) {
949                 device = list_entry(cur, struct btrfs_device, dev_list);
950                 if (!device->bdev)
951                         continue;
952                 bdi = blk_get_backing_dev_info(device->bdev);
953                 if (bdi && bdi_congested(bdi, bdi_bits)) {
954                         ret = 1;
955                         break;
956                 }
957         }
958         return ret;
959 }
960
961 /*
962  * this unplugs every device on the box, and it is only used when page
963  * is null
964  */
965 static void __unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
966 {
967         struct list_head *cur;
968         struct btrfs_device *device;
969         struct btrfs_fs_info *info;
970
971         info = (struct btrfs_fs_info *)bdi->unplug_io_data;
972         list_for_each(cur, &info->fs_devices->devices) {
973                 device = list_entry(cur, struct btrfs_device, dev_list);
974                 bdi = blk_get_backing_dev_info(device->bdev);
975                 if (bdi->unplug_io_fn) {
976                         bdi->unplug_io_fn(bdi, page);
977                 }
978         }
979 }
980
981 void btrfs_unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
982 {
983         struct inode *inode;
984         struct extent_map_tree *em_tree;
985         struct extent_map *em;
986         struct address_space *mapping;
987         u64 offset;
988
989         /* the generic O_DIRECT read code does this */
990         if (!page) {
991                 __unplug_io_fn(bdi, page);
992                 return;
993         }
994
995         /*
996          * page->mapping may change at any time.  Get a consistent copy
997          * and use that for everything below
998          */
999         smp_mb();
1000         mapping = page->mapping;
1001         if (!mapping)
1002                 return;
1003
1004         inode = mapping->host;
1005         offset = page_offset(page);
1006
1007         em_tree = &BTRFS_I(inode)->extent_tree;
1008         spin_lock(&em_tree->lock);
1009         em = lookup_extent_mapping(em_tree, offset, PAGE_CACHE_SIZE);
1010         spin_unlock(&em_tree->lock);
1011         if (!em)
1012                 return;
1013
1014         offset = offset - em->start;
1015         btrfs_unplug_page(&BTRFS_I(inode)->root->fs_info->mapping_tree,
1016                           em->block_start + offset, page);
1017         free_extent_map(em);
1018 }
1019
1020 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1021 {
1022 #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,23)
1023         bdi_init(bdi);
1024 #endif
1025         bdi->ra_pages   = default_backing_dev_info.ra_pages;
1026         bdi->state              = 0;
1027         bdi->capabilities       = default_backing_dev_info.capabilities;
1028         bdi->unplug_io_fn       = btrfs_unplug_io_fn;
1029         bdi->unplug_io_data     = info;
1030         bdi->congested_fn       = btrfs_congested_fn;
1031         bdi->congested_data     = info;
1032         return 0;
1033 }
1034
1035 static int bio_ready_for_csum(struct bio *bio)
1036 {
1037         u64 length = 0;
1038         u64 buf_len = 0;
1039         u64 start = 0;
1040         struct page *page;
1041         struct extent_io_tree *io_tree = NULL;
1042         struct btrfs_fs_info *info = NULL;
1043         struct bio_vec *bvec;
1044         int i;
1045         int ret;
1046
1047         bio_for_each_segment(bvec, bio, i) {
1048                 page = bvec->bv_page;
1049                 if (page->private == EXTENT_PAGE_PRIVATE) {
1050                         length += bvec->bv_len;
1051                         continue;
1052                 }
1053                 if (!page->private) {
1054                         length += bvec->bv_len;
1055                         continue;
1056                 }
1057                 length = bvec->bv_len;
1058                 buf_len = page->private >> 2;
1059                 start = page_offset(page) + bvec->bv_offset;
1060                 io_tree = &BTRFS_I(page->mapping->host)->io_tree;
1061                 info = BTRFS_I(page->mapping->host)->root->fs_info;
1062         }
1063         /* are we fully contained in this bio? */
1064         if (buf_len <= length)
1065                 return 1;
1066
1067         ret = extent_range_uptodate(io_tree, start + length,
1068                                     start + buf_len - 1);
1069         if (ret == 1)
1070                 return ret;
1071         return ret;
1072 }
1073
1074 /*
1075  * called by the kthread helper functions to finally call the bio end_io
1076  * functions.  This is where read checksum verification actually happens
1077  */
1078 static void end_workqueue_fn(struct btrfs_work *work)
1079 {
1080         struct bio *bio;
1081         struct end_io_wq *end_io_wq;
1082         struct btrfs_fs_info *fs_info;
1083         int error;
1084
1085         end_io_wq = container_of(work, struct end_io_wq, work);
1086         bio = end_io_wq->bio;
1087         fs_info = end_io_wq->info;
1088
1089         /* metadata bios are special because the whole tree block must
1090          * be checksummed at once.  This makes sure the entire block is in
1091          * ram and up to date before trying to verify things.  For
1092          * blocksize <= pagesize, it is basically a noop
1093          */
1094         if (end_io_wq->metadata && !bio_ready_for_csum(bio)) {
1095                 btrfs_queue_worker(&fs_info->endio_workers,
1096                                    &end_io_wq->work);
1097                 return;
1098         }
1099         error = end_io_wq->error;
1100         bio->bi_private = end_io_wq->private;
1101         bio->bi_end_io = end_io_wq->end_io;
1102         kfree(end_io_wq);
1103 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
1104         bio_endio(bio, bio->bi_size, error);
1105 #else
1106         bio_endio(bio, error);
1107 #endif
1108 }
1109
1110 static int cleaner_kthread(void *arg)
1111 {
1112         struct btrfs_root *root = arg;
1113
1114         do {
1115                 smp_mb();
1116                 if (root->fs_info->closing)
1117                         break;
1118
1119                 vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
1120                 mutex_lock(&root->fs_info->cleaner_mutex);
1121 printk("cleaner awake\n");
1122                 btrfs_clean_old_snapshots(root);
1123 printk("cleaner done\n");
1124                 mutex_unlock(&root->fs_info->cleaner_mutex);
1125
1126                 if (freezing(current)) {
1127                         refrigerator();
1128                 } else {
1129                         smp_mb();
1130                         if (root->fs_info->closing)
1131                                 break;
1132                         set_current_state(TASK_INTERRUPTIBLE);
1133                         schedule();
1134                         __set_current_state(TASK_RUNNING);
1135                 }
1136         } while (!kthread_should_stop());
1137         return 0;
1138 }
1139
1140 static int transaction_kthread(void *arg)
1141 {
1142         struct btrfs_root *root = arg;
1143         struct btrfs_trans_handle *trans;
1144         struct btrfs_transaction *cur;
1145         unsigned long now;
1146         unsigned long delay;
1147         int ret;
1148
1149         do {
1150                 smp_mb();
1151                 if (root->fs_info->closing)
1152                         break;
1153
1154                 delay = HZ * 30;
1155                 vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
1156                 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1157
1158                 mutex_lock(&root->fs_info->trans_mutex);
1159                 cur = root->fs_info->running_transaction;
1160                 if (!cur) {
1161                         mutex_unlock(&root->fs_info->trans_mutex);
1162                         goto sleep;
1163                 }
1164                 now = get_seconds();
1165                 if (now < cur->start_time || now - cur->start_time < 30) {
1166                         mutex_unlock(&root->fs_info->trans_mutex);
1167                         delay = HZ * 5;
1168                         goto sleep;
1169                 }
1170                 mutex_unlock(&root->fs_info->trans_mutex);
1171                 btrfs_defrag_dirty_roots(root->fs_info);
1172                 trans = btrfs_start_transaction(root, 1);
1173                 ret = btrfs_commit_transaction(trans, root);
1174 sleep:
1175                 wake_up_process(root->fs_info->cleaner_kthread);
1176                 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1177
1178                 if (freezing(current)) {
1179                         refrigerator();
1180                 } else {
1181                         if (root->fs_info->closing)
1182                                 break;
1183                         set_current_state(TASK_INTERRUPTIBLE);
1184                         schedule_timeout(delay);
1185                         __set_current_state(TASK_RUNNING);
1186                 }
1187         } while (!kthread_should_stop());
1188         return 0;
1189 }
1190
1191 struct btrfs_root *open_ctree(struct super_block *sb,
1192                               struct btrfs_fs_devices *fs_devices,
1193                               char *options)
1194 {
1195         u32 sectorsize;
1196         u32 nodesize;
1197         u32 leafsize;
1198         u32 blocksize;
1199         u32 stripesize;
1200         struct buffer_head *bh;
1201         struct btrfs_root *extent_root = kmalloc(sizeof(struct btrfs_root),
1202                                                  GFP_NOFS);
1203         struct btrfs_root *tree_root = kmalloc(sizeof(struct btrfs_root),
1204                                                GFP_NOFS);
1205         struct btrfs_fs_info *fs_info = kzalloc(sizeof(*fs_info),
1206                                                 GFP_NOFS);
1207         struct btrfs_root *chunk_root = kmalloc(sizeof(struct btrfs_root),
1208                                                 GFP_NOFS);
1209         struct btrfs_root *dev_root = kmalloc(sizeof(struct btrfs_root),
1210                                               GFP_NOFS);
1211         int ret;
1212         int err = -EINVAL;
1213
1214         struct btrfs_super_block *disk_super;
1215
1216         if (!extent_root || !tree_root || !fs_info) {
1217                 err = -ENOMEM;
1218                 goto fail;
1219         }
1220         INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_NOFS);
1221         INIT_LIST_HEAD(&fs_info->trans_list);
1222         INIT_LIST_HEAD(&fs_info->dead_roots);
1223         INIT_LIST_HEAD(&fs_info->hashers);
1224         spin_lock_init(&fs_info->hash_lock);
1225         spin_lock_init(&fs_info->delalloc_lock);
1226         spin_lock_init(&fs_info->new_trans_lock);
1227
1228         init_completion(&fs_info->kobj_unregister);
1229         fs_info->tree_root = tree_root;
1230         fs_info->extent_root = extent_root;
1231         fs_info->chunk_root = chunk_root;
1232         fs_info->dev_root = dev_root;
1233         fs_info->fs_devices = fs_devices;
1234         INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
1235         INIT_LIST_HEAD(&fs_info->space_info);
1236         btrfs_mapping_init(&fs_info->mapping_tree);
1237         atomic_set(&fs_info->nr_async_submits, 0);
1238         atomic_set(&fs_info->throttles, 0);
1239         fs_info->sb = sb;
1240         fs_info->max_extent = (u64)-1;
1241         fs_info->max_inline = 8192 * 1024;
1242         setup_bdi(fs_info, &fs_info->bdi);
1243         fs_info->btree_inode = new_inode(sb);
1244         fs_info->btree_inode->i_ino = 1;
1245         fs_info->btree_inode->i_nlink = 1;
1246         fs_info->thread_pool_size = min(num_online_cpus() + 2, 8);
1247
1248         sb->s_blocksize = 4096;
1249         sb->s_blocksize_bits = blksize_bits(4096);
1250
1251         /*
1252          * we set the i_size on the btree inode to the max possible int.
1253          * the real end of the address space is determined by all of
1254          * the devices in the system
1255          */
1256         fs_info->btree_inode->i_size = OFFSET_MAX;
1257         fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
1258         fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
1259
1260         extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
1261                              fs_info->btree_inode->i_mapping,
1262                              GFP_NOFS);
1263         extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree,
1264                              GFP_NOFS);
1265
1266         BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
1267
1268         extent_io_tree_init(&fs_info->free_space_cache,
1269                              fs_info->btree_inode->i_mapping, GFP_NOFS);
1270         extent_io_tree_init(&fs_info->block_group_cache,
1271                              fs_info->btree_inode->i_mapping, GFP_NOFS);
1272         extent_io_tree_init(&fs_info->pinned_extents,
1273                              fs_info->btree_inode->i_mapping, GFP_NOFS);
1274         extent_io_tree_init(&fs_info->pending_del,
1275                              fs_info->btree_inode->i_mapping, GFP_NOFS);
1276         extent_io_tree_init(&fs_info->extent_ins,
1277                              fs_info->btree_inode->i_mapping, GFP_NOFS);
1278         fs_info->do_barriers = 1;
1279
1280         BTRFS_I(fs_info->btree_inode)->root = tree_root;
1281         memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
1282                sizeof(struct btrfs_key));
1283         insert_inode_hash(fs_info->btree_inode);
1284         mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
1285
1286         mutex_init(&fs_info->trans_mutex);
1287         mutex_init(&fs_info->drop_mutex);
1288         mutex_init(&fs_info->alloc_mutex);
1289         mutex_init(&fs_info->chunk_mutex);
1290         mutex_init(&fs_info->transaction_kthread_mutex);
1291         mutex_init(&fs_info->cleaner_mutex);
1292
1293 #if 0
1294         ret = add_hasher(fs_info, "crc32c");
1295         if (ret) {
1296                 printk("btrfs: failed hash setup, modprobe cryptomgr?\n");
1297                 err = -ENOMEM;
1298                 goto fail_iput;
1299         }
1300 #endif
1301         __setup_root(4096, 4096, 4096, 4096, tree_root,
1302                      fs_info, BTRFS_ROOT_TREE_OBJECTID);
1303
1304
1305         bh = __bread(fs_devices->latest_bdev,
1306                      BTRFS_SUPER_INFO_OFFSET / 4096, 4096);
1307         if (!bh)
1308                 goto fail_iput;
1309
1310         memcpy(&fs_info->super_copy, bh->b_data, sizeof(fs_info->super_copy));
1311         brelse(bh);
1312
1313         memcpy(fs_info->fsid, fs_info->super_copy.fsid, BTRFS_FSID_SIZE);
1314
1315         disk_super = &fs_info->super_copy;
1316         if (!btrfs_super_root(disk_super))
1317                 goto fail_sb_buffer;
1318
1319         err = btrfs_parse_options(tree_root, options);
1320         if (err)
1321                 goto fail_sb_buffer;
1322
1323         /*
1324          * we need to start all the end_io workers up front because the
1325          * queue work function gets called at interrupt time, and so it
1326          * cannot dynamically grow.
1327          */
1328         btrfs_init_workers(&fs_info->workers, fs_info->thread_pool_size);
1329         btrfs_init_workers(&fs_info->submit_workers, fs_info->thread_pool_size);
1330         btrfs_init_workers(&fs_info->endio_workers, fs_info->thread_pool_size);
1331         btrfs_start_workers(&fs_info->workers, 1);
1332         btrfs_start_workers(&fs_info->submit_workers, 1);
1333         btrfs_start_workers(&fs_info->endio_workers, fs_info->thread_pool_size);
1334
1335         err = -EINVAL;
1336         if (btrfs_super_num_devices(disk_super) > fs_devices->open_devices) {
1337                 printk("Btrfs: wanted %llu devices, but found %llu\n",
1338                        (unsigned long long)btrfs_super_num_devices(disk_super),
1339                        (unsigned long long)fs_devices->open_devices);
1340                 if (btrfs_test_opt(tree_root, DEGRADED))
1341                         printk("continuing in degraded mode\n");
1342                 else {
1343                         goto fail_sb_buffer;
1344                 }
1345         }
1346
1347         fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
1348
1349         nodesize = btrfs_super_nodesize(disk_super);
1350         leafsize = btrfs_super_leafsize(disk_super);
1351         sectorsize = btrfs_super_sectorsize(disk_super);
1352         stripesize = btrfs_super_stripesize(disk_super);
1353         tree_root->nodesize = nodesize;
1354         tree_root->leafsize = leafsize;
1355         tree_root->sectorsize = sectorsize;
1356         tree_root->stripesize = stripesize;
1357
1358         sb->s_blocksize = sectorsize;
1359         sb->s_blocksize_bits = blksize_bits(sectorsize);
1360
1361         if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
1362                     sizeof(disk_super->magic))) {
1363                 printk("btrfs: valid FS not found on %s\n", sb->s_id);
1364                 goto fail_sb_buffer;
1365         }
1366
1367         mutex_lock(&fs_info->chunk_mutex);
1368         ret = btrfs_read_sys_array(tree_root);
1369         mutex_unlock(&fs_info->chunk_mutex);
1370         if (ret) {
1371                 printk("btrfs: failed to read the system array on %s\n",
1372                        sb->s_id);
1373                 goto fail_sys_array;
1374         }
1375
1376         blocksize = btrfs_level_size(tree_root,
1377                                      btrfs_super_chunk_root_level(disk_super));
1378
1379         __setup_root(nodesize, leafsize, sectorsize, stripesize,
1380                      chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
1381
1382         chunk_root->node = read_tree_block(chunk_root,
1383                                            btrfs_super_chunk_root(disk_super),
1384                                            blocksize, 0);
1385         BUG_ON(!chunk_root->node);
1386
1387         read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
1388                  (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
1389                  BTRFS_UUID_SIZE);
1390
1391         mutex_lock(&fs_info->chunk_mutex);
1392         ret = btrfs_read_chunk_tree(chunk_root);
1393         mutex_unlock(&fs_info->chunk_mutex);
1394         BUG_ON(ret);
1395
1396         btrfs_close_extra_devices(fs_devices);
1397
1398         blocksize = btrfs_level_size(tree_root,
1399                                      btrfs_super_root_level(disk_super));
1400
1401
1402         tree_root->node = read_tree_block(tree_root,
1403                                           btrfs_super_root(disk_super),
1404                                           blocksize, 0);
1405         if (!tree_root->node)
1406                 goto fail_sb_buffer;
1407
1408
1409         ret = find_and_setup_root(tree_root, fs_info,
1410                                   BTRFS_EXTENT_TREE_OBJECTID, extent_root);
1411         if (ret)
1412                 goto fail_tree_root;
1413         extent_root->track_dirty = 1;
1414
1415         ret = find_and_setup_root(tree_root, fs_info,
1416                                   BTRFS_DEV_TREE_OBJECTID, dev_root);
1417         dev_root->track_dirty = 1;
1418
1419         if (ret)
1420                 goto fail_extent_root;
1421
1422         btrfs_read_block_groups(extent_root);
1423
1424         fs_info->generation = btrfs_super_generation(disk_super) + 1;
1425         fs_info->data_alloc_profile = (u64)-1;
1426         fs_info->metadata_alloc_profile = (u64)-1;
1427         fs_info->system_alloc_profile = fs_info->metadata_alloc_profile;
1428         fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
1429                                                "btrfs-cleaner");
1430         if (!fs_info->cleaner_kthread)
1431                 goto fail_extent_root;
1432
1433         fs_info->transaction_kthread = kthread_run(transaction_kthread,
1434                                                    tree_root,
1435                                                    "btrfs-transaction");
1436         if (!fs_info->transaction_kthread)
1437                 goto fail_trans_kthread;
1438
1439
1440         return tree_root;
1441
1442 fail_trans_kthread:
1443         kthread_stop(fs_info->cleaner_kthread);
1444 fail_extent_root:
1445         free_extent_buffer(extent_root->node);
1446 fail_tree_root:
1447         free_extent_buffer(tree_root->node);
1448 fail_sys_array:
1449 fail_sb_buffer:
1450         extent_io_tree_empty_lru(&BTRFS_I(fs_info->btree_inode)->io_tree);
1451         btrfs_stop_workers(&fs_info->workers);
1452         btrfs_stop_workers(&fs_info->endio_workers);
1453         btrfs_stop_workers(&fs_info->submit_workers);
1454 fail_iput:
1455         iput(fs_info->btree_inode);
1456 fail:
1457         btrfs_close_devices(fs_info->fs_devices);
1458         btrfs_mapping_tree_free(&fs_info->mapping_tree);
1459
1460         kfree(extent_root);
1461         kfree(tree_root);
1462 #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,23)
1463         bdi_destroy(&fs_info->bdi);
1464 #endif
1465         kfree(fs_info);
1466         return ERR_PTR(err);
1467 }
1468
1469 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
1470 {
1471         char b[BDEVNAME_SIZE];
1472
1473         if (uptodate) {
1474                 set_buffer_uptodate(bh);
1475         } else {
1476                 if (!buffer_eopnotsupp(bh) && printk_ratelimit()) {
1477                         printk(KERN_WARNING "lost page write due to "
1478                                         "I/O error on %s\n",
1479                                        bdevname(bh->b_bdev, b));
1480                 }
1481                 /* note, we dont' set_buffer_write_io_error because we have
1482                  * our own ways of dealing with the IO errors
1483                  */
1484                 clear_buffer_uptodate(bh);
1485         }
1486         unlock_buffer(bh);
1487         put_bh(bh);
1488 }
1489
1490 int write_all_supers(struct btrfs_root *root)
1491 {
1492         struct list_head *cur;
1493         struct list_head *head = &root->fs_info->fs_devices->devices;
1494         struct btrfs_device *dev;
1495         struct btrfs_super_block *sb;
1496         struct btrfs_dev_item *dev_item;
1497         struct buffer_head *bh;
1498         int ret;
1499         int do_barriers;
1500         int max_errors;
1501         int total_errors = 0;
1502         u32 crc;
1503         u64 flags;
1504
1505         max_errors = btrfs_super_num_devices(&root->fs_info->super_copy) - 1;
1506         do_barriers = !btrfs_test_opt(root, NOBARRIER);
1507
1508         sb = &root->fs_info->super_for_commit;
1509         dev_item = &sb->dev_item;
1510         list_for_each(cur, head) {
1511                 dev = list_entry(cur, struct btrfs_device, dev_list);
1512                 if (!dev->bdev) {
1513                         total_errors++;
1514                         continue;
1515                 }
1516                 if (!dev->in_fs_metadata)
1517                         continue;
1518
1519                 btrfs_set_stack_device_type(dev_item, dev->type);
1520                 btrfs_set_stack_device_id(dev_item, dev->devid);
1521                 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
1522                 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
1523                 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
1524                 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
1525                 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
1526                 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
1527                 flags = btrfs_super_flags(sb);
1528                 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
1529
1530
1531                 crc = ~(u32)0;
1532                 crc = btrfs_csum_data(root, (char *)sb + BTRFS_CSUM_SIZE, crc,
1533                                       BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
1534                 btrfs_csum_final(crc, sb->csum);
1535
1536                 bh = __getblk(dev->bdev, BTRFS_SUPER_INFO_OFFSET / 4096,
1537                               BTRFS_SUPER_INFO_SIZE);
1538
1539                 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
1540                 dev->pending_io = bh;
1541
1542                 get_bh(bh);
1543                 set_buffer_uptodate(bh);
1544                 lock_buffer(bh);
1545                 bh->b_end_io = btrfs_end_buffer_write_sync;
1546
1547                 if (do_barriers && dev->barriers) {
1548                         ret = submit_bh(WRITE_BARRIER, bh);
1549                         if (ret == -EOPNOTSUPP) {
1550                                 printk("btrfs: disabling barriers on dev %s\n",
1551                                        dev->name);
1552                                 set_buffer_uptodate(bh);
1553                                 dev->barriers = 0;
1554                                 get_bh(bh);
1555                                 lock_buffer(bh);
1556                                 ret = submit_bh(WRITE, bh);
1557                         }
1558                 } else {
1559                         ret = submit_bh(WRITE, bh);
1560                 }
1561                 if (ret)
1562                         total_errors++;
1563         }
1564         if (total_errors > max_errors) {
1565                 printk("btrfs: %d errors while writing supers\n", total_errors);
1566                 BUG();
1567         }
1568         total_errors = 0;
1569
1570         list_for_each(cur, head) {
1571                 dev = list_entry(cur, struct btrfs_device, dev_list);
1572                 if (!dev->bdev)
1573                         continue;
1574                 if (!dev->in_fs_metadata)
1575                         continue;
1576
1577                 BUG_ON(!dev->pending_io);
1578                 bh = dev->pending_io;
1579                 wait_on_buffer(bh);
1580                 if (!buffer_uptodate(dev->pending_io)) {
1581                         if (do_barriers && dev->barriers) {
1582                                 printk("btrfs: disabling barriers on dev %s\n",
1583                                        dev->name);
1584                                 set_buffer_uptodate(bh);
1585                                 get_bh(bh);
1586                                 lock_buffer(bh);
1587                                 dev->barriers = 0;
1588                                 ret = submit_bh(WRITE, bh);
1589                                 BUG_ON(ret);
1590                                 wait_on_buffer(bh);
1591                                 if (!buffer_uptodate(bh))
1592                                         total_errors++;
1593                         } else {
1594                                 total_errors++;
1595                         }
1596
1597                 }
1598                 dev->pending_io = NULL;
1599                 brelse(bh);
1600         }
1601         if (total_errors > max_errors) {
1602                 printk("btrfs: %d errors while writing supers\n", total_errors);
1603                 BUG();
1604         }
1605         return 0;
1606 }
1607
1608 int write_ctree_super(struct btrfs_trans_handle *trans, struct btrfs_root
1609                       *root)
1610 {
1611         int ret;
1612
1613         ret = write_all_supers(root);
1614         return ret;
1615 }
1616
1617 int btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
1618 {
1619         radix_tree_delete(&fs_info->fs_roots_radix,
1620                           (unsigned long)root->root_key.objectid);
1621         if (root->in_sysfs)
1622                 btrfs_sysfs_del_root(root);
1623         if (root->inode)
1624                 iput(root->inode);
1625         if (root->node)
1626                 free_extent_buffer(root->node);
1627         if (root->commit_root)
1628                 free_extent_buffer(root->commit_root);
1629         if (root->name)
1630                 kfree(root->name);
1631         kfree(root);
1632         return 0;
1633 }
1634
1635 static int del_fs_roots(struct btrfs_fs_info *fs_info)
1636 {
1637         int ret;
1638         struct btrfs_root *gang[8];
1639         int i;
1640
1641         while(1) {
1642                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
1643                                              (void **)gang, 0,
1644                                              ARRAY_SIZE(gang));
1645                 if (!ret)
1646                         break;
1647                 for (i = 0; i < ret; i++)
1648                         btrfs_free_fs_root(fs_info, gang[i]);
1649         }
1650         return 0;
1651 }
1652
1653 int close_ctree(struct btrfs_root *root)
1654 {
1655         int ret;
1656         struct btrfs_trans_handle *trans;
1657         struct btrfs_fs_info *fs_info = root->fs_info;
1658
1659         fs_info->closing = 1;
1660         smp_mb();
1661
1662         kthread_stop(root->fs_info->transaction_kthread);
1663         kthread_stop(root->fs_info->cleaner_kthread);
1664
1665         btrfs_defrag_dirty_roots(root->fs_info);
1666         btrfs_clean_old_snapshots(root);
1667         trans = btrfs_start_transaction(root, 1);
1668         ret = btrfs_commit_transaction(trans, root);
1669         /* run commit again to  drop the original snapshot */
1670         trans = btrfs_start_transaction(root, 1);
1671         btrfs_commit_transaction(trans, root);
1672         ret = btrfs_write_and_wait_transaction(NULL, root);
1673         BUG_ON(ret);
1674
1675         write_ctree_super(NULL, root);
1676
1677         if (fs_info->delalloc_bytes) {
1678                 printk("btrfs: at unmount delalloc count %Lu\n",
1679                        fs_info->delalloc_bytes);
1680         }
1681         if (fs_info->extent_root->node)
1682                 free_extent_buffer(fs_info->extent_root->node);
1683
1684         if (fs_info->tree_root->node)
1685                 free_extent_buffer(fs_info->tree_root->node);
1686
1687         if (root->fs_info->chunk_root->node);
1688                 free_extent_buffer(root->fs_info->chunk_root->node);
1689
1690         if (root->fs_info->dev_root->node);
1691                 free_extent_buffer(root->fs_info->dev_root->node);
1692
1693         btrfs_free_block_groups(root->fs_info);
1694         del_fs_roots(fs_info);
1695
1696         filemap_write_and_wait(fs_info->btree_inode->i_mapping);
1697
1698         extent_io_tree_empty_lru(&fs_info->free_space_cache);
1699         extent_io_tree_empty_lru(&fs_info->block_group_cache);
1700         extent_io_tree_empty_lru(&fs_info->pinned_extents);
1701         extent_io_tree_empty_lru(&fs_info->pending_del);
1702         extent_io_tree_empty_lru(&fs_info->extent_ins);
1703         extent_io_tree_empty_lru(&BTRFS_I(fs_info->btree_inode)->io_tree);
1704
1705         truncate_inode_pages(fs_info->btree_inode->i_mapping, 0);
1706
1707         btrfs_stop_workers(&fs_info->workers);
1708         btrfs_stop_workers(&fs_info->endio_workers);
1709         btrfs_stop_workers(&fs_info->submit_workers);
1710
1711         iput(fs_info->btree_inode);
1712 #if 0
1713         while(!list_empty(&fs_info->hashers)) {
1714                 struct btrfs_hasher *hasher;
1715                 hasher = list_entry(fs_info->hashers.next, struct btrfs_hasher,
1716                                     hashers);
1717                 list_del(&hasher->hashers);
1718                 crypto_free_hash(&fs_info->hash_tfm);
1719                 kfree(hasher);
1720         }
1721 #endif
1722         btrfs_close_devices(fs_info->fs_devices);
1723         btrfs_mapping_tree_free(&fs_info->mapping_tree);
1724
1725 #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,23)
1726         bdi_destroy(&fs_info->bdi);
1727 #endif
1728
1729         kfree(fs_info->extent_root);
1730         kfree(fs_info->tree_root);
1731         kfree(fs_info->chunk_root);
1732         kfree(fs_info->dev_root);
1733         return 0;
1734 }
1735
1736 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid)
1737 {
1738         int ret;
1739         struct inode *btree_inode = buf->first_page->mapping->host;
1740
1741         ret = extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree, buf);
1742         if (!ret)
1743                 return ret;
1744
1745         ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
1746                                     parent_transid);
1747         return !ret;
1748 }
1749
1750 int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
1751 {
1752         struct inode *btree_inode = buf->first_page->mapping->host;
1753         return set_extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree,
1754                                           buf);
1755 }
1756
1757 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
1758 {
1759         struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
1760         u64 transid = btrfs_header_generation(buf);
1761         struct inode *btree_inode = root->fs_info->btree_inode;
1762
1763         WARN_ON(!btrfs_tree_locked(buf));
1764         if (transid != root->fs_info->generation) {
1765                 printk(KERN_CRIT "transid mismatch buffer %llu, found %Lu running %Lu\n",
1766                         (unsigned long long)buf->start,
1767                         transid, root->fs_info->generation);
1768                 WARN_ON(1);
1769         }
1770         set_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree, buf);
1771 }
1772
1773 void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
1774 {
1775         /*
1776          * looks as though older kernels can get into trouble with
1777          * this code, they end up stuck in balance_dirty_pages forever
1778          */
1779         struct extent_io_tree *tree;
1780         u64 num_dirty;
1781         u64 start = 0;
1782         unsigned long thresh = 16 * 1024 * 1024;
1783         tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
1784
1785         if (current_is_pdflush())
1786                 return;
1787
1788         num_dirty = count_range_bits(tree, &start, (u64)-1,
1789                                      thresh, EXTENT_DIRTY);
1790         if (num_dirty > thresh) {
1791                 balance_dirty_pages_ratelimited_nr(
1792                                    root->fs_info->btree_inode->i_mapping, 1);
1793         }
1794         return;
1795 }
1796
1797 void btrfs_set_buffer_defrag(struct extent_buffer *buf)
1798 {
1799         struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
1800         struct inode *btree_inode = root->fs_info->btree_inode;
1801         set_extent_bits(&BTRFS_I(btree_inode)->io_tree, buf->start,
1802                         buf->start + buf->len - 1, EXTENT_DEFRAG, GFP_NOFS);
1803 }
1804
1805 void btrfs_set_buffer_defrag_done(struct extent_buffer *buf)
1806 {
1807         struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
1808         struct inode *btree_inode = root->fs_info->btree_inode;
1809         set_extent_bits(&BTRFS_I(btree_inode)->io_tree, buf->start,
1810                         buf->start + buf->len - 1, EXTENT_DEFRAG_DONE,
1811                         GFP_NOFS);
1812 }
1813
1814 int btrfs_buffer_defrag(struct extent_buffer *buf)
1815 {
1816         struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
1817         struct inode *btree_inode = root->fs_info->btree_inode;
1818         return test_range_bit(&BTRFS_I(btree_inode)->io_tree,
1819                      buf->start, buf->start + buf->len - 1, EXTENT_DEFRAG, 0);
1820 }
1821
1822 int btrfs_buffer_defrag_done(struct extent_buffer *buf)
1823 {
1824         struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
1825         struct inode *btree_inode = root->fs_info->btree_inode;
1826         return test_range_bit(&BTRFS_I(btree_inode)->io_tree,
1827                      buf->start, buf->start + buf->len - 1,
1828                      EXTENT_DEFRAG_DONE, 0);
1829 }
1830
1831 int btrfs_clear_buffer_defrag_done(struct extent_buffer *buf)
1832 {
1833         struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
1834         struct inode *btree_inode = root->fs_info->btree_inode;
1835         return clear_extent_bits(&BTRFS_I(btree_inode)->io_tree,
1836                      buf->start, buf->start + buf->len - 1,
1837                      EXTENT_DEFRAG_DONE, GFP_NOFS);
1838 }
1839
1840 int btrfs_clear_buffer_defrag(struct extent_buffer *buf)
1841 {
1842         struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
1843         struct inode *btree_inode = root->fs_info->btree_inode;
1844         return clear_extent_bits(&BTRFS_I(btree_inode)->io_tree,
1845                      buf->start, buf->start + buf->len - 1,
1846                      EXTENT_DEFRAG, GFP_NOFS);
1847 }
1848
1849 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
1850 {
1851         struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
1852         int ret;
1853         ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
1854         if (ret == 0) {
1855                 buf->flags |= EXTENT_UPTODATE;
1856         }
1857         return ret;
1858 }
1859
1860 static struct extent_io_ops btree_extent_io_ops = {
1861         .writepage_io_hook = btree_writepage_io_hook,
1862         .readpage_end_io_hook = btree_readpage_end_io_hook,
1863         .submit_bio_hook = btree_submit_bio_hook,
1864         /* note we're sharing with inode.c for the merge bio hook */
1865         .merge_bio_hook = btrfs_merge_bio_hook,
1866 };