]> git.karo-electronics.de Git - karo-tx-linux.git/blob - fs/btrfs/disk-io.c
Merge branch 'for-next' of git://neil.brown.name/md
[karo-tx-linux.git] / fs / btrfs / disk-io.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
29 #include <linux/crc32c.h>
30 #include <linux/slab.h>
31 #include <linux/migrate.h>
32 #include <linux/ratelimit.h>
33 #include <asm/unaligned.h>
34 #include "compat.h"
35 #include "ctree.h"
36 #include "disk-io.h"
37 #include "transaction.h"
38 #include "btrfs_inode.h"
39 #include "volumes.h"
40 #include "print-tree.h"
41 #include "async-thread.h"
42 #include "locking.h"
43 #include "tree-log.h"
44 #include "free-space-cache.h"
45 #include "inode-map.h"
46 #include "check-integrity.h"
47 #include "rcu-string.h"
48
49 static struct extent_io_ops btree_extent_io_ops;
50 static void end_workqueue_fn(struct btrfs_work *work);
51 static void free_fs_root(struct btrfs_root *root);
52 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
53                                     int read_only);
54 static void btrfs_destroy_ordered_operations(struct btrfs_root *root);
55 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
56 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
57                                       struct btrfs_root *root);
58 static void btrfs_destroy_pending_snapshots(struct btrfs_transaction *t);
59 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
60 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
61                                         struct extent_io_tree *dirty_pages,
62                                         int mark);
63 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
64                                        struct extent_io_tree *pinned_extents);
65
66 /*
67  * end_io_wq structs are used to do processing in task context when an IO is
68  * complete.  This is used during reads to verify checksums, and it is used
69  * by writes to insert metadata for new file extents after IO is complete.
70  */
71 struct end_io_wq {
72         struct bio *bio;
73         bio_end_io_t *end_io;
74         void *private;
75         struct btrfs_fs_info *info;
76         int error;
77         int metadata;
78         struct list_head list;
79         struct btrfs_work work;
80 };
81
82 /*
83  * async submit bios are used to offload expensive checksumming
84  * onto the worker threads.  They checksum file and metadata bios
85  * just before they are sent down the IO stack.
86  */
87 struct async_submit_bio {
88         struct inode *inode;
89         struct bio *bio;
90         struct list_head list;
91         extent_submit_bio_hook_t *submit_bio_start;
92         extent_submit_bio_hook_t *submit_bio_done;
93         int rw;
94         int mirror_num;
95         unsigned long bio_flags;
96         /*
97          * bio_offset is optional, can be used if the pages in the bio
98          * can't tell us where in the file the bio should go
99          */
100         u64 bio_offset;
101         struct btrfs_work work;
102         int error;
103 };
104
105 /*
106  * Lockdep class keys for extent_buffer->lock's in this root.  For a given
107  * eb, the lockdep key is determined by the btrfs_root it belongs to and
108  * the level the eb occupies in the tree.
109  *
110  * Different roots are used for different purposes and may nest inside each
111  * other and they require separate keysets.  As lockdep keys should be
112  * static, assign keysets according to the purpose of the root as indicated
113  * by btrfs_root->objectid.  This ensures that all special purpose roots
114  * have separate keysets.
115  *
116  * Lock-nesting across peer nodes is always done with the immediate parent
117  * node locked thus preventing deadlock.  As lockdep doesn't know this, use
118  * subclass to avoid triggering lockdep warning in such cases.
119  *
120  * The key is set by the readpage_end_io_hook after the buffer has passed
121  * csum validation but before the pages are unlocked.  It is also set by
122  * btrfs_init_new_buffer on freshly allocated blocks.
123  *
124  * We also add a check to make sure the highest level of the tree is the
125  * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
126  * needs update as well.
127  */
128 #ifdef CONFIG_DEBUG_LOCK_ALLOC
129 # if BTRFS_MAX_LEVEL != 8
130 #  error
131 # endif
132
133 static struct btrfs_lockdep_keyset {
134         u64                     id;             /* root objectid */
135         const char              *name_stem;     /* lock name stem */
136         char                    names[BTRFS_MAX_LEVEL + 1][20];
137         struct lock_class_key   keys[BTRFS_MAX_LEVEL + 1];
138 } btrfs_lockdep_keysets[] = {
139         { .id = BTRFS_ROOT_TREE_OBJECTID,       .name_stem = "root"     },
140         { .id = BTRFS_EXTENT_TREE_OBJECTID,     .name_stem = "extent"   },
141         { .id = BTRFS_CHUNK_TREE_OBJECTID,      .name_stem = "chunk"    },
142         { .id = BTRFS_DEV_TREE_OBJECTID,        .name_stem = "dev"      },
143         { .id = BTRFS_FS_TREE_OBJECTID,         .name_stem = "fs"       },
144         { .id = BTRFS_CSUM_TREE_OBJECTID,       .name_stem = "csum"     },
145         { .id = BTRFS_ORPHAN_OBJECTID,          .name_stem = "orphan"   },
146         { .id = BTRFS_TREE_LOG_OBJECTID,        .name_stem = "log"      },
147         { .id = BTRFS_TREE_RELOC_OBJECTID,      .name_stem = "treloc"   },
148         { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc"   },
149         { .id = 0,                              .name_stem = "tree"     },
150 };
151
152 void __init btrfs_init_lockdep(void)
153 {
154         int i, j;
155
156         /* initialize lockdep class names */
157         for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
158                 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
159
160                 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
161                         snprintf(ks->names[j], sizeof(ks->names[j]),
162                                  "btrfs-%s-%02d", ks->name_stem, j);
163         }
164 }
165
166 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
167                                     int level)
168 {
169         struct btrfs_lockdep_keyset *ks;
170
171         BUG_ON(level >= ARRAY_SIZE(ks->keys));
172
173         /* find the matching keyset, id 0 is the default entry */
174         for (ks = btrfs_lockdep_keysets; ks->id; ks++)
175                 if (ks->id == objectid)
176                         break;
177
178         lockdep_set_class_and_name(&eb->lock,
179                                    &ks->keys[level], ks->names[level]);
180 }
181
182 #endif
183
184 /*
185  * extents on the btree inode are pretty simple, there's one extent
186  * that covers the entire device
187  */
188 static struct extent_map *btree_get_extent(struct inode *inode,
189                 struct page *page, size_t pg_offset, u64 start, u64 len,
190                 int create)
191 {
192         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
193         struct extent_map *em;
194         int ret;
195
196         read_lock(&em_tree->lock);
197         em = lookup_extent_mapping(em_tree, start, len);
198         if (em) {
199                 em->bdev =
200                         BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
201                 read_unlock(&em_tree->lock);
202                 goto out;
203         }
204         read_unlock(&em_tree->lock);
205
206         em = alloc_extent_map();
207         if (!em) {
208                 em = ERR_PTR(-ENOMEM);
209                 goto out;
210         }
211         em->start = 0;
212         em->len = (u64)-1;
213         em->block_len = (u64)-1;
214         em->block_start = 0;
215         em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
216
217         write_lock(&em_tree->lock);
218         ret = add_extent_mapping(em_tree, em);
219         if (ret == -EEXIST) {
220                 u64 failed_start = em->start;
221                 u64 failed_len = em->len;
222
223                 free_extent_map(em);
224                 em = lookup_extent_mapping(em_tree, start, len);
225                 if (em) {
226                         ret = 0;
227                 } else {
228                         em = lookup_extent_mapping(em_tree, failed_start,
229                                                    failed_len);
230                         ret = -EIO;
231                 }
232         } else if (ret) {
233                 free_extent_map(em);
234                 em = NULL;
235         }
236         write_unlock(&em_tree->lock);
237
238         if (ret)
239                 em = ERR_PTR(ret);
240 out:
241         return em;
242 }
243
244 u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
245 {
246         return crc32c(seed, data, len);
247 }
248
249 void btrfs_csum_final(u32 crc, char *result)
250 {
251         put_unaligned_le32(~crc, result);
252 }
253
254 /*
255  * compute the csum for a btree block, and either verify it or write it
256  * into the csum field of the block.
257  */
258 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
259                            int verify)
260 {
261         u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
262         char *result = NULL;
263         unsigned long len;
264         unsigned long cur_len;
265         unsigned long offset = BTRFS_CSUM_SIZE;
266         char *kaddr;
267         unsigned long map_start;
268         unsigned long map_len;
269         int err;
270         u32 crc = ~(u32)0;
271         unsigned long inline_result;
272
273         len = buf->len - offset;
274         while (len > 0) {
275                 err = map_private_extent_buffer(buf, offset, 32,
276                                         &kaddr, &map_start, &map_len);
277                 if (err)
278                         return 1;
279                 cur_len = min(len, map_len - (offset - map_start));
280                 crc = btrfs_csum_data(root, kaddr + offset - map_start,
281                                       crc, cur_len);
282                 len -= cur_len;
283                 offset += cur_len;
284         }
285         if (csum_size > sizeof(inline_result)) {
286                 result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
287                 if (!result)
288                         return 1;
289         } else {
290                 result = (char *)&inline_result;
291         }
292
293         btrfs_csum_final(crc, result);
294
295         if (verify) {
296                 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
297                         u32 val;
298                         u32 found = 0;
299                         memcpy(&found, result, csum_size);
300
301                         read_extent_buffer(buf, &val, 0, csum_size);
302                         printk_ratelimited(KERN_INFO "btrfs: %s checksum verify "
303                                        "failed on %llu wanted %X found %X "
304                                        "level %d\n",
305                                        root->fs_info->sb->s_id,
306                                        (unsigned long long)buf->start, val, found,
307                                        btrfs_header_level(buf));
308                         if (result != (char *)&inline_result)
309                                 kfree(result);
310                         return 1;
311                 }
312         } else {
313                 write_extent_buffer(buf, result, 0, csum_size);
314         }
315         if (result != (char *)&inline_result)
316                 kfree(result);
317         return 0;
318 }
319
320 /*
321  * we can't consider a given block up to date unless the transid of the
322  * block matches the transid in the parent node's pointer.  This is how we
323  * detect blocks that either didn't get written at all or got written
324  * in the wrong place.
325  */
326 static int verify_parent_transid(struct extent_io_tree *io_tree,
327                                  struct extent_buffer *eb, u64 parent_transid,
328                                  int atomic)
329 {
330         struct extent_state *cached_state = NULL;
331         int ret;
332
333         if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
334                 return 0;
335
336         if (atomic)
337                 return -EAGAIN;
338
339         lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
340                          0, &cached_state);
341         if (extent_buffer_uptodate(eb) &&
342             btrfs_header_generation(eb) == parent_transid) {
343                 ret = 0;
344                 goto out;
345         }
346         printk_ratelimited("parent transid verify failed on %llu wanted %llu "
347                        "found %llu\n",
348                        (unsigned long long)eb->start,
349                        (unsigned long long)parent_transid,
350                        (unsigned long long)btrfs_header_generation(eb));
351         ret = 1;
352         clear_extent_buffer_uptodate(eb);
353 out:
354         unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
355                              &cached_state, GFP_NOFS);
356         return ret;
357 }
358
359 /*
360  * helper to read a given tree block, doing retries as required when
361  * the checksums don't match and we have alternate mirrors to try.
362  */
363 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
364                                           struct extent_buffer *eb,
365                                           u64 start, u64 parent_transid)
366 {
367         struct extent_io_tree *io_tree;
368         int failed = 0;
369         int ret;
370         int num_copies = 0;
371         int mirror_num = 0;
372         int failed_mirror = 0;
373
374         clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
375         io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
376         while (1) {
377                 ret = read_extent_buffer_pages(io_tree, eb, start,
378                                                WAIT_COMPLETE,
379                                                btree_get_extent, mirror_num);
380                 if (!ret && !verify_parent_transid(io_tree, eb,
381                                                    parent_transid, 0))
382                         break;
383
384                 /*
385                  * This buffer's crc is fine, but its contents are corrupted, so
386                  * there is no reason to read the other copies, they won't be
387                  * any less wrong.
388                  */
389                 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
390                         break;
391
392                 num_copies = btrfs_num_copies(&root->fs_info->mapping_tree,
393                                               eb->start, eb->len);
394                 if (num_copies == 1)
395                         break;
396
397                 if (!failed_mirror) {
398                         failed = 1;
399                         failed_mirror = eb->read_mirror;
400                 }
401
402                 mirror_num++;
403                 if (mirror_num == failed_mirror)
404                         mirror_num++;
405
406                 if (mirror_num > num_copies)
407                         break;
408         }
409
410         if (failed && !ret && failed_mirror)
411                 repair_eb_io_failure(root, eb, failed_mirror);
412
413         return ret;
414 }
415
416 /*
417  * checksum a dirty tree block before IO.  This has extra checks to make sure
418  * we only fill in the checksum field in the first page of a multi-page block
419  */
420
421 static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
422 {
423         struct extent_io_tree *tree;
424         u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
425         u64 found_start;
426         struct extent_buffer *eb;
427
428         tree = &BTRFS_I(page->mapping->host)->io_tree;
429
430         eb = (struct extent_buffer *)page->private;
431         if (page != eb->pages[0])
432                 return 0;
433         found_start = btrfs_header_bytenr(eb);
434         if (found_start != start) {
435                 WARN_ON(1);
436                 return 0;
437         }
438         if (eb->pages[0] != page) {
439                 WARN_ON(1);
440                 return 0;
441         }
442         if (!PageUptodate(page)) {
443                 WARN_ON(1);
444                 return 0;
445         }
446         csum_tree_block(root, eb, 0);
447         return 0;
448 }
449
450 static int check_tree_block_fsid(struct btrfs_root *root,
451                                  struct extent_buffer *eb)
452 {
453         struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
454         u8 fsid[BTRFS_UUID_SIZE];
455         int ret = 1;
456
457         read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
458                            BTRFS_FSID_SIZE);
459         while (fs_devices) {
460                 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
461                         ret = 0;
462                         break;
463                 }
464                 fs_devices = fs_devices->seed;
465         }
466         return ret;
467 }
468
469 #define CORRUPT(reason, eb, root, slot)                         \
470         printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu," \
471                "root=%llu, slot=%d\n", reason,                  \
472                (unsigned long long)btrfs_header_bytenr(eb),     \
473                (unsigned long long)root->objectid, slot)
474
475 static noinline int check_leaf(struct btrfs_root *root,
476                                struct extent_buffer *leaf)
477 {
478         struct btrfs_key key;
479         struct btrfs_key leaf_key;
480         u32 nritems = btrfs_header_nritems(leaf);
481         int slot;
482
483         if (nritems == 0)
484                 return 0;
485
486         /* Check the 0 item */
487         if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
488             BTRFS_LEAF_DATA_SIZE(root)) {
489                 CORRUPT("invalid item offset size pair", leaf, root, 0);
490                 return -EIO;
491         }
492
493         /*
494          * Check to make sure each items keys are in the correct order and their
495          * offsets make sense.  We only have to loop through nritems-1 because
496          * we check the current slot against the next slot, which verifies the
497          * next slot's offset+size makes sense and that the current's slot
498          * offset is correct.
499          */
500         for (slot = 0; slot < nritems - 1; slot++) {
501                 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
502                 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
503
504                 /* Make sure the keys are in the right order */
505                 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
506                         CORRUPT("bad key order", leaf, root, slot);
507                         return -EIO;
508                 }
509
510                 /*
511                  * Make sure the offset and ends are right, remember that the
512                  * item data starts at the end of the leaf and grows towards the
513                  * front.
514                  */
515                 if (btrfs_item_offset_nr(leaf, slot) !=
516                         btrfs_item_end_nr(leaf, slot + 1)) {
517                         CORRUPT("slot offset bad", leaf, root, slot);
518                         return -EIO;
519                 }
520
521                 /*
522                  * Check to make sure that we don't point outside of the leaf,
523                  * just incase all the items are consistent to eachother, but
524                  * all point outside of the leaf.
525                  */
526                 if (btrfs_item_end_nr(leaf, slot) >
527                     BTRFS_LEAF_DATA_SIZE(root)) {
528                         CORRUPT("slot end outside of leaf", leaf, root, slot);
529                         return -EIO;
530                 }
531         }
532
533         return 0;
534 }
535
536 struct extent_buffer *find_eb_for_page(struct extent_io_tree *tree,
537                                        struct page *page, int max_walk)
538 {
539         struct extent_buffer *eb;
540         u64 start = page_offset(page);
541         u64 target = start;
542         u64 min_start;
543
544         if (start < max_walk)
545                 min_start = 0;
546         else
547                 min_start = start - max_walk;
548
549         while (start >= min_start) {
550                 eb = find_extent_buffer(tree, start, 0);
551                 if (eb) {
552                         /*
553                          * we found an extent buffer and it contains our page
554                          * horray!
555                          */
556                         if (eb->start <= target &&
557                             eb->start + eb->len > target)
558                                 return eb;
559
560                         /* we found an extent buffer that wasn't for us */
561                         free_extent_buffer(eb);
562                         return NULL;
563                 }
564                 if (start == 0)
565                         break;
566                 start -= PAGE_CACHE_SIZE;
567         }
568         return NULL;
569 }
570
571 static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
572                                struct extent_state *state, int mirror)
573 {
574         struct extent_io_tree *tree;
575         u64 found_start;
576         int found_level;
577         struct extent_buffer *eb;
578         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
579         int ret = 0;
580         int reads_done;
581
582         if (!page->private)
583                 goto out;
584
585         tree = &BTRFS_I(page->mapping->host)->io_tree;
586         eb = (struct extent_buffer *)page->private;
587
588         /* the pending IO might have been the only thing that kept this buffer
589          * in memory.  Make sure we have a ref for all this other checks
590          */
591         extent_buffer_get(eb);
592
593         reads_done = atomic_dec_and_test(&eb->io_pages);
594         if (!reads_done)
595                 goto err;
596
597         eb->read_mirror = mirror;
598         if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
599                 ret = -EIO;
600                 goto err;
601         }
602
603         found_start = btrfs_header_bytenr(eb);
604         if (found_start != eb->start) {
605                 printk_ratelimited(KERN_INFO "btrfs bad tree block start "
606                                "%llu %llu\n",
607                                (unsigned long long)found_start,
608                                (unsigned long long)eb->start);
609                 ret = -EIO;
610                 goto err;
611         }
612         if (check_tree_block_fsid(root, eb)) {
613                 printk_ratelimited(KERN_INFO "btrfs bad fsid on block %llu\n",
614                                (unsigned long long)eb->start);
615                 ret = -EIO;
616                 goto err;
617         }
618         found_level = btrfs_header_level(eb);
619
620         btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
621                                        eb, found_level);
622
623         ret = csum_tree_block(root, eb, 1);
624         if (ret) {
625                 ret = -EIO;
626                 goto err;
627         }
628
629         /*
630          * If this is a leaf block and it is corrupt, set the corrupt bit so
631          * that we don't try and read the other copies of this block, just
632          * return -EIO.
633          */
634         if (found_level == 0 && check_leaf(root, eb)) {
635                 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
636                 ret = -EIO;
637         }
638
639         if (!ret)
640                 set_extent_buffer_uptodate(eb);
641 err:
642         if (test_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) {
643                 clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags);
644                 btree_readahead_hook(root, eb, eb->start, ret);
645         }
646
647         if (ret)
648                 clear_extent_buffer_uptodate(eb);
649         free_extent_buffer(eb);
650 out:
651         return ret;
652 }
653
654 static int btree_io_failed_hook(struct page *page, int failed_mirror)
655 {
656         struct extent_buffer *eb;
657         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
658
659         eb = (struct extent_buffer *)page->private;
660         set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
661         eb->read_mirror = failed_mirror;
662         if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
663                 btree_readahead_hook(root, eb, eb->start, -EIO);
664         return -EIO;    /* we fixed nothing */
665 }
666
667 static void end_workqueue_bio(struct bio *bio, int err)
668 {
669         struct end_io_wq *end_io_wq = bio->bi_private;
670         struct btrfs_fs_info *fs_info;
671
672         fs_info = end_io_wq->info;
673         end_io_wq->error = err;
674         end_io_wq->work.func = end_workqueue_fn;
675         end_io_wq->work.flags = 0;
676
677         if (bio->bi_rw & REQ_WRITE) {
678                 if (end_io_wq->metadata == 1)
679                         btrfs_queue_worker(&fs_info->endio_meta_write_workers,
680                                            &end_io_wq->work);
681                 else if (end_io_wq->metadata == 2)
682                         btrfs_queue_worker(&fs_info->endio_freespace_worker,
683                                            &end_io_wq->work);
684                 else
685                         btrfs_queue_worker(&fs_info->endio_write_workers,
686                                            &end_io_wq->work);
687         } else {
688                 if (end_io_wq->metadata)
689                         btrfs_queue_worker(&fs_info->endio_meta_workers,
690                                            &end_io_wq->work);
691                 else
692                         btrfs_queue_worker(&fs_info->endio_workers,
693                                            &end_io_wq->work);
694         }
695 }
696
697 /*
698  * For the metadata arg you want
699  *
700  * 0 - if data
701  * 1 - if normal metadta
702  * 2 - if writing to the free space cache area
703  */
704 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
705                         int metadata)
706 {
707         struct end_io_wq *end_io_wq;
708         end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
709         if (!end_io_wq)
710                 return -ENOMEM;
711
712         end_io_wq->private = bio->bi_private;
713         end_io_wq->end_io = bio->bi_end_io;
714         end_io_wq->info = info;
715         end_io_wq->error = 0;
716         end_io_wq->bio = bio;
717         end_io_wq->metadata = metadata;
718
719         bio->bi_private = end_io_wq;
720         bio->bi_end_io = end_workqueue_bio;
721         return 0;
722 }
723
724 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
725 {
726         unsigned long limit = min_t(unsigned long,
727                                     info->workers.max_workers,
728                                     info->fs_devices->open_devices);
729         return 256 * limit;
730 }
731
732 static void run_one_async_start(struct btrfs_work *work)
733 {
734         struct async_submit_bio *async;
735         int ret;
736
737         async = container_of(work, struct  async_submit_bio, work);
738         ret = async->submit_bio_start(async->inode, async->rw, async->bio,
739                                       async->mirror_num, async->bio_flags,
740                                       async->bio_offset);
741         if (ret)
742                 async->error = ret;
743 }
744
745 static void run_one_async_done(struct btrfs_work *work)
746 {
747         struct btrfs_fs_info *fs_info;
748         struct async_submit_bio *async;
749         int limit;
750
751         async = container_of(work, struct  async_submit_bio, work);
752         fs_info = BTRFS_I(async->inode)->root->fs_info;
753
754         limit = btrfs_async_submit_limit(fs_info);
755         limit = limit * 2 / 3;
756
757         atomic_dec(&fs_info->nr_async_submits);
758
759         if (atomic_read(&fs_info->nr_async_submits) < limit &&
760             waitqueue_active(&fs_info->async_submit_wait))
761                 wake_up(&fs_info->async_submit_wait);
762
763         /* If an error occured we just want to clean up the bio and move on */
764         if (async->error) {
765                 bio_endio(async->bio, async->error);
766                 return;
767         }
768
769         async->submit_bio_done(async->inode, async->rw, async->bio,
770                                async->mirror_num, async->bio_flags,
771                                async->bio_offset);
772 }
773
774 static void run_one_async_free(struct btrfs_work *work)
775 {
776         struct async_submit_bio *async;
777
778         async = container_of(work, struct  async_submit_bio, work);
779         kfree(async);
780 }
781
782 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
783                         int rw, struct bio *bio, int mirror_num,
784                         unsigned long bio_flags,
785                         u64 bio_offset,
786                         extent_submit_bio_hook_t *submit_bio_start,
787                         extent_submit_bio_hook_t *submit_bio_done)
788 {
789         struct async_submit_bio *async;
790
791         async = kmalloc(sizeof(*async), GFP_NOFS);
792         if (!async)
793                 return -ENOMEM;
794
795         async->inode = inode;
796         async->rw = rw;
797         async->bio = bio;
798         async->mirror_num = mirror_num;
799         async->submit_bio_start = submit_bio_start;
800         async->submit_bio_done = submit_bio_done;
801
802         async->work.func = run_one_async_start;
803         async->work.ordered_func = run_one_async_done;
804         async->work.ordered_free = run_one_async_free;
805
806         async->work.flags = 0;
807         async->bio_flags = bio_flags;
808         async->bio_offset = bio_offset;
809
810         async->error = 0;
811
812         atomic_inc(&fs_info->nr_async_submits);
813
814         if (rw & REQ_SYNC)
815                 btrfs_set_work_high_prio(&async->work);
816
817         btrfs_queue_worker(&fs_info->workers, &async->work);
818
819         while (atomic_read(&fs_info->async_submit_draining) &&
820               atomic_read(&fs_info->nr_async_submits)) {
821                 wait_event(fs_info->async_submit_wait,
822                            (atomic_read(&fs_info->nr_async_submits) == 0));
823         }
824
825         return 0;
826 }
827
828 static int btree_csum_one_bio(struct bio *bio)
829 {
830         struct bio_vec *bvec = bio->bi_io_vec;
831         int bio_index = 0;
832         struct btrfs_root *root;
833         int ret = 0;
834
835         WARN_ON(bio->bi_vcnt <= 0);
836         while (bio_index < bio->bi_vcnt) {
837                 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
838                 ret = csum_dirty_buffer(root, bvec->bv_page);
839                 if (ret)
840                         break;
841                 bio_index++;
842                 bvec++;
843         }
844         return ret;
845 }
846
847 static int __btree_submit_bio_start(struct inode *inode, int rw,
848                                     struct bio *bio, int mirror_num,
849                                     unsigned long bio_flags,
850                                     u64 bio_offset)
851 {
852         /*
853          * when we're called for a write, we're already in the async
854          * submission context.  Just jump into btrfs_map_bio
855          */
856         return btree_csum_one_bio(bio);
857 }
858
859 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
860                                  int mirror_num, unsigned long bio_flags,
861                                  u64 bio_offset)
862 {
863         /*
864          * when we're called for a write, we're already in the async
865          * submission context.  Just jump into btrfs_map_bio
866          */
867         return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
868 }
869
870 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
871                                  int mirror_num, unsigned long bio_flags,
872                                  u64 bio_offset)
873 {
874         int ret;
875
876         if (!(rw & REQ_WRITE)) {
877
878                 /*
879                  * called for a read, do the setup so that checksum validation
880                  * can happen in the async kernel threads
881                  */
882                 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
883                                           bio, 1);
884                 if (ret)
885                         return ret;
886                 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
887                                      mirror_num, 0);
888         }
889
890         /*
891          * kthread helpers are used to submit writes so that checksumming
892          * can happen in parallel across all CPUs
893          */
894         return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
895                                    inode, rw, bio, mirror_num, 0,
896                                    bio_offset,
897                                    __btree_submit_bio_start,
898                                    __btree_submit_bio_done);
899 }
900
901 #ifdef CONFIG_MIGRATION
902 static int btree_migratepage(struct address_space *mapping,
903                         struct page *newpage, struct page *page,
904                         enum migrate_mode mode)
905 {
906         /*
907          * we can't safely write a btree page from here,
908          * we haven't done the locking hook
909          */
910         if (PageDirty(page))
911                 return -EAGAIN;
912         /*
913          * Buffers may be managed in a filesystem specific way.
914          * We must have no buffers or drop them.
915          */
916         if (page_has_private(page) &&
917             !try_to_release_page(page, GFP_KERNEL))
918                 return -EAGAIN;
919         return migrate_page(mapping, newpage, page, mode);
920 }
921 #endif
922
923
924 static int btree_writepages(struct address_space *mapping,
925                             struct writeback_control *wbc)
926 {
927         struct extent_io_tree *tree;
928         tree = &BTRFS_I(mapping->host)->io_tree;
929         if (wbc->sync_mode == WB_SYNC_NONE) {
930                 struct btrfs_root *root = BTRFS_I(mapping->host)->root;
931                 u64 num_dirty;
932                 unsigned long thresh = 32 * 1024 * 1024;
933
934                 if (wbc->for_kupdate)
935                         return 0;
936
937                 /* this is a bit racy, but that's ok */
938                 num_dirty = root->fs_info->dirty_metadata_bytes;
939                 if (num_dirty < thresh)
940                         return 0;
941         }
942         return btree_write_cache_pages(mapping, wbc);
943 }
944
945 static int btree_readpage(struct file *file, struct page *page)
946 {
947         struct extent_io_tree *tree;
948         tree = &BTRFS_I(page->mapping->host)->io_tree;
949         return extent_read_full_page(tree, page, btree_get_extent, 0);
950 }
951
952 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
953 {
954         if (PageWriteback(page) || PageDirty(page))
955                 return 0;
956         /*
957          * We need to mask out eg. __GFP_HIGHMEM and __GFP_DMA32 as we're doing
958          * slab allocation from alloc_extent_state down the callchain where
959          * it'd hit a BUG_ON as those flags are not allowed.
960          */
961         gfp_flags &= ~GFP_SLAB_BUG_MASK;
962
963         return try_release_extent_buffer(page, gfp_flags);
964 }
965
966 static void btree_invalidatepage(struct page *page, unsigned long offset)
967 {
968         struct extent_io_tree *tree;
969         tree = &BTRFS_I(page->mapping->host)->io_tree;
970         extent_invalidatepage(tree, page, offset);
971         btree_releasepage(page, GFP_NOFS);
972         if (PagePrivate(page)) {
973                 printk(KERN_WARNING "btrfs warning page private not zero "
974                        "on page %llu\n", (unsigned long long)page_offset(page));
975                 ClearPagePrivate(page);
976                 set_page_private(page, 0);
977                 page_cache_release(page);
978         }
979 }
980
981 static int btree_set_page_dirty(struct page *page)
982 {
983         struct extent_buffer *eb;
984
985         BUG_ON(!PagePrivate(page));
986         eb = (struct extent_buffer *)page->private;
987         BUG_ON(!eb);
988         BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
989         BUG_ON(!atomic_read(&eb->refs));
990         btrfs_assert_tree_locked(eb);
991         return __set_page_dirty_nobuffers(page);
992 }
993
994 static const struct address_space_operations btree_aops = {
995         .readpage       = btree_readpage,
996         .writepages     = btree_writepages,
997         .releasepage    = btree_releasepage,
998         .invalidatepage = btree_invalidatepage,
999 #ifdef CONFIG_MIGRATION
1000         .migratepage    = btree_migratepage,
1001 #endif
1002         .set_page_dirty = btree_set_page_dirty,
1003 };
1004
1005 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1006                          u64 parent_transid)
1007 {
1008         struct extent_buffer *buf = NULL;
1009         struct inode *btree_inode = root->fs_info->btree_inode;
1010         int ret = 0;
1011
1012         buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1013         if (!buf)
1014                 return 0;
1015         read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1016                                  buf, 0, WAIT_NONE, btree_get_extent, 0);
1017         free_extent_buffer(buf);
1018         return ret;
1019 }
1020
1021 int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1022                          int mirror_num, struct extent_buffer **eb)
1023 {
1024         struct extent_buffer *buf = NULL;
1025         struct inode *btree_inode = root->fs_info->btree_inode;
1026         struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1027         int ret;
1028
1029         buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1030         if (!buf)
1031                 return 0;
1032
1033         set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1034
1035         ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1036                                        btree_get_extent, mirror_num);
1037         if (ret) {
1038                 free_extent_buffer(buf);
1039                 return ret;
1040         }
1041
1042         if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1043                 free_extent_buffer(buf);
1044                 return -EIO;
1045         } else if (extent_buffer_uptodate(buf)) {
1046                 *eb = buf;
1047         } else {
1048                 free_extent_buffer(buf);
1049         }
1050         return 0;
1051 }
1052
1053 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
1054                                             u64 bytenr, u32 blocksize)
1055 {
1056         struct inode *btree_inode = root->fs_info->btree_inode;
1057         struct extent_buffer *eb;
1058         eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
1059                                 bytenr, blocksize);
1060         return eb;
1061 }
1062
1063 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1064                                                  u64 bytenr, u32 blocksize)
1065 {
1066         struct inode *btree_inode = root->fs_info->btree_inode;
1067         struct extent_buffer *eb;
1068
1069         eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
1070                                  bytenr, blocksize);
1071         return eb;
1072 }
1073
1074
1075 int btrfs_write_tree_block(struct extent_buffer *buf)
1076 {
1077         return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1078                                         buf->start + buf->len - 1);
1079 }
1080
1081 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1082 {
1083         return filemap_fdatawait_range(buf->pages[0]->mapping,
1084                                        buf->start, buf->start + buf->len - 1);
1085 }
1086
1087 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
1088                                       u32 blocksize, u64 parent_transid)
1089 {
1090         struct extent_buffer *buf = NULL;
1091         int ret;
1092
1093         buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1094         if (!buf)
1095                 return NULL;
1096
1097         ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
1098         return buf;
1099
1100 }
1101
1102 void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1103                       struct extent_buffer *buf)
1104 {
1105         if (btrfs_header_generation(buf) ==
1106             root->fs_info->running_transaction->transid) {
1107                 btrfs_assert_tree_locked(buf);
1108
1109                 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1110                         spin_lock(&root->fs_info->delalloc_lock);
1111                         if (root->fs_info->dirty_metadata_bytes >= buf->len)
1112                                 root->fs_info->dirty_metadata_bytes -= buf->len;
1113                         else {
1114                                 spin_unlock(&root->fs_info->delalloc_lock);
1115                                 btrfs_panic(root->fs_info, -EOVERFLOW,
1116                                           "Can't clear %lu bytes from "
1117                                           " dirty_mdatadata_bytes (%llu)",
1118                                           buf->len,
1119                                           root->fs_info->dirty_metadata_bytes);
1120                         }
1121                         spin_unlock(&root->fs_info->delalloc_lock);
1122                 }
1123
1124                 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1125                 btrfs_set_lock_blocking(buf);
1126                 clear_extent_buffer_dirty(buf);
1127         }
1128 }
1129
1130 static void __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
1131                          u32 stripesize, struct btrfs_root *root,
1132                          struct btrfs_fs_info *fs_info,
1133                          u64 objectid)
1134 {
1135         root->node = NULL;
1136         root->commit_root = NULL;
1137         root->sectorsize = sectorsize;
1138         root->nodesize = nodesize;
1139         root->leafsize = leafsize;
1140         root->stripesize = stripesize;
1141         root->ref_cows = 0;
1142         root->track_dirty = 0;
1143         root->in_radix = 0;
1144         root->orphan_item_inserted = 0;
1145         root->orphan_cleanup_state = 0;
1146
1147         root->objectid = objectid;
1148         root->last_trans = 0;
1149         root->highest_objectid = 0;
1150         root->name = NULL;
1151         root->inode_tree = RB_ROOT;
1152         INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1153         root->block_rsv = NULL;
1154         root->orphan_block_rsv = NULL;
1155
1156         INIT_LIST_HEAD(&root->dirty_list);
1157         INIT_LIST_HEAD(&root->root_list);
1158         spin_lock_init(&root->orphan_lock);
1159         spin_lock_init(&root->inode_lock);
1160         spin_lock_init(&root->accounting_lock);
1161         mutex_init(&root->objectid_mutex);
1162         mutex_init(&root->log_mutex);
1163         init_waitqueue_head(&root->log_writer_wait);
1164         init_waitqueue_head(&root->log_commit_wait[0]);
1165         init_waitqueue_head(&root->log_commit_wait[1]);
1166         atomic_set(&root->log_commit[0], 0);
1167         atomic_set(&root->log_commit[1], 0);
1168         atomic_set(&root->log_writers, 0);
1169         atomic_set(&root->orphan_inodes, 0);
1170         root->log_batch = 0;
1171         root->log_transid = 0;
1172         root->last_log_commit = 0;
1173         extent_io_tree_init(&root->dirty_log_pages,
1174                              fs_info->btree_inode->i_mapping);
1175
1176         memset(&root->root_key, 0, sizeof(root->root_key));
1177         memset(&root->root_item, 0, sizeof(root->root_item));
1178         memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1179         memset(&root->root_kobj, 0, sizeof(root->root_kobj));
1180         root->defrag_trans_start = fs_info->generation;
1181         init_completion(&root->kobj_unregister);
1182         root->defrag_running = 0;
1183         root->root_key.objectid = objectid;
1184         root->anon_dev = 0;
1185
1186         spin_lock_init(&root->root_times_lock);
1187 }
1188
1189 static int __must_check find_and_setup_root(struct btrfs_root *tree_root,
1190                                             struct btrfs_fs_info *fs_info,
1191                                             u64 objectid,
1192                                             struct btrfs_root *root)
1193 {
1194         int ret;
1195         u32 blocksize;
1196         u64 generation;
1197
1198         __setup_root(tree_root->nodesize, tree_root->leafsize,
1199                      tree_root->sectorsize, tree_root->stripesize,
1200                      root, fs_info, objectid);
1201         ret = btrfs_find_last_root(tree_root, objectid,
1202                                    &root->root_item, &root->root_key);
1203         if (ret > 0)
1204                 return -ENOENT;
1205         else if (ret < 0)
1206                 return ret;
1207
1208         generation = btrfs_root_generation(&root->root_item);
1209         blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1210         root->commit_root = NULL;
1211         root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1212                                      blocksize, generation);
1213         if (!root->node || !btrfs_buffer_uptodate(root->node, generation, 0)) {
1214                 free_extent_buffer(root->node);
1215                 root->node = NULL;
1216                 return -EIO;
1217         }
1218         root->commit_root = btrfs_root_node(root);
1219         return 0;
1220 }
1221
1222 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
1223 {
1224         struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
1225         if (root)
1226                 root->fs_info = fs_info;
1227         return root;
1228 }
1229
1230 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1231                                      struct btrfs_fs_info *fs_info,
1232                                      u64 objectid)
1233 {
1234         struct extent_buffer *leaf;
1235         struct btrfs_root *tree_root = fs_info->tree_root;
1236         struct btrfs_root *root;
1237         struct btrfs_key key;
1238         int ret = 0;
1239         u64 bytenr;
1240
1241         root = btrfs_alloc_root(fs_info);
1242         if (!root)
1243                 return ERR_PTR(-ENOMEM);
1244
1245         __setup_root(tree_root->nodesize, tree_root->leafsize,
1246                      tree_root->sectorsize, tree_root->stripesize,
1247                      root, fs_info, objectid);
1248         root->root_key.objectid = objectid;
1249         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1250         root->root_key.offset = 0;
1251
1252         leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
1253                                       0, objectid, NULL, 0, 0, 0);
1254         if (IS_ERR(leaf)) {
1255                 ret = PTR_ERR(leaf);
1256                 goto fail;
1257         }
1258
1259         bytenr = leaf->start;
1260         memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1261         btrfs_set_header_bytenr(leaf, leaf->start);
1262         btrfs_set_header_generation(leaf, trans->transid);
1263         btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1264         btrfs_set_header_owner(leaf, objectid);
1265         root->node = leaf;
1266
1267         write_extent_buffer(leaf, fs_info->fsid,
1268                             (unsigned long)btrfs_header_fsid(leaf),
1269                             BTRFS_FSID_SIZE);
1270         write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
1271                             (unsigned long)btrfs_header_chunk_tree_uuid(leaf),
1272                             BTRFS_UUID_SIZE);
1273         btrfs_mark_buffer_dirty(leaf);
1274
1275         root->commit_root = btrfs_root_node(root);
1276         root->track_dirty = 1;
1277
1278
1279         root->root_item.flags = 0;
1280         root->root_item.byte_limit = 0;
1281         btrfs_set_root_bytenr(&root->root_item, leaf->start);
1282         btrfs_set_root_generation(&root->root_item, trans->transid);
1283         btrfs_set_root_level(&root->root_item, 0);
1284         btrfs_set_root_refs(&root->root_item, 1);
1285         btrfs_set_root_used(&root->root_item, leaf->len);
1286         btrfs_set_root_last_snapshot(&root->root_item, 0);
1287         btrfs_set_root_dirid(&root->root_item, 0);
1288         root->root_item.drop_level = 0;
1289
1290         key.objectid = objectid;
1291         key.type = BTRFS_ROOT_ITEM_KEY;
1292         key.offset = 0;
1293         ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1294         if (ret)
1295                 goto fail;
1296
1297         btrfs_tree_unlock(leaf);
1298
1299 fail:
1300         if (ret)
1301                 return ERR_PTR(ret);
1302
1303         return root;
1304 }
1305
1306 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1307                                          struct btrfs_fs_info *fs_info)
1308 {
1309         struct btrfs_root *root;
1310         struct btrfs_root *tree_root = fs_info->tree_root;
1311         struct extent_buffer *leaf;
1312
1313         root = btrfs_alloc_root(fs_info);
1314         if (!root)
1315                 return ERR_PTR(-ENOMEM);
1316
1317         __setup_root(tree_root->nodesize, tree_root->leafsize,
1318                      tree_root->sectorsize, tree_root->stripesize,
1319                      root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1320
1321         root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1322         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1323         root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1324         /*
1325          * log trees do not get reference counted because they go away
1326          * before a real commit is actually done.  They do store pointers
1327          * to file data extents, and those reference counts still get
1328          * updated (along with back refs to the log tree).
1329          */
1330         root->ref_cows = 0;
1331
1332         leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
1333                                       BTRFS_TREE_LOG_OBJECTID, NULL,
1334                                       0, 0, 0);
1335         if (IS_ERR(leaf)) {
1336                 kfree(root);
1337                 return ERR_CAST(leaf);
1338         }
1339
1340         memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1341         btrfs_set_header_bytenr(leaf, leaf->start);
1342         btrfs_set_header_generation(leaf, trans->transid);
1343         btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1344         btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1345         root->node = leaf;
1346
1347         write_extent_buffer(root->node, root->fs_info->fsid,
1348                             (unsigned long)btrfs_header_fsid(root->node),
1349                             BTRFS_FSID_SIZE);
1350         btrfs_mark_buffer_dirty(root->node);
1351         btrfs_tree_unlock(root->node);
1352         return root;
1353 }
1354
1355 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1356                              struct btrfs_fs_info *fs_info)
1357 {
1358         struct btrfs_root *log_root;
1359
1360         log_root = alloc_log_tree(trans, fs_info);
1361         if (IS_ERR(log_root))
1362                 return PTR_ERR(log_root);
1363         WARN_ON(fs_info->log_root_tree);
1364         fs_info->log_root_tree = log_root;
1365         return 0;
1366 }
1367
1368 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1369                        struct btrfs_root *root)
1370 {
1371         struct btrfs_root *log_root;
1372         struct btrfs_inode_item *inode_item;
1373
1374         log_root = alloc_log_tree(trans, root->fs_info);
1375         if (IS_ERR(log_root))
1376                 return PTR_ERR(log_root);
1377
1378         log_root->last_trans = trans->transid;
1379         log_root->root_key.offset = root->root_key.objectid;
1380
1381         inode_item = &log_root->root_item.inode;
1382         inode_item->generation = cpu_to_le64(1);
1383         inode_item->size = cpu_to_le64(3);
1384         inode_item->nlink = cpu_to_le32(1);
1385         inode_item->nbytes = cpu_to_le64(root->leafsize);
1386         inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
1387
1388         btrfs_set_root_node(&log_root->root_item, log_root->node);
1389
1390         WARN_ON(root->log_root);
1391         root->log_root = log_root;
1392         root->log_transid = 0;
1393         root->last_log_commit = 0;
1394         return 0;
1395 }
1396
1397 struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
1398                                                struct btrfs_key *location)
1399 {
1400         struct btrfs_root *root;
1401         struct btrfs_fs_info *fs_info = tree_root->fs_info;
1402         struct btrfs_path *path;
1403         struct extent_buffer *l;
1404         u64 generation;
1405         u32 blocksize;
1406         int ret = 0;
1407         int slot;
1408
1409         root = btrfs_alloc_root(fs_info);
1410         if (!root)
1411                 return ERR_PTR(-ENOMEM);
1412         if (location->offset == (u64)-1) {
1413                 ret = find_and_setup_root(tree_root, fs_info,
1414                                           location->objectid, root);
1415                 if (ret) {
1416                         kfree(root);
1417                         return ERR_PTR(ret);
1418                 }
1419                 goto out;
1420         }
1421
1422         __setup_root(tree_root->nodesize, tree_root->leafsize,
1423                      tree_root->sectorsize, tree_root->stripesize,
1424                      root, fs_info, location->objectid);
1425
1426         path = btrfs_alloc_path();
1427         if (!path) {
1428                 kfree(root);
1429                 return ERR_PTR(-ENOMEM);
1430         }
1431         ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
1432         if (ret == 0) {
1433                 l = path->nodes[0];
1434                 slot = path->slots[0];
1435                 btrfs_read_root_item(tree_root, l, slot, &root->root_item);
1436                 memcpy(&root->root_key, location, sizeof(*location));
1437         }
1438         btrfs_free_path(path);
1439         if (ret) {
1440                 kfree(root);
1441                 if (ret > 0)
1442                         ret = -ENOENT;
1443                 return ERR_PTR(ret);
1444         }
1445
1446         generation = btrfs_root_generation(&root->root_item);
1447         blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1448         root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1449                                      blocksize, generation);
1450         root->commit_root = btrfs_root_node(root);
1451         BUG_ON(!root->node); /* -ENOMEM */
1452 out:
1453         if (location->objectid != BTRFS_TREE_LOG_OBJECTID) {
1454                 root->ref_cows = 1;
1455                 btrfs_check_and_init_root_item(&root->root_item);
1456         }
1457
1458         return root;
1459 }
1460
1461 struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
1462                                               struct btrfs_key *location)
1463 {
1464         struct btrfs_root *root;
1465         int ret;
1466
1467         if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1468                 return fs_info->tree_root;
1469         if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1470                 return fs_info->extent_root;
1471         if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1472                 return fs_info->chunk_root;
1473         if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1474                 return fs_info->dev_root;
1475         if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1476                 return fs_info->csum_root;
1477         if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1478                 return fs_info->quota_root ? fs_info->quota_root :
1479                                              ERR_PTR(-ENOENT);
1480 again:
1481         spin_lock(&fs_info->fs_roots_radix_lock);
1482         root = radix_tree_lookup(&fs_info->fs_roots_radix,
1483                                  (unsigned long)location->objectid);
1484         spin_unlock(&fs_info->fs_roots_radix_lock);
1485         if (root)
1486                 return root;
1487
1488         root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
1489         if (IS_ERR(root))
1490                 return root;
1491
1492         root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1493         root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1494                                         GFP_NOFS);
1495         if (!root->free_ino_pinned || !root->free_ino_ctl) {
1496                 ret = -ENOMEM;
1497                 goto fail;
1498         }
1499
1500         btrfs_init_free_ino_ctl(root);
1501         mutex_init(&root->fs_commit_mutex);
1502         spin_lock_init(&root->cache_lock);
1503         init_waitqueue_head(&root->cache_wait);
1504
1505         ret = get_anon_bdev(&root->anon_dev);
1506         if (ret)
1507                 goto fail;
1508
1509         if (btrfs_root_refs(&root->root_item) == 0) {
1510                 ret = -ENOENT;
1511                 goto fail;
1512         }
1513
1514         ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid);
1515         if (ret < 0)
1516                 goto fail;
1517         if (ret == 0)
1518                 root->orphan_item_inserted = 1;
1519
1520         ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1521         if (ret)
1522                 goto fail;
1523
1524         spin_lock(&fs_info->fs_roots_radix_lock);
1525         ret = radix_tree_insert(&fs_info->fs_roots_radix,
1526                                 (unsigned long)root->root_key.objectid,
1527                                 root);
1528         if (ret == 0)
1529                 root->in_radix = 1;
1530
1531         spin_unlock(&fs_info->fs_roots_radix_lock);
1532         radix_tree_preload_end();
1533         if (ret) {
1534                 if (ret == -EEXIST) {
1535                         free_fs_root(root);
1536                         goto again;
1537                 }
1538                 goto fail;
1539         }
1540
1541         ret = btrfs_find_dead_roots(fs_info->tree_root,
1542                                     root->root_key.objectid);
1543         WARN_ON(ret);
1544         return root;
1545 fail:
1546         free_fs_root(root);
1547         return ERR_PTR(ret);
1548 }
1549
1550 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1551 {
1552         struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1553         int ret = 0;
1554         struct btrfs_device *device;
1555         struct backing_dev_info *bdi;
1556
1557         rcu_read_lock();
1558         list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1559                 if (!device->bdev)
1560                         continue;
1561                 bdi = blk_get_backing_dev_info(device->bdev);
1562                 if (bdi && bdi_congested(bdi, bdi_bits)) {
1563                         ret = 1;
1564                         break;
1565                 }
1566         }
1567         rcu_read_unlock();
1568         return ret;
1569 }
1570
1571 /*
1572  * If this fails, caller must call bdi_destroy() to get rid of the
1573  * bdi again.
1574  */
1575 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1576 {
1577         int err;
1578
1579         bdi->capabilities = BDI_CAP_MAP_COPY;
1580         err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
1581         if (err)
1582                 return err;
1583
1584         bdi->ra_pages   = default_backing_dev_info.ra_pages;
1585         bdi->congested_fn       = btrfs_congested_fn;
1586         bdi->congested_data     = info;
1587         return 0;
1588 }
1589
1590 /*
1591  * called by the kthread helper functions to finally call the bio end_io
1592  * functions.  This is where read checksum verification actually happens
1593  */
1594 static void end_workqueue_fn(struct btrfs_work *work)
1595 {
1596         struct bio *bio;
1597         struct end_io_wq *end_io_wq;
1598         struct btrfs_fs_info *fs_info;
1599         int error;
1600
1601         end_io_wq = container_of(work, struct end_io_wq, work);
1602         bio = end_io_wq->bio;
1603         fs_info = end_io_wq->info;
1604
1605         error = end_io_wq->error;
1606         bio->bi_private = end_io_wq->private;
1607         bio->bi_end_io = end_io_wq->end_io;
1608         kfree(end_io_wq);
1609         bio_endio(bio, error);
1610 }
1611
1612 static int cleaner_kthread(void *arg)
1613 {
1614         struct btrfs_root *root = arg;
1615
1616         do {
1617                 vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
1618
1619                 if (!(root->fs_info->sb->s_flags & MS_RDONLY) &&
1620                     mutex_trylock(&root->fs_info->cleaner_mutex)) {
1621                         btrfs_run_delayed_iputs(root);
1622                         btrfs_clean_old_snapshots(root);
1623                         mutex_unlock(&root->fs_info->cleaner_mutex);
1624                         btrfs_run_defrag_inodes(root->fs_info);
1625                 }
1626
1627                 if (!try_to_freeze()) {
1628                         set_current_state(TASK_INTERRUPTIBLE);
1629                         if (!kthread_should_stop())
1630                                 schedule();
1631                         __set_current_state(TASK_RUNNING);
1632                 }
1633         } while (!kthread_should_stop());
1634         return 0;
1635 }
1636
1637 static int transaction_kthread(void *arg)
1638 {
1639         struct btrfs_root *root = arg;
1640         struct btrfs_trans_handle *trans;
1641         struct btrfs_transaction *cur;
1642         u64 transid;
1643         unsigned long now;
1644         unsigned long delay;
1645         bool cannot_commit;
1646
1647         do {
1648                 cannot_commit = false;
1649                 delay = HZ * 30;
1650                 vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
1651                 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1652
1653                 spin_lock(&root->fs_info->trans_lock);
1654                 cur = root->fs_info->running_transaction;
1655                 if (!cur) {
1656                         spin_unlock(&root->fs_info->trans_lock);
1657                         goto sleep;
1658                 }
1659
1660                 now = get_seconds();
1661                 if (!cur->blocked &&
1662                     (now < cur->start_time || now - cur->start_time < 30)) {
1663                         spin_unlock(&root->fs_info->trans_lock);
1664                         delay = HZ * 5;
1665                         goto sleep;
1666                 }
1667                 transid = cur->transid;
1668                 spin_unlock(&root->fs_info->trans_lock);
1669
1670                 /* If the file system is aborted, this will always fail. */
1671                 trans = btrfs_join_transaction(root);
1672                 if (IS_ERR(trans)) {
1673                         cannot_commit = true;
1674                         goto sleep;
1675                 }
1676                 if (transid == trans->transid) {
1677                         btrfs_commit_transaction(trans, root);
1678                 } else {
1679                         btrfs_end_transaction(trans, root);
1680                 }
1681 sleep:
1682                 wake_up_process(root->fs_info->cleaner_kthread);
1683                 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1684
1685                 if (!try_to_freeze()) {
1686                         set_current_state(TASK_INTERRUPTIBLE);
1687                         if (!kthread_should_stop() &&
1688                             (!btrfs_transaction_blocked(root->fs_info) ||
1689                              cannot_commit))
1690                                 schedule_timeout(delay);
1691                         __set_current_state(TASK_RUNNING);
1692                 }
1693         } while (!kthread_should_stop());
1694         return 0;
1695 }
1696
1697 /*
1698  * this will find the highest generation in the array of
1699  * root backups.  The index of the highest array is returned,
1700  * or -1 if we can't find anything.
1701  *
1702  * We check to make sure the array is valid by comparing the
1703  * generation of the latest  root in the array with the generation
1704  * in the super block.  If they don't match we pitch it.
1705  */
1706 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1707 {
1708         u64 cur;
1709         int newest_index = -1;
1710         struct btrfs_root_backup *root_backup;
1711         int i;
1712
1713         for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1714                 root_backup = info->super_copy->super_roots + i;
1715                 cur = btrfs_backup_tree_root_gen(root_backup);
1716                 if (cur == newest_gen)
1717                         newest_index = i;
1718         }
1719
1720         /* check to see if we actually wrapped around */
1721         if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1722                 root_backup = info->super_copy->super_roots;
1723                 cur = btrfs_backup_tree_root_gen(root_backup);
1724                 if (cur == newest_gen)
1725                         newest_index = 0;
1726         }
1727         return newest_index;
1728 }
1729
1730
1731 /*
1732  * find the oldest backup so we know where to store new entries
1733  * in the backup array.  This will set the backup_root_index
1734  * field in the fs_info struct
1735  */
1736 static void find_oldest_super_backup(struct btrfs_fs_info *info,
1737                                      u64 newest_gen)
1738 {
1739         int newest_index = -1;
1740
1741         newest_index = find_newest_super_backup(info, newest_gen);
1742         /* if there was garbage in there, just move along */
1743         if (newest_index == -1) {
1744                 info->backup_root_index = 0;
1745         } else {
1746                 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1747         }
1748 }
1749
1750 /*
1751  * copy all the root pointers into the super backup array.
1752  * this will bump the backup pointer by one when it is
1753  * done
1754  */
1755 static void backup_super_roots(struct btrfs_fs_info *info)
1756 {
1757         int next_backup;
1758         struct btrfs_root_backup *root_backup;
1759         int last_backup;
1760
1761         next_backup = info->backup_root_index;
1762         last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1763                 BTRFS_NUM_BACKUP_ROOTS;
1764
1765         /*
1766          * just overwrite the last backup if we're at the same generation
1767          * this happens only at umount
1768          */
1769         root_backup = info->super_for_commit->super_roots + last_backup;
1770         if (btrfs_backup_tree_root_gen(root_backup) ==
1771             btrfs_header_generation(info->tree_root->node))
1772                 next_backup = last_backup;
1773
1774         root_backup = info->super_for_commit->super_roots + next_backup;
1775
1776         /*
1777          * make sure all of our padding and empty slots get zero filled
1778          * regardless of which ones we use today
1779          */
1780         memset(root_backup, 0, sizeof(*root_backup));
1781
1782         info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1783
1784         btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1785         btrfs_set_backup_tree_root_gen(root_backup,
1786                                btrfs_header_generation(info->tree_root->node));
1787
1788         btrfs_set_backup_tree_root_level(root_backup,
1789                                btrfs_header_level(info->tree_root->node));
1790
1791         btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1792         btrfs_set_backup_chunk_root_gen(root_backup,
1793                                btrfs_header_generation(info->chunk_root->node));
1794         btrfs_set_backup_chunk_root_level(root_backup,
1795                                btrfs_header_level(info->chunk_root->node));
1796
1797         btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1798         btrfs_set_backup_extent_root_gen(root_backup,
1799                                btrfs_header_generation(info->extent_root->node));
1800         btrfs_set_backup_extent_root_level(root_backup,
1801                                btrfs_header_level(info->extent_root->node));
1802
1803         /*
1804          * we might commit during log recovery, which happens before we set
1805          * the fs_root.  Make sure it is valid before we fill it in.
1806          */
1807         if (info->fs_root && info->fs_root->node) {
1808                 btrfs_set_backup_fs_root(root_backup,
1809                                          info->fs_root->node->start);
1810                 btrfs_set_backup_fs_root_gen(root_backup,
1811                                btrfs_header_generation(info->fs_root->node));
1812                 btrfs_set_backup_fs_root_level(root_backup,
1813                                btrfs_header_level(info->fs_root->node));
1814         }
1815
1816         btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1817         btrfs_set_backup_dev_root_gen(root_backup,
1818                                btrfs_header_generation(info->dev_root->node));
1819         btrfs_set_backup_dev_root_level(root_backup,
1820                                        btrfs_header_level(info->dev_root->node));
1821
1822         btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1823         btrfs_set_backup_csum_root_gen(root_backup,
1824                                btrfs_header_generation(info->csum_root->node));
1825         btrfs_set_backup_csum_root_level(root_backup,
1826                                btrfs_header_level(info->csum_root->node));
1827
1828         btrfs_set_backup_total_bytes(root_backup,
1829                              btrfs_super_total_bytes(info->super_copy));
1830         btrfs_set_backup_bytes_used(root_backup,
1831                              btrfs_super_bytes_used(info->super_copy));
1832         btrfs_set_backup_num_devices(root_backup,
1833                              btrfs_super_num_devices(info->super_copy));
1834
1835         /*
1836          * if we don't copy this out to the super_copy, it won't get remembered
1837          * for the next commit
1838          */
1839         memcpy(&info->super_copy->super_roots,
1840                &info->super_for_commit->super_roots,
1841                sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1842 }
1843
1844 /*
1845  * this copies info out of the root backup array and back into
1846  * the in-memory super block.  It is meant to help iterate through
1847  * the array, so you send it the number of backups you've already
1848  * tried and the last backup index you used.
1849  *
1850  * this returns -1 when it has tried all the backups
1851  */
1852 static noinline int next_root_backup(struct btrfs_fs_info *info,
1853                                      struct btrfs_super_block *super,
1854                                      int *num_backups_tried, int *backup_index)
1855 {
1856         struct btrfs_root_backup *root_backup;
1857         int newest = *backup_index;
1858
1859         if (*num_backups_tried == 0) {
1860                 u64 gen = btrfs_super_generation(super);
1861
1862                 newest = find_newest_super_backup(info, gen);
1863                 if (newest == -1)
1864                         return -1;
1865
1866                 *backup_index = newest;
1867                 *num_backups_tried = 1;
1868         } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
1869                 /* we've tried all the backups, all done */
1870                 return -1;
1871         } else {
1872                 /* jump to the next oldest backup */
1873                 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
1874                         BTRFS_NUM_BACKUP_ROOTS;
1875                 *backup_index = newest;
1876                 *num_backups_tried += 1;
1877         }
1878         root_backup = super->super_roots + newest;
1879
1880         btrfs_set_super_generation(super,
1881                                    btrfs_backup_tree_root_gen(root_backup));
1882         btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1883         btrfs_set_super_root_level(super,
1884                                    btrfs_backup_tree_root_level(root_backup));
1885         btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1886
1887         /*
1888          * fixme: the total bytes and num_devices need to match or we should
1889          * need a fsck
1890          */
1891         btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1892         btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1893         return 0;
1894 }
1895
1896 /* helper to cleanup tree roots */
1897 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
1898 {
1899         free_extent_buffer(info->tree_root->node);
1900         free_extent_buffer(info->tree_root->commit_root);
1901         free_extent_buffer(info->dev_root->node);
1902         free_extent_buffer(info->dev_root->commit_root);
1903         free_extent_buffer(info->extent_root->node);
1904         free_extent_buffer(info->extent_root->commit_root);
1905         free_extent_buffer(info->csum_root->node);
1906         free_extent_buffer(info->csum_root->commit_root);
1907         if (info->quota_root) {
1908                 free_extent_buffer(info->quota_root->node);
1909                 free_extent_buffer(info->quota_root->commit_root);
1910         }
1911
1912         info->tree_root->node = NULL;
1913         info->tree_root->commit_root = NULL;
1914         info->dev_root->node = NULL;
1915         info->dev_root->commit_root = NULL;
1916         info->extent_root->node = NULL;
1917         info->extent_root->commit_root = NULL;
1918         info->csum_root->node = NULL;
1919         info->csum_root->commit_root = NULL;
1920         if (info->quota_root) {
1921                 info->quota_root->node = NULL;
1922                 info->quota_root->commit_root = NULL;
1923         }
1924
1925         if (chunk_root) {
1926                 free_extent_buffer(info->chunk_root->node);
1927                 free_extent_buffer(info->chunk_root->commit_root);
1928                 info->chunk_root->node = NULL;
1929                 info->chunk_root->commit_root = NULL;
1930         }
1931 }
1932
1933
1934 int open_ctree(struct super_block *sb,
1935                struct btrfs_fs_devices *fs_devices,
1936                char *options)
1937 {
1938         u32 sectorsize;
1939         u32 nodesize;
1940         u32 leafsize;
1941         u32 blocksize;
1942         u32 stripesize;
1943         u64 generation;
1944         u64 features;
1945         struct btrfs_key location;
1946         struct buffer_head *bh;
1947         struct btrfs_super_block *disk_super;
1948         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1949         struct btrfs_root *tree_root;
1950         struct btrfs_root *extent_root;
1951         struct btrfs_root *csum_root;
1952         struct btrfs_root *chunk_root;
1953         struct btrfs_root *dev_root;
1954         struct btrfs_root *quota_root;
1955         struct btrfs_root *log_tree_root;
1956         int ret;
1957         int err = -EINVAL;
1958         int num_backups_tried = 0;
1959         int backup_index = 0;
1960
1961         tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
1962         extent_root = fs_info->extent_root = btrfs_alloc_root(fs_info);
1963         csum_root = fs_info->csum_root = btrfs_alloc_root(fs_info);
1964         chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
1965         dev_root = fs_info->dev_root = btrfs_alloc_root(fs_info);
1966         quota_root = fs_info->quota_root = btrfs_alloc_root(fs_info);
1967
1968         if (!tree_root || !extent_root || !csum_root ||
1969             !chunk_root || !dev_root || !quota_root) {
1970                 err = -ENOMEM;
1971                 goto fail;
1972         }
1973
1974         ret = init_srcu_struct(&fs_info->subvol_srcu);
1975         if (ret) {
1976                 err = ret;
1977                 goto fail;
1978         }
1979
1980         ret = setup_bdi(fs_info, &fs_info->bdi);
1981         if (ret) {
1982                 err = ret;
1983                 goto fail_srcu;
1984         }
1985
1986         fs_info->btree_inode = new_inode(sb);
1987         if (!fs_info->btree_inode) {
1988                 err = -ENOMEM;
1989                 goto fail_bdi;
1990         }
1991
1992         mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
1993
1994         INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
1995         INIT_LIST_HEAD(&fs_info->trans_list);
1996         INIT_LIST_HEAD(&fs_info->dead_roots);
1997         INIT_LIST_HEAD(&fs_info->delayed_iputs);
1998         INIT_LIST_HEAD(&fs_info->hashers);
1999         INIT_LIST_HEAD(&fs_info->delalloc_inodes);
2000         INIT_LIST_HEAD(&fs_info->ordered_operations);
2001         INIT_LIST_HEAD(&fs_info->caching_block_groups);
2002         spin_lock_init(&fs_info->delalloc_lock);
2003         spin_lock_init(&fs_info->trans_lock);
2004         spin_lock_init(&fs_info->ref_cache_lock);
2005         spin_lock_init(&fs_info->fs_roots_radix_lock);
2006         spin_lock_init(&fs_info->delayed_iput_lock);
2007         spin_lock_init(&fs_info->defrag_inodes_lock);
2008         spin_lock_init(&fs_info->free_chunk_lock);
2009         spin_lock_init(&fs_info->tree_mod_seq_lock);
2010         rwlock_init(&fs_info->tree_mod_log_lock);
2011         mutex_init(&fs_info->reloc_mutex);
2012
2013         init_completion(&fs_info->kobj_unregister);
2014         INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2015         INIT_LIST_HEAD(&fs_info->space_info);
2016         INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2017         btrfs_mapping_init(&fs_info->mapping_tree);
2018         btrfs_init_block_rsv(&fs_info->global_block_rsv);
2019         btrfs_init_block_rsv(&fs_info->delalloc_block_rsv);
2020         btrfs_init_block_rsv(&fs_info->trans_block_rsv);
2021         btrfs_init_block_rsv(&fs_info->chunk_block_rsv);
2022         btrfs_init_block_rsv(&fs_info->empty_block_rsv);
2023         btrfs_init_block_rsv(&fs_info->delayed_block_rsv);
2024         atomic_set(&fs_info->nr_async_submits, 0);
2025         atomic_set(&fs_info->async_delalloc_pages, 0);
2026         atomic_set(&fs_info->async_submit_draining, 0);
2027         atomic_set(&fs_info->nr_async_bios, 0);
2028         atomic_set(&fs_info->defrag_running, 0);
2029         atomic_set(&fs_info->tree_mod_seq, 0);
2030         fs_info->sb = sb;
2031         fs_info->max_inline = 8192 * 1024;
2032         fs_info->metadata_ratio = 0;
2033         fs_info->defrag_inodes = RB_ROOT;
2034         fs_info->trans_no_join = 0;
2035         fs_info->free_chunk_space = 0;
2036         fs_info->tree_mod_log = RB_ROOT;
2037
2038         init_waitqueue_head(&fs_info->tree_mod_seq_wait);
2039
2040         /* readahead state */
2041         INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
2042         spin_lock_init(&fs_info->reada_lock);
2043
2044         fs_info->thread_pool_size = min_t(unsigned long,
2045                                           num_online_cpus() + 2, 8);
2046
2047         INIT_LIST_HEAD(&fs_info->ordered_extents);
2048         spin_lock_init(&fs_info->ordered_extent_lock);
2049         fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2050                                         GFP_NOFS);
2051         if (!fs_info->delayed_root) {
2052                 err = -ENOMEM;
2053                 goto fail_iput;
2054         }
2055         btrfs_init_delayed_root(fs_info->delayed_root);
2056
2057         mutex_init(&fs_info->scrub_lock);
2058         atomic_set(&fs_info->scrubs_running, 0);
2059         atomic_set(&fs_info->scrub_pause_req, 0);
2060         atomic_set(&fs_info->scrubs_paused, 0);
2061         atomic_set(&fs_info->scrub_cancel_req, 0);
2062         init_waitqueue_head(&fs_info->scrub_pause_wait);
2063         init_rwsem(&fs_info->scrub_super_lock);
2064         fs_info->scrub_workers_refcnt = 0;
2065 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2066         fs_info->check_integrity_print_mask = 0;
2067 #endif
2068
2069         spin_lock_init(&fs_info->balance_lock);
2070         mutex_init(&fs_info->balance_mutex);
2071         atomic_set(&fs_info->balance_running, 0);
2072         atomic_set(&fs_info->balance_pause_req, 0);
2073         atomic_set(&fs_info->balance_cancel_req, 0);
2074         fs_info->balance_ctl = NULL;
2075         init_waitqueue_head(&fs_info->balance_wait_q);
2076
2077         sb->s_blocksize = 4096;
2078         sb->s_blocksize_bits = blksize_bits(4096);
2079         sb->s_bdi = &fs_info->bdi;
2080
2081         fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2082         set_nlink(fs_info->btree_inode, 1);
2083         /*
2084          * we set the i_size on the btree inode to the max possible int.
2085          * the real end of the address space is determined by all of
2086          * the devices in the system
2087          */
2088         fs_info->btree_inode->i_size = OFFSET_MAX;
2089         fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
2090         fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
2091
2092         RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
2093         extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
2094                              fs_info->btree_inode->i_mapping);
2095         BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
2096         extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
2097
2098         BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
2099
2100         BTRFS_I(fs_info->btree_inode)->root = tree_root;
2101         memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2102                sizeof(struct btrfs_key));
2103         set_bit(BTRFS_INODE_DUMMY,
2104                 &BTRFS_I(fs_info->btree_inode)->runtime_flags);
2105         insert_inode_hash(fs_info->btree_inode);
2106
2107         spin_lock_init(&fs_info->block_group_cache_lock);
2108         fs_info->block_group_cache_tree = RB_ROOT;
2109
2110         extent_io_tree_init(&fs_info->freed_extents[0],
2111                              fs_info->btree_inode->i_mapping);
2112         extent_io_tree_init(&fs_info->freed_extents[1],
2113                              fs_info->btree_inode->i_mapping);
2114         fs_info->pinned_extents = &fs_info->freed_extents[0];
2115         fs_info->do_barriers = 1;
2116
2117
2118         mutex_init(&fs_info->ordered_operations_mutex);
2119         mutex_init(&fs_info->tree_log_mutex);
2120         mutex_init(&fs_info->chunk_mutex);
2121         mutex_init(&fs_info->transaction_kthread_mutex);
2122         mutex_init(&fs_info->cleaner_mutex);
2123         mutex_init(&fs_info->volume_mutex);
2124         init_rwsem(&fs_info->extent_commit_sem);
2125         init_rwsem(&fs_info->cleanup_work_sem);
2126         init_rwsem(&fs_info->subvol_sem);
2127
2128         spin_lock_init(&fs_info->qgroup_lock);
2129         fs_info->qgroup_tree = RB_ROOT;
2130         INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2131         fs_info->qgroup_seq = 1;
2132         fs_info->quota_enabled = 0;
2133         fs_info->pending_quota_state = 0;
2134
2135         btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2136         btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2137
2138         init_waitqueue_head(&fs_info->transaction_throttle);
2139         init_waitqueue_head(&fs_info->transaction_wait);
2140         init_waitqueue_head(&fs_info->transaction_blocked_wait);
2141         init_waitqueue_head(&fs_info->async_submit_wait);
2142
2143         __setup_root(4096, 4096, 4096, 4096, tree_root,
2144                      fs_info, BTRFS_ROOT_TREE_OBJECTID);
2145
2146         invalidate_bdev(fs_devices->latest_bdev);
2147         bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2148         if (!bh) {
2149                 err = -EINVAL;
2150                 goto fail_alloc;
2151         }
2152
2153         memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2154         memcpy(fs_info->super_for_commit, fs_info->super_copy,
2155                sizeof(*fs_info->super_for_commit));
2156         brelse(bh);
2157
2158         memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2159
2160         disk_super = fs_info->super_copy;
2161         if (!btrfs_super_root(disk_super))
2162                 goto fail_alloc;
2163
2164         /* check FS state, whether FS is broken. */
2165         fs_info->fs_state |= btrfs_super_flags(disk_super);
2166
2167         ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2168         if (ret) {
2169                 printk(KERN_ERR "btrfs: superblock contains fatal errors\n");
2170                 err = ret;
2171                 goto fail_alloc;
2172         }
2173
2174         /*
2175          * run through our array of backup supers and setup
2176          * our ring pointer to the oldest one
2177          */
2178         generation = btrfs_super_generation(disk_super);
2179         find_oldest_super_backup(fs_info, generation);
2180
2181         /*
2182          * In the long term, we'll store the compression type in the super
2183          * block, and it'll be used for per file compression control.
2184          */
2185         fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2186
2187         ret = btrfs_parse_options(tree_root, options);
2188         if (ret) {
2189                 err = ret;
2190                 goto fail_alloc;
2191         }
2192
2193         features = btrfs_super_incompat_flags(disk_super) &
2194                 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2195         if (features) {
2196                 printk(KERN_ERR "BTRFS: couldn't mount because of "
2197                        "unsupported optional features (%Lx).\n",
2198                        (unsigned long long)features);
2199                 err = -EINVAL;
2200                 goto fail_alloc;
2201         }
2202
2203         if (btrfs_super_leafsize(disk_super) !=
2204             btrfs_super_nodesize(disk_super)) {
2205                 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2206                        "blocksizes don't match.  node %d leaf %d\n",
2207                        btrfs_super_nodesize(disk_super),
2208                        btrfs_super_leafsize(disk_super));
2209                 err = -EINVAL;
2210                 goto fail_alloc;
2211         }
2212         if (btrfs_super_leafsize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
2213                 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2214                        "blocksize (%d) was too large\n",
2215                        btrfs_super_leafsize(disk_super));
2216                 err = -EINVAL;
2217                 goto fail_alloc;
2218         }
2219
2220         features = btrfs_super_incompat_flags(disk_super);
2221         features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2222         if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
2223                 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2224
2225         /*
2226          * flag our filesystem as having big metadata blocks if
2227          * they are bigger than the page size
2228          */
2229         if (btrfs_super_leafsize(disk_super) > PAGE_CACHE_SIZE) {
2230                 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2231                         printk(KERN_INFO "btrfs flagging fs with big metadata feature\n");
2232                 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2233         }
2234
2235         nodesize = btrfs_super_nodesize(disk_super);
2236         leafsize = btrfs_super_leafsize(disk_super);
2237         sectorsize = btrfs_super_sectorsize(disk_super);
2238         stripesize = btrfs_super_stripesize(disk_super);
2239
2240         /*
2241          * mixed block groups end up with duplicate but slightly offset
2242          * extent buffers for the same range.  It leads to corruptions
2243          */
2244         if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2245             (sectorsize != leafsize)) {
2246                 printk(KERN_WARNING "btrfs: unequal leaf/node/sector sizes "
2247                                 "are not allowed for mixed block groups on %s\n",
2248                                 sb->s_id);
2249                 goto fail_alloc;
2250         }
2251
2252         btrfs_set_super_incompat_flags(disk_super, features);
2253
2254         features = btrfs_super_compat_ro_flags(disk_super) &
2255                 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2256         if (!(sb->s_flags & MS_RDONLY) && features) {
2257                 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2258                        "unsupported option features (%Lx).\n",
2259                        (unsigned long long)features);
2260                 err = -EINVAL;
2261                 goto fail_alloc;
2262         }
2263
2264         btrfs_init_workers(&fs_info->generic_worker,
2265                            "genwork", 1, NULL);
2266
2267         btrfs_init_workers(&fs_info->workers, "worker",
2268                            fs_info->thread_pool_size,
2269                            &fs_info->generic_worker);
2270
2271         btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
2272                            fs_info->thread_pool_size,
2273                            &fs_info->generic_worker);
2274
2275         btrfs_init_workers(&fs_info->submit_workers, "submit",
2276                            min_t(u64, fs_devices->num_devices,
2277                            fs_info->thread_pool_size),
2278                            &fs_info->generic_worker);
2279
2280         btrfs_init_workers(&fs_info->caching_workers, "cache",
2281                            2, &fs_info->generic_worker);
2282
2283         /* a higher idle thresh on the submit workers makes it much more
2284          * likely that bios will be send down in a sane order to the
2285          * devices
2286          */
2287         fs_info->submit_workers.idle_thresh = 64;
2288
2289         fs_info->workers.idle_thresh = 16;
2290         fs_info->workers.ordered = 1;
2291
2292         fs_info->delalloc_workers.idle_thresh = 2;
2293         fs_info->delalloc_workers.ordered = 1;
2294
2295         btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
2296                            &fs_info->generic_worker);
2297         btrfs_init_workers(&fs_info->endio_workers, "endio",
2298                            fs_info->thread_pool_size,
2299                            &fs_info->generic_worker);
2300         btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
2301                            fs_info->thread_pool_size,
2302                            &fs_info->generic_worker);
2303         btrfs_init_workers(&fs_info->endio_meta_write_workers,
2304                            "endio-meta-write", fs_info->thread_pool_size,
2305                            &fs_info->generic_worker);
2306         btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
2307                            fs_info->thread_pool_size,
2308                            &fs_info->generic_worker);
2309         btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write",
2310                            1, &fs_info->generic_worker);
2311         btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta",
2312                            fs_info->thread_pool_size,
2313                            &fs_info->generic_worker);
2314         btrfs_init_workers(&fs_info->readahead_workers, "readahead",
2315                            fs_info->thread_pool_size,
2316                            &fs_info->generic_worker);
2317
2318         /*
2319          * endios are largely parallel and should have a very
2320          * low idle thresh
2321          */
2322         fs_info->endio_workers.idle_thresh = 4;
2323         fs_info->endio_meta_workers.idle_thresh = 4;
2324
2325         fs_info->endio_write_workers.idle_thresh = 2;
2326         fs_info->endio_meta_write_workers.idle_thresh = 2;
2327         fs_info->readahead_workers.idle_thresh = 2;
2328
2329         /*
2330          * btrfs_start_workers can really only fail because of ENOMEM so just
2331          * return -ENOMEM if any of these fail.
2332          */
2333         ret = btrfs_start_workers(&fs_info->workers);
2334         ret |= btrfs_start_workers(&fs_info->generic_worker);
2335         ret |= btrfs_start_workers(&fs_info->submit_workers);
2336         ret |= btrfs_start_workers(&fs_info->delalloc_workers);
2337         ret |= btrfs_start_workers(&fs_info->fixup_workers);
2338         ret |= btrfs_start_workers(&fs_info->endio_workers);
2339         ret |= btrfs_start_workers(&fs_info->endio_meta_workers);
2340         ret |= btrfs_start_workers(&fs_info->endio_meta_write_workers);
2341         ret |= btrfs_start_workers(&fs_info->endio_write_workers);
2342         ret |= btrfs_start_workers(&fs_info->endio_freespace_worker);
2343         ret |= btrfs_start_workers(&fs_info->delayed_workers);
2344         ret |= btrfs_start_workers(&fs_info->caching_workers);
2345         ret |= btrfs_start_workers(&fs_info->readahead_workers);
2346         if (ret) {
2347                 err = -ENOMEM;
2348                 goto fail_sb_buffer;
2349         }
2350
2351         fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
2352         fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2353                                     4 * 1024 * 1024 / PAGE_CACHE_SIZE);
2354
2355         tree_root->nodesize = nodesize;
2356         tree_root->leafsize = leafsize;
2357         tree_root->sectorsize = sectorsize;
2358         tree_root->stripesize = stripesize;
2359
2360         sb->s_blocksize = sectorsize;
2361         sb->s_blocksize_bits = blksize_bits(sectorsize);
2362
2363         if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
2364                     sizeof(disk_super->magic))) {
2365                 printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
2366                 goto fail_sb_buffer;
2367         }
2368
2369         if (sectorsize != PAGE_SIZE) {
2370                 printk(KERN_WARNING "btrfs: Incompatible sector size(%lu) "
2371                        "found on %s\n", (unsigned long)sectorsize, sb->s_id);
2372                 goto fail_sb_buffer;
2373         }
2374
2375         mutex_lock(&fs_info->chunk_mutex);
2376         ret = btrfs_read_sys_array(tree_root);
2377         mutex_unlock(&fs_info->chunk_mutex);
2378         if (ret) {
2379                 printk(KERN_WARNING "btrfs: failed to read the system "
2380                        "array on %s\n", sb->s_id);
2381                 goto fail_sb_buffer;
2382         }
2383
2384         blocksize = btrfs_level_size(tree_root,
2385                                      btrfs_super_chunk_root_level(disk_super));
2386         generation = btrfs_super_chunk_root_generation(disk_super);
2387
2388         __setup_root(nodesize, leafsize, sectorsize, stripesize,
2389                      chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2390
2391         chunk_root->node = read_tree_block(chunk_root,
2392                                            btrfs_super_chunk_root(disk_super),
2393                                            blocksize, generation);
2394         BUG_ON(!chunk_root->node); /* -ENOMEM */
2395         if (!test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
2396                 printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
2397                        sb->s_id);
2398                 goto fail_tree_roots;
2399         }
2400         btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2401         chunk_root->commit_root = btrfs_root_node(chunk_root);
2402
2403         read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2404            (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
2405            BTRFS_UUID_SIZE);
2406
2407         ret = btrfs_read_chunk_tree(chunk_root);
2408         if (ret) {
2409                 printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
2410                        sb->s_id);
2411                 goto fail_tree_roots;
2412         }
2413
2414         btrfs_close_extra_devices(fs_devices);
2415
2416         if (!fs_devices->latest_bdev) {
2417                 printk(KERN_CRIT "btrfs: failed to read devices on %s\n",
2418                        sb->s_id);
2419                 goto fail_tree_roots;
2420         }
2421
2422 retry_root_backup:
2423         blocksize = btrfs_level_size(tree_root,
2424                                      btrfs_super_root_level(disk_super));
2425         generation = btrfs_super_generation(disk_super);
2426
2427         tree_root->node = read_tree_block(tree_root,
2428                                           btrfs_super_root(disk_super),
2429                                           blocksize, generation);
2430         if (!tree_root->node ||
2431             !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
2432                 printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
2433                        sb->s_id);
2434
2435                 goto recovery_tree_root;
2436         }
2437
2438         btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2439         tree_root->commit_root = btrfs_root_node(tree_root);
2440
2441         ret = find_and_setup_root(tree_root, fs_info,
2442                                   BTRFS_EXTENT_TREE_OBJECTID, extent_root);
2443         if (ret)
2444                 goto recovery_tree_root;
2445         extent_root->track_dirty = 1;
2446
2447         ret = find_and_setup_root(tree_root, fs_info,
2448                                   BTRFS_DEV_TREE_OBJECTID, dev_root);
2449         if (ret)
2450                 goto recovery_tree_root;
2451         dev_root->track_dirty = 1;
2452
2453         ret = find_and_setup_root(tree_root, fs_info,
2454                                   BTRFS_CSUM_TREE_OBJECTID, csum_root);
2455         if (ret)
2456                 goto recovery_tree_root;
2457         csum_root->track_dirty = 1;
2458
2459         ret = find_and_setup_root(tree_root, fs_info,
2460                                   BTRFS_QUOTA_TREE_OBJECTID, quota_root);
2461         if (ret) {
2462                 kfree(quota_root);
2463                 quota_root = fs_info->quota_root = NULL;
2464         } else {
2465                 quota_root->track_dirty = 1;
2466                 fs_info->quota_enabled = 1;
2467                 fs_info->pending_quota_state = 1;
2468         }
2469
2470         fs_info->generation = generation;
2471         fs_info->last_trans_committed = generation;
2472
2473         ret = btrfs_recover_balance(fs_info);
2474         if (ret) {
2475                 printk(KERN_WARNING "btrfs: failed to recover balance\n");
2476                 goto fail_block_groups;
2477         }
2478
2479         ret = btrfs_init_dev_stats(fs_info);
2480         if (ret) {
2481                 printk(KERN_ERR "btrfs: failed to init dev_stats: %d\n",
2482                        ret);
2483                 goto fail_block_groups;
2484         }
2485
2486         ret = btrfs_init_space_info(fs_info);
2487         if (ret) {
2488                 printk(KERN_ERR "Failed to initial space info: %d\n", ret);
2489                 goto fail_block_groups;
2490         }
2491
2492         ret = btrfs_read_block_groups(extent_root);
2493         if (ret) {
2494                 printk(KERN_ERR "Failed to read block groups: %d\n", ret);
2495                 goto fail_block_groups;
2496         }
2497
2498         fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2499                                                "btrfs-cleaner");
2500         if (IS_ERR(fs_info->cleaner_kthread))
2501                 goto fail_block_groups;
2502
2503         fs_info->transaction_kthread = kthread_run(transaction_kthread,
2504                                                    tree_root,
2505                                                    "btrfs-transaction");
2506         if (IS_ERR(fs_info->transaction_kthread))
2507                 goto fail_cleaner;
2508
2509         if (!btrfs_test_opt(tree_root, SSD) &&
2510             !btrfs_test_opt(tree_root, NOSSD) &&
2511             !fs_info->fs_devices->rotating) {
2512                 printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
2513                        "mode\n");
2514                 btrfs_set_opt(fs_info->mount_opt, SSD);
2515         }
2516
2517 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2518         if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
2519                 ret = btrfsic_mount(tree_root, fs_devices,
2520                                     btrfs_test_opt(tree_root,
2521                                         CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2522                                     1 : 0,
2523                                     fs_info->check_integrity_print_mask);
2524                 if (ret)
2525                         printk(KERN_WARNING "btrfs: failed to initialize"
2526                                " integrity check module %s\n", sb->s_id);
2527         }
2528 #endif
2529         ret = btrfs_read_qgroup_config(fs_info);
2530         if (ret)
2531                 goto fail_trans_kthread;
2532
2533         /* do not make disk changes in broken FS */
2534         if (btrfs_super_log_root(disk_super) != 0 &&
2535             !(fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)) {
2536                 u64 bytenr = btrfs_super_log_root(disk_super);
2537
2538                 if (fs_devices->rw_devices == 0) {
2539                         printk(KERN_WARNING "Btrfs log replay required "
2540                                "on RO media\n");
2541                         err = -EIO;
2542                         goto fail_qgroup;
2543                 }
2544                 blocksize =
2545                      btrfs_level_size(tree_root,
2546                                       btrfs_super_log_root_level(disk_super));
2547
2548                 log_tree_root = btrfs_alloc_root(fs_info);
2549                 if (!log_tree_root) {
2550                         err = -ENOMEM;
2551                         goto fail_qgroup;
2552                 }
2553
2554                 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2555                              log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2556
2557                 log_tree_root->node = read_tree_block(tree_root, bytenr,
2558                                                       blocksize,
2559                                                       generation + 1);
2560                 /* returns with log_tree_root freed on success */
2561                 ret = btrfs_recover_log_trees(log_tree_root);
2562                 if (ret) {
2563                         btrfs_error(tree_root->fs_info, ret,
2564                                     "Failed to recover log tree");
2565                         free_extent_buffer(log_tree_root->node);
2566                         kfree(log_tree_root);
2567                         goto fail_trans_kthread;
2568                 }
2569
2570                 if (sb->s_flags & MS_RDONLY) {
2571                         ret = btrfs_commit_super(tree_root);
2572                         if (ret)
2573                                 goto fail_trans_kthread;
2574                 }
2575         }
2576
2577         ret = btrfs_find_orphan_roots(tree_root);
2578         if (ret)
2579                 goto fail_trans_kthread;
2580
2581         if (!(sb->s_flags & MS_RDONLY)) {
2582                 ret = btrfs_cleanup_fs_roots(fs_info);
2583                 if (ret)
2584                         goto fail_trans_kthread;
2585
2586                 ret = btrfs_recover_relocation(tree_root);
2587                 if (ret < 0) {
2588                         printk(KERN_WARNING
2589                                "btrfs: failed to recover relocation\n");
2590                         err = -EINVAL;
2591                         goto fail_qgroup;
2592                 }
2593         }
2594
2595         location.objectid = BTRFS_FS_TREE_OBJECTID;
2596         location.type = BTRFS_ROOT_ITEM_KEY;
2597         location.offset = (u64)-1;
2598
2599         fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
2600         if (!fs_info->fs_root)
2601                 goto fail_qgroup;
2602         if (IS_ERR(fs_info->fs_root)) {
2603                 err = PTR_ERR(fs_info->fs_root);
2604                 goto fail_qgroup;
2605         }
2606
2607         if (sb->s_flags & MS_RDONLY)
2608                 return 0;
2609
2610         down_read(&fs_info->cleanup_work_sem);
2611         if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
2612             (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
2613                 up_read(&fs_info->cleanup_work_sem);
2614                 close_ctree(tree_root);
2615                 return ret;
2616         }
2617         up_read(&fs_info->cleanup_work_sem);
2618
2619         ret = btrfs_resume_balance_async(fs_info);
2620         if (ret) {
2621                 printk(KERN_WARNING "btrfs: failed to resume balance\n");
2622                 close_ctree(tree_root);
2623                 return ret;
2624         }
2625
2626         return 0;
2627
2628 fail_qgroup:
2629         btrfs_free_qgroup_config(fs_info);
2630 fail_trans_kthread:
2631         kthread_stop(fs_info->transaction_kthread);
2632 fail_cleaner:
2633         kthread_stop(fs_info->cleaner_kthread);
2634
2635         /*
2636          * make sure we're done with the btree inode before we stop our
2637          * kthreads
2638          */
2639         filemap_write_and_wait(fs_info->btree_inode->i_mapping);
2640         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2641
2642 fail_block_groups:
2643         btrfs_free_block_groups(fs_info);
2644
2645 fail_tree_roots:
2646         free_root_pointers(fs_info, 1);
2647
2648 fail_sb_buffer:
2649         btrfs_stop_workers(&fs_info->generic_worker);
2650         btrfs_stop_workers(&fs_info->readahead_workers);
2651         btrfs_stop_workers(&fs_info->fixup_workers);
2652         btrfs_stop_workers(&fs_info->delalloc_workers);
2653         btrfs_stop_workers(&fs_info->workers);
2654         btrfs_stop_workers(&fs_info->endio_workers);
2655         btrfs_stop_workers(&fs_info->endio_meta_workers);
2656         btrfs_stop_workers(&fs_info->endio_meta_write_workers);
2657         btrfs_stop_workers(&fs_info->endio_write_workers);
2658         btrfs_stop_workers(&fs_info->endio_freespace_worker);
2659         btrfs_stop_workers(&fs_info->submit_workers);
2660         btrfs_stop_workers(&fs_info->delayed_workers);
2661         btrfs_stop_workers(&fs_info->caching_workers);
2662 fail_alloc:
2663 fail_iput:
2664         btrfs_mapping_tree_free(&fs_info->mapping_tree);
2665
2666         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2667         iput(fs_info->btree_inode);
2668 fail_bdi:
2669         bdi_destroy(&fs_info->bdi);
2670 fail_srcu:
2671         cleanup_srcu_struct(&fs_info->subvol_srcu);
2672 fail:
2673         btrfs_close_devices(fs_info->fs_devices);
2674         return err;
2675
2676 recovery_tree_root:
2677         if (!btrfs_test_opt(tree_root, RECOVERY))
2678                 goto fail_tree_roots;
2679
2680         free_root_pointers(fs_info, 0);
2681
2682         /* don't use the log in recovery mode, it won't be valid */
2683         btrfs_set_super_log_root(disk_super, 0);
2684
2685         /* we can't trust the free space cache either */
2686         btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2687
2688         ret = next_root_backup(fs_info, fs_info->super_copy,
2689                                &num_backups_tried, &backup_index);
2690         if (ret == -1)
2691                 goto fail_block_groups;
2692         goto retry_root_backup;
2693 }
2694
2695 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
2696 {
2697         if (uptodate) {
2698                 set_buffer_uptodate(bh);
2699         } else {
2700                 struct btrfs_device *device = (struct btrfs_device *)
2701                         bh->b_private;
2702
2703                 printk_ratelimited_in_rcu(KERN_WARNING "lost page write due to "
2704                                           "I/O error on %s\n",
2705                                           rcu_str_deref(device->name));
2706                 /* note, we dont' set_buffer_write_io_error because we have
2707                  * our own ways of dealing with the IO errors
2708                  */
2709                 clear_buffer_uptodate(bh);
2710                 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
2711         }
2712         unlock_buffer(bh);
2713         put_bh(bh);
2714 }
2715
2716 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
2717 {
2718         struct buffer_head *bh;
2719         struct buffer_head *latest = NULL;
2720         struct btrfs_super_block *super;
2721         int i;
2722         u64 transid = 0;
2723         u64 bytenr;
2724
2725         /* we would like to check all the supers, but that would make
2726          * a btrfs mount succeed after a mkfs from a different FS.
2727          * So, we need to add a special mount option to scan for
2728          * later supers, using BTRFS_SUPER_MIRROR_MAX instead
2729          */
2730         for (i = 0; i < 1; i++) {
2731                 bytenr = btrfs_sb_offset(i);
2732                 if (bytenr + 4096 >= i_size_read(bdev->bd_inode))
2733                         break;
2734                 bh = __bread(bdev, bytenr / 4096, 4096);
2735                 if (!bh)
2736                         continue;
2737
2738                 super = (struct btrfs_super_block *)bh->b_data;
2739                 if (btrfs_super_bytenr(super) != bytenr ||
2740                     strncmp((char *)(&super->magic), BTRFS_MAGIC,
2741                             sizeof(super->magic))) {
2742                         brelse(bh);
2743                         continue;
2744                 }
2745
2746                 if (!latest || btrfs_super_generation(super) > transid) {
2747                         brelse(latest);
2748                         latest = bh;
2749                         transid = btrfs_super_generation(super);
2750                 } else {
2751                         brelse(bh);
2752                 }
2753         }
2754         return latest;
2755 }
2756
2757 /*
2758  * this should be called twice, once with wait == 0 and
2759  * once with wait == 1.  When wait == 0 is done, all the buffer heads
2760  * we write are pinned.
2761  *
2762  * They are released when wait == 1 is done.
2763  * max_mirrors must be the same for both runs, and it indicates how
2764  * many supers on this one device should be written.
2765  *
2766  * max_mirrors == 0 means to write them all.
2767  */
2768 static int write_dev_supers(struct btrfs_device *device,
2769                             struct btrfs_super_block *sb,
2770                             int do_barriers, int wait, int max_mirrors)
2771 {
2772         struct buffer_head *bh;
2773         int i;
2774         int ret;
2775         int errors = 0;
2776         u32 crc;
2777         u64 bytenr;
2778
2779         if (max_mirrors == 0)
2780                 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
2781
2782         for (i = 0; i < max_mirrors; i++) {
2783                 bytenr = btrfs_sb_offset(i);
2784                 if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
2785                         break;
2786
2787                 if (wait) {
2788                         bh = __find_get_block(device->bdev, bytenr / 4096,
2789                                               BTRFS_SUPER_INFO_SIZE);
2790                         BUG_ON(!bh);
2791                         wait_on_buffer(bh);
2792                         if (!buffer_uptodate(bh))
2793                                 errors++;
2794
2795                         /* drop our reference */
2796                         brelse(bh);
2797
2798                         /* drop the reference from the wait == 0 run */
2799                         brelse(bh);
2800                         continue;
2801                 } else {
2802                         btrfs_set_super_bytenr(sb, bytenr);
2803
2804                         crc = ~(u32)0;
2805                         crc = btrfs_csum_data(NULL, (char *)sb +
2806                                               BTRFS_CSUM_SIZE, crc,
2807                                               BTRFS_SUPER_INFO_SIZE -
2808                                               BTRFS_CSUM_SIZE);
2809                         btrfs_csum_final(crc, sb->csum);
2810
2811                         /*
2812                          * one reference for us, and we leave it for the
2813                          * caller
2814                          */
2815                         bh = __getblk(device->bdev, bytenr / 4096,
2816                                       BTRFS_SUPER_INFO_SIZE);
2817                         memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
2818
2819                         /* one reference for submit_bh */
2820                         get_bh(bh);
2821
2822                         set_buffer_uptodate(bh);
2823                         lock_buffer(bh);
2824                         bh->b_end_io = btrfs_end_buffer_write_sync;
2825                         bh->b_private = device;
2826                 }
2827
2828                 /*
2829                  * we fua the first super.  The others we allow
2830                  * to go down lazy.
2831                  */
2832                 ret = btrfsic_submit_bh(WRITE_FUA, bh);
2833                 if (ret)
2834                         errors++;
2835         }
2836         return errors < i ? 0 : -1;
2837 }
2838
2839 /*
2840  * endio for the write_dev_flush, this will wake anyone waiting
2841  * for the barrier when it is done
2842  */
2843 static void btrfs_end_empty_barrier(struct bio *bio, int err)
2844 {
2845         if (err) {
2846                 if (err == -EOPNOTSUPP)
2847                         set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2848                 clear_bit(BIO_UPTODATE, &bio->bi_flags);
2849         }
2850         if (bio->bi_private)
2851                 complete(bio->bi_private);
2852         bio_put(bio);
2853 }
2854
2855 /*
2856  * trigger flushes for one the devices.  If you pass wait == 0, the flushes are
2857  * sent down.  With wait == 1, it waits for the previous flush.
2858  *
2859  * any device where the flush fails with eopnotsupp are flagged as not-barrier
2860  * capable
2861  */
2862 static int write_dev_flush(struct btrfs_device *device, int wait)
2863 {
2864         struct bio *bio;
2865         int ret = 0;
2866
2867         if (device->nobarriers)
2868                 return 0;
2869
2870         if (wait) {
2871                 bio = device->flush_bio;
2872                 if (!bio)
2873                         return 0;
2874
2875                 wait_for_completion(&device->flush_wait);
2876
2877                 if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
2878                         printk_in_rcu("btrfs: disabling barriers on dev %s\n",
2879                                       rcu_str_deref(device->name));
2880                         device->nobarriers = 1;
2881                 }
2882                 if (!bio_flagged(bio, BIO_UPTODATE)) {
2883                         ret = -EIO;
2884                         if (!bio_flagged(bio, BIO_EOPNOTSUPP))
2885                                 btrfs_dev_stat_inc_and_print(device,
2886                                         BTRFS_DEV_STAT_FLUSH_ERRS);
2887                 }
2888
2889                 /* drop the reference from the wait == 0 run */
2890                 bio_put(bio);
2891                 device->flush_bio = NULL;
2892
2893                 return ret;
2894         }
2895
2896         /*
2897          * one reference for us, and we leave it for the
2898          * caller
2899          */
2900         device->flush_bio = NULL;
2901         bio = bio_alloc(GFP_NOFS, 0);
2902         if (!bio)
2903                 return -ENOMEM;
2904
2905         bio->bi_end_io = btrfs_end_empty_barrier;
2906         bio->bi_bdev = device->bdev;
2907         init_completion(&device->flush_wait);
2908         bio->bi_private = &device->flush_wait;
2909         device->flush_bio = bio;
2910
2911         bio_get(bio);
2912         btrfsic_submit_bio(WRITE_FLUSH, bio);
2913
2914         return 0;
2915 }
2916
2917 /*
2918  * send an empty flush down to each device in parallel,
2919  * then wait for them
2920  */
2921 static int barrier_all_devices(struct btrfs_fs_info *info)
2922 {
2923         struct list_head *head;
2924         struct btrfs_device *dev;
2925         int errors = 0;
2926         int ret;
2927
2928         /* send down all the barriers */
2929         head = &info->fs_devices->devices;
2930         list_for_each_entry_rcu(dev, head, dev_list) {
2931                 if (!dev->bdev) {
2932                         errors++;
2933                         continue;
2934                 }
2935                 if (!dev->in_fs_metadata || !dev->writeable)
2936                         continue;
2937
2938                 ret = write_dev_flush(dev, 0);
2939                 if (ret)
2940                         errors++;
2941         }
2942
2943         /* wait for all the barriers */
2944         list_for_each_entry_rcu(dev, head, dev_list) {
2945                 if (!dev->bdev) {
2946                         errors++;
2947                         continue;
2948                 }
2949                 if (!dev->in_fs_metadata || !dev->writeable)
2950                         continue;
2951
2952                 ret = write_dev_flush(dev, 1);
2953                 if (ret)
2954                         errors++;
2955         }
2956         if (errors)
2957                 return -EIO;
2958         return 0;
2959 }
2960
2961 int write_all_supers(struct btrfs_root *root, int max_mirrors)
2962 {
2963         struct list_head *head;
2964         struct btrfs_device *dev;
2965         struct btrfs_super_block *sb;
2966         struct btrfs_dev_item *dev_item;
2967         int ret;
2968         int do_barriers;
2969         int max_errors;
2970         int total_errors = 0;
2971         u64 flags;
2972
2973         max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
2974         do_barriers = !btrfs_test_opt(root, NOBARRIER);
2975         backup_super_roots(root->fs_info);
2976
2977         sb = root->fs_info->super_for_commit;
2978         dev_item = &sb->dev_item;
2979
2980         mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2981         head = &root->fs_info->fs_devices->devices;
2982
2983         if (do_barriers)
2984                 barrier_all_devices(root->fs_info);
2985
2986         list_for_each_entry_rcu(dev, head, dev_list) {
2987                 if (!dev->bdev) {
2988                         total_errors++;
2989                         continue;
2990                 }
2991                 if (!dev->in_fs_metadata || !dev->writeable)
2992                         continue;
2993
2994                 btrfs_set_stack_device_generation(dev_item, 0);
2995                 btrfs_set_stack_device_type(dev_item, dev->type);
2996                 btrfs_set_stack_device_id(dev_item, dev->devid);
2997                 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
2998                 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
2999                 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3000                 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3001                 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3002                 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3003                 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
3004
3005                 flags = btrfs_super_flags(sb);
3006                 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3007
3008                 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
3009                 if (ret)
3010                         total_errors++;
3011         }
3012         if (total_errors > max_errors) {
3013                 printk(KERN_ERR "btrfs: %d errors while writing supers\n",
3014                        total_errors);
3015
3016                 /* This shouldn't happen. FUA is masked off if unsupported */
3017                 BUG();
3018         }
3019
3020         total_errors = 0;
3021         list_for_each_entry_rcu(dev, head, dev_list) {
3022                 if (!dev->bdev)
3023                         continue;
3024                 if (!dev->in_fs_metadata || !dev->writeable)
3025                         continue;
3026
3027                 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3028                 if (ret)
3029                         total_errors++;
3030         }
3031         mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3032         if (total_errors > max_errors) {
3033                 btrfs_error(root->fs_info, -EIO,
3034                             "%d errors while writing supers", total_errors);
3035                 return -EIO;
3036         }
3037         return 0;
3038 }
3039
3040 int write_ctree_super(struct btrfs_trans_handle *trans,
3041                       struct btrfs_root *root, int max_mirrors)
3042 {
3043         int ret;
3044
3045         ret = write_all_supers(root, max_mirrors);
3046         return ret;
3047 }
3048
3049 void btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
3050 {
3051         spin_lock(&fs_info->fs_roots_radix_lock);
3052         radix_tree_delete(&fs_info->fs_roots_radix,
3053                           (unsigned long)root->root_key.objectid);
3054         spin_unlock(&fs_info->fs_roots_radix_lock);
3055
3056         if (btrfs_root_refs(&root->root_item) == 0)
3057                 synchronize_srcu(&fs_info->subvol_srcu);
3058
3059         __btrfs_remove_free_space_cache(root->free_ino_pinned);
3060         __btrfs_remove_free_space_cache(root->free_ino_ctl);
3061         free_fs_root(root);
3062 }
3063
3064 static void free_fs_root(struct btrfs_root *root)
3065 {
3066         iput(root->cache_inode);
3067         WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3068         if (root->anon_dev)
3069                 free_anon_bdev(root->anon_dev);
3070         free_extent_buffer(root->node);
3071         free_extent_buffer(root->commit_root);
3072         kfree(root->free_ino_ctl);
3073         kfree(root->free_ino_pinned);
3074         kfree(root->name);
3075         kfree(root);
3076 }
3077
3078 static void del_fs_roots(struct btrfs_fs_info *fs_info)
3079 {
3080         int ret;
3081         struct btrfs_root *gang[8];
3082         int i;
3083
3084         while (!list_empty(&fs_info->dead_roots)) {
3085                 gang[0] = list_entry(fs_info->dead_roots.next,
3086                                      struct btrfs_root, root_list);
3087                 list_del(&gang[0]->root_list);
3088
3089                 if (gang[0]->in_radix) {
3090                         btrfs_free_fs_root(fs_info, gang[0]);
3091                 } else {
3092                         free_extent_buffer(gang[0]->node);
3093                         free_extent_buffer(gang[0]->commit_root);
3094                         kfree(gang[0]);
3095                 }
3096         }
3097
3098         while (1) {
3099                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3100                                              (void **)gang, 0,
3101                                              ARRAY_SIZE(gang));
3102                 if (!ret)
3103                         break;
3104                 for (i = 0; i < ret; i++)
3105                         btrfs_free_fs_root(fs_info, gang[i]);
3106         }
3107 }
3108
3109 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3110 {
3111         u64 root_objectid = 0;
3112         struct btrfs_root *gang[8];
3113         int i;
3114         int ret;
3115
3116         while (1) {
3117                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3118                                              (void **)gang, root_objectid,
3119                                              ARRAY_SIZE(gang));
3120                 if (!ret)
3121                         break;
3122
3123                 root_objectid = gang[ret - 1]->root_key.objectid + 1;
3124                 for (i = 0; i < ret; i++) {
3125                         int err;
3126
3127                         root_objectid = gang[i]->root_key.objectid;
3128                         err = btrfs_orphan_cleanup(gang[i]);
3129                         if (err)
3130                                 return err;
3131                 }
3132                 root_objectid++;
3133         }
3134         return 0;
3135 }
3136
3137 int btrfs_commit_super(struct btrfs_root *root)
3138 {
3139         struct btrfs_trans_handle *trans;
3140         int ret;
3141
3142         mutex_lock(&root->fs_info->cleaner_mutex);
3143         btrfs_run_delayed_iputs(root);
3144         btrfs_clean_old_snapshots(root);
3145         mutex_unlock(&root->fs_info->cleaner_mutex);
3146
3147         /* wait until ongoing cleanup work done */
3148         down_write(&root->fs_info->cleanup_work_sem);
3149         up_write(&root->fs_info->cleanup_work_sem);
3150
3151         trans = btrfs_join_transaction(root);
3152         if (IS_ERR(trans))
3153                 return PTR_ERR(trans);
3154         ret = btrfs_commit_transaction(trans, root);
3155         if (ret)
3156                 return ret;
3157         /* run commit again to drop the original snapshot */
3158         trans = btrfs_join_transaction(root);
3159         if (IS_ERR(trans))
3160                 return PTR_ERR(trans);
3161         ret = btrfs_commit_transaction(trans, root);
3162         if (ret)
3163                 return ret;
3164         ret = btrfs_write_and_wait_transaction(NULL, root);
3165         if (ret) {
3166                 btrfs_error(root->fs_info, ret,
3167                             "Failed to sync btree inode to disk.");
3168                 return ret;
3169         }
3170
3171         ret = write_ctree_super(NULL, root, 0);
3172         return ret;
3173 }
3174
3175 int close_ctree(struct btrfs_root *root)
3176 {
3177         struct btrfs_fs_info *fs_info = root->fs_info;
3178         int ret;
3179
3180         fs_info->closing = 1;
3181         smp_mb();
3182
3183         /* pause restriper - we want to resume on mount */
3184         btrfs_pause_balance(root->fs_info);
3185
3186         btrfs_scrub_cancel(root);
3187
3188         /* wait for any defraggers to finish */
3189         wait_event(fs_info->transaction_wait,
3190                    (atomic_read(&fs_info->defrag_running) == 0));
3191
3192         /* clear out the rbtree of defraggable inodes */
3193         btrfs_run_defrag_inodes(fs_info);
3194
3195         /*
3196          * Here come 2 situations when btrfs is broken to flip readonly:
3197          *
3198          * 1. when btrfs flips readonly somewhere else before
3199          * btrfs_commit_super, sb->s_flags has MS_RDONLY flag,
3200          * and btrfs will skip to write sb directly to keep
3201          * ERROR state on disk.
3202          *
3203          * 2. when btrfs flips readonly just in btrfs_commit_super,
3204          * and in such case, btrfs cannot write sb via btrfs_commit_super,
3205          * and since fs_state has been set BTRFS_SUPER_FLAG_ERROR flag,
3206          * btrfs will cleanup all FS resources first and write sb then.
3207          */
3208         if (!(fs_info->sb->s_flags & MS_RDONLY)) {
3209                 ret = btrfs_commit_super(root);
3210                 if (ret)
3211                         printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
3212         }
3213
3214         if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
3215                 ret = btrfs_error_commit_super(root);
3216                 if (ret)
3217                         printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
3218         }
3219
3220         btrfs_put_block_group_cache(fs_info);
3221
3222         kthread_stop(fs_info->transaction_kthread);
3223         kthread_stop(fs_info->cleaner_kthread);
3224
3225         fs_info->closing = 2;
3226         smp_mb();
3227
3228         btrfs_free_qgroup_config(root->fs_info);
3229
3230         if (fs_info->delalloc_bytes) {
3231                 printk(KERN_INFO "btrfs: at unmount delalloc count %llu\n",
3232                        (unsigned long long)fs_info->delalloc_bytes);
3233         }
3234         if (fs_info->total_ref_cache_size) {
3235                 printk(KERN_INFO "btrfs: at umount reference cache size %llu\n",
3236                        (unsigned long long)fs_info->total_ref_cache_size);
3237         }
3238
3239         free_extent_buffer(fs_info->extent_root->node);
3240         free_extent_buffer(fs_info->extent_root->commit_root);
3241         free_extent_buffer(fs_info->tree_root->node);
3242         free_extent_buffer(fs_info->tree_root->commit_root);
3243         free_extent_buffer(fs_info->chunk_root->node);
3244         free_extent_buffer(fs_info->chunk_root->commit_root);
3245         free_extent_buffer(fs_info->dev_root->node);
3246         free_extent_buffer(fs_info->dev_root->commit_root);
3247         free_extent_buffer(fs_info->csum_root->node);
3248         free_extent_buffer(fs_info->csum_root->commit_root);
3249         if (fs_info->quota_root) {
3250                 free_extent_buffer(fs_info->quota_root->node);
3251                 free_extent_buffer(fs_info->quota_root->commit_root);
3252         }
3253
3254         btrfs_free_block_groups(fs_info);
3255
3256         del_fs_roots(fs_info);
3257
3258         iput(fs_info->btree_inode);
3259
3260         btrfs_stop_workers(&fs_info->generic_worker);
3261         btrfs_stop_workers(&fs_info->fixup_workers);
3262         btrfs_stop_workers(&fs_info->delalloc_workers);
3263         btrfs_stop_workers(&fs_info->workers);
3264         btrfs_stop_workers(&fs_info->endio_workers);
3265         btrfs_stop_workers(&fs_info->endio_meta_workers);
3266         btrfs_stop_workers(&fs_info->endio_meta_write_workers);
3267         btrfs_stop_workers(&fs_info->endio_write_workers);
3268         btrfs_stop_workers(&fs_info->endio_freespace_worker);
3269         btrfs_stop_workers(&fs_info->submit_workers);
3270         btrfs_stop_workers(&fs_info->delayed_workers);
3271         btrfs_stop_workers(&fs_info->caching_workers);
3272         btrfs_stop_workers(&fs_info->readahead_workers);
3273
3274 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3275         if (btrfs_test_opt(root, CHECK_INTEGRITY))
3276                 btrfsic_unmount(root, fs_info->fs_devices);
3277 #endif
3278
3279         btrfs_close_devices(fs_info->fs_devices);
3280         btrfs_mapping_tree_free(&fs_info->mapping_tree);
3281
3282         bdi_destroy(&fs_info->bdi);
3283         cleanup_srcu_struct(&fs_info->subvol_srcu);
3284
3285         return 0;
3286 }
3287
3288 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3289                           int atomic)
3290 {
3291         int ret;
3292         struct inode *btree_inode = buf->pages[0]->mapping->host;
3293
3294         ret = extent_buffer_uptodate(buf);
3295         if (!ret)
3296                 return ret;
3297
3298         ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
3299                                     parent_transid, atomic);
3300         if (ret == -EAGAIN)
3301                 return ret;
3302         return !ret;
3303 }
3304
3305 int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
3306 {
3307         return set_extent_buffer_uptodate(buf);
3308 }
3309
3310 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3311 {
3312         struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3313         u64 transid = btrfs_header_generation(buf);
3314         int was_dirty;
3315
3316         btrfs_assert_tree_locked(buf);
3317         if (transid != root->fs_info->generation) {
3318                 printk(KERN_CRIT "btrfs transid mismatch buffer %llu, "
3319                        "found %llu running %llu\n",
3320                         (unsigned long long)buf->start,
3321                         (unsigned long long)transid,
3322                         (unsigned long long)root->fs_info->generation);
3323                 WARN_ON(1);
3324         }
3325         was_dirty = set_extent_buffer_dirty(buf);
3326         if (!was_dirty) {
3327                 spin_lock(&root->fs_info->delalloc_lock);
3328                 root->fs_info->dirty_metadata_bytes += buf->len;
3329                 spin_unlock(&root->fs_info->delalloc_lock);
3330         }
3331 }
3332
3333 void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
3334 {
3335         /*
3336          * looks as though older kernels can get into trouble with
3337          * this code, they end up stuck in balance_dirty_pages forever
3338          */
3339         u64 num_dirty;
3340         unsigned long thresh = 32 * 1024 * 1024;
3341
3342         if (current->flags & PF_MEMALLOC)
3343                 return;
3344
3345         btrfs_balance_delayed_items(root);
3346
3347         num_dirty = root->fs_info->dirty_metadata_bytes;
3348
3349         if (num_dirty > thresh) {
3350                 balance_dirty_pages_ratelimited_nr(
3351                                    root->fs_info->btree_inode->i_mapping, 1);
3352         }
3353         return;
3354 }
3355
3356 void __btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
3357 {
3358         /*
3359          * looks as though older kernels can get into trouble with
3360          * this code, they end up stuck in balance_dirty_pages forever
3361          */
3362         u64 num_dirty;
3363         unsigned long thresh = 32 * 1024 * 1024;
3364
3365         if (current->flags & PF_MEMALLOC)
3366                 return;
3367
3368         num_dirty = root->fs_info->dirty_metadata_bytes;
3369
3370         if (num_dirty > thresh) {
3371                 balance_dirty_pages_ratelimited_nr(
3372                                    root->fs_info->btree_inode->i_mapping, 1);
3373         }
3374         return;
3375 }
3376
3377 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
3378 {
3379         struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3380         return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
3381 }
3382
3383 int btree_lock_page_hook(struct page *page, void *data,
3384                                 void (*flush_fn)(void *))
3385 {
3386         struct inode *inode = page->mapping->host;
3387         struct btrfs_root *root = BTRFS_I(inode)->root;
3388         struct extent_buffer *eb;
3389
3390         /*
3391          * We culled this eb but the page is still hanging out on the mapping,
3392          * carry on.
3393          */
3394         if (!PagePrivate(page))
3395                 goto out;
3396
3397         eb = (struct extent_buffer *)page->private;
3398         if (!eb) {
3399                 WARN_ON(1);
3400                 goto out;
3401         }
3402         if (page != eb->pages[0])
3403                 goto out;
3404
3405         if (!btrfs_try_tree_write_lock(eb)) {
3406                 flush_fn(data);
3407                 btrfs_tree_lock(eb);
3408         }
3409         btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3410
3411         if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3412                 spin_lock(&root->fs_info->delalloc_lock);
3413                 if (root->fs_info->dirty_metadata_bytes >= eb->len)
3414                         root->fs_info->dirty_metadata_bytes -= eb->len;
3415                 else
3416                         WARN_ON(1);
3417                 spin_unlock(&root->fs_info->delalloc_lock);
3418         }
3419
3420         btrfs_tree_unlock(eb);
3421 out:
3422         if (!trylock_page(page)) {
3423                 flush_fn(data);
3424                 lock_page(page);
3425         }
3426         return 0;
3427 }
3428
3429 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
3430                               int read_only)
3431 {
3432         if (btrfs_super_csum_type(fs_info->super_copy) >= ARRAY_SIZE(btrfs_csum_sizes)) {
3433                 printk(KERN_ERR "btrfs: unsupported checksum algorithm\n");
3434                 return -EINVAL;
3435         }
3436
3437         if (read_only)
3438                 return 0;
3439
3440         if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
3441                 printk(KERN_WARNING "warning: mount fs with errors, "
3442                        "running btrfsck is recommended\n");
3443         }
3444
3445         return 0;
3446 }
3447
3448 int btrfs_error_commit_super(struct btrfs_root *root)
3449 {
3450         int ret;
3451
3452         mutex_lock(&root->fs_info->cleaner_mutex);
3453         btrfs_run_delayed_iputs(root);
3454         mutex_unlock(&root->fs_info->cleaner_mutex);
3455
3456         down_write(&root->fs_info->cleanup_work_sem);
3457         up_write(&root->fs_info->cleanup_work_sem);
3458
3459         /* cleanup FS via transaction */
3460         btrfs_cleanup_transaction(root);
3461
3462         ret = write_ctree_super(NULL, root, 0);
3463
3464         return ret;
3465 }
3466
3467 static void btrfs_destroy_ordered_operations(struct btrfs_root *root)
3468 {
3469         struct btrfs_inode *btrfs_inode;
3470         struct list_head splice;
3471
3472         INIT_LIST_HEAD(&splice);
3473
3474         mutex_lock(&root->fs_info->ordered_operations_mutex);
3475         spin_lock(&root->fs_info->ordered_extent_lock);
3476
3477         list_splice_init(&root->fs_info->ordered_operations, &splice);
3478         while (!list_empty(&splice)) {
3479                 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3480                                          ordered_operations);
3481
3482                 list_del_init(&btrfs_inode->ordered_operations);
3483
3484                 btrfs_invalidate_inodes(btrfs_inode->root);
3485         }
3486
3487         spin_unlock(&root->fs_info->ordered_extent_lock);
3488         mutex_unlock(&root->fs_info->ordered_operations_mutex);
3489 }
3490
3491 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
3492 {
3493         struct list_head splice;
3494         struct btrfs_ordered_extent *ordered;
3495         struct inode *inode;
3496
3497         INIT_LIST_HEAD(&splice);
3498
3499         spin_lock(&root->fs_info->ordered_extent_lock);
3500
3501         list_splice_init(&root->fs_info->ordered_extents, &splice);
3502         while (!list_empty(&splice)) {
3503                 ordered = list_entry(splice.next, struct btrfs_ordered_extent,
3504                                      root_extent_list);
3505
3506                 list_del_init(&ordered->root_extent_list);
3507                 atomic_inc(&ordered->refs);
3508
3509                 /* the inode may be getting freed (in sys_unlink path). */
3510                 inode = igrab(ordered->inode);
3511
3512                 spin_unlock(&root->fs_info->ordered_extent_lock);
3513                 if (inode)
3514                         iput(inode);
3515
3516                 atomic_set(&ordered->refs, 1);
3517                 btrfs_put_ordered_extent(ordered);
3518
3519                 spin_lock(&root->fs_info->ordered_extent_lock);
3520         }
3521
3522         spin_unlock(&root->fs_info->ordered_extent_lock);
3523 }
3524
3525 int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
3526                                struct btrfs_root *root)
3527 {
3528         struct rb_node *node;
3529         struct btrfs_delayed_ref_root *delayed_refs;
3530         struct btrfs_delayed_ref_node *ref;
3531         int ret = 0;
3532
3533         delayed_refs = &trans->delayed_refs;
3534
3535         spin_lock(&delayed_refs->lock);
3536         if (delayed_refs->num_entries == 0) {
3537                 spin_unlock(&delayed_refs->lock);
3538                 printk(KERN_INFO "delayed_refs has NO entry\n");
3539                 return ret;
3540         }
3541
3542         while ((node = rb_first(&delayed_refs->root)) != NULL) {
3543                 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
3544
3545                 atomic_set(&ref->refs, 1);
3546                 if (btrfs_delayed_ref_is_head(ref)) {
3547                         struct btrfs_delayed_ref_head *head;
3548
3549                         head = btrfs_delayed_node_to_head(ref);
3550                         if (!mutex_trylock(&head->mutex)) {
3551                                 atomic_inc(&ref->refs);
3552                                 spin_unlock(&delayed_refs->lock);
3553
3554                                 /* Need to wait for the delayed ref to run */
3555                                 mutex_lock(&head->mutex);
3556                                 mutex_unlock(&head->mutex);
3557                                 btrfs_put_delayed_ref(ref);
3558
3559                                 spin_lock(&delayed_refs->lock);
3560                                 continue;
3561                         }
3562
3563                         kfree(head->extent_op);
3564                         delayed_refs->num_heads--;
3565                         if (list_empty(&head->cluster))
3566                                 delayed_refs->num_heads_ready--;
3567                         list_del_init(&head->cluster);
3568                 }
3569                 ref->in_tree = 0;
3570                 rb_erase(&ref->rb_node, &delayed_refs->root);
3571                 delayed_refs->num_entries--;
3572
3573                 spin_unlock(&delayed_refs->lock);
3574                 btrfs_put_delayed_ref(ref);
3575
3576                 cond_resched();
3577                 spin_lock(&delayed_refs->lock);
3578         }
3579
3580         spin_unlock(&delayed_refs->lock);
3581
3582         return ret;
3583 }
3584
3585 static void btrfs_destroy_pending_snapshots(struct btrfs_transaction *t)
3586 {
3587         struct btrfs_pending_snapshot *snapshot;
3588         struct list_head splice;
3589
3590         INIT_LIST_HEAD(&splice);
3591
3592         list_splice_init(&t->pending_snapshots, &splice);
3593
3594         while (!list_empty(&splice)) {
3595                 snapshot = list_entry(splice.next,
3596                                       struct btrfs_pending_snapshot,
3597                                       list);
3598
3599                 list_del_init(&snapshot->list);
3600
3601                 kfree(snapshot);
3602         }
3603 }
3604
3605 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
3606 {
3607         struct btrfs_inode *btrfs_inode;
3608         struct list_head splice;
3609
3610         INIT_LIST_HEAD(&splice);
3611
3612         spin_lock(&root->fs_info->delalloc_lock);
3613         list_splice_init(&root->fs_info->delalloc_inodes, &splice);
3614
3615         while (!list_empty(&splice)) {
3616                 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3617                                     delalloc_inodes);
3618
3619                 list_del_init(&btrfs_inode->delalloc_inodes);
3620
3621                 btrfs_invalidate_inodes(btrfs_inode->root);
3622         }
3623
3624         spin_unlock(&root->fs_info->delalloc_lock);
3625 }
3626
3627 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
3628                                         struct extent_io_tree *dirty_pages,
3629                                         int mark)
3630 {
3631         int ret;
3632         struct page *page;
3633         struct inode *btree_inode = root->fs_info->btree_inode;
3634         struct extent_buffer *eb;
3635         u64 start = 0;
3636         u64 end;
3637         u64 offset;
3638         unsigned long index;
3639
3640         while (1) {
3641                 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
3642                                             mark);
3643                 if (ret)
3644                         break;
3645
3646                 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
3647                 while (start <= end) {
3648                         index = start >> PAGE_CACHE_SHIFT;
3649                         start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
3650                         page = find_get_page(btree_inode->i_mapping, index);
3651                         if (!page)
3652                                 continue;
3653                         offset = page_offset(page);
3654
3655                         spin_lock(&dirty_pages->buffer_lock);
3656                         eb = radix_tree_lookup(
3657                              &(&BTRFS_I(page->mapping->host)->io_tree)->buffer,
3658                                                offset >> PAGE_CACHE_SHIFT);
3659                         spin_unlock(&dirty_pages->buffer_lock);
3660                         if (eb)
3661                                 ret = test_and_clear_bit(EXTENT_BUFFER_DIRTY,
3662                                                          &eb->bflags);
3663                         if (PageWriteback(page))
3664                                 end_page_writeback(page);
3665
3666                         lock_page(page);
3667                         if (PageDirty(page)) {
3668                                 clear_page_dirty_for_io(page);
3669                                 spin_lock_irq(&page->mapping->tree_lock);
3670                                 radix_tree_tag_clear(&page->mapping->page_tree,
3671                                                         page_index(page),
3672                                                         PAGECACHE_TAG_DIRTY);
3673                                 spin_unlock_irq(&page->mapping->tree_lock);
3674                         }
3675
3676                         unlock_page(page);
3677                         page_cache_release(page);
3678                 }
3679         }
3680
3681         return ret;
3682 }
3683
3684 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
3685                                        struct extent_io_tree *pinned_extents)
3686 {
3687         struct extent_io_tree *unpin;
3688         u64 start;
3689         u64 end;
3690         int ret;
3691         bool loop = true;
3692
3693         unpin = pinned_extents;
3694 again:
3695         while (1) {
3696                 ret = find_first_extent_bit(unpin, 0, &start, &end,
3697                                             EXTENT_DIRTY);
3698                 if (ret)
3699                         break;
3700
3701                 /* opt_discard */
3702                 if (btrfs_test_opt(root, DISCARD))
3703                         ret = btrfs_error_discard_extent(root, start,
3704                                                          end + 1 - start,
3705                                                          NULL);
3706
3707                 clear_extent_dirty(unpin, start, end, GFP_NOFS);
3708                 btrfs_error_unpin_extent_range(root, start, end);
3709                 cond_resched();
3710         }
3711
3712         if (loop) {
3713                 if (unpin == &root->fs_info->freed_extents[0])
3714                         unpin = &root->fs_info->freed_extents[1];
3715                 else
3716                         unpin = &root->fs_info->freed_extents[0];
3717                 loop = false;
3718                 goto again;
3719         }
3720
3721         return 0;
3722 }
3723
3724 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
3725                                    struct btrfs_root *root)
3726 {
3727         btrfs_destroy_delayed_refs(cur_trans, root);
3728         btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
3729                                 cur_trans->dirty_pages.dirty_bytes);
3730
3731         /* FIXME: cleanup wait for commit */
3732         cur_trans->in_commit = 1;
3733         cur_trans->blocked = 1;
3734         wake_up(&root->fs_info->transaction_blocked_wait);
3735
3736         cur_trans->blocked = 0;
3737         wake_up(&root->fs_info->transaction_wait);
3738
3739         cur_trans->commit_done = 1;
3740         wake_up(&cur_trans->commit_wait);
3741
3742         btrfs_destroy_delayed_inodes(root);
3743         btrfs_assert_delayed_root_empty(root);
3744
3745         btrfs_destroy_pending_snapshots(cur_trans);
3746
3747         btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
3748                                      EXTENT_DIRTY);
3749         btrfs_destroy_pinned_extent(root,
3750                                     root->fs_info->pinned_extents);
3751
3752         /*
3753         memset(cur_trans, 0, sizeof(*cur_trans));
3754         kmem_cache_free(btrfs_transaction_cachep, cur_trans);
3755         */
3756 }
3757
3758 int btrfs_cleanup_transaction(struct btrfs_root *root)
3759 {
3760         struct btrfs_transaction *t;
3761         LIST_HEAD(list);
3762
3763         mutex_lock(&root->fs_info->transaction_kthread_mutex);
3764
3765         spin_lock(&root->fs_info->trans_lock);
3766         list_splice_init(&root->fs_info->trans_list, &list);
3767         root->fs_info->trans_no_join = 1;
3768         spin_unlock(&root->fs_info->trans_lock);
3769
3770         while (!list_empty(&list)) {
3771                 t = list_entry(list.next, struct btrfs_transaction, list);
3772                 if (!t)
3773                         break;
3774
3775                 btrfs_destroy_ordered_operations(root);
3776
3777                 btrfs_destroy_ordered_extents(root);
3778
3779                 btrfs_destroy_delayed_refs(t, root);
3780
3781                 btrfs_block_rsv_release(root,
3782                                         &root->fs_info->trans_block_rsv,
3783                                         t->dirty_pages.dirty_bytes);
3784
3785                 /* FIXME: cleanup wait for commit */
3786                 t->in_commit = 1;
3787                 t->blocked = 1;
3788                 if (waitqueue_active(&root->fs_info->transaction_blocked_wait))
3789                         wake_up(&root->fs_info->transaction_blocked_wait);
3790
3791                 t->blocked = 0;
3792                 if (waitqueue_active(&root->fs_info->transaction_wait))
3793                         wake_up(&root->fs_info->transaction_wait);
3794
3795                 t->commit_done = 1;
3796                 if (waitqueue_active(&t->commit_wait))
3797                         wake_up(&t->commit_wait);
3798
3799                 btrfs_destroy_delayed_inodes(root);
3800                 btrfs_assert_delayed_root_empty(root);
3801
3802                 btrfs_destroy_pending_snapshots(t);
3803
3804                 btrfs_destroy_delalloc_inodes(root);
3805
3806                 spin_lock(&root->fs_info->trans_lock);
3807                 root->fs_info->running_transaction = NULL;
3808                 spin_unlock(&root->fs_info->trans_lock);
3809
3810                 btrfs_destroy_marked_extents(root, &t->dirty_pages,
3811                                              EXTENT_DIRTY);
3812
3813                 btrfs_destroy_pinned_extent(root,
3814                                             root->fs_info->pinned_extents);
3815
3816                 atomic_set(&t->use_count, 0);
3817                 list_del_init(&t->list);
3818                 memset(t, 0, sizeof(*t));
3819                 kmem_cache_free(btrfs_transaction_cachep, t);
3820         }
3821
3822         spin_lock(&root->fs_info->trans_lock);
3823         root->fs_info->trans_no_join = 0;
3824         spin_unlock(&root->fs_info->trans_lock);
3825         mutex_unlock(&root->fs_info->transaction_kthread_mutex);
3826
3827         return 0;
3828 }
3829
3830 static struct extent_io_ops btree_extent_io_ops = {
3831         .write_cache_pages_lock_hook = btree_lock_page_hook,
3832         .readpage_end_io_hook = btree_readpage_end_io_hook,
3833         .readpage_io_failed_hook = btree_io_failed_hook,
3834         .submit_bio_hook = btree_submit_bio_hook,
3835         /* note we're sharing with inode.c for the merge bio hook */
3836         .merge_bio_hook = btrfs_merge_bio_hook,
3837 };