]> git.karo-electronics.de Git - karo-tx-linux.git/blob - fs/btrfs/disk-io.c
Btrfs: verify csums on read
[karo-tx-linux.git] / fs / btrfs / disk-io.c
1 #include <linux/module.h>
2 #include <linux/fs.h>
3 #include <linux/blkdev.h>
4 #include <linux/crypto.h>
5 #include <linux/scatterlist.h>
6 #include "ctree.h"
7 #include "disk-io.h"
8 #include "transaction.h"
9
10
11 static int check_tree_block(struct btrfs_root *root, struct buffer_head *buf)
12 {
13         struct btrfs_node *node = btrfs_buffer_node(buf);
14         if (buf->b_blocknr != btrfs_header_blocknr(&node->header)) {
15                 BUG();
16         }
17         if (root->node && btrfs_header_parentid(&node->header) !=
18             btrfs_header_parentid(btrfs_buffer_header(root->node))) {
19                 BUG();
20         }
21         return 0;
22 }
23
24 struct buffer_head *btrfs_find_tree_block(struct btrfs_root *root, u64 blocknr)
25 {
26         struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
27         int blockbits = root->fs_info->sb->s_blocksize_bits;
28         unsigned long index = blocknr >> (PAGE_CACHE_SHIFT - blockbits);
29         struct page *page;
30         struct buffer_head *bh;
31         struct buffer_head *head;
32         struct buffer_head *ret = NULL;
33
34         page = find_lock_page(mapping, index);
35         if (!page)
36                 return NULL;
37
38         if (!page_has_buffers(page))
39                 goto out_unlock;
40
41         head = page_buffers(page);
42         bh = head;
43         do {
44                 if (buffer_mapped(bh) && bh->b_blocknr == blocknr) {
45                         ret = bh;
46                         get_bh(bh);
47                         goto out_unlock;
48                 }
49                 bh = bh->b_this_page;
50         } while (bh != head);
51 out_unlock:
52         unlock_page(page);
53         page_cache_release(page);
54         return ret;
55 }
56
57 struct buffer_head *btrfs_find_create_tree_block(struct btrfs_root *root,
58                                                  u64 blocknr)
59 {
60         struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
61         int blockbits = root->fs_info->sb->s_blocksize_bits;
62         unsigned long index = blocknr >> (PAGE_CACHE_SHIFT - blockbits);
63         struct page *page;
64         struct buffer_head *bh;
65         struct buffer_head *head;
66         struct buffer_head *ret = NULL;
67         u64 first_block = index << (PAGE_CACHE_SHIFT - blockbits);
68         page = grab_cache_page(mapping, index);
69         if (!page)
70                 return NULL;
71
72         if (!page_has_buffers(page))
73                 create_empty_buffers(page, root->fs_info->sb->s_blocksize, 0);
74         head = page_buffers(page);
75         bh = head;
76         do {
77                 if (!buffer_mapped(bh)) {
78                         bh->b_bdev = root->fs_info->sb->s_bdev;
79                         bh->b_blocknr = first_block;
80                         set_buffer_mapped(bh);
81                 }
82                 if (bh->b_blocknr == blocknr) {
83                         ret = bh;
84                         get_bh(bh);
85                         goto out_unlock;
86                 }
87                 bh = bh->b_this_page;
88                 first_block++;
89         } while (bh != head);
90 out_unlock:
91         unlock_page(page);
92         page_cache_release(page);
93         return ret;
94 }
95
96 static sector_t max_block(struct block_device *bdev)
97 {
98         sector_t retval = ~((sector_t)0);
99         loff_t sz = i_size_read(bdev->bd_inode);
100
101         if (sz) {
102                 unsigned int size = block_size(bdev);
103                 unsigned int sizebits = blksize_bits(size);
104                 retval = (sz >> sizebits);
105         }
106         return retval;
107 }
108
109 static int btree_get_block(struct inode *inode, sector_t iblock,
110                            struct buffer_head *bh, int create)
111 {
112         if (iblock >= max_block(inode->i_sb->s_bdev)) {
113                 if (create)
114                         return -EIO;
115
116                 /*
117                  * for reads, we're just trying to fill a partial page.
118                  * return a hole, they will have to call get_block again
119                  * before they can fill it, and they will get -EIO at that
120                  * time
121                  */
122                 return 0;
123         }
124         bh->b_bdev = inode->i_sb->s_bdev;
125         bh->b_blocknr = iblock;
126         set_buffer_mapped(bh);
127         return 0;
128 }
129
130 int btrfs_csum_data(struct btrfs_root * root, char *data, size_t len,
131                     char *result)
132 {
133         struct scatterlist sg;
134         struct crypto_hash *tfm = root->fs_info->hash_tfm;
135         struct hash_desc desc;
136         int ret;
137
138         desc.tfm = tfm;
139         desc.flags = 0;
140         sg_init_one(&sg, data, len);
141         spin_lock(&root->fs_info->hash_lock);
142         ret = crypto_hash_digest(&desc, &sg, len, result);
143         spin_unlock(&root->fs_info->hash_lock);
144         if (ret) {
145                 printk("sha256 digest failed\n");
146         }
147         return ret;
148 }
149 static int csum_tree_block(struct btrfs_root *root, struct buffer_head *bh,
150                            int verify)
151 {
152         char result[BTRFS_CSUM_SIZE];
153         int ret;
154         struct btrfs_node *node;
155
156         ret = btrfs_csum_data(root, bh->b_data + BTRFS_CSUM_SIZE,
157                               bh->b_size - BTRFS_CSUM_SIZE, result);
158         if (ret)
159                 return ret;
160         if (verify) {
161                 if (memcmp(bh->b_data, result, BTRFS_CSUM_SIZE)) {
162                         printk("checksum verify failed on %lu\n",
163                                bh->b_blocknr);
164                         return 1;
165                 }
166         } else {
167                 node = btrfs_buffer_node(bh);
168                 memcpy(&node->header.csum, result, BTRFS_CSUM_SIZE);
169         }
170         return 0;
171 }
172
173 static int btree_writepage(struct page *page, struct writeback_control *wbc)
174 {
175         struct buffer_head *bh;
176         struct btrfs_root *root = btrfs_sb(page->mapping->host->i_sb);
177         struct buffer_head *head;
178
179         if (!page_has_buffers(page)) {
180                 create_empty_buffers(page, root->fs_info->sb->s_blocksize,
181                                         (1 << BH_Dirty)|(1 << BH_Uptodate));
182         }
183         head = page_buffers(page);
184         bh = head;
185         do {
186                 if (buffer_dirty(bh))
187                         csum_tree_block(root, bh, 0);
188                 bh = bh->b_this_page;
189         } while (bh != head);
190         return block_write_full_page(page, btree_get_block, wbc);
191 }
192
193 static int btree_readpage(struct file * file, struct page * page)
194 {
195         return block_read_full_page(page, btree_get_block);
196 }
197
198 static struct address_space_operations btree_aops = {
199         .readpage       = btree_readpage,
200         .writepage      = btree_writepage,
201         .sync_page      = block_sync_page,
202 };
203
204 struct buffer_head *read_tree_block(struct btrfs_root *root, u64 blocknr)
205 {
206         struct buffer_head *bh = NULL;
207
208         bh = btrfs_find_create_tree_block(root, blocknr);
209         if (!bh)
210                 return bh;
211         lock_buffer(bh);
212         if (!buffer_uptodate(bh)) {
213                 get_bh(bh);
214                 bh->b_end_io = end_buffer_read_sync;
215                 submit_bh(READ, bh);
216                 wait_on_buffer(bh);
217                 if (!buffer_uptodate(bh))
218                         goto fail;
219                 csum_tree_block(root, bh, 1);
220         } else {
221                 unlock_buffer(bh);
222         }
223         if (check_tree_block(root, bh))
224                 BUG();
225         return bh;
226 fail:
227         brelse(bh);
228         return NULL;
229
230 }
231
232 int dirty_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
233                      struct buffer_head *buf)
234 {
235         mark_buffer_dirty(buf);
236         return 0;
237 }
238
239 int clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
240                      struct buffer_head *buf)
241 {
242         clear_buffer_dirty(buf);
243         return 0;
244 }
245
246 static int __setup_root(struct btrfs_super_block *super,
247                         struct btrfs_root *root,
248                         struct btrfs_fs_info *fs_info,
249                         u64 objectid)
250 {
251         root->node = NULL;
252         root->commit_root = NULL;
253         root->blocksize = btrfs_super_blocksize(super);
254         root->ref_cows = 0;
255         root->fs_info = fs_info;
256         memset(&root->root_key, 0, sizeof(root->root_key));
257         memset(&root->root_item, 0, sizeof(root->root_item));
258         return 0;
259 }
260
261 static int find_and_setup_root(struct btrfs_super_block *super,
262                                struct btrfs_root *tree_root,
263                                struct btrfs_fs_info *fs_info,
264                                u64 objectid,
265                                struct btrfs_root *root)
266 {
267         int ret;
268
269         __setup_root(super, root, fs_info, objectid);
270         ret = btrfs_find_last_root(tree_root, objectid,
271                                    &root->root_item, &root->root_key);
272         BUG_ON(ret);
273
274         root->node = read_tree_block(root,
275                                      btrfs_root_blocknr(&root->root_item));
276         BUG_ON(!root->node);
277         return 0;
278 }
279
280 struct btrfs_root *open_ctree(struct super_block *sb,
281                               struct buffer_head *sb_buffer,
282                               struct btrfs_super_block *disk_super)
283 {
284         struct btrfs_root *root = kmalloc(sizeof(struct btrfs_root),
285                                           GFP_NOFS);
286         struct btrfs_root *extent_root = kmalloc(sizeof(struct btrfs_root),
287                                                  GFP_NOFS);
288         struct btrfs_root *tree_root = kmalloc(sizeof(struct btrfs_root),
289                                                GFP_NOFS);
290         struct btrfs_root *inode_root = kmalloc(sizeof(struct btrfs_root),
291                                                 GFP_NOFS);
292         struct btrfs_fs_info *fs_info = kmalloc(sizeof(*fs_info),
293                                                 GFP_NOFS);
294         int ret;
295
296         if (!btrfs_super_root(disk_super)) {
297                 return NULL;
298         }
299         init_bit_radix(&fs_info->pinned_radix);
300         init_bit_radix(&fs_info->pending_del_radix);
301         sb_set_blocksize(sb, sb_buffer->b_size);
302         fs_info->running_transaction = NULL;
303         fs_info->fs_root = root;
304         fs_info->tree_root = tree_root;
305         fs_info->extent_root = extent_root;
306         fs_info->inode_root = inode_root;
307         fs_info->last_inode_alloc = 0;
308         fs_info->last_inode_alloc_dirid = 0;
309         fs_info->disk_super = disk_super;
310         fs_info->sb = sb;
311         fs_info->btree_inode = new_inode(sb);
312         fs_info->btree_inode->i_ino = 1;
313         fs_info->btree_inode->i_size = sb->s_bdev->bd_inode->i_size;
314         fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
315         mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
316         fs_info->hash_tfm = crypto_alloc_hash("sha256", 0, CRYPTO_ALG_ASYNC);
317         spin_lock_init(&fs_info->hash_lock);
318
319         if (!fs_info->hash_tfm || IS_ERR(fs_info->hash_tfm)) {
320                 printk("failed to allocate sha256 hash\n");
321                 return NULL;
322         }
323
324         mutex_init(&fs_info->trans_mutex);
325         mutex_init(&fs_info->fs_mutex);
326         memset(&fs_info->current_insert, 0, sizeof(fs_info->current_insert));
327         memset(&fs_info->last_insert, 0, sizeof(fs_info->last_insert));
328
329         __setup_root(disk_super, tree_root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
330
331         fs_info->sb_buffer = read_tree_block(tree_root, sb_buffer->b_blocknr);
332
333         if (!fs_info->sb_buffer) {
334 printk("failed2\n");
335                 return NULL;
336         }
337         brelse(sb_buffer);
338         sb_buffer = NULL;
339         disk_super = (struct btrfs_super_block *)fs_info->sb_buffer->b_data;
340         fs_info->disk_super = disk_super;
341
342         tree_root->node = read_tree_block(tree_root,
343                                           btrfs_super_root(disk_super));
344         BUG_ON(!tree_root->node);
345
346         ret = find_and_setup_root(disk_super, tree_root, fs_info,
347                                   BTRFS_EXTENT_TREE_OBJECTID, extent_root);
348         BUG_ON(ret);
349
350         ret = find_and_setup_root(disk_super, tree_root, fs_info,
351                                   BTRFS_INODE_MAP_OBJECTID, inode_root);
352         BUG_ON(ret);
353
354         ret = find_and_setup_root(disk_super, tree_root, fs_info,
355                                   BTRFS_FS_TREE_OBJECTID, root);
356         BUG_ON(ret);
357         root->commit_root = root->node;
358         get_bh(root->node);
359         root->ref_cows = 1;
360         root->fs_info->generation = root->root_key.offset + 1;
361         return root;
362 }
363
364 int write_ctree_super(struct btrfs_trans_handle *trans, struct btrfs_root
365                       *root)
366 {
367         struct buffer_head *bh = root->fs_info->sb_buffer;
368         btrfs_set_super_root(root->fs_info->disk_super,
369                              root->fs_info->tree_root->node->b_blocknr);
370         lock_buffer(bh);
371         clear_buffer_dirty(bh);
372         csum_tree_block(root, bh, 0);
373         bh->b_end_io = end_buffer_write_sync;
374         get_bh(bh);
375         submit_bh(WRITE, bh);
376         wait_on_buffer(bh);
377         if (!buffer_uptodate(bh)) {
378                 WARN_ON(1);
379                 return -EIO;
380         }
381         return 0;
382 }
383
384 int close_ctree(struct btrfs_root *root)
385 {
386         int ret;
387         struct btrfs_trans_handle *trans;
388
389         trans = btrfs_start_transaction(root, 1);
390         btrfs_commit_transaction(trans, root);
391         /* run commit again to  drop the original snapshot */
392         trans = btrfs_start_transaction(root, 1);
393         btrfs_commit_transaction(trans, root);
394         ret = btrfs_write_and_wait_transaction(NULL, root);
395         BUG_ON(ret);
396         write_ctree_super(NULL, root);
397
398         if (root->node)
399                 btrfs_block_release(root, root->node);
400         if (root->fs_info->extent_root->node)
401                 btrfs_block_release(root->fs_info->extent_root,
402                                     root->fs_info->extent_root->node);
403         if (root->fs_info->inode_root->node)
404                 btrfs_block_release(root->fs_info->inode_root,
405                                     root->fs_info->inode_root->node);
406         if (root->fs_info->tree_root->node)
407                 btrfs_block_release(root->fs_info->tree_root,
408                                     root->fs_info->tree_root->node);
409         btrfs_block_release(root, root->commit_root);
410         btrfs_block_release(root, root->fs_info->sb_buffer);
411         crypto_free_hash(root->fs_info->hash_tfm);
412         truncate_inode_pages(root->fs_info->btree_inode->i_mapping, 0);
413         iput(root->fs_info->btree_inode);
414         kfree(root->fs_info->extent_root);
415         kfree(root->fs_info->inode_root);
416         kfree(root->fs_info->tree_root);
417         kfree(root->fs_info);
418         kfree(root);
419         return 0;
420 }
421
422 void btrfs_block_release(struct btrfs_root *root, struct buffer_head *buf)
423 {
424         brelse(buf);
425 }
426