]> git.karo-electronics.de Git - karo-tx-linux.git/blob - fs/btrfs/disk-io.c
Btrfs: remove unnecessary code in btree_get_extent()
[karo-tx-linux.git] / fs / btrfs / disk-io.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
29 #include <linux/crc32c.h>
30 #include <linux/slab.h>
31 #include <linux/migrate.h>
32 #include <linux/ratelimit.h>
33 #include <asm/unaligned.h>
34 #include "compat.h"
35 #include "ctree.h"
36 #include "disk-io.h"
37 #include "transaction.h"
38 #include "btrfs_inode.h"
39 #include "volumes.h"
40 #include "print-tree.h"
41 #include "async-thread.h"
42 #include "locking.h"
43 #include "tree-log.h"
44 #include "free-space-cache.h"
45 #include "inode-map.h"
46 #include "check-integrity.h"
47 #include "rcu-string.h"
48
49 static struct extent_io_ops btree_extent_io_ops;
50 static void end_workqueue_fn(struct btrfs_work *work);
51 static void free_fs_root(struct btrfs_root *root);
52 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
53                                     int read_only);
54 static void btrfs_destroy_ordered_operations(struct btrfs_root *root);
55 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
56 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
57                                       struct btrfs_root *root);
58 static void btrfs_destroy_pending_snapshots(struct btrfs_transaction *t);
59 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
60 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
61                                         struct extent_io_tree *dirty_pages,
62                                         int mark);
63 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
64                                        struct extent_io_tree *pinned_extents);
65
66 /*
67  * end_io_wq structs are used to do processing in task context when an IO is
68  * complete.  This is used during reads to verify checksums, and it is used
69  * by writes to insert metadata for new file extents after IO is complete.
70  */
71 struct end_io_wq {
72         struct bio *bio;
73         bio_end_io_t *end_io;
74         void *private;
75         struct btrfs_fs_info *info;
76         int error;
77         int metadata;
78         struct list_head list;
79         struct btrfs_work work;
80 };
81
82 /*
83  * async submit bios are used to offload expensive checksumming
84  * onto the worker threads.  They checksum file and metadata bios
85  * just before they are sent down the IO stack.
86  */
87 struct async_submit_bio {
88         struct inode *inode;
89         struct bio *bio;
90         struct list_head list;
91         extent_submit_bio_hook_t *submit_bio_start;
92         extent_submit_bio_hook_t *submit_bio_done;
93         int rw;
94         int mirror_num;
95         unsigned long bio_flags;
96         /*
97          * bio_offset is optional, can be used if the pages in the bio
98          * can't tell us where in the file the bio should go
99          */
100         u64 bio_offset;
101         struct btrfs_work work;
102         int error;
103 };
104
105 /*
106  * Lockdep class keys for extent_buffer->lock's in this root.  For a given
107  * eb, the lockdep key is determined by the btrfs_root it belongs to and
108  * the level the eb occupies in the tree.
109  *
110  * Different roots are used for different purposes and may nest inside each
111  * other and they require separate keysets.  As lockdep keys should be
112  * static, assign keysets according to the purpose of the root as indicated
113  * by btrfs_root->objectid.  This ensures that all special purpose roots
114  * have separate keysets.
115  *
116  * Lock-nesting across peer nodes is always done with the immediate parent
117  * node locked thus preventing deadlock.  As lockdep doesn't know this, use
118  * subclass to avoid triggering lockdep warning in such cases.
119  *
120  * The key is set by the readpage_end_io_hook after the buffer has passed
121  * csum validation but before the pages are unlocked.  It is also set by
122  * btrfs_init_new_buffer on freshly allocated blocks.
123  *
124  * We also add a check to make sure the highest level of the tree is the
125  * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
126  * needs update as well.
127  */
128 #ifdef CONFIG_DEBUG_LOCK_ALLOC
129 # if BTRFS_MAX_LEVEL != 8
130 #  error
131 # endif
132
133 static struct btrfs_lockdep_keyset {
134         u64                     id;             /* root objectid */
135         const char              *name_stem;     /* lock name stem */
136         char                    names[BTRFS_MAX_LEVEL + 1][20];
137         struct lock_class_key   keys[BTRFS_MAX_LEVEL + 1];
138 } btrfs_lockdep_keysets[] = {
139         { .id = BTRFS_ROOT_TREE_OBJECTID,       .name_stem = "root"     },
140         { .id = BTRFS_EXTENT_TREE_OBJECTID,     .name_stem = "extent"   },
141         { .id = BTRFS_CHUNK_TREE_OBJECTID,      .name_stem = "chunk"    },
142         { .id = BTRFS_DEV_TREE_OBJECTID,        .name_stem = "dev"      },
143         { .id = BTRFS_FS_TREE_OBJECTID,         .name_stem = "fs"       },
144         { .id = BTRFS_CSUM_TREE_OBJECTID,       .name_stem = "csum"     },
145         { .id = BTRFS_ORPHAN_OBJECTID,          .name_stem = "orphan"   },
146         { .id = BTRFS_TREE_LOG_OBJECTID,        .name_stem = "log"      },
147         { .id = BTRFS_TREE_RELOC_OBJECTID,      .name_stem = "treloc"   },
148         { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc"   },
149         { .id = 0,                              .name_stem = "tree"     },
150 };
151
152 void __init btrfs_init_lockdep(void)
153 {
154         int i, j;
155
156         /* initialize lockdep class names */
157         for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
158                 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
159
160                 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
161                         snprintf(ks->names[j], sizeof(ks->names[j]),
162                                  "btrfs-%s-%02d", ks->name_stem, j);
163         }
164 }
165
166 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
167                                     int level)
168 {
169         struct btrfs_lockdep_keyset *ks;
170
171         BUG_ON(level >= ARRAY_SIZE(ks->keys));
172
173         /* find the matching keyset, id 0 is the default entry */
174         for (ks = btrfs_lockdep_keysets; ks->id; ks++)
175                 if (ks->id == objectid)
176                         break;
177
178         lockdep_set_class_and_name(&eb->lock,
179                                    &ks->keys[level], ks->names[level]);
180 }
181
182 #endif
183
184 /*
185  * extents on the btree inode are pretty simple, there's one extent
186  * that covers the entire device
187  */
188 static struct extent_map *btree_get_extent(struct inode *inode,
189                 struct page *page, size_t pg_offset, u64 start, u64 len,
190                 int create)
191 {
192         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
193         struct extent_map *em;
194         int ret;
195
196         read_lock(&em_tree->lock);
197         em = lookup_extent_mapping(em_tree, start, len);
198         if (em) {
199                 em->bdev =
200                         BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
201                 read_unlock(&em_tree->lock);
202                 goto out;
203         }
204         read_unlock(&em_tree->lock);
205
206         em = alloc_extent_map();
207         if (!em) {
208                 em = ERR_PTR(-ENOMEM);
209                 goto out;
210         }
211         em->start = 0;
212         em->len = (u64)-1;
213         em->block_len = (u64)-1;
214         em->block_start = 0;
215         em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
216
217         write_lock(&em_tree->lock);
218         ret = add_extent_mapping(em_tree, em);
219         if (ret == -EEXIST) {
220                 free_extent_map(em);
221                 em = lookup_extent_mapping(em_tree, start, len);
222                 if (!em)
223                         em = ERR_PTR(-EIO);
224         } else if (ret) {
225                 free_extent_map(em);
226                 em = ERR_PTR(ret);
227         }
228         write_unlock(&em_tree->lock);
229
230 out:
231         return em;
232 }
233
234 u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
235 {
236         return crc32c(seed, data, len);
237 }
238
239 void btrfs_csum_final(u32 crc, char *result)
240 {
241         put_unaligned_le32(~crc, result);
242 }
243
244 /*
245  * compute the csum for a btree block, and either verify it or write it
246  * into the csum field of the block.
247  */
248 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
249                            int verify)
250 {
251         u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
252         char *result = NULL;
253         unsigned long len;
254         unsigned long cur_len;
255         unsigned long offset = BTRFS_CSUM_SIZE;
256         char *kaddr;
257         unsigned long map_start;
258         unsigned long map_len;
259         int err;
260         u32 crc = ~(u32)0;
261         unsigned long inline_result;
262
263         len = buf->len - offset;
264         while (len > 0) {
265                 err = map_private_extent_buffer(buf, offset, 32,
266                                         &kaddr, &map_start, &map_len);
267                 if (err)
268                         return 1;
269                 cur_len = min(len, map_len - (offset - map_start));
270                 crc = btrfs_csum_data(root, kaddr + offset - map_start,
271                                       crc, cur_len);
272                 len -= cur_len;
273                 offset += cur_len;
274         }
275         if (csum_size > sizeof(inline_result)) {
276                 result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
277                 if (!result)
278                         return 1;
279         } else {
280                 result = (char *)&inline_result;
281         }
282
283         btrfs_csum_final(crc, result);
284
285         if (verify) {
286                 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
287                         u32 val;
288                         u32 found = 0;
289                         memcpy(&found, result, csum_size);
290
291                         read_extent_buffer(buf, &val, 0, csum_size);
292                         printk_ratelimited(KERN_INFO "btrfs: %s checksum verify "
293                                        "failed on %llu wanted %X found %X "
294                                        "level %d\n",
295                                        root->fs_info->sb->s_id,
296                                        (unsigned long long)buf->start, val, found,
297                                        btrfs_header_level(buf));
298                         if (result != (char *)&inline_result)
299                                 kfree(result);
300                         return 1;
301                 }
302         } else {
303                 write_extent_buffer(buf, result, 0, csum_size);
304         }
305         if (result != (char *)&inline_result)
306                 kfree(result);
307         return 0;
308 }
309
310 /*
311  * we can't consider a given block up to date unless the transid of the
312  * block matches the transid in the parent node's pointer.  This is how we
313  * detect blocks that either didn't get written at all or got written
314  * in the wrong place.
315  */
316 static int verify_parent_transid(struct extent_io_tree *io_tree,
317                                  struct extent_buffer *eb, u64 parent_transid,
318                                  int atomic)
319 {
320         struct extent_state *cached_state = NULL;
321         int ret;
322
323         if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
324                 return 0;
325
326         if (atomic)
327                 return -EAGAIN;
328
329         lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
330                          0, &cached_state);
331         if (extent_buffer_uptodate(eb) &&
332             btrfs_header_generation(eb) == parent_transid) {
333                 ret = 0;
334                 goto out;
335         }
336         printk_ratelimited("parent transid verify failed on %llu wanted %llu "
337                        "found %llu\n",
338                        (unsigned long long)eb->start,
339                        (unsigned long long)parent_transid,
340                        (unsigned long long)btrfs_header_generation(eb));
341         ret = 1;
342         clear_extent_buffer_uptodate(eb);
343 out:
344         unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
345                              &cached_state, GFP_NOFS);
346         return ret;
347 }
348
349 /*
350  * helper to read a given tree block, doing retries as required when
351  * the checksums don't match and we have alternate mirrors to try.
352  */
353 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
354                                           struct extent_buffer *eb,
355                                           u64 start, u64 parent_transid)
356 {
357         struct extent_io_tree *io_tree;
358         int failed = 0;
359         int ret;
360         int num_copies = 0;
361         int mirror_num = 0;
362         int failed_mirror = 0;
363
364         clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
365         io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
366         while (1) {
367                 ret = read_extent_buffer_pages(io_tree, eb, start,
368                                                WAIT_COMPLETE,
369                                                btree_get_extent, mirror_num);
370                 if (!ret) {
371                         if (!verify_parent_transid(io_tree, eb,
372                                                    parent_transid, 0))
373                                 break;
374                         else
375                                 ret = -EIO;
376                 }
377
378                 /*
379                  * This buffer's crc is fine, but its contents are corrupted, so
380                  * there is no reason to read the other copies, they won't be
381                  * any less wrong.
382                  */
383                 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
384                         break;
385
386                 num_copies = btrfs_num_copies(&root->fs_info->mapping_tree,
387                                               eb->start, eb->len);
388                 if (num_copies == 1)
389                         break;
390
391                 if (!failed_mirror) {
392                         failed = 1;
393                         failed_mirror = eb->read_mirror;
394                 }
395
396                 mirror_num++;
397                 if (mirror_num == failed_mirror)
398                         mirror_num++;
399
400                 if (mirror_num > num_copies)
401                         break;
402         }
403
404         if (failed && !ret && failed_mirror)
405                 repair_eb_io_failure(root, eb, failed_mirror);
406
407         return ret;
408 }
409
410 /*
411  * checksum a dirty tree block before IO.  This has extra checks to make sure
412  * we only fill in the checksum field in the first page of a multi-page block
413  */
414
415 static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
416 {
417         struct extent_io_tree *tree;
418         u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
419         u64 found_start;
420         struct extent_buffer *eb;
421
422         tree = &BTRFS_I(page->mapping->host)->io_tree;
423
424         eb = (struct extent_buffer *)page->private;
425         if (page != eb->pages[0])
426                 return 0;
427         found_start = btrfs_header_bytenr(eb);
428         if (found_start != start) {
429                 WARN_ON(1);
430                 return 0;
431         }
432         if (eb->pages[0] != page) {
433                 WARN_ON(1);
434                 return 0;
435         }
436         if (!PageUptodate(page)) {
437                 WARN_ON(1);
438                 return 0;
439         }
440         csum_tree_block(root, eb, 0);
441         return 0;
442 }
443
444 static int check_tree_block_fsid(struct btrfs_root *root,
445                                  struct extent_buffer *eb)
446 {
447         struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
448         u8 fsid[BTRFS_UUID_SIZE];
449         int ret = 1;
450
451         read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
452                            BTRFS_FSID_SIZE);
453         while (fs_devices) {
454                 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
455                         ret = 0;
456                         break;
457                 }
458                 fs_devices = fs_devices->seed;
459         }
460         return ret;
461 }
462
463 #define CORRUPT(reason, eb, root, slot)                         \
464         printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu," \
465                "root=%llu, slot=%d\n", reason,                  \
466                (unsigned long long)btrfs_header_bytenr(eb),     \
467                (unsigned long long)root->objectid, slot)
468
469 static noinline int check_leaf(struct btrfs_root *root,
470                                struct extent_buffer *leaf)
471 {
472         struct btrfs_key key;
473         struct btrfs_key leaf_key;
474         u32 nritems = btrfs_header_nritems(leaf);
475         int slot;
476
477         if (nritems == 0)
478                 return 0;
479
480         /* Check the 0 item */
481         if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
482             BTRFS_LEAF_DATA_SIZE(root)) {
483                 CORRUPT("invalid item offset size pair", leaf, root, 0);
484                 return -EIO;
485         }
486
487         /*
488          * Check to make sure each items keys are in the correct order and their
489          * offsets make sense.  We only have to loop through nritems-1 because
490          * we check the current slot against the next slot, which verifies the
491          * next slot's offset+size makes sense and that the current's slot
492          * offset is correct.
493          */
494         for (slot = 0; slot < nritems - 1; slot++) {
495                 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
496                 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
497
498                 /* Make sure the keys are in the right order */
499                 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
500                         CORRUPT("bad key order", leaf, root, slot);
501                         return -EIO;
502                 }
503
504                 /*
505                  * Make sure the offset and ends are right, remember that the
506                  * item data starts at the end of the leaf and grows towards the
507                  * front.
508                  */
509                 if (btrfs_item_offset_nr(leaf, slot) !=
510                         btrfs_item_end_nr(leaf, slot + 1)) {
511                         CORRUPT("slot offset bad", leaf, root, slot);
512                         return -EIO;
513                 }
514
515                 /*
516                  * Check to make sure that we don't point outside of the leaf,
517                  * just incase all the items are consistent to eachother, but
518                  * all point outside of the leaf.
519                  */
520                 if (btrfs_item_end_nr(leaf, slot) >
521                     BTRFS_LEAF_DATA_SIZE(root)) {
522                         CORRUPT("slot end outside of leaf", leaf, root, slot);
523                         return -EIO;
524                 }
525         }
526
527         return 0;
528 }
529
530 struct extent_buffer *find_eb_for_page(struct extent_io_tree *tree,
531                                        struct page *page, int max_walk)
532 {
533         struct extent_buffer *eb;
534         u64 start = page_offset(page);
535         u64 target = start;
536         u64 min_start;
537
538         if (start < max_walk)
539                 min_start = 0;
540         else
541                 min_start = start - max_walk;
542
543         while (start >= min_start) {
544                 eb = find_extent_buffer(tree, start, 0);
545                 if (eb) {
546                         /*
547                          * we found an extent buffer and it contains our page
548                          * horray!
549                          */
550                         if (eb->start <= target &&
551                             eb->start + eb->len > target)
552                                 return eb;
553
554                         /* we found an extent buffer that wasn't for us */
555                         free_extent_buffer(eb);
556                         return NULL;
557                 }
558                 if (start == 0)
559                         break;
560                 start -= PAGE_CACHE_SIZE;
561         }
562         return NULL;
563 }
564
565 static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
566                                struct extent_state *state, int mirror)
567 {
568         struct extent_io_tree *tree;
569         u64 found_start;
570         int found_level;
571         struct extent_buffer *eb;
572         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
573         int ret = 0;
574         int reads_done;
575
576         if (!page->private)
577                 goto out;
578
579         tree = &BTRFS_I(page->mapping->host)->io_tree;
580         eb = (struct extent_buffer *)page->private;
581
582         /* the pending IO might have been the only thing that kept this buffer
583          * in memory.  Make sure we have a ref for all this other checks
584          */
585         extent_buffer_get(eb);
586
587         reads_done = atomic_dec_and_test(&eb->io_pages);
588         if (!reads_done)
589                 goto err;
590
591         eb->read_mirror = mirror;
592         if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
593                 ret = -EIO;
594                 goto err;
595         }
596
597         found_start = btrfs_header_bytenr(eb);
598         if (found_start != eb->start) {
599                 printk_ratelimited(KERN_INFO "btrfs bad tree block start "
600                                "%llu %llu\n",
601                                (unsigned long long)found_start,
602                                (unsigned long long)eb->start);
603                 ret = -EIO;
604                 goto err;
605         }
606         if (check_tree_block_fsid(root, eb)) {
607                 printk_ratelimited(KERN_INFO "btrfs bad fsid on block %llu\n",
608                                (unsigned long long)eb->start);
609                 ret = -EIO;
610                 goto err;
611         }
612         found_level = btrfs_header_level(eb);
613
614         btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
615                                        eb, found_level);
616
617         ret = csum_tree_block(root, eb, 1);
618         if (ret) {
619                 ret = -EIO;
620                 goto err;
621         }
622
623         /*
624          * If this is a leaf block and it is corrupt, set the corrupt bit so
625          * that we don't try and read the other copies of this block, just
626          * return -EIO.
627          */
628         if (found_level == 0 && check_leaf(root, eb)) {
629                 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
630                 ret = -EIO;
631         }
632
633         if (!ret)
634                 set_extent_buffer_uptodate(eb);
635 err:
636         if (test_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) {
637                 clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags);
638                 btree_readahead_hook(root, eb, eb->start, ret);
639         }
640
641         if (ret)
642                 clear_extent_buffer_uptodate(eb);
643         free_extent_buffer(eb);
644 out:
645         return ret;
646 }
647
648 static int btree_io_failed_hook(struct page *page, int failed_mirror)
649 {
650         struct extent_buffer *eb;
651         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
652
653         eb = (struct extent_buffer *)page->private;
654         set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
655         eb->read_mirror = failed_mirror;
656         if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
657                 btree_readahead_hook(root, eb, eb->start, -EIO);
658         return -EIO;    /* we fixed nothing */
659 }
660
661 static void end_workqueue_bio(struct bio *bio, int err)
662 {
663         struct end_io_wq *end_io_wq = bio->bi_private;
664         struct btrfs_fs_info *fs_info;
665
666         fs_info = end_io_wq->info;
667         end_io_wq->error = err;
668         end_io_wq->work.func = end_workqueue_fn;
669         end_io_wq->work.flags = 0;
670
671         if (bio->bi_rw & REQ_WRITE) {
672                 if (end_io_wq->metadata == 1)
673                         btrfs_queue_worker(&fs_info->endio_meta_write_workers,
674                                            &end_io_wq->work);
675                 else if (end_io_wq->metadata == 2)
676                         btrfs_queue_worker(&fs_info->endio_freespace_worker,
677                                            &end_io_wq->work);
678                 else
679                         btrfs_queue_worker(&fs_info->endio_write_workers,
680                                            &end_io_wq->work);
681         } else {
682                 if (end_io_wq->metadata)
683                         btrfs_queue_worker(&fs_info->endio_meta_workers,
684                                            &end_io_wq->work);
685                 else
686                         btrfs_queue_worker(&fs_info->endio_workers,
687                                            &end_io_wq->work);
688         }
689 }
690
691 /*
692  * For the metadata arg you want
693  *
694  * 0 - if data
695  * 1 - if normal metadta
696  * 2 - if writing to the free space cache area
697  */
698 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
699                         int metadata)
700 {
701         struct end_io_wq *end_io_wq;
702         end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
703         if (!end_io_wq)
704                 return -ENOMEM;
705
706         end_io_wq->private = bio->bi_private;
707         end_io_wq->end_io = bio->bi_end_io;
708         end_io_wq->info = info;
709         end_io_wq->error = 0;
710         end_io_wq->bio = bio;
711         end_io_wq->metadata = metadata;
712
713         bio->bi_private = end_io_wq;
714         bio->bi_end_io = end_workqueue_bio;
715         return 0;
716 }
717
718 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
719 {
720         unsigned long limit = min_t(unsigned long,
721                                     info->workers.max_workers,
722                                     info->fs_devices->open_devices);
723         return 256 * limit;
724 }
725
726 static void run_one_async_start(struct btrfs_work *work)
727 {
728         struct async_submit_bio *async;
729         int ret;
730
731         async = container_of(work, struct  async_submit_bio, work);
732         ret = async->submit_bio_start(async->inode, async->rw, async->bio,
733                                       async->mirror_num, async->bio_flags,
734                                       async->bio_offset);
735         if (ret)
736                 async->error = ret;
737 }
738
739 static void run_one_async_done(struct btrfs_work *work)
740 {
741         struct btrfs_fs_info *fs_info;
742         struct async_submit_bio *async;
743         int limit;
744
745         async = container_of(work, struct  async_submit_bio, work);
746         fs_info = BTRFS_I(async->inode)->root->fs_info;
747
748         limit = btrfs_async_submit_limit(fs_info);
749         limit = limit * 2 / 3;
750
751         if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
752             waitqueue_active(&fs_info->async_submit_wait))
753                 wake_up(&fs_info->async_submit_wait);
754
755         /* If an error occured we just want to clean up the bio and move on */
756         if (async->error) {
757                 bio_endio(async->bio, async->error);
758                 return;
759         }
760
761         async->submit_bio_done(async->inode, async->rw, async->bio,
762                                async->mirror_num, async->bio_flags,
763                                async->bio_offset);
764 }
765
766 static void run_one_async_free(struct btrfs_work *work)
767 {
768         struct async_submit_bio *async;
769
770         async = container_of(work, struct  async_submit_bio, work);
771         kfree(async);
772 }
773
774 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
775                         int rw, struct bio *bio, int mirror_num,
776                         unsigned long bio_flags,
777                         u64 bio_offset,
778                         extent_submit_bio_hook_t *submit_bio_start,
779                         extent_submit_bio_hook_t *submit_bio_done)
780 {
781         struct async_submit_bio *async;
782
783         async = kmalloc(sizeof(*async), GFP_NOFS);
784         if (!async)
785                 return -ENOMEM;
786
787         async->inode = inode;
788         async->rw = rw;
789         async->bio = bio;
790         async->mirror_num = mirror_num;
791         async->submit_bio_start = submit_bio_start;
792         async->submit_bio_done = submit_bio_done;
793
794         async->work.func = run_one_async_start;
795         async->work.ordered_func = run_one_async_done;
796         async->work.ordered_free = run_one_async_free;
797
798         async->work.flags = 0;
799         async->bio_flags = bio_flags;
800         async->bio_offset = bio_offset;
801
802         async->error = 0;
803
804         atomic_inc(&fs_info->nr_async_submits);
805
806         if (rw & REQ_SYNC)
807                 btrfs_set_work_high_prio(&async->work);
808
809         btrfs_queue_worker(&fs_info->workers, &async->work);
810
811         while (atomic_read(&fs_info->async_submit_draining) &&
812               atomic_read(&fs_info->nr_async_submits)) {
813                 wait_event(fs_info->async_submit_wait,
814                            (atomic_read(&fs_info->nr_async_submits) == 0));
815         }
816
817         return 0;
818 }
819
820 static int btree_csum_one_bio(struct bio *bio)
821 {
822         struct bio_vec *bvec = bio->bi_io_vec;
823         int bio_index = 0;
824         struct btrfs_root *root;
825         int ret = 0;
826
827         WARN_ON(bio->bi_vcnt <= 0);
828         while (bio_index < bio->bi_vcnt) {
829                 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
830                 ret = csum_dirty_buffer(root, bvec->bv_page);
831                 if (ret)
832                         break;
833                 bio_index++;
834                 bvec++;
835         }
836         return ret;
837 }
838
839 static int __btree_submit_bio_start(struct inode *inode, int rw,
840                                     struct bio *bio, int mirror_num,
841                                     unsigned long bio_flags,
842                                     u64 bio_offset)
843 {
844         /*
845          * when we're called for a write, we're already in the async
846          * submission context.  Just jump into btrfs_map_bio
847          */
848         return btree_csum_one_bio(bio);
849 }
850
851 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
852                                  int mirror_num, unsigned long bio_flags,
853                                  u64 bio_offset)
854 {
855         /*
856          * when we're called for a write, we're already in the async
857          * submission context.  Just jump into btrfs_map_bio
858          */
859         return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
860 }
861
862 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
863                                  int mirror_num, unsigned long bio_flags,
864                                  u64 bio_offset)
865 {
866         int ret;
867
868         if (!(rw & REQ_WRITE)) {
869
870                 /*
871                  * called for a read, do the setup so that checksum validation
872                  * can happen in the async kernel threads
873                  */
874                 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
875                                           bio, 1);
876                 if (ret)
877                         return ret;
878                 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
879                                      mirror_num, 0);
880         }
881
882         /*
883          * kthread helpers are used to submit writes so that checksumming
884          * can happen in parallel across all CPUs
885          */
886         return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
887                                    inode, rw, bio, mirror_num, 0,
888                                    bio_offset,
889                                    __btree_submit_bio_start,
890                                    __btree_submit_bio_done);
891 }
892
893 #ifdef CONFIG_MIGRATION
894 static int btree_migratepage(struct address_space *mapping,
895                         struct page *newpage, struct page *page,
896                         enum migrate_mode mode)
897 {
898         /*
899          * we can't safely write a btree page from here,
900          * we haven't done the locking hook
901          */
902         if (PageDirty(page))
903                 return -EAGAIN;
904         /*
905          * Buffers may be managed in a filesystem specific way.
906          * We must have no buffers or drop them.
907          */
908         if (page_has_private(page) &&
909             !try_to_release_page(page, GFP_KERNEL))
910                 return -EAGAIN;
911         return migrate_page(mapping, newpage, page, mode);
912 }
913 #endif
914
915
916 static int btree_writepages(struct address_space *mapping,
917                             struct writeback_control *wbc)
918 {
919         struct extent_io_tree *tree;
920         tree = &BTRFS_I(mapping->host)->io_tree;
921         if (wbc->sync_mode == WB_SYNC_NONE) {
922                 struct btrfs_root *root = BTRFS_I(mapping->host)->root;
923                 u64 num_dirty;
924                 unsigned long thresh = 32 * 1024 * 1024;
925
926                 if (wbc->for_kupdate)
927                         return 0;
928
929                 /* this is a bit racy, but that's ok */
930                 num_dirty = root->fs_info->dirty_metadata_bytes;
931                 if (num_dirty < thresh)
932                         return 0;
933         }
934         return btree_write_cache_pages(mapping, wbc);
935 }
936
937 static int btree_readpage(struct file *file, struct page *page)
938 {
939         struct extent_io_tree *tree;
940         tree = &BTRFS_I(page->mapping->host)->io_tree;
941         return extent_read_full_page(tree, page, btree_get_extent, 0);
942 }
943
944 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
945 {
946         if (PageWriteback(page) || PageDirty(page))
947                 return 0;
948         /*
949          * We need to mask out eg. __GFP_HIGHMEM and __GFP_DMA32 as we're doing
950          * slab allocation from alloc_extent_state down the callchain where
951          * it'd hit a BUG_ON as those flags are not allowed.
952          */
953         gfp_flags &= ~GFP_SLAB_BUG_MASK;
954
955         return try_release_extent_buffer(page, gfp_flags);
956 }
957
958 static void btree_invalidatepage(struct page *page, unsigned long offset)
959 {
960         struct extent_io_tree *tree;
961         tree = &BTRFS_I(page->mapping->host)->io_tree;
962         extent_invalidatepage(tree, page, offset);
963         btree_releasepage(page, GFP_NOFS);
964         if (PagePrivate(page)) {
965                 printk(KERN_WARNING "btrfs warning page private not zero "
966                        "on page %llu\n", (unsigned long long)page_offset(page));
967                 ClearPagePrivate(page);
968                 set_page_private(page, 0);
969                 page_cache_release(page);
970         }
971 }
972
973 static int btree_set_page_dirty(struct page *page)
974 {
975         struct extent_buffer *eb;
976
977         BUG_ON(!PagePrivate(page));
978         eb = (struct extent_buffer *)page->private;
979         BUG_ON(!eb);
980         BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
981         BUG_ON(!atomic_read(&eb->refs));
982         btrfs_assert_tree_locked(eb);
983         return __set_page_dirty_nobuffers(page);
984 }
985
986 static const struct address_space_operations btree_aops = {
987         .readpage       = btree_readpage,
988         .writepages     = btree_writepages,
989         .releasepage    = btree_releasepage,
990         .invalidatepage = btree_invalidatepage,
991 #ifdef CONFIG_MIGRATION
992         .migratepage    = btree_migratepage,
993 #endif
994         .set_page_dirty = btree_set_page_dirty,
995 };
996
997 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
998                          u64 parent_transid)
999 {
1000         struct extent_buffer *buf = NULL;
1001         struct inode *btree_inode = root->fs_info->btree_inode;
1002         int ret = 0;
1003
1004         buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1005         if (!buf)
1006                 return 0;
1007         read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1008                                  buf, 0, WAIT_NONE, btree_get_extent, 0);
1009         free_extent_buffer(buf);
1010         return ret;
1011 }
1012
1013 int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1014                          int mirror_num, struct extent_buffer **eb)
1015 {
1016         struct extent_buffer *buf = NULL;
1017         struct inode *btree_inode = root->fs_info->btree_inode;
1018         struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1019         int ret;
1020
1021         buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1022         if (!buf)
1023                 return 0;
1024
1025         set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1026
1027         ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1028                                        btree_get_extent, mirror_num);
1029         if (ret) {
1030                 free_extent_buffer(buf);
1031                 return ret;
1032         }
1033
1034         if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1035                 free_extent_buffer(buf);
1036                 return -EIO;
1037         } else if (extent_buffer_uptodate(buf)) {
1038                 *eb = buf;
1039         } else {
1040                 free_extent_buffer(buf);
1041         }
1042         return 0;
1043 }
1044
1045 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
1046                                             u64 bytenr, u32 blocksize)
1047 {
1048         struct inode *btree_inode = root->fs_info->btree_inode;
1049         struct extent_buffer *eb;
1050         eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
1051                                 bytenr, blocksize);
1052         return eb;
1053 }
1054
1055 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1056                                                  u64 bytenr, u32 blocksize)
1057 {
1058         struct inode *btree_inode = root->fs_info->btree_inode;
1059         struct extent_buffer *eb;
1060
1061         eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
1062                                  bytenr, blocksize);
1063         return eb;
1064 }
1065
1066
1067 int btrfs_write_tree_block(struct extent_buffer *buf)
1068 {
1069         return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1070                                         buf->start + buf->len - 1);
1071 }
1072
1073 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1074 {
1075         return filemap_fdatawait_range(buf->pages[0]->mapping,
1076                                        buf->start, buf->start + buf->len - 1);
1077 }
1078
1079 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
1080                                       u32 blocksize, u64 parent_transid)
1081 {
1082         struct extent_buffer *buf = NULL;
1083         int ret;
1084
1085         buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1086         if (!buf)
1087                 return NULL;
1088
1089         ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
1090         return buf;
1091
1092 }
1093
1094 void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1095                       struct extent_buffer *buf)
1096 {
1097         if (btrfs_header_generation(buf) ==
1098             root->fs_info->running_transaction->transid) {
1099                 btrfs_assert_tree_locked(buf);
1100
1101                 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1102                         spin_lock(&root->fs_info->delalloc_lock);
1103                         if (root->fs_info->dirty_metadata_bytes >= buf->len)
1104                                 root->fs_info->dirty_metadata_bytes -= buf->len;
1105                         else {
1106                                 spin_unlock(&root->fs_info->delalloc_lock);
1107                                 btrfs_panic(root->fs_info, -EOVERFLOW,
1108                                           "Can't clear %lu bytes from "
1109                                           " dirty_mdatadata_bytes (%llu)",
1110                                           buf->len,
1111                                           root->fs_info->dirty_metadata_bytes);
1112                         }
1113                         spin_unlock(&root->fs_info->delalloc_lock);
1114                 }
1115
1116                 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1117                 btrfs_set_lock_blocking(buf);
1118                 clear_extent_buffer_dirty(buf);
1119         }
1120 }
1121
1122 static void __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
1123                          u32 stripesize, struct btrfs_root *root,
1124                          struct btrfs_fs_info *fs_info,
1125                          u64 objectid)
1126 {
1127         root->node = NULL;
1128         root->commit_root = NULL;
1129         root->sectorsize = sectorsize;
1130         root->nodesize = nodesize;
1131         root->leafsize = leafsize;
1132         root->stripesize = stripesize;
1133         root->ref_cows = 0;
1134         root->track_dirty = 0;
1135         root->in_radix = 0;
1136         root->orphan_item_inserted = 0;
1137         root->orphan_cleanup_state = 0;
1138
1139         root->objectid = objectid;
1140         root->last_trans = 0;
1141         root->highest_objectid = 0;
1142         root->name = NULL;
1143         root->inode_tree = RB_ROOT;
1144         INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1145         root->block_rsv = NULL;
1146         root->orphan_block_rsv = NULL;
1147
1148         INIT_LIST_HEAD(&root->dirty_list);
1149         INIT_LIST_HEAD(&root->root_list);
1150         spin_lock_init(&root->orphan_lock);
1151         spin_lock_init(&root->inode_lock);
1152         spin_lock_init(&root->accounting_lock);
1153         mutex_init(&root->objectid_mutex);
1154         mutex_init(&root->log_mutex);
1155         init_waitqueue_head(&root->log_writer_wait);
1156         init_waitqueue_head(&root->log_commit_wait[0]);
1157         init_waitqueue_head(&root->log_commit_wait[1]);
1158         atomic_set(&root->log_commit[0], 0);
1159         atomic_set(&root->log_commit[1], 0);
1160         atomic_set(&root->log_writers, 0);
1161         atomic_set(&root->log_batch, 0);
1162         atomic_set(&root->orphan_inodes, 0);
1163         root->log_transid = 0;
1164         root->last_log_commit = 0;
1165         extent_io_tree_init(&root->dirty_log_pages,
1166                              fs_info->btree_inode->i_mapping);
1167
1168         memset(&root->root_key, 0, sizeof(root->root_key));
1169         memset(&root->root_item, 0, sizeof(root->root_item));
1170         memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1171         memset(&root->root_kobj, 0, sizeof(root->root_kobj));
1172         root->defrag_trans_start = fs_info->generation;
1173         init_completion(&root->kobj_unregister);
1174         root->defrag_running = 0;
1175         root->root_key.objectid = objectid;
1176         root->anon_dev = 0;
1177
1178         spin_lock_init(&root->root_times_lock);
1179 }
1180
1181 static int __must_check find_and_setup_root(struct btrfs_root *tree_root,
1182                                             struct btrfs_fs_info *fs_info,
1183                                             u64 objectid,
1184                                             struct btrfs_root *root)
1185 {
1186         int ret;
1187         u32 blocksize;
1188         u64 generation;
1189
1190         __setup_root(tree_root->nodesize, tree_root->leafsize,
1191                      tree_root->sectorsize, tree_root->stripesize,
1192                      root, fs_info, objectid);
1193         ret = btrfs_find_last_root(tree_root, objectid,
1194                                    &root->root_item, &root->root_key);
1195         if (ret > 0)
1196                 return -ENOENT;
1197         else if (ret < 0)
1198                 return ret;
1199
1200         generation = btrfs_root_generation(&root->root_item);
1201         blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1202         root->commit_root = NULL;
1203         root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1204                                      blocksize, generation);
1205         if (!root->node || !btrfs_buffer_uptodate(root->node, generation, 0)) {
1206                 free_extent_buffer(root->node);
1207                 root->node = NULL;
1208                 return -EIO;
1209         }
1210         root->commit_root = btrfs_root_node(root);
1211         return 0;
1212 }
1213
1214 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
1215 {
1216         struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
1217         if (root)
1218                 root->fs_info = fs_info;
1219         return root;
1220 }
1221
1222 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1223                                      struct btrfs_fs_info *fs_info,
1224                                      u64 objectid)
1225 {
1226         struct extent_buffer *leaf;
1227         struct btrfs_root *tree_root = fs_info->tree_root;
1228         struct btrfs_root *root;
1229         struct btrfs_key key;
1230         int ret = 0;
1231         u64 bytenr;
1232
1233         root = btrfs_alloc_root(fs_info);
1234         if (!root)
1235                 return ERR_PTR(-ENOMEM);
1236
1237         __setup_root(tree_root->nodesize, tree_root->leafsize,
1238                      tree_root->sectorsize, tree_root->stripesize,
1239                      root, fs_info, objectid);
1240         root->root_key.objectid = objectid;
1241         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1242         root->root_key.offset = 0;
1243
1244         leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
1245                                       0, objectid, NULL, 0, 0, 0);
1246         if (IS_ERR(leaf)) {
1247                 ret = PTR_ERR(leaf);
1248                 goto fail;
1249         }
1250
1251         bytenr = leaf->start;
1252         memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1253         btrfs_set_header_bytenr(leaf, leaf->start);
1254         btrfs_set_header_generation(leaf, trans->transid);
1255         btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1256         btrfs_set_header_owner(leaf, objectid);
1257         root->node = leaf;
1258
1259         write_extent_buffer(leaf, fs_info->fsid,
1260                             (unsigned long)btrfs_header_fsid(leaf),
1261                             BTRFS_FSID_SIZE);
1262         write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
1263                             (unsigned long)btrfs_header_chunk_tree_uuid(leaf),
1264                             BTRFS_UUID_SIZE);
1265         btrfs_mark_buffer_dirty(leaf);
1266
1267         root->commit_root = btrfs_root_node(root);
1268         root->track_dirty = 1;
1269
1270
1271         root->root_item.flags = 0;
1272         root->root_item.byte_limit = 0;
1273         btrfs_set_root_bytenr(&root->root_item, leaf->start);
1274         btrfs_set_root_generation(&root->root_item, trans->transid);
1275         btrfs_set_root_level(&root->root_item, 0);
1276         btrfs_set_root_refs(&root->root_item, 1);
1277         btrfs_set_root_used(&root->root_item, leaf->len);
1278         btrfs_set_root_last_snapshot(&root->root_item, 0);
1279         btrfs_set_root_dirid(&root->root_item, 0);
1280         root->root_item.drop_level = 0;
1281
1282         key.objectid = objectid;
1283         key.type = BTRFS_ROOT_ITEM_KEY;
1284         key.offset = 0;
1285         ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1286         if (ret)
1287                 goto fail;
1288
1289         btrfs_tree_unlock(leaf);
1290
1291 fail:
1292         if (ret)
1293                 return ERR_PTR(ret);
1294
1295         return root;
1296 }
1297
1298 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1299                                          struct btrfs_fs_info *fs_info)
1300 {
1301         struct btrfs_root *root;
1302         struct btrfs_root *tree_root = fs_info->tree_root;
1303         struct extent_buffer *leaf;
1304
1305         root = btrfs_alloc_root(fs_info);
1306         if (!root)
1307                 return ERR_PTR(-ENOMEM);
1308
1309         __setup_root(tree_root->nodesize, tree_root->leafsize,
1310                      tree_root->sectorsize, tree_root->stripesize,
1311                      root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1312
1313         root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1314         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1315         root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1316         /*
1317          * log trees do not get reference counted because they go away
1318          * before a real commit is actually done.  They do store pointers
1319          * to file data extents, and those reference counts still get
1320          * updated (along with back refs to the log tree).
1321          */
1322         root->ref_cows = 0;
1323
1324         leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
1325                                       BTRFS_TREE_LOG_OBJECTID, NULL,
1326                                       0, 0, 0);
1327         if (IS_ERR(leaf)) {
1328                 kfree(root);
1329                 return ERR_CAST(leaf);
1330         }
1331
1332         memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1333         btrfs_set_header_bytenr(leaf, leaf->start);
1334         btrfs_set_header_generation(leaf, trans->transid);
1335         btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1336         btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1337         root->node = leaf;
1338
1339         write_extent_buffer(root->node, root->fs_info->fsid,
1340                             (unsigned long)btrfs_header_fsid(root->node),
1341                             BTRFS_FSID_SIZE);
1342         btrfs_mark_buffer_dirty(root->node);
1343         btrfs_tree_unlock(root->node);
1344         return root;
1345 }
1346
1347 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1348                              struct btrfs_fs_info *fs_info)
1349 {
1350         struct btrfs_root *log_root;
1351
1352         log_root = alloc_log_tree(trans, fs_info);
1353         if (IS_ERR(log_root))
1354                 return PTR_ERR(log_root);
1355         WARN_ON(fs_info->log_root_tree);
1356         fs_info->log_root_tree = log_root;
1357         return 0;
1358 }
1359
1360 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1361                        struct btrfs_root *root)
1362 {
1363         struct btrfs_root *log_root;
1364         struct btrfs_inode_item *inode_item;
1365
1366         log_root = alloc_log_tree(trans, root->fs_info);
1367         if (IS_ERR(log_root))
1368                 return PTR_ERR(log_root);
1369
1370         log_root->last_trans = trans->transid;
1371         log_root->root_key.offset = root->root_key.objectid;
1372
1373         inode_item = &log_root->root_item.inode;
1374         inode_item->generation = cpu_to_le64(1);
1375         inode_item->size = cpu_to_le64(3);
1376         inode_item->nlink = cpu_to_le32(1);
1377         inode_item->nbytes = cpu_to_le64(root->leafsize);
1378         inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
1379
1380         btrfs_set_root_node(&log_root->root_item, log_root->node);
1381
1382         WARN_ON(root->log_root);
1383         root->log_root = log_root;
1384         root->log_transid = 0;
1385         root->last_log_commit = 0;
1386         return 0;
1387 }
1388
1389 struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
1390                                                struct btrfs_key *location)
1391 {
1392         struct btrfs_root *root;
1393         struct btrfs_fs_info *fs_info = tree_root->fs_info;
1394         struct btrfs_path *path;
1395         struct extent_buffer *l;
1396         u64 generation;
1397         u32 blocksize;
1398         int ret = 0;
1399         int slot;
1400
1401         root = btrfs_alloc_root(fs_info);
1402         if (!root)
1403                 return ERR_PTR(-ENOMEM);
1404         if (location->offset == (u64)-1) {
1405                 ret = find_and_setup_root(tree_root, fs_info,
1406                                           location->objectid, root);
1407                 if (ret) {
1408                         kfree(root);
1409                         return ERR_PTR(ret);
1410                 }
1411                 goto out;
1412         }
1413
1414         __setup_root(tree_root->nodesize, tree_root->leafsize,
1415                      tree_root->sectorsize, tree_root->stripesize,
1416                      root, fs_info, location->objectid);
1417
1418         path = btrfs_alloc_path();
1419         if (!path) {
1420                 kfree(root);
1421                 return ERR_PTR(-ENOMEM);
1422         }
1423         ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
1424         if (ret == 0) {
1425                 l = path->nodes[0];
1426                 slot = path->slots[0];
1427                 btrfs_read_root_item(tree_root, l, slot, &root->root_item);
1428                 memcpy(&root->root_key, location, sizeof(*location));
1429         }
1430         btrfs_free_path(path);
1431         if (ret) {
1432                 kfree(root);
1433                 if (ret > 0)
1434                         ret = -ENOENT;
1435                 return ERR_PTR(ret);
1436         }
1437
1438         generation = btrfs_root_generation(&root->root_item);
1439         blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1440         root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1441                                      blocksize, generation);
1442         root->commit_root = btrfs_root_node(root);
1443         BUG_ON(!root->node); /* -ENOMEM */
1444 out:
1445         if (location->objectid != BTRFS_TREE_LOG_OBJECTID) {
1446                 root->ref_cows = 1;
1447                 btrfs_check_and_init_root_item(&root->root_item);
1448         }
1449
1450         return root;
1451 }
1452
1453 struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
1454                                               struct btrfs_key *location)
1455 {
1456         struct btrfs_root *root;
1457         int ret;
1458
1459         if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1460                 return fs_info->tree_root;
1461         if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1462                 return fs_info->extent_root;
1463         if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1464                 return fs_info->chunk_root;
1465         if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1466                 return fs_info->dev_root;
1467         if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1468                 return fs_info->csum_root;
1469         if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1470                 return fs_info->quota_root ? fs_info->quota_root :
1471                                              ERR_PTR(-ENOENT);
1472 again:
1473         spin_lock(&fs_info->fs_roots_radix_lock);
1474         root = radix_tree_lookup(&fs_info->fs_roots_radix,
1475                                  (unsigned long)location->objectid);
1476         spin_unlock(&fs_info->fs_roots_radix_lock);
1477         if (root)
1478                 return root;
1479
1480         root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
1481         if (IS_ERR(root))
1482                 return root;
1483
1484         root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1485         root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1486                                         GFP_NOFS);
1487         if (!root->free_ino_pinned || !root->free_ino_ctl) {
1488                 ret = -ENOMEM;
1489                 goto fail;
1490         }
1491
1492         btrfs_init_free_ino_ctl(root);
1493         mutex_init(&root->fs_commit_mutex);
1494         spin_lock_init(&root->cache_lock);
1495         init_waitqueue_head(&root->cache_wait);
1496
1497         ret = get_anon_bdev(&root->anon_dev);
1498         if (ret)
1499                 goto fail;
1500
1501         if (btrfs_root_refs(&root->root_item) == 0) {
1502                 ret = -ENOENT;
1503                 goto fail;
1504         }
1505
1506         ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid);
1507         if (ret < 0)
1508                 goto fail;
1509         if (ret == 0)
1510                 root->orphan_item_inserted = 1;
1511
1512         ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1513         if (ret)
1514                 goto fail;
1515
1516         spin_lock(&fs_info->fs_roots_radix_lock);
1517         ret = radix_tree_insert(&fs_info->fs_roots_radix,
1518                                 (unsigned long)root->root_key.objectid,
1519                                 root);
1520         if (ret == 0)
1521                 root->in_radix = 1;
1522
1523         spin_unlock(&fs_info->fs_roots_radix_lock);
1524         radix_tree_preload_end();
1525         if (ret) {
1526                 if (ret == -EEXIST) {
1527                         free_fs_root(root);
1528                         goto again;
1529                 }
1530                 goto fail;
1531         }
1532
1533         ret = btrfs_find_dead_roots(fs_info->tree_root,
1534                                     root->root_key.objectid);
1535         WARN_ON(ret);
1536         return root;
1537 fail:
1538         free_fs_root(root);
1539         return ERR_PTR(ret);
1540 }
1541
1542 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1543 {
1544         struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1545         int ret = 0;
1546         struct btrfs_device *device;
1547         struct backing_dev_info *bdi;
1548
1549         rcu_read_lock();
1550         list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1551                 if (!device->bdev)
1552                         continue;
1553                 bdi = blk_get_backing_dev_info(device->bdev);
1554                 if (bdi && bdi_congested(bdi, bdi_bits)) {
1555                         ret = 1;
1556                         break;
1557                 }
1558         }
1559         rcu_read_unlock();
1560         return ret;
1561 }
1562
1563 /*
1564  * If this fails, caller must call bdi_destroy() to get rid of the
1565  * bdi again.
1566  */
1567 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1568 {
1569         int err;
1570
1571         bdi->capabilities = BDI_CAP_MAP_COPY;
1572         err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
1573         if (err)
1574                 return err;
1575
1576         bdi->ra_pages   = default_backing_dev_info.ra_pages;
1577         bdi->congested_fn       = btrfs_congested_fn;
1578         bdi->congested_data     = info;
1579         return 0;
1580 }
1581
1582 /*
1583  * called by the kthread helper functions to finally call the bio end_io
1584  * functions.  This is where read checksum verification actually happens
1585  */
1586 static void end_workqueue_fn(struct btrfs_work *work)
1587 {
1588         struct bio *bio;
1589         struct end_io_wq *end_io_wq;
1590         struct btrfs_fs_info *fs_info;
1591         int error;
1592
1593         end_io_wq = container_of(work, struct end_io_wq, work);
1594         bio = end_io_wq->bio;
1595         fs_info = end_io_wq->info;
1596
1597         error = end_io_wq->error;
1598         bio->bi_private = end_io_wq->private;
1599         bio->bi_end_io = end_io_wq->end_io;
1600         kfree(end_io_wq);
1601         bio_endio(bio, error);
1602 }
1603
1604 static int cleaner_kthread(void *arg)
1605 {
1606         struct btrfs_root *root = arg;
1607
1608         do {
1609                 if (!(root->fs_info->sb->s_flags & MS_RDONLY) &&
1610                     mutex_trylock(&root->fs_info->cleaner_mutex)) {
1611                         btrfs_run_delayed_iputs(root);
1612                         btrfs_clean_old_snapshots(root);
1613                         mutex_unlock(&root->fs_info->cleaner_mutex);
1614                         btrfs_run_defrag_inodes(root->fs_info);
1615                 }
1616
1617                 if (!try_to_freeze()) {
1618                         set_current_state(TASK_INTERRUPTIBLE);
1619                         if (!kthread_should_stop())
1620                                 schedule();
1621                         __set_current_state(TASK_RUNNING);
1622                 }
1623         } while (!kthread_should_stop());
1624         return 0;
1625 }
1626
1627 static int transaction_kthread(void *arg)
1628 {
1629         struct btrfs_root *root = arg;
1630         struct btrfs_trans_handle *trans;
1631         struct btrfs_transaction *cur;
1632         u64 transid;
1633         unsigned long now;
1634         unsigned long delay;
1635         bool cannot_commit;
1636
1637         do {
1638                 cannot_commit = false;
1639                 delay = HZ * 30;
1640                 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1641
1642                 spin_lock(&root->fs_info->trans_lock);
1643                 cur = root->fs_info->running_transaction;
1644                 if (!cur) {
1645                         spin_unlock(&root->fs_info->trans_lock);
1646                         goto sleep;
1647                 }
1648
1649                 now = get_seconds();
1650                 if (!cur->blocked &&
1651                     (now < cur->start_time || now - cur->start_time < 30)) {
1652                         spin_unlock(&root->fs_info->trans_lock);
1653                         delay = HZ * 5;
1654                         goto sleep;
1655                 }
1656                 transid = cur->transid;
1657                 spin_unlock(&root->fs_info->trans_lock);
1658
1659                 /* If the file system is aborted, this will always fail. */
1660                 trans = btrfs_join_transaction(root);
1661                 if (IS_ERR(trans)) {
1662                         cannot_commit = true;
1663                         goto sleep;
1664                 }
1665                 if (transid == trans->transid) {
1666                         btrfs_commit_transaction(trans, root);
1667                 } else {
1668                         btrfs_end_transaction(trans, root);
1669                 }
1670 sleep:
1671                 wake_up_process(root->fs_info->cleaner_kthread);
1672                 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1673
1674                 if (!try_to_freeze()) {
1675                         set_current_state(TASK_INTERRUPTIBLE);
1676                         if (!kthread_should_stop() &&
1677                             (!btrfs_transaction_blocked(root->fs_info) ||
1678                              cannot_commit))
1679                                 schedule_timeout(delay);
1680                         __set_current_state(TASK_RUNNING);
1681                 }
1682         } while (!kthread_should_stop());
1683         return 0;
1684 }
1685
1686 /*
1687  * this will find the highest generation in the array of
1688  * root backups.  The index of the highest array is returned,
1689  * or -1 if we can't find anything.
1690  *
1691  * We check to make sure the array is valid by comparing the
1692  * generation of the latest  root in the array with the generation
1693  * in the super block.  If they don't match we pitch it.
1694  */
1695 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1696 {
1697         u64 cur;
1698         int newest_index = -1;
1699         struct btrfs_root_backup *root_backup;
1700         int i;
1701
1702         for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1703                 root_backup = info->super_copy->super_roots + i;
1704                 cur = btrfs_backup_tree_root_gen(root_backup);
1705                 if (cur == newest_gen)
1706                         newest_index = i;
1707         }
1708
1709         /* check to see if we actually wrapped around */
1710         if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1711                 root_backup = info->super_copy->super_roots;
1712                 cur = btrfs_backup_tree_root_gen(root_backup);
1713                 if (cur == newest_gen)
1714                         newest_index = 0;
1715         }
1716         return newest_index;
1717 }
1718
1719
1720 /*
1721  * find the oldest backup so we know where to store new entries
1722  * in the backup array.  This will set the backup_root_index
1723  * field in the fs_info struct
1724  */
1725 static void find_oldest_super_backup(struct btrfs_fs_info *info,
1726                                      u64 newest_gen)
1727 {
1728         int newest_index = -1;
1729
1730         newest_index = find_newest_super_backup(info, newest_gen);
1731         /* if there was garbage in there, just move along */
1732         if (newest_index == -1) {
1733                 info->backup_root_index = 0;
1734         } else {
1735                 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1736         }
1737 }
1738
1739 /*
1740  * copy all the root pointers into the super backup array.
1741  * this will bump the backup pointer by one when it is
1742  * done
1743  */
1744 static void backup_super_roots(struct btrfs_fs_info *info)
1745 {
1746         int next_backup;
1747         struct btrfs_root_backup *root_backup;
1748         int last_backup;
1749
1750         next_backup = info->backup_root_index;
1751         last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1752                 BTRFS_NUM_BACKUP_ROOTS;
1753
1754         /*
1755          * just overwrite the last backup if we're at the same generation
1756          * this happens only at umount
1757          */
1758         root_backup = info->super_for_commit->super_roots + last_backup;
1759         if (btrfs_backup_tree_root_gen(root_backup) ==
1760             btrfs_header_generation(info->tree_root->node))
1761                 next_backup = last_backup;
1762
1763         root_backup = info->super_for_commit->super_roots + next_backup;
1764
1765         /*
1766          * make sure all of our padding and empty slots get zero filled
1767          * regardless of which ones we use today
1768          */
1769         memset(root_backup, 0, sizeof(*root_backup));
1770
1771         info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1772
1773         btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1774         btrfs_set_backup_tree_root_gen(root_backup,
1775                                btrfs_header_generation(info->tree_root->node));
1776
1777         btrfs_set_backup_tree_root_level(root_backup,
1778                                btrfs_header_level(info->tree_root->node));
1779
1780         btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1781         btrfs_set_backup_chunk_root_gen(root_backup,
1782                                btrfs_header_generation(info->chunk_root->node));
1783         btrfs_set_backup_chunk_root_level(root_backup,
1784                                btrfs_header_level(info->chunk_root->node));
1785
1786         btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1787         btrfs_set_backup_extent_root_gen(root_backup,
1788                                btrfs_header_generation(info->extent_root->node));
1789         btrfs_set_backup_extent_root_level(root_backup,
1790                                btrfs_header_level(info->extent_root->node));
1791
1792         /*
1793          * we might commit during log recovery, which happens before we set
1794          * the fs_root.  Make sure it is valid before we fill it in.
1795          */
1796         if (info->fs_root && info->fs_root->node) {
1797                 btrfs_set_backup_fs_root(root_backup,
1798                                          info->fs_root->node->start);
1799                 btrfs_set_backup_fs_root_gen(root_backup,
1800                                btrfs_header_generation(info->fs_root->node));
1801                 btrfs_set_backup_fs_root_level(root_backup,
1802                                btrfs_header_level(info->fs_root->node));
1803         }
1804
1805         btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1806         btrfs_set_backup_dev_root_gen(root_backup,
1807                                btrfs_header_generation(info->dev_root->node));
1808         btrfs_set_backup_dev_root_level(root_backup,
1809                                        btrfs_header_level(info->dev_root->node));
1810
1811         btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1812         btrfs_set_backup_csum_root_gen(root_backup,
1813                                btrfs_header_generation(info->csum_root->node));
1814         btrfs_set_backup_csum_root_level(root_backup,
1815                                btrfs_header_level(info->csum_root->node));
1816
1817         btrfs_set_backup_total_bytes(root_backup,
1818                              btrfs_super_total_bytes(info->super_copy));
1819         btrfs_set_backup_bytes_used(root_backup,
1820                              btrfs_super_bytes_used(info->super_copy));
1821         btrfs_set_backup_num_devices(root_backup,
1822                              btrfs_super_num_devices(info->super_copy));
1823
1824         /*
1825          * if we don't copy this out to the super_copy, it won't get remembered
1826          * for the next commit
1827          */
1828         memcpy(&info->super_copy->super_roots,
1829                &info->super_for_commit->super_roots,
1830                sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1831 }
1832
1833 /*
1834  * this copies info out of the root backup array and back into
1835  * the in-memory super block.  It is meant to help iterate through
1836  * the array, so you send it the number of backups you've already
1837  * tried and the last backup index you used.
1838  *
1839  * this returns -1 when it has tried all the backups
1840  */
1841 static noinline int next_root_backup(struct btrfs_fs_info *info,
1842                                      struct btrfs_super_block *super,
1843                                      int *num_backups_tried, int *backup_index)
1844 {
1845         struct btrfs_root_backup *root_backup;
1846         int newest = *backup_index;
1847
1848         if (*num_backups_tried == 0) {
1849                 u64 gen = btrfs_super_generation(super);
1850
1851                 newest = find_newest_super_backup(info, gen);
1852                 if (newest == -1)
1853                         return -1;
1854
1855                 *backup_index = newest;
1856                 *num_backups_tried = 1;
1857         } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
1858                 /* we've tried all the backups, all done */
1859                 return -1;
1860         } else {
1861                 /* jump to the next oldest backup */
1862                 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
1863                         BTRFS_NUM_BACKUP_ROOTS;
1864                 *backup_index = newest;
1865                 *num_backups_tried += 1;
1866         }
1867         root_backup = super->super_roots + newest;
1868
1869         btrfs_set_super_generation(super,
1870                                    btrfs_backup_tree_root_gen(root_backup));
1871         btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1872         btrfs_set_super_root_level(super,
1873                                    btrfs_backup_tree_root_level(root_backup));
1874         btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1875
1876         /*
1877          * fixme: the total bytes and num_devices need to match or we should
1878          * need a fsck
1879          */
1880         btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1881         btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1882         return 0;
1883 }
1884
1885 /* helper to cleanup tree roots */
1886 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
1887 {
1888         free_extent_buffer(info->tree_root->node);
1889         free_extent_buffer(info->tree_root->commit_root);
1890         free_extent_buffer(info->dev_root->node);
1891         free_extent_buffer(info->dev_root->commit_root);
1892         free_extent_buffer(info->extent_root->node);
1893         free_extent_buffer(info->extent_root->commit_root);
1894         free_extent_buffer(info->csum_root->node);
1895         free_extent_buffer(info->csum_root->commit_root);
1896         if (info->quota_root) {
1897                 free_extent_buffer(info->quota_root->node);
1898                 free_extent_buffer(info->quota_root->commit_root);
1899         }
1900
1901         info->tree_root->node = NULL;
1902         info->tree_root->commit_root = NULL;
1903         info->dev_root->node = NULL;
1904         info->dev_root->commit_root = NULL;
1905         info->extent_root->node = NULL;
1906         info->extent_root->commit_root = NULL;
1907         info->csum_root->node = NULL;
1908         info->csum_root->commit_root = NULL;
1909         if (info->quota_root) {
1910                 info->quota_root->node = NULL;
1911                 info->quota_root->commit_root = NULL;
1912         }
1913
1914         if (chunk_root) {
1915                 free_extent_buffer(info->chunk_root->node);
1916                 free_extent_buffer(info->chunk_root->commit_root);
1917                 info->chunk_root->node = NULL;
1918                 info->chunk_root->commit_root = NULL;
1919         }
1920 }
1921
1922
1923 int open_ctree(struct super_block *sb,
1924                struct btrfs_fs_devices *fs_devices,
1925                char *options)
1926 {
1927         u32 sectorsize;
1928         u32 nodesize;
1929         u32 leafsize;
1930         u32 blocksize;
1931         u32 stripesize;
1932         u64 generation;
1933         u64 features;
1934         struct btrfs_key location;
1935         struct buffer_head *bh;
1936         struct btrfs_super_block *disk_super;
1937         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1938         struct btrfs_root *tree_root;
1939         struct btrfs_root *extent_root;
1940         struct btrfs_root *csum_root;
1941         struct btrfs_root *chunk_root;
1942         struct btrfs_root *dev_root;
1943         struct btrfs_root *quota_root;
1944         struct btrfs_root *log_tree_root;
1945         int ret;
1946         int err = -EINVAL;
1947         int num_backups_tried = 0;
1948         int backup_index = 0;
1949
1950         tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
1951         extent_root = fs_info->extent_root = btrfs_alloc_root(fs_info);
1952         csum_root = fs_info->csum_root = btrfs_alloc_root(fs_info);
1953         chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
1954         dev_root = fs_info->dev_root = btrfs_alloc_root(fs_info);
1955         quota_root = fs_info->quota_root = btrfs_alloc_root(fs_info);
1956
1957         if (!tree_root || !extent_root || !csum_root ||
1958             !chunk_root || !dev_root || !quota_root) {
1959                 err = -ENOMEM;
1960                 goto fail;
1961         }
1962
1963         ret = init_srcu_struct(&fs_info->subvol_srcu);
1964         if (ret) {
1965                 err = ret;
1966                 goto fail;
1967         }
1968
1969         ret = setup_bdi(fs_info, &fs_info->bdi);
1970         if (ret) {
1971                 err = ret;
1972                 goto fail_srcu;
1973         }
1974
1975         fs_info->btree_inode = new_inode(sb);
1976         if (!fs_info->btree_inode) {
1977                 err = -ENOMEM;
1978                 goto fail_bdi;
1979         }
1980
1981         mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
1982
1983         INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
1984         INIT_LIST_HEAD(&fs_info->trans_list);
1985         INIT_LIST_HEAD(&fs_info->dead_roots);
1986         INIT_LIST_HEAD(&fs_info->delayed_iputs);
1987         INIT_LIST_HEAD(&fs_info->hashers);
1988         INIT_LIST_HEAD(&fs_info->delalloc_inodes);
1989         INIT_LIST_HEAD(&fs_info->ordered_operations);
1990         INIT_LIST_HEAD(&fs_info->caching_block_groups);
1991         spin_lock_init(&fs_info->delalloc_lock);
1992         spin_lock_init(&fs_info->trans_lock);
1993         spin_lock_init(&fs_info->fs_roots_radix_lock);
1994         spin_lock_init(&fs_info->delayed_iput_lock);
1995         spin_lock_init(&fs_info->defrag_inodes_lock);
1996         spin_lock_init(&fs_info->free_chunk_lock);
1997         spin_lock_init(&fs_info->tree_mod_seq_lock);
1998         rwlock_init(&fs_info->tree_mod_log_lock);
1999         mutex_init(&fs_info->reloc_mutex);
2000
2001         init_completion(&fs_info->kobj_unregister);
2002         INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2003         INIT_LIST_HEAD(&fs_info->space_info);
2004         INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2005         btrfs_mapping_init(&fs_info->mapping_tree);
2006         btrfs_init_block_rsv(&fs_info->global_block_rsv,
2007                              BTRFS_BLOCK_RSV_GLOBAL);
2008         btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2009                              BTRFS_BLOCK_RSV_DELALLOC);
2010         btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2011         btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2012         btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2013         btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2014                              BTRFS_BLOCK_RSV_DELOPS);
2015         atomic_set(&fs_info->nr_async_submits, 0);
2016         atomic_set(&fs_info->async_delalloc_pages, 0);
2017         atomic_set(&fs_info->async_submit_draining, 0);
2018         atomic_set(&fs_info->nr_async_bios, 0);
2019         atomic_set(&fs_info->defrag_running, 0);
2020         atomic_set(&fs_info->tree_mod_seq, 0);
2021         fs_info->sb = sb;
2022         fs_info->max_inline = 8192 * 1024;
2023         fs_info->metadata_ratio = 0;
2024         fs_info->defrag_inodes = RB_ROOT;
2025         fs_info->trans_no_join = 0;
2026         fs_info->free_chunk_space = 0;
2027         fs_info->tree_mod_log = RB_ROOT;
2028
2029         /* readahead state */
2030         INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
2031         spin_lock_init(&fs_info->reada_lock);
2032
2033         fs_info->thread_pool_size = min_t(unsigned long,
2034                                           num_online_cpus() + 2, 8);
2035
2036         INIT_LIST_HEAD(&fs_info->ordered_extents);
2037         spin_lock_init(&fs_info->ordered_extent_lock);
2038         fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2039                                         GFP_NOFS);
2040         if (!fs_info->delayed_root) {
2041                 err = -ENOMEM;
2042                 goto fail_iput;
2043         }
2044         btrfs_init_delayed_root(fs_info->delayed_root);
2045
2046         mutex_init(&fs_info->scrub_lock);
2047         atomic_set(&fs_info->scrubs_running, 0);
2048         atomic_set(&fs_info->scrub_pause_req, 0);
2049         atomic_set(&fs_info->scrubs_paused, 0);
2050         atomic_set(&fs_info->scrub_cancel_req, 0);
2051         init_waitqueue_head(&fs_info->scrub_pause_wait);
2052         init_rwsem(&fs_info->scrub_super_lock);
2053         fs_info->scrub_workers_refcnt = 0;
2054 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2055         fs_info->check_integrity_print_mask = 0;
2056 #endif
2057
2058         spin_lock_init(&fs_info->balance_lock);
2059         mutex_init(&fs_info->balance_mutex);
2060         atomic_set(&fs_info->balance_running, 0);
2061         atomic_set(&fs_info->balance_pause_req, 0);
2062         atomic_set(&fs_info->balance_cancel_req, 0);
2063         fs_info->balance_ctl = NULL;
2064         init_waitqueue_head(&fs_info->balance_wait_q);
2065
2066         sb->s_blocksize = 4096;
2067         sb->s_blocksize_bits = blksize_bits(4096);
2068         sb->s_bdi = &fs_info->bdi;
2069
2070         fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2071         set_nlink(fs_info->btree_inode, 1);
2072         /*
2073          * we set the i_size on the btree inode to the max possible int.
2074          * the real end of the address space is determined by all of
2075          * the devices in the system
2076          */
2077         fs_info->btree_inode->i_size = OFFSET_MAX;
2078         fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
2079         fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
2080
2081         RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
2082         extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
2083                              fs_info->btree_inode->i_mapping);
2084         BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
2085         extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
2086
2087         BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
2088
2089         BTRFS_I(fs_info->btree_inode)->root = tree_root;
2090         memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2091                sizeof(struct btrfs_key));
2092         set_bit(BTRFS_INODE_DUMMY,
2093                 &BTRFS_I(fs_info->btree_inode)->runtime_flags);
2094         insert_inode_hash(fs_info->btree_inode);
2095
2096         spin_lock_init(&fs_info->block_group_cache_lock);
2097         fs_info->block_group_cache_tree = RB_ROOT;
2098
2099         extent_io_tree_init(&fs_info->freed_extents[0],
2100                              fs_info->btree_inode->i_mapping);
2101         extent_io_tree_init(&fs_info->freed_extents[1],
2102                              fs_info->btree_inode->i_mapping);
2103         fs_info->pinned_extents = &fs_info->freed_extents[0];
2104         fs_info->do_barriers = 1;
2105
2106
2107         mutex_init(&fs_info->ordered_operations_mutex);
2108         mutex_init(&fs_info->tree_log_mutex);
2109         mutex_init(&fs_info->chunk_mutex);
2110         mutex_init(&fs_info->transaction_kthread_mutex);
2111         mutex_init(&fs_info->cleaner_mutex);
2112         mutex_init(&fs_info->volume_mutex);
2113         init_rwsem(&fs_info->extent_commit_sem);
2114         init_rwsem(&fs_info->cleanup_work_sem);
2115         init_rwsem(&fs_info->subvol_sem);
2116
2117         spin_lock_init(&fs_info->qgroup_lock);
2118         fs_info->qgroup_tree = RB_ROOT;
2119         INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2120         fs_info->qgroup_seq = 1;
2121         fs_info->quota_enabled = 0;
2122         fs_info->pending_quota_state = 0;
2123
2124         btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2125         btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2126
2127         init_waitqueue_head(&fs_info->transaction_throttle);
2128         init_waitqueue_head(&fs_info->transaction_wait);
2129         init_waitqueue_head(&fs_info->transaction_blocked_wait);
2130         init_waitqueue_head(&fs_info->async_submit_wait);
2131
2132         __setup_root(4096, 4096, 4096, 4096, tree_root,
2133                      fs_info, BTRFS_ROOT_TREE_OBJECTID);
2134
2135         invalidate_bdev(fs_devices->latest_bdev);
2136         bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2137         if (!bh) {
2138                 err = -EINVAL;
2139                 goto fail_alloc;
2140         }
2141
2142         memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2143         memcpy(fs_info->super_for_commit, fs_info->super_copy,
2144                sizeof(*fs_info->super_for_commit));
2145         brelse(bh);
2146
2147         memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2148
2149         disk_super = fs_info->super_copy;
2150         if (!btrfs_super_root(disk_super))
2151                 goto fail_alloc;
2152
2153         /* check FS state, whether FS is broken. */
2154         fs_info->fs_state |= btrfs_super_flags(disk_super);
2155
2156         ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2157         if (ret) {
2158                 printk(KERN_ERR "btrfs: superblock contains fatal errors\n");
2159                 err = ret;
2160                 goto fail_alloc;
2161         }
2162
2163         /*
2164          * run through our array of backup supers and setup
2165          * our ring pointer to the oldest one
2166          */
2167         generation = btrfs_super_generation(disk_super);
2168         find_oldest_super_backup(fs_info, generation);
2169
2170         /*
2171          * In the long term, we'll store the compression type in the super
2172          * block, and it'll be used for per file compression control.
2173          */
2174         fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2175
2176         ret = btrfs_parse_options(tree_root, options);
2177         if (ret) {
2178                 err = ret;
2179                 goto fail_alloc;
2180         }
2181
2182         features = btrfs_super_incompat_flags(disk_super) &
2183                 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2184         if (features) {
2185                 printk(KERN_ERR "BTRFS: couldn't mount because of "
2186                        "unsupported optional features (%Lx).\n",
2187                        (unsigned long long)features);
2188                 err = -EINVAL;
2189                 goto fail_alloc;
2190         }
2191
2192         if (btrfs_super_leafsize(disk_super) !=
2193             btrfs_super_nodesize(disk_super)) {
2194                 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2195                        "blocksizes don't match.  node %d leaf %d\n",
2196                        btrfs_super_nodesize(disk_super),
2197                        btrfs_super_leafsize(disk_super));
2198                 err = -EINVAL;
2199                 goto fail_alloc;
2200         }
2201         if (btrfs_super_leafsize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
2202                 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2203                        "blocksize (%d) was too large\n",
2204                        btrfs_super_leafsize(disk_super));
2205                 err = -EINVAL;
2206                 goto fail_alloc;
2207         }
2208
2209         features = btrfs_super_incompat_flags(disk_super);
2210         features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2211         if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
2212                 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2213
2214         /*
2215          * flag our filesystem as having big metadata blocks if
2216          * they are bigger than the page size
2217          */
2218         if (btrfs_super_leafsize(disk_super) > PAGE_CACHE_SIZE) {
2219                 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2220                         printk(KERN_INFO "btrfs flagging fs with big metadata feature\n");
2221                 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2222         }
2223
2224         nodesize = btrfs_super_nodesize(disk_super);
2225         leafsize = btrfs_super_leafsize(disk_super);
2226         sectorsize = btrfs_super_sectorsize(disk_super);
2227         stripesize = btrfs_super_stripesize(disk_super);
2228
2229         /*
2230          * mixed block groups end up with duplicate but slightly offset
2231          * extent buffers for the same range.  It leads to corruptions
2232          */
2233         if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2234             (sectorsize != leafsize)) {
2235                 printk(KERN_WARNING "btrfs: unequal leaf/node/sector sizes "
2236                                 "are not allowed for mixed block groups on %s\n",
2237                                 sb->s_id);
2238                 goto fail_alloc;
2239         }
2240
2241         btrfs_set_super_incompat_flags(disk_super, features);
2242
2243         features = btrfs_super_compat_ro_flags(disk_super) &
2244                 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2245         if (!(sb->s_flags & MS_RDONLY) && features) {
2246                 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2247                        "unsupported option features (%Lx).\n",
2248                        (unsigned long long)features);
2249                 err = -EINVAL;
2250                 goto fail_alloc;
2251         }
2252
2253         btrfs_init_workers(&fs_info->generic_worker,
2254                            "genwork", 1, NULL);
2255
2256         btrfs_init_workers(&fs_info->workers, "worker",
2257                            fs_info->thread_pool_size,
2258                            &fs_info->generic_worker);
2259
2260         btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
2261                            fs_info->thread_pool_size,
2262                            &fs_info->generic_worker);
2263
2264         btrfs_init_workers(&fs_info->submit_workers, "submit",
2265                            min_t(u64, fs_devices->num_devices,
2266                            fs_info->thread_pool_size),
2267                            &fs_info->generic_worker);
2268
2269         btrfs_init_workers(&fs_info->caching_workers, "cache",
2270                            2, &fs_info->generic_worker);
2271
2272         /* a higher idle thresh on the submit workers makes it much more
2273          * likely that bios will be send down in a sane order to the
2274          * devices
2275          */
2276         fs_info->submit_workers.idle_thresh = 64;
2277
2278         fs_info->workers.idle_thresh = 16;
2279         fs_info->workers.ordered = 1;
2280
2281         fs_info->delalloc_workers.idle_thresh = 2;
2282         fs_info->delalloc_workers.ordered = 1;
2283
2284         btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
2285                            &fs_info->generic_worker);
2286         btrfs_init_workers(&fs_info->endio_workers, "endio",
2287                            fs_info->thread_pool_size,
2288                            &fs_info->generic_worker);
2289         btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
2290                            fs_info->thread_pool_size,
2291                            &fs_info->generic_worker);
2292         btrfs_init_workers(&fs_info->endio_meta_write_workers,
2293                            "endio-meta-write", fs_info->thread_pool_size,
2294                            &fs_info->generic_worker);
2295         btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
2296                            fs_info->thread_pool_size,
2297                            &fs_info->generic_worker);
2298         btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write",
2299                            1, &fs_info->generic_worker);
2300         btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta",
2301                            fs_info->thread_pool_size,
2302                            &fs_info->generic_worker);
2303         btrfs_init_workers(&fs_info->readahead_workers, "readahead",
2304                            fs_info->thread_pool_size,
2305                            &fs_info->generic_worker);
2306
2307         /*
2308          * endios are largely parallel and should have a very
2309          * low idle thresh
2310          */
2311         fs_info->endio_workers.idle_thresh = 4;
2312         fs_info->endio_meta_workers.idle_thresh = 4;
2313
2314         fs_info->endio_write_workers.idle_thresh = 2;
2315         fs_info->endio_meta_write_workers.idle_thresh = 2;
2316         fs_info->readahead_workers.idle_thresh = 2;
2317
2318         /*
2319          * btrfs_start_workers can really only fail because of ENOMEM so just
2320          * return -ENOMEM if any of these fail.
2321          */
2322         ret = btrfs_start_workers(&fs_info->workers);
2323         ret |= btrfs_start_workers(&fs_info->generic_worker);
2324         ret |= btrfs_start_workers(&fs_info->submit_workers);
2325         ret |= btrfs_start_workers(&fs_info->delalloc_workers);
2326         ret |= btrfs_start_workers(&fs_info->fixup_workers);
2327         ret |= btrfs_start_workers(&fs_info->endio_workers);
2328         ret |= btrfs_start_workers(&fs_info->endio_meta_workers);
2329         ret |= btrfs_start_workers(&fs_info->endio_meta_write_workers);
2330         ret |= btrfs_start_workers(&fs_info->endio_write_workers);
2331         ret |= btrfs_start_workers(&fs_info->endio_freespace_worker);
2332         ret |= btrfs_start_workers(&fs_info->delayed_workers);
2333         ret |= btrfs_start_workers(&fs_info->caching_workers);
2334         ret |= btrfs_start_workers(&fs_info->readahead_workers);
2335         if (ret) {
2336                 err = -ENOMEM;
2337                 goto fail_sb_buffer;
2338         }
2339
2340         fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
2341         fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2342                                     4 * 1024 * 1024 / PAGE_CACHE_SIZE);
2343
2344         tree_root->nodesize = nodesize;
2345         tree_root->leafsize = leafsize;
2346         tree_root->sectorsize = sectorsize;
2347         tree_root->stripesize = stripesize;
2348
2349         sb->s_blocksize = sectorsize;
2350         sb->s_blocksize_bits = blksize_bits(sectorsize);
2351
2352         if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
2353                     sizeof(disk_super->magic))) {
2354                 printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
2355                 goto fail_sb_buffer;
2356         }
2357
2358         if (sectorsize != PAGE_SIZE) {
2359                 printk(KERN_WARNING "btrfs: Incompatible sector size(%lu) "
2360                        "found on %s\n", (unsigned long)sectorsize, sb->s_id);
2361                 goto fail_sb_buffer;
2362         }
2363
2364         mutex_lock(&fs_info->chunk_mutex);
2365         ret = btrfs_read_sys_array(tree_root);
2366         mutex_unlock(&fs_info->chunk_mutex);
2367         if (ret) {
2368                 printk(KERN_WARNING "btrfs: failed to read the system "
2369                        "array on %s\n", sb->s_id);
2370                 goto fail_sb_buffer;
2371         }
2372
2373         blocksize = btrfs_level_size(tree_root,
2374                                      btrfs_super_chunk_root_level(disk_super));
2375         generation = btrfs_super_chunk_root_generation(disk_super);
2376
2377         __setup_root(nodesize, leafsize, sectorsize, stripesize,
2378                      chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2379
2380         chunk_root->node = read_tree_block(chunk_root,
2381                                            btrfs_super_chunk_root(disk_super),
2382                                            blocksize, generation);
2383         BUG_ON(!chunk_root->node); /* -ENOMEM */
2384         if (!test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
2385                 printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
2386                        sb->s_id);
2387                 goto fail_tree_roots;
2388         }
2389         btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2390         chunk_root->commit_root = btrfs_root_node(chunk_root);
2391
2392         read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2393            (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
2394            BTRFS_UUID_SIZE);
2395
2396         ret = btrfs_read_chunk_tree(chunk_root);
2397         if (ret) {
2398                 printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
2399                        sb->s_id);
2400                 goto fail_tree_roots;
2401         }
2402
2403         btrfs_close_extra_devices(fs_devices);
2404
2405         if (!fs_devices->latest_bdev) {
2406                 printk(KERN_CRIT "btrfs: failed to read devices on %s\n",
2407                        sb->s_id);
2408                 goto fail_tree_roots;
2409         }
2410
2411 retry_root_backup:
2412         blocksize = btrfs_level_size(tree_root,
2413                                      btrfs_super_root_level(disk_super));
2414         generation = btrfs_super_generation(disk_super);
2415
2416         tree_root->node = read_tree_block(tree_root,
2417                                           btrfs_super_root(disk_super),
2418                                           blocksize, generation);
2419         if (!tree_root->node ||
2420             !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
2421                 printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
2422                        sb->s_id);
2423
2424                 goto recovery_tree_root;
2425         }
2426
2427         btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2428         tree_root->commit_root = btrfs_root_node(tree_root);
2429
2430         ret = find_and_setup_root(tree_root, fs_info,
2431                                   BTRFS_EXTENT_TREE_OBJECTID, extent_root);
2432         if (ret)
2433                 goto recovery_tree_root;
2434         extent_root->track_dirty = 1;
2435
2436         ret = find_and_setup_root(tree_root, fs_info,
2437                                   BTRFS_DEV_TREE_OBJECTID, dev_root);
2438         if (ret)
2439                 goto recovery_tree_root;
2440         dev_root->track_dirty = 1;
2441
2442         ret = find_and_setup_root(tree_root, fs_info,
2443                                   BTRFS_CSUM_TREE_OBJECTID, csum_root);
2444         if (ret)
2445                 goto recovery_tree_root;
2446         csum_root->track_dirty = 1;
2447
2448         ret = find_and_setup_root(tree_root, fs_info,
2449                                   BTRFS_QUOTA_TREE_OBJECTID, quota_root);
2450         if (ret) {
2451                 kfree(quota_root);
2452                 quota_root = fs_info->quota_root = NULL;
2453         } else {
2454                 quota_root->track_dirty = 1;
2455                 fs_info->quota_enabled = 1;
2456                 fs_info->pending_quota_state = 1;
2457         }
2458
2459         fs_info->generation = generation;
2460         fs_info->last_trans_committed = generation;
2461
2462         ret = btrfs_recover_balance(fs_info);
2463         if (ret) {
2464                 printk(KERN_WARNING "btrfs: failed to recover balance\n");
2465                 goto fail_block_groups;
2466         }
2467
2468         ret = btrfs_init_dev_stats(fs_info);
2469         if (ret) {
2470                 printk(KERN_ERR "btrfs: failed to init dev_stats: %d\n",
2471                        ret);
2472                 goto fail_block_groups;
2473         }
2474
2475         ret = btrfs_init_space_info(fs_info);
2476         if (ret) {
2477                 printk(KERN_ERR "Failed to initial space info: %d\n", ret);
2478                 goto fail_block_groups;
2479         }
2480
2481         ret = btrfs_read_block_groups(extent_root);
2482         if (ret) {
2483                 printk(KERN_ERR "Failed to read block groups: %d\n", ret);
2484                 goto fail_block_groups;
2485         }
2486
2487         fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2488                                                "btrfs-cleaner");
2489         if (IS_ERR(fs_info->cleaner_kthread))
2490                 goto fail_block_groups;
2491
2492         fs_info->transaction_kthread = kthread_run(transaction_kthread,
2493                                                    tree_root,
2494                                                    "btrfs-transaction");
2495         if (IS_ERR(fs_info->transaction_kthread))
2496                 goto fail_cleaner;
2497
2498         if (!btrfs_test_opt(tree_root, SSD) &&
2499             !btrfs_test_opt(tree_root, NOSSD) &&
2500             !fs_info->fs_devices->rotating) {
2501                 printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
2502                        "mode\n");
2503                 btrfs_set_opt(fs_info->mount_opt, SSD);
2504         }
2505
2506 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2507         if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
2508                 ret = btrfsic_mount(tree_root, fs_devices,
2509                                     btrfs_test_opt(tree_root,
2510                                         CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2511                                     1 : 0,
2512                                     fs_info->check_integrity_print_mask);
2513                 if (ret)
2514                         printk(KERN_WARNING "btrfs: failed to initialize"
2515                                " integrity check module %s\n", sb->s_id);
2516         }
2517 #endif
2518         ret = btrfs_read_qgroup_config(fs_info);
2519         if (ret)
2520                 goto fail_trans_kthread;
2521
2522         /* do not make disk changes in broken FS */
2523         if (btrfs_super_log_root(disk_super) != 0) {
2524                 u64 bytenr = btrfs_super_log_root(disk_super);
2525
2526                 if (fs_devices->rw_devices == 0) {
2527                         printk(KERN_WARNING "Btrfs log replay required "
2528                                "on RO media\n");
2529                         err = -EIO;
2530                         goto fail_qgroup;
2531                 }
2532                 blocksize =
2533                      btrfs_level_size(tree_root,
2534                                       btrfs_super_log_root_level(disk_super));
2535
2536                 log_tree_root = btrfs_alloc_root(fs_info);
2537                 if (!log_tree_root) {
2538                         err = -ENOMEM;
2539                         goto fail_qgroup;
2540                 }
2541
2542                 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2543                              log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2544
2545                 log_tree_root->node = read_tree_block(tree_root, bytenr,
2546                                                       blocksize,
2547                                                       generation + 1);
2548                 /* returns with log_tree_root freed on success */
2549                 ret = btrfs_recover_log_trees(log_tree_root);
2550                 if (ret) {
2551                         btrfs_error(tree_root->fs_info, ret,
2552                                     "Failed to recover log tree");
2553                         free_extent_buffer(log_tree_root->node);
2554                         kfree(log_tree_root);
2555                         goto fail_trans_kthread;
2556                 }
2557
2558                 if (sb->s_flags & MS_RDONLY) {
2559                         ret = btrfs_commit_super(tree_root);
2560                         if (ret)
2561                                 goto fail_trans_kthread;
2562                 }
2563         }
2564
2565         ret = btrfs_find_orphan_roots(tree_root);
2566         if (ret)
2567                 goto fail_trans_kthread;
2568
2569         if (!(sb->s_flags & MS_RDONLY)) {
2570                 ret = btrfs_cleanup_fs_roots(fs_info);
2571                 if (ret)
2572                         goto fail_trans_kthread;
2573
2574                 ret = btrfs_recover_relocation(tree_root);
2575                 if (ret < 0) {
2576                         printk(KERN_WARNING
2577                                "btrfs: failed to recover relocation\n");
2578                         err = -EINVAL;
2579                         goto fail_qgroup;
2580                 }
2581         }
2582
2583         location.objectid = BTRFS_FS_TREE_OBJECTID;
2584         location.type = BTRFS_ROOT_ITEM_KEY;
2585         location.offset = (u64)-1;
2586
2587         fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
2588         if (!fs_info->fs_root)
2589                 goto fail_qgroup;
2590         if (IS_ERR(fs_info->fs_root)) {
2591                 err = PTR_ERR(fs_info->fs_root);
2592                 goto fail_qgroup;
2593         }
2594
2595         if (sb->s_flags & MS_RDONLY)
2596                 return 0;
2597
2598         down_read(&fs_info->cleanup_work_sem);
2599         if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
2600             (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
2601                 up_read(&fs_info->cleanup_work_sem);
2602                 close_ctree(tree_root);
2603                 return ret;
2604         }
2605         up_read(&fs_info->cleanup_work_sem);
2606
2607         ret = btrfs_resume_balance_async(fs_info);
2608         if (ret) {
2609                 printk(KERN_WARNING "btrfs: failed to resume balance\n");
2610                 close_ctree(tree_root);
2611                 return ret;
2612         }
2613
2614         return 0;
2615
2616 fail_qgroup:
2617         btrfs_free_qgroup_config(fs_info);
2618 fail_trans_kthread:
2619         kthread_stop(fs_info->transaction_kthread);
2620 fail_cleaner:
2621         kthread_stop(fs_info->cleaner_kthread);
2622
2623         /*
2624          * make sure we're done with the btree inode before we stop our
2625          * kthreads
2626          */
2627         filemap_write_and_wait(fs_info->btree_inode->i_mapping);
2628         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2629
2630 fail_block_groups:
2631         btrfs_free_block_groups(fs_info);
2632
2633 fail_tree_roots:
2634         free_root_pointers(fs_info, 1);
2635
2636 fail_sb_buffer:
2637         btrfs_stop_workers(&fs_info->generic_worker);
2638         btrfs_stop_workers(&fs_info->readahead_workers);
2639         btrfs_stop_workers(&fs_info->fixup_workers);
2640         btrfs_stop_workers(&fs_info->delalloc_workers);
2641         btrfs_stop_workers(&fs_info->workers);
2642         btrfs_stop_workers(&fs_info->endio_workers);
2643         btrfs_stop_workers(&fs_info->endio_meta_workers);
2644         btrfs_stop_workers(&fs_info->endio_meta_write_workers);
2645         btrfs_stop_workers(&fs_info->endio_write_workers);
2646         btrfs_stop_workers(&fs_info->endio_freespace_worker);
2647         btrfs_stop_workers(&fs_info->submit_workers);
2648         btrfs_stop_workers(&fs_info->delayed_workers);
2649         btrfs_stop_workers(&fs_info->caching_workers);
2650 fail_alloc:
2651 fail_iput:
2652         btrfs_mapping_tree_free(&fs_info->mapping_tree);
2653
2654         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2655         iput(fs_info->btree_inode);
2656 fail_bdi:
2657         bdi_destroy(&fs_info->bdi);
2658 fail_srcu:
2659         cleanup_srcu_struct(&fs_info->subvol_srcu);
2660 fail:
2661         btrfs_close_devices(fs_info->fs_devices);
2662         return err;
2663
2664 recovery_tree_root:
2665         if (!btrfs_test_opt(tree_root, RECOVERY))
2666                 goto fail_tree_roots;
2667
2668         free_root_pointers(fs_info, 0);
2669
2670         /* don't use the log in recovery mode, it won't be valid */
2671         btrfs_set_super_log_root(disk_super, 0);
2672
2673         /* we can't trust the free space cache either */
2674         btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2675
2676         ret = next_root_backup(fs_info, fs_info->super_copy,
2677                                &num_backups_tried, &backup_index);
2678         if (ret == -1)
2679                 goto fail_block_groups;
2680         goto retry_root_backup;
2681 }
2682
2683 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
2684 {
2685         if (uptodate) {
2686                 set_buffer_uptodate(bh);
2687         } else {
2688                 struct btrfs_device *device = (struct btrfs_device *)
2689                         bh->b_private;
2690
2691                 printk_ratelimited_in_rcu(KERN_WARNING "lost page write due to "
2692                                           "I/O error on %s\n",
2693                                           rcu_str_deref(device->name));
2694                 /* note, we dont' set_buffer_write_io_error because we have
2695                  * our own ways of dealing with the IO errors
2696                  */
2697                 clear_buffer_uptodate(bh);
2698                 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
2699         }
2700         unlock_buffer(bh);
2701         put_bh(bh);
2702 }
2703
2704 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
2705 {
2706         struct buffer_head *bh;
2707         struct buffer_head *latest = NULL;
2708         struct btrfs_super_block *super;
2709         int i;
2710         u64 transid = 0;
2711         u64 bytenr;
2712
2713         /* we would like to check all the supers, but that would make
2714          * a btrfs mount succeed after a mkfs from a different FS.
2715          * So, we need to add a special mount option to scan for
2716          * later supers, using BTRFS_SUPER_MIRROR_MAX instead
2717          */
2718         for (i = 0; i < 1; i++) {
2719                 bytenr = btrfs_sb_offset(i);
2720                 if (bytenr + 4096 >= i_size_read(bdev->bd_inode))
2721                         break;
2722                 bh = __bread(bdev, bytenr / 4096, 4096);
2723                 if (!bh)
2724                         continue;
2725
2726                 super = (struct btrfs_super_block *)bh->b_data;
2727                 if (btrfs_super_bytenr(super) != bytenr ||
2728                     strncmp((char *)(&super->magic), BTRFS_MAGIC,
2729                             sizeof(super->magic))) {
2730                         brelse(bh);
2731                         continue;
2732                 }
2733
2734                 if (!latest || btrfs_super_generation(super) > transid) {
2735                         brelse(latest);
2736                         latest = bh;
2737                         transid = btrfs_super_generation(super);
2738                 } else {
2739                         brelse(bh);
2740                 }
2741         }
2742         return latest;
2743 }
2744
2745 /*
2746  * this should be called twice, once with wait == 0 and
2747  * once with wait == 1.  When wait == 0 is done, all the buffer heads
2748  * we write are pinned.
2749  *
2750  * They are released when wait == 1 is done.
2751  * max_mirrors must be the same for both runs, and it indicates how
2752  * many supers on this one device should be written.
2753  *
2754  * max_mirrors == 0 means to write them all.
2755  */
2756 static int write_dev_supers(struct btrfs_device *device,
2757                             struct btrfs_super_block *sb,
2758                             int do_barriers, int wait, int max_mirrors)
2759 {
2760         struct buffer_head *bh;
2761         int i;
2762         int ret;
2763         int errors = 0;
2764         u32 crc;
2765         u64 bytenr;
2766
2767         if (max_mirrors == 0)
2768                 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
2769
2770         for (i = 0; i < max_mirrors; i++) {
2771                 bytenr = btrfs_sb_offset(i);
2772                 if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
2773                         break;
2774
2775                 if (wait) {
2776                         bh = __find_get_block(device->bdev, bytenr / 4096,
2777                                               BTRFS_SUPER_INFO_SIZE);
2778                         BUG_ON(!bh);
2779                         wait_on_buffer(bh);
2780                         if (!buffer_uptodate(bh))
2781                                 errors++;
2782
2783                         /* drop our reference */
2784                         brelse(bh);
2785
2786                         /* drop the reference from the wait == 0 run */
2787                         brelse(bh);
2788                         continue;
2789                 } else {
2790                         btrfs_set_super_bytenr(sb, bytenr);
2791
2792                         crc = ~(u32)0;
2793                         crc = btrfs_csum_data(NULL, (char *)sb +
2794                                               BTRFS_CSUM_SIZE, crc,
2795                                               BTRFS_SUPER_INFO_SIZE -
2796                                               BTRFS_CSUM_SIZE);
2797                         btrfs_csum_final(crc, sb->csum);
2798
2799                         /*
2800                          * one reference for us, and we leave it for the
2801                          * caller
2802                          */
2803                         bh = __getblk(device->bdev, bytenr / 4096,
2804                                       BTRFS_SUPER_INFO_SIZE);
2805                         memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
2806
2807                         /* one reference for submit_bh */
2808                         get_bh(bh);
2809
2810                         set_buffer_uptodate(bh);
2811                         lock_buffer(bh);
2812                         bh->b_end_io = btrfs_end_buffer_write_sync;
2813                         bh->b_private = device;
2814                 }
2815
2816                 /*
2817                  * we fua the first super.  The others we allow
2818                  * to go down lazy.
2819                  */
2820                 ret = btrfsic_submit_bh(WRITE_FUA, bh);
2821                 if (ret)
2822                         errors++;
2823         }
2824         return errors < i ? 0 : -1;
2825 }
2826
2827 /*
2828  * endio for the write_dev_flush, this will wake anyone waiting
2829  * for the barrier when it is done
2830  */
2831 static void btrfs_end_empty_barrier(struct bio *bio, int err)
2832 {
2833         if (err) {
2834                 if (err == -EOPNOTSUPP)
2835                         set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2836                 clear_bit(BIO_UPTODATE, &bio->bi_flags);
2837         }
2838         if (bio->bi_private)
2839                 complete(bio->bi_private);
2840         bio_put(bio);
2841 }
2842
2843 /*
2844  * trigger flushes for one the devices.  If you pass wait == 0, the flushes are
2845  * sent down.  With wait == 1, it waits for the previous flush.
2846  *
2847  * any device where the flush fails with eopnotsupp are flagged as not-barrier
2848  * capable
2849  */
2850 static int write_dev_flush(struct btrfs_device *device, int wait)
2851 {
2852         struct bio *bio;
2853         int ret = 0;
2854
2855         if (device->nobarriers)
2856                 return 0;
2857
2858         if (wait) {
2859                 bio = device->flush_bio;
2860                 if (!bio)
2861                         return 0;
2862
2863                 wait_for_completion(&device->flush_wait);
2864
2865                 if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
2866                         printk_in_rcu("btrfs: disabling barriers on dev %s\n",
2867                                       rcu_str_deref(device->name));
2868                         device->nobarriers = 1;
2869                 }
2870                 if (!bio_flagged(bio, BIO_UPTODATE)) {
2871                         ret = -EIO;
2872                         if (!bio_flagged(bio, BIO_EOPNOTSUPP))
2873                                 btrfs_dev_stat_inc_and_print(device,
2874                                         BTRFS_DEV_STAT_FLUSH_ERRS);
2875                 }
2876
2877                 /* drop the reference from the wait == 0 run */
2878                 bio_put(bio);
2879                 device->flush_bio = NULL;
2880
2881                 return ret;
2882         }
2883
2884         /*
2885          * one reference for us, and we leave it for the
2886          * caller
2887          */
2888         device->flush_bio = NULL;
2889         bio = bio_alloc(GFP_NOFS, 0);
2890         if (!bio)
2891                 return -ENOMEM;
2892
2893         bio->bi_end_io = btrfs_end_empty_barrier;
2894         bio->bi_bdev = device->bdev;
2895         init_completion(&device->flush_wait);
2896         bio->bi_private = &device->flush_wait;
2897         device->flush_bio = bio;
2898
2899         bio_get(bio);
2900         btrfsic_submit_bio(WRITE_FLUSH, bio);
2901
2902         return 0;
2903 }
2904
2905 /*
2906  * send an empty flush down to each device in parallel,
2907  * then wait for them
2908  */
2909 static int barrier_all_devices(struct btrfs_fs_info *info)
2910 {
2911         struct list_head *head;
2912         struct btrfs_device *dev;
2913         int errors = 0;
2914         int ret;
2915
2916         /* send down all the barriers */
2917         head = &info->fs_devices->devices;
2918         list_for_each_entry_rcu(dev, head, dev_list) {
2919                 if (!dev->bdev) {
2920                         errors++;
2921                         continue;
2922                 }
2923                 if (!dev->in_fs_metadata || !dev->writeable)
2924                         continue;
2925
2926                 ret = write_dev_flush(dev, 0);
2927                 if (ret)
2928                         errors++;
2929         }
2930
2931         /* wait for all the barriers */
2932         list_for_each_entry_rcu(dev, head, dev_list) {
2933                 if (!dev->bdev) {
2934                         errors++;
2935                         continue;
2936                 }
2937                 if (!dev->in_fs_metadata || !dev->writeable)
2938                         continue;
2939
2940                 ret = write_dev_flush(dev, 1);
2941                 if (ret)
2942                         errors++;
2943         }
2944         if (errors)
2945                 return -EIO;
2946         return 0;
2947 }
2948
2949 int write_all_supers(struct btrfs_root *root, int max_mirrors)
2950 {
2951         struct list_head *head;
2952         struct btrfs_device *dev;
2953         struct btrfs_super_block *sb;
2954         struct btrfs_dev_item *dev_item;
2955         int ret;
2956         int do_barriers;
2957         int max_errors;
2958         int total_errors = 0;
2959         u64 flags;
2960
2961         max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
2962         do_barriers = !btrfs_test_opt(root, NOBARRIER);
2963         backup_super_roots(root->fs_info);
2964
2965         sb = root->fs_info->super_for_commit;
2966         dev_item = &sb->dev_item;
2967
2968         mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2969         head = &root->fs_info->fs_devices->devices;
2970
2971         if (do_barriers)
2972                 barrier_all_devices(root->fs_info);
2973
2974         list_for_each_entry_rcu(dev, head, dev_list) {
2975                 if (!dev->bdev) {
2976                         total_errors++;
2977                         continue;
2978                 }
2979                 if (!dev->in_fs_metadata || !dev->writeable)
2980                         continue;
2981
2982                 btrfs_set_stack_device_generation(dev_item, 0);
2983                 btrfs_set_stack_device_type(dev_item, dev->type);
2984                 btrfs_set_stack_device_id(dev_item, dev->devid);
2985                 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
2986                 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
2987                 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
2988                 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
2989                 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
2990                 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
2991                 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
2992
2993                 flags = btrfs_super_flags(sb);
2994                 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
2995
2996                 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
2997                 if (ret)
2998                         total_errors++;
2999         }
3000         if (total_errors > max_errors) {
3001                 printk(KERN_ERR "btrfs: %d errors while writing supers\n",
3002                        total_errors);
3003
3004                 /* This shouldn't happen. FUA is masked off if unsupported */
3005                 BUG();
3006         }
3007
3008         total_errors = 0;
3009         list_for_each_entry_rcu(dev, head, dev_list) {
3010                 if (!dev->bdev)
3011                         continue;
3012                 if (!dev->in_fs_metadata || !dev->writeable)
3013                         continue;
3014
3015                 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3016                 if (ret)
3017                         total_errors++;
3018         }
3019         mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3020         if (total_errors > max_errors) {
3021                 btrfs_error(root->fs_info, -EIO,
3022                             "%d errors while writing supers", total_errors);
3023                 return -EIO;
3024         }
3025         return 0;
3026 }
3027
3028 int write_ctree_super(struct btrfs_trans_handle *trans,
3029                       struct btrfs_root *root, int max_mirrors)
3030 {
3031         int ret;
3032
3033         ret = write_all_supers(root, max_mirrors);
3034         return ret;
3035 }
3036
3037 void btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
3038 {
3039         spin_lock(&fs_info->fs_roots_radix_lock);
3040         radix_tree_delete(&fs_info->fs_roots_radix,
3041                           (unsigned long)root->root_key.objectid);
3042         spin_unlock(&fs_info->fs_roots_radix_lock);
3043
3044         if (btrfs_root_refs(&root->root_item) == 0)
3045                 synchronize_srcu(&fs_info->subvol_srcu);
3046
3047         __btrfs_remove_free_space_cache(root->free_ino_pinned);
3048         __btrfs_remove_free_space_cache(root->free_ino_ctl);
3049         free_fs_root(root);
3050 }
3051
3052 static void free_fs_root(struct btrfs_root *root)
3053 {
3054         iput(root->cache_inode);
3055         WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3056         if (root->anon_dev)
3057                 free_anon_bdev(root->anon_dev);
3058         free_extent_buffer(root->node);
3059         free_extent_buffer(root->commit_root);
3060         kfree(root->free_ino_ctl);
3061         kfree(root->free_ino_pinned);
3062         kfree(root->name);
3063         kfree(root);
3064 }
3065
3066 static void del_fs_roots(struct btrfs_fs_info *fs_info)
3067 {
3068         int ret;
3069         struct btrfs_root *gang[8];
3070         int i;
3071
3072         while (!list_empty(&fs_info->dead_roots)) {
3073                 gang[0] = list_entry(fs_info->dead_roots.next,
3074                                      struct btrfs_root, root_list);
3075                 list_del(&gang[0]->root_list);
3076
3077                 if (gang[0]->in_radix) {
3078                         btrfs_free_fs_root(fs_info, gang[0]);
3079                 } else {
3080                         free_extent_buffer(gang[0]->node);
3081                         free_extent_buffer(gang[0]->commit_root);
3082                         kfree(gang[0]);
3083                 }
3084         }
3085
3086         while (1) {
3087                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3088                                              (void **)gang, 0,
3089                                              ARRAY_SIZE(gang));
3090                 if (!ret)
3091                         break;
3092                 for (i = 0; i < ret; i++)
3093                         btrfs_free_fs_root(fs_info, gang[i]);
3094         }
3095 }
3096
3097 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3098 {
3099         u64 root_objectid = 0;
3100         struct btrfs_root *gang[8];
3101         int i;
3102         int ret;
3103
3104         while (1) {
3105                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3106                                              (void **)gang, root_objectid,
3107                                              ARRAY_SIZE(gang));
3108                 if (!ret)
3109                         break;
3110
3111                 root_objectid = gang[ret - 1]->root_key.objectid + 1;
3112                 for (i = 0; i < ret; i++) {
3113                         int err;
3114
3115                         root_objectid = gang[i]->root_key.objectid;
3116                         err = btrfs_orphan_cleanup(gang[i]);
3117                         if (err)
3118                                 return err;
3119                 }
3120                 root_objectid++;
3121         }
3122         return 0;
3123 }
3124
3125 int btrfs_commit_super(struct btrfs_root *root)
3126 {
3127         struct btrfs_trans_handle *trans;
3128         int ret;
3129
3130         mutex_lock(&root->fs_info->cleaner_mutex);
3131         btrfs_run_delayed_iputs(root);
3132         btrfs_clean_old_snapshots(root);
3133         mutex_unlock(&root->fs_info->cleaner_mutex);
3134
3135         /* wait until ongoing cleanup work done */
3136         down_write(&root->fs_info->cleanup_work_sem);
3137         up_write(&root->fs_info->cleanup_work_sem);
3138
3139         trans = btrfs_join_transaction(root);
3140         if (IS_ERR(trans))
3141                 return PTR_ERR(trans);
3142         ret = btrfs_commit_transaction(trans, root);
3143         if (ret)
3144                 return ret;
3145         /* run commit again to drop the original snapshot */
3146         trans = btrfs_join_transaction(root);
3147         if (IS_ERR(trans))
3148                 return PTR_ERR(trans);
3149         ret = btrfs_commit_transaction(trans, root);
3150         if (ret)
3151                 return ret;
3152         ret = btrfs_write_and_wait_transaction(NULL, root);
3153         if (ret) {
3154                 btrfs_error(root->fs_info, ret,
3155                             "Failed to sync btree inode to disk.");
3156                 return ret;
3157         }
3158
3159         ret = write_ctree_super(NULL, root, 0);
3160         return ret;
3161 }
3162
3163 int close_ctree(struct btrfs_root *root)
3164 {
3165         struct btrfs_fs_info *fs_info = root->fs_info;
3166         int ret;
3167
3168         fs_info->closing = 1;
3169         smp_mb();
3170
3171         /* pause restriper - we want to resume on mount */
3172         btrfs_pause_balance(root->fs_info);
3173
3174         btrfs_scrub_cancel(root);
3175
3176         /* wait for any defraggers to finish */
3177         wait_event(fs_info->transaction_wait,
3178                    (atomic_read(&fs_info->defrag_running) == 0));
3179
3180         /* clear out the rbtree of defraggable inodes */
3181         btrfs_run_defrag_inodes(fs_info);
3182
3183         if (!(fs_info->sb->s_flags & MS_RDONLY)) {
3184                 ret = btrfs_commit_super(root);
3185                 if (ret)
3186                         printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
3187         }
3188
3189         if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)
3190                 btrfs_error_commit_super(root);
3191
3192         btrfs_put_block_group_cache(fs_info);
3193
3194         kthread_stop(fs_info->transaction_kthread);
3195         kthread_stop(fs_info->cleaner_kthread);
3196
3197         fs_info->closing = 2;
3198         smp_mb();
3199
3200         btrfs_free_qgroup_config(root->fs_info);
3201
3202         if (fs_info->delalloc_bytes) {
3203                 printk(KERN_INFO "btrfs: at unmount delalloc count %llu\n",
3204                        (unsigned long long)fs_info->delalloc_bytes);
3205         }
3206
3207         free_extent_buffer(fs_info->extent_root->node);
3208         free_extent_buffer(fs_info->extent_root->commit_root);
3209         free_extent_buffer(fs_info->tree_root->node);
3210         free_extent_buffer(fs_info->tree_root->commit_root);
3211         free_extent_buffer(fs_info->chunk_root->node);
3212         free_extent_buffer(fs_info->chunk_root->commit_root);
3213         free_extent_buffer(fs_info->dev_root->node);
3214         free_extent_buffer(fs_info->dev_root->commit_root);
3215         free_extent_buffer(fs_info->csum_root->node);
3216         free_extent_buffer(fs_info->csum_root->commit_root);
3217         if (fs_info->quota_root) {
3218                 free_extent_buffer(fs_info->quota_root->node);
3219                 free_extent_buffer(fs_info->quota_root->commit_root);
3220         }
3221
3222         btrfs_free_block_groups(fs_info);
3223
3224         del_fs_roots(fs_info);
3225
3226         iput(fs_info->btree_inode);
3227
3228         btrfs_stop_workers(&fs_info->generic_worker);
3229         btrfs_stop_workers(&fs_info->fixup_workers);
3230         btrfs_stop_workers(&fs_info->delalloc_workers);
3231         btrfs_stop_workers(&fs_info->workers);
3232         btrfs_stop_workers(&fs_info->endio_workers);
3233         btrfs_stop_workers(&fs_info->endio_meta_workers);
3234         btrfs_stop_workers(&fs_info->endio_meta_write_workers);
3235         btrfs_stop_workers(&fs_info->endio_write_workers);
3236         btrfs_stop_workers(&fs_info->endio_freespace_worker);
3237         btrfs_stop_workers(&fs_info->submit_workers);
3238         btrfs_stop_workers(&fs_info->delayed_workers);
3239         btrfs_stop_workers(&fs_info->caching_workers);
3240         btrfs_stop_workers(&fs_info->readahead_workers);
3241
3242 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3243         if (btrfs_test_opt(root, CHECK_INTEGRITY))
3244                 btrfsic_unmount(root, fs_info->fs_devices);
3245 #endif
3246
3247         btrfs_close_devices(fs_info->fs_devices);
3248         btrfs_mapping_tree_free(&fs_info->mapping_tree);
3249
3250         bdi_destroy(&fs_info->bdi);
3251         cleanup_srcu_struct(&fs_info->subvol_srcu);
3252
3253         return 0;
3254 }
3255
3256 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3257                           int atomic)
3258 {
3259         int ret;
3260         struct inode *btree_inode = buf->pages[0]->mapping->host;
3261
3262         ret = extent_buffer_uptodate(buf);
3263         if (!ret)
3264                 return ret;
3265
3266         ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
3267                                     parent_transid, atomic);
3268         if (ret == -EAGAIN)
3269                 return ret;
3270         return !ret;
3271 }
3272
3273 int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
3274 {
3275         return set_extent_buffer_uptodate(buf);
3276 }
3277
3278 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3279 {
3280         struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3281         u64 transid = btrfs_header_generation(buf);
3282         int was_dirty;
3283
3284         btrfs_assert_tree_locked(buf);
3285         if (transid != root->fs_info->generation) {
3286                 printk(KERN_CRIT "btrfs transid mismatch buffer %llu, "
3287                        "found %llu running %llu\n",
3288                         (unsigned long long)buf->start,
3289                         (unsigned long long)transid,
3290                         (unsigned long long)root->fs_info->generation);
3291                 WARN_ON(1);
3292         }
3293         was_dirty = set_extent_buffer_dirty(buf);
3294         if (!was_dirty) {
3295                 spin_lock(&root->fs_info->delalloc_lock);
3296                 root->fs_info->dirty_metadata_bytes += buf->len;
3297                 spin_unlock(&root->fs_info->delalloc_lock);
3298         }
3299 }
3300
3301 void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
3302 {
3303         /*
3304          * looks as though older kernels can get into trouble with
3305          * this code, they end up stuck in balance_dirty_pages forever
3306          */
3307         u64 num_dirty;
3308         unsigned long thresh = 32 * 1024 * 1024;
3309
3310         if (current->flags & PF_MEMALLOC)
3311                 return;
3312
3313         btrfs_balance_delayed_items(root);
3314
3315         num_dirty = root->fs_info->dirty_metadata_bytes;
3316
3317         if (num_dirty > thresh) {
3318                 balance_dirty_pages_ratelimited_nr(
3319                                    root->fs_info->btree_inode->i_mapping, 1);
3320         }
3321         return;
3322 }
3323
3324 void __btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
3325 {
3326         /*
3327          * looks as though older kernels can get into trouble with
3328          * this code, they end up stuck in balance_dirty_pages forever
3329          */
3330         u64 num_dirty;
3331         unsigned long thresh = 32 * 1024 * 1024;
3332
3333         if (current->flags & PF_MEMALLOC)
3334                 return;
3335
3336         num_dirty = root->fs_info->dirty_metadata_bytes;
3337
3338         if (num_dirty > thresh) {
3339                 balance_dirty_pages_ratelimited_nr(
3340                                    root->fs_info->btree_inode->i_mapping, 1);
3341         }
3342         return;
3343 }
3344
3345 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
3346 {
3347         struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3348         return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
3349 }
3350
3351 int btree_lock_page_hook(struct page *page, void *data,
3352                                 void (*flush_fn)(void *))
3353 {
3354         struct inode *inode = page->mapping->host;
3355         struct btrfs_root *root = BTRFS_I(inode)->root;
3356         struct extent_buffer *eb;
3357
3358         /*
3359          * We culled this eb but the page is still hanging out on the mapping,
3360          * carry on.
3361          */
3362         if (!PagePrivate(page))
3363                 goto out;
3364
3365         eb = (struct extent_buffer *)page->private;
3366         if (!eb) {
3367                 WARN_ON(1);
3368                 goto out;
3369         }
3370         if (page != eb->pages[0])
3371                 goto out;
3372
3373         if (!btrfs_try_tree_write_lock(eb)) {
3374                 flush_fn(data);
3375                 btrfs_tree_lock(eb);
3376         }
3377         btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3378
3379         if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3380                 spin_lock(&root->fs_info->delalloc_lock);
3381                 if (root->fs_info->dirty_metadata_bytes >= eb->len)
3382                         root->fs_info->dirty_metadata_bytes -= eb->len;
3383                 else
3384                         WARN_ON(1);
3385                 spin_unlock(&root->fs_info->delalloc_lock);
3386         }
3387
3388         btrfs_tree_unlock(eb);
3389 out:
3390         if (!trylock_page(page)) {
3391                 flush_fn(data);
3392                 lock_page(page);
3393         }
3394         return 0;
3395 }
3396
3397 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
3398                               int read_only)
3399 {
3400         if (btrfs_super_csum_type(fs_info->super_copy) >= ARRAY_SIZE(btrfs_csum_sizes)) {
3401                 printk(KERN_ERR "btrfs: unsupported checksum algorithm\n");
3402                 return -EINVAL;
3403         }
3404
3405         if (read_only)
3406                 return 0;
3407
3408         return 0;
3409 }
3410
3411 void btrfs_error_commit_super(struct btrfs_root *root)
3412 {
3413         mutex_lock(&root->fs_info->cleaner_mutex);
3414         btrfs_run_delayed_iputs(root);
3415         mutex_unlock(&root->fs_info->cleaner_mutex);
3416
3417         down_write(&root->fs_info->cleanup_work_sem);
3418         up_write(&root->fs_info->cleanup_work_sem);
3419
3420         /* cleanup FS via transaction */
3421         btrfs_cleanup_transaction(root);
3422 }
3423
3424 static void btrfs_destroy_ordered_operations(struct btrfs_root *root)
3425 {
3426         struct btrfs_inode *btrfs_inode;
3427         struct list_head splice;
3428
3429         INIT_LIST_HEAD(&splice);
3430
3431         mutex_lock(&root->fs_info->ordered_operations_mutex);
3432         spin_lock(&root->fs_info->ordered_extent_lock);
3433
3434         list_splice_init(&root->fs_info->ordered_operations, &splice);
3435         while (!list_empty(&splice)) {
3436                 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3437                                          ordered_operations);
3438
3439                 list_del_init(&btrfs_inode->ordered_operations);
3440
3441                 btrfs_invalidate_inodes(btrfs_inode->root);
3442         }
3443
3444         spin_unlock(&root->fs_info->ordered_extent_lock);
3445         mutex_unlock(&root->fs_info->ordered_operations_mutex);
3446 }
3447
3448 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
3449 {
3450         struct list_head splice;
3451         struct btrfs_ordered_extent *ordered;
3452         struct inode *inode;
3453
3454         INIT_LIST_HEAD(&splice);
3455
3456         spin_lock(&root->fs_info->ordered_extent_lock);
3457
3458         list_splice_init(&root->fs_info->ordered_extents, &splice);
3459         while (!list_empty(&splice)) {
3460                 ordered = list_entry(splice.next, struct btrfs_ordered_extent,
3461                                      root_extent_list);
3462
3463                 list_del_init(&ordered->root_extent_list);
3464                 atomic_inc(&ordered->refs);
3465
3466                 /* the inode may be getting freed (in sys_unlink path). */
3467                 inode = igrab(ordered->inode);
3468
3469                 spin_unlock(&root->fs_info->ordered_extent_lock);
3470                 if (inode)
3471                         iput(inode);
3472
3473                 atomic_set(&ordered->refs, 1);
3474                 btrfs_put_ordered_extent(ordered);
3475
3476                 spin_lock(&root->fs_info->ordered_extent_lock);
3477         }
3478
3479         spin_unlock(&root->fs_info->ordered_extent_lock);
3480 }
3481
3482 int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
3483                                struct btrfs_root *root)
3484 {
3485         struct rb_node *node;
3486         struct btrfs_delayed_ref_root *delayed_refs;
3487         struct btrfs_delayed_ref_node *ref;
3488         int ret = 0;
3489
3490         delayed_refs = &trans->delayed_refs;
3491
3492         spin_lock(&delayed_refs->lock);
3493         if (delayed_refs->num_entries == 0) {
3494                 spin_unlock(&delayed_refs->lock);
3495                 printk(KERN_INFO "delayed_refs has NO entry\n");
3496                 return ret;
3497         }
3498
3499         while ((node = rb_first(&delayed_refs->root)) != NULL) {
3500                 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
3501
3502                 atomic_set(&ref->refs, 1);
3503                 if (btrfs_delayed_ref_is_head(ref)) {
3504                         struct btrfs_delayed_ref_head *head;
3505
3506                         head = btrfs_delayed_node_to_head(ref);
3507                         if (!mutex_trylock(&head->mutex)) {
3508                                 atomic_inc(&ref->refs);
3509                                 spin_unlock(&delayed_refs->lock);
3510
3511                                 /* Need to wait for the delayed ref to run */
3512                                 mutex_lock(&head->mutex);
3513                                 mutex_unlock(&head->mutex);
3514                                 btrfs_put_delayed_ref(ref);
3515
3516                                 spin_lock(&delayed_refs->lock);
3517                                 continue;
3518                         }
3519
3520                         kfree(head->extent_op);
3521                         delayed_refs->num_heads--;
3522                         if (list_empty(&head->cluster))
3523                                 delayed_refs->num_heads_ready--;
3524                         list_del_init(&head->cluster);
3525                 }
3526                 ref->in_tree = 0;
3527                 rb_erase(&ref->rb_node, &delayed_refs->root);
3528                 delayed_refs->num_entries--;
3529
3530                 spin_unlock(&delayed_refs->lock);
3531                 btrfs_put_delayed_ref(ref);
3532
3533                 cond_resched();
3534                 spin_lock(&delayed_refs->lock);
3535         }
3536
3537         spin_unlock(&delayed_refs->lock);
3538
3539         return ret;
3540 }
3541
3542 static void btrfs_destroy_pending_snapshots(struct btrfs_transaction *t)
3543 {
3544         struct btrfs_pending_snapshot *snapshot;
3545         struct list_head splice;
3546
3547         INIT_LIST_HEAD(&splice);
3548
3549         list_splice_init(&t->pending_snapshots, &splice);
3550
3551         while (!list_empty(&splice)) {
3552                 snapshot = list_entry(splice.next,
3553                                       struct btrfs_pending_snapshot,
3554                                       list);
3555
3556                 list_del_init(&snapshot->list);
3557
3558                 kfree(snapshot);
3559         }
3560 }
3561
3562 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
3563 {
3564         struct btrfs_inode *btrfs_inode;
3565         struct list_head splice;
3566
3567         INIT_LIST_HEAD(&splice);
3568
3569         spin_lock(&root->fs_info->delalloc_lock);
3570         list_splice_init(&root->fs_info->delalloc_inodes, &splice);
3571
3572         while (!list_empty(&splice)) {
3573                 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3574                                     delalloc_inodes);
3575
3576                 list_del_init(&btrfs_inode->delalloc_inodes);
3577
3578                 btrfs_invalidate_inodes(btrfs_inode->root);
3579         }
3580
3581         spin_unlock(&root->fs_info->delalloc_lock);
3582 }
3583
3584 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
3585                                         struct extent_io_tree *dirty_pages,
3586                                         int mark)
3587 {
3588         int ret;
3589         struct page *page;
3590         struct inode *btree_inode = root->fs_info->btree_inode;
3591         struct extent_buffer *eb;
3592         u64 start = 0;
3593         u64 end;
3594         u64 offset;
3595         unsigned long index;
3596
3597         while (1) {
3598                 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
3599                                             mark);
3600                 if (ret)
3601                         break;
3602
3603                 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
3604                 while (start <= end) {
3605                         index = start >> PAGE_CACHE_SHIFT;
3606                         start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
3607                         page = find_get_page(btree_inode->i_mapping, index);
3608                         if (!page)
3609                                 continue;
3610                         offset = page_offset(page);
3611
3612                         spin_lock(&dirty_pages->buffer_lock);
3613                         eb = radix_tree_lookup(
3614                              &(&BTRFS_I(page->mapping->host)->io_tree)->buffer,
3615                                                offset >> PAGE_CACHE_SHIFT);
3616                         spin_unlock(&dirty_pages->buffer_lock);
3617                         if (eb)
3618                                 ret = test_and_clear_bit(EXTENT_BUFFER_DIRTY,
3619                                                          &eb->bflags);
3620                         if (PageWriteback(page))
3621                                 end_page_writeback(page);
3622
3623                         lock_page(page);
3624                         if (PageDirty(page)) {
3625                                 clear_page_dirty_for_io(page);
3626                                 spin_lock_irq(&page->mapping->tree_lock);
3627                                 radix_tree_tag_clear(&page->mapping->page_tree,
3628                                                         page_index(page),
3629                                                         PAGECACHE_TAG_DIRTY);
3630                                 spin_unlock_irq(&page->mapping->tree_lock);
3631                         }
3632
3633                         unlock_page(page);
3634                         page_cache_release(page);
3635                 }
3636         }
3637
3638         return ret;
3639 }
3640
3641 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
3642                                        struct extent_io_tree *pinned_extents)
3643 {
3644         struct extent_io_tree *unpin;
3645         u64 start;
3646         u64 end;
3647         int ret;
3648         bool loop = true;
3649
3650         unpin = pinned_extents;
3651 again:
3652         while (1) {
3653                 ret = find_first_extent_bit(unpin, 0, &start, &end,
3654                                             EXTENT_DIRTY);
3655                 if (ret)
3656                         break;
3657
3658                 /* opt_discard */
3659                 if (btrfs_test_opt(root, DISCARD))
3660                         ret = btrfs_error_discard_extent(root, start,
3661                                                          end + 1 - start,
3662                                                          NULL);
3663
3664                 clear_extent_dirty(unpin, start, end, GFP_NOFS);
3665                 btrfs_error_unpin_extent_range(root, start, end);
3666                 cond_resched();
3667         }
3668
3669         if (loop) {
3670                 if (unpin == &root->fs_info->freed_extents[0])
3671                         unpin = &root->fs_info->freed_extents[1];
3672                 else
3673                         unpin = &root->fs_info->freed_extents[0];
3674                 loop = false;
3675                 goto again;
3676         }
3677
3678         return 0;
3679 }
3680
3681 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
3682                                    struct btrfs_root *root)
3683 {
3684         btrfs_destroy_delayed_refs(cur_trans, root);
3685         btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
3686                                 cur_trans->dirty_pages.dirty_bytes);
3687
3688         /* FIXME: cleanup wait for commit */
3689         cur_trans->in_commit = 1;
3690         cur_trans->blocked = 1;
3691         wake_up(&root->fs_info->transaction_blocked_wait);
3692
3693         cur_trans->blocked = 0;
3694         wake_up(&root->fs_info->transaction_wait);
3695
3696         cur_trans->commit_done = 1;
3697         wake_up(&cur_trans->commit_wait);
3698
3699         btrfs_destroy_delayed_inodes(root);
3700         btrfs_assert_delayed_root_empty(root);
3701
3702         btrfs_destroy_pending_snapshots(cur_trans);
3703
3704         btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
3705                                      EXTENT_DIRTY);
3706         btrfs_destroy_pinned_extent(root,
3707                                     root->fs_info->pinned_extents);
3708
3709         /*
3710         memset(cur_trans, 0, sizeof(*cur_trans));
3711         kmem_cache_free(btrfs_transaction_cachep, cur_trans);
3712         */
3713 }
3714
3715 int btrfs_cleanup_transaction(struct btrfs_root *root)
3716 {
3717         struct btrfs_transaction *t;
3718         LIST_HEAD(list);
3719
3720         mutex_lock(&root->fs_info->transaction_kthread_mutex);
3721
3722         spin_lock(&root->fs_info->trans_lock);
3723         list_splice_init(&root->fs_info->trans_list, &list);
3724         root->fs_info->trans_no_join = 1;
3725         spin_unlock(&root->fs_info->trans_lock);
3726
3727         while (!list_empty(&list)) {
3728                 t = list_entry(list.next, struct btrfs_transaction, list);
3729                 if (!t)
3730                         break;
3731
3732                 btrfs_destroy_ordered_operations(root);
3733
3734                 btrfs_destroy_ordered_extents(root);
3735
3736                 btrfs_destroy_delayed_refs(t, root);
3737
3738                 btrfs_block_rsv_release(root,
3739                                         &root->fs_info->trans_block_rsv,
3740                                         t->dirty_pages.dirty_bytes);
3741
3742                 /* FIXME: cleanup wait for commit */
3743                 t->in_commit = 1;
3744                 t->blocked = 1;
3745                 smp_mb();
3746                 if (waitqueue_active(&root->fs_info->transaction_blocked_wait))
3747                         wake_up(&root->fs_info->transaction_blocked_wait);
3748
3749                 t->blocked = 0;
3750                 smp_mb();
3751                 if (waitqueue_active(&root->fs_info->transaction_wait))
3752                         wake_up(&root->fs_info->transaction_wait);
3753
3754                 t->commit_done = 1;
3755                 smp_mb();
3756                 if (waitqueue_active(&t->commit_wait))
3757                         wake_up(&t->commit_wait);
3758
3759                 btrfs_destroy_delayed_inodes(root);
3760                 btrfs_assert_delayed_root_empty(root);
3761
3762                 btrfs_destroy_pending_snapshots(t);
3763
3764                 btrfs_destroy_delalloc_inodes(root);
3765
3766                 spin_lock(&root->fs_info->trans_lock);
3767                 root->fs_info->running_transaction = NULL;
3768                 spin_unlock(&root->fs_info->trans_lock);
3769
3770                 btrfs_destroy_marked_extents(root, &t->dirty_pages,
3771                                              EXTENT_DIRTY);
3772
3773                 btrfs_destroy_pinned_extent(root,
3774                                             root->fs_info->pinned_extents);
3775
3776                 atomic_set(&t->use_count, 0);
3777                 list_del_init(&t->list);
3778                 memset(t, 0, sizeof(*t));
3779                 kmem_cache_free(btrfs_transaction_cachep, t);
3780         }
3781
3782         spin_lock(&root->fs_info->trans_lock);
3783         root->fs_info->trans_no_join = 0;
3784         spin_unlock(&root->fs_info->trans_lock);
3785         mutex_unlock(&root->fs_info->transaction_kthread_mutex);
3786
3787         return 0;
3788 }
3789
3790 static struct extent_io_ops btree_extent_io_ops = {
3791         .write_cache_pages_lock_hook = btree_lock_page_hook,
3792         .readpage_end_io_hook = btree_readpage_end_io_hook,
3793         .readpage_io_failed_hook = btree_io_failed_hook,
3794         .submit_bio_hook = btree_submit_bio_hook,
3795         /* note we're sharing with inode.c for the merge bio hook */
3796         .merge_bio_hook = btrfs_merge_bio_hook,
3797 };