]> git.karo-electronics.de Git - karo-tx-linux.git/blob - fs/btrfs/extent-tree.c
375f8c728d91888469a4820f1d669ea74c752b8c
[karo-tx-linux.git] / fs / btrfs / extent-tree.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 #include <linux/sched.h>
19 #include <linux/sched/signal.h>
20 #include <linux/pagemap.h>
21 #include <linux/writeback.h>
22 #include <linux/blkdev.h>
23 #include <linux/sort.h>
24 #include <linux/rcupdate.h>
25 #include <linux/kthread.h>
26 #include <linux/slab.h>
27 #include <linux/ratelimit.h>
28 #include <linux/percpu_counter.h>
29 #include "hash.h"
30 #include "tree-log.h"
31 #include "disk-io.h"
32 #include "print-tree.h"
33 #include "volumes.h"
34 #include "raid56.h"
35 #include "locking.h"
36 #include "free-space-cache.h"
37 #include "free-space-tree.h"
38 #include "math.h"
39 #include "sysfs.h"
40 #include "qgroup.h"
41
42 #undef SCRAMBLE_DELAYED_REFS
43
44 /*
45  * control flags for do_chunk_alloc's force field
46  * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
47  * if we really need one.
48  *
49  * CHUNK_ALLOC_LIMITED means to only try and allocate one
50  * if we have very few chunks already allocated.  This is
51  * used as part of the clustering code to help make sure
52  * we have a good pool of storage to cluster in, without
53  * filling the FS with empty chunks
54  *
55  * CHUNK_ALLOC_FORCE means it must try to allocate one
56  *
57  */
58 enum {
59         CHUNK_ALLOC_NO_FORCE = 0,
60         CHUNK_ALLOC_LIMITED = 1,
61         CHUNK_ALLOC_FORCE = 2,
62 };
63
64 static int update_block_group(struct btrfs_trans_handle *trans,
65                               struct btrfs_fs_info *fs_info, u64 bytenr,
66                               u64 num_bytes, int alloc);
67 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
68                                struct btrfs_fs_info *fs_info,
69                                 struct btrfs_delayed_ref_node *node, u64 parent,
70                                 u64 root_objectid, u64 owner_objectid,
71                                 u64 owner_offset, int refs_to_drop,
72                                 struct btrfs_delayed_extent_op *extra_op);
73 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
74                                     struct extent_buffer *leaf,
75                                     struct btrfs_extent_item *ei);
76 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
77                                       struct btrfs_fs_info *fs_info,
78                                       u64 parent, u64 root_objectid,
79                                       u64 flags, u64 owner, u64 offset,
80                                       struct btrfs_key *ins, int ref_mod);
81 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
82                                      struct btrfs_fs_info *fs_info,
83                                      u64 parent, u64 root_objectid,
84                                      u64 flags, struct btrfs_disk_key *key,
85                                      int level, struct btrfs_key *ins);
86 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
87                           struct btrfs_fs_info *fs_info, u64 flags,
88                           int force);
89 static int find_next_key(struct btrfs_path *path, int level,
90                          struct btrfs_key *key);
91 static void dump_space_info(struct btrfs_fs_info *fs_info,
92                             struct btrfs_space_info *info, u64 bytes,
93                             int dump_block_groups);
94 static int btrfs_add_reserved_bytes(struct btrfs_block_group_cache *cache,
95                                     u64 ram_bytes, u64 num_bytes, int delalloc);
96 static int btrfs_free_reserved_bytes(struct btrfs_block_group_cache *cache,
97                                      u64 num_bytes, int delalloc);
98 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
99                                u64 num_bytes);
100 static int __reserve_metadata_bytes(struct btrfs_fs_info *fs_info,
101                                     struct btrfs_space_info *space_info,
102                                     u64 orig_bytes,
103                                     enum btrfs_reserve_flush_enum flush,
104                                     bool system_chunk);
105 static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
106                                      struct btrfs_space_info *space_info,
107                                      u64 num_bytes);
108 static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
109                                      struct btrfs_space_info *space_info,
110                                      u64 num_bytes);
111
112 static noinline int
113 block_group_cache_done(struct btrfs_block_group_cache *cache)
114 {
115         smp_mb();
116         return cache->cached == BTRFS_CACHE_FINISHED ||
117                 cache->cached == BTRFS_CACHE_ERROR;
118 }
119
120 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
121 {
122         return (cache->flags & bits) == bits;
123 }
124
125 void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
126 {
127         atomic_inc(&cache->count);
128 }
129
130 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
131 {
132         if (atomic_dec_and_test(&cache->count)) {
133                 WARN_ON(cache->pinned > 0);
134                 WARN_ON(cache->reserved > 0);
135
136                 /*
137                  * If not empty, someone is still holding mutex of
138                  * full_stripe_lock, which can only be released by caller.
139                  * And it will definitely cause use-after-free when caller
140                  * tries to release full stripe lock.
141                  *
142                  * No better way to resolve, but only to warn.
143                  */
144                 WARN_ON(!RB_EMPTY_ROOT(&cache->full_stripe_locks_root.root));
145                 kfree(cache->free_space_ctl);
146                 kfree(cache);
147         }
148 }
149
150 /*
151  * this adds the block group to the fs_info rb tree for the block group
152  * cache
153  */
154 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
155                                 struct btrfs_block_group_cache *block_group)
156 {
157         struct rb_node **p;
158         struct rb_node *parent = NULL;
159         struct btrfs_block_group_cache *cache;
160
161         spin_lock(&info->block_group_cache_lock);
162         p = &info->block_group_cache_tree.rb_node;
163
164         while (*p) {
165                 parent = *p;
166                 cache = rb_entry(parent, struct btrfs_block_group_cache,
167                                  cache_node);
168                 if (block_group->key.objectid < cache->key.objectid) {
169                         p = &(*p)->rb_left;
170                 } else if (block_group->key.objectid > cache->key.objectid) {
171                         p = &(*p)->rb_right;
172                 } else {
173                         spin_unlock(&info->block_group_cache_lock);
174                         return -EEXIST;
175                 }
176         }
177
178         rb_link_node(&block_group->cache_node, parent, p);
179         rb_insert_color(&block_group->cache_node,
180                         &info->block_group_cache_tree);
181
182         if (info->first_logical_byte > block_group->key.objectid)
183                 info->first_logical_byte = block_group->key.objectid;
184
185         spin_unlock(&info->block_group_cache_lock);
186
187         return 0;
188 }
189
190 /*
191  * This will return the block group at or after bytenr if contains is 0, else
192  * it will return the block group that contains the bytenr
193  */
194 static struct btrfs_block_group_cache *
195 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
196                               int contains)
197 {
198         struct btrfs_block_group_cache *cache, *ret = NULL;
199         struct rb_node *n;
200         u64 end, start;
201
202         spin_lock(&info->block_group_cache_lock);
203         n = info->block_group_cache_tree.rb_node;
204
205         while (n) {
206                 cache = rb_entry(n, struct btrfs_block_group_cache,
207                                  cache_node);
208                 end = cache->key.objectid + cache->key.offset - 1;
209                 start = cache->key.objectid;
210
211                 if (bytenr < start) {
212                         if (!contains && (!ret || start < ret->key.objectid))
213                                 ret = cache;
214                         n = n->rb_left;
215                 } else if (bytenr > start) {
216                         if (contains && bytenr <= end) {
217                                 ret = cache;
218                                 break;
219                         }
220                         n = n->rb_right;
221                 } else {
222                         ret = cache;
223                         break;
224                 }
225         }
226         if (ret) {
227                 btrfs_get_block_group(ret);
228                 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
229                         info->first_logical_byte = ret->key.objectid;
230         }
231         spin_unlock(&info->block_group_cache_lock);
232
233         return ret;
234 }
235
236 static int add_excluded_extent(struct btrfs_fs_info *fs_info,
237                                u64 start, u64 num_bytes)
238 {
239         u64 end = start + num_bytes - 1;
240         set_extent_bits(&fs_info->freed_extents[0],
241                         start, end, EXTENT_UPTODATE);
242         set_extent_bits(&fs_info->freed_extents[1],
243                         start, end, EXTENT_UPTODATE);
244         return 0;
245 }
246
247 static void free_excluded_extents(struct btrfs_fs_info *fs_info,
248                                   struct btrfs_block_group_cache *cache)
249 {
250         u64 start, end;
251
252         start = cache->key.objectid;
253         end = start + cache->key.offset - 1;
254
255         clear_extent_bits(&fs_info->freed_extents[0],
256                           start, end, EXTENT_UPTODATE);
257         clear_extent_bits(&fs_info->freed_extents[1],
258                           start, end, EXTENT_UPTODATE);
259 }
260
261 static int exclude_super_stripes(struct btrfs_fs_info *fs_info,
262                                  struct btrfs_block_group_cache *cache)
263 {
264         u64 bytenr;
265         u64 *logical;
266         int stripe_len;
267         int i, nr, ret;
268
269         if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
270                 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
271                 cache->bytes_super += stripe_len;
272                 ret = add_excluded_extent(fs_info, cache->key.objectid,
273                                           stripe_len);
274                 if (ret)
275                         return ret;
276         }
277
278         for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
279                 bytenr = btrfs_sb_offset(i);
280                 ret = btrfs_rmap_block(fs_info, cache->key.objectid,
281                                        bytenr, 0, &logical, &nr, &stripe_len);
282                 if (ret)
283                         return ret;
284
285                 while (nr--) {
286                         u64 start, len;
287
288                         if (logical[nr] > cache->key.objectid +
289                             cache->key.offset)
290                                 continue;
291
292                         if (logical[nr] + stripe_len <= cache->key.objectid)
293                                 continue;
294
295                         start = logical[nr];
296                         if (start < cache->key.objectid) {
297                                 start = cache->key.objectid;
298                                 len = (logical[nr] + stripe_len) - start;
299                         } else {
300                                 len = min_t(u64, stripe_len,
301                                             cache->key.objectid +
302                                             cache->key.offset - start);
303                         }
304
305                         cache->bytes_super += len;
306                         ret = add_excluded_extent(fs_info, start, len);
307                         if (ret) {
308                                 kfree(logical);
309                                 return ret;
310                         }
311                 }
312
313                 kfree(logical);
314         }
315         return 0;
316 }
317
318 static struct btrfs_caching_control *
319 get_caching_control(struct btrfs_block_group_cache *cache)
320 {
321         struct btrfs_caching_control *ctl;
322
323         spin_lock(&cache->lock);
324         if (!cache->caching_ctl) {
325                 spin_unlock(&cache->lock);
326                 return NULL;
327         }
328
329         ctl = cache->caching_ctl;
330         refcount_inc(&ctl->count);
331         spin_unlock(&cache->lock);
332         return ctl;
333 }
334
335 static void put_caching_control(struct btrfs_caching_control *ctl)
336 {
337         if (refcount_dec_and_test(&ctl->count))
338                 kfree(ctl);
339 }
340
341 #ifdef CONFIG_BTRFS_DEBUG
342 static void fragment_free_space(struct btrfs_block_group_cache *block_group)
343 {
344         struct btrfs_fs_info *fs_info = block_group->fs_info;
345         u64 start = block_group->key.objectid;
346         u64 len = block_group->key.offset;
347         u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
348                 fs_info->nodesize : fs_info->sectorsize;
349         u64 step = chunk << 1;
350
351         while (len > chunk) {
352                 btrfs_remove_free_space(block_group, start, chunk);
353                 start += step;
354                 if (len < step)
355                         len = 0;
356                 else
357                         len -= step;
358         }
359 }
360 #endif
361
362 /*
363  * this is only called by cache_block_group, since we could have freed extents
364  * we need to check the pinned_extents for any extents that can't be used yet
365  * since their free space will be released as soon as the transaction commits.
366  */
367 u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
368                        struct btrfs_fs_info *info, u64 start, u64 end)
369 {
370         u64 extent_start, extent_end, size, total_added = 0;
371         int ret;
372
373         while (start < end) {
374                 ret = find_first_extent_bit(info->pinned_extents, start,
375                                             &extent_start, &extent_end,
376                                             EXTENT_DIRTY | EXTENT_UPTODATE,
377                                             NULL);
378                 if (ret)
379                         break;
380
381                 if (extent_start <= start) {
382                         start = extent_end + 1;
383                 } else if (extent_start > start && extent_start < end) {
384                         size = extent_start - start;
385                         total_added += size;
386                         ret = btrfs_add_free_space(block_group, start,
387                                                    size);
388                         BUG_ON(ret); /* -ENOMEM or logic error */
389                         start = extent_end + 1;
390                 } else {
391                         break;
392                 }
393         }
394
395         if (start < end) {
396                 size = end - start;
397                 total_added += size;
398                 ret = btrfs_add_free_space(block_group, start, size);
399                 BUG_ON(ret); /* -ENOMEM or logic error */
400         }
401
402         return total_added;
403 }
404
405 static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
406 {
407         struct btrfs_block_group_cache *block_group = caching_ctl->block_group;
408         struct btrfs_fs_info *fs_info = block_group->fs_info;
409         struct btrfs_root *extent_root = fs_info->extent_root;
410         struct btrfs_path *path;
411         struct extent_buffer *leaf;
412         struct btrfs_key key;
413         u64 total_found = 0;
414         u64 last = 0;
415         u32 nritems;
416         int ret;
417         bool wakeup = true;
418
419         path = btrfs_alloc_path();
420         if (!path)
421                 return -ENOMEM;
422
423         last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
424
425 #ifdef CONFIG_BTRFS_DEBUG
426         /*
427          * If we're fragmenting we don't want to make anybody think we can
428          * allocate from this block group until we've had a chance to fragment
429          * the free space.
430          */
431         if (btrfs_should_fragment_free_space(block_group))
432                 wakeup = false;
433 #endif
434         /*
435          * We don't want to deadlock with somebody trying to allocate a new
436          * extent for the extent root while also trying to search the extent
437          * root to add free space.  So we skip locking and search the commit
438          * root, since its read-only
439          */
440         path->skip_locking = 1;
441         path->search_commit_root = 1;
442         path->reada = READA_FORWARD;
443
444         key.objectid = last;
445         key.offset = 0;
446         key.type = BTRFS_EXTENT_ITEM_KEY;
447
448 next:
449         ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
450         if (ret < 0)
451                 goto out;
452
453         leaf = path->nodes[0];
454         nritems = btrfs_header_nritems(leaf);
455
456         while (1) {
457                 if (btrfs_fs_closing(fs_info) > 1) {
458                         last = (u64)-1;
459                         break;
460                 }
461
462                 if (path->slots[0] < nritems) {
463                         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
464                 } else {
465                         ret = find_next_key(path, 0, &key);
466                         if (ret)
467                                 break;
468
469                         if (need_resched() ||
470                             rwsem_is_contended(&fs_info->commit_root_sem)) {
471                                 if (wakeup)
472                                         caching_ctl->progress = last;
473                                 btrfs_release_path(path);
474                                 up_read(&fs_info->commit_root_sem);
475                                 mutex_unlock(&caching_ctl->mutex);
476                                 cond_resched();
477                                 mutex_lock(&caching_ctl->mutex);
478                                 down_read(&fs_info->commit_root_sem);
479                                 goto next;
480                         }
481
482                         ret = btrfs_next_leaf(extent_root, path);
483                         if (ret < 0)
484                                 goto out;
485                         if (ret)
486                                 break;
487                         leaf = path->nodes[0];
488                         nritems = btrfs_header_nritems(leaf);
489                         continue;
490                 }
491
492                 if (key.objectid < last) {
493                         key.objectid = last;
494                         key.offset = 0;
495                         key.type = BTRFS_EXTENT_ITEM_KEY;
496
497                         if (wakeup)
498                                 caching_ctl->progress = last;
499                         btrfs_release_path(path);
500                         goto next;
501                 }
502
503                 if (key.objectid < block_group->key.objectid) {
504                         path->slots[0]++;
505                         continue;
506                 }
507
508                 if (key.objectid >= block_group->key.objectid +
509                     block_group->key.offset)
510                         break;
511
512                 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
513                     key.type == BTRFS_METADATA_ITEM_KEY) {
514                         total_found += add_new_free_space(block_group,
515                                                           fs_info, last,
516                                                           key.objectid);
517                         if (key.type == BTRFS_METADATA_ITEM_KEY)
518                                 last = key.objectid +
519                                         fs_info->nodesize;
520                         else
521                                 last = key.objectid + key.offset;
522
523                         if (total_found > CACHING_CTL_WAKE_UP) {
524                                 total_found = 0;
525                                 if (wakeup)
526                                         wake_up(&caching_ctl->wait);
527                         }
528                 }
529                 path->slots[0]++;
530         }
531         ret = 0;
532
533         total_found += add_new_free_space(block_group, fs_info, last,
534                                           block_group->key.objectid +
535                                           block_group->key.offset);
536         caching_ctl->progress = (u64)-1;
537
538 out:
539         btrfs_free_path(path);
540         return ret;
541 }
542
543 static noinline void caching_thread(struct btrfs_work *work)
544 {
545         struct btrfs_block_group_cache *block_group;
546         struct btrfs_fs_info *fs_info;
547         struct btrfs_caching_control *caching_ctl;
548         struct btrfs_root *extent_root;
549         int ret;
550
551         caching_ctl = container_of(work, struct btrfs_caching_control, work);
552         block_group = caching_ctl->block_group;
553         fs_info = block_group->fs_info;
554         extent_root = fs_info->extent_root;
555
556         mutex_lock(&caching_ctl->mutex);
557         down_read(&fs_info->commit_root_sem);
558
559         if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
560                 ret = load_free_space_tree(caching_ctl);
561         else
562                 ret = load_extent_tree_free(caching_ctl);
563
564         spin_lock(&block_group->lock);
565         block_group->caching_ctl = NULL;
566         block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
567         spin_unlock(&block_group->lock);
568
569 #ifdef CONFIG_BTRFS_DEBUG
570         if (btrfs_should_fragment_free_space(block_group)) {
571                 u64 bytes_used;
572
573                 spin_lock(&block_group->space_info->lock);
574                 spin_lock(&block_group->lock);
575                 bytes_used = block_group->key.offset -
576                         btrfs_block_group_used(&block_group->item);
577                 block_group->space_info->bytes_used += bytes_used >> 1;
578                 spin_unlock(&block_group->lock);
579                 spin_unlock(&block_group->space_info->lock);
580                 fragment_free_space(block_group);
581         }
582 #endif
583
584         caching_ctl->progress = (u64)-1;
585
586         up_read(&fs_info->commit_root_sem);
587         free_excluded_extents(fs_info, block_group);
588         mutex_unlock(&caching_ctl->mutex);
589
590         wake_up(&caching_ctl->wait);
591
592         put_caching_control(caching_ctl);
593         btrfs_put_block_group(block_group);
594 }
595
596 static int cache_block_group(struct btrfs_block_group_cache *cache,
597                              int load_cache_only)
598 {
599         DEFINE_WAIT(wait);
600         struct btrfs_fs_info *fs_info = cache->fs_info;
601         struct btrfs_caching_control *caching_ctl;
602         int ret = 0;
603
604         caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
605         if (!caching_ctl)
606                 return -ENOMEM;
607
608         INIT_LIST_HEAD(&caching_ctl->list);
609         mutex_init(&caching_ctl->mutex);
610         init_waitqueue_head(&caching_ctl->wait);
611         caching_ctl->block_group = cache;
612         caching_ctl->progress = cache->key.objectid;
613         refcount_set(&caching_ctl->count, 1);
614         btrfs_init_work(&caching_ctl->work, btrfs_cache_helper,
615                         caching_thread, NULL, NULL);
616
617         spin_lock(&cache->lock);
618         /*
619          * This should be a rare occasion, but this could happen I think in the
620          * case where one thread starts to load the space cache info, and then
621          * some other thread starts a transaction commit which tries to do an
622          * allocation while the other thread is still loading the space cache
623          * info.  The previous loop should have kept us from choosing this block
624          * group, but if we've moved to the state where we will wait on caching
625          * block groups we need to first check if we're doing a fast load here,
626          * so we can wait for it to finish, otherwise we could end up allocating
627          * from a block group who's cache gets evicted for one reason or
628          * another.
629          */
630         while (cache->cached == BTRFS_CACHE_FAST) {
631                 struct btrfs_caching_control *ctl;
632
633                 ctl = cache->caching_ctl;
634                 refcount_inc(&ctl->count);
635                 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
636                 spin_unlock(&cache->lock);
637
638                 schedule();
639
640                 finish_wait(&ctl->wait, &wait);
641                 put_caching_control(ctl);
642                 spin_lock(&cache->lock);
643         }
644
645         if (cache->cached != BTRFS_CACHE_NO) {
646                 spin_unlock(&cache->lock);
647                 kfree(caching_ctl);
648                 return 0;
649         }
650         WARN_ON(cache->caching_ctl);
651         cache->caching_ctl = caching_ctl;
652         cache->cached = BTRFS_CACHE_FAST;
653         spin_unlock(&cache->lock);
654
655         if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) {
656                 mutex_lock(&caching_ctl->mutex);
657                 ret = load_free_space_cache(fs_info, cache);
658
659                 spin_lock(&cache->lock);
660                 if (ret == 1) {
661                         cache->caching_ctl = NULL;
662                         cache->cached = BTRFS_CACHE_FINISHED;
663                         cache->last_byte_to_unpin = (u64)-1;
664                         caching_ctl->progress = (u64)-1;
665                 } else {
666                         if (load_cache_only) {
667                                 cache->caching_ctl = NULL;
668                                 cache->cached = BTRFS_CACHE_NO;
669                         } else {
670                                 cache->cached = BTRFS_CACHE_STARTED;
671                                 cache->has_caching_ctl = 1;
672                         }
673                 }
674                 spin_unlock(&cache->lock);
675 #ifdef CONFIG_BTRFS_DEBUG
676                 if (ret == 1 &&
677                     btrfs_should_fragment_free_space(cache)) {
678                         u64 bytes_used;
679
680                         spin_lock(&cache->space_info->lock);
681                         spin_lock(&cache->lock);
682                         bytes_used = cache->key.offset -
683                                 btrfs_block_group_used(&cache->item);
684                         cache->space_info->bytes_used += bytes_used >> 1;
685                         spin_unlock(&cache->lock);
686                         spin_unlock(&cache->space_info->lock);
687                         fragment_free_space(cache);
688                 }
689 #endif
690                 mutex_unlock(&caching_ctl->mutex);
691
692                 wake_up(&caching_ctl->wait);
693                 if (ret == 1) {
694                         put_caching_control(caching_ctl);
695                         free_excluded_extents(fs_info, cache);
696                         return 0;
697                 }
698         } else {
699                 /*
700                  * We're either using the free space tree or no caching at all.
701                  * Set cached to the appropriate value and wakeup any waiters.
702                  */
703                 spin_lock(&cache->lock);
704                 if (load_cache_only) {
705                         cache->caching_ctl = NULL;
706                         cache->cached = BTRFS_CACHE_NO;
707                 } else {
708                         cache->cached = BTRFS_CACHE_STARTED;
709                         cache->has_caching_ctl = 1;
710                 }
711                 spin_unlock(&cache->lock);
712                 wake_up(&caching_ctl->wait);
713         }
714
715         if (load_cache_only) {
716                 put_caching_control(caching_ctl);
717                 return 0;
718         }
719
720         down_write(&fs_info->commit_root_sem);
721         refcount_inc(&caching_ctl->count);
722         list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
723         up_write(&fs_info->commit_root_sem);
724
725         btrfs_get_block_group(cache);
726
727         btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
728
729         return ret;
730 }
731
732 /*
733  * return the block group that starts at or after bytenr
734  */
735 static struct btrfs_block_group_cache *
736 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
737 {
738         return block_group_cache_tree_search(info, bytenr, 0);
739 }
740
741 /*
742  * return the block group that contains the given bytenr
743  */
744 struct btrfs_block_group_cache *btrfs_lookup_block_group(
745                                                  struct btrfs_fs_info *info,
746                                                  u64 bytenr)
747 {
748         return block_group_cache_tree_search(info, bytenr, 1);
749 }
750
751 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
752                                                   u64 flags)
753 {
754         struct list_head *head = &info->space_info;
755         struct btrfs_space_info *found;
756
757         flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
758
759         rcu_read_lock();
760         list_for_each_entry_rcu(found, head, list) {
761                 if (found->flags & flags) {
762                         rcu_read_unlock();
763                         return found;
764                 }
765         }
766         rcu_read_unlock();
767         return NULL;
768 }
769
770 static void add_pinned_bytes(struct btrfs_fs_info *fs_info, s64 num_bytes,
771                              u64 owner, u64 root_objectid)
772 {
773         struct btrfs_space_info *space_info;
774         u64 flags;
775
776         if (owner < BTRFS_FIRST_FREE_OBJECTID) {
777                 if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
778                         flags = BTRFS_BLOCK_GROUP_SYSTEM;
779                 else
780                         flags = BTRFS_BLOCK_GROUP_METADATA;
781         } else {
782                 flags = BTRFS_BLOCK_GROUP_DATA;
783         }
784
785         space_info = __find_space_info(fs_info, flags);
786         ASSERT(space_info);
787         percpu_counter_add(&space_info->total_bytes_pinned, num_bytes);
788 }
789
790 /*
791  * after adding space to the filesystem, we need to clear the full flags
792  * on all the space infos.
793  */
794 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
795 {
796         struct list_head *head = &info->space_info;
797         struct btrfs_space_info *found;
798
799         rcu_read_lock();
800         list_for_each_entry_rcu(found, head, list)
801                 found->full = 0;
802         rcu_read_unlock();
803 }
804
805 /* simple helper to search for an existing data extent at a given offset */
806 int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len)
807 {
808         int ret;
809         struct btrfs_key key;
810         struct btrfs_path *path;
811
812         path = btrfs_alloc_path();
813         if (!path)
814                 return -ENOMEM;
815
816         key.objectid = start;
817         key.offset = len;
818         key.type = BTRFS_EXTENT_ITEM_KEY;
819         ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
820         btrfs_free_path(path);
821         return ret;
822 }
823
824 /*
825  * helper function to lookup reference count and flags of a tree block.
826  *
827  * the head node for delayed ref is used to store the sum of all the
828  * reference count modifications queued up in the rbtree. the head
829  * node may also store the extent flags to set. This way you can check
830  * to see what the reference count and extent flags would be if all of
831  * the delayed refs are not processed.
832  */
833 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
834                              struct btrfs_fs_info *fs_info, u64 bytenr,
835                              u64 offset, int metadata, u64 *refs, u64 *flags)
836 {
837         struct btrfs_delayed_ref_head *head;
838         struct btrfs_delayed_ref_root *delayed_refs;
839         struct btrfs_path *path;
840         struct btrfs_extent_item *ei;
841         struct extent_buffer *leaf;
842         struct btrfs_key key;
843         u32 item_size;
844         u64 num_refs;
845         u64 extent_flags;
846         int ret;
847
848         /*
849          * If we don't have skinny metadata, don't bother doing anything
850          * different
851          */
852         if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) {
853                 offset = fs_info->nodesize;
854                 metadata = 0;
855         }
856
857         path = btrfs_alloc_path();
858         if (!path)
859                 return -ENOMEM;
860
861         if (!trans) {
862                 path->skip_locking = 1;
863                 path->search_commit_root = 1;
864         }
865
866 search_again:
867         key.objectid = bytenr;
868         key.offset = offset;
869         if (metadata)
870                 key.type = BTRFS_METADATA_ITEM_KEY;
871         else
872                 key.type = BTRFS_EXTENT_ITEM_KEY;
873
874         ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
875         if (ret < 0)
876                 goto out_free;
877
878         if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
879                 if (path->slots[0]) {
880                         path->slots[0]--;
881                         btrfs_item_key_to_cpu(path->nodes[0], &key,
882                                               path->slots[0]);
883                         if (key.objectid == bytenr &&
884                             key.type == BTRFS_EXTENT_ITEM_KEY &&
885                             key.offset == fs_info->nodesize)
886                                 ret = 0;
887                 }
888         }
889
890         if (ret == 0) {
891                 leaf = path->nodes[0];
892                 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
893                 if (item_size >= sizeof(*ei)) {
894                         ei = btrfs_item_ptr(leaf, path->slots[0],
895                                             struct btrfs_extent_item);
896                         num_refs = btrfs_extent_refs(leaf, ei);
897                         extent_flags = btrfs_extent_flags(leaf, ei);
898                 } else {
899 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
900                         struct btrfs_extent_item_v0 *ei0;
901                         BUG_ON(item_size != sizeof(*ei0));
902                         ei0 = btrfs_item_ptr(leaf, path->slots[0],
903                                              struct btrfs_extent_item_v0);
904                         num_refs = btrfs_extent_refs_v0(leaf, ei0);
905                         /* FIXME: this isn't correct for data */
906                         extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
907 #else
908                         BUG();
909 #endif
910                 }
911                 BUG_ON(num_refs == 0);
912         } else {
913                 num_refs = 0;
914                 extent_flags = 0;
915                 ret = 0;
916         }
917
918         if (!trans)
919                 goto out;
920
921         delayed_refs = &trans->transaction->delayed_refs;
922         spin_lock(&delayed_refs->lock);
923         head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
924         if (head) {
925                 if (!mutex_trylock(&head->mutex)) {
926                         refcount_inc(&head->node.refs);
927                         spin_unlock(&delayed_refs->lock);
928
929                         btrfs_release_path(path);
930
931                         /*
932                          * Mutex was contended, block until it's released and try
933                          * again
934                          */
935                         mutex_lock(&head->mutex);
936                         mutex_unlock(&head->mutex);
937                         btrfs_put_delayed_ref(&head->node);
938                         goto search_again;
939                 }
940                 spin_lock(&head->lock);
941                 if (head->extent_op && head->extent_op->update_flags)
942                         extent_flags |= head->extent_op->flags_to_set;
943                 else
944                         BUG_ON(num_refs == 0);
945
946                 num_refs += head->node.ref_mod;
947                 spin_unlock(&head->lock);
948                 mutex_unlock(&head->mutex);
949         }
950         spin_unlock(&delayed_refs->lock);
951 out:
952         WARN_ON(num_refs == 0);
953         if (refs)
954                 *refs = num_refs;
955         if (flags)
956                 *flags = extent_flags;
957 out_free:
958         btrfs_free_path(path);
959         return ret;
960 }
961
962 /*
963  * Back reference rules.  Back refs have three main goals:
964  *
965  * 1) differentiate between all holders of references to an extent so that
966  *    when a reference is dropped we can make sure it was a valid reference
967  *    before freeing the extent.
968  *
969  * 2) Provide enough information to quickly find the holders of an extent
970  *    if we notice a given block is corrupted or bad.
971  *
972  * 3) Make it easy to migrate blocks for FS shrinking or storage pool
973  *    maintenance.  This is actually the same as #2, but with a slightly
974  *    different use case.
975  *
976  * There are two kinds of back refs. The implicit back refs is optimized
977  * for pointers in non-shared tree blocks. For a given pointer in a block,
978  * back refs of this kind provide information about the block's owner tree
979  * and the pointer's key. These information allow us to find the block by
980  * b-tree searching. The full back refs is for pointers in tree blocks not
981  * referenced by their owner trees. The location of tree block is recorded
982  * in the back refs. Actually the full back refs is generic, and can be
983  * used in all cases the implicit back refs is used. The major shortcoming
984  * of the full back refs is its overhead. Every time a tree block gets
985  * COWed, we have to update back refs entry for all pointers in it.
986  *
987  * For a newly allocated tree block, we use implicit back refs for
988  * pointers in it. This means most tree related operations only involve
989  * implicit back refs. For a tree block created in old transaction, the
990  * only way to drop a reference to it is COW it. So we can detect the
991  * event that tree block loses its owner tree's reference and do the
992  * back refs conversion.
993  *
994  * When a tree block is COWed through a tree, there are four cases:
995  *
996  * The reference count of the block is one and the tree is the block's
997  * owner tree. Nothing to do in this case.
998  *
999  * The reference count of the block is one and the tree is not the
1000  * block's owner tree. In this case, full back refs is used for pointers
1001  * in the block. Remove these full back refs, add implicit back refs for
1002  * every pointers in the new block.
1003  *
1004  * The reference count of the block is greater than one and the tree is
1005  * the block's owner tree. In this case, implicit back refs is used for
1006  * pointers in the block. Add full back refs for every pointers in the
1007  * block, increase lower level extents' reference counts. The original
1008  * implicit back refs are entailed to the new block.
1009  *
1010  * The reference count of the block is greater than one and the tree is
1011  * not the block's owner tree. Add implicit back refs for every pointer in
1012  * the new block, increase lower level extents' reference count.
1013  *
1014  * Back Reference Key composing:
1015  *
1016  * The key objectid corresponds to the first byte in the extent,
1017  * The key type is used to differentiate between types of back refs.
1018  * There are different meanings of the key offset for different types
1019  * of back refs.
1020  *
1021  * File extents can be referenced by:
1022  *
1023  * - multiple snapshots, subvolumes, or different generations in one subvol
1024  * - different files inside a single subvolume
1025  * - different offsets inside a file (bookend extents in file.c)
1026  *
1027  * The extent ref structure for the implicit back refs has fields for:
1028  *
1029  * - Objectid of the subvolume root
1030  * - objectid of the file holding the reference
1031  * - original offset in the file
1032  * - how many bookend extents
1033  *
1034  * The key offset for the implicit back refs is hash of the first
1035  * three fields.
1036  *
1037  * The extent ref structure for the full back refs has field for:
1038  *
1039  * - number of pointers in the tree leaf
1040  *
1041  * The key offset for the implicit back refs is the first byte of
1042  * the tree leaf
1043  *
1044  * When a file extent is allocated, The implicit back refs is used.
1045  * the fields are filled in:
1046  *
1047  *     (root_key.objectid, inode objectid, offset in file, 1)
1048  *
1049  * When a file extent is removed file truncation, we find the
1050  * corresponding implicit back refs and check the following fields:
1051  *
1052  *     (btrfs_header_owner(leaf), inode objectid, offset in file)
1053  *
1054  * Btree extents can be referenced by:
1055  *
1056  * - Different subvolumes
1057  *
1058  * Both the implicit back refs and the full back refs for tree blocks
1059  * only consist of key. The key offset for the implicit back refs is
1060  * objectid of block's owner tree. The key offset for the full back refs
1061  * is the first byte of parent block.
1062  *
1063  * When implicit back refs is used, information about the lowest key and
1064  * level of the tree block are required. These information are stored in
1065  * tree block info structure.
1066  */
1067
1068 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1069 static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
1070                                   struct btrfs_fs_info *fs_info,
1071                                   struct btrfs_path *path,
1072                                   u64 owner, u32 extra_size)
1073 {
1074         struct btrfs_root *root = fs_info->extent_root;
1075         struct btrfs_extent_item *item;
1076         struct btrfs_extent_item_v0 *ei0;
1077         struct btrfs_extent_ref_v0 *ref0;
1078         struct btrfs_tree_block_info *bi;
1079         struct extent_buffer *leaf;
1080         struct btrfs_key key;
1081         struct btrfs_key found_key;
1082         u32 new_size = sizeof(*item);
1083         u64 refs;
1084         int ret;
1085
1086         leaf = path->nodes[0];
1087         BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
1088
1089         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1090         ei0 = btrfs_item_ptr(leaf, path->slots[0],
1091                              struct btrfs_extent_item_v0);
1092         refs = btrfs_extent_refs_v0(leaf, ei0);
1093
1094         if (owner == (u64)-1) {
1095                 while (1) {
1096                         if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1097                                 ret = btrfs_next_leaf(root, path);
1098                                 if (ret < 0)
1099                                         return ret;
1100                                 BUG_ON(ret > 0); /* Corruption */
1101                                 leaf = path->nodes[0];
1102                         }
1103                         btrfs_item_key_to_cpu(leaf, &found_key,
1104                                               path->slots[0]);
1105                         BUG_ON(key.objectid != found_key.objectid);
1106                         if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
1107                                 path->slots[0]++;
1108                                 continue;
1109                         }
1110                         ref0 = btrfs_item_ptr(leaf, path->slots[0],
1111                                               struct btrfs_extent_ref_v0);
1112                         owner = btrfs_ref_objectid_v0(leaf, ref0);
1113                         break;
1114                 }
1115         }
1116         btrfs_release_path(path);
1117
1118         if (owner < BTRFS_FIRST_FREE_OBJECTID)
1119                 new_size += sizeof(*bi);
1120
1121         new_size -= sizeof(*ei0);
1122         ret = btrfs_search_slot(trans, root, &key, path,
1123                                 new_size + extra_size, 1);
1124         if (ret < 0)
1125                 return ret;
1126         BUG_ON(ret); /* Corruption */
1127
1128         btrfs_extend_item(fs_info, path, new_size);
1129
1130         leaf = path->nodes[0];
1131         item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1132         btrfs_set_extent_refs(leaf, item, refs);
1133         /* FIXME: get real generation */
1134         btrfs_set_extent_generation(leaf, item, 0);
1135         if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1136                 btrfs_set_extent_flags(leaf, item,
1137                                        BTRFS_EXTENT_FLAG_TREE_BLOCK |
1138                                        BTRFS_BLOCK_FLAG_FULL_BACKREF);
1139                 bi = (struct btrfs_tree_block_info *)(item + 1);
1140                 /* FIXME: get first key of the block */
1141                 memzero_extent_buffer(leaf, (unsigned long)bi, sizeof(*bi));
1142                 btrfs_set_tree_block_level(leaf, bi, (int)owner);
1143         } else {
1144                 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1145         }
1146         btrfs_mark_buffer_dirty(leaf);
1147         return 0;
1148 }
1149 #endif
1150
1151 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1152 {
1153         u32 high_crc = ~(u32)0;
1154         u32 low_crc = ~(u32)0;
1155         __le64 lenum;
1156
1157         lenum = cpu_to_le64(root_objectid);
1158         high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
1159         lenum = cpu_to_le64(owner);
1160         low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1161         lenum = cpu_to_le64(offset);
1162         low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1163
1164         return ((u64)high_crc << 31) ^ (u64)low_crc;
1165 }
1166
1167 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1168                                      struct btrfs_extent_data_ref *ref)
1169 {
1170         return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1171                                     btrfs_extent_data_ref_objectid(leaf, ref),
1172                                     btrfs_extent_data_ref_offset(leaf, ref));
1173 }
1174
1175 static int match_extent_data_ref(struct extent_buffer *leaf,
1176                                  struct btrfs_extent_data_ref *ref,
1177                                  u64 root_objectid, u64 owner, u64 offset)
1178 {
1179         if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1180             btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1181             btrfs_extent_data_ref_offset(leaf, ref) != offset)
1182                 return 0;
1183         return 1;
1184 }
1185
1186 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1187                                            struct btrfs_fs_info *fs_info,
1188                                            struct btrfs_path *path,
1189                                            u64 bytenr, u64 parent,
1190                                            u64 root_objectid,
1191                                            u64 owner, u64 offset)
1192 {
1193         struct btrfs_root *root = fs_info->extent_root;
1194         struct btrfs_key key;
1195         struct btrfs_extent_data_ref *ref;
1196         struct extent_buffer *leaf;
1197         u32 nritems;
1198         int ret;
1199         int recow;
1200         int err = -ENOENT;
1201
1202         key.objectid = bytenr;
1203         if (parent) {
1204                 key.type = BTRFS_SHARED_DATA_REF_KEY;
1205                 key.offset = parent;
1206         } else {
1207                 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1208                 key.offset = hash_extent_data_ref(root_objectid,
1209                                                   owner, offset);
1210         }
1211 again:
1212         recow = 0;
1213         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1214         if (ret < 0) {
1215                 err = ret;
1216                 goto fail;
1217         }
1218
1219         if (parent) {
1220                 if (!ret)
1221                         return 0;
1222 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1223                 key.type = BTRFS_EXTENT_REF_V0_KEY;
1224                 btrfs_release_path(path);
1225                 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1226                 if (ret < 0) {
1227                         err = ret;
1228                         goto fail;
1229                 }
1230                 if (!ret)
1231                         return 0;
1232 #endif
1233                 goto fail;
1234         }
1235
1236         leaf = path->nodes[0];
1237         nritems = btrfs_header_nritems(leaf);
1238         while (1) {
1239                 if (path->slots[0] >= nritems) {
1240                         ret = btrfs_next_leaf(root, path);
1241                         if (ret < 0)
1242                                 err = ret;
1243                         if (ret)
1244                                 goto fail;
1245
1246                         leaf = path->nodes[0];
1247                         nritems = btrfs_header_nritems(leaf);
1248                         recow = 1;
1249                 }
1250
1251                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1252                 if (key.objectid != bytenr ||
1253                     key.type != BTRFS_EXTENT_DATA_REF_KEY)
1254                         goto fail;
1255
1256                 ref = btrfs_item_ptr(leaf, path->slots[0],
1257                                      struct btrfs_extent_data_ref);
1258
1259                 if (match_extent_data_ref(leaf, ref, root_objectid,
1260                                           owner, offset)) {
1261                         if (recow) {
1262                                 btrfs_release_path(path);
1263                                 goto again;
1264                         }
1265                         err = 0;
1266                         break;
1267                 }
1268                 path->slots[0]++;
1269         }
1270 fail:
1271         return err;
1272 }
1273
1274 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1275                                            struct btrfs_fs_info *fs_info,
1276                                            struct btrfs_path *path,
1277                                            u64 bytenr, u64 parent,
1278                                            u64 root_objectid, u64 owner,
1279                                            u64 offset, int refs_to_add)
1280 {
1281         struct btrfs_root *root = fs_info->extent_root;
1282         struct btrfs_key key;
1283         struct extent_buffer *leaf;
1284         u32 size;
1285         u32 num_refs;
1286         int ret;
1287
1288         key.objectid = bytenr;
1289         if (parent) {
1290                 key.type = BTRFS_SHARED_DATA_REF_KEY;
1291                 key.offset = parent;
1292                 size = sizeof(struct btrfs_shared_data_ref);
1293         } else {
1294                 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1295                 key.offset = hash_extent_data_ref(root_objectid,
1296                                                   owner, offset);
1297                 size = sizeof(struct btrfs_extent_data_ref);
1298         }
1299
1300         ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1301         if (ret && ret != -EEXIST)
1302                 goto fail;
1303
1304         leaf = path->nodes[0];
1305         if (parent) {
1306                 struct btrfs_shared_data_ref *ref;
1307                 ref = btrfs_item_ptr(leaf, path->slots[0],
1308                                      struct btrfs_shared_data_ref);
1309                 if (ret == 0) {
1310                         btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1311                 } else {
1312                         num_refs = btrfs_shared_data_ref_count(leaf, ref);
1313                         num_refs += refs_to_add;
1314                         btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1315                 }
1316         } else {
1317                 struct btrfs_extent_data_ref *ref;
1318                 while (ret == -EEXIST) {
1319                         ref = btrfs_item_ptr(leaf, path->slots[0],
1320                                              struct btrfs_extent_data_ref);
1321                         if (match_extent_data_ref(leaf, ref, root_objectid,
1322                                                   owner, offset))
1323                                 break;
1324                         btrfs_release_path(path);
1325                         key.offset++;
1326                         ret = btrfs_insert_empty_item(trans, root, path, &key,
1327                                                       size);
1328                         if (ret && ret != -EEXIST)
1329                                 goto fail;
1330
1331                         leaf = path->nodes[0];
1332                 }
1333                 ref = btrfs_item_ptr(leaf, path->slots[0],
1334                                      struct btrfs_extent_data_ref);
1335                 if (ret == 0) {
1336                         btrfs_set_extent_data_ref_root(leaf, ref,
1337                                                        root_objectid);
1338                         btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1339                         btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1340                         btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1341                 } else {
1342                         num_refs = btrfs_extent_data_ref_count(leaf, ref);
1343                         num_refs += refs_to_add;
1344                         btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1345                 }
1346         }
1347         btrfs_mark_buffer_dirty(leaf);
1348         ret = 0;
1349 fail:
1350         btrfs_release_path(path);
1351         return ret;
1352 }
1353
1354 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1355                                            struct btrfs_fs_info *fs_info,
1356                                            struct btrfs_path *path,
1357                                            int refs_to_drop, int *last_ref)
1358 {
1359         struct btrfs_key key;
1360         struct btrfs_extent_data_ref *ref1 = NULL;
1361         struct btrfs_shared_data_ref *ref2 = NULL;
1362         struct extent_buffer *leaf;
1363         u32 num_refs = 0;
1364         int ret = 0;
1365
1366         leaf = path->nodes[0];
1367         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1368
1369         if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1370                 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1371                                       struct btrfs_extent_data_ref);
1372                 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1373         } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1374                 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1375                                       struct btrfs_shared_data_ref);
1376                 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1377 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1378         } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1379                 struct btrfs_extent_ref_v0 *ref0;
1380                 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1381                                       struct btrfs_extent_ref_v0);
1382                 num_refs = btrfs_ref_count_v0(leaf, ref0);
1383 #endif
1384         } else {
1385                 BUG();
1386         }
1387
1388         BUG_ON(num_refs < refs_to_drop);
1389         num_refs -= refs_to_drop;
1390
1391         if (num_refs == 0) {
1392                 ret = btrfs_del_item(trans, fs_info->extent_root, path);
1393                 *last_ref = 1;
1394         } else {
1395                 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1396                         btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1397                 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1398                         btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1399 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1400                 else {
1401                         struct btrfs_extent_ref_v0 *ref0;
1402                         ref0 = btrfs_item_ptr(leaf, path->slots[0],
1403                                         struct btrfs_extent_ref_v0);
1404                         btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1405                 }
1406 #endif
1407                 btrfs_mark_buffer_dirty(leaf);
1408         }
1409         return ret;
1410 }
1411
1412 static noinline u32 extent_data_ref_count(struct btrfs_path *path,
1413                                           struct btrfs_extent_inline_ref *iref)
1414 {
1415         struct btrfs_key key;
1416         struct extent_buffer *leaf;
1417         struct btrfs_extent_data_ref *ref1;
1418         struct btrfs_shared_data_ref *ref2;
1419         u32 num_refs = 0;
1420
1421         leaf = path->nodes[0];
1422         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1423         if (iref) {
1424                 if (btrfs_extent_inline_ref_type(leaf, iref) ==
1425                     BTRFS_EXTENT_DATA_REF_KEY) {
1426                         ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1427                         num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1428                 } else {
1429                         ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1430                         num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1431                 }
1432         } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1433                 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1434                                       struct btrfs_extent_data_ref);
1435                 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1436         } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1437                 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1438                                       struct btrfs_shared_data_ref);
1439                 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1440 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1441         } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1442                 struct btrfs_extent_ref_v0 *ref0;
1443                 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1444                                       struct btrfs_extent_ref_v0);
1445                 num_refs = btrfs_ref_count_v0(leaf, ref0);
1446 #endif
1447         } else {
1448                 WARN_ON(1);
1449         }
1450         return num_refs;
1451 }
1452
1453 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1454                                           struct btrfs_fs_info *fs_info,
1455                                           struct btrfs_path *path,
1456                                           u64 bytenr, u64 parent,
1457                                           u64 root_objectid)
1458 {
1459         struct btrfs_root *root = fs_info->extent_root;
1460         struct btrfs_key key;
1461         int ret;
1462
1463         key.objectid = bytenr;
1464         if (parent) {
1465                 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1466                 key.offset = parent;
1467         } else {
1468                 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1469                 key.offset = root_objectid;
1470         }
1471
1472         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1473         if (ret > 0)
1474                 ret = -ENOENT;
1475 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1476         if (ret == -ENOENT && parent) {
1477                 btrfs_release_path(path);
1478                 key.type = BTRFS_EXTENT_REF_V0_KEY;
1479                 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1480                 if (ret > 0)
1481                         ret = -ENOENT;
1482         }
1483 #endif
1484         return ret;
1485 }
1486
1487 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1488                                           struct btrfs_fs_info *fs_info,
1489                                           struct btrfs_path *path,
1490                                           u64 bytenr, u64 parent,
1491                                           u64 root_objectid)
1492 {
1493         struct btrfs_key key;
1494         int ret;
1495
1496         key.objectid = bytenr;
1497         if (parent) {
1498                 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1499                 key.offset = parent;
1500         } else {
1501                 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1502                 key.offset = root_objectid;
1503         }
1504
1505         ret = btrfs_insert_empty_item(trans, fs_info->extent_root,
1506                                       path, &key, 0);
1507         btrfs_release_path(path);
1508         return ret;
1509 }
1510
1511 static inline int extent_ref_type(u64 parent, u64 owner)
1512 {
1513         int type;
1514         if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1515                 if (parent > 0)
1516                         type = BTRFS_SHARED_BLOCK_REF_KEY;
1517                 else
1518                         type = BTRFS_TREE_BLOCK_REF_KEY;
1519         } else {
1520                 if (parent > 0)
1521                         type = BTRFS_SHARED_DATA_REF_KEY;
1522                 else
1523                         type = BTRFS_EXTENT_DATA_REF_KEY;
1524         }
1525         return type;
1526 }
1527
1528 static int find_next_key(struct btrfs_path *path, int level,
1529                          struct btrfs_key *key)
1530
1531 {
1532         for (; level < BTRFS_MAX_LEVEL; level++) {
1533                 if (!path->nodes[level])
1534                         break;
1535                 if (path->slots[level] + 1 >=
1536                     btrfs_header_nritems(path->nodes[level]))
1537                         continue;
1538                 if (level == 0)
1539                         btrfs_item_key_to_cpu(path->nodes[level], key,
1540                                               path->slots[level] + 1);
1541                 else
1542                         btrfs_node_key_to_cpu(path->nodes[level], key,
1543                                               path->slots[level] + 1);
1544                 return 0;
1545         }
1546         return 1;
1547 }
1548
1549 /*
1550  * look for inline back ref. if back ref is found, *ref_ret is set
1551  * to the address of inline back ref, and 0 is returned.
1552  *
1553  * if back ref isn't found, *ref_ret is set to the address where it
1554  * should be inserted, and -ENOENT is returned.
1555  *
1556  * if insert is true and there are too many inline back refs, the path
1557  * points to the extent item, and -EAGAIN is returned.
1558  *
1559  * NOTE: inline back refs are ordered in the same way that back ref
1560  *       items in the tree are ordered.
1561  */
1562 static noinline_for_stack
1563 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1564                                  struct btrfs_fs_info *fs_info,
1565                                  struct btrfs_path *path,
1566                                  struct btrfs_extent_inline_ref **ref_ret,
1567                                  u64 bytenr, u64 num_bytes,
1568                                  u64 parent, u64 root_objectid,
1569                                  u64 owner, u64 offset, int insert)
1570 {
1571         struct btrfs_root *root = fs_info->extent_root;
1572         struct btrfs_key key;
1573         struct extent_buffer *leaf;
1574         struct btrfs_extent_item *ei;
1575         struct btrfs_extent_inline_ref *iref;
1576         u64 flags;
1577         u64 item_size;
1578         unsigned long ptr;
1579         unsigned long end;
1580         int extra_size;
1581         int type;
1582         int want;
1583         int ret;
1584         int err = 0;
1585         bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
1586
1587         key.objectid = bytenr;
1588         key.type = BTRFS_EXTENT_ITEM_KEY;
1589         key.offset = num_bytes;
1590
1591         want = extent_ref_type(parent, owner);
1592         if (insert) {
1593                 extra_size = btrfs_extent_inline_ref_size(want);
1594                 path->keep_locks = 1;
1595         } else
1596                 extra_size = -1;
1597
1598         /*
1599          * Owner is our parent level, so we can just add one to get the level
1600          * for the block we are interested in.
1601          */
1602         if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1603                 key.type = BTRFS_METADATA_ITEM_KEY;
1604                 key.offset = owner;
1605         }
1606
1607 again:
1608         ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1609         if (ret < 0) {
1610                 err = ret;
1611                 goto out;
1612         }
1613
1614         /*
1615          * We may be a newly converted file system which still has the old fat
1616          * extent entries for metadata, so try and see if we have one of those.
1617          */
1618         if (ret > 0 && skinny_metadata) {
1619                 skinny_metadata = false;
1620                 if (path->slots[0]) {
1621                         path->slots[0]--;
1622                         btrfs_item_key_to_cpu(path->nodes[0], &key,
1623                                               path->slots[0]);
1624                         if (key.objectid == bytenr &&
1625                             key.type == BTRFS_EXTENT_ITEM_KEY &&
1626                             key.offset == num_bytes)
1627                                 ret = 0;
1628                 }
1629                 if (ret) {
1630                         key.objectid = bytenr;
1631                         key.type = BTRFS_EXTENT_ITEM_KEY;
1632                         key.offset = num_bytes;
1633                         btrfs_release_path(path);
1634                         goto again;
1635                 }
1636         }
1637
1638         if (ret && !insert) {
1639                 err = -ENOENT;
1640                 goto out;
1641         } else if (WARN_ON(ret)) {
1642                 err = -EIO;
1643                 goto out;
1644         }
1645
1646         leaf = path->nodes[0];
1647         item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1648 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1649         if (item_size < sizeof(*ei)) {
1650                 if (!insert) {
1651                         err = -ENOENT;
1652                         goto out;
1653                 }
1654                 ret = convert_extent_item_v0(trans, fs_info, path, owner,
1655                                              extra_size);
1656                 if (ret < 0) {
1657                         err = ret;
1658                         goto out;
1659                 }
1660                 leaf = path->nodes[0];
1661                 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1662         }
1663 #endif
1664         BUG_ON(item_size < sizeof(*ei));
1665
1666         ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1667         flags = btrfs_extent_flags(leaf, ei);
1668
1669         ptr = (unsigned long)(ei + 1);
1670         end = (unsigned long)ei + item_size;
1671
1672         if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
1673                 ptr += sizeof(struct btrfs_tree_block_info);
1674                 BUG_ON(ptr > end);
1675         }
1676
1677         err = -ENOENT;
1678         while (1) {
1679                 if (ptr >= end) {
1680                         WARN_ON(ptr > end);
1681                         break;
1682                 }
1683                 iref = (struct btrfs_extent_inline_ref *)ptr;
1684                 type = btrfs_extent_inline_ref_type(leaf, iref);
1685                 if (want < type)
1686                         break;
1687                 if (want > type) {
1688                         ptr += btrfs_extent_inline_ref_size(type);
1689                         continue;
1690                 }
1691
1692                 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1693                         struct btrfs_extent_data_ref *dref;
1694                         dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1695                         if (match_extent_data_ref(leaf, dref, root_objectid,
1696                                                   owner, offset)) {
1697                                 err = 0;
1698                                 break;
1699                         }
1700                         if (hash_extent_data_ref_item(leaf, dref) <
1701                             hash_extent_data_ref(root_objectid, owner, offset))
1702                                 break;
1703                 } else {
1704                         u64 ref_offset;
1705                         ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1706                         if (parent > 0) {
1707                                 if (parent == ref_offset) {
1708                                         err = 0;
1709                                         break;
1710                                 }
1711                                 if (ref_offset < parent)
1712                                         break;
1713                         } else {
1714                                 if (root_objectid == ref_offset) {
1715                                         err = 0;
1716                                         break;
1717                                 }
1718                                 if (ref_offset < root_objectid)
1719                                         break;
1720                         }
1721                 }
1722                 ptr += btrfs_extent_inline_ref_size(type);
1723         }
1724         if (err == -ENOENT && insert) {
1725                 if (item_size + extra_size >=
1726                     BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1727                         err = -EAGAIN;
1728                         goto out;
1729                 }
1730                 /*
1731                  * To add new inline back ref, we have to make sure
1732                  * there is no corresponding back ref item.
1733                  * For simplicity, we just do not add new inline back
1734                  * ref if there is any kind of item for this block
1735                  */
1736                 if (find_next_key(path, 0, &key) == 0 &&
1737                     key.objectid == bytenr &&
1738                     key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1739                         err = -EAGAIN;
1740                         goto out;
1741                 }
1742         }
1743         *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1744 out:
1745         if (insert) {
1746                 path->keep_locks = 0;
1747                 btrfs_unlock_up_safe(path, 1);
1748         }
1749         return err;
1750 }
1751
1752 /*
1753  * helper to add new inline back ref
1754  */
1755 static noinline_for_stack
1756 void setup_inline_extent_backref(struct btrfs_fs_info *fs_info,
1757                                  struct btrfs_path *path,
1758                                  struct btrfs_extent_inline_ref *iref,
1759                                  u64 parent, u64 root_objectid,
1760                                  u64 owner, u64 offset, int refs_to_add,
1761                                  struct btrfs_delayed_extent_op *extent_op)
1762 {
1763         struct extent_buffer *leaf;
1764         struct btrfs_extent_item *ei;
1765         unsigned long ptr;
1766         unsigned long end;
1767         unsigned long item_offset;
1768         u64 refs;
1769         int size;
1770         int type;
1771
1772         leaf = path->nodes[0];
1773         ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1774         item_offset = (unsigned long)iref - (unsigned long)ei;
1775
1776         type = extent_ref_type(parent, owner);
1777         size = btrfs_extent_inline_ref_size(type);
1778
1779         btrfs_extend_item(fs_info, path, size);
1780
1781         ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1782         refs = btrfs_extent_refs(leaf, ei);
1783         refs += refs_to_add;
1784         btrfs_set_extent_refs(leaf, ei, refs);
1785         if (extent_op)
1786                 __run_delayed_extent_op(extent_op, leaf, ei);
1787
1788         ptr = (unsigned long)ei + item_offset;
1789         end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1790         if (ptr < end - size)
1791                 memmove_extent_buffer(leaf, ptr + size, ptr,
1792                                       end - size - ptr);
1793
1794         iref = (struct btrfs_extent_inline_ref *)ptr;
1795         btrfs_set_extent_inline_ref_type(leaf, iref, type);
1796         if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1797                 struct btrfs_extent_data_ref *dref;
1798                 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1799                 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1800                 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1801                 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1802                 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1803         } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1804                 struct btrfs_shared_data_ref *sref;
1805                 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1806                 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1807                 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1808         } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1809                 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1810         } else {
1811                 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1812         }
1813         btrfs_mark_buffer_dirty(leaf);
1814 }
1815
1816 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1817                                  struct btrfs_fs_info *fs_info,
1818                                  struct btrfs_path *path,
1819                                  struct btrfs_extent_inline_ref **ref_ret,
1820                                  u64 bytenr, u64 num_bytes, u64 parent,
1821                                  u64 root_objectid, u64 owner, u64 offset)
1822 {
1823         int ret;
1824
1825         ret = lookup_inline_extent_backref(trans, fs_info, path, ref_ret,
1826                                            bytenr, num_bytes, parent,
1827                                            root_objectid, owner, offset, 0);
1828         if (ret != -ENOENT)
1829                 return ret;
1830
1831         btrfs_release_path(path);
1832         *ref_ret = NULL;
1833
1834         if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1835                 ret = lookup_tree_block_ref(trans, fs_info, path, bytenr,
1836                                             parent, root_objectid);
1837         } else {
1838                 ret = lookup_extent_data_ref(trans, fs_info, path, bytenr,
1839                                              parent, root_objectid, owner,
1840                                              offset);
1841         }
1842         return ret;
1843 }
1844
1845 /*
1846  * helper to update/remove inline back ref
1847  */
1848 static noinline_for_stack
1849 void update_inline_extent_backref(struct btrfs_fs_info *fs_info,
1850                                   struct btrfs_path *path,
1851                                   struct btrfs_extent_inline_ref *iref,
1852                                   int refs_to_mod,
1853                                   struct btrfs_delayed_extent_op *extent_op,
1854                                   int *last_ref)
1855 {
1856         struct extent_buffer *leaf;
1857         struct btrfs_extent_item *ei;
1858         struct btrfs_extent_data_ref *dref = NULL;
1859         struct btrfs_shared_data_ref *sref = NULL;
1860         unsigned long ptr;
1861         unsigned long end;
1862         u32 item_size;
1863         int size;
1864         int type;
1865         u64 refs;
1866
1867         leaf = path->nodes[0];
1868         ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1869         refs = btrfs_extent_refs(leaf, ei);
1870         WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1871         refs += refs_to_mod;
1872         btrfs_set_extent_refs(leaf, ei, refs);
1873         if (extent_op)
1874                 __run_delayed_extent_op(extent_op, leaf, ei);
1875
1876         type = btrfs_extent_inline_ref_type(leaf, iref);
1877
1878         if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1879                 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1880                 refs = btrfs_extent_data_ref_count(leaf, dref);
1881         } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1882                 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1883                 refs = btrfs_shared_data_ref_count(leaf, sref);
1884         } else {
1885                 refs = 1;
1886                 BUG_ON(refs_to_mod != -1);
1887         }
1888
1889         BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1890         refs += refs_to_mod;
1891
1892         if (refs > 0) {
1893                 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1894                         btrfs_set_extent_data_ref_count(leaf, dref, refs);
1895                 else
1896                         btrfs_set_shared_data_ref_count(leaf, sref, refs);
1897         } else {
1898                 *last_ref = 1;
1899                 size =  btrfs_extent_inline_ref_size(type);
1900                 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1901                 ptr = (unsigned long)iref;
1902                 end = (unsigned long)ei + item_size;
1903                 if (ptr + size < end)
1904                         memmove_extent_buffer(leaf, ptr, ptr + size,
1905                                               end - ptr - size);
1906                 item_size -= size;
1907                 btrfs_truncate_item(fs_info, path, item_size, 1);
1908         }
1909         btrfs_mark_buffer_dirty(leaf);
1910 }
1911
1912 static noinline_for_stack
1913 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1914                                  struct btrfs_fs_info *fs_info,
1915                                  struct btrfs_path *path,
1916                                  u64 bytenr, u64 num_bytes, u64 parent,
1917                                  u64 root_objectid, u64 owner,
1918                                  u64 offset, int refs_to_add,
1919                                  struct btrfs_delayed_extent_op *extent_op)
1920 {
1921         struct btrfs_extent_inline_ref *iref;
1922         int ret;
1923
1924         ret = lookup_inline_extent_backref(trans, fs_info, path, &iref,
1925                                            bytenr, num_bytes, parent,
1926                                            root_objectid, owner, offset, 1);
1927         if (ret == 0) {
1928                 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1929                 update_inline_extent_backref(fs_info, path, iref,
1930                                              refs_to_add, extent_op, NULL);
1931         } else if (ret == -ENOENT) {
1932                 setup_inline_extent_backref(fs_info, path, iref, parent,
1933                                             root_objectid, owner, offset,
1934                                             refs_to_add, extent_op);
1935                 ret = 0;
1936         }
1937         return ret;
1938 }
1939
1940 static int insert_extent_backref(struct btrfs_trans_handle *trans,
1941                                  struct btrfs_fs_info *fs_info,
1942                                  struct btrfs_path *path,
1943                                  u64 bytenr, u64 parent, u64 root_objectid,
1944                                  u64 owner, u64 offset, int refs_to_add)
1945 {
1946         int ret;
1947         if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1948                 BUG_ON(refs_to_add != 1);
1949                 ret = insert_tree_block_ref(trans, fs_info, path, bytenr,
1950                                             parent, root_objectid);
1951         } else {
1952                 ret = insert_extent_data_ref(trans, fs_info, path, bytenr,
1953                                              parent, root_objectid,
1954                                              owner, offset, refs_to_add);
1955         }
1956         return ret;
1957 }
1958
1959 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1960                                  struct btrfs_fs_info *fs_info,
1961                                  struct btrfs_path *path,
1962                                  struct btrfs_extent_inline_ref *iref,
1963                                  int refs_to_drop, int is_data, int *last_ref)
1964 {
1965         int ret = 0;
1966
1967         BUG_ON(!is_data && refs_to_drop != 1);
1968         if (iref) {
1969                 update_inline_extent_backref(fs_info, path, iref,
1970                                              -refs_to_drop, NULL, last_ref);
1971         } else if (is_data) {
1972                 ret = remove_extent_data_ref(trans, fs_info, path, refs_to_drop,
1973                                              last_ref);
1974         } else {
1975                 *last_ref = 1;
1976                 ret = btrfs_del_item(trans, fs_info->extent_root, path);
1977         }
1978         return ret;
1979 }
1980
1981 #define in_range(b, first, len)        ((b) >= (first) && (b) < (first) + (len))
1982 static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
1983                                u64 *discarded_bytes)
1984 {
1985         int j, ret = 0;
1986         u64 bytes_left, end;
1987         u64 aligned_start = ALIGN(start, 1 << 9);
1988
1989         if (WARN_ON(start != aligned_start)) {
1990                 len -= aligned_start - start;
1991                 len = round_down(len, 1 << 9);
1992                 start = aligned_start;
1993         }
1994
1995         *discarded_bytes = 0;
1996
1997         if (!len)
1998                 return 0;
1999
2000         end = start + len;
2001         bytes_left = len;
2002
2003         /* Skip any superblocks on this device. */
2004         for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
2005                 u64 sb_start = btrfs_sb_offset(j);
2006                 u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
2007                 u64 size = sb_start - start;
2008
2009                 if (!in_range(sb_start, start, bytes_left) &&
2010                     !in_range(sb_end, start, bytes_left) &&
2011                     !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
2012                         continue;
2013
2014                 /*
2015                  * Superblock spans beginning of range.  Adjust start and
2016                  * try again.
2017                  */
2018                 if (sb_start <= start) {
2019                         start += sb_end - start;
2020                         if (start > end) {
2021                                 bytes_left = 0;
2022                                 break;
2023                         }
2024                         bytes_left = end - start;
2025                         continue;
2026                 }
2027
2028                 if (size) {
2029                         ret = blkdev_issue_discard(bdev, start >> 9, size >> 9,
2030                                                    GFP_NOFS, 0);
2031                         if (!ret)
2032                                 *discarded_bytes += size;
2033                         else if (ret != -EOPNOTSUPP)
2034                                 return ret;
2035                 }
2036
2037                 start = sb_end;
2038                 if (start > end) {
2039                         bytes_left = 0;
2040                         break;
2041                 }
2042                 bytes_left = end - start;
2043         }
2044
2045         if (bytes_left) {
2046                 ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9,
2047                                            GFP_NOFS, 0);
2048                 if (!ret)
2049                         *discarded_bytes += bytes_left;
2050         }
2051         return ret;
2052 }
2053
2054 int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
2055                          u64 num_bytes, u64 *actual_bytes)
2056 {
2057         int ret;
2058         u64 discarded_bytes = 0;
2059         struct btrfs_bio *bbio = NULL;
2060
2061
2062         /*
2063          * Avoid races with device replace and make sure our bbio has devices
2064          * associated to its stripes that don't go away while we are discarding.
2065          */
2066         btrfs_bio_counter_inc_blocked(fs_info);
2067         /* Tell the block device(s) that the sectors can be discarded */
2068         ret = btrfs_map_block(fs_info, BTRFS_MAP_DISCARD, bytenr, &num_bytes,
2069                               &bbio, 0);
2070         /* Error condition is -ENOMEM */
2071         if (!ret) {
2072                 struct btrfs_bio_stripe *stripe = bbio->stripes;
2073                 int i;
2074
2075
2076                 for (i = 0; i < bbio->num_stripes; i++, stripe++) {
2077                         u64 bytes;
2078                         if (!stripe->dev->can_discard)
2079                                 continue;
2080
2081                         ret = btrfs_issue_discard(stripe->dev->bdev,
2082                                                   stripe->physical,
2083                                                   stripe->length,
2084                                                   &bytes);
2085                         if (!ret)
2086                                 discarded_bytes += bytes;
2087                         else if (ret != -EOPNOTSUPP)
2088                                 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
2089
2090                         /*
2091                          * Just in case we get back EOPNOTSUPP for some reason,
2092                          * just ignore the return value so we don't screw up
2093                          * people calling discard_extent.
2094                          */
2095                         ret = 0;
2096                 }
2097                 btrfs_put_bbio(bbio);
2098         }
2099         btrfs_bio_counter_dec(fs_info);
2100
2101         if (actual_bytes)
2102                 *actual_bytes = discarded_bytes;
2103
2104
2105         if (ret == -EOPNOTSUPP)
2106                 ret = 0;
2107         return ret;
2108 }
2109
2110 /* Can return -ENOMEM */
2111 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2112                          struct btrfs_fs_info *fs_info,
2113                          u64 bytenr, u64 num_bytes, u64 parent,
2114                          u64 root_objectid, u64 owner, u64 offset)
2115 {
2116         int old_ref_mod, new_ref_mod;
2117         int ret;
2118
2119         BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
2120                root_objectid == BTRFS_TREE_LOG_OBJECTID);
2121
2122         if (owner < BTRFS_FIRST_FREE_OBJECTID) {
2123                 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
2124                                                  num_bytes, parent,
2125                                                  root_objectid, (int)owner,
2126                                                  BTRFS_ADD_DELAYED_REF, NULL,
2127                                                  &old_ref_mod, &new_ref_mod);
2128         } else {
2129                 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
2130                                                  num_bytes, parent,
2131                                                  root_objectid, owner, offset,
2132                                                  0, BTRFS_ADD_DELAYED_REF,
2133                                                  &old_ref_mod, &new_ref_mod);
2134         }
2135
2136         if (ret == 0 && old_ref_mod < 0 && new_ref_mod >= 0)
2137                 add_pinned_bytes(fs_info, -num_bytes, owner, root_objectid);
2138
2139         return ret;
2140 }
2141
2142 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2143                                   struct btrfs_fs_info *fs_info,
2144                                   struct btrfs_delayed_ref_node *node,
2145                                   u64 parent, u64 root_objectid,
2146                                   u64 owner, u64 offset, int refs_to_add,
2147                                   struct btrfs_delayed_extent_op *extent_op)
2148 {
2149         struct btrfs_path *path;
2150         struct extent_buffer *leaf;
2151         struct btrfs_extent_item *item;
2152         struct btrfs_key key;
2153         u64 bytenr = node->bytenr;
2154         u64 num_bytes = node->num_bytes;
2155         u64 refs;
2156         int ret;
2157
2158         path = btrfs_alloc_path();
2159         if (!path)
2160                 return -ENOMEM;
2161
2162         path->reada = READA_FORWARD;
2163         path->leave_spinning = 1;
2164         /* this will setup the path even if it fails to insert the back ref */
2165         ret = insert_inline_extent_backref(trans, fs_info, path, bytenr,
2166                                            num_bytes, parent, root_objectid,
2167                                            owner, offset,
2168                                            refs_to_add, extent_op);
2169         if ((ret < 0 && ret != -EAGAIN) || !ret)
2170                 goto out;
2171
2172         /*
2173          * Ok we had -EAGAIN which means we didn't have space to insert and
2174          * inline extent ref, so just update the reference count and add a
2175          * normal backref.
2176          */
2177         leaf = path->nodes[0];
2178         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2179         item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2180         refs = btrfs_extent_refs(leaf, item);
2181         btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2182         if (extent_op)
2183                 __run_delayed_extent_op(extent_op, leaf, item);
2184
2185         btrfs_mark_buffer_dirty(leaf);
2186         btrfs_release_path(path);
2187
2188         path->reada = READA_FORWARD;
2189         path->leave_spinning = 1;
2190         /* now insert the actual backref */
2191         ret = insert_extent_backref(trans, fs_info, path, bytenr, parent,
2192                                     root_objectid, owner, offset, refs_to_add);
2193         if (ret)
2194                 btrfs_abort_transaction(trans, ret);
2195 out:
2196         btrfs_free_path(path);
2197         return ret;
2198 }
2199
2200 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2201                                 struct btrfs_fs_info *fs_info,
2202                                 struct btrfs_delayed_ref_node *node,
2203                                 struct btrfs_delayed_extent_op *extent_op,
2204                                 int insert_reserved)
2205 {
2206         int ret = 0;
2207         struct btrfs_delayed_data_ref *ref;
2208         struct btrfs_key ins;
2209         u64 parent = 0;
2210         u64 ref_root = 0;
2211         u64 flags = 0;
2212
2213         ins.objectid = node->bytenr;
2214         ins.offset = node->num_bytes;
2215         ins.type = BTRFS_EXTENT_ITEM_KEY;
2216
2217         ref = btrfs_delayed_node_to_data_ref(node);
2218         trace_run_delayed_data_ref(fs_info, node, ref, node->action);
2219
2220         if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2221                 parent = ref->parent;
2222         ref_root = ref->root;
2223
2224         if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2225                 if (extent_op)
2226                         flags |= extent_op->flags_to_set;
2227                 ret = alloc_reserved_file_extent(trans, fs_info,
2228                                                  parent, ref_root, flags,
2229                                                  ref->objectid, ref->offset,
2230                                                  &ins, node->ref_mod);
2231         } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2232                 ret = __btrfs_inc_extent_ref(trans, fs_info, node, parent,
2233                                              ref_root, ref->objectid,
2234                                              ref->offset, node->ref_mod,
2235                                              extent_op);
2236         } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2237                 ret = __btrfs_free_extent(trans, fs_info, node, parent,
2238                                           ref_root, ref->objectid,
2239                                           ref->offset, node->ref_mod,
2240                                           extent_op);
2241         } else {
2242                 BUG();
2243         }
2244         return ret;
2245 }
2246
2247 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2248                                     struct extent_buffer *leaf,
2249                                     struct btrfs_extent_item *ei)
2250 {
2251         u64 flags = btrfs_extent_flags(leaf, ei);
2252         if (extent_op->update_flags) {
2253                 flags |= extent_op->flags_to_set;
2254                 btrfs_set_extent_flags(leaf, ei, flags);
2255         }
2256
2257         if (extent_op->update_key) {
2258                 struct btrfs_tree_block_info *bi;
2259                 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2260                 bi = (struct btrfs_tree_block_info *)(ei + 1);
2261                 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2262         }
2263 }
2264
2265 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2266                                  struct btrfs_fs_info *fs_info,
2267                                  struct btrfs_delayed_ref_node *node,
2268                                  struct btrfs_delayed_extent_op *extent_op)
2269 {
2270         struct btrfs_key key;
2271         struct btrfs_path *path;
2272         struct btrfs_extent_item *ei;
2273         struct extent_buffer *leaf;
2274         u32 item_size;
2275         int ret;
2276         int err = 0;
2277         int metadata = !extent_op->is_data;
2278
2279         if (trans->aborted)
2280                 return 0;
2281
2282         if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2283                 metadata = 0;
2284
2285         path = btrfs_alloc_path();
2286         if (!path)
2287                 return -ENOMEM;
2288
2289         key.objectid = node->bytenr;
2290
2291         if (metadata) {
2292                 key.type = BTRFS_METADATA_ITEM_KEY;
2293                 key.offset = extent_op->level;
2294         } else {
2295                 key.type = BTRFS_EXTENT_ITEM_KEY;
2296                 key.offset = node->num_bytes;
2297         }
2298
2299 again:
2300         path->reada = READA_FORWARD;
2301         path->leave_spinning = 1;
2302         ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 1);
2303         if (ret < 0) {
2304                 err = ret;
2305                 goto out;
2306         }
2307         if (ret > 0) {
2308                 if (metadata) {
2309                         if (path->slots[0] > 0) {
2310                                 path->slots[0]--;
2311                                 btrfs_item_key_to_cpu(path->nodes[0], &key,
2312                                                       path->slots[0]);
2313                                 if (key.objectid == node->bytenr &&
2314                                     key.type == BTRFS_EXTENT_ITEM_KEY &&
2315                                     key.offset == node->num_bytes)
2316                                         ret = 0;
2317                         }
2318                         if (ret > 0) {
2319                                 btrfs_release_path(path);
2320                                 metadata = 0;
2321
2322                                 key.objectid = node->bytenr;
2323                                 key.offset = node->num_bytes;
2324                                 key.type = BTRFS_EXTENT_ITEM_KEY;
2325                                 goto again;
2326                         }
2327                 } else {
2328                         err = -EIO;
2329                         goto out;
2330                 }
2331         }
2332
2333         leaf = path->nodes[0];
2334         item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2335 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2336         if (item_size < sizeof(*ei)) {
2337                 ret = convert_extent_item_v0(trans, fs_info, path, (u64)-1, 0);
2338                 if (ret < 0) {
2339                         err = ret;
2340                         goto out;
2341                 }
2342                 leaf = path->nodes[0];
2343                 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2344         }
2345 #endif
2346         BUG_ON(item_size < sizeof(*ei));
2347         ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2348         __run_delayed_extent_op(extent_op, leaf, ei);
2349
2350         btrfs_mark_buffer_dirty(leaf);
2351 out:
2352         btrfs_free_path(path);
2353         return err;
2354 }
2355
2356 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2357                                 struct btrfs_fs_info *fs_info,
2358                                 struct btrfs_delayed_ref_node *node,
2359                                 struct btrfs_delayed_extent_op *extent_op,
2360                                 int insert_reserved)
2361 {
2362         int ret = 0;
2363         struct btrfs_delayed_tree_ref *ref;
2364         struct btrfs_key ins;
2365         u64 parent = 0;
2366         u64 ref_root = 0;
2367         bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
2368
2369         ref = btrfs_delayed_node_to_tree_ref(node);
2370         trace_run_delayed_tree_ref(fs_info, node, ref, node->action);
2371
2372         if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2373                 parent = ref->parent;
2374         ref_root = ref->root;
2375
2376         ins.objectid = node->bytenr;
2377         if (skinny_metadata) {
2378                 ins.offset = ref->level;
2379                 ins.type = BTRFS_METADATA_ITEM_KEY;
2380         } else {
2381                 ins.offset = node->num_bytes;
2382                 ins.type = BTRFS_EXTENT_ITEM_KEY;
2383         }
2384
2385         if (node->ref_mod != 1) {
2386                 btrfs_err(fs_info,
2387         "btree block(%llu) has %d references rather than 1: action %d ref_root %llu parent %llu",
2388                           node->bytenr, node->ref_mod, node->action, ref_root,
2389                           parent);
2390                 return -EIO;
2391         }
2392         if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2393                 BUG_ON(!extent_op || !extent_op->update_flags);
2394                 ret = alloc_reserved_tree_block(trans, fs_info,
2395                                                 parent, ref_root,
2396                                                 extent_op->flags_to_set,
2397                                                 &extent_op->key,
2398                                                 ref->level, &ins);
2399         } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2400                 ret = __btrfs_inc_extent_ref(trans, fs_info, node,
2401                                              parent, ref_root,
2402                                              ref->level, 0, 1,
2403                                              extent_op);
2404         } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2405                 ret = __btrfs_free_extent(trans, fs_info, node,
2406                                           parent, ref_root,
2407                                           ref->level, 0, 1, extent_op);
2408         } else {
2409                 BUG();
2410         }
2411         return ret;
2412 }
2413
2414 /* helper function to actually process a single delayed ref entry */
2415 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2416                                struct btrfs_fs_info *fs_info,
2417                                struct btrfs_delayed_ref_node *node,
2418                                struct btrfs_delayed_extent_op *extent_op,
2419                                int insert_reserved)
2420 {
2421         int ret = 0;
2422
2423         if (trans->aborted) {
2424                 if (insert_reserved)
2425                         btrfs_pin_extent(fs_info, node->bytenr,
2426                                          node->num_bytes, 1);
2427                 return 0;
2428         }
2429
2430         if (btrfs_delayed_ref_is_head(node)) {
2431                 struct btrfs_delayed_ref_head *head;
2432                 /*
2433                  * we've hit the end of the chain and we were supposed
2434                  * to insert this extent into the tree.  But, it got
2435                  * deleted before we ever needed to insert it, so all
2436                  * we have to do is clean up the accounting
2437                  */
2438                 BUG_ON(extent_op);
2439                 head = btrfs_delayed_node_to_head(node);
2440                 trace_run_delayed_ref_head(fs_info, node, head, node->action);
2441
2442                 if (head->total_ref_mod < 0) {
2443                         struct btrfs_block_group_cache *cache;
2444
2445                         cache = btrfs_lookup_block_group(fs_info, node->bytenr);
2446                         ASSERT(cache);
2447                         percpu_counter_add(&cache->space_info->total_bytes_pinned,
2448                                            -node->num_bytes);
2449                         btrfs_put_block_group(cache);
2450                 }
2451
2452                 if (insert_reserved) {
2453                         btrfs_pin_extent(fs_info, node->bytenr,
2454                                          node->num_bytes, 1);
2455                         if (head->is_data) {
2456                                 ret = btrfs_del_csums(trans, fs_info,
2457                                                       node->bytenr,
2458                                                       node->num_bytes);
2459                         }
2460                 }
2461
2462                 /* Also free its reserved qgroup space */
2463                 btrfs_qgroup_free_delayed_ref(fs_info, head->qgroup_ref_root,
2464                                               head->qgroup_reserved);
2465                 return ret;
2466         }
2467
2468         if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2469             node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2470                 ret = run_delayed_tree_ref(trans, fs_info, node, extent_op,
2471                                            insert_reserved);
2472         else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2473                  node->type == BTRFS_SHARED_DATA_REF_KEY)
2474                 ret = run_delayed_data_ref(trans, fs_info, node, extent_op,
2475                                            insert_reserved);
2476         else
2477                 BUG();
2478         return ret;
2479 }
2480
2481 static inline struct btrfs_delayed_ref_node *
2482 select_delayed_ref(struct btrfs_delayed_ref_head *head)
2483 {
2484         struct btrfs_delayed_ref_node *ref;
2485
2486         if (list_empty(&head->ref_list))
2487                 return NULL;
2488
2489         /*
2490          * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
2491          * This is to prevent a ref count from going down to zero, which deletes
2492          * the extent item from the extent tree, when there still are references
2493          * to add, which would fail because they would not find the extent item.
2494          */
2495         if (!list_empty(&head->ref_add_list))
2496                 return list_first_entry(&head->ref_add_list,
2497                                 struct btrfs_delayed_ref_node, add_list);
2498
2499         ref = list_first_entry(&head->ref_list, struct btrfs_delayed_ref_node,
2500                                list);
2501         ASSERT(list_empty(&ref->add_list));
2502         return ref;
2503 }
2504
2505 /*
2506  * Returns 0 on success or if called with an already aborted transaction.
2507  * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2508  */
2509 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2510                                              struct btrfs_fs_info *fs_info,
2511                                              unsigned long nr)
2512 {
2513         struct btrfs_delayed_ref_root *delayed_refs;
2514         struct btrfs_delayed_ref_node *ref;
2515         struct btrfs_delayed_ref_head *locked_ref = NULL;
2516         struct btrfs_delayed_extent_op *extent_op;
2517         ktime_t start = ktime_get();
2518         int ret;
2519         unsigned long count = 0;
2520         unsigned long actual_count = 0;
2521         int must_insert_reserved = 0;
2522
2523         delayed_refs = &trans->transaction->delayed_refs;
2524         while (1) {
2525                 if (!locked_ref) {
2526                         if (count >= nr)
2527                                 break;
2528
2529                         spin_lock(&delayed_refs->lock);
2530                         locked_ref = btrfs_select_ref_head(trans);
2531                         if (!locked_ref) {
2532                                 spin_unlock(&delayed_refs->lock);
2533                                 break;
2534                         }
2535
2536                         /* grab the lock that says we are going to process
2537                          * all the refs for this head */
2538                         ret = btrfs_delayed_ref_lock(trans, locked_ref);
2539                         spin_unlock(&delayed_refs->lock);
2540                         /*
2541                          * we may have dropped the spin lock to get the head
2542                          * mutex lock, and that might have given someone else
2543                          * time to free the head.  If that's true, it has been
2544                          * removed from our list and we can move on.
2545                          */
2546                         if (ret == -EAGAIN) {
2547                                 locked_ref = NULL;
2548                                 count++;
2549                                 continue;
2550                         }
2551                 }
2552
2553                 /*
2554                  * We need to try and merge add/drops of the same ref since we
2555                  * can run into issues with relocate dropping the implicit ref
2556                  * and then it being added back again before the drop can
2557                  * finish.  If we merged anything we need to re-loop so we can
2558                  * get a good ref.
2559                  * Or we can get node references of the same type that weren't
2560                  * merged when created due to bumps in the tree mod seq, and
2561                  * we need to merge them to prevent adding an inline extent
2562                  * backref before dropping it (triggering a BUG_ON at
2563                  * insert_inline_extent_backref()).
2564                  */
2565                 spin_lock(&locked_ref->lock);
2566                 btrfs_merge_delayed_refs(trans, fs_info, delayed_refs,
2567                                          locked_ref);
2568
2569                 /*
2570                  * locked_ref is the head node, so we have to go one
2571                  * node back for any delayed ref updates
2572                  */
2573                 ref = select_delayed_ref(locked_ref);
2574
2575                 if (ref && ref->seq &&
2576                     btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
2577                         spin_unlock(&locked_ref->lock);
2578                         spin_lock(&delayed_refs->lock);
2579                         locked_ref->processing = 0;
2580                         delayed_refs->num_heads_ready++;
2581                         spin_unlock(&delayed_refs->lock);
2582                         btrfs_delayed_ref_unlock(locked_ref);
2583                         locked_ref = NULL;
2584                         cond_resched();
2585                         count++;
2586                         continue;
2587                 }
2588
2589                 /*
2590                  * record the must insert reserved flag before we
2591                  * drop the spin lock.
2592                  */
2593                 must_insert_reserved = locked_ref->must_insert_reserved;
2594                 locked_ref->must_insert_reserved = 0;
2595
2596                 extent_op = locked_ref->extent_op;
2597                 locked_ref->extent_op = NULL;
2598
2599                 if (!ref) {
2600
2601
2602                         /* All delayed refs have been processed, Go ahead
2603                          * and send the head node to run_one_delayed_ref,
2604                          * so that any accounting fixes can happen
2605                          */
2606                         ref = &locked_ref->node;
2607
2608                         if (extent_op && must_insert_reserved) {
2609                                 btrfs_free_delayed_extent_op(extent_op);
2610                                 extent_op = NULL;
2611                         }
2612
2613                         if (extent_op) {
2614                                 spin_unlock(&locked_ref->lock);
2615                                 ret = run_delayed_extent_op(trans, fs_info,
2616                                                             ref, extent_op);
2617                                 btrfs_free_delayed_extent_op(extent_op);
2618
2619                                 if (ret) {
2620                                         /*
2621                                          * Need to reset must_insert_reserved if
2622                                          * there was an error so the abort stuff
2623                                          * can cleanup the reserved space
2624                                          * properly.
2625                                          */
2626                                         if (must_insert_reserved)
2627                                                 locked_ref->must_insert_reserved = 1;
2628                                         spin_lock(&delayed_refs->lock);
2629                                         locked_ref->processing = 0;
2630                                         delayed_refs->num_heads_ready++;
2631                                         spin_unlock(&delayed_refs->lock);
2632                                         btrfs_debug(fs_info,
2633                                                     "run_delayed_extent_op returned %d",
2634                                                     ret);
2635                                         btrfs_delayed_ref_unlock(locked_ref);
2636                                         return ret;
2637                                 }
2638                                 continue;
2639                         }
2640
2641                         /*
2642                          * Need to drop our head ref lock and re-acquire the
2643                          * delayed ref lock and then re-check to make sure
2644                          * nobody got added.
2645                          */
2646                         spin_unlock(&locked_ref->lock);
2647                         spin_lock(&delayed_refs->lock);
2648                         spin_lock(&locked_ref->lock);
2649                         if (!list_empty(&locked_ref->ref_list) ||
2650                             locked_ref->extent_op) {
2651                                 spin_unlock(&locked_ref->lock);
2652                                 spin_unlock(&delayed_refs->lock);
2653                                 continue;
2654                         }
2655                         ref->in_tree = 0;
2656                         delayed_refs->num_heads--;
2657                         rb_erase(&locked_ref->href_node,
2658                                  &delayed_refs->href_root);
2659                         spin_unlock(&delayed_refs->lock);
2660                 } else {
2661                         actual_count++;
2662                         ref->in_tree = 0;
2663                         list_del(&ref->list);
2664                         if (!list_empty(&ref->add_list))
2665                                 list_del(&ref->add_list);
2666                 }
2667                 atomic_dec(&delayed_refs->num_entries);
2668
2669                 if (!btrfs_delayed_ref_is_head(ref)) {
2670                         /*
2671                          * when we play the delayed ref, also correct the
2672                          * ref_mod on head
2673                          */
2674                         switch (ref->action) {
2675                         case BTRFS_ADD_DELAYED_REF:
2676                         case BTRFS_ADD_DELAYED_EXTENT:
2677                                 locked_ref->node.ref_mod -= ref->ref_mod;
2678                                 break;
2679                         case BTRFS_DROP_DELAYED_REF:
2680                                 locked_ref->node.ref_mod += ref->ref_mod;
2681                                 break;
2682                         default:
2683                                 WARN_ON(1);
2684                         }
2685                 }
2686                 spin_unlock(&locked_ref->lock);
2687
2688                 ret = run_one_delayed_ref(trans, fs_info, ref, extent_op,
2689                                           must_insert_reserved);
2690
2691                 btrfs_free_delayed_extent_op(extent_op);
2692                 if (ret) {
2693                         spin_lock(&delayed_refs->lock);
2694                         locked_ref->processing = 0;
2695                         delayed_refs->num_heads_ready++;
2696                         spin_unlock(&delayed_refs->lock);
2697                         btrfs_delayed_ref_unlock(locked_ref);
2698                         btrfs_put_delayed_ref(ref);
2699                         btrfs_debug(fs_info, "run_one_delayed_ref returned %d",
2700                                     ret);
2701                         return ret;
2702                 }
2703
2704                 /*
2705                  * If this node is a head, that means all the refs in this head
2706                  * have been dealt with, and we will pick the next head to deal
2707                  * with, so we must unlock the head and drop it from the cluster
2708                  * list before we release it.
2709                  */
2710                 if (btrfs_delayed_ref_is_head(ref)) {
2711                         if (locked_ref->is_data &&
2712                             locked_ref->total_ref_mod < 0) {
2713                                 spin_lock(&delayed_refs->lock);
2714                                 delayed_refs->pending_csums -= ref->num_bytes;
2715                                 spin_unlock(&delayed_refs->lock);
2716                         }
2717                         btrfs_delayed_ref_unlock(locked_ref);
2718                         locked_ref = NULL;
2719                 }
2720                 btrfs_put_delayed_ref(ref);
2721                 count++;
2722                 cond_resched();
2723         }
2724
2725         /*
2726          * We don't want to include ref heads since we can have empty ref heads
2727          * and those will drastically skew our runtime down since we just do
2728          * accounting, no actual extent tree updates.
2729          */
2730         if (actual_count > 0) {
2731                 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2732                 u64 avg;
2733
2734                 /*
2735                  * We weigh the current average higher than our current runtime
2736                  * to avoid large swings in the average.
2737                  */
2738                 spin_lock(&delayed_refs->lock);
2739                 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
2740                 fs_info->avg_delayed_ref_runtime = avg >> 2;    /* div by 4 */
2741                 spin_unlock(&delayed_refs->lock);
2742         }
2743         return 0;
2744 }
2745
2746 #ifdef SCRAMBLE_DELAYED_REFS
2747 /*
2748  * Normally delayed refs get processed in ascending bytenr order. This
2749  * correlates in most cases to the order added. To expose dependencies on this
2750  * order, we start to process the tree in the middle instead of the beginning
2751  */
2752 static u64 find_middle(struct rb_root *root)
2753 {
2754         struct rb_node *n = root->rb_node;
2755         struct btrfs_delayed_ref_node *entry;
2756         int alt = 1;
2757         u64 middle;
2758         u64 first = 0, last = 0;
2759
2760         n = rb_first(root);
2761         if (n) {
2762                 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2763                 first = entry->bytenr;
2764         }
2765         n = rb_last(root);
2766         if (n) {
2767                 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2768                 last = entry->bytenr;
2769         }
2770         n = root->rb_node;
2771
2772         while (n) {
2773                 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2774                 WARN_ON(!entry->in_tree);
2775
2776                 middle = entry->bytenr;
2777
2778                 if (alt)
2779                         n = n->rb_left;
2780                 else
2781                         n = n->rb_right;
2782
2783                 alt = 1 - alt;
2784         }
2785         return middle;
2786 }
2787 #endif
2788
2789 static inline u64 heads_to_leaves(struct btrfs_fs_info *fs_info, u64 heads)
2790 {
2791         u64 num_bytes;
2792
2793         num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2794                              sizeof(struct btrfs_extent_inline_ref));
2795         if (!btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2796                 num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2797
2798         /*
2799          * We don't ever fill up leaves all the way so multiply by 2 just to be
2800          * closer to what we're really going to want to use.
2801          */
2802         return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(fs_info));
2803 }
2804
2805 /*
2806  * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2807  * would require to store the csums for that many bytes.
2808  */
2809 u64 btrfs_csum_bytes_to_leaves(struct btrfs_fs_info *fs_info, u64 csum_bytes)
2810 {
2811         u64 csum_size;
2812         u64 num_csums_per_leaf;
2813         u64 num_csums;
2814
2815         csum_size = BTRFS_MAX_ITEM_SIZE(fs_info);
2816         num_csums_per_leaf = div64_u64(csum_size,
2817                         (u64)btrfs_super_csum_size(fs_info->super_copy));
2818         num_csums = div64_u64(csum_bytes, fs_info->sectorsize);
2819         num_csums += num_csums_per_leaf - 1;
2820         num_csums = div64_u64(num_csums, num_csums_per_leaf);
2821         return num_csums;
2822 }
2823
2824 int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
2825                                        struct btrfs_fs_info *fs_info)
2826 {
2827         struct btrfs_block_rsv *global_rsv;
2828         u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
2829         u64 csum_bytes = trans->transaction->delayed_refs.pending_csums;
2830         u64 num_dirty_bgs = trans->transaction->num_dirty_bgs;
2831         u64 num_bytes, num_dirty_bgs_bytes;
2832         int ret = 0;
2833
2834         num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
2835         num_heads = heads_to_leaves(fs_info, num_heads);
2836         if (num_heads > 1)
2837                 num_bytes += (num_heads - 1) * fs_info->nodesize;
2838         num_bytes <<= 1;
2839         num_bytes += btrfs_csum_bytes_to_leaves(fs_info, csum_bytes) *
2840                                                         fs_info->nodesize;
2841         num_dirty_bgs_bytes = btrfs_calc_trans_metadata_size(fs_info,
2842                                                              num_dirty_bgs);
2843         global_rsv = &fs_info->global_block_rsv;
2844
2845         /*
2846          * If we can't allocate any more chunks lets make sure we have _lots_ of
2847          * wiggle room since running delayed refs can create more delayed refs.
2848          */
2849         if (global_rsv->space_info->full) {
2850                 num_dirty_bgs_bytes <<= 1;
2851                 num_bytes <<= 1;
2852         }
2853
2854         spin_lock(&global_rsv->lock);
2855         if (global_rsv->reserved <= num_bytes + num_dirty_bgs_bytes)
2856                 ret = 1;
2857         spin_unlock(&global_rsv->lock);
2858         return ret;
2859 }
2860
2861 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
2862                                        struct btrfs_fs_info *fs_info)
2863 {
2864         u64 num_entries =
2865                 atomic_read(&trans->transaction->delayed_refs.num_entries);
2866         u64 avg_runtime;
2867         u64 val;
2868
2869         smp_mb();
2870         avg_runtime = fs_info->avg_delayed_ref_runtime;
2871         val = num_entries * avg_runtime;
2872         if (val >= NSEC_PER_SEC)
2873                 return 1;
2874         if (val >= NSEC_PER_SEC / 2)
2875                 return 2;
2876
2877         return btrfs_check_space_for_delayed_refs(trans, fs_info);
2878 }
2879
2880 struct async_delayed_refs {
2881         struct btrfs_root *root;
2882         u64 transid;
2883         int count;
2884         int error;
2885         int sync;
2886         struct completion wait;
2887         struct btrfs_work work;
2888 };
2889
2890 static inline struct async_delayed_refs *
2891 to_async_delayed_refs(struct btrfs_work *work)
2892 {
2893         return container_of(work, struct async_delayed_refs, work);
2894 }
2895
2896 static void delayed_ref_async_start(struct btrfs_work *work)
2897 {
2898         struct async_delayed_refs *async = to_async_delayed_refs(work);
2899         struct btrfs_trans_handle *trans;
2900         struct btrfs_fs_info *fs_info = async->root->fs_info;
2901         int ret;
2902
2903         /* if the commit is already started, we don't need to wait here */
2904         if (btrfs_transaction_blocked(fs_info))
2905                 goto done;
2906
2907         trans = btrfs_join_transaction(async->root);
2908         if (IS_ERR(trans)) {
2909                 async->error = PTR_ERR(trans);
2910                 goto done;
2911         }
2912
2913         /*
2914          * trans->sync means that when we call end_transaction, we won't
2915          * wait on delayed refs
2916          */
2917         trans->sync = true;
2918
2919         /* Don't bother flushing if we got into a different transaction */
2920         if (trans->transid > async->transid)
2921                 goto end;
2922
2923         ret = btrfs_run_delayed_refs(trans, fs_info, async->count);
2924         if (ret)
2925                 async->error = ret;
2926 end:
2927         ret = btrfs_end_transaction(trans);
2928         if (ret && !async->error)
2929                 async->error = ret;
2930 done:
2931         if (async->sync)
2932                 complete(&async->wait);
2933         else
2934                 kfree(async);
2935 }
2936
2937 int btrfs_async_run_delayed_refs(struct btrfs_fs_info *fs_info,
2938                                  unsigned long count, u64 transid, int wait)
2939 {
2940         struct async_delayed_refs *async;
2941         int ret;
2942
2943         async = kmalloc(sizeof(*async), GFP_NOFS);
2944         if (!async)
2945                 return -ENOMEM;
2946
2947         async->root = fs_info->tree_root;
2948         async->count = count;
2949         async->error = 0;
2950         async->transid = transid;
2951         if (wait)
2952                 async->sync = 1;
2953         else
2954                 async->sync = 0;
2955         init_completion(&async->wait);
2956
2957         btrfs_init_work(&async->work, btrfs_extent_refs_helper,
2958                         delayed_ref_async_start, NULL, NULL);
2959
2960         btrfs_queue_work(fs_info->extent_workers, &async->work);
2961
2962         if (wait) {
2963                 wait_for_completion(&async->wait);
2964                 ret = async->error;
2965                 kfree(async);
2966                 return ret;
2967         }
2968         return 0;
2969 }
2970
2971 /*
2972  * this starts processing the delayed reference count updates and
2973  * extent insertions we have queued up so far.  count can be
2974  * 0, which means to process everything in the tree at the start
2975  * of the run (but not newly added entries), or it can be some target
2976  * number you'd like to process.
2977  *
2978  * Returns 0 on success or if called with an aborted transaction
2979  * Returns <0 on error and aborts the transaction
2980  */
2981 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2982                            struct btrfs_fs_info *fs_info, unsigned long count)
2983 {
2984         struct rb_node *node;
2985         struct btrfs_delayed_ref_root *delayed_refs;
2986         struct btrfs_delayed_ref_head *head;
2987         int ret;
2988         int run_all = count == (unsigned long)-1;
2989         bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
2990
2991         /* We'll clean this up in btrfs_cleanup_transaction */
2992         if (trans->aborted)
2993                 return 0;
2994
2995         if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags))
2996                 return 0;
2997
2998         delayed_refs = &trans->transaction->delayed_refs;
2999         if (count == 0)
3000                 count = atomic_read(&delayed_refs->num_entries) * 2;
3001
3002 again:
3003 #ifdef SCRAMBLE_DELAYED_REFS
3004         delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
3005 #endif
3006         trans->can_flush_pending_bgs = false;
3007         ret = __btrfs_run_delayed_refs(trans, fs_info, count);
3008         if (ret < 0) {
3009                 btrfs_abort_transaction(trans, ret);
3010                 return ret;
3011         }
3012
3013         if (run_all) {
3014                 if (!list_empty(&trans->new_bgs))
3015                         btrfs_create_pending_block_groups(trans, fs_info);
3016
3017                 spin_lock(&delayed_refs->lock);
3018                 node = rb_first(&delayed_refs->href_root);
3019                 if (!node) {
3020                         spin_unlock(&delayed_refs->lock);
3021                         goto out;
3022                 }
3023
3024                 while (node) {
3025                         head = rb_entry(node, struct btrfs_delayed_ref_head,
3026                                         href_node);
3027                         if (btrfs_delayed_ref_is_head(&head->node)) {
3028                                 struct btrfs_delayed_ref_node *ref;
3029
3030                                 ref = &head->node;
3031                                 refcount_inc(&ref->refs);
3032
3033                                 spin_unlock(&delayed_refs->lock);
3034                                 /*
3035                                  * Mutex was contended, block until it's
3036                                  * released and try again
3037                                  */
3038                                 mutex_lock(&head->mutex);
3039                                 mutex_unlock(&head->mutex);
3040
3041                                 btrfs_put_delayed_ref(ref);
3042                                 cond_resched();
3043                                 goto again;
3044                         } else {
3045                                 WARN_ON(1);
3046                         }
3047                         node = rb_next(node);
3048                 }
3049                 spin_unlock(&delayed_refs->lock);
3050                 cond_resched();
3051                 goto again;
3052         }
3053 out:
3054         trans->can_flush_pending_bgs = can_flush_pending_bgs;
3055         return 0;
3056 }
3057
3058 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
3059                                 struct btrfs_fs_info *fs_info,
3060                                 u64 bytenr, u64 num_bytes, u64 flags,
3061                                 int level, int is_data)
3062 {
3063         struct btrfs_delayed_extent_op *extent_op;
3064         int ret;
3065
3066         extent_op = btrfs_alloc_delayed_extent_op();
3067         if (!extent_op)
3068                 return -ENOMEM;
3069
3070         extent_op->flags_to_set = flags;
3071         extent_op->update_flags = true;
3072         extent_op->update_key = false;
3073         extent_op->is_data = is_data ? true : false;
3074         extent_op->level = level;
3075
3076         ret = btrfs_add_delayed_extent_op(fs_info, trans, bytenr,
3077                                           num_bytes, extent_op);
3078         if (ret)
3079                 btrfs_free_delayed_extent_op(extent_op);
3080         return ret;
3081 }
3082
3083 static noinline int check_delayed_ref(struct btrfs_root *root,
3084                                       struct btrfs_path *path,
3085                                       u64 objectid, u64 offset, u64 bytenr)
3086 {
3087         struct btrfs_delayed_ref_head *head;
3088         struct btrfs_delayed_ref_node *ref;
3089         struct btrfs_delayed_data_ref *data_ref;
3090         struct btrfs_delayed_ref_root *delayed_refs;
3091         struct btrfs_transaction *cur_trans;
3092         int ret = 0;
3093
3094         cur_trans = root->fs_info->running_transaction;
3095         if (!cur_trans)
3096                 return 0;
3097
3098         delayed_refs = &cur_trans->delayed_refs;
3099         spin_lock(&delayed_refs->lock);
3100         head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
3101         if (!head) {
3102                 spin_unlock(&delayed_refs->lock);
3103                 return 0;
3104         }
3105
3106         if (!mutex_trylock(&head->mutex)) {
3107                 refcount_inc(&head->node.refs);
3108                 spin_unlock(&delayed_refs->lock);
3109
3110                 btrfs_release_path(path);
3111
3112                 /*
3113                  * Mutex was contended, block until it's released and let
3114                  * caller try again
3115                  */
3116                 mutex_lock(&head->mutex);
3117                 mutex_unlock(&head->mutex);
3118                 btrfs_put_delayed_ref(&head->node);
3119                 return -EAGAIN;
3120         }
3121         spin_unlock(&delayed_refs->lock);
3122
3123         spin_lock(&head->lock);
3124         list_for_each_entry(ref, &head->ref_list, list) {
3125                 /* If it's a shared ref we know a cross reference exists */
3126                 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
3127                         ret = 1;
3128                         break;
3129                 }
3130
3131                 data_ref = btrfs_delayed_node_to_data_ref(ref);
3132
3133                 /*
3134                  * If our ref doesn't match the one we're currently looking at
3135                  * then we have a cross reference.
3136                  */
3137                 if (data_ref->root != root->root_key.objectid ||
3138                     data_ref->objectid != objectid ||
3139                     data_ref->offset != offset) {
3140                         ret = 1;
3141                         break;
3142                 }
3143         }
3144         spin_unlock(&head->lock);
3145         mutex_unlock(&head->mutex);
3146         return ret;
3147 }
3148
3149 static noinline int check_committed_ref(struct btrfs_root *root,
3150                                         struct btrfs_path *path,
3151                                         u64 objectid, u64 offset, u64 bytenr)
3152 {
3153         struct btrfs_fs_info *fs_info = root->fs_info;
3154         struct btrfs_root *extent_root = fs_info->extent_root;
3155         struct extent_buffer *leaf;
3156         struct btrfs_extent_data_ref *ref;
3157         struct btrfs_extent_inline_ref *iref;
3158         struct btrfs_extent_item *ei;
3159         struct btrfs_key key;
3160         u32 item_size;
3161         int ret;
3162
3163         key.objectid = bytenr;
3164         key.offset = (u64)-1;
3165         key.type = BTRFS_EXTENT_ITEM_KEY;
3166
3167         ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
3168         if (ret < 0)
3169                 goto out;
3170         BUG_ON(ret == 0); /* Corruption */
3171
3172         ret = -ENOENT;
3173         if (path->slots[0] == 0)
3174                 goto out;
3175
3176         path->slots[0]--;
3177         leaf = path->nodes[0];
3178         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3179
3180         if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
3181                 goto out;
3182
3183         ret = 1;
3184         item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3185 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3186         if (item_size < sizeof(*ei)) {
3187                 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
3188                 goto out;
3189         }
3190 #endif
3191         ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
3192
3193         if (item_size != sizeof(*ei) +
3194             btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
3195                 goto out;
3196
3197         if (btrfs_extent_generation(leaf, ei) <=
3198             btrfs_root_last_snapshot(&root->root_item))
3199                 goto out;
3200
3201         iref = (struct btrfs_extent_inline_ref *)(ei + 1);
3202         if (btrfs_extent_inline_ref_type(leaf, iref) !=
3203             BTRFS_EXTENT_DATA_REF_KEY)
3204                 goto out;
3205
3206         ref = (struct btrfs_extent_data_ref *)(&iref->offset);
3207         if (btrfs_extent_refs(leaf, ei) !=
3208             btrfs_extent_data_ref_count(leaf, ref) ||
3209             btrfs_extent_data_ref_root(leaf, ref) !=
3210             root->root_key.objectid ||
3211             btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
3212             btrfs_extent_data_ref_offset(leaf, ref) != offset)
3213                 goto out;
3214
3215         ret = 0;
3216 out:
3217         return ret;
3218 }
3219
3220 int btrfs_cross_ref_exist(struct btrfs_root *root, u64 objectid, u64 offset,
3221                           u64 bytenr)
3222 {
3223         struct btrfs_path *path;
3224         int ret;
3225         int ret2;
3226
3227         path = btrfs_alloc_path();
3228         if (!path)
3229                 return -ENOENT;
3230
3231         do {
3232                 ret = check_committed_ref(root, path, objectid,
3233                                           offset, bytenr);
3234                 if (ret && ret != -ENOENT)
3235                         goto out;
3236
3237                 ret2 = check_delayed_ref(root, path, objectid,
3238                                          offset, bytenr);
3239         } while (ret2 == -EAGAIN);
3240
3241         if (ret2 && ret2 != -ENOENT) {
3242                 ret = ret2;
3243                 goto out;
3244         }
3245
3246         if (ret != -ENOENT || ret2 != -ENOENT)
3247                 ret = 0;
3248 out:
3249         btrfs_free_path(path);
3250         if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
3251                 WARN_ON(ret > 0);
3252         return ret;
3253 }
3254
3255 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
3256                            struct btrfs_root *root,
3257                            struct extent_buffer *buf,
3258                            int full_backref, int inc)
3259 {
3260         struct btrfs_fs_info *fs_info = root->fs_info;
3261         u64 bytenr;
3262         u64 num_bytes;
3263         u64 parent;
3264         u64 ref_root;
3265         u32 nritems;
3266         struct btrfs_key key;
3267         struct btrfs_file_extent_item *fi;
3268         int i;
3269         int level;
3270         int ret = 0;
3271         int (*process_func)(struct btrfs_trans_handle *,
3272                             struct btrfs_fs_info *,
3273                             u64, u64, u64, u64, u64, u64);
3274
3275
3276         if (btrfs_is_testing(fs_info))
3277                 return 0;
3278
3279         ref_root = btrfs_header_owner(buf);
3280         nritems = btrfs_header_nritems(buf);
3281         level = btrfs_header_level(buf);
3282
3283         if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
3284                 return 0;
3285
3286         if (inc)
3287                 process_func = btrfs_inc_extent_ref;
3288         else
3289                 process_func = btrfs_free_extent;
3290
3291         if (full_backref)
3292                 parent = buf->start;
3293         else
3294                 parent = 0;
3295
3296         for (i = 0; i < nritems; i++) {
3297                 if (level == 0) {
3298                         btrfs_item_key_to_cpu(buf, &key, i);
3299                         if (key.type != BTRFS_EXTENT_DATA_KEY)
3300                                 continue;
3301                         fi = btrfs_item_ptr(buf, i,
3302                                             struct btrfs_file_extent_item);
3303                         if (btrfs_file_extent_type(buf, fi) ==
3304                             BTRFS_FILE_EXTENT_INLINE)
3305                                 continue;
3306                         bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3307                         if (bytenr == 0)
3308                                 continue;
3309
3310                         num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3311                         key.offset -= btrfs_file_extent_offset(buf, fi);
3312                         ret = process_func(trans, fs_info, bytenr, num_bytes,
3313                                            parent, ref_root, key.objectid,
3314                                            key.offset);
3315                         if (ret)
3316                                 goto fail;
3317                 } else {
3318                         bytenr = btrfs_node_blockptr(buf, i);
3319                         num_bytes = fs_info->nodesize;
3320                         ret = process_func(trans, fs_info, bytenr, num_bytes,
3321                                            parent, ref_root, level - 1, 0);
3322                         if (ret)
3323                                 goto fail;
3324                 }
3325         }
3326         return 0;
3327 fail:
3328         return ret;
3329 }
3330
3331 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3332                   struct extent_buffer *buf, int full_backref)
3333 {
3334         return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
3335 }
3336
3337 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3338                   struct extent_buffer *buf, int full_backref)
3339 {
3340         return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
3341 }
3342
3343 static int write_one_cache_group(struct btrfs_trans_handle *trans,
3344                                  struct btrfs_fs_info *fs_info,
3345                                  struct btrfs_path *path,
3346                                  struct btrfs_block_group_cache *cache)
3347 {
3348         int ret;
3349         struct btrfs_root *extent_root = fs_info->extent_root;
3350         unsigned long bi;
3351         struct extent_buffer *leaf;
3352
3353         ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
3354         if (ret) {
3355                 if (ret > 0)
3356                         ret = -ENOENT;
3357                 goto fail;
3358         }
3359
3360         leaf = path->nodes[0];
3361         bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3362         write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3363         btrfs_mark_buffer_dirty(leaf);
3364 fail:
3365         btrfs_release_path(path);
3366         return ret;
3367
3368 }
3369
3370 static struct btrfs_block_group_cache *
3371 next_block_group(struct btrfs_fs_info *fs_info,
3372                  struct btrfs_block_group_cache *cache)
3373 {
3374         struct rb_node *node;
3375
3376         spin_lock(&fs_info->block_group_cache_lock);
3377
3378         /* If our block group was removed, we need a full search. */
3379         if (RB_EMPTY_NODE(&cache->cache_node)) {
3380                 const u64 next_bytenr = cache->key.objectid + cache->key.offset;
3381
3382                 spin_unlock(&fs_info->block_group_cache_lock);
3383                 btrfs_put_block_group(cache);
3384                 cache = btrfs_lookup_first_block_group(fs_info, next_bytenr); return cache;
3385         }
3386         node = rb_next(&cache->cache_node);
3387         btrfs_put_block_group(cache);
3388         if (node) {
3389                 cache = rb_entry(node, struct btrfs_block_group_cache,
3390                                  cache_node);
3391                 btrfs_get_block_group(cache);
3392         } else
3393                 cache = NULL;
3394         spin_unlock(&fs_info->block_group_cache_lock);
3395         return cache;
3396 }
3397
3398 static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3399                             struct btrfs_trans_handle *trans,
3400                             struct btrfs_path *path)
3401 {
3402         struct btrfs_fs_info *fs_info = block_group->fs_info;
3403         struct btrfs_root *root = fs_info->tree_root;
3404         struct inode *inode = NULL;
3405         struct extent_changeset *data_reserved = NULL;
3406         u64 alloc_hint = 0;
3407         int dcs = BTRFS_DC_ERROR;
3408         u64 num_pages = 0;
3409         int retries = 0;
3410         int ret = 0;
3411
3412         /*
3413          * If this block group is smaller than 100 megs don't bother caching the
3414          * block group.
3415          */
3416         if (block_group->key.offset < (100 * SZ_1M)) {
3417                 spin_lock(&block_group->lock);
3418                 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3419                 spin_unlock(&block_group->lock);
3420                 return 0;
3421         }
3422
3423         if (trans->aborted)
3424                 return 0;
3425 again:
3426         inode = lookup_free_space_inode(fs_info, block_group, path);
3427         if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3428                 ret = PTR_ERR(inode);
3429                 btrfs_release_path(path);
3430                 goto out;
3431         }
3432
3433         if (IS_ERR(inode)) {
3434                 BUG_ON(retries);
3435                 retries++;
3436
3437                 if (block_group->ro)
3438                         goto out_free;
3439
3440                 ret = create_free_space_inode(fs_info, trans, block_group,
3441                                               path);
3442                 if (ret)
3443                         goto out_free;
3444                 goto again;
3445         }
3446
3447         /* We've already setup this transaction, go ahead and exit */
3448         if (block_group->cache_generation == trans->transid &&
3449             i_size_read(inode)) {
3450                 dcs = BTRFS_DC_SETUP;
3451                 goto out_put;
3452         }
3453
3454         /*
3455          * We want to set the generation to 0, that way if anything goes wrong
3456          * from here on out we know not to trust this cache when we load up next
3457          * time.
3458          */
3459         BTRFS_I(inode)->generation = 0;
3460         ret = btrfs_update_inode(trans, root, inode);
3461         if (ret) {
3462                 /*
3463                  * So theoretically we could recover from this, simply set the
3464                  * super cache generation to 0 so we know to invalidate the
3465                  * cache, but then we'd have to keep track of the block groups
3466                  * that fail this way so we know we _have_ to reset this cache
3467                  * before the next commit or risk reading stale cache.  So to
3468                  * limit our exposure to horrible edge cases lets just abort the
3469                  * transaction, this only happens in really bad situations
3470                  * anyway.
3471                  */
3472                 btrfs_abort_transaction(trans, ret);
3473                 goto out_put;
3474         }
3475         WARN_ON(ret);
3476
3477         if (i_size_read(inode) > 0) {
3478                 ret = btrfs_check_trunc_cache_free_space(fs_info,
3479                                         &fs_info->global_block_rsv);
3480                 if (ret)
3481                         goto out_put;
3482
3483                 ret = btrfs_truncate_free_space_cache(trans, NULL, inode);
3484                 if (ret)
3485                         goto out_put;
3486         }
3487
3488         spin_lock(&block_group->lock);
3489         if (block_group->cached != BTRFS_CACHE_FINISHED ||
3490             !btrfs_test_opt(fs_info, SPACE_CACHE)) {
3491                 /*
3492                  * don't bother trying to write stuff out _if_
3493                  * a) we're not cached,
3494                  * b) we're with nospace_cache mount option,
3495                  * c) we're with v2 space_cache (FREE_SPACE_TREE).
3496                  */
3497                 dcs = BTRFS_DC_WRITTEN;
3498                 spin_unlock(&block_group->lock);
3499                 goto out_put;
3500         }
3501         spin_unlock(&block_group->lock);
3502
3503         /*
3504          * We hit an ENOSPC when setting up the cache in this transaction, just
3505          * skip doing the setup, we've already cleared the cache so we're safe.
3506          */
3507         if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
3508                 ret = -ENOSPC;
3509                 goto out_put;
3510         }
3511
3512         /*
3513          * Try to preallocate enough space based on how big the block group is.
3514          * Keep in mind this has to include any pinned space which could end up
3515          * taking up quite a bit since it's not folded into the other space
3516          * cache.
3517          */
3518         num_pages = div_u64(block_group->key.offset, SZ_256M);
3519         if (!num_pages)
3520                 num_pages = 1;
3521
3522         num_pages *= 16;
3523         num_pages *= PAGE_SIZE;
3524
3525         ret = btrfs_check_data_free_space(inode, &data_reserved, 0, num_pages);
3526         if (ret)
3527                 goto out_put;
3528
3529         ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3530                                               num_pages, num_pages,
3531                                               &alloc_hint);
3532         /*
3533          * Our cache requires contiguous chunks so that we don't modify a bunch
3534          * of metadata or split extents when writing the cache out, which means
3535          * we can enospc if we are heavily fragmented in addition to just normal
3536          * out of space conditions.  So if we hit this just skip setting up any
3537          * other block groups for this transaction, maybe we'll unpin enough
3538          * space the next time around.
3539          */
3540         if (!ret)
3541                 dcs = BTRFS_DC_SETUP;
3542         else if (ret == -ENOSPC)
3543                 set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
3544
3545 out_put:
3546         iput(inode);
3547 out_free:
3548         btrfs_release_path(path);
3549 out:
3550         spin_lock(&block_group->lock);
3551         if (!ret && dcs == BTRFS_DC_SETUP)
3552                 block_group->cache_generation = trans->transid;
3553         block_group->disk_cache_state = dcs;
3554         spin_unlock(&block_group->lock);
3555
3556         extent_changeset_free(data_reserved);
3557         return ret;
3558 }
3559
3560 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans,
3561                             struct btrfs_fs_info *fs_info)
3562 {
3563         struct btrfs_block_group_cache *cache, *tmp;
3564         struct btrfs_transaction *cur_trans = trans->transaction;
3565         struct btrfs_path *path;
3566
3567         if (list_empty(&cur_trans->dirty_bgs) ||
3568             !btrfs_test_opt(fs_info, SPACE_CACHE))
3569                 return 0;
3570
3571         path = btrfs_alloc_path();
3572         if (!path)
3573                 return -ENOMEM;
3574
3575         /* Could add new block groups, use _safe just in case */
3576         list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
3577                                  dirty_list) {
3578                 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3579                         cache_save_setup(cache, trans, path);
3580         }
3581
3582         btrfs_free_path(path);
3583         return 0;
3584 }
3585
3586 /*
3587  * transaction commit does final block group cache writeback during a
3588  * critical section where nothing is allowed to change the FS.  This is
3589  * required in order for the cache to actually match the block group,
3590  * but can introduce a lot of latency into the commit.
3591  *
3592  * So, btrfs_start_dirty_block_groups is here to kick off block group
3593  * cache IO.  There's a chance we'll have to redo some of it if the
3594  * block group changes again during the commit, but it greatly reduces
3595  * the commit latency by getting rid of the easy block groups while
3596  * we're still allowing others to join the commit.
3597  */
3598 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans,
3599                                    struct btrfs_fs_info *fs_info)
3600 {
3601         struct btrfs_block_group_cache *cache;
3602         struct btrfs_transaction *cur_trans = trans->transaction;
3603         int ret = 0;
3604         int should_put;
3605         struct btrfs_path *path = NULL;
3606         LIST_HEAD(dirty);
3607         struct list_head *io = &cur_trans->io_bgs;
3608         int num_started = 0;
3609         int loops = 0;
3610
3611         spin_lock(&cur_trans->dirty_bgs_lock);
3612         if (list_empty(&cur_trans->dirty_bgs)) {
3613                 spin_unlock(&cur_trans->dirty_bgs_lock);
3614                 return 0;
3615         }
3616         list_splice_init(&cur_trans->dirty_bgs, &dirty);
3617         spin_unlock(&cur_trans->dirty_bgs_lock);
3618
3619 again:
3620         /*
3621          * make sure all the block groups on our dirty list actually
3622          * exist
3623          */
3624         btrfs_create_pending_block_groups(trans, fs_info);
3625
3626         if (!path) {
3627                 path = btrfs_alloc_path();
3628                 if (!path)
3629                         return -ENOMEM;
3630         }
3631
3632         /*
3633          * cache_write_mutex is here only to save us from balance or automatic
3634          * removal of empty block groups deleting this block group while we are
3635          * writing out the cache
3636          */
3637         mutex_lock(&trans->transaction->cache_write_mutex);
3638         while (!list_empty(&dirty)) {
3639                 cache = list_first_entry(&dirty,
3640                                          struct btrfs_block_group_cache,
3641                                          dirty_list);
3642                 /*
3643                  * this can happen if something re-dirties a block
3644                  * group that is already under IO.  Just wait for it to
3645                  * finish and then do it all again
3646                  */
3647                 if (!list_empty(&cache->io_list)) {
3648                         list_del_init(&cache->io_list);
3649                         btrfs_wait_cache_io(trans, cache, path);
3650                         btrfs_put_block_group(cache);
3651                 }
3652
3653
3654                 /*
3655                  * btrfs_wait_cache_io uses the cache->dirty_list to decide
3656                  * if it should update the cache_state.  Don't delete
3657                  * until after we wait.
3658                  *
3659                  * Since we're not running in the commit critical section
3660                  * we need the dirty_bgs_lock to protect from update_block_group
3661                  */
3662                 spin_lock(&cur_trans->dirty_bgs_lock);
3663                 list_del_init(&cache->dirty_list);
3664                 spin_unlock(&cur_trans->dirty_bgs_lock);
3665
3666                 should_put = 1;
3667
3668                 cache_save_setup(cache, trans, path);
3669
3670                 if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3671                         cache->io_ctl.inode = NULL;
3672                         ret = btrfs_write_out_cache(fs_info, trans,
3673                                                     cache, path);
3674                         if (ret == 0 && cache->io_ctl.inode) {
3675                                 num_started++;
3676                                 should_put = 0;
3677
3678                                 /*
3679                                  * the cache_write_mutex is protecting
3680                                  * the io_list
3681                                  */
3682                                 list_add_tail(&cache->io_list, io);
3683                         } else {
3684                                 /*
3685                                  * if we failed to write the cache, the
3686                                  * generation will be bad and life goes on
3687                                  */
3688                                 ret = 0;
3689                         }
3690                 }
3691                 if (!ret) {
3692                         ret = write_one_cache_group(trans, fs_info,
3693                                                     path, cache);
3694                         /*
3695                          * Our block group might still be attached to the list
3696                          * of new block groups in the transaction handle of some
3697                          * other task (struct btrfs_trans_handle->new_bgs). This
3698                          * means its block group item isn't yet in the extent
3699                          * tree. If this happens ignore the error, as we will
3700                          * try again later in the critical section of the
3701                          * transaction commit.
3702                          */
3703                         if (ret == -ENOENT) {
3704                                 ret = 0;
3705                                 spin_lock(&cur_trans->dirty_bgs_lock);
3706                                 if (list_empty(&cache->dirty_list)) {
3707                                         list_add_tail(&cache->dirty_list,
3708                                                       &cur_trans->dirty_bgs);
3709                                         btrfs_get_block_group(cache);
3710                                 }
3711                                 spin_unlock(&cur_trans->dirty_bgs_lock);
3712                         } else if (ret) {
3713                                 btrfs_abort_transaction(trans, ret);
3714                         }
3715                 }
3716
3717                 /* if its not on the io list, we need to put the block group */
3718                 if (should_put)
3719                         btrfs_put_block_group(cache);
3720
3721                 if (ret)
3722                         break;
3723
3724                 /*
3725                  * Avoid blocking other tasks for too long. It might even save
3726                  * us from writing caches for block groups that are going to be
3727                  * removed.
3728                  */
3729                 mutex_unlock(&trans->transaction->cache_write_mutex);
3730                 mutex_lock(&trans->transaction->cache_write_mutex);
3731         }
3732         mutex_unlock(&trans->transaction->cache_write_mutex);
3733
3734         /*
3735          * go through delayed refs for all the stuff we've just kicked off
3736          * and then loop back (just once)
3737          */
3738         ret = btrfs_run_delayed_refs(trans, fs_info, 0);
3739         if (!ret && loops == 0) {
3740                 loops++;
3741                 spin_lock(&cur_trans->dirty_bgs_lock);
3742                 list_splice_init(&cur_trans->dirty_bgs, &dirty);
3743                 /*
3744                  * dirty_bgs_lock protects us from concurrent block group
3745                  * deletes too (not just cache_write_mutex).
3746                  */
3747                 if (!list_empty(&dirty)) {
3748                         spin_unlock(&cur_trans->dirty_bgs_lock);
3749                         goto again;
3750                 }
3751                 spin_unlock(&cur_trans->dirty_bgs_lock);
3752         } else if (ret < 0) {
3753                 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
3754         }
3755
3756         btrfs_free_path(path);
3757         return ret;
3758 }
3759
3760 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3761                                    struct btrfs_fs_info *fs_info)
3762 {
3763         struct btrfs_block_group_cache *cache;
3764         struct btrfs_transaction *cur_trans = trans->transaction;
3765         int ret = 0;
3766         int should_put;
3767         struct btrfs_path *path;
3768         struct list_head *io = &cur_trans->io_bgs;
3769         int num_started = 0;
3770
3771         path = btrfs_alloc_path();
3772         if (!path)
3773                 return -ENOMEM;
3774
3775         /*
3776          * Even though we are in the critical section of the transaction commit,
3777          * we can still have concurrent tasks adding elements to this
3778          * transaction's list of dirty block groups. These tasks correspond to
3779          * endio free space workers started when writeback finishes for a
3780          * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
3781          * allocate new block groups as a result of COWing nodes of the root
3782          * tree when updating the free space inode. The writeback for the space
3783          * caches is triggered by an earlier call to
3784          * btrfs_start_dirty_block_groups() and iterations of the following
3785          * loop.
3786          * Also we want to do the cache_save_setup first and then run the
3787          * delayed refs to make sure we have the best chance at doing this all
3788          * in one shot.
3789          */
3790         spin_lock(&cur_trans->dirty_bgs_lock);
3791         while (!list_empty(&cur_trans->dirty_bgs)) {
3792                 cache = list_first_entry(&cur_trans->dirty_bgs,
3793                                          struct btrfs_block_group_cache,
3794                                          dirty_list);
3795
3796                 /*
3797                  * this can happen if cache_save_setup re-dirties a block
3798                  * group that is already under IO.  Just wait for it to
3799                  * finish and then do it all again
3800                  */
3801                 if (!list_empty(&cache->io_list)) {
3802                         spin_unlock(&cur_trans->dirty_bgs_lock);
3803                         list_del_init(&cache->io_list);
3804                         btrfs_wait_cache_io(trans, cache, path);
3805                         btrfs_put_block_group(cache);
3806                         spin_lock(&cur_trans->dirty_bgs_lock);
3807                 }
3808
3809                 /*
3810                  * don't remove from the dirty list until after we've waited
3811                  * on any pending IO
3812                  */
3813                 list_del_init(&cache->dirty_list);
3814                 spin_unlock(&cur_trans->dirty_bgs_lock);
3815                 should_put = 1;
3816
3817                 cache_save_setup(cache, trans, path);
3818
3819                 if (!ret)
3820                         ret = btrfs_run_delayed_refs(trans, fs_info,
3821                                                      (unsigned long) -1);
3822
3823                 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3824                         cache->io_ctl.inode = NULL;
3825                         ret = btrfs_write_out_cache(fs_info, trans,
3826                                                     cache, path);
3827                         if (ret == 0 && cache->io_ctl.inode) {
3828                                 num_started++;
3829                                 should_put = 0;
3830                                 list_add_tail(&cache->io_list, io);
3831                         } else {
3832                                 /*
3833                                  * if we failed to write the cache, the
3834                                  * generation will be bad and life goes on
3835                                  */
3836                                 ret = 0;
3837                         }
3838                 }
3839                 if (!ret) {
3840                         ret = write_one_cache_group(trans, fs_info,
3841                                                     path, cache);
3842                         /*
3843                          * One of the free space endio workers might have
3844                          * created a new block group while updating a free space
3845                          * cache's inode (at inode.c:btrfs_finish_ordered_io())
3846                          * and hasn't released its transaction handle yet, in
3847                          * which case the new block group is still attached to
3848                          * its transaction handle and its creation has not
3849                          * finished yet (no block group item in the extent tree
3850                          * yet, etc). If this is the case, wait for all free
3851                          * space endio workers to finish and retry. This is a
3852                          * a very rare case so no need for a more efficient and
3853                          * complex approach.
3854                          */
3855                         if (ret == -ENOENT) {
3856                                 wait_event(cur_trans->writer_wait,
3857                                    atomic_read(&cur_trans->num_writers) == 1);
3858                                 ret = write_one_cache_group(trans, fs_info,
3859                                                             path, cache);
3860                         }
3861                         if (ret)
3862                                 btrfs_abort_transaction(trans, ret);
3863                 }
3864
3865                 /* if its not on the io list, we need to put the block group */
3866                 if (should_put)
3867                         btrfs_put_block_group(cache);
3868                 spin_lock(&cur_trans->dirty_bgs_lock);
3869         }
3870         spin_unlock(&cur_trans->dirty_bgs_lock);
3871
3872         while (!list_empty(io)) {
3873                 cache = list_first_entry(io, struct btrfs_block_group_cache,
3874                                          io_list);
3875                 list_del_init(&cache->io_list);
3876                 btrfs_wait_cache_io(trans, cache, path);
3877                 btrfs_put_block_group(cache);
3878         }
3879
3880         btrfs_free_path(path);
3881         return ret;
3882 }
3883
3884 int btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr)
3885 {
3886         struct btrfs_block_group_cache *block_group;
3887         int readonly = 0;
3888
3889         block_group = btrfs_lookup_block_group(fs_info, bytenr);
3890         if (!block_group || block_group->ro)
3891                 readonly = 1;
3892         if (block_group)
3893                 btrfs_put_block_group(block_group);
3894         return readonly;
3895 }
3896
3897 bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3898 {
3899         struct btrfs_block_group_cache *bg;
3900         bool ret = true;
3901
3902         bg = btrfs_lookup_block_group(fs_info, bytenr);
3903         if (!bg)
3904                 return false;
3905
3906         spin_lock(&bg->lock);
3907         if (bg->ro)
3908                 ret = false;
3909         else
3910                 atomic_inc(&bg->nocow_writers);
3911         spin_unlock(&bg->lock);
3912
3913         /* no put on block group, done by btrfs_dec_nocow_writers */
3914         if (!ret)
3915                 btrfs_put_block_group(bg);
3916
3917         return ret;
3918
3919 }
3920
3921 void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3922 {
3923         struct btrfs_block_group_cache *bg;
3924
3925         bg = btrfs_lookup_block_group(fs_info, bytenr);
3926         ASSERT(bg);
3927         if (atomic_dec_and_test(&bg->nocow_writers))
3928                 wake_up_atomic_t(&bg->nocow_writers);
3929         /*
3930          * Once for our lookup and once for the lookup done by a previous call
3931          * to btrfs_inc_nocow_writers()
3932          */
3933         btrfs_put_block_group(bg);
3934         btrfs_put_block_group(bg);
3935 }
3936
3937 static int btrfs_wait_nocow_writers_atomic_t(atomic_t *a)
3938 {
3939         schedule();
3940         return 0;
3941 }
3942
3943 void btrfs_wait_nocow_writers(struct btrfs_block_group_cache *bg)
3944 {
3945         wait_on_atomic_t(&bg->nocow_writers,
3946                          btrfs_wait_nocow_writers_atomic_t,
3947                          TASK_UNINTERRUPTIBLE);
3948 }
3949
3950 static const char *alloc_name(u64 flags)
3951 {
3952         switch (flags) {
3953         case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA:
3954                 return "mixed";
3955         case BTRFS_BLOCK_GROUP_METADATA:
3956                 return "metadata";
3957         case BTRFS_BLOCK_GROUP_DATA:
3958                 return "data";
3959         case BTRFS_BLOCK_GROUP_SYSTEM:
3960                 return "system";
3961         default:
3962                 WARN_ON(1);
3963                 return "invalid-combination";
3964         };
3965 }
3966
3967 static int create_space_info(struct btrfs_fs_info *info, u64 flags,
3968                              struct btrfs_space_info **new)
3969 {
3970
3971         struct btrfs_space_info *space_info;
3972         int i;
3973         int ret;
3974
3975         space_info = kzalloc(sizeof(*space_info), GFP_NOFS);
3976         if (!space_info)
3977                 return -ENOMEM;
3978
3979         ret = percpu_counter_init(&space_info->total_bytes_pinned, 0,
3980                                  GFP_KERNEL);
3981         if (ret) {
3982                 kfree(space_info);
3983                 return ret;
3984         }
3985
3986         for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
3987                 INIT_LIST_HEAD(&space_info->block_groups[i]);
3988         init_rwsem(&space_info->groups_sem);
3989         spin_lock_init(&space_info->lock);
3990         space_info->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
3991         space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
3992         init_waitqueue_head(&space_info->wait);
3993         INIT_LIST_HEAD(&space_info->ro_bgs);
3994         INIT_LIST_HEAD(&space_info->tickets);
3995         INIT_LIST_HEAD(&space_info->priority_tickets);
3996
3997         ret = kobject_init_and_add(&space_info->kobj, &space_info_ktype,
3998                                     info->space_info_kobj, "%s",
3999                                     alloc_name(space_info->flags));
4000         if (ret) {
4001                 percpu_counter_destroy(&space_info->total_bytes_pinned);
4002                 kfree(space_info);
4003                 return ret;
4004         }
4005
4006         *new = space_info;
4007         list_add_rcu(&space_info->list, &info->space_info);
4008         if (flags & BTRFS_BLOCK_GROUP_DATA)
4009                 info->data_sinfo = space_info;
4010
4011         return ret;
4012 }
4013
4014 static void update_space_info(struct btrfs_fs_info *info, u64 flags,
4015                              u64 total_bytes, u64 bytes_used,
4016                              u64 bytes_readonly,
4017                              struct btrfs_space_info **space_info)
4018 {
4019         struct btrfs_space_info *found;
4020         int factor;
4021
4022         if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
4023                      BTRFS_BLOCK_GROUP_RAID10))
4024                 factor = 2;
4025         else
4026                 factor = 1;
4027
4028         found = __find_space_info(info, flags);
4029         ASSERT(found);
4030         spin_lock(&found->lock);
4031         found->total_bytes += total_bytes;
4032         found->disk_total += total_bytes * factor;
4033         found->bytes_used += bytes_used;
4034         found->disk_used += bytes_used * factor;
4035         found->bytes_readonly += bytes_readonly;
4036         if (total_bytes > 0)
4037                 found->full = 0;
4038         space_info_add_new_bytes(info, found, total_bytes -
4039                                  bytes_used - bytes_readonly);
4040         spin_unlock(&found->lock);
4041         *space_info = found;
4042 }
4043
4044 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
4045 {
4046         u64 extra_flags = chunk_to_extended(flags) &
4047                                 BTRFS_EXTENDED_PROFILE_MASK;
4048
4049         write_seqlock(&fs_info->profiles_lock);
4050         if (flags & BTRFS_BLOCK_GROUP_DATA)
4051                 fs_info->avail_data_alloc_bits |= extra_flags;
4052         if (flags & BTRFS_BLOCK_GROUP_METADATA)
4053                 fs_info->avail_metadata_alloc_bits |= extra_flags;
4054         if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
4055                 fs_info->avail_system_alloc_bits |= extra_flags;
4056         write_sequnlock(&fs_info->profiles_lock);
4057 }
4058
4059 /*
4060  * returns target flags in extended format or 0 if restripe for this
4061  * chunk_type is not in progress
4062  *
4063  * should be called with either volume_mutex or balance_lock held
4064  */
4065 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
4066 {
4067         struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4068         u64 target = 0;
4069
4070         if (!bctl)
4071                 return 0;
4072
4073         if (flags & BTRFS_BLOCK_GROUP_DATA &&
4074             bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4075                 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
4076         } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
4077                    bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4078                 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
4079         } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
4080                    bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4081                 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
4082         }
4083
4084         return target;
4085 }
4086
4087 /*
4088  * @flags: available profiles in extended format (see ctree.h)
4089  *
4090  * Returns reduced profile in chunk format.  If profile changing is in
4091  * progress (either running or paused) picks the target profile (if it's
4092  * already available), otherwise falls back to plain reducing.
4093  */
4094 static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags)
4095 {
4096         u64 num_devices = fs_info->fs_devices->rw_devices;
4097         u64 target;
4098         u64 raid_type;
4099         u64 allowed = 0;
4100
4101         /*
4102          * see if restripe for this chunk_type is in progress, if so
4103          * try to reduce to the target profile
4104          */
4105         spin_lock(&fs_info->balance_lock);
4106         target = get_restripe_target(fs_info, flags);
4107         if (target) {
4108                 /* pick target profile only if it's already available */
4109                 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
4110                         spin_unlock(&fs_info->balance_lock);
4111                         return extended_to_chunk(target);
4112                 }
4113         }
4114         spin_unlock(&fs_info->balance_lock);
4115
4116         /* First, mask out the RAID levels which aren't possible */
4117         for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
4118                 if (num_devices >= btrfs_raid_array[raid_type].devs_min)
4119                         allowed |= btrfs_raid_group[raid_type];
4120         }
4121         allowed &= flags;
4122
4123         if (allowed & BTRFS_BLOCK_GROUP_RAID6)
4124                 allowed = BTRFS_BLOCK_GROUP_RAID6;
4125         else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
4126                 allowed = BTRFS_BLOCK_GROUP_RAID5;
4127         else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
4128                 allowed = BTRFS_BLOCK_GROUP_RAID10;
4129         else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
4130                 allowed = BTRFS_BLOCK_GROUP_RAID1;
4131         else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
4132                 allowed = BTRFS_BLOCK_GROUP_RAID0;
4133
4134         flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
4135
4136         return extended_to_chunk(flags | allowed);
4137 }
4138
4139 static u64 get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags)
4140 {
4141         unsigned seq;
4142         u64 flags;
4143
4144         do {
4145                 flags = orig_flags;
4146                 seq = read_seqbegin(&fs_info->profiles_lock);
4147
4148                 if (flags & BTRFS_BLOCK_GROUP_DATA)
4149                         flags |= fs_info->avail_data_alloc_bits;
4150                 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
4151                         flags |= fs_info->avail_system_alloc_bits;
4152                 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
4153                         flags |= fs_info->avail_metadata_alloc_bits;
4154         } while (read_seqretry(&fs_info->profiles_lock, seq));
4155
4156         return btrfs_reduce_alloc_profile(fs_info, flags);
4157 }
4158
4159 static u64 get_alloc_profile_by_root(struct btrfs_root *root, int data)
4160 {
4161         struct btrfs_fs_info *fs_info = root->fs_info;
4162         u64 flags;
4163         u64 ret;
4164
4165         if (data)
4166                 flags = BTRFS_BLOCK_GROUP_DATA;
4167         else if (root == fs_info->chunk_root)
4168                 flags = BTRFS_BLOCK_GROUP_SYSTEM;
4169         else
4170                 flags = BTRFS_BLOCK_GROUP_METADATA;
4171
4172         ret = get_alloc_profile(fs_info, flags);
4173         return ret;
4174 }
4175
4176 u64 btrfs_data_alloc_profile(struct btrfs_fs_info *fs_info)
4177 {
4178         return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_DATA);
4179 }
4180
4181 u64 btrfs_metadata_alloc_profile(struct btrfs_fs_info *fs_info)
4182 {
4183         return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4184 }
4185
4186 u64 btrfs_system_alloc_profile(struct btrfs_fs_info *fs_info)
4187 {
4188         return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4189 }
4190
4191 static u64 btrfs_space_info_used(struct btrfs_space_info *s_info,
4192                                  bool may_use_included)
4193 {
4194         ASSERT(s_info);
4195         return s_info->bytes_used + s_info->bytes_reserved +
4196                 s_info->bytes_pinned + s_info->bytes_readonly +
4197                 (may_use_included ? s_info->bytes_may_use : 0);
4198 }
4199
4200 int btrfs_alloc_data_chunk_ondemand(struct btrfs_inode *inode, u64 bytes)
4201 {
4202         struct btrfs_space_info *data_sinfo;
4203         struct btrfs_root *root = inode->root;
4204         struct btrfs_fs_info *fs_info = root->fs_info;
4205         u64 used;
4206         int ret = 0;
4207         int need_commit = 2;
4208         int have_pinned_space;
4209
4210         /* make sure bytes are sectorsize aligned */
4211         bytes = ALIGN(bytes, fs_info->sectorsize);
4212
4213         if (btrfs_is_free_space_inode(inode)) {
4214                 need_commit = 0;
4215                 ASSERT(current->journal_info);
4216         }
4217
4218         data_sinfo = fs_info->data_sinfo;
4219         if (!data_sinfo)
4220                 goto alloc;
4221
4222 again:
4223         /* make sure we have enough space to handle the data first */
4224         spin_lock(&data_sinfo->lock);
4225         used = btrfs_space_info_used(data_sinfo, true);
4226
4227         if (used + bytes > data_sinfo->total_bytes) {
4228                 struct btrfs_trans_handle *trans;
4229
4230                 /*
4231                  * if we don't have enough free bytes in this space then we need
4232                  * to alloc a new chunk.
4233                  */
4234                 if (!data_sinfo->full) {
4235                         u64 alloc_target;
4236
4237                         data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
4238                         spin_unlock(&data_sinfo->lock);
4239 alloc:
4240                         alloc_target = btrfs_data_alloc_profile(fs_info);
4241                         /*
4242                          * It is ugly that we don't call nolock join
4243                          * transaction for the free space inode case here.
4244                          * But it is safe because we only do the data space
4245                          * reservation for the free space cache in the
4246                          * transaction context, the common join transaction
4247                          * just increase the counter of the current transaction
4248                          * handler, doesn't try to acquire the trans_lock of
4249                          * the fs.
4250                          */
4251                         trans = btrfs_join_transaction(root);
4252                         if (IS_ERR(trans))
4253                                 return PTR_ERR(trans);
4254
4255                         ret = do_chunk_alloc(trans, fs_info, alloc_target,
4256                                              CHUNK_ALLOC_NO_FORCE);
4257                         btrfs_end_transaction(trans);
4258                         if (ret < 0) {
4259                                 if (ret != -ENOSPC)
4260                                         return ret;
4261                                 else {
4262                                         have_pinned_space = 1;
4263                                         goto commit_trans;
4264                                 }
4265                         }
4266
4267                         if (!data_sinfo)
4268                                 data_sinfo = fs_info->data_sinfo;
4269
4270                         goto again;
4271                 }
4272
4273                 /*
4274                  * If we don't have enough pinned space to deal with this
4275                  * allocation, and no removed chunk in current transaction,
4276                  * don't bother committing the transaction.
4277                  */
4278                 have_pinned_space = percpu_counter_compare(
4279                         &data_sinfo->total_bytes_pinned,
4280                         used + bytes - data_sinfo->total_bytes);
4281                 spin_unlock(&data_sinfo->lock);
4282
4283                 /* commit the current transaction and try again */
4284 commit_trans:
4285                 if (need_commit &&
4286                     !atomic_read(&fs_info->open_ioctl_trans)) {
4287                         need_commit--;
4288
4289                         if (need_commit > 0) {
4290                                 btrfs_start_delalloc_roots(fs_info, 0, -1);
4291                                 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0,
4292                                                          (u64)-1);
4293                         }
4294
4295                         trans = btrfs_join_transaction(root);
4296                         if (IS_ERR(trans))
4297                                 return PTR_ERR(trans);
4298                         if (have_pinned_space >= 0 ||
4299                             test_bit(BTRFS_TRANS_HAVE_FREE_BGS,
4300                                      &trans->transaction->flags) ||
4301                             need_commit > 0) {
4302                                 ret = btrfs_commit_transaction(trans);
4303                                 if (ret)
4304                                         return ret;
4305                                 /*
4306                                  * The cleaner kthread might still be doing iput
4307                                  * operations. Wait for it to finish so that
4308                                  * more space is released.
4309                                  */
4310                                 mutex_lock(&fs_info->cleaner_delayed_iput_mutex);
4311                                 mutex_unlock(&fs_info->cleaner_delayed_iput_mutex);
4312                                 goto again;
4313                         } else {
4314                                 btrfs_end_transaction(trans);
4315                         }
4316                 }
4317
4318                 trace_btrfs_space_reservation(fs_info,
4319                                               "space_info:enospc",
4320                                               data_sinfo->flags, bytes, 1);
4321                 return -ENOSPC;
4322         }
4323         data_sinfo->bytes_may_use += bytes;
4324         trace_btrfs_space_reservation(fs_info, "space_info",
4325                                       data_sinfo->flags, bytes, 1);
4326         spin_unlock(&data_sinfo->lock);
4327
4328         return ret;
4329 }
4330
4331 int btrfs_check_data_free_space(struct inode *inode,
4332                         struct extent_changeset **reserved, u64 start, u64 len)
4333 {
4334         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4335         int ret;
4336
4337         /* align the range */
4338         len = round_up(start + len, fs_info->sectorsize) -
4339               round_down(start, fs_info->sectorsize);
4340         start = round_down(start, fs_info->sectorsize);
4341
4342         ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode), len);
4343         if (ret < 0)
4344                 return ret;
4345
4346         /* Use new btrfs_qgroup_reserve_data to reserve precious data space. */
4347         ret = btrfs_qgroup_reserve_data(inode, reserved, start, len);
4348         if (ret < 0)
4349                 btrfs_free_reserved_data_space_noquota(inode, start, len);
4350         else
4351                 ret = 0;
4352         return ret;
4353 }
4354
4355 /*
4356  * Called if we need to clear a data reservation for this inode
4357  * Normally in a error case.
4358  *
4359  * This one will *NOT* use accurate qgroup reserved space API, just for case
4360  * which we can't sleep and is sure it won't affect qgroup reserved space.
4361  * Like clear_bit_hook().
4362  */
4363 void btrfs_free_reserved_data_space_noquota(struct inode *inode, u64 start,
4364                                             u64 len)
4365 {
4366         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4367         struct btrfs_space_info *data_sinfo;
4368
4369         /* Make sure the range is aligned to sectorsize */
4370         len = round_up(start + len, fs_info->sectorsize) -
4371               round_down(start, fs_info->sectorsize);
4372         start = round_down(start, fs_info->sectorsize);
4373
4374         data_sinfo = fs_info->data_sinfo;
4375         spin_lock(&data_sinfo->lock);
4376         if (WARN_ON(data_sinfo->bytes_may_use < len))
4377                 data_sinfo->bytes_may_use = 0;
4378         else
4379                 data_sinfo->bytes_may_use -= len;
4380         trace_btrfs_space_reservation(fs_info, "space_info",
4381                                       data_sinfo->flags, len, 0);
4382         spin_unlock(&data_sinfo->lock);
4383 }
4384
4385 /*
4386  * Called if we need to clear a data reservation for this inode
4387  * Normally in a error case.
4388  *
4389  * This one will handle the per-inode data rsv map for accurate reserved
4390  * space framework.
4391  */
4392 void btrfs_free_reserved_data_space(struct inode *inode,
4393                         struct extent_changeset *reserved, u64 start, u64 len)
4394 {
4395         struct btrfs_root *root = BTRFS_I(inode)->root;
4396
4397         /* Make sure the range is aligned to sectorsize */
4398         len = round_up(start + len, root->fs_info->sectorsize) -
4399               round_down(start, root->fs_info->sectorsize);
4400         start = round_down(start, root->fs_info->sectorsize);
4401
4402         btrfs_free_reserved_data_space_noquota(inode, start, len);
4403         btrfs_qgroup_free_data(inode, reserved, start, len);
4404 }
4405
4406 static void force_metadata_allocation(struct btrfs_fs_info *info)
4407 {
4408         struct list_head *head = &info->space_info;
4409         struct btrfs_space_info *found;
4410
4411         rcu_read_lock();
4412         list_for_each_entry_rcu(found, head, list) {
4413                 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
4414                         found->force_alloc = CHUNK_ALLOC_FORCE;
4415         }
4416         rcu_read_unlock();
4417 }
4418
4419 static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
4420 {
4421         return (global->size << 1);
4422 }
4423
4424 static int should_alloc_chunk(struct btrfs_fs_info *fs_info,
4425                               struct btrfs_space_info *sinfo, int force)
4426 {
4427         struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
4428         u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
4429         u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
4430         u64 thresh;
4431
4432         if (force == CHUNK_ALLOC_FORCE)
4433                 return 1;
4434
4435         /*
4436          * We need to take into account the global rsv because for all intents
4437          * and purposes it's used space.  Don't worry about locking the
4438          * global_rsv, it doesn't change except when the transaction commits.
4439          */
4440         if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
4441                 num_allocated += calc_global_rsv_need_space(global_rsv);
4442
4443         /*
4444          * in limited mode, we want to have some free space up to
4445          * about 1% of the FS size.
4446          */
4447         if (force == CHUNK_ALLOC_LIMITED) {
4448                 thresh = btrfs_super_total_bytes(fs_info->super_copy);
4449                 thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1));
4450
4451                 if (num_bytes - num_allocated < thresh)
4452                         return 1;
4453         }
4454
4455         if (num_allocated + SZ_2M < div_factor(num_bytes, 8))
4456                 return 0;
4457         return 1;
4458 }
4459
4460 static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type)
4461 {
4462         u64 num_dev;
4463
4464         if (type & (BTRFS_BLOCK_GROUP_RAID10 |
4465                     BTRFS_BLOCK_GROUP_RAID0 |
4466                     BTRFS_BLOCK_GROUP_RAID5 |
4467                     BTRFS_BLOCK_GROUP_RAID6))
4468                 num_dev = fs_info->fs_devices->rw_devices;
4469         else if (type & BTRFS_BLOCK_GROUP_RAID1)
4470                 num_dev = 2;
4471         else
4472                 num_dev = 1;    /* DUP or single */
4473
4474         return num_dev;
4475 }
4476
4477 /*
4478  * If @is_allocation is true, reserve space in the system space info necessary
4479  * for allocating a chunk, otherwise if it's false, reserve space necessary for
4480  * removing a chunk.
4481  */
4482 void check_system_chunk(struct btrfs_trans_handle *trans,
4483                         struct btrfs_fs_info *fs_info, u64 type)
4484 {
4485         struct btrfs_space_info *info;
4486         u64 left;
4487         u64 thresh;
4488         int ret = 0;
4489         u64 num_devs;
4490
4491         /*
4492          * Needed because we can end up allocating a system chunk and for an
4493          * atomic and race free space reservation in the chunk block reserve.
4494          */
4495         ASSERT(mutex_is_locked(&fs_info->chunk_mutex));
4496
4497         info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4498         spin_lock(&info->lock);
4499         left = info->total_bytes - btrfs_space_info_used(info, true);
4500         spin_unlock(&info->lock);
4501
4502         num_devs = get_profile_num_devs(fs_info, type);
4503
4504         /* num_devs device items to update and 1 chunk item to add or remove */
4505         thresh = btrfs_calc_trunc_metadata_size(fs_info, num_devs) +
4506                 btrfs_calc_trans_metadata_size(fs_info, 1);
4507
4508         if (left < thresh && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
4509                 btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu",
4510                            left, thresh, type);
4511                 dump_space_info(fs_info, info, 0, 0);
4512         }
4513
4514         if (left < thresh) {
4515                 u64 flags = btrfs_system_alloc_profile(fs_info);
4516
4517                 /*
4518                  * Ignore failure to create system chunk. We might end up not
4519                  * needing it, as we might not need to COW all nodes/leafs from
4520                  * the paths we visit in the chunk tree (they were already COWed
4521                  * or created in the current transaction for example).
4522                  */
4523                 ret = btrfs_alloc_chunk(trans, fs_info, flags);
4524         }
4525
4526         if (!ret) {
4527                 ret = btrfs_block_rsv_add(fs_info->chunk_root,
4528                                           &fs_info->chunk_block_rsv,
4529                                           thresh, BTRFS_RESERVE_NO_FLUSH);
4530                 if (!ret)
4531                         trans->chunk_bytes_reserved += thresh;
4532         }
4533 }
4534
4535 /*
4536  * If force is CHUNK_ALLOC_FORCE:
4537  *    - return 1 if it successfully allocates a chunk,
4538  *    - return errors including -ENOSPC otherwise.
4539  * If force is NOT CHUNK_ALLOC_FORCE:
4540  *    - return 0 if it doesn't need to allocate a new chunk,
4541  *    - return 1 if it successfully allocates a chunk,
4542  *    - return errors including -ENOSPC otherwise.
4543  */
4544 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
4545                           struct btrfs_fs_info *fs_info, u64 flags, int force)
4546 {
4547         struct btrfs_space_info *space_info;
4548         int wait_for_alloc = 0;
4549         int ret = 0;
4550
4551         /* Don't re-enter if we're already allocating a chunk */
4552         if (trans->allocating_chunk)
4553                 return -ENOSPC;
4554
4555         space_info = __find_space_info(fs_info, flags);
4556         if (!space_info) {
4557                 ret = create_space_info(fs_info, flags, &space_info);
4558                 if (ret)
4559                         return ret;
4560         }
4561
4562 again:
4563         spin_lock(&space_info->lock);
4564         if (force < space_info->force_alloc)
4565                 force = space_info->force_alloc;
4566         if (space_info->full) {
4567                 if (should_alloc_chunk(fs_info, space_info, force))
4568                         ret = -ENOSPC;
4569                 else
4570                         ret = 0;
4571                 spin_unlock(&space_info->lock);
4572                 return ret;
4573         }
4574
4575         if (!should_alloc_chunk(fs_info, space_info, force)) {
4576                 spin_unlock(&space_info->lock);
4577                 return 0;
4578         } else if (space_info->chunk_alloc) {
4579                 wait_for_alloc = 1;
4580         } else {
4581                 space_info->chunk_alloc = 1;
4582         }
4583
4584         spin_unlock(&space_info->lock);
4585
4586         mutex_lock(&fs_info->chunk_mutex);
4587
4588         /*
4589          * The chunk_mutex is held throughout the entirety of a chunk
4590          * allocation, so once we've acquired the chunk_mutex we know that the
4591          * other guy is done and we need to recheck and see if we should
4592          * allocate.
4593          */
4594         if (wait_for_alloc) {
4595                 mutex_unlock(&fs_info->chunk_mutex);
4596                 wait_for_alloc = 0;
4597                 goto again;
4598         }
4599
4600         trans->allocating_chunk = true;
4601
4602         /*
4603          * If we have mixed data/metadata chunks we want to make sure we keep
4604          * allocating mixed chunks instead of individual chunks.
4605          */
4606         if (btrfs_mixed_space_info(space_info))
4607                 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
4608
4609         /*
4610          * if we're doing a data chunk, go ahead and make sure that
4611          * we keep a reasonable number of metadata chunks allocated in the
4612          * FS as well.
4613          */
4614         if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
4615                 fs_info->data_chunk_allocations++;
4616                 if (!(fs_info->data_chunk_allocations %
4617                       fs_info->metadata_ratio))
4618                         force_metadata_allocation(fs_info);
4619         }
4620
4621         /*
4622          * Check if we have enough space in SYSTEM chunk because we may need
4623          * to update devices.
4624          */
4625         check_system_chunk(trans, fs_info, flags);
4626
4627         ret = btrfs_alloc_chunk(trans, fs_info, flags);
4628         trans->allocating_chunk = false;
4629
4630         spin_lock(&space_info->lock);
4631         if (ret < 0 && ret != -ENOSPC)
4632                 goto out;
4633         if (ret)
4634                 space_info->full = 1;
4635         else
4636                 ret = 1;
4637
4638         space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
4639 out:
4640         space_info->chunk_alloc = 0;
4641         spin_unlock(&space_info->lock);
4642         mutex_unlock(&fs_info->chunk_mutex);
4643         /*
4644          * When we allocate a new chunk we reserve space in the chunk block
4645          * reserve to make sure we can COW nodes/leafs in the chunk tree or
4646          * add new nodes/leafs to it if we end up needing to do it when
4647          * inserting the chunk item and updating device items as part of the
4648          * second phase of chunk allocation, performed by
4649          * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a
4650          * large number of new block groups to create in our transaction
4651          * handle's new_bgs list to avoid exhausting the chunk block reserve
4652          * in extreme cases - like having a single transaction create many new
4653          * block groups when starting to write out the free space caches of all
4654          * the block groups that were made dirty during the lifetime of the
4655          * transaction.
4656          */
4657         if (trans->can_flush_pending_bgs &&
4658             trans->chunk_bytes_reserved >= (u64)SZ_2M) {
4659                 btrfs_create_pending_block_groups(trans, fs_info);
4660                 btrfs_trans_release_chunk_metadata(trans);
4661         }
4662         return ret;
4663 }
4664
4665 static int can_overcommit(struct btrfs_fs_info *fs_info,
4666                           struct btrfs_space_info *space_info, u64 bytes,
4667                           enum btrfs_reserve_flush_enum flush,
4668                           bool system_chunk)
4669 {
4670         struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
4671         u64 profile;
4672         u64 space_size;
4673         u64 avail;
4674         u64 used;
4675
4676         /* Don't overcommit when in mixed mode. */
4677         if (space_info->flags & BTRFS_BLOCK_GROUP_DATA)
4678                 return 0;
4679
4680         if (system_chunk)
4681                 profile = btrfs_system_alloc_profile(fs_info);
4682         else
4683                 profile = btrfs_metadata_alloc_profile(fs_info);
4684
4685         used = btrfs_space_info_used(space_info, false);
4686
4687         /*
4688          * We only want to allow over committing if we have lots of actual space
4689          * free, but if we don't have enough space to handle the global reserve
4690          * space then we could end up having a real enospc problem when trying
4691          * to allocate a chunk or some other such important allocation.
4692          */
4693         spin_lock(&global_rsv->lock);
4694         space_size = calc_global_rsv_need_space(global_rsv);
4695         spin_unlock(&global_rsv->lock);
4696         if (used + space_size >= space_info->total_bytes)
4697                 return 0;
4698
4699         used += space_info->bytes_may_use;
4700
4701         avail = atomic64_read(&fs_info->free_chunk_space);
4702
4703         /*
4704          * If we have dup, raid1 or raid10 then only half of the free
4705          * space is actually useable.  For raid56, the space info used
4706          * doesn't include the parity drive, so we don't have to
4707          * change the math
4708          */
4709         if (profile & (BTRFS_BLOCK_GROUP_DUP |
4710                        BTRFS_BLOCK_GROUP_RAID1 |
4711                        BTRFS_BLOCK_GROUP_RAID10))
4712                 avail >>= 1;
4713
4714         /*
4715          * If we aren't flushing all things, let us overcommit up to
4716          * 1/2th of the space. If we can flush, don't let us overcommit
4717          * too much, let it overcommit up to 1/8 of the space.
4718          */
4719         if (flush == BTRFS_RESERVE_FLUSH_ALL)
4720                 avail >>= 3;
4721         else
4722                 avail >>= 1;
4723
4724         if (used + bytes < space_info->total_bytes + avail)
4725                 return 1;
4726         return 0;
4727 }
4728
4729 static void btrfs_writeback_inodes_sb_nr(struct btrfs_fs_info *fs_info,
4730                                          unsigned long nr_pages, int nr_items)
4731 {
4732         struct super_block *sb = fs_info->sb;
4733
4734         if (down_read_trylock(&sb->s_umount)) {
4735                 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
4736                 up_read(&sb->s_umount);
4737         } else {
4738                 /*
4739                  * We needn't worry the filesystem going from r/w to r/o though
4740                  * we don't acquire ->s_umount mutex, because the filesystem
4741                  * should guarantee the delalloc inodes list be empty after
4742                  * the filesystem is readonly(all dirty pages are written to
4743                  * the disk).
4744                  */
4745                 btrfs_start_delalloc_roots(fs_info, 0, nr_items);
4746                 if (!current->journal_info)
4747                         btrfs_wait_ordered_roots(fs_info, nr_items, 0, (u64)-1);
4748         }
4749 }
4750
4751 static inline u64 calc_reclaim_items_nr(struct btrfs_fs_info *fs_info,
4752                                         u64 to_reclaim)
4753 {
4754         u64 bytes;
4755         u64 nr;
4756
4757         bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
4758         nr = div64_u64(to_reclaim, bytes);
4759         if (!nr)
4760                 nr = 1;
4761         return nr;
4762 }
4763
4764 #define EXTENT_SIZE_PER_ITEM    SZ_256K
4765
4766 /*
4767  * shrink metadata reservation for delalloc
4768  */
4769 static void shrink_delalloc(struct btrfs_fs_info *fs_info, u64 to_reclaim,
4770                             u64 orig, bool wait_ordered)
4771 {
4772         struct btrfs_block_rsv *block_rsv;
4773         struct btrfs_space_info *space_info;
4774         struct btrfs_trans_handle *trans;
4775         u64 delalloc_bytes;
4776         u64 max_reclaim;
4777         u64 items;
4778         long time_left;
4779         unsigned long nr_pages;
4780         int loops;
4781         enum btrfs_reserve_flush_enum flush;
4782
4783         /* Calc the number of the pages we need flush for space reservation */
4784         items = calc_reclaim_items_nr(fs_info, to_reclaim);
4785         to_reclaim = items * EXTENT_SIZE_PER_ITEM;
4786
4787         trans = (struct btrfs_trans_handle *)current->journal_info;
4788         block_rsv = &fs_info->delalloc_block_rsv;
4789         space_info = block_rsv->space_info;
4790
4791         delalloc_bytes = percpu_counter_sum_positive(
4792                                                 &fs_info->delalloc_bytes);
4793         if (delalloc_bytes == 0) {
4794                 if (trans)
4795                         return;
4796                 if (wait_ordered)
4797                         btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
4798                 return;
4799         }
4800
4801         loops = 0;
4802         while (delalloc_bytes && loops < 3) {
4803                 max_reclaim = min(delalloc_bytes, to_reclaim);
4804                 nr_pages = max_reclaim >> PAGE_SHIFT;
4805                 btrfs_writeback_inodes_sb_nr(fs_info, nr_pages, items);
4806                 /*
4807                  * We need to wait for the async pages to actually start before
4808                  * we do anything.
4809                  */
4810                 max_reclaim = atomic_read(&fs_info->async_delalloc_pages);
4811                 if (!max_reclaim)
4812                         goto skip_async;
4813
4814                 if (max_reclaim <= nr_pages)
4815                         max_reclaim = 0;
4816                 else
4817                         max_reclaim -= nr_pages;
4818
4819                 wait_event(fs_info->async_submit_wait,
4820                            atomic_read(&fs_info->async_delalloc_pages) <=
4821                            (int)max_reclaim);
4822 skip_async:
4823                 if (!trans)
4824                         flush = BTRFS_RESERVE_FLUSH_ALL;
4825                 else
4826                         flush = BTRFS_RESERVE_NO_FLUSH;
4827                 spin_lock(&space_info->lock);
4828                 if (can_overcommit(fs_info, space_info, orig, flush, false)) {
4829                         spin_unlock(&space_info->lock);
4830                         break;
4831                 }
4832                 if (list_empty(&space_info->tickets) &&
4833                     list_empty(&space_info->priority_tickets)) {
4834                         spin_unlock(&space_info->lock);
4835                         break;
4836                 }
4837                 spin_unlock(&space_info->lock);
4838
4839                 loops++;
4840                 if (wait_ordered && !trans) {
4841                         btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
4842                 } else {
4843                         time_left = schedule_timeout_killable(1);
4844                         if (time_left)
4845                                 break;
4846                 }
4847                 delalloc_bytes = percpu_counter_sum_positive(
4848                                                 &fs_info->delalloc_bytes);
4849         }
4850 }
4851
4852 /**
4853  * maybe_commit_transaction - possibly commit the transaction if its ok to
4854  * @root - the root we're allocating for
4855  * @bytes - the number of bytes we want to reserve
4856  * @force - force the commit
4857  *
4858  * This will check to make sure that committing the transaction will actually
4859  * get us somewhere and then commit the transaction if it does.  Otherwise it
4860  * will return -ENOSPC.
4861  */
4862 static int may_commit_transaction(struct btrfs_fs_info *fs_info,
4863                                   struct btrfs_space_info *space_info,
4864                                   u64 bytes, int force)
4865 {
4866         struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_block_rsv;
4867         struct btrfs_trans_handle *trans;
4868
4869         trans = (struct btrfs_trans_handle *)current->journal_info;
4870         if (trans)
4871                 return -EAGAIN;
4872
4873         if (force)
4874                 goto commit;
4875
4876         /* See if there is enough pinned space to make this reservation */
4877         if (percpu_counter_compare(&space_info->total_bytes_pinned,
4878                                    bytes) >= 0)
4879                 goto commit;
4880
4881         /*
4882          * See if there is some space in the delayed insertion reservation for
4883          * this reservation.
4884          */
4885         if (space_info != delayed_rsv->space_info)
4886                 return -ENOSPC;
4887
4888         spin_lock(&delayed_rsv->lock);
4889         if (percpu_counter_compare(&space_info->total_bytes_pinned,
4890                                    bytes - delayed_rsv->size) < 0) {
4891                 spin_unlock(&delayed_rsv->lock);
4892                 return -ENOSPC;
4893         }
4894         spin_unlock(&delayed_rsv->lock);
4895
4896 commit:
4897         trans = btrfs_join_transaction(fs_info->extent_root);
4898         if (IS_ERR(trans))
4899                 return -ENOSPC;
4900
4901         return btrfs_commit_transaction(trans);
4902 }
4903
4904 struct reserve_ticket {
4905         u64 bytes;
4906         int error;
4907         struct list_head list;
4908         wait_queue_head_t wait;
4909 };
4910
4911 static int flush_space(struct btrfs_fs_info *fs_info,
4912                        struct btrfs_space_info *space_info, u64 num_bytes,
4913                        u64 orig_bytes, int state)
4914 {
4915         struct btrfs_root *root = fs_info->extent_root;
4916         struct btrfs_trans_handle *trans;
4917         int nr;
4918         int ret = 0;
4919
4920         switch (state) {
4921         case FLUSH_DELAYED_ITEMS_NR:
4922         case FLUSH_DELAYED_ITEMS:
4923                 if (state == FLUSH_DELAYED_ITEMS_NR)
4924                         nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2;
4925                 else
4926                         nr = -1;
4927
4928                 trans = btrfs_join_transaction(root);
4929                 if (IS_ERR(trans)) {
4930                         ret = PTR_ERR(trans);
4931                         break;
4932                 }
4933                 ret = btrfs_run_delayed_items_nr(trans, fs_info, nr);
4934                 btrfs_end_transaction(trans);
4935                 break;
4936         case FLUSH_DELALLOC:
4937         case FLUSH_DELALLOC_WAIT:
4938                 shrink_delalloc(fs_info, num_bytes * 2, orig_bytes,
4939                                 state == FLUSH_DELALLOC_WAIT);
4940                 break;
4941         case ALLOC_CHUNK:
4942                 trans = btrfs_join_transaction(root);
4943                 if (IS_ERR(trans)) {
4944                         ret = PTR_ERR(trans);
4945                         break;
4946                 }
4947                 ret = do_chunk_alloc(trans, fs_info,
4948                                      btrfs_metadata_alloc_profile(fs_info),
4949                                      CHUNK_ALLOC_NO_FORCE);
4950                 btrfs_end_transaction(trans);
4951                 if (ret > 0 || ret == -ENOSPC)
4952                         ret = 0;
4953                 break;
4954         case COMMIT_TRANS:
4955                 ret = may_commit_transaction(fs_info, space_info,
4956                                              orig_bytes, 0);
4957                 break;
4958         default:
4959                 ret = -ENOSPC;
4960                 break;
4961         }
4962
4963         trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes,
4964                                 orig_bytes, state, ret);
4965         return ret;
4966 }
4967
4968 static inline u64
4969 btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info *fs_info,
4970                                  struct btrfs_space_info *space_info,
4971                                  bool system_chunk)
4972 {
4973         struct reserve_ticket *ticket;
4974         u64 used;
4975         u64 expected;
4976         u64 to_reclaim = 0;
4977
4978         list_for_each_entry(ticket, &space_info->tickets, list)
4979                 to_reclaim += ticket->bytes;
4980         list_for_each_entry(ticket, &space_info->priority_tickets, list)
4981                 to_reclaim += ticket->bytes;
4982         if (to_reclaim)
4983                 return to_reclaim;
4984
4985         to_reclaim = min_t(u64, num_online_cpus() * SZ_1M, SZ_16M);
4986         if (can_overcommit(fs_info, space_info, to_reclaim,
4987                            BTRFS_RESERVE_FLUSH_ALL, system_chunk))
4988                 return 0;
4989
4990         used = btrfs_space_info_used(space_info, true);
4991
4992         if (can_overcommit(fs_info, space_info, SZ_1M,
4993                            BTRFS_RESERVE_FLUSH_ALL, system_chunk))
4994                 expected = div_factor_fine(space_info->total_bytes, 95);
4995         else
4996                 expected = div_factor_fine(space_info->total_bytes, 90);
4997
4998         if (used > expected)
4999                 to_reclaim = used - expected;
5000         else
5001                 to_reclaim = 0;
5002         to_reclaim = min(to_reclaim, space_info->bytes_may_use +
5003                                      space_info->bytes_reserved);
5004         return to_reclaim;
5005 }
5006
5007 static inline int need_do_async_reclaim(struct btrfs_fs_info *fs_info,
5008                                         struct btrfs_space_info *space_info,
5009                                         u64 used, bool system_chunk)
5010 {
5011         u64 thresh = div_factor_fine(space_info->total_bytes, 98);
5012
5013         /* If we're just plain full then async reclaim just slows us down. */
5014         if ((space_info->bytes_used + space_info->bytes_reserved) >= thresh)
5015                 return 0;
5016
5017         if (!btrfs_calc_reclaim_metadata_size(fs_info, space_info,
5018                                               system_chunk))
5019                 return 0;
5020
5021         return (used >= thresh && !btrfs_fs_closing(fs_info) &&
5022                 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
5023 }
5024
5025 static void wake_all_tickets(struct list_head *head)
5026 {
5027         struct reserve_ticket *ticket;
5028
5029         while (!list_empty(head)) {
5030                 ticket = list_first_entry(head, struct reserve_ticket, list);
5031                 list_del_init(&ticket->list);
5032                 ticket->error = -ENOSPC;
5033                 wake_up(&ticket->wait);
5034         }
5035 }
5036
5037 /*
5038  * This is for normal flushers, we can wait all goddamned day if we want to.  We
5039  * will loop and continuously try to flush as long as we are making progress.
5040  * We count progress as clearing off tickets each time we have to loop.
5041  */
5042 static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
5043 {
5044         struct btrfs_fs_info *fs_info;
5045         struct btrfs_space_info *space_info;
5046         u64 to_reclaim;
5047         int flush_state;
5048         int commit_cycles = 0;
5049         u64 last_tickets_id;
5050
5051         fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
5052         space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5053
5054         spin_lock(&space_info->lock);
5055         to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info,
5056                                                       false);
5057         if (!to_reclaim) {
5058                 space_info->flush = 0;
5059                 spin_unlock(&space_info->lock);
5060                 return;
5061         }
5062         last_tickets_id = space_info->tickets_id;
5063         spin_unlock(&space_info->lock);
5064
5065         flush_state = FLUSH_DELAYED_ITEMS_NR;
5066         do {
5067                 struct reserve_ticket *ticket;
5068                 int ret;
5069
5070                 ret = flush_space(fs_info, space_info, to_reclaim, to_reclaim,
5071                                   flush_state);
5072                 spin_lock(&space_info->lock);
5073                 if (list_empty(&space_info->tickets)) {
5074                         space_info->flush = 0;
5075                         spin_unlock(&space_info->lock);
5076                         return;
5077                 }
5078                 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info,
5079                                                               space_info,
5080                                                               false);
5081                 ticket = list_first_entry(&space_info->tickets,
5082                                           struct reserve_ticket, list);
5083                 if (last_tickets_id == space_info->tickets_id) {
5084                         flush_state++;
5085                 } else {
5086                         last_tickets_id = space_info->tickets_id;
5087                         flush_state = FLUSH_DELAYED_ITEMS_NR;
5088                         if (commit_cycles)
5089                                 commit_cycles--;
5090                 }
5091
5092                 if (flush_state > COMMIT_TRANS) {
5093                         commit_cycles++;
5094                         if (commit_cycles > 2) {
5095                                 wake_all_tickets(&space_info->tickets);
5096                                 space_info->flush = 0;
5097                         } else {
5098                                 flush_state = FLUSH_DELAYED_ITEMS_NR;
5099                         }
5100                 }
5101                 spin_unlock(&space_info->lock);
5102         } while (flush_state <= COMMIT_TRANS);
5103 }
5104
5105 void btrfs_init_async_reclaim_work(struct work_struct *work)
5106 {
5107         INIT_WORK(work, btrfs_async_reclaim_metadata_space);
5108 }
5109
5110 static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info,
5111                                             struct btrfs_space_info *space_info,
5112                                             struct reserve_ticket *ticket)
5113 {
5114         u64 to_reclaim;
5115         int flush_state = FLUSH_DELAYED_ITEMS_NR;
5116
5117         spin_lock(&space_info->lock);
5118         to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info,
5119                                                       false);
5120         if (!to_reclaim) {
5121                 spin_unlock(&space_info->lock);
5122                 return;
5123         }
5124         spin_unlock(&space_info->lock);
5125
5126         do {
5127                 flush_space(fs_info, space_info, to_reclaim, to_reclaim,
5128                             flush_state);
5129                 flush_state++;
5130                 spin_lock(&space_info->lock);
5131                 if (ticket->bytes == 0) {
5132                         spin_unlock(&space_info->lock);
5133                         return;
5134                 }
5135                 spin_unlock(&space_info->lock);
5136
5137                 /*
5138                  * Priority flushers can't wait on delalloc without
5139                  * deadlocking.
5140                  */
5141                 if (flush_state == FLUSH_DELALLOC ||
5142                     flush_state == FLUSH_DELALLOC_WAIT)
5143                         flush_state = ALLOC_CHUNK;
5144         } while (flush_state < COMMIT_TRANS);
5145 }
5146
5147 static int wait_reserve_ticket(struct btrfs_fs_info *fs_info,
5148                                struct btrfs_space_info *space_info,
5149                                struct reserve_ticket *ticket, u64 orig_bytes)
5150
5151 {
5152         DEFINE_WAIT(wait);
5153         int ret = 0;
5154
5155         spin_lock(&space_info->lock);
5156         while (ticket->bytes > 0 && ticket->error == 0) {
5157                 ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE);
5158                 if (ret) {
5159                         ret = -EINTR;
5160                         break;
5161                 }
5162                 spin_unlock(&space_info->lock);
5163
5164                 schedule();
5165
5166                 finish_wait(&ticket->wait, &wait);
5167                 spin_lock(&space_info->lock);
5168         }
5169         if (!ret)
5170                 ret = ticket->error;
5171         if (!list_empty(&ticket->list))
5172                 list_del_init(&ticket->list);
5173         if (ticket->bytes && ticket->bytes < orig_bytes) {
5174                 u64 num_bytes = orig_bytes - ticket->bytes;
5175                 space_info->bytes_may_use -= num_bytes;
5176                 trace_btrfs_space_reservation(fs_info, "space_info",
5177                                               space_info->flags, num_bytes, 0);
5178         }
5179         spin_unlock(&space_info->lock);
5180
5181         return ret;
5182 }
5183
5184 /**
5185  * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5186  * @root - the root we're allocating for
5187  * @space_info - the space info we want to allocate from
5188  * @orig_bytes - the number of bytes we want
5189  * @flush - whether or not we can flush to make our reservation
5190  *
5191  * This will reserve orig_bytes number of bytes from the space info associated
5192  * with the block_rsv.  If there is not enough space it will make an attempt to
5193  * flush out space to make room.  It will do this by flushing delalloc if
5194  * possible or committing the transaction.  If flush is 0 then no attempts to
5195  * regain reservations will be made and this will fail if there is not enough
5196  * space already.
5197  */
5198 static int __reserve_metadata_bytes(struct btrfs_fs_info *fs_info,
5199                                     struct btrfs_space_info *space_info,
5200                                     u64 orig_bytes,
5201                                     enum btrfs_reserve_flush_enum flush,
5202                                     bool system_chunk)
5203 {
5204         struct reserve_ticket ticket;
5205         u64 used;
5206         int ret = 0;
5207
5208         ASSERT(orig_bytes);
5209         ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_ALL);
5210
5211         spin_lock(&space_info->lock);
5212         ret = -ENOSPC;
5213         used = btrfs_space_info_used(space_info, true);
5214
5215         /*
5216          * If we have enough space then hooray, make our reservation and carry
5217          * on.  If not see if we can overcommit, and if we can, hooray carry on.
5218          * If not things get more complicated.
5219          */
5220         if (used + orig_bytes <= space_info->total_bytes) {
5221                 space_info->bytes_may_use += orig_bytes;
5222                 trace_btrfs_space_reservation(fs_info, "space_info",
5223                                               space_info->flags, orig_bytes, 1);
5224                 ret = 0;
5225         } else if (can_overcommit(fs_info, space_info, orig_bytes, flush,
5226                                   system_chunk)) {
5227                 space_info->bytes_may_use += orig_bytes;
5228                 trace_btrfs_space_reservation(fs_info, "space_info",
5229                                               space_info->flags, orig_bytes, 1);
5230                 ret = 0;
5231         }
5232
5233         /*
5234          * If we couldn't make a reservation then setup our reservation ticket
5235          * and kick the async worker if it's not already running.
5236          *
5237          * If we are a priority flusher then we just need to add our ticket to
5238          * the list and we will do our own flushing further down.
5239          */
5240         if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
5241                 ticket.bytes = orig_bytes;
5242                 ticket.error = 0;
5243                 init_waitqueue_head(&ticket.wait);
5244                 if (flush == BTRFS_RESERVE_FLUSH_ALL) {
5245                         list_add_tail(&ticket.list, &space_info->tickets);
5246                         if (!space_info->flush) {
5247                                 space_info->flush = 1;
5248                                 trace_btrfs_trigger_flush(fs_info,
5249                                                           space_info->flags,
5250                                                           orig_bytes, flush,
5251                                                           "enospc");
5252                                 queue_work(system_unbound_wq,
5253                                            &fs_info->async_reclaim_work);
5254                         }
5255                 } else {
5256                         list_add_tail(&ticket.list,
5257                                       &space_info->priority_tickets);
5258                 }
5259         } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
5260                 used += orig_bytes;
5261                 /*
5262                  * We will do the space reservation dance during log replay,
5263                  * which means we won't have fs_info->fs_root set, so don't do
5264                  * the async reclaim as we will panic.
5265                  */
5266                 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) &&
5267                     need_do_async_reclaim(fs_info, space_info,
5268                                           used, system_chunk) &&
5269                     !work_busy(&fs_info->async_reclaim_work)) {
5270                         trace_btrfs_trigger_flush(fs_info, space_info->flags,
5271                                                   orig_bytes, flush, "preempt");
5272                         queue_work(system_unbound_wq,
5273                                    &fs_info->async_reclaim_work);
5274                 }
5275         }
5276         spin_unlock(&space_info->lock);
5277         if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
5278                 return ret;
5279
5280         if (flush == BTRFS_RESERVE_FLUSH_ALL)
5281                 return wait_reserve_ticket(fs_info, space_info, &ticket,
5282                                            orig_bytes);
5283
5284         ret = 0;
5285         priority_reclaim_metadata_space(fs_info, space_info, &ticket);
5286         spin_lock(&space_info->lock);
5287         if (ticket.bytes) {
5288                 if (ticket.bytes < orig_bytes) {
5289                         u64 num_bytes = orig_bytes - ticket.bytes;
5290                         space_info->bytes_may_use -= num_bytes;
5291                         trace_btrfs_space_reservation(fs_info, "space_info",
5292                                                       space_info->flags,
5293                                                       num_bytes, 0);
5294
5295                 }
5296                 list_del_init(&ticket.list);
5297                 ret = -ENOSPC;
5298         }
5299         spin_unlock(&space_info->lock);
5300         ASSERT(list_empty(&ticket.list));
5301         return ret;
5302 }
5303
5304 /**
5305  * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5306  * @root - the root we're allocating for
5307  * @block_rsv - the block_rsv we're allocating for
5308  * @orig_bytes - the number of bytes we want
5309  * @flush - whether or not we can flush to make our reservation
5310  *
5311  * This will reserve orgi_bytes number of bytes from the space info associated
5312  * with the block_rsv.  If there is not enough space it will make an attempt to
5313  * flush out space to make room.  It will do this by flushing delalloc if
5314  * possible or committing the transaction.  If flush is 0 then no attempts to
5315  * regain reservations will be made and this will fail if there is not enough
5316  * space already.
5317  */
5318 static int reserve_metadata_bytes(struct btrfs_root *root,
5319                                   struct btrfs_block_rsv *block_rsv,
5320                                   u64 orig_bytes,
5321                                   enum btrfs_reserve_flush_enum flush)
5322 {
5323         struct btrfs_fs_info *fs_info = root->fs_info;
5324         struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5325         int ret;
5326         bool system_chunk = (root == fs_info->chunk_root);
5327
5328         ret = __reserve_metadata_bytes(fs_info, block_rsv->space_info,
5329                                        orig_bytes, flush, system_chunk);
5330         if (ret == -ENOSPC &&
5331             unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
5332                 if (block_rsv != global_rsv &&
5333                     !block_rsv_use_bytes(global_rsv, orig_bytes))
5334                         ret = 0;
5335         }
5336         if (ret == -ENOSPC)
5337                 trace_btrfs_space_reservation(fs_info, "space_info:enospc",
5338                                               block_rsv->space_info->flags,
5339                                               orig_bytes, 1);
5340         return ret;
5341 }
5342
5343 static struct btrfs_block_rsv *get_block_rsv(
5344                                         const struct btrfs_trans_handle *trans,
5345                                         const struct btrfs_root *root)
5346 {
5347         struct btrfs_fs_info *fs_info = root->fs_info;
5348         struct btrfs_block_rsv *block_rsv = NULL;
5349
5350         if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
5351             (root == fs_info->csum_root && trans->adding_csums) ||
5352             (root == fs_info->uuid_root))
5353                 block_rsv = trans->block_rsv;
5354
5355         if (!block_rsv)
5356                 block_rsv = root->block_rsv;
5357
5358         if (!block_rsv)
5359                 block_rsv = &fs_info->empty_block_rsv;
5360
5361         return block_rsv;
5362 }
5363
5364 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
5365                                u64 num_bytes)
5366 {
5367         int ret = -ENOSPC;
5368         spin_lock(&block_rsv->lock);
5369         if (block_rsv->reserved >= num_bytes) {
5370                 block_rsv->reserved -= num_bytes;
5371                 if (block_rsv->reserved < block_rsv->size)
5372                         block_rsv->full = 0;
5373                 ret = 0;
5374         }
5375         spin_unlock(&block_rsv->lock);
5376         return ret;
5377 }
5378
5379 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
5380                                 u64 num_bytes, int update_size)
5381 {
5382         spin_lock(&block_rsv->lock);
5383         block_rsv->reserved += num_bytes;
5384         if (update_size)
5385                 block_rsv->size += num_bytes;
5386         else if (block_rsv->reserved >= block_rsv->size)
5387                 block_rsv->full = 1;
5388         spin_unlock(&block_rsv->lock);
5389 }
5390
5391 int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
5392                              struct btrfs_block_rsv *dest, u64 num_bytes,
5393                              int min_factor)
5394 {
5395         struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5396         u64 min_bytes;
5397
5398         if (global_rsv->space_info != dest->space_info)
5399                 return -ENOSPC;
5400
5401         spin_lock(&global_rsv->lock);
5402         min_bytes = div_factor(global_rsv->size, min_factor);
5403         if (global_rsv->reserved < min_bytes + num_bytes) {
5404                 spin_unlock(&global_rsv->lock);
5405                 return -ENOSPC;
5406         }
5407         global_rsv->reserved -= num_bytes;
5408         if (global_rsv->reserved < global_rsv->size)
5409                 global_rsv->full = 0;
5410         spin_unlock(&global_rsv->lock);
5411
5412         block_rsv_add_bytes(dest, num_bytes, 1);
5413         return 0;
5414 }
5415
5416 /*
5417  * This is for space we already have accounted in space_info->bytes_may_use, so
5418  * basically when we're returning space from block_rsv's.
5419  */
5420 static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
5421                                      struct btrfs_space_info *space_info,
5422                                      u64 num_bytes)
5423 {
5424         struct reserve_ticket *ticket;
5425         struct list_head *head;
5426         u64 used;
5427         enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH;
5428         bool check_overcommit = false;
5429
5430         spin_lock(&space_info->lock);
5431         head = &space_info->priority_tickets;
5432
5433         /*
5434          * If we are over our limit then we need to check and see if we can
5435          * overcommit, and if we can't then we just need to free up our space
5436          * and not satisfy any requests.
5437          */
5438         used = btrfs_space_info_used(space_info, true);
5439         if (used - num_bytes >= space_info->total_bytes)
5440                 check_overcommit = true;
5441 again:
5442         while (!list_empty(head) && num_bytes) {
5443                 ticket = list_first_entry(head, struct reserve_ticket,
5444                                           list);
5445                 /*
5446                  * We use 0 bytes because this space is already reserved, so
5447                  * adding the ticket space would be a double count.
5448                  */
5449                 if (check_overcommit &&
5450                     !can_overcommit(fs_info, space_info, 0, flush, false))
5451                         break;
5452                 if (num_bytes >= ticket->bytes) {
5453                         list_del_init(&ticket->list);
5454                         num_bytes -= ticket->bytes;
5455                         ticket->bytes = 0;
5456                         space_info->tickets_id++;
5457                         wake_up(&ticket->wait);
5458                 } else {
5459                         ticket->bytes -= num_bytes;
5460                         num_bytes = 0;
5461                 }
5462         }
5463
5464         if (num_bytes && head == &space_info->priority_tickets) {
5465                 head = &space_info->tickets;
5466                 flush = BTRFS_RESERVE_FLUSH_ALL;
5467                 goto again;
5468         }
5469         space_info->bytes_may_use -= num_bytes;
5470         trace_btrfs_space_reservation(fs_info, "space_info",
5471                                       space_info->flags, num_bytes, 0);
5472         spin_unlock(&space_info->lock);
5473 }
5474
5475 /*
5476  * This is for newly allocated space that isn't accounted in
5477  * space_info->bytes_may_use yet.  So if we allocate a chunk or unpin an extent
5478  * we use this helper.
5479  */
5480 static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
5481                                      struct btrfs_space_info *space_info,
5482                                      u64 num_bytes)
5483 {
5484         struct reserve_ticket *ticket;
5485         struct list_head *head = &space_info->priority_tickets;
5486
5487 again:
5488         while (!list_empty(head) && num_bytes) {
5489                 ticket = list_first_entry(head, struct reserve_ticket,
5490                                           list);
5491                 if (num_bytes >= ticket->bytes) {
5492                         trace_btrfs_space_reservation(fs_info, "space_info",
5493                                                       space_info->flags,
5494                                                       ticket->bytes, 1);
5495                         list_del_init(&ticket->list);
5496                         num_bytes -= ticket->bytes;
5497                         space_info->bytes_may_use += ticket->bytes;
5498                         ticket->bytes = 0;
5499                         space_info->tickets_id++;
5500                         wake_up(&ticket->wait);
5501                 } else {
5502                         trace_btrfs_space_reservation(fs_info, "space_info",
5503                                                       space_info->flags,
5504                                                       num_bytes, 1);
5505                         space_info->bytes_may_use += num_bytes;
5506                         ticket->bytes -= num_bytes;
5507                         num_bytes = 0;
5508                 }
5509         }
5510
5511         if (num_bytes && head == &space_info->priority_tickets) {
5512                 head = &space_info->tickets;
5513                 goto again;
5514         }
5515 }
5516
5517 static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
5518                                     struct btrfs_block_rsv *block_rsv,
5519                                     struct btrfs_block_rsv *dest, u64 num_bytes)
5520 {
5521         struct btrfs_space_info *space_info = block_rsv->space_info;
5522
5523         spin_lock(&block_rsv->lock);
5524         if (num_bytes == (u64)-1)
5525                 num_bytes = block_rsv->size;
5526         block_rsv->size -= num_bytes;
5527         if (block_rsv->reserved >= block_rsv->size) {
5528                 num_bytes = block_rsv->reserved - block_rsv->size;
5529                 block_rsv->reserved = block_rsv->size;
5530                 block_rsv->full = 1;
5531         } else {
5532                 num_bytes = 0;
5533         }
5534         spin_unlock(&block_rsv->lock);
5535
5536         if (num_bytes > 0) {
5537                 if (dest) {
5538                         spin_lock(&dest->lock);
5539                         if (!dest->full) {
5540                                 u64 bytes_to_add;
5541
5542                                 bytes_to_add = dest->size - dest->reserved;
5543                                 bytes_to_add = min(num_bytes, bytes_to_add);
5544                                 dest->reserved += bytes_to_add;
5545                                 if (dest->reserved >= dest->size)
5546                                         dest->full = 1;
5547                                 num_bytes -= bytes_to_add;
5548                         }
5549                         spin_unlock(&dest->lock);
5550                 }
5551                 if (num_bytes)
5552                         space_info_add_old_bytes(fs_info, space_info,
5553                                                  num_bytes);
5554         }
5555 }
5556
5557 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src,
5558                             struct btrfs_block_rsv *dst, u64 num_bytes,
5559                             int update_size)
5560 {
5561         int ret;
5562
5563         ret = block_rsv_use_bytes(src, num_bytes);
5564         if (ret)
5565                 return ret;
5566
5567         block_rsv_add_bytes(dst, num_bytes, update_size);
5568         return 0;
5569 }
5570
5571 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
5572 {
5573         memset(rsv, 0, sizeof(*rsv));
5574         spin_lock_init(&rsv->lock);
5575         rsv->type = type;
5576 }
5577
5578 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_fs_info *fs_info,
5579                                               unsigned short type)
5580 {
5581         struct btrfs_block_rsv *block_rsv;
5582
5583         block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
5584         if (!block_rsv)
5585                 return NULL;
5586
5587         btrfs_init_block_rsv(block_rsv, type);
5588         block_rsv->space_info = __find_space_info(fs_info,
5589                                                   BTRFS_BLOCK_GROUP_METADATA);
5590         return block_rsv;
5591 }
5592
5593 void btrfs_free_block_rsv(struct btrfs_fs_info *fs_info,
5594                           struct btrfs_block_rsv *rsv)
5595 {
5596         if (!rsv)
5597                 return;
5598         btrfs_block_rsv_release(fs_info, rsv, (u64)-1);
5599         kfree(rsv);
5600 }
5601
5602 void __btrfs_free_block_rsv(struct btrfs_block_rsv *rsv)
5603 {
5604         kfree(rsv);
5605 }
5606
5607 int btrfs_block_rsv_add(struct btrfs_root *root,
5608                         struct btrfs_block_rsv *block_rsv, u64 num_bytes,
5609                         enum btrfs_reserve_flush_enum flush)
5610 {
5611         int ret;
5612
5613         if (num_bytes == 0)
5614                 return 0;
5615
5616         ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5617         if (!ret) {
5618                 block_rsv_add_bytes(block_rsv, num_bytes, 1);
5619                 return 0;
5620         }
5621
5622         return ret;
5623 }
5624
5625 int btrfs_block_rsv_check(struct btrfs_block_rsv *block_rsv, int min_factor)
5626 {
5627         u64 num_bytes = 0;
5628         int ret = -ENOSPC;
5629
5630         if (!block_rsv)
5631                 return 0;
5632
5633         spin_lock(&block_rsv->lock);
5634         num_bytes = div_factor(block_rsv->size, min_factor);
5635         if (block_rsv->reserved >= num_bytes)
5636                 ret = 0;
5637         spin_unlock(&block_rsv->lock);
5638
5639         return ret;
5640 }
5641
5642 int btrfs_block_rsv_refill(struct btrfs_root *root,
5643                            struct btrfs_block_rsv *block_rsv, u64 min_reserved,
5644                            enum btrfs_reserve_flush_enum flush)
5645 {
5646         u64 num_bytes = 0;
5647         int ret = -ENOSPC;
5648
5649         if (!block_rsv)
5650                 return 0;
5651
5652         spin_lock(&block_rsv->lock);
5653         num_bytes = min_reserved;
5654         if (block_rsv->reserved >= num_bytes)
5655                 ret = 0;
5656         else
5657                 num_bytes -= block_rsv->reserved;
5658         spin_unlock(&block_rsv->lock);
5659
5660         if (!ret)
5661                 return 0;
5662
5663         ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5664         if (!ret) {
5665                 block_rsv_add_bytes(block_rsv, num_bytes, 0);
5666                 return 0;
5667         }
5668
5669         return ret;
5670 }
5671
5672 void btrfs_block_rsv_release(struct btrfs_fs_info *fs_info,
5673                              struct btrfs_block_rsv *block_rsv,
5674                              u64 num_bytes)
5675 {
5676         struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5677
5678         if (global_rsv == block_rsv ||
5679             block_rsv->space_info != global_rsv->space_info)
5680                 global_rsv = NULL;
5681         block_rsv_release_bytes(fs_info, block_rsv, global_rsv, num_bytes);
5682 }
5683
5684 static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
5685 {
5686         struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
5687         struct btrfs_space_info *sinfo = block_rsv->space_info;
5688         u64 num_bytes;
5689
5690         /*
5691          * The global block rsv is based on the size of the extent tree, the
5692          * checksum tree and the root tree.  If the fs is empty we want to set
5693          * it to a minimal amount for safety.
5694          */
5695         num_bytes = btrfs_root_used(&fs_info->extent_root->root_item) +
5696                 btrfs_root_used(&fs_info->csum_root->root_item) +
5697                 btrfs_root_used(&fs_info->tree_root->root_item);
5698         num_bytes = max_t(u64, num_bytes, SZ_16M);
5699
5700         spin_lock(&sinfo->lock);
5701         spin_lock(&block_rsv->lock);
5702
5703         block_rsv->size = min_t(u64, num_bytes, SZ_512M);
5704
5705         if (block_rsv->reserved < block_rsv->size) {
5706                 num_bytes = btrfs_space_info_used(sinfo, true);
5707                 if (sinfo->total_bytes > num_bytes) {
5708                         num_bytes = sinfo->total_bytes - num_bytes;
5709                         num_bytes = min(num_bytes,
5710                                         block_rsv->size - block_rsv->reserved);
5711                         block_rsv->reserved += num_bytes;
5712                         sinfo->bytes_may_use += num_bytes;
5713                         trace_btrfs_space_reservation(fs_info, "space_info",
5714                                                       sinfo->flags, num_bytes,
5715                                                       1);
5716                 }
5717         } else if (block_rsv->reserved > block_rsv->size) {
5718                 num_bytes = block_rsv->reserved - block_rsv->size;
5719                 sinfo->bytes_may_use -= num_bytes;
5720                 trace_btrfs_space_reservation(fs_info, "space_info",
5721                                       sinfo->flags, num_bytes, 0);
5722                 block_rsv->reserved = block_rsv->size;
5723         }
5724
5725         if (block_rsv->reserved == block_rsv->size)
5726                 block_rsv->full = 1;
5727         else
5728                 block_rsv->full = 0;
5729
5730         spin_unlock(&block_rsv->lock);
5731         spin_unlock(&sinfo->lock);
5732 }
5733
5734 static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
5735 {
5736         struct btrfs_space_info *space_info;
5737
5738         space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
5739         fs_info->chunk_block_rsv.space_info = space_info;
5740
5741         space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5742         fs_info->global_block_rsv.space_info = space_info;
5743         fs_info->delalloc_block_rsv.space_info = space_info;
5744         fs_info->trans_block_rsv.space_info = space_info;
5745         fs_info->empty_block_rsv.space_info = space_info;
5746         fs_info->delayed_block_rsv.space_info = space_info;
5747
5748         fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
5749         fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
5750         fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
5751         fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
5752         if (fs_info->quota_root)
5753                 fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
5754         fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
5755
5756         update_global_block_rsv(fs_info);
5757 }
5758
5759 static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
5760 {
5761         block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
5762                                 (u64)-1);
5763         WARN_ON(fs_info->delalloc_block_rsv.size > 0);
5764         WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
5765         WARN_ON(fs_info->trans_block_rsv.size > 0);
5766         WARN_ON(fs_info->trans_block_rsv.reserved > 0);
5767         WARN_ON(fs_info->chunk_block_rsv.size > 0);
5768         WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
5769         WARN_ON(fs_info->delayed_block_rsv.size > 0);
5770         WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
5771 }
5772
5773 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
5774                                   struct btrfs_fs_info *fs_info)
5775 {
5776         if (!trans->block_rsv)
5777                 return;
5778
5779         if (!trans->bytes_reserved)
5780                 return;
5781
5782         trace_btrfs_space_reservation(fs_info, "transaction",
5783                                       trans->transid, trans->bytes_reserved, 0);
5784         btrfs_block_rsv_release(fs_info, trans->block_rsv,
5785                                 trans->bytes_reserved);
5786         trans->bytes_reserved = 0;
5787 }
5788
5789 /*
5790  * To be called after all the new block groups attached to the transaction
5791  * handle have been created (btrfs_create_pending_block_groups()).
5792  */
5793 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
5794 {
5795         struct btrfs_fs_info *fs_info = trans->fs_info;
5796
5797         if (!trans->chunk_bytes_reserved)
5798                 return;
5799
5800         WARN_ON_ONCE(!list_empty(&trans->new_bgs));
5801
5802         block_rsv_release_bytes(fs_info, &fs_info->chunk_block_rsv, NULL,
5803                                 trans->chunk_bytes_reserved);
5804         trans->chunk_bytes_reserved = 0;
5805 }
5806
5807 /* Can only return 0 or -ENOSPC */
5808 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
5809                                   struct btrfs_inode *inode)
5810 {
5811         struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
5812         struct btrfs_root *root = inode->root;
5813         /*
5814          * We always use trans->block_rsv here as we will have reserved space
5815          * for our orphan when starting the transaction, using get_block_rsv()
5816          * here will sometimes make us choose the wrong block rsv as we could be
5817          * doing a reloc inode for a non refcounted root.
5818          */
5819         struct btrfs_block_rsv *src_rsv = trans->block_rsv;
5820         struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
5821
5822         /*
5823          * We need to hold space in order to delete our orphan item once we've
5824          * added it, so this takes the reservation so we can release it later
5825          * when we are truly done with the orphan item.
5826          */
5827         u64 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
5828
5829         trace_btrfs_space_reservation(fs_info, "orphan", btrfs_ino(inode), 
5830                         num_bytes, 1);
5831         return btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, 1);
5832 }
5833
5834 void btrfs_orphan_release_metadata(struct btrfs_inode *inode)
5835 {
5836         struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
5837         struct btrfs_root *root = inode->root;
5838         u64 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
5839
5840         trace_btrfs_space_reservation(fs_info, "orphan", btrfs_ino(inode),
5841                         num_bytes, 0);
5842         btrfs_block_rsv_release(fs_info, root->orphan_block_rsv, num_bytes);
5843 }
5844
5845 /*
5846  * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
5847  * root: the root of the parent directory
5848  * rsv: block reservation
5849  * items: the number of items that we need do reservation
5850  * qgroup_reserved: used to return the reserved size in qgroup
5851  *
5852  * This function is used to reserve the space for snapshot/subvolume
5853  * creation and deletion. Those operations are different with the
5854  * common file/directory operations, they change two fs/file trees
5855  * and root tree, the number of items that the qgroup reserves is
5856  * different with the free space reservation. So we can not use
5857  * the space reservation mechanism in start_transaction().
5858  */
5859 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
5860                                      struct btrfs_block_rsv *rsv,
5861                                      int items,
5862                                      u64 *qgroup_reserved,
5863                                      bool use_global_rsv)
5864 {
5865         u64 num_bytes;
5866         int ret;
5867         struct btrfs_fs_info *fs_info = root->fs_info;
5868         struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5869
5870         if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) {
5871                 /* One for parent inode, two for dir entries */
5872                 num_bytes = 3 * fs_info->nodesize;
5873                 ret = btrfs_qgroup_reserve_meta(root, num_bytes, true);
5874                 if (ret)
5875                         return ret;
5876         } else {
5877                 num_bytes = 0;
5878         }
5879
5880         *qgroup_reserved = num_bytes;
5881
5882         num_bytes = btrfs_calc_trans_metadata_size(fs_info, items);
5883         rsv->space_info = __find_space_info(fs_info,
5884                                             BTRFS_BLOCK_GROUP_METADATA);
5885         ret = btrfs_block_rsv_add(root, rsv, num_bytes,
5886                                   BTRFS_RESERVE_FLUSH_ALL);
5887
5888         if (ret == -ENOSPC && use_global_rsv)
5889                 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes, 1);
5890
5891         if (ret && *qgroup_reserved)
5892                 btrfs_qgroup_free_meta(root, *qgroup_reserved);
5893
5894         return ret;
5895 }
5896
5897 void btrfs_subvolume_release_metadata(struct btrfs_fs_info *fs_info,
5898                                       struct btrfs_block_rsv *rsv)
5899 {
5900         btrfs_block_rsv_release(fs_info, rsv, (u64)-1);
5901 }
5902
5903 /**
5904  * drop_outstanding_extent - drop an outstanding extent
5905  * @inode: the inode we're dropping the extent for
5906  * @num_bytes: the number of bytes we're releasing.
5907  *
5908  * This is called when we are freeing up an outstanding extent, either called
5909  * after an error or after an extent is written.  This will return the number of
5910  * reserved extents that need to be freed.  This must be called with
5911  * BTRFS_I(inode)->lock held.
5912  */
5913 static unsigned drop_outstanding_extent(struct btrfs_inode *inode,
5914                 u64 num_bytes)
5915 {
5916         unsigned drop_inode_space = 0;
5917         unsigned dropped_extents = 0;
5918         unsigned num_extents;
5919
5920         num_extents = count_max_extents(num_bytes);
5921         ASSERT(num_extents);
5922         ASSERT(inode->outstanding_extents >= num_extents);
5923         inode->outstanding_extents -= num_extents;
5924
5925         if (inode->outstanding_extents == 0 &&
5926             test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5927                                &inode->runtime_flags))
5928                 drop_inode_space = 1;
5929
5930         /*
5931          * If we have more or the same amount of outstanding extents than we have
5932          * reserved then we need to leave the reserved extents count alone.
5933          */
5934         if (inode->outstanding_extents >= inode->reserved_extents)
5935                 return drop_inode_space;
5936
5937         dropped_extents = inode->reserved_extents - inode->outstanding_extents;
5938         inode->reserved_extents -= dropped_extents;
5939         return dropped_extents + drop_inode_space;
5940 }
5941
5942 /**
5943  * calc_csum_metadata_size - return the amount of metadata space that must be
5944  *      reserved/freed for the given bytes.
5945  * @inode: the inode we're manipulating
5946  * @num_bytes: the number of bytes in question
5947  * @reserve: 1 if we are reserving space, 0 if we are freeing space
5948  *
5949  * This adjusts the number of csum_bytes in the inode and then returns the
5950  * correct amount of metadata that must either be reserved or freed.  We
5951  * calculate how many checksums we can fit into one leaf and then divide the
5952  * number of bytes that will need to be checksumed by this value to figure out
5953  * how many checksums will be required.  If we are adding bytes then the number
5954  * may go up and we will return the number of additional bytes that must be
5955  * reserved.  If it is going down we will return the number of bytes that must
5956  * be freed.
5957  *
5958  * This must be called with BTRFS_I(inode)->lock held.
5959  */
5960 static u64 calc_csum_metadata_size(struct btrfs_inode *inode, u64 num_bytes,
5961                                    int reserve)
5962 {
5963         struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
5964         u64 old_csums, num_csums;
5965
5966         if (inode->flags & BTRFS_INODE_NODATASUM && inode->csum_bytes == 0)
5967                 return 0;
5968
5969         old_csums = btrfs_csum_bytes_to_leaves(fs_info, inode->csum_bytes);
5970         if (reserve)
5971                 inode->csum_bytes += num_bytes;
5972         else
5973                 inode->csum_bytes -= num_bytes;
5974         num_csums = btrfs_csum_bytes_to_leaves(fs_info, inode->csum_bytes);
5975
5976         /* No change, no need to reserve more */
5977         if (old_csums == num_csums)
5978                 return 0;
5979
5980         if (reserve)
5981                 return btrfs_calc_trans_metadata_size(fs_info,
5982                                                       num_csums - old_csums);
5983
5984         return btrfs_calc_trans_metadata_size(fs_info, old_csums - num_csums);
5985 }
5986
5987 int btrfs_delalloc_reserve_metadata(struct btrfs_inode *inode, u64 num_bytes)
5988 {
5989         struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
5990         struct btrfs_root *root = inode->root;
5991         struct btrfs_block_rsv *block_rsv = &fs_info->delalloc_block_rsv;
5992         u64 to_reserve = 0;
5993         u64 csum_bytes;
5994         unsigned nr_extents;
5995         enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
5996         int ret = 0;
5997         bool delalloc_lock = true;
5998         u64 to_free = 0;
5999         unsigned dropped;
6000         bool release_extra = false;
6001
6002         /* If we are a free space inode we need to not flush since we will be in
6003          * the middle of a transaction commit.  We also don't need the delalloc
6004          * mutex since we won't race with anybody.  We need this mostly to make
6005          * lockdep shut its filthy mouth.
6006          *
6007          * If we have a transaction open (can happen if we call truncate_block
6008          * from truncate), then we need FLUSH_LIMIT so we don't deadlock.
6009          */
6010         if (btrfs_is_free_space_inode(inode)) {
6011                 flush = BTRFS_RESERVE_NO_FLUSH;
6012                 delalloc_lock = false;
6013         } else if (current->journal_info) {
6014                 flush = BTRFS_RESERVE_FLUSH_LIMIT;
6015         }
6016
6017         if (flush != BTRFS_RESERVE_NO_FLUSH &&
6018             btrfs_transaction_in_commit(fs_info))
6019                 schedule_timeout(1);
6020
6021         if (delalloc_lock)
6022                 mutex_lock(&inode->delalloc_mutex);
6023
6024         num_bytes = ALIGN(num_bytes, fs_info->sectorsize);
6025
6026         spin_lock(&inode->lock);
6027         nr_extents = count_max_extents(num_bytes);
6028         inode->outstanding_extents += nr_extents;
6029
6030         nr_extents = 0;
6031         if (inode->outstanding_extents > inode->reserved_extents)
6032                 nr_extents += inode->outstanding_extents -
6033                         inode->reserved_extents;
6034
6035         /* We always want to reserve a slot for updating the inode. */
6036         to_reserve = btrfs_calc_trans_metadata_size(fs_info, nr_extents + 1);
6037         to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
6038         csum_bytes = inode->csum_bytes;
6039         spin_unlock(&inode->lock);
6040
6041         if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) {
6042                 ret = btrfs_qgroup_reserve_meta(root,
6043                                 nr_extents * fs_info->nodesize, true);
6044                 if (ret)
6045                         goto out_fail;
6046         }
6047
6048         ret = btrfs_block_rsv_add(root, block_rsv, to_reserve, flush);
6049         if (unlikely(ret)) {
6050                 btrfs_qgroup_free_meta(root,
6051                                        nr_extents * fs_info->nodesize);
6052                 goto out_fail;
6053         }
6054
6055         spin_lock(&inode->lock);
6056         if (test_and_set_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
6057                              &inode->runtime_flags)) {
6058                 to_reserve -= btrfs_calc_trans_metadata_size(fs_info, 1);
6059                 release_extra = true;
6060         }
6061         inode->reserved_extents += nr_extents;
6062         spin_unlock(&inode->lock);
6063
6064         if (delalloc_lock)
6065                 mutex_unlock(&inode->delalloc_mutex);
6066
6067         if (to_reserve)
6068                 trace_btrfs_space_reservation(fs_info, "delalloc",
6069                                               btrfs_ino(inode), to_reserve, 1);
6070         if (release_extra)
6071                 btrfs_block_rsv_release(fs_info, block_rsv,
6072                                 btrfs_calc_trans_metadata_size(fs_info, 1));
6073         return 0;
6074
6075 out_fail:
6076         spin_lock(&inode->lock);
6077         dropped = drop_outstanding_extent(inode, num_bytes);
6078         /*
6079          * If the inodes csum_bytes is the same as the original
6080          * csum_bytes then we know we haven't raced with any free()ers
6081          * so we can just reduce our inodes csum bytes and carry on.
6082          */
6083         if (inode->csum_bytes == csum_bytes) {
6084                 calc_csum_metadata_size(inode, num_bytes, 0);
6085         } else {
6086                 u64 orig_csum_bytes = inode->csum_bytes;
6087                 u64 bytes;
6088
6089                 /*
6090                  * This is tricky, but first we need to figure out how much we
6091                  * freed from any free-ers that occurred during this
6092                  * reservation, so we reset ->csum_bytes to the csum_bytes
6093                  * before we dropped our lock, and then call the free for the
6094                  * number of bytes that were freed while we were trying our
6095                  * reservation.
6096                  */
6097                 bytes = csum_bytes - inode->csum_bytes;
6098                 inode->csum_bytes = csum_bytes;
6099                 to_free = calc_csum_metadata_size(inode, bytes, 0);
6100
6101
6102                 /*
6103                  * Now we need to see how much we would have freed had we not
6104                  * been making this reservation and our ->csum_bytes were not
6105                  * artificially inflated.
6106                  */
6107                 inode->csum_bytes = csum_bytes - num_bytes;
6108                 bytes = csum_bytes - orig_csum_bytes;
6109                 bytes = calc_csum_metadata_size(inode, bytes, 0);
6110
6111                 /*
6112                  * Now reset ->csum_bytes to what it should be.  If bytes is
6113                  * more than to_free then we would have freed more space had we
6114                  * not had an artificially high ->csum_bytes, so we need to free
6115                  * the remainder.  If bytes is the same or less then we don't
6116                  * need to do anything, the other free-ers did the correct
6117                  * thing.
6118                  */
6119                 inode->csum_bytes = orig_csum_bytes - num_bytes;
6120                 if (bytes > to_free)
6121                         to_free = bytes - to_free;
6122                 else
6123                         to_free = 0;
6124         }
6125         spin_unlock(&inode->lock);
6126         if (dropped)
6127                 to_free += btrfs_calc_trans_metadata_size(fs_info, dropped);
6128
6129         if (to_free) {
6130                 btrfs_block_rsv_release(fs_info, block_rsv, to_free);
6131                 trace_btrfs_space_reservation(fs_info, "delalloc",
6132                                               btrfs_ino(inode), to_free, 0);
6133         }
6134         if (delalloc_lock)
6135                 mutex_unlock(&inode->delalloc_mutex);
6136         return ret;
6137 }
6138
6139 /**
6140  * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
6141  * @inode: the inode to release the reservation for
6142  * @num_bytes: the number of bytes we're releasing
6143  *
6144  * This will release the metadata reservation for an inode.  This can be called
6145  * once we complete IO for a given set of bytes to release their metadata
6146  * reservations.
6147  */
6148 void btrfs_delalloc_release_metadata(struct btrfs_inode *inode, u64 num_bytes)
6149 {
6150         struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
6151         u64 to_free = 0;
6152         unsigned dropped;
6153
6154         num_bytes = ALIGN(num_bytes, fs_info->sectorsize);
6155         spin_lock(&inode->lock);
6156         dropped = drop_outstanding_extent(inode, num_bytes);
6157
6158         if (num_bytes)
6159                 to_free = calc_csum_metadata_size(inode, num_bytes, 0);
6160         spin_unlock(&inode->lock);
6161         if (dropped > 0)
6162                 to_free += btrfs_calc_trans_metadata_size(fs_info, dropped);
6163
6164         if (btrfs_is_testing(fs_info))
6165                 return;
6166
6167         trace_btrfs_space_reservation(fs_info, "delalloc", btrfs_ino(inode),
6168                                       to_free, 0);
6169
6170         btrfs_block_rsv_release(fs_info, &fs_info->delalloc_block_rsv, to_free);
6171 }
6172
6173 /**
6174  * btrfs_delalloc_reserve_space - reserve data and metadata space for
6175  * delalloc
6176  * @inode: inode we're writing to
6177  * @start: start range we are writing to
6178  * @len: how long the range we are writing to
6179  * @reserved: mandatory parameter, record actually reserved qgroup ranges of
6180  *            current reservation.
6181  *
6182  * This will do the following things
6183  *
6184  * o reserve space in data space info for num bytes
6185  *   and reserve precious corresponding qgroup space
6186  *   (Done in check_data_free_space)
6187  *
6188  * o reserve space for metadata space, based on the number of outstanding
6189  *   extents and how much csums will be needed
6190  *   also reserve metadata space in a per root over-reserve method.
6191  * o add to the inodes->delalloc_bytes
6192  * o add it to the fs_info's delalloc inodes list.
6193  *   (Above 3 all done in delalloc_reserve_metadata)
6194  *
6195  * Return 0 for success
6196  * Return <0 for error(-ENOSPC or -EQUOT)
6197  */
6198 int btrfs_delalloc_reserve_space(struct inode *inode,
6199                         struct extent_changeset **reserved, u64 start, u64 len)
6200 {
6201         int ret;
6202
6203         ret = btrfs_check_data_free_space(inode, reserved, start, len);
6204         if (ret < 0)
6205                 return ret;
6206         ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len);
6207         if (ret < 0)
6208                 btrfs_free_reserved_data_space(inode, *reserved, start, len);
6209         return ret;
6210 }
6211
6212 /**
6213  * btrfs_delalloc_release_space - release data and metadata space for delalloc
6214  * @inode: inode we're releasing space for
6215  * @start: start position of the space already reserved
6216  * @len: the len of the space already reserved
6217  *
6218  * This must be matched with a call to btrfs_delalloc_reserve_space.  This is
6219  * called in the case that we don't need the metadata AND data reservations
6220  * anymore.  So if there is an error or we insert an inline extent.
6221  *
6222  * This function will release the metadata space that was not used and will
6223  * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
6224  * list if there are no delalloc bytes left.
6225  * Also it will handle the qgroup reserved space.
6226  */
6227 void btrfs_delalloc_release_space(struct inode *inode,
6228                         struct extent_changeset *reserved, u64 start, u64 len)
6229 {
6230         btrfs_delalloc_release_metadata(BTRFS_I(inode), len);
6231         btrfs_free_reserved_data_space(inode, reserved, start, len);
6232 }
6233
6234 static int update_block_group(struct btrfs_trans_handle *trans,
6235                               struct btrfs_fs_info *info, u64 bytenr,
6236                               u64 num_bytes, int alloc)
6237 {
6238         struct btrfs_block_group_cache *cache = NULL;
6239         u64 total = num_bytes;
6240         u64 old_val;
6241         u64 byte_in_group;
6242         int factor;
6243
6244         /* block accounting for super block */
6245         spin_lock(&info->delalloc_root_lock);
6246         old_val = btrfs_super_bytes_used(info->super_copy);
6247         if (alloc)
6248                 old_val += num_bytes;
6249         else
6250                 old_val -= num_bytes;
6251         btrfs_set_super_bytes_used(info->super_copy, old_val);
6252         spin_unlock(&info->delalloc_root_lock);
6253
6254         while (total) {
6255                 cache = btrfs_lookup_block_group(info, bytenr);
6256                 if (!cache)
6257                         return -ENOENT;
6258                 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
6259                                     BTRFS_BLOCK_GROUP_RAID1 |
6260                                     BTRFS_BLOCK_GROUP_RAID10))
6261                         factor = 2;
6262                 else
6263                         factor = 1;
6264                 /*
6265                  * If this block group has free space cache written out, we
6266                  * need to make sure to load it if we are removing space.  This
6267                  * is because we need the unpinning stage to actually add the
6268                  * space back to the block group, otherwise we will leak space.
6269                  */
6270                 if (!alloc && cache->cached == BTRFS_CACHE_NO)
6271                         cache_block_group(cache, 1);
6272
6273                 byte_in_group = bytenr - cache->key.objectid;
6274                 WARN_ON(byte_in_group > cache->key.offset);
6275
6276                 spin_lock(&cache->space_info->lock);
6277                 spin_lock(&cache->lock);
6278
6279                 if (btrfs_test_opt(info, SPACE_CACHE) &&
6280                     cache->disk_cache_state < BTRFS_DC_CLEAR)
6281                         cache->disk_cache_state = BTRFS_DC_CLEAR;
6282
6283                 old_val = btrfs_block_group_used(&cache->item);
6284                 num_bytes = min(total, cache->key.offset - byte_in_group);
6285                 if (alloc) {
6286                         old_val += num_bytes;
6287                         btrfs_set_block_group_used(&cache->item, old_val);
6288                         cache->reserved -= num_bytes;
6289                         cache->space_info->bytes_reserved -= num_bytes;
6290                         cache->space_info->bytes_used += num_bytes;
6291                         cache->space_info->disk_used += num_bytes * factor;
6292                         spin_unlock(&cache->lock);
6293                         spin_unlock(&cache->space_info->lock);
6294                 } else {
6295                         old_val -= num_bytes;
6296                         btrfs_set_block_group_used(&cache->item, old_val);
6297                         cache->pinned += num_bytes;
6298                         cache->space_info->bytes_pinned += num_bytes;
6299                         cache->space_info->bytes_used -= num_bytes;
6300                         cache->space_info->disk_used -= num_bytes * factor;
6301                         spin_unlock(&cache->lock);
6302                         spin_unlock(&cache->space_info->lock);
6303
6304                         trace_btrfs_space_reservation(info, "pinned",
6305                                                       cache->space_info->flags,
6306                                                       num_bytes, 1);
6307                         percpu_counter_add(&cache->space_info->total_bytes_pinned,
6308                                            num_bytes);
6309                         set_extent_dirty(info->pinned_extents,
6310                                          bytenr, bytenr + num_bytes - 1,
6311                                          GFP_NOFS | __GFP_NOFAIL);
6312                 }
6313
6314                 spin_lock(&trans->transaction->dirty_bgs_lock);
6315                 if (list_empty(&cache->dirty_list)) {
6316                         list_add_tail(&cache->dirty_list,
6317                                       &trans->transaction->dirty_bgs);
6318                                 trans->transaction->num_dirty_bgs++;
6319                         btrfs_get_block_group(cache);
6320                 }
6321                 spin_unlock(&trans->transaction->dirty_bgs_lock);
6322
6323                 /*
6324                  * No longer have used bytes in this block group, queue it for
6325                  * deletion. We do this after adding the block group to the
6326                  * dirty list to avoid races between cleaner kthread and space
6327                  * cache writeout.
6328                  */
6329                 if (!alloc && old_val == 0) {
6330                         spin_lock(&info->unused_bgs_lock);
6331                         if (list_empty(&cache->bg_list)) {
6332                                 btrfs_get_block_group(cache);
6333                                 list_add_tail(&cache->bg_list,
6334                                               &info->unused_bgs);
6335                         }
6336                         spin_unlock(&info->unused_bgs_lock);
6337                 }
6338
6339                 btrfs_put_block_group(cache);
6340                 total -= num_bytes;
6341                 bytenr += num_bytes;
6342         }
6343         return 0;
6344 }
6345
6346 static u64 first_logical_byte(struct btrfs_fs_info *fs_info, u64 search_start)
6347 {
6348         struct btrfs_block_group_cache *cache;
6349         u64 bytenr;
6350
6351         spin_lock(&fs_info->block_group_cache_lock);
6352         bytenr = fs_info->first_logical_byte;
6353         spin_unlock(&fs_info->block_group_cache_lock);
6354
6355         if (bytenr < (u64)-1)
6356                 return bytenr;
6357
6358         cache = btrfs_lookup_first_block_group(fs_info, search_start);
6359         if (!cache)
6360                 return 0;
6361
6362         bytenr = cache->key.objectid;
6363         btrfs_put_block_group(cache);
6364
6365         return bytenr;
6366 }
6367
6368 static int pin_down_extent(struct btrfs_fs_info *fs_info,
6369                            struct btrfs_block_group_cache *cache,
6370                            u64 bytenr, u64 num_bytes, int reserved)
6371 {
6372         spin_lock(&cache->space_info->lock);
6373         spin_lock(&cache->lock);
6374         cache->pinned += num_bytes;
6375         cache->space_info->bytes_pinned += num_bytes;
6376         if (reserved) {
6377                 cache->reserved -= num_bytes;
6378                 cache->space_info->bytes_reserved -= num_bytes;
6379         }
6380         spin_unlock(&cache->lock);
6381         spin_unlock(&cache->space_info->lock);
6382
6383         trace_btrfs_space_reservation(fs_info, "pinned",
6384                                       cache->space_info->flags, num_bytes, 1);
6385         percpu_counter_add(&cache->space_info->total_bytes_pinned, num_bytes);
6386         set_extent_dirty(fs_info->pinned_extents, bytenr,
6387                          bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
6388         return 0;
6389 }
6390
6391 /*
6392  * this function must be called within transaction
6393  */
6394 int btrfs_pin_extent(struct btrfs_fs_info *fs_info,
6395                      u64 bytenr, u64 num_bytes, int reserved)
6396 {
6397         struct btrfs_block_group_cache *cache;
6398
6399         cache = btrfs_lookup_block_group(fs_info, bytenr);
6400         BUG_ON(!cache); /* Logic error */
6401
6402         pin_down_extent(fs_info, cache, bytenr, num_bytes, reserved);
6403
6404         btrfs_put_block_group(cache);
6405         return 0;
6406 }
6407
6408 /*
6409  * this function must be called within transaction
6410  */
6411 int btrfs_pin_extent_for_log_replay(struct btrfs_fs_info *fs_info,
6412                                     u64 bytenr, u64 num_bytes)
6413 {
6414         struct btrfs_block_group_cache *cache;
6415         int ret;
6416
6417         cache = btrfs_lookup_block_group(fs_info, bytenr);
6418         if (!cache)
6419                 return -EINVAL;
6420
6421         /*
6422          * pull in the free space cache (if any) so that our pin
6423          * removes the free space from the cache.  We have load_only set
6424          * to one because the slow code to read in the free extents does check
6425          * the pinned extents.
6426          */
6427         cache_block_group(cache, 1);
6428
6429         pin_down_extent(fs_info, cache, bytenr, num_bytes, 0);
6430
6431         /* remove us from the free space cache (if we're there at all) */
6432         ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
6433         btrfs_put_block_group(cache);
6434         return ret;
6435 }
6436
6437 static int __exclude_logged_extent(struct btrfs_fs_info *fs_info,
6438                                    u64 start, u64 num_bytes)
6439 {
6440         int ret;
6441         struct btrfs_block_group_cache *block_group;
6442         struct btrfs_caching_control *caching_ctl;
6443
6444         block_group = btrfs_lookup_block_group(fs_info, start);
6445         if (!block_group)
6446                 return -EINVAL;
6447
6448         cache_block_group(block_group, 0);
6449         caching_ctl = get_caching_control(block_group);
6450
6451         if (!caching_ctl) {
6452                 /* Logic error */
6453                 BUG_ON(!block_group_cache_done(block_group));
6454                 ret = btrfs_remove_free_space(block_group, start, num_bytes);
6455         } else {
6456                 mutex_lock(&caching_ctl->mutex);
6457
6458                 if (start >= caching_ctl->progress) {
6459                         ret = add_excluded_extent(fs_info, start, num_bytes);
6460                 } else if (start + num_bytes <= caching_ctl->progress) {
6461                         ret = btrfs_remove_free_space(block_group,
6462                                                       start, num_bytes);
6463                 } else {
6464                         num_bytes = caching_ctl->progress - start;
6465                         ret = btrfs_remove_free_space(block_group,
6466                                                       start, num_bytes);
6467                         if (ret)
6468                                 goto out_lock;
6469
6470                         num_bytes = (start + num_bytes) -
6471                                 caching_ctl->progress;
6472                         start = caching_ctl->progress;
6473                         ret = add_excluded_extent(fs_info, start, num_bytes);
6474                 }
6475 out_lock:
6476                 mutex_unlock(&caching_ctl->mutex);
6477                 put_caching_control(caching_ctl);
6478         }
6479         btrfs_put_block_group(block_group);
6480         return ret;
6481 }
6482
6483 int btrfs_exclude_logged_extents(struct btrfs_fs_info *fs_info,
6484                                  struct extent_buffer *eb)
6485 {
6486         struct btrfs_file_extent_item *item;
6487         struct btrfs_key key;
6488         int found_type;
6489         int i;
6490
6491         if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS))
6492                 return 0;
6493
6494         for (i = 0; i < btrfs_header_nritems(eb); i++) {
6495                 btrfs_item_key_to_cpu(eb, &key, i);
6496                 if (key.type != BTRFS_EXTENT_DATA_KEY)
6497                         continue;
6498                 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
6499                 found_type = btrfs_file_extent_type(eb, item);
6500                 if (found_type == BTRFS_FILE_EXTENT_INLINE)
6501                         continue;
6502                 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
6503                         continue;
6504                 key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
6505                 key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
6506                 __exclude_logged_extent(fs_info, key.objectid, key.offset);
6507         }
6508
6509         return 0;
6510 }
6511
6512 static void
6513 btrfs_inc_block_group_reservations(struct btrfs_block_group_cache *bg)
6514 {
6515         atomic_inc(&bg->reservations);
6516 }
6517
6518 void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
6519                                         const u64 start)
6520 {
6521         struct btrfs_block_group_cache *bg;
6522
6523         bg = btrfs_lookup_block_group(fs_info, start);
6524         ASSERT(bg);
6525         if (atomic_dec_and_test(&bg->reservations))
6526                 wake_up_atomic_t(&bg->reservations);
6527         btrfs_put_block_group(bg);
6528 }
6529
6530 static int btrfs_wait_bg_reservations_atomic_t(atomic_t *a)
6531 {
6532         schedule();
6533         return 0;
6534 }
6535
6536 void btrfs_wait_block_group_reservations(struct btrfs_block_group_cache *bg)
6537 {
6538         struct btrfs_space_info *space_info = bg->space_info;
6539
6540         ASSERT(bg->ro);
6541
6542         if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA))
6543                 return;
6544
6545         /*
6546          * Our block group is read only but before we set it to read only,
6547          * some task might have had allocated an extent from it already, but it
6548          * has not yet created a respective ordered extent (and added it to a
6549          * root's list of ordered extents).
6550          * Therefore wait for any task currently allocating extents, since the
6551          * block group's reservations counter is incremented while a read lock
6552          * on the groups' semaphore is held and decremented after releasing
6553          * the read access on that semaphore and creating the ordered extent.
6554          */
6555         down_write(&space_info->groups_sem);
6556         up_write(&space_info->groups_sem);
6557
6558         wait_on_atomic_t(&bg->reservations,
6559                          btrfs_wait_bg_reservations_atomic_t,
6560                          TASK_UNINTERRUPTIBLE);
6561 }
6562
6563 /**
6564  * btrfs_add_reserved_bytes - update the block_group and space info counters
6565  * @cache:      The cache we are manipulating
6566  * @ram_bytes:  The number of bytes of file content, and will be same to
6567  *              @num_bytes except for the compress path.
6568  * @num_bytes:  The number of bytes in question
6569  * @delalloc:   The blocks are allocated for the delalloc write
6570  *
6571  * This is called by the allocator when it reserves space. If this is a
6572  * reservation and the block group has become read only we cannot make the
6573  * reservation and return -EAGAIN, otherwise this function always succeeds.
6574  */
6575 static int btrfs_add_reserved_bytes(struct btrfs_block_group_cache *cache,
6576                                     u64 ram_bytes, u64 num_bytes, int delalloc)
6577 {
6578         struct btrfs_space_info *space_info = cache->space_info;
6579         int ret = 0;
6580
6581         spin_lock(&space_info->lock);
6582         spin_lock(&cache->lock);
6583         if (cache->ro) {
6584                 ret = -EAGAIN;
6585         } else {
6586                 cache->reserved += num_bytes;
6587                 space_info->bytes_reserved += num_bytes;
6588
6589                 trace_btrfs_space_reservation(cache->fs_info,
6590                                 "space_info", space_info->flags,
6591                                 ram_bytes, 0);
6592                 space_info->bytes_may_use -= ram_bytes;
6593                 if (delalloc)
6594                         cache->delalloc_bytes += num_bytes;
6595         }
6596         spin_unlock(&cache->lock);
6597         spin_unlock(&space_info->lock);
6598         return ret;
6599 }
6600
6601 /**
6602  * btrfs_free_reserved_bytes - update the block_group and space info counters
6603  * @cache:      The cache we are manipulating
6604  * @num_bytes:  The number of bytes in question
6605  * @delalloc:   The blocks are allocated for the delalloc write
6606  *
6607  * This is called by somebody who is freeing space that was never actually used
6608  * on disk.  For example if you reserve some space for a new leaf in transaction
6609  * A and before transaction A commits you free that leaf, you call this with
6610  * reserve set to 0 in order to clear the reservation.
6611  */
6612
6613 static int btrfs_free_reserved_bytes(struct btrfs_block_group_cache *cache,
6614                                      u64 num_bytes, int delalloc)
6615 {
6616         struct btrfs_space_info *space_info = cache->space_info;
6617         int ret = 0;
6618
6619         spin_lock(&space_info->lock);
6620         spin_lock(&cache->lock);
6621         if (cache->ro)
6622                 space_info->bytes_readonly += num_bytes;
6623         cache->reserved -= num_bytes;
6624         space_info->bytes_reserved -= num_bytes;
6625
6626         if (delalloc)
6627                 cache->delalloc_bytes -= num_bytes;
6628         spin_unlock(&cache->lock);
6629         spin_unlock(&space_info->lock);
6630         return ret;
6631 }
6632 void btrfs_prepare_extent_commit(struct btrfs_fs_info *fs_info)
6633 {
6634         struct btrfs_caching_control *next;
6635         struct btrfs_caching_control *caching_ctl;
6636         struct btrfs_block_group_cache *cache;
6637
6638         down_write(&fs_info->commit_root_sem);
6639
6640         list_for_each_entry_safe(caching_ctl, next,
6641                                  &fs_info->caching_block_groups, list) {
6642                 cache = caching_ctl->block_group;
6643                 if (block_group_cache_done(cache)) {
6644                         cache->last_byte_to_unpin = (u64)-1;
6645                         list_del_init(&caching_ctl->list);
6646                         put_caching_control(caching_ctl);
6647                 } else {
6648                         cache->last_byte_to_unpin = caching_ctl->progress;
6649                 }
6650         }
6651
6652         if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6653                 fs_info->pinned_extents = &fs_info->freed_extents[1];
6654         else
6655                 fs_info->pinned_extents = &fs_info->freed_extents[0];
6656
6657         up_write(&fs_info->commit_root_sem);
6658
6659         update_global_block_rsv(fs_info);
6660 }
6661
6662 /*
6663  * Returns the free cluster for the given space info and sets empty_cluster to
6664  * what it should be based on the mount options.
6665  */
6666 static struct btrfs_free_cluster *
6667 fetch_cluster_info(struct btrfs_fs_info *fs_info,
6668                    struct btrfs_space_info *space_info, u64 *empty_cluster)
6669 {
6670         struct btrfs_free_cluster *ret = NULL;
6671         bool ssd = btrfs_test_opt(fs_info, SSD);
6672
6673         *empty_cluster = 0;
6674         if (btrfs_mixed_space_info(space_info))
6675                 return ret;
6676
6677         if (ssd)
6678                 *empty_cluster = SZ_2M;
6679         if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
6680                 ret = &fs_info->meta_alloc_cluster;
6681                 if (!ssd)
6682                         *empty_cluster = SZ_64K;
6683         } else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) && ssd) {
6684                 ret = &fs_info->data_alloc_cluster;
6685         }
6686
6687         return ret;
6688 }
6689
6690 static int unpin_extent_range(struct btrfs_fs_info *fs_info,
6691                               u64 start, u64 end,
6692                               const bool return_free_space)
6693 {
6694         struct btrfs_block_group_cache *cache = NULL;
6695         struct btrfs_space_info *space_info;
6696         struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
6697         struct btrfs_free_cluster *cluster = NULL;
6698         u64 len;
6699         u64 total_unpinned = 0;
6700         u64 empty_cluster = 0;
6701         bool readonly;
6702
6703         while (start <= end) {
6704                 readonly = false;
6705                 if (!cache ||
6706                     start >= cache->key.objectid + cache->key.offset) {
6707                         if (cache)
6708                                 btrfs_put_block_group(cache);
6709                         total_unpinned = 0;
6710                         cache = btrfs_lookup_block_group(fs_info, start);
6711                         BUG_ON(!cache); /* Logic error */
6712
6713                         cluster = fetch_cluster_info(fs_info,
6714                                                      cache->space_info,
6715                                                      &empty_cluster);
6716                         empty_cluster <<= 1;
6717                 }
6718
6719                 len = cache->key.objectid + cache->key.offset - start;
6720                 len = min(len, end + 1 - start);
6721
6722                 if (start < cache->last_byte_to_unpin) {
6723                         len = min(len, cache->last_byte_to_unpin - start);
6724                         if (return_free_space)
6725                                 btrfs_add_free_space(cache, start, len);
6726                 }
6727
6728                 start += len;
6729                 total_unpinned += len;
6730                 space_info = cache->space_info;
6731
6732                 /*
6733                  * If this space cluster has been marked as fragmented and we've
6734                  * unpinned enough in this block group to potentially allow a
6735                  * cluster to be created inside of it go ahead and clear the
6736                  * fragmented check.
6737                  */
6738                 if (cluster && cluster->fragmented &&
6739                     total_unpinned > empty_cluster) {
6740                         spin_lock(&cluster->lock);
6741                         cluster->fragmented = 0;
6742                         spin_unlock(&cluster->lock);
6743                 }
6744
6745                 spin_lock(&space_info->lock);
6746                 spin_lock(&cache->lock);
6747                 cache->pinned -= len;
6748                 space_info->bytes_pinned -= len;
6749
6750                 trace_btrfs_space_reservation(fs_info, "pinned",
6751                                               space_info->flags, len, 0);
6752                 space_info->max_extent_size = 0;
6753                 percpu_counter_add(&space_info->total_bytes_pinned, -len);
6754                 if (cache->ro) {
6755                         space_info->bytes_readonly += len;
6756                         readonly = true;
6757                 }
6758                 spin_unlock(&cache->lock);
6759                 if (!readonly && return_free_space &&
6760                     global_rsv->space_info == space_info) {
6761                         u64 to_add = len;
6762                         WARN_ON(!return_free_space);
6763                         spin_lock(&global_rsv->lock);
6764                         if (!global_rsv->full) {
6765                                 to_add = min(len, global_rsv->size -
6766                                              global_rsv->reserved);
6767                                 global_rsv->reserved += to_add;
6768                                 space_info->bytes_may_use += to_add;
6769                                 if (global_rsv->reserved >= global_rsv->size)
6770                                         global_rsv->full = 1;
6771                                 trace_btrfs_space_reservation(fs_info,
6772                                                               "space_info",
6773                                                               space_info->flags,
6774                                                               to_add, 1);
6775                                 len -= to_add;
6776                         }
6777                         spin_unlock(&global_rsv->lock);
6778                         /* Add to any tickets we may have */
6779                         if (len)
6780                                 space_info_add_new_bytes(fs_info, space_info,
6781                                                          len);
6782                 }
6783                 spin_unlock(&space_info->lock);
6784         }
6785
6786         if (cache)
6787                 btrfs_put_block_group(cache);
6788         return 0;
6789 }
6790
6791 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
6792                                struct btrfs_fs_info *fs_info)
6793 {
6794         struct btrfs_block_group_cache *block_group, *tmp;
6795         struct list_head *deleted_bgs;
6796         struct extent_io_tree *unpin;
6797         u64 start;
6798         u64 end;
6799         int ret;
6800
6801         if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6802                 unpin = &fs_info->freed_extents[1];
6803         else
6804                 unpin = &fs_info->freed_extents[0];
6805
6806         while (!trans->aborted) {
6807                 mutex_lock(&fs_info->unused_bg_unpin_mutex);
6808                 ret = find_first_extent_bit(unpin, 0, &start, &end,
6809                                             EXTENT_DIRTY, NULL);
6810                 if (ret) {
6811                         mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6812                         break;
6813                 }
6814
6815                 if (btrfs_test_opt(fs_info, DISCARD))
6816                         ret = btrfs_discard_extent(fs_info, start,
6817                                                    end + 1 - start, NULL);
6818
6819                 clear_extent_dirty(unpin, start, end);
6820                 unpin_extent_range(fs_info, start, end, true);
6821                 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6822                 cond_resched();
6823         }
6824
6825         /*
6826          * Transaction is finished.  We don't need the lock anymore.  We
6827          * do need to clean up the block groups in case of a transaction
6828          * abort.
6829          */
6830         deleted_bgs = &trans->transaction->deleted_bgs;
6831         list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
6832                 u64 trimmed = 0;
6833
6834                 ret = -EROFS;
6835                 if (!trans->aborted)
6836                         ret = btrfs_discard_extent(fs_info,
6837                                                    block_group->key.objectid,
6838                                                    block_group->key.offset,
6839                                                    &trimmed);
6840
6841                 list_del_init(&block_group->bg_list);
6842                 btrfs_put_block_group_trimming(block_group);
6843                 btrfs_put_block_group(block_group);
6844
6845                 if (ret) {
6846                         const char *errstr = btrfs_decode_error(ret);
6847                         btrfs_warn(fs_info,
6848                                    "Discard failed while removing blockgroup: errno=%d %s\n",
6849                                    ret, errstr);
6850                 }
6851         }
6852
6853         return 0;
6854 }
6855
6856 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
6857                                 struct btrfs_fs_info *info,
6858                                 struct btrfs_delayed_ref_node *node, u64 parent,
6859                                 u64 root_objectid, u64 owner_objectid,
6860                                 u64 owner_offset, int refs_to_drop,
6861                                 struct btrfs_delayed_extent_op *extent_op)
6862 {
6863         struct btrfs_key key;
6864         struct btrfs_path *path;
6865         struct btrfs_root *extent_root = info->extent_root;
6866         struct extent_buffer *leaf;
6867         struct btrfs_extent_item *ei;
6868         struct btrfs_extent_inline_ref *iref;
6869         int ret;
6870         int is_data;
6871         int extent_slot = 0;
6872         int found_extent = 0;
6873         int num_to_del = 1;
6874         u32 item_size;
6875         u64 refs;
6876         u64 bytenr = node->bytenr;
6877         u64 num_bytes = node->num_bytes;
6878         int last_ref = 0;
6879         bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA);
6880
6881         path = btrfs_alloc_path();
6882         if (!path)
6883                 return -ENOMEM;
6884
6885         path->reada = READA_FORWARD;
6886         path->leave_spinning = 1;
6887
6888         is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
6889         BUG_ON(!is_data && refs_to_drop != 1);
6890
6891         if (is_data)
6892                 skinny_metadata = 0;
6893
6894         ret = lookup_extent_backref(trans, info, path, &iref,
6895                                     bytenr, num_bytes, parent,
6896                                     root_objectid, owner_objectid,
6897                                     owner_offset);
6898         if (ret == 0) {
6899                 extent_slot = path->slots[0];
6900                 while (extent_slot >= 0) {
6901                         btrfs_item_key_to_cpu(path->nodes[0], &key,
6902                                               extent_slot);
6903                         if (key.objectid != bytenr)
6904                                 break;
6905                         if (key.type == BTRFS_EXTENT_ITEM_KEY &&
6906                             key.offset == num_bytes) {
6907                                 found_extent = 1;
6908                                 break;
6909                         }
6910                         if (key.type == BTRFS_METADATA_ITEM_KEY &&
6911                             key.offset == owner_objectid) {
6912                                 found_extent = 1;
6913                                 break;
6914                         }
6915                         if (path->slots[0] - extent_slot > 5)
6916                                 break;
6917                         extent_slot--;
6918                 }
6919 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6920                 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
6921                 if (found_extent && item_size < sizeof(*ei))
6922                         found_extent = 0;
6923 #endif
6924                 if (!found_extent) {
6925                         BUG_ON(iref);
6926                         ret = remove_extent_backref(trans, info, path, NULL,
6927                                                     refs_to_drop,
6928                                                     is_data, &last_ref);
6929                         if (ret) {
6930                                 btrfs_abort_transaction(trans, ret);
6931                                 goto out;
6932                         }
6933                         btrfs_release_path(path);
6934                         path->leave_spinning = 1;
6935
6936                         key.objectid = bytenr;
6937                         key.type = BTRFS_EXTENT_ITEM_KEY;
6938                         key.offset = num_bytes;
6939
6940                         if (!is_data && skinny_metadata) {
6941                                 key.type = BTRFS_METADATA_ITEM_KEY;
6942                                 key.offset = owner_objectid;
6943                         }
6944
6945                         ret = btrfs_search_slot(trans, extent_root,
6946                                                 &key, path, -1, 1);
6947                         if (ret > 0 && skinny_metadata && path->slots[0]) {
6948                                 /*
6949                                  * Couldn't find our skinny metadata item,
6950                                  * see if we have ye olde extent item.
6951                                  */
6952                                 path->slots[0]--;
6953                                 btrfs_item_key_to_cpu(path->nodes[0], &key,
6954                                                       path->slots[0]);
6955                                 if (key.objectid == bytenr &&
6956                                     key.type == BTRFS_EXTENT_ITEM_KEY &&
6957                                     key.offset == num_bytes)
6958                                         ret = 0;
6959                         }
6960
6961                         if (ret > 0 && skinny_metadata) {
6962                                 skinny_metadata = false;
6963                                 key.objectid = bytenr;
6964                                 key.type = BTRFS_EXTENT_ITEM_KEY;
6965                                 key.offset = num_bytes;
6966                                 btrfs_release_path(path);
6967                                 ret = btrfs_search_slot(trans, extent_root,
6968                                                         &key, path, -1, 1);
6969                         }
6970
6971                         if (ret) {
6972                                 btrfs_err(info,
6973                                           "umm, got %d back from search, was looking for %llu",
6974                                           ret, bytenr);
6975                                 if (ret > 0)
6976                                         btrfs_print_leaf(info, path->nodes[0]);
6977                         }
6978                         if (ret < 0) {
6979                                 btrfs_abort_transaction(trans, ret);
6980                                 goto out;
6981                         }
6982                         extent_slot = path->slots[0];
6983                 }
6984         } else if (WARN_ON(ret == -ENOENT)) {
6985                 btrfs_print_leaf(info, path->nodes[0]);
6986                 btrfs_err(info,
6987                         "unable to find ref byte nr %llu parent %llu root %llu  owner %llu offset %llu",
6988                         bytenr, parent, root_objectid, owner_objectid,
6989                         owner_offset);
6990                 btrfs_abort_transaction(trans, ret);
6991                 goto out;
6992         } else {
6993                 btrfs_abort_transaction(trans, ret);
6994                 goto out;
6995         }
6996
6997         leaf = path->nodes[0];
6998         item_size = btrfs_item_size_nr(leaf, extent_slot);
6999 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
7000         if (item_size < sizeof(*ei)) {
7001                 BUG_ON(found_extent || extent_slot != path->slots[0]);
7002                 ret = convert_extent_item_v0(trans, info, path, owner_objectid,
7003                                              0);
7004                 if (ret < 0) {
7005                         btrfs_abort_transaction(trans, ret);
7006                         goto out;
7007                 }
7008
7009                 btrfs_release_path(path);
7010                 path->leave_spinning = 1;
7011
7012                 key.objectid = bytenr;
7013                 key.type = BTRFS_EXTENT_ITEM_KEY;
7014                 key.offset = num_bytes;
7015
7016                 ret = btrfs_search_slot(trans, extent_root, &key, path,
7017                                         -1, 1);
7018                 if (ret) {
7019                         btrfs_err(info,
7020                                   "umm, got %d back from search, was looking for %llu",
7021                                 ret, bytenr);
7022                         btrfs_print_leaf(info, path->nodes[0]);
7023                 }
7024                 if (ret < 0) {
7025                         btrfs_abort_transaction(trans, ret);
7026                         goto out;
7027                 }
7028
7029                 extent_slot = path->slots[0];
7030                 leaf = path->nodes[0];
7031                 item_size = btrfs_item_size_nr(leaf, extent_slot);
7032         }
7033 #endif
7034         BUG_ON(item_size < sizeof(*ei));
7035         ei = btrfs_item_ptr(leaf, extent_slot,
7036                             struct btrfs_extent_item);
7037         if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
7038             key.type == BTRFS_EXTENT_ITEM_KEY) {
7039                 struct btrfs_tree_block_info *bi;
7040                 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
7041                 bi = (struct btrfs_tree_block_info *)(ei + 1);
7042                 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
7043         }
7044
7045         refs = btrfs_extent_refs(leaf, ei);
7046         if (refs < refs_to_drop) {
7047                 btrfs_err(info,
7048                           "trying to drop %d refs but we only have %Lu for bytenr %Lu",
7049                           refs_to_drop, refs, bytenr);
7050                 ret = -EINVAL;
7051                 btrfs_abort_transaction(trans, ret);
7052                 goto out;
7053         }
7054         refs -= refs_to_drop;
7055
7056         if (refs > 0) {
7057                 if (extent_op)
7058                         __run_delayed_extent_op(extent_op, leaf, ei);
7059                 /*
7060                  * In the case of inline back ref, reference count will
7061                  * be updated by remove_extent_backref
7062                  */
7063                 if (iref) {
7064                         BUG_ON(!found_extent);
7065                 } else {
7066                         btrfs_set_extent_refs(leaf, ei, refs);
7067                         btrfs_mark_buffer_dirty(leaf);
7068                 }
7069                 if (found_extent) {
7070                         ret = remove_extent_backref(trans, info, path,
7071                                                     iref, refs_to_drop,
7072                                                     is_data, &last_ref);
7073                         if (ret) {
7074                                 btrfs_abort_transaction(trans, ret);
7075                                 goto out;
7076                         }
7077                 }
7078         } else {
7079                 if (found_extent) {
7080                         BUG_ON(is_data && refs_to_drop !=
7081                                extent_data_ref_count(path, iref));
7082                         if (iref) {
7083                                 BUG_ON(path->slots[0] != extent_slot);
7084                         } else {
7085                                 BUG_ON(path->slots[0] != extent_slot + 1);
7086                                 path->slots[0] = extent_slot;
7087                                 num_to_del = 2;
7088                         }
7089                 }
7090
7091                 last_ref = 1;
7092                 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
7093                                       num_to_del);
7094                 if (ret) {
7095                         btrfs_abort_transaction(trans, ret);
7096                         goto out;
7097                 }
7098                 btrfs_release_path(path);
7099
7100                 if (is_data) {
7101                         ret = btrfs_del_csums(trans, info, bytenr, num_bytes);
7102                         if (ret) {
7103                                 btrfs_abort_transaction(trans, ret);
7104                                 goto out;
7105                         }
7106                 }
7107
7108                 ret = add_to_free_space_tree(trans, info, bytenr, num_bytes);
7109                 if (ret) {
7110                         btrfs_abort_transaction(trans, ret);
7111                         goto out;
7112                 }
7113
7114                 ret = update_block_group(trans, info, bytenr, num_bytes, 0);
7115                 if (ret) {
7116                         btrfs_abort_transaction(trans, ret);
7117                         goto out;
7118                 }
7119         }
7120         btrfs_release_path(path);
7121
7122 out:
7123         btrfs_free_path(path);
7124         return ret;
7125 }
7126
7127 /*
7128  * when we free an block, it is possible (and likely) that we free the last
7129  * delayed ref for that extent as well.  This searches the delayed ref tree for
7130  * a given extent, and if there are no other delayed refs to be processed, it
7131  * removes it from the tree.
7132  */
7133 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
7134                                       u64 bytenr)
7135 {
7136         struct btrfs_delayed_ref_head *head;
7137         struct btrfs_delayed_ref_root *delayed_refs;
7138         int ret = 0;
7139
7140         delayed_refs = &trans->transaction->delayed_refs;
7141         spin_lock(&delayed_refs->lock);
7142         head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
7143         if (!head)
7144                 goto out_delayed_unlock;
7145
7146         spin_lock(&head->lock);
7147         if (!list_empty(&head->ref_list))
7148                 goto out;
7149
7150         if (head->extent_op) {
7151                 if (!head->must_insert_reserved)
7152                         goto out;
7153                 btrfs_free_delayed_extent_op(head->extent_op);
7154                 head->extent_op = NULL;
7155         }
7156
7157         /*
7158          * waiting for the lock here would deadlock.  If someone else has it
7159          * locked they are already in the process of dropping it anyway
7160          */
7161         if (!mutex_trylock(&head->mutex))
7162                 goto out;
7163
7164         /*
7165          * at this point we have a head with no other entries.  Go
7166          * ahead and process it.
7167          */
7168         head->node.in_tree = 0;
7169         rb_erase(&head->href_node, &delayed_refs->href_root);
7170
7171         atomic_dec(&delayed_refs->num_entries);
7172
7173         /*
7174          * we don't take a ref on the node because we're removing it from the
7175          * tree, so we just steal the ref the tree was holding.
7176          */
7177         delayed_refs->num_heads--;
7178         if (head->processing == 0)
7179                 delayed_refs->num_heads_ready--;
7180         head->processing = 0;
7181         spin_unlock(&head->lock);
7182         spin_unlock(&delayed_refs->lock);
7183
7184         BUG_ON(head->extent_op);
7185         if (head->must_insert_reserved)
7186                 ret = 1;
7187
7188         mutex_unlock(&head->mutex);
7189         btrfs_put_delayed_ref(&head->node);
7190         return ret;
7191 out:
7192         spin_unlock(&head->lock);
7193
7194 out_delayed_unlock:
7195         spin_unlock(&delayed_refs->lock);
7196         return 0;
7197 }
7198
7199 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
7200                            struct btrfs_root *root,
7201                            struct extent_buffer *buf,
7202                            u64 parent, int last_ref)
7203 {
7204         struct btrfs_fs_info *fs_info = root->fs_info;
7205         int pin = 1;
7206         int ret;
7207
7208         if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
7209                 int old_ref_mod, new_ref_mod;
7210
7211                 ret = btrfs_add_delayed_tree_ref(fs_info, trans, buf->start,
7212                                                  buf->len, parent,
7213                                                  root->root_key.objectid,
7214                                                  btrfs_header_level(buf),
7215                                                  BTRFS_DROP_DELAYED_REF, NULL,
7216                                                  &old_ref_mod, &new_ref_mod);
7217                 BUG_ON(ret); /* -ENOMEM */
7218                 pin = old_ref_mod >= 0 && new_ref_mod < 0;
7219         }
7220
7221         if (last_ref && btrfs_header_generation(buf) == trans->transid) {
7222                 struct btrfs_block_group_cache *cache;
7223
7224                 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
7225                         ret = check_ref_cleanup(trans, buf->start);
7226                         if (!ret)
7227                                 goto out;
7228                 }
7229
7230                 pin = 0;
7231                 cache = btrfs_lookup_block_group(fs_info, buf->start);
7232
7233                 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
7234                         pin_down_extent(fs_info, cache, buf->start,
7235                                         buf->len, 1);
7236                         btrfs_put_block_group(cache);
7237                         goto out;
7238                 }
7239
7240                 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
7241
7242                 btrfs_add_free_space(cache, buf->start, buf->len);
7243                 btrfs_free_reserved_bytes(cache, buf->len, 0);
7244                 btrfs_put_block_group(cache);
7245                 trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len);
7246         }
7247 out:
7248         if (pin)
7249                 add_pinned_bytes(fs_info, buf->len, btrfs_header_level(buf),
7250                                  root->root_key.objectid);
7251
7252         if (last_ref) {
7253                 /*
7254                  * Deleting the buffer, clear the corrupt flag since it doesn't
7255                  * matter anymore.
7256                  */
7257                 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
7258         }
7259 }
7260
7261 /* Can return -ENOMEM */
7262 int btrfs_free_extent(struct btrfs_trans_handle *trans,
7263                       struct btrfs_fs_info *fs_info,
7264                       u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
7265                       u64 owner, u64 offset)
7266 {
7267         int old_ref_mod, new_ref_mod;
7268         int ret;
7269
7270         if (btrfs_is_testing(fs_info))
7271                 return 0;
7272
7273
7274         /*
7275          * tree log blocks never actually go into the extent allocation
7276          * tree, just update pinning info and exit early.
7277          */
7278         if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
7279                 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
7280                 /* unlocks the pinned mutex */
7281                 btrfs_pin_extent(fs_info, bytenr, num_bytes, 1);
7282                 old_ref_mod = new_ref_mod = 0;
7283                 ret = 0;
7284         } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
7285                 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
7286                                                  num_bytes, parent,
7287                                                  root_objectid, (int)owner,
7288                                                  BTRFS_DROP_DELAYED_REF, NULL,
7289                                                  &old_ref_mod, &new_ref_mod);
7290         } else {
7291                 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
7292                                                  num_bytes, parent,
7293                                                  root_objectid, owner, offset,
7294                                                  0, BTRFS_DROP_DELAYED_REF,
7295                                                  &old_ref_mod, &new_ref_mod);
7296         }
7297
7298         if (ret == 0 && old_ref_mod >= 0 && new_ref_mod < 0)
7299                 add_pinned_bytes(fs_info, num_bytes, owner, root_objectid);
7300
7301         return ret;
7302 }
7303
7304 /*
7305  * when we wait for progress in the block group caching, its because
7306  * our allocation attempt failed at least once.  So, we must sleep
7307  * and let some progress happen before we try again.
7308  *
7309  * This function will sleep at least once waiting for new free space to
7310  * show up, and then it will check the block group free space numbers
7311  * for our min num_bytes.  Another option is to have it go ahead
7312  * and look in the rbtree for a free extent of a given size, but this
7313  * is a good start.
7314  *
7315  * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
7316  * any of the information in this block group.
7317  */
7318 static noinline void
7319 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
7320                                 u64 num_bytes)
7321 {
7322         struct btrfs_caching_control *caching_ctl;
7323
7324         caching_ctl = get_caching_control(cache);
7325         if (!caching_ctl)
7326                 return;
7327
7328         wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
7329                    (cache->free_space_ctl->free_space >= num_bytes));
7330
7331         put_caching_control(caching_ctl);
7332 }
7333
7334 static noinline int
7335 wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
7336 {
7337         struct btrfs_caching_control *caching_ctl;
7338         int ret = 0;
7339
7340         caching_ctl = get_caching_control(cache);
7341         if (!caching_ctl)
7342                 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
7343
7344         wait_event(caching_ctl->wait, block_group_cache_done(cache));
7345         if (cache->cached == BTRFS_CACHE_ERROR)
7346                 ret = -EIO;
7347         put_caching_control(caching_ctl);
7348         return ret;
7349 }
7350
7351 int __get_raid_index(u64 flags)
7352 {
7353         if (flags & BTRFS_BLOCK_GROUP_RAID10)
7354                 return BTRFS_RAID_RAID10;
7355         else if (flags & BTRFS_BLOCK_GROUP_RAID1)
7356                 return BTRFS_RAID_RAID1;
7357         else if (flags & BTRFS_BLOCK_GROUP_DUP)
7358                 return BTRFS_RAID_DUP;
7359         else if (flags & BTRFS_BLOCK_GROUP_RAID0)
7360                 return BTRFS_RAID_RAID0;
7361         else if (flags & BTRFS_BLOCK_GROUP_RAID5)
7362                 return BTRFS_RAID_RAID5;
7363         else if (flags & BTRFS_BLOCK_GROUP_RAID6)
7364                 return BTRFS_RAID_RAID6;
7365
7366         return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
7367 }
7368
7369 int get_block_group_index(struct btrfs_block_group_cache *cache)
7370 {
7371         return __get_raid_index(cache->flags);
7372 }
7373
7374 static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = {
7375         [BTRFS_RAID_RAID10]     = "raid10",
7376         [BTRFS_RAID_RAID1]      = "raid1",
7377         [BTRFS_RAID_DUP]        = "dup",
7378         [BTRFS_RAID_RAID0]      = "raid0",
7379         [BTRFS_RAID_SINGLE]     = "single",
7380         [BTRFS_RAID_RAID5]      = "raid5",
7381         [BTRFS_RAID_RAID6]      = "raid6",
7382 };
7383
7384 static const char *get_raid_name(enum btrfs_raid_types type)
7385 {
7386         if (type >= BTRFS_NR_RAID_TYPES)
7387                 return NULL;
7388
7389         return btrfs_raid_type_names[type];
7390 }
7391
7392 enum btrfs_loop_type {
7393         LOOP_CACHING_NOWAIT = 0,
7394         LOOP_CACHING_WAIT = 1,
7395         LOOP_ALLOC_CHUNK = 2,
7396         LOOP_NO_EMPTY_SIZE = 3,
7397 };
7398
7399 static inline void
7400 btrfs_lock_block_group(struct btrfs_block_group_cache *cache,
7401                        int delalloc)
7402 {
7403         if (delalloc)
7404                 down_read(&cache->data_rwsem);
7405 }
7406
7407 static inline void
7408 btrfs_grab_block_group(struct btrfs_block_group_cache *cache,
7409                        int delalloc)
7410 {
7411         btrfs_get_block_group(cache);
7412         if (delalloc)
7413                 down_read(&cache->data_rwsem);
7414 }
7415
7416 static struct btrfs_block_group_cache *
7417 btrfs_lock_cluster(struct btrfs_block_group_cache *block_group,
7418                    struct btrfs_free_cluster *cluster,
7419                    int delalloc)
7420 {
7421         struct btrfs_block_group_cache *used_bg = NULL;
7422
7423         spin_lock(&cluster->refill_lock);
7424         while (1) {
7425                 used_bg = cluster->block_group;
7426                 if (!used_bg)
7427                         return NULL;
7428
7429                 if (used_bg == block_group)
7430                         return used_bg;
7431
7432                 btrfs_get_block_group(used_bg);
7433
7434                 if (!delalloc)
7435                         return used_bg;
7436
7437                 if (down_read_trylock(&used_bg->data_rwsem))
7438                         return used_bg;
7439
7440                 spin_unlock(&cluster->refill_lock);
7441
7442                 /* We should only have one-level nested. */
7443                 down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING);
7444
7445                 spin_lock(&cluster->refill_lock);
7446                 if (used_bg == cluster->block_group)
7447                         return used_bg;
7448
7449                 up_read(&used_bg->data_rwsem);
7450                 btrfs_put_block_group(used_bg);
7451         }
7452 }
7453
7454 static inline void
7455 btrfs_release_block_group(struct btrfs_block_group_cache *cache,
7456                          int delalloc)
7457 {
7458         if (delalloc)
7459                 up_read(&cache->data_rwsem);
7460         btrfs_put_block_group(cache);
7461 }
7462
7463 /*
7464  * walks the btree of allocated extents and find a hole of a given size.
7465  * The key ins is changed to record the hole:
7466  * ins->objectid == start position
7467  * ins->flags = BTRFS_EXTENT_ITEM_KEY
7468  * ins->offset == the size of the hole.
7469  * Any available blocks before search_start are skipped.
7470  *
7471  * If there is no suitable free space, we will record the max size of
7472  * the free space extent currently.
7473  */
7474 static noinline int find_free_extent(struct btrfs_fs_info *fs_info,
7475                                 u64 ram_bytes, u64 num_bytes, u64 empty_size,
7476                                 u64 hint_byte, struct btrfs_key *ins,
7477                                 u64 flags, int delalloc)
7478 {
7479         int ret = 0;
7480         struct btrfs_root *root = fs_info->extent_root;
7481         struct btrfs_free_cluster *last_ptr = NULL;
7482         struct btrfs_block_group_cache *block_group = NULL;
7483         u64 search_start = 0;
7484         u64 max_extent_size = 0;
7485         u64 empty_cluster = 0;
7486         struct btrfs_space_info *space_info;
7487         int loop = 0;
7488         int index = __get_raid_index(flags);
7489         bool failed_cluster_refill = false;
7490         bool failed_alloc = false;
7491         bool use_cluster = true;
7492         bool have_caching_bg = false;
7493         bool orig_have_caching_bg = false;
7494         bool full_search = false;
7495
7496         WARN_ON(num_bytes < fs_info->sectorsize);
7497         ins->type = BTRFS_EXTENT_ITEM_KEY;
7498         ins->objectid = 0;
7499         ins->offset = 0;
7500
7501         trace_find_free_extent(fs_info, num_bytes, empty_size, flags);
7502
7503         space_info = __find_space_info(fs_info, flags);
7504         if (!space_info) {
7505                 btrfs_err(fs_info, "No space info for %llu", flags);
7506                 return -ENOSPC;
7507         }
7508
7509         /*
7510          * If our free space is heavily fragmented we may not be able to make
7511          * big contiguous allocations, so instead of doing the expensive search
7512          * for free space, simply return ENOSPC with our max_extent_size so we
7513          * can go ahead and search for a more manageable chunk.
7514          *
7515          * If our max_extent_size is large enough for our allocation simply
7516          * disable clustering since we will likely not be able to find enough
7517          * space to create a cluster and induce latency trying.
7518          */
7519         if (unlikely(space_info->max_extent_size)) {
7520                 spin_lock(&space_info->lock);
7521                 if (space_info->max_extent_size &&
7522                     num_bytes > space_info->max_extent_size) {
7523                         ins->offset = space_info->max_extent_size;
7524                         spin_unlock(&space_info->lock);
7525                         return -ENOSPC;
7526                 } else if (space_info->max_extent_size) {
7527                         use_cluster = false;
7528                 }
7529                 spin_unlock(&space_info->lock);
7530         }
7531
7532         last_ptr = fetch_cluster_info(fs_info, space_info, &empty_cluster);
7533         if (last_ptr) {
7534                 spin_lock(&last_ptr->lock);
7535                 if (last_ptr->block_group)
7536                         hint_byte = last_ptr->window_start;
7537                 if (last_ptr->fragmented) {
7538                         /*
7539                          * We still set window_start so we can keep track of the
7540                          * last place we found an allocation to try and save
7541                          * some time.
7542                          */
7543                         hint_byte = last_ptr->window_start;
7544                         use_cluster = false;
7545                 }
7546                 spin_unlock(&last_ptr->lock);
7547         }
7548
7549         search_start = max(search_start, first_logical_byte(fs_info, 0));
7550         search_start = max(search_start, hint_byte);
7551         if (search_start == hint_byte) {
7552                 block_group = btrfs_lookup_block_group(fs_info, search_start);
7553                 /*
7554                  * we don't want to use the block group if it doesn't match our
7555                  * allocation bits, or if its not cached.
7556                  *
7557                  * However if we are re-searching with an ideal block group
7558                  * picked out then we don't care that the block group is cached.
7559                  */
7560                 if (block_group && block_group_bits(block_group, flags) &&
7561                     block_group->cached != BTRFS_CACHE_NO) {
7562                         down_read(&space_info->groups_sem);
7563                         if (list_empty(&block_group->list) ||
7564                             block_group->ro) {
7565                                 /*
7566                                  * someone is removing this block group,
7567                                  * we can't jump into the have_block_group
7568                                  * target because our list pointers are not
7569                                  * valid
7570                                  */
7571                                 btrfs_put_block_group(block_group);
7572                                 up_read(&space_info->groups_sem);
7573                         } else {
7574                                 index = get_block_group_index(block_group);
7575                                 btrfs_lock_block_group(block_group, delalloc);
7576                                 goto have_block_group;
7577                         }
7578                 } else if (block_group) {
7579                         btrfs_put_block_group(block_group);
7580                 }
7581         }
7582 search:
7583         have_caching_bg = false;
7584         if (index == 0 || index == __get_raid_index(flags))
7585                 full_search = true;
7586         down_read(&space_info->groups_sem);
7587         list_for_each_entry(block_group, &space_info->block_groups[index],
7588                             list) {
7589                 u64 offset;
7590                 int cached;
7591
7592                 btrfs_grab_block_group(block_group, delalloc);
7593                 search_start = block_group->key.objectid;
7594
7595                 /*
7596                  * this can happen if we end up cycling through all the
7597                  * raid types, but we want to make sure we only allocate
7598                  * for the proper type.
7599                  */
7600                 if (!block_group_bits(block_group, flags)) {
7601                     u64 extra = BTRFS_BLOCK_GROUP_DUP |
7602                                 BTRFS_BLOCK_GROUP_RAID1 |
7603                                 BTRFS_BLOCK_GROUP_RAID5 |
7604                                 BTRFS_BLOCK_GROUP_RAID6 |
7605                                 BTRFS_BLOCK_GROUP_RAID10;
7606
7607                         /*
7608                          * if they asked for extra copies and this block group
7609                          * doesn't provide them, bail.  This does allow us to
7610                          * fill raid0 from raid1.
7611                          */
7612                         if ((flags & extra) && !(block_group->flags & extra))
7613                                 goto loop;
7614                 }
7615
7616 have_block_group:
7617                 cached = block_group_cache_done(block_group);
7618                 if (unlikely(!cached)) {
7619                         have_caching_bg = true;
7620                         ret = cache_block_group(block_group, 0);
7621                         BUG_ON(ret < 0);
7622                         ret = 0;
7623                 }
7624
7625                 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
7626                         goto loop;
7627                 if (unlikely(block_group->ro))
7628                         goto loop;
7629
7630                 /*
7631                  * Ok we want to try and use the cluster allocator, so
7632                  * lets look there
7633                  */
7634                 if (last_ptr && use_cluster) {
7635                         struct btrfs_block_group_cache *used_block_group;
7636                         unsigned long aligned_cluster;
7637                         /*
7638                          * the refill lock keeps out other
7639                          * people trying to start a new cluster
7640                          */
7641                         used_block_group = btrfs_lock_cluster(block_group,
7642                                                               last_ptr,
7643                                                               delalloc);
7644                         if (!used_block_group)
7645                                 goto refill_cluster;
7646
7647                         if (used_block_group != block_group &&
7648                             (used_block_group->ro ||
7649                              !block_group_bits(used_block_group, flags)))
7650                                 goto release_cluster;
7651
7652                         offset = btrfs_alloc_from_cluster(used_block_group,
7653                                                 last_ptr,
7654                                                 num_bytes,
7655                                                 used_block_group->key.objectid,
7656                                                 &max_extent_size);
7657                         if (offset) {
7658                                 /* we have a block, we're done */
7659                                 spin_unlock(&last_ptr->refill_lock);
7660                                 trace_btrfs_reserve_extent_cluster(fs_info,
7661                                                 used_block_group,
7662                                                 search_start, num_bytes);
7663                                 if (used_block_group != block_group) {
7664                                         btrfs_release_block_group(block_group,
7665                                                                   delalloc);
7666                                         block_group = used_block_group;
7667                                 }
7668                                 goto checks;
7669                         }
7670
7671                         WARN_ON(last_ptr->block_group != used_block_group);
7672 release_cluster:
7673                         /* If we are on LOOP_NO_EMPTY_SIZE, we can't
7674                          * set up a new clusters, so lets just skip it
7675                          * and let the allocator find whatever block
7676                          * it can find.  If we reach this point, we
7677                          * will have tried the cluster allocator
7678                          * plenty of times and not have found
7679                          * anything, so we are likely way too
7680                          * fragmented for the clustering stuff to find
7681                          * anything.
7682                          *
7683                          * However, if the cluster is taken from the
7684                          * current block group, release the cluster
7685                          * first, so that we stand a better chance of
7686                          * succeeding in the unclustered
7687                          * allocation.  */
7688                         if (loop >= LOOP_NO_EMPTY_SIZE &&
7689                             used_block_group != block_group) {
7690                                 spin_unlock(&last_ptr->refill_lock);
7691                                 btrfs_release_block_group(used_block_group,
7692                                                           delalloc);
7693                                 goto unclustered_alloc;
7694                         }
7695
7696                         /*
7697                          * this cluster didn't work out, free it and
7698                          * start over
7699                          */
7700                         btrfs_return_cluster_to_free_space(NULL, last_ptr);
7701
7702                         if (used_block_group != block_group)
7703                                 btrfs_release_block_group(used_block_group,
7704                                                           delalloc);
7705 refill_cluster:
7706                         if (loop >= LOOP_NO_EMPTY_SIZE) {
7707                                 spin_unlock(&last_ptr->refill_lock);
7708                                 goto unclustered_alloc;
7709                         }
7710
7711                         aligned_cluster = max_t(unsigned long,
7712                                                 empty_cluster + empty_size,
7713                                               block_group->full_stripe_len);
7714
7715                         /* allocate a cluster in this block group */
7716                         ret = btrfs_find_space_cluster(fs_info, block_group,
7717                                                        last_ptr, search_start,
7718                                                        num_bytes,
7719                                                        aligned_cluster);
7720                         if (ret == 0) {
7721                                 /*
7722                                  * now pull our allocation out of this
7723                                  * cluster
7724                                  */
7725                                 offset = btrfs_alloc_from_cluster(block_group,
7726                                                         last_ptr,
7727                                                         num_bytes,
7728                                                         search_start,
7729                                                         &max_extent_size);
7730                                 if (offset) {
7731                                         /* we found one, proceed */
7732                                         spin_unlock(&last_ptr->refill_lock);
7733                                         trace_btrfs_reserve_extent_cluster(fs_info,
7734                                                 block_group, search_start,
7735                                                 num_bytes);
7736                                         goto checks;
7737                                 }
7738                         } else if (!cached && loop > LOOP_CACHING_NOWAIT
7739                                    && !failed_cluster_refill) {
7740                                 spin_unlock(&last_ptr->refill_lock);
7741
7742                                 failed_cluster_refill = true;
7743                                 wait_block_group_cache_progress(block_group,
7744                                        num_bytes + empty_cluster + empty_size);
7745                                 goto have_block_group;
7746                         }
7747
7748                         /*
7749                          * at this point we either didn't find a cluster
7750                          * or we weren't able to allocate a block from our
7751                          * cluster.  Free the cluster we've been trying
7752                          * to use, and go to the next block group
7753                          */
7754                         btrfs_return_cluster_to_free_space(NULL, last_ptr);
7755                         spin_unlock(&last_ptr->refill_lock);
7756                         goto loop;
7757                 }
7758
7759 unclustered_alloc:
7760                 /*
7761                  * We are doing an unclustered alloc, set the fragmented flag so
7762                  * we don't bother trying to setup a cluster again until we get
7763                  * more space.
7764                  */
7765                 if (unlikely(last_ptr)) {
7766                         spin_lock(&last_ptr->lock);
7767                         last_ptr->fragmented = 1;
7768                         spin_unlock(&last_ptr->lock);
7769                 }
7770                 if (cached) {
7771                         struct btrfs_free_space_ctl *ctl =
7772                                 block_group->free_space_ctl;
7773
7774                         spin_lock(&ctl->tree_lock);
7775                         if (ctl->free_space <
7776                             num_bytes + empty_cluster + empty_size) {
7777                                 if (ctl->free_space > max_extent_size)
7778                                         max_extent_size = ctl->free_space;
7779                                 spin_unlock(&ctl->tree_lock);
7780                                 goto loop;
7781                         }
7782                         spin_unlock(&ctl->tree_lock);
7783                 }
7784
7785                 offset = btrfs_find_space_for_alloc(block_group, search_start,
7786                                                     num_bytes, empty_size,
7787                                                     &max_extent_size);
7788                 /*
7789                  * If we didn't find a chunk, and we haven't failed on this
7790                  * block group before, and this block group is in the middle of
7791                  * caching and we are ok with waiting, then go ahead and wait
7792                  * for progress to be made, and set failed_alloc to true.
7793                  *
7794                  * If failed_alloc is true then we've already waited on this
7795                  * block group once and should move on to the next block group.
7796                  */
7797                 if (!offset && !failed_alloc && !cached &&
7798                     loop > LOOP_CACHING_NOWAIT) {
7799                         wait_block_group_cache_progress(block_group,
7800                                                 num_bytes + empty_size);
7801                         failed_alloc = true;
7802                         goto have_block_group;
7803                 } else if (!offset) {
7804                         goto loop;
7805                 }
7806 checks:
7807                 search_start = ALIGN(offset, fs_info->stripesize);
7808
7809                 /* move on to the next group */
7810                 if (search_start + num_bytes >
7811                     block_group->key.objectid + block_group->key.offset) {
7812                         btrfs_add_free_space(block_group, offset, num_bytes);
7813                         goto loop;
7814                 }
7815
7816                 if (offset < search_start)
7817                         btrfs_add_free_space(block_group, offset,
7818                                              search_start - offset);
7819                 BUG_ON(offset > search_start);
7820
7821                 ret = btrfs_add_reserved_bytes(block_group, ram_bytes,
7822                                 num_bytes, delalloc);
7823                 if (ret == -EAGAIN) {
7824                         btrfs_add_free_space(block_group, offset, num_bytes);
7825                         goto loop;
7826                 }
7827                 btrfs_inc_block_group_reservations(block_group);
7828
7829                 /* we are all good, lets return */
7830                 ins->objectid = search_start;
7831                 ins->offset = num_bytes;
7832
7833                 trace_btrfs_reserve_extent(fs_info, block_group,
7834                                            search_start, num_bytes);
7835                 btrfs_release_block_group(block_group, delalloc);
7836                 break;
7837 loop:
7838                 failed_cluster_refill = false;
7839                 failed_alloc = false;
7840                 BUG_ON(index != get_block_group_index(block_group));
7841                 btrfs_release_block_group(block_group, delalloc);
7842         }
7843         up_read(&space_info->groups_sem);
7844
7845         if ((loop == LOOP_CACHING_NOWAIT) && have_caching_bg
7846                 && !orig_have_caching_bg)
7847                 orig_have_caching_bg = true;
7848
7849         if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
7850                 goto search;
7851
7852         if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
7853                 goto search;
7854
7855         /*
7856          * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
7857          *                      caching kthreads as we move along
7858          * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
7859          * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
7860          * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
7861          *                      again
7862          */
7863         if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
7864                 index = 0;
7865                 if (loop == LOOP_CACHING_NOWAIT) {
7866                         /*
7867                          * We want to skip the LOOP_CACHING_WAIT step if we
7868                          * don't have any uncached bgs and we've already done a
7869                          * full search through.
7870                          */
7871                         if (orig_have_caching_bg || !full_search)
7872                                 loop = LOOP_CACHING_WAIT;
7873                         else
7874                                 loop = LOOP_ALLOC_CHUNK;
7875                 } else {
7876                         loop++;
7877                 }
7878
7879                 if (loop == LOOP_ALLOC_CHUNK) {
7880                         struct btrfs_trans_handle *trans;
7881                         int exist = 0;
7882
7883                         trans = current->journal_info;
7884                         if (trans)
7885                                 exist = 1;
7886                         else
7887                                 trans = btrfs_join_transaction(root);
7888
7889                         if (IS_ERR(trans)) {
7890                                 ret = PTR_ERR(trans);
7891                                 goto out;
7892                         }
7893
7894                         ret = do_chunk_alloc(trans, fs_info, flags,
7895                                              CHUNK_ALLOC_FORCE);
7896
7897                         /*
7898                          * If we can't allocate a new chunk we've already looped
7899                          * through at least once, move on to the NO_EMPTY_SIZE
7900                          * case.
7901                          */
7902                         if (ret == -ENOSPC)
7903                                 loop = LOOP_NO_EMPTY_SIZE;
7904
7905                         /*
7906                          * Do not bail out on ENOSPC since we
7907                          * can do more things.
7908                          */
7909                         if (ret < 0 && ret != -ENOSPC)
7910                                 btrfs_abort_transaction(trans, ret);
7911                         else
7912                                 ret = 0;
7913                         if (!exist)
7914                                 btrfs_end_transaction(trans);
7915                         if (ret)
7916                                 goto out;
7917                 }
7918
7919                 if (loop == LOOP_NO_EMPTY_SIZE) {
7920                         /*
7921                          * Don't loop again if we already have no empty_size and
7922                          * no empty_cluster.
7923                          */
7924                         if (empty_size == 0 &&
7925                             empty_cluster == 0) {
7926                                 ret = -ENOSPC;
7927                                 goto out;
7928                         }
7929                         empty_size = 0;
7930                         empty_cluster = 0;
7931                 }
7932
7933                 goto search;
7934         } else if (!ins->objectid) {
7935                 ret = -ENOSPC;
7936         } else if (ins->objectid) {
7937                 if (!use_cluster && last_ptr) {
7938                         spin_lock(&last_ptr->lock);
7939                         last_ptr->window_start = ins->objectid;
7940                         spin_unlock(&last_ptr->lock);
7941                 }
7942                 ret = 0;
7943         }
7944 out:
7945         if (ret == -ENOSPC) {
7946                 spin_lock(&space_info->lock);
7947                 space_info->max_extent_size = max_extent_size;
7948                 spin_unlock(&space_info->lock);
7949                 ins->offset = max_extent_size;
7950         }
7951         return ret;
7952 }
7953
7954 static void dump_space_info(struct btrfs_fs_info *fs_info,
7955                             struct btrfs_space_info *info, u64 bytes,
7956                             int dump_block_groups)
7957 {
7958         struct btrfs_block_group_cache *cache;
7959         int index = 0;
7960
7961         spin_lock(&info->lock);
7962         btrfs_info(fs_info, "space_info %llu has %llu free, is %sfull",
7963                    info->flags,
7964                    info->total_bytes - btrfs_space_info_used(info, true),
7965                    info->full ? "" : "not ");
7966         btrfs_info(fs_info,
7967                 "space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu",
7968                 info->total_bytes, info->bytes_used, info->bytes_pinned,
7969                 info->bytes_reserved, info->bytes_may_use,
7970                 info->bytes_readonly);
7971         spin_unlock(&info->lock);
7972
7973         if (!dump_block_groups)
7974                 return;
7975
7976         down_read(&info->groups_sem);
7977 again:
7978         list_for_each_entry(cache, &info->block_groups[index], list) {
7979                 spin_lock(&cache->lock);
7980                 btrfs_info(fs_info,
7981                         "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s",
7982                         cache->key.objectid, cache->key.offset,
7983                         btrfs_block_group_used(&cache->item), cache->pinned,
7984                         cache->reserved, cache->ro ? "[readonly]" : "");
7985                 btrfs_dump_free_space(cache, bytes);
7986                 spin_unlock(&cache->lock);
7987         }
7988         if (++index < BTRFS_NR_RAID_TYPES)
7989                 goto again;
7990         up_read(&info->groups_sem);
7991 }
7992
7993 int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes,
7994                          u64 num_bytes, u64 min_alloc_size,
7995                          u64 empty_size, u64 hint_byte,
7996                          struct btrfs_key *ins, int is_data, int delalloc)
7997 {
7998         struct btrfs_fs_info *fs_info = root->fs_info;
7999         bool final_tried = num_bytes == min_alloc_size;
8000         u64 flags;
8001         int ret;
8002
8003         flags = get_alloc_profile_by_root(root, is_data);
8004 again:
8005         WARN_ON(num_bytes < fs_info->sectorsize);
8006         ret = find_free_extent(fs_info, ram_bytes, num_bytes, empty_size,
8007                                hint_byte, ins, flags, delalloc);
8008         if (!ret && !is_data) {
8009                 btrfs_dec_block_group_reservations(fs_info, ins->objectid);
8010         } else if (ret == -ENOSPC) {
8011                 if (!final_tried && ins->offset) {
8012                         num_bytes = min(num_bytes >> 1, ins->offset);
8013                         num_bytes = round_down(num_bytes,
8014                                                fs_info->sectorsize);
8015                         num_bytes = max(num_bytes, min_alloc_size);
8016                         ram_bytes = num_bytes;
8017                         if (num_bytes == min_alloc_size)
8018                                 final_tried = true;
8019                         goto again;
8020                 } else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
8021                         struct btrfs_space_info *sinfo;
8022
8023                         sinfo = __find_space_info(fs_info, flags);
8024                         btrfs_err(fs_info,
8025                                   "allocation failed flags %llu, wanted %llu",
8026                                   flags, num_bytes);
8027                         if (sinfo)
8028                                 dump_space_info(fs_info, sinfo, num_bytes, 1);
8029                 }
8030         }
8031
8032         return ret;
8033 }
8034
8035 static int __btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
8036                                         u64 start, u64 len,
8037                                         int pin, int delalloc)
8038 {
8039         struct btrfs_block_group_cache *cache;
8040         int ret = 0;
8041
8042         cache = btrfs_lookup_block_group(fs_info, start);
8043         if (!cache) {
8044                 btrfs_err(fs_info, "Unable to find block group for %llu",
8045                           start);
8046                 return -ENOSPC;
8047         }
8048
8049         if (pin)
8050                 pin_down_extent(fs_info, cache, start, len, 1);
8051         else {
8052                 if (btrfs_test_opt(fs_info, DISCARD))
8053                         ret = btrfs_discard_extent(fs_info, start, len, NULL);
8054                 btrfs_add_free_space(cache, start, len);
8055                 btrfs_free_reserved_bytes(cache, len, delalloc);
8056                 trace_btrfs_reserved_extent_free(fs_info, start, len);
8057         }
8058
8059         btrfs_put_block_group(cache);
8060         return ret;
8061 }
8062
8063 int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
8064                                u64 start, u64 len, int delalloc)
8065 {
8066         return __btrfs_free_reserved_extent(fs_info, start, len, 0, delalloc);
8067 }
8068
8069 int btrfs_free_and_pin_reserved_extent(struct btrfs_fs_info *fs_info,
8070                                        u64 start, u64 len)
8071 {
8072         return __btrfs_free_reserved_extent(fs_info, start, len, 1, 0);
8073 }
8074
8075 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
8076                                       struct btrfs_fs_info *fs_info,
8077                                       u64 parent, u64 root_objectid,
8078                                       u64 flags, u64 owner, u64 offset,
8079                                       struct btrfs_key *ins, int ref_mod)
8080 {
8081         int ret;
8082         struct btrfs_extent_item *extent_item;
8083         struct btrfs_extent_inline_ref *iref;
8084         struct btrfs_path *path;
8085         struct extent_buffer *leaf;
8086         int type;
8087         u32 size;
8088
8089         if (parent > 0)
8090                 type = BTRFS_SHARED_DATA_REF_KEY;
8091         else
8092                 type = BTRFS_EXTENT_DATA_REF_KEY;
8093
8094         size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
8095
8096         path = btrfs_alloc_path();
8097         if (!path)
8098                 return -ENOMEM;
8099
8100         path->leave_spinning = 1;
8101         ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
8102                                       ins, size);
8103         if (ret) {
8104                 btrfs_free_path(path);
8105                 return ret;
8106         }
8107
8108         leaf = path->nodes[0];
8109         extent_item = btrfs_item_ptr(leaf, path->slots[0],
8110                                      struct btrfs_extent_item);
8111         btrfs_set_extent_refs(leaf, extent_item, ref_mod);
8112         btrfs_set_extent_generation(leaf, extent_item, trans->transid);
8113         btrfs_set_extent_flags(leaf, extent_item,
8114                                flags | BTRFS_EXTENT_FLAG_DATA);
8115
8116         iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
8117         btrfs_set_extent_inline_ref_type(leaf, iref, type);
8118         if (parent > 0) {
8119                 struct btrfs_shared_data_ref *ref;
8120                 ref = (struct btrfs_shared_data_ref *)(iref + 1);
8121                 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
8122                 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
8123         } else {
8124                 struct btrfs_extent_data_ref *ref;
8125                 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
8126                 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
8127                 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
8128                 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
8129                 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
8130         }
8131
8132         btrfs_mark_buffer_dirty(path->nodes[0]);
8133         btrfs_free_path(path);
8134
8135         ret = remove_from_free_space_tree(trans, fs_info, ins->objectid,
8136                                           ins->offset);
8137         if (ret)
8138                 return ret;
8139
8140         ret = update_block_group(trans, fs_info, ins->objectid, ins->offset, 1);
8141         if (ret) { /* -ENOENT, logic error */
8142                 btrfs_err(fs_info, "update block group failed for %llu %llu",
8143                         ins->objectid, ins->offset);
8144                 BUG();
8145         }
8146         trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid, ins->offset);
8147         return ret;
8148 }
8149
8150 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
8151                                      struct btrfs_fs_info *fs_info,
8152                                      u64 parent, u64 root_objectid,
8153                                      u64 flags, struct btrfs_disk_key *key,
8154                                      int level, struct btrfs_key *ins)
8155 {
8156         int ret;
8157         struct btrfs_extent_item *extent_item;
8158         struct btrfs_tree_block_info *block_info;
8159         struct btrfs_extent_inline_ref *iref;
8160         struct btrfs_path *path;
8161         struct extent_buffer *leaf;
8162         u32 size = sizeof(*extent_item) + sizeof(*iref);
8163         u64 num_bytes = ins->offset;
8164         bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
8165
8166         if (!skinny_metadata)
8167                 size += sizeof(*block_info);
8168
8169         path = btrfs_alloc_path();
8170         if (!path) {
8171                 btrfs_free_and_pin_reserved_extent(fs_info, ins->objectid,
8172                                                    fs_info->nodesize);
8173                 return -ENOMEM;
8174         }
8175
8176         path->leave_spinning = 1;
8177         ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
8178                                       ins, size);
8179         if (ret) {
8180                 btrfs_free_path(path);
8181                 btrfs_free_and_pin_reserved_extent(fs_info, ins->objectid,
8182                                                    fs_info->nodesize);
8183                 return ret;
8184         }
8185
8186         leaf = path->nodes[0];
8187         extent_item = btrfs_item_ptr(leaf, path->slots[0],
8188                                      struct btrfs_extent_item);
8189         btrfs_set_extent_refs(leaf, extent_item, 1);
8190         btrfs_set_extent_generation(leaf, extent_item, trans->transid);
8191         btrfs_set_extent_flags(leaf, extent_item,
8192                                flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
8193
8194         if (skinny_metadata) {
8195                 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
8196                 num_bytes = fs_info->nodesize;
8197         } else {
8198                 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
8199                 btrfs_set_tree_block_key(leaf, block_info, key);
8200                 btrfs_set_tree_block_level(leaf, block_info, level);
8201                 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
8202         }
8203
8204         if (parent > 0) {
8205                 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
8206                 btrfs_set_extent_inline_ref_type(leaf, iref,
8207                                                  BTRFS_SHARED_BLOCK_REF_KEY);
8208                 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
8209         } else {
8210                 btrfs_set_extent_inline_ref_type(leaf, iref,
8211                                                  BTRFS_TREE_BLOCK_REF_KEY);
8212                 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
8213         }
8214
8215         btrfs_mark_buffer_dirty(leaf);
8216         btrfs_free_path(path);
8217
8218         ret = remove_from_free_space_tree(trans, fs_info, ins->objectid,
8219                                           num_bytes);
8220         if (ret)
8221                 return ret;
8222
8223         ret = update_block_group(trans, fs_info, ins->objectid,
8224                                  fs_info->nodesize, 1);
8225         if (ret) { /* -ENOENT, logic error */
8226                 btrfs_err(fs_info, "update block group failed for %llu %llu",
8227                         ins->objectid, ins->offset);
8228                 BUG();
8229         }
8230
8231         trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid,
8232                                           fs_info->nodesize);
8233         return ret;
8234 }
8235
8236 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
8237                                      u64 root_objectid, u64 owner,
8238                                      u64 offset, u64 ram_bytes,
8239                                      struct btrfs_key *ins)
8240 {
8241         struct btrfs_fs_info *fs_info = trans->fs_info;
8242         int ret;
8243
8244         BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
8245
8246         ret = btrfs_add_delayed_data_ref(fs_info, trans, ins->objectid,
8247                                          ins->offset, 0, root_objectid, owner,
8248                                          offset, ram_bytes,
8249                                          BTRFS_ADD_DELAYED_EXTENT, NULL, NULL);
8250         return ret;
8251 }
8252
8253 /*
8254  * this is used by the tree logging recovery code.  It records that
8255  * an extent has been allocated and makes sure to clear the free
8256  * space cache bits as well
8257  */
8258 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
8259                                    struct btrfs_fs_info *fs_info,
8260                                    u64 root_objectid, u64 owner, u64 offset,
8261                                    struct btrfs_key *ins)
8262 {
8263         int ret;
8264         struct btrfs_block_group_cache *block_group;
8265         struct btrfs_space_info *space_info;
8266
8267         /*
8268          * Mixed block groups will exclude before processing the log so we only
8269          * need to do the exclude dance if this fs isn't mixed.
8270          */
8271         if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
8272                 ret = __exclude_logged_extent(fs_info, ins->objectid,
8273                                               ins->offset);
8274                 if (ret)
8275                         return ret;
8276         }
8277
8278         block_group = btrfs_lookup_block_group(fs_info, ins->objectid);
8279         if (!block_group)
8280                 return -EINVAL;
8281
8282         space_info = block_group->space_info;
8283         spin_lock(&space_info->lock);
8284         spin_lock(&block_group->lock);
8285         space_info->bytes_reserved += ins->offset;
8286         block_group->reserved += ins->offset;
8287         spin_unlock(&block_group->lock);
8288         spin_unlock(&space_info->lock);
8289
8290         ret = alloc_reserved_file_extent(trans, fs_info, 0, root_objectid,
8291                                          0, owner, offset, ins, 1);
8292         btrfs_put_block_group(block_group);
8293         return ret;
8294 }
8295
8296 static struct extent_buffer *
8297 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
8298                       u64 bytenr, int level)
8299 {
8300         struct btrfs_fs_info *fs_info = root->fs_info;
8301         struct extent_buffer *buf;
8302
8303         buf = btrfs_find_create_tree_block(fs_info, bytenr);
8304         if (IS_ERR(buf))
8305                 return buf;
8306
8307         btrfs_set_header_generation(buf, trans->transid);
8308         btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
8309         btrfs_tree_lock(buf);
8310         clean_tree_block(fs_info, buf);
8311         clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
8312
8313         btrfs_set_lock_blocking(buf);
8314         set_extent_buffer_uptodate(buf);
8315
8316         if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
8317                 buf->log_index = root->log_transid % 2;
8318                 /*
8319                  * we allow two log transactions at a time, use different
8320                  * EXENT bit to differentiate dirty pages.
8321                  */
8322                 if (buf->log_index == 0)
8323                         set_extent_dirty(&root->dirty_log_pages, buf->start,
8324                                         buf->start + buf->len - 1, GFP_NOFS);
8325                 else
8326                         set_extent_new(&root->dirty_log_pages, buf->start,
8327                                         buf->start + buf->len - 1);
8328         } else {
8329                 buf->log_index = -1;
8330                 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
8331                          buf->start + buf->len - 1, GFP_NOFS);
8332         }
8333         trans->dirty = true;
8334         /* this returns a buffer locked for blocking */
8335         return buf;
8336 }
8337
8338 static struct btrfs_block_rsv *
8339 use_block_rsv(struct btrfs_trans_handle *trans,
8340               struct btrfs_root *root, u32 blocksize)
8341 {
8342         struct btrfs_fs_info *fs_info = root->fs_info;
8343         struct btrfs_block_rsv *block_rsv;
8344         struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
8345         int ret;
8346         bool global_updated = false;
8347
8348         block_rsv = get_block_rsv(trans, root);
8349
8350         if (unlikely(block_rsv->size == 0))
8351                 goto try_reserve;
8352 again:
8353         ret = block_rsv_use_bytes(block_rsv, blocksize);
8354         if (!ret)
8355                 return block_rsv;
8356
8357         if (block_rsv->failfast)
8358                 return ERR_PTR(ret);
8359
8360         if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
8361                 global_updated = true;
8362                 update_global_block_rsv(fs_info);
8363                 goto again;
8364         }
8365
8366         if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
8367                 static DEFINE_RATELIMIT_STATE(_rs,
8368                                 DEFAULT_RATELIMIT_INTERVAL * 10,
8369                                 /*DEFAULT_RATELIMIT_BURST*/ 1);
8370                 if (__ratelimit(&_rs))
8371                         WARN(1, KERN_DEBUG
8372                                 "BTRFS: block rsv returned %d\n", ret);
8373         }
8374 try_reserve:
8375         ret = reserve_metadata_bytes(root, block_rsv, blocksize,
8376                                      BTRFS_RESERVE_NO_FLUSH);
8377         if (!ret)
8378                 return block_rsv;
8379         /*
8380          * If we couldn't reserve metadata bytes try and use some from
8381          * the global reserve if its space type is the same as the global
8382          * reservation.
8383          */
8384         if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
8385             block_rsv->space_info == global_rsv->space_info) {
8386                 ret = block_rsv_use_bytes(global_rsv, blocksize);
8387                 if (!ret)
8388                         return global_rsv;
8389         }
8390         return ERR_PTR(ret);
8391 }
8392
8393 static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
8394                             struct btrfs_block_rsv *block_rsv, u32 blocksize)
8395 {
8396         block_rsv_add_bytes(block_rsv, blocksize, 0);
8397         block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
8398 }
8399
8400 /*
8401  * finds a free extent and does all the dirty work required for allocation
8402  * returns the tree buffer or an ERR_PTR on error.
8403  */
8404 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
8405                                              struct btrfs_root *root,
8406                                              u64 parent, u64 root_objectid,
8407                                              const struct btrfs_disk_key *key,
8408                                              int level, u64 hint,
8409                                              u64 empty_size)
8410 {
8411         struct btrfs_fs_info *fs_info = root->fs_info;
8412         struct btrfs_key ins;
8413         struct btrfs_block_rsv *block_rsv;
8414         struct extent_buffer *buf;
8415         struct btrfs_delayed_extent_op *extent_op;
8416         u64 flags = 0;
8417         int ret;
8418         u32 blocksize = fs_info->nodesize;
8419         bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
8420
8421 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
8422         if (btrfs_is_testing(fs_info)) {
8423                 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
8424                                             level);
8425                 if (!IS_ERR(buf))
8426                         root->alloc_bytenr += blocksize;
8427                 return buf;
8428         }
8429 #endif
8430
8431         block_rsv = use_block_rsv(trans, root, blocksize);
8432         if (IS_ERR(block_rsv))
8433                 return ERR_CAST(block_rsv);
8434
8435         ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize,
8436                                    empty_size, hint, &ins, 0, 0);
8437         if (ret)
8438                 goto out_unuse;
8439
8440         buf = btrfs_init_new_buffer(trans, root, ins.objectid, level);
8441         if (IS_ERR(buf)) {
8442                 ret = PTR_ERR(buf);
8443                 goto out_free_reserved;
8444         }
8445
8446         if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
8447                 if (parent == 0)
8448                         parent = ins.objectid;
8449                 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
8450         } else
8451                 BUG_ON(parent > 0);
8452
8453         if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
8454                 extent_op = btrfs_alloc_delayed_extent_op();
8455                 if (!extent_op) {
8456                         ret = -ENOMEM;
8457                         goto out_free_buf;
8458                 }
8459                 if (key)
8460                         memcpy(&extent_op->key, key, sizeof(extent_op->key));
8461                 else
8462                         memset(&extent_op->key, 0, sizeof(extent_op->key));
8463                 extent_op->flags_to_set = flags;
8464                 extent_op->update_key = skinny_metadata ? false : true;
8465                 extent_op->update_flags = true;
8466                 extent_op->is_data = false;
8467                 extent_op->level = level;
8468
8469                 ret = btrfs_add_delayed_tree_ref(fs_info, trans, ins.objectid,
8470                                                  ins.offset, parent,
8471                                                  root_objectid, level,
8472                                                  BTRFS_ADD_DELAYED_EXTENT,
8473                                                  extent_op, NULL, NULL);
8474                 if (ret)
8475                         goto out_free_delayed;
8476         }
8477         return buf;
8478
8479 out_free_delayed:
8480         btrfs_free_delayed_extent_op(extent_op);
8481 out_free_buf:
8482         free_extent_buffer(buf);
8483 out_free_reserved:
8484         btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0);
8485 out_unuse:
8486         unuse_block_rsv(fs_info, block_rsv, blocksize);
8487         return ERR_PTR(ret);
8488 }
8489
8490 struct walk_control {
8491         u64 refs[BTRFS_MAX_LEVEL];
8492         u64 flags[BTRFS_MAX_LEVEL];
8493         struct btrfs_key update_progress;
8494         int stage;
8495         int level;
8496         int shared_level;
8497         int update_ref;
8498         int keep_locks;
8499         int reada_slot;
8500         int reada_count;
8501         int for_reloc;
8502 };
8503
8504 #define DROP_REFERENCE  1
8505 #define UPDATE_BACKREF  2
8506
8507 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
8508                                      struct btrfs_root *root,
8509                                      struct walk_control *wc,
8510                                      struct btrfs_path *path)
8511 {
8512         struct btrfs_fs_info *fs_info = root->fs_info;
8513         u64 bytenr;
8514         u64 generation;
8515         u64 refs;
8516         u64 flags;
8517         u32 nritems;
8518         struct btrfs_key key;
8519         struct extent_buffer *eb;
8520         int ret;
8521         int slot;
8522         int nread = 0;
8523
8524         if (path->slots[wc->level] < wc->reada_slot) {
8525                 wc->reada_count = wc->reada_count * 2 / 3;
8526                 wc->reada_count = max(wc->reada_count, 2);
8527         } else {
8528                 wc->reada_count = wc->reada_count * 3 / 2;
8529                 wc->reada_count = min_t(int, wc->reada_count,
8530                                         BTRFS_NODEPTRS_PER_BLOCK(fs_info));
8531         }
8532
8533         eb = path->nodes[wc->level];
8534         nritems = btrfs_header_nritems(eb);
8535
8536         for (slot = path->slots[wc->level]; slot < nritems; slot++) {
8537                 if (nread >= wc->reada_count)
8538                         break;
8539
8540                 cond_resched();
8541                 bytenr = btrfs_node_blockptr(eb, slot);
8542                 generation = btrfs_node_ptr_generation(eb, slot);
8543
8544                 if (slot == path->slots[wc->level])
8545                         goto reada;
8546
8547                 if (wc->stage == UPDATE_BACKREF &&
8548                     generation <= root->root_key.offset)
8549                         continue;
8550
8551                 /* We don't lock the tree block, it's OK to be racy here */
8552                 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr,
8553                                                wc->level - 1, 1, &refs,
8554                                                &flags);
8555                 /* We don't care about errors in readahead. */
8556                 if (ret < 0)
8557                         continue;
8558                 BUG_ON(refs == 0);
8559
8560                 if (wc->stage == DROP_REFERENCE) {
8561                         if (refs == 1)
8562                                 goto reada;
8563
8564                         if (wc->level == 1 &&
8565                             (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8566                                 continue;
8567                         if (!wc->update_ref ||
8568                             generation <= root->root_key.offset)
8569                                 continue;
8570                         btrfs_node_key_to_cpu(eb, &key, slot);
8571                         ret = btrfs_comp_cpu_keys(&key,
8572                                                   &wc->update_progress);
8573                         if (ret < 0)
8574                                 continue;
8575                 } else {
8576                         if (wc->level == 1 &&
8577                             (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8578                                 continue;
8579                 }
8580 reada:
8581                 readahead_tree_block(fs_info, bytenr);
8582                 nread++;
8583         }
8584         wc->reada_slot = slot;
8585 }
8586
8587 /*
8588  * helper to process tree block while walking down the tree.
8589  *
8590  * when wc->stage == UPDATE_BACKREF, this function updates
8591  * back refs for pointers in the block.
8592  *
8593  * NOTE: return value 1 means we should stop walking down.
8594  */
8595 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
8596                                    struct btrfs_root *root,
8597                                    struct btrfs_path *path,
8598                                    struct walk_control *wc, int lookup_info)
8599 {
8600         struct btrfs_fs_info *fs_info = root->fs_info;
8601         int level = wc->level;
8602         struct extent_buffer *eb = path->nodes[level];
8603         u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
8604         int ret;
8605
8606         if (wc->stage == UPDATE_BACKREF &&
8607             btrfs_header_owner(eb) != root->root_key.objectid)
8608                 return 1;
8609
8610         /*
8611          * when reference count of tree block is 1, it won't increase
8612          * again. once full backref flag is set, we never clear it.
8613          */
8614         if (lookup_info &&
8615             ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
8616              (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
8617                 BUG_ON(!path->locks[level]);
8618                 ret = btrfs_lookup_extent_info(trans, fs_info,
8619                                                eb->start, level, 1,
8620                                                &wc->refs[level],
8621                                                &wc->flags[level]);
8622                 BUG_ON(ret == -ENOMEM);
8623                 if (ret)
8624                         return ret;
8625                 BUG_ON(wc->refs[level] == 0);
8626         }
8627
8628         if (wc->stage == DROP_REFERENCE) {
8629                 if (wc->refs[level] > 1)
8630                         return 1;
8631
8632                 if (path->locks[level] && !wc->keep_locks) {
8633                         btrfs_tree_unlock_rw(eb, path->locks[level]);
8634                         path->locks[level] = 0;
8635                 }
8636                 return 0;
8637         }
8638
8639         /* wc->stage == UPDATE_BACKREF */
8640         if (!(wc->flags[level] & flag)) {
8641                 BUG_ON(!path->locks[level]);
8642                 ret = btrfs_inc_ref(trans, root, eb, 1);
8643                 BUG_ON(ret); /* -ENOMEM */
8644                 ret = btrfs_dec_ref(trans, root, eb, 0);
8645                 BUG_ON(ret); /* -ENOMEM */
8646                 ret = btrfs_set_disk_extent_flags(trans, fs_info, eb->start,
8647                                                   eb->len, flag,
8648                                                   btrfs_header_level(eb), 0);
8649                 BUG_ON(ret); /* -ENOMEM */
8650                 wc->flags[level] |= flag;
8651         }
8652
8653         /*
8654          * the block is shared by multiple trees, so it's not good to
8655          * keep the tree lock
8656          */
8657         if (path->locks[level] && level > 0) {
8658                 btrfs_tree_unlock_rw(eb, path->locks[level]);
8659                 path->locks[level] = 0;
8660         }
8661         return 0;
8662 }
8663
8664 /*
8665  * helper to process tree block pointer.
8666  *
8667  * when wc->stage == DROP_REFERENCE, this function checks
8668  * reference count of the block pointed to. if the block
8669  * is shared and we need update back refs for the subtree
8670  * rooted at the block, this function changes wc->stage to
8671  * UPDATE_BACKREF. if the block is shared and there is no
8672  * need to update back, this function drops the reference
8673  * to the block.
8674  *
8675  * NOTE: return value 1 means we should stop walking down.
8676  */
8677 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
8678                                  struct btrfs_root *root,
8679                                  struct btrfs_path *path,
8680                                  struct walk_control *wc, int *lookup_info)
8681 {
8682         struct btrfs_fs_info *fs_info = root->fs_info;
8683         u64 bytenr;
8684         u64 generation;
8685         u64 parent;
8686         u32 blocksize;
8687         struct btrfs_key key;
8688         struct extent_buffer *next;
8689         int level = wc->level;
8690         int reada = 0;
8691         int ret = 0;
8692         bool need_account = false;
8693
8694         generation = btrfs_node_ptr_generation(path->nodes[level],
8695                                                path->slots[level]);
8696         /*
8697          * if the lower level block was created before the snapshot
8698          * was created, we know there is no need to update back refs
8699          * for the subtree
8700          */
8701         if (wc->stage == UPDATE_BACKREF &&
8702             generation <= root->root_key.offset) {
8703                 *lookup_info = 1;
8704                 return 1;
8705         }
8706
8707         bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
8708         blocksize = fs_info->nodesize;
8709
8710         next = find_extent_buffer(fs_info, bytenr);
8711         if (!next) {
8712                 next = btrfs_find_create_tree_block(fs_info, bytenr);
8713                 if (IS_ERR(next))
8714                         return PTR_ERR(next);
8715
8716                 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
8717                                                level - 1);
8718                 reada = 1;
8719         }
8720         btrfs_tree_lock(next);
8721         btrfs_set_lock_blocking(next);
8722
8723         ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1,
8724                                        &wc->refs[level - 1],
8725                                        &wc->flags[level - 1]);
8726         if (ret < 0)
8727                 goto out_unlock;
8728
8729         if (unlikely(wc->refs[level - 1] == 0)) {
8730                 btrfs_err(fs_info, "Missing references.");
8731                 ret = -EIO;
8732                 goto out_unlock;
8733         }
8734         *lookup_info = 0;
8735
8736         if (wc->stage == DROP_REFERENCE) {
8737                 if (wc->refs[level - 1] > 1) {
8738                         need_account = true;
8739                         if (level == 1 &&
8740                             (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8741                                 goto skip;
8742
8743                         if (!wc->update_ref ||
8744                             generation <= root->root_key.offset)
8745                                 goto skip;
8746
8747                         btrfs_node_key_to_cpu(path->nodes[level], &key,
8748                                               path->slots[level]);
8749                         ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
8750                         if (ret < 0)
8751                                 goto skip;
8752
8753                         wc->stage = UPDATE_BACKREF;
8754                         wc->shared_level = level - 1;
8755                 }
8756         } else {
8757                 if (level == 1 &&
8758                     (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8759                         goto skip;
8760         }
8761
8762         if (!btrfs_buffer_uptodate(next, generation, 0)) {
8763                 btrfs_tree_unlock(next);
8764                 free_extent_buffer(next);
8765                 next = NULL;
8766                 *lookup_info = 1;
8767         }
8768
8769         if (!next) {
8770                 if (reada && level == 1)
8771                         reada_walk_down(trans, root, wc, path);
8772                 next = read_tree_block(fs_info, bytenr, generation);
8773                 if (IS_ERR(next)) {
8774                         return PTR_ERR(next);
8775                 } else if (!extent_buffer_uptodate(next)) {
8776                         free_extent_buffer(next);
8777                         return -EIO;
8778                 }
8779                 btrfs_tree_lock(next);
8780                 btrfs_set_lock_blocking(next);
8781         }
8782
8783         level--;
8784         ASSERT(level == btrfs_header_level(next));
8785         if (level != btrfs_header_level(next)) {
8786                 btrfs_err(root->fs_info, "mismatched level");
8787                 ret = -EIO;
8788                 goto out_unlock;
8789         }
8790         path->nodes[level] = next;
8791         path->slots[level] = 0;
8792         path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8793         wc->level = level;
8794         if (wc->level == 1)
8795                 wc->reada_slot = 0;
8796         return 0;
8797 skip:
8798         wc->refs[level - 1] = 0;
8799         wc->flags[level - 1] = 0;
8800         if (wc->stage == DROP_REFERENCE) {
8801                 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
8802                         parent = path->nodes[level]->start;
8803                 } else {
8804                         ASSERT(root->root_key.objectid ==
8805                                btrfs_header_owner(path->nodes[level]));
8806                         if (root->root_key.objectid !=
8807                             btrfs_header_owner(path->nodes[level])) {
8808                                 btrfs_err(root->fs_info,
8809                                                 "mismatched block owner");
8810                                 ret = -EIO;
8811                                 goto out_unlock;
8812                         }
8813                         parent = 0;
8814                 }
8815
8816                 if (need_account) {
8817                         ret = btrfs_qgroup_trace_subtree(trans, root, next,
8818                                                          generation, level - 1);
8819                         if (ret) {
8820                                 btrfs_err_rl(fs_info,
8821                                              "Error %d accounting shared subtree. Quota is out of sync, rescan required.",
8822                                              ret);
8823                         }
8824                 }
8825                 ret = btrfs_free_extent(trans, fs_info, bytenr, blocksize,
8826                                         parent, root->root_key.objectid,
8827                                         level - 1, 0);
8828                 if (ret)
8829                         goto out_unlock;
8830         }
8831
8832         *lookup_info = 1;
8833         ret = 1;
8834
8835 out_unlock:
8836         btrfs_tree_unlock(next);
8837         free_extent_buffer(next);
8838
8839         return ret;
8840 }
8841
8842 /*
8843  * helper to process tree block while walking up the tree.
8844  *
8845  * when wc->stage == DROP_REFERENCE, this function drops
8846  * reference count on the block.
8847  *
8848  * when wc->stage == UPDATE_BACKREF, this function changes
8849  * wc->stage back to DROP_REFERENCE if we changed wc->stage
8850  * to UPDATE_BACKREF previously while processing the block.
8851  *
8852  * NOTE: return value 1 means we should stop walking up.
8853  */
8854 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
8855                                  struct btrfs_root *root,
8856                                  struct btrfs_path *path,
8857                                  struct walk_control *wc)
8858 {
8859         struct btrfs_fs_info *fs_info = root->fs_info;
8860         int ret;
8861         int level = wc->level;
8862         struct extent_buffer *eb = path->nodes[level];
8863         u64 parent = 0;
8864
8865         if (wc->stage == UPDATE_BACKREF) {
8866                 BUG_ON(wc->shared_level < level);
8867                 if (level < wc->shared_level)
8868                         goto out;
8869
8870                 ret = find_next_key(path, level + 1, &wc->update_progress);
8871                 if (ret > 0)
8872                         wc->update_ref = 0;
8873
8874                 wc->stage = DROP_REFERENCE;
8875                 wc->shared_level = -1;
8876                 path->slots[level] = 0;
8877
8878                 /*
8879                  * check reference count again if the block isn't locked.
8880                  * we should start walking down the tree again if reference
8881                  * count is one.
8882                  */
8883                 if (!path->locks[level]) {
8884                         BUG_ON(level == 0);
8885                         btrfs_tree_lock(eb);
8886                         btrfs_set_lock_blocking(eb);
8887                         path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8888
8889                         ret = btrfs_lookup_extent_info(trans, fs_info,
8890                                                        eb->start, level, 1,
8891                                                        &wc->refs[level],
8892                                                        &wc->flags[level]);
8893                         if (ret < 0) {
8894                                 btrfs_tree_unlock_rw(eb, path->locks[level]);
8895                                 path->locks[level] = 0;
8896                                 return ret;
8897                         }
8898                         BUG_ON(wc->refs[level] == 0);
8899                         if (wc->refs[level] == 1) {
8900                                 btrfs_tree_unlock_rw(eb, path->locks[level]);
8901                                 path->locks[level] = 0;
8902                                 return 1;
8903                         }
8904                 }
8905         }
8906
8907         /* wc->stage == DROP_REFERENCE */
8908         BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
8909
8910         if (wc->refs[level] == 1) {
8911                 if (level == 0) {
8912                         if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8913                                 ret = btrfs_dec_ref(trans, root, eb, 1);
8914                         else
8915                                 ret = btrfs_dec_ref(trans, root, eb, 0);
8916                         BUG_ON(ret); /* -ENOMEM */
8917                         ret = btrfs_qgroup_trace_leaf_items(trans, fs_info, eb);
8918                         if (ret) {
8919                                 btrfs_err_rl(fs_info,
8920                                              "error %d accounting leaf items. Quota is out of sync, rescan required.",
8921                                              ret);
8922                         }
8923                 }
8924                 /* make block locked assertion in clean_tree_block happy */
8925                 if (!path->locks[level] &&
8926                     btrfs_header_generation(eb) == trans->transid) {
8927                         btrfs_tree_lock(eb);
8928                         btrfs_set_lock_blocking(eb);
8929                         path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8930                 }
8931                 clean_tree_block(fs_info, eb);
8932         }
8933
8934         if (eb == root->node) {
8935                 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8936                         parent = eb->start;
8937                 else
8938                         BUG_ON(root->root_key.objectid !=
8939                                btrfs_header_owner(eb));
8940         } else {
8941                 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8942                         parent = path->nodes[level + 1]->start;
8943                 else
8944                         BUG_ON(root->root_key.objectid !=
8945                                btrfs_header_owner(path->nodes[level + 1]));
8946         }
8947
8948         btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
8949 out:
8950         wc->refs[level] = 0;
8951         wc->flags[level] = 0;
8952         return 0;
8953 }
8954
8955 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
8956                                    struct btrfs_root *root,
8957                                    struct btrfs_path *path,
8958                                    struct walk_control *wc)
8959 {
8960         int level = wc->level;
8961         int lookup_info = 1;
8962         int ret;
8963
8964         while (level >= 0) {
8965                 ret = walk_down_proc(trans, root, path, wc, lookup_info);
8966                 if (ret > 0)
8967                         break;
8968
8969                 if (level == 0)
8970                         break;
8971
8972                 if (path->slots[level] >=
8973                     btrfs_header_nritems(path->nodes[level]))
8974                         break;
8975
8976                 ret = do_walk_down(trans, root, path, wc, &lookup_info);
8977                 if (ret > 0) {
8978                         path->slots[level]++;
8979                         continue;
8980                 } else if (ret < 0)
8981                         return ret;
8982                 level = wc->level;
8983         }
8984         return 0;
8985 }
8986
8987 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
8988                                  struct btrfs_root *root,
8989                                  struct btrfs_path *path,
8990                                  struct walk_control *wc, int max_level)
8991 {
8992         int level = wc->level;
8993         int ret;
8994
8995         path->slots[level] = btrfs_header_nritems(path->nodes[level]);
8996         while (level < max_level && path->nodes[level]) {
8997                 wc->level = level;
8998                 if (path->slots[level] + 1 <
8999                     btrfs_header_nritems(path->nodes[level])) {
9000                         path->slots[level]++;
9001                         return 0;
9002                 } else {
9003                         ret = walk_up_proc(trans, root, path, wc);
9004                         if (ret > 0)
9005                                 return 0;
9006
9007                         if (path->locks[level]) {
9008                                 btrfs_tree_unlock_rw(path->nodes[level],
9009                                                      path->locks[level]);
9010                                 path->locks[level] = 0;
9011                         }
9012                         free_extent_buffer(path->nodes[level]);
9013                         path->nodes[level] = NULL;
9014                         level++;
9015                 }
9016         }
9017         return 1;
9018 }
9019
9020 /*
9021  * drop a subvolume tree.
9022  *
9023  * this function traverses the tree freeing any blocks that only
9024  * referenced by the tree.
9025  *
9026  * when a shared tree block is found. this function decreases its
9027  * reference count by one. if update_ref is true, this function
9028  * also make sure backrefs for the shared block and all lower level
9029  * blocks are properly updated.
9030  *
9031  * If called with for_reloc == 0, may exit early with -EAGAIN
9032  */
9033 int btrfs_drop_snapshot(struct btrfs_root *root,
9034                          struct btrfs_block_rsv *block_rsv, int update_ref,
9035                          int for_reloc)
9036 {
9037         struct btrfs_fs_info *fs_info = root->fs_info;
9038         struct btrfs_path *path;
9039         struct btrfs_trans_handle *trans;
9040         struct btrfs_root *tree_root = fs_info->tree_root;
9041         struct btrfs_root_item *root_item = &root->root_item;
9042         struct walk_control *wc;
9043         struct btrfs_key key;
9044         int err = 0;
9045         int ret;
9046         int level;
9047         bool root_dropped = false;
9048
9049         btrfs_debug(fs_info, "Drop subvolume %llu", root->objectid);
9050
9051         path = btrfs_alloc_path();
9052         if (!path) {
9053                 err = -ENOMEM;
9054                 goto out;
9055         }
9056
9057         wc = kzalloc(sizeof(*wc), GFP_NOFS);
9058         if (!wc) {
9059                 btrfs_free_path(path);
9060                 err = -ENOMEM;
9061                 goto out;
9062         }
9063
9064         trans = btrfs_start_transaction(tree_root, 0);
9065         if (IS_ERR(trans)) {
9066                 err = PTR_ERR(trans);
9067                 goto out_free;
9068         }
9069
9070         if (block_rsv)
9071                 trans->block_rsv = block_rsv;
9072
9073         if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
9074                 level = btrfs_header_level(root->node);
9075                 path->nodes[level] = btrfs_lock_root_node(root);
9076                 btrfs_set_lock_blocking(path->nodes[level]);
9077                 path->slots[level] = 0;
9078                 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9079                 memset(&wc->update_progress, 0,
9080                        sizeof(wc->update_progress));
9081         } else {
9082                 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
9083                 memcpy(&wc->update_progress, &key,
9084                        sizeof(wc->update_progress));
9085
9086                 level = root_item->drop_level;
9087                 BUG_ON(level == 0);
9088                 path->lowest_level = level;
9089                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
9090                 path->lowest_level = 0;
9091                 if (ret < 0) {
9092                         err = ret;
9093                         goto out_end_trans;
9094                 }
9095                 WARN_ON(ret > 0);
9096
9097                 /*
9098                  * unlock our path, this is safe because only this
9099                  * function is allowed to delete this snapshot
9100                  */
9101                 btrfs_unlock_up_safe(path, 0);
9102
9103                 level = btrfs_header_level(root->node);
9104                 while (1) {
9105                         btrfs_tree_lock(path->nodes[level]);
9106                         btrfs_set_lock_blocking(path->nodes[level]);
9107                         path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9108
9109                         ret = btrfs_lookup_extent_info(trans, fs_info,
9110                                                 path->nodes[level]->start,
9111                                                 level, 1, &wc->refs[level],
9112                                                 &wc->flags[level]);
9113                         if (ret < 0) {
9114                                 err = ret;
9115                                 goto out_end_trans;
9116                         }
9117                         BUG_ON(wc->refs[level] == 0);
9118
9119                         if (level == root_item->drop_level)
9120                                 break;
9121
9122                         btrfs_tree_unlock(path->nodes[level]);
9123                         path->locks[level] = 0;
9124                         WARN_ON(wc->refs[level] != 1);
9125                         level--;
9126                 }
9127         }
9128
9129         wc->level = level;
9130         wc->shared_level = -1;
9131         wc->stage = DROP_REFERENCE;
9132         wc->update_ref = update_ref;
9133         wc->keep_locks = 0;
9134         wc->for_reloc = for_reloc;
9135         wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
9136
9137         while (1) {
9138
9139                 ret = walk_down_tree(trans, root, path, wc);
9140                 if (ret < 0) {
9141                         err = ret;
9142                         break;
9143                 }
9144
9145                 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
9146                 if (ret < 0) {
9147                         err = ret;
9148                         break;
9149                 }
9150
9151                 if (ret > 0) {
9152                         BUG_ON(wc->stage != DROP_REFERENCE);
9153                         break;
9154                 }
9155
9156                 if (wc->stage == DROP_REFERENCE) {
9157                         level = wc->level;
9158                         btrfs_node_key(path->nodes[level],
9159                                        &root_item->drop_progress,
9160                                        path->slots[level]);
9161                         root_item->drop_level = level;
9162                 }
9163
9164                 BUG_ON(wc->level == 0);
9165                 if (btrfs_should_end_transaction(trans) ||
9166                     (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) {
9167                         ret = btrfs_update_root(trans, tree_root,
9168                                                 &root->root_key,
9169                                                 root_item);
9170                         if (ret) {
9171                                 btrfs_abort_transaction(trans, ret);
9172                                 err = ret;
9173                                 goto out_end_trans;
9174                         }
9175
9176                         btrfs_end_transaction_throttle(trans);
9177                         if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) {
9178                                 btrfs_debug(fs_info,
9179                                             "drop snapshot early exit");
9180                                 err = -EAGAIN;
9181                                 goto out_free;
9182                         }
9183
9184                         trans = btrfs_start_transaction(tree_root, 0);
9185                         if (IS_ERR(trans)) {
9186                                 err = PTR_ERR(trans);
9187                                 goto out_free;
9188                         }
9189                         if (block_rsv)
9190                                 trans->block_rsv = block_rsv;
9191                 }
9192         }
9193         btrfs_release_path(path);
9194         if (err)
9195                 goto out_end_trans;
9196
9197         ret = btrfs_del_root(trans, tree_root, &root->root_key);
9198         if (ret) {
9199                 btrfs_abort_transaction(trans, ret);
9200                 goto out_end_trans;
9201         }
9202
9203         if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
9204                 ret = btrfs_find_root(tree_root, &root->root_key, path,
9205                                       NULL, NULL);
9206                 if (ret < 0) {
9207                         btrfs_abort_transaction(trans, ret);
9208                         err = ret;
9209                         goto out_end_trans;
9210                 } else if (ret > 0) {
9211                         /* if we fail to delete the orphan item this time
9212                          * around, it'll get picked up the next time.
9213                          *
9214                          * The most common failure here is just -ENOENT.
9215                          */
9216                         btrfs_del_orphan_item(trans, tree_root,
9217                                               root->root_key.objectid);
9218                 }
9219         }
9220
9221         if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) {
9222                 btrfs_add_dropped_root(trans, root);
9223         } else {
9224                 free_extent_buffer(root->node);
9225                 free_extent_buffer(root->commit_root);
9226                 btrfs_put_fs_root(root);
9227         }
9228         root_dropped = true;
9229 out_end_trans:
9230         btrfs_end_transaction_throttle(trans);
9231 out_free:
9232         kfree(wc);
9233         btrfs_free_path(path);
9234 out:
9235         /*
9236          * So if we need to stop dropping the snapshot for whatever reason we
9237          * need to make sure to add it back to the dead root list so that we
9238          * keep trying to do the work later.  This also cleans up roots if we
9239          * don't have it in the radix (like when we recover after a power fail
9240          * or unmount) so we don't leak memory.
9241          */
9242         if (!for_reloc && root_dropped == false)
9243                 btrfs_add_dead_root(root);
9244         if (err && err != -EAGAIN)
9245                 btrfs_handle_fs_error(fs_info, err, NULL);
9246         return err;
9247 }
9248
9249 /*
9250  * drop subtree rooted at tree block 'node'.
9251  *
9252  * NOTE: this function will unlock and release tree block 'node'
9253  * only used by relocation code
9254  */
9255 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
9256                         struct btrfs_root *root,
9257                         struct extent_buffer *node,
9258                         struct extent_buffer *parent)
9259 {
9260         struct btrfs_fs_info *fs_info = root->fs_info;
9261         struct btrfs_path *path;
9262         struct walk_control *wc;
9263         int level;
9264         int parent_level;
9265         int ret = 0;
9266         int wret;
9267
9268         BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
9269
9270         path = btrfs_alloc_path();
9271         if (!path)
9272                 return -ENOMEM;
9273
9274         wc = kzalloc(sizeof(*wc), GFP_NOFS);
9275         if (!wc) {
9276                 btrfs_free_path(path);
9277                 return -ENOMEM;
9278         }
9279
9280         btrfs_assert_tree_locked(parent);
9281         parent_level = btrfs_header_level(parent);
9282         extent_buffer_get(parent);
9283         path->nodes[parent_level] = parent;
9284         path->slots[parent_level] = btrfs_header_nritems(parent);
9285
9286         btrfs_assert_tree_locked(node);
9287         level = btrfs_header_level(node);
9288         path->nodes[level] = node;
9289         path->slots[level] = 0;
9290         path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9291
9292         wc->refs[parent_level] = 1;
9293         wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
9294         wc->level = level;
9295         wc->shared_level = -1;
9296         wc->stage = DROP_REFERENCE;
9297         wc->update_ref = 0;
9298         wc->keep_locks = 1;
9299         wc->for_reloc = 1;
9300         wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
9301
9302         while (1) {
9303                 wret = walk_down_tree(trans, root, path, wc);
9304                 if (wret < 0) {
9305                         ret = wret;
9306                         break;
9307                 }
9308
9309                 wret = walk_up_tree(trans, root, path, wc, parent_level);
9310                 if (wret < 0)
9311                         ret = wret;
9312                 if (wret != 0)
9313                         break;
9314         }
9315
9316         kfree(wc);
9317         btrfs_free_path(path);
9318         return ret;
9319 }
9320
9321 static u64 update_block_group_flags(struct btrfs_fs_info *fs_info, u64 flags)
9322 {
9323         u64 num_devices;
9324         u64 stripped;
9325
9326         /*
9327          * if restripe for this chunk_type is on pick target profile and
9328          * return, otherwise do the usual balance
9329          */
9330         stripped = get_restripe_target(fs_info, flags);
9331         if (stripped)
9332                 return extended_to_chunk(stripped);
9333
9334         num_devices = fs_info->fs_devices->rw_devices;
9335
9336         stripped = BTRFS_BLOCK_GROUP_RAID0 |
9337                 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
9338                 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
9339
9340         if (num_devices == 1) {
9341                 stripped |= BTRFS_BLOCK_GROUP_DUP;
9342                 stripped = flags & ~stripped;
9343
9344                 /* turn raid0 into single device chunks */
9345                 if (flags & BTRFS_BLOCK_GROUP_RAID0)
9346                         return stripped;
9347
9348                 /* turn mirroring into duplication */
9349                 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
9350                              BTRFS_BLOCK_GROUP_RAID10))
9351                         return stripped | BTRFS_BLOCK_GROUP_DUP;
9352         } else {
9353                 /* they already had raid on here, just return */
9354                 if (flags & stripped)
9355                         return flags;
9356
9357                 stripped |= BTRFS_BLOCK_GROUP_DUP;
9358                 stripped = flags & ~stripped;
9359
9360                 /* switch duplicated blocks with raid1 */
9361                 if (flags & BTRFS_BLOCK_GROUP_DUP)
9362                         return stripped | BTRFS_BLOCK_GROUP_RAID1;
9363
9364                 /* this is drive concat, leave it alone */
9365         }
9366
9367         return flags;
9368 }
9369
9370 static int inc_block_group_ro(struct btrfs_block_group_cache *cache, int force)
9371 {
9372         struct btrfs_space_info *sinfo = cache->space_info;
9373         u64 num_bytes;
9374         u64 min_allocable_bytes;
9375         int ret = -ENOSPC;
9376
9377         /*
9378          * We need some metadata space and system metadata space for
9379          * allocating chunks in some corner cases until we force to set
9380          * it to be readonly.
9381          */
9382         if ((sinfo->flags &
9383              (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
9384             !force)
9385                 min_allocable_bytes = SZ_1M;
9386         else
9387                 min_allocable_bytes = 0;
9388
9389         spin_lock(&sinfo->lock);
9390         spin_lock(&cache->lock);
9391
9392         if (cache->ro) {
9393                 cache->ro++;
9394                 ret = 0;
9395                 goto out;
9396         }
9397
9398         num_bytes = cache->key.offset - cache->reserved - cache->pinned -
9399                     cache->bytes_super - btrfs_block_group_used(&cache->item);
9400
9401         if (btrfs_space_info_used(sinfo, true) + num_bytes +
9402             min_allocable_bytes <= sinfo->total_bytes) {
9403                 sinfo->bytes_readonly += num_bytes;
9404                 cache->ro++;
9405                 list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
9406                 ret = 0;
9407         }
9408 out:
9409         spin_unlock(&cache->lock);
9410         spin_unlock(&sinfo->lock);
9411         return ret;
9412 }
9413
9414 int btrfs_inc_block_group_ro(struct btrfs_fs_info *fs_info,
9415                              struct btrfs_block_group_cache *cache)
9416
9417 {
9418         struct btrfs_trans_handle *trans;
9419         u64 alloc_flags;
9420         int ret;
9421
9422 again:
9423         trans = btrfs_join_transaction(fs_info->extent_root);
9424         if (IS_ERR(trans))
9425                 return PTR_ERR(trans);
9426
9427         /*
9428          * we're not allowed to set block groups readonly after the dirty
9429          * block groups cache has started writing.  If it already started,
9430          * back off and let this transaction commit
9431          */
9432         mutex_lock(&fs_info->ro_block_group_mutex);
9433         if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
9434                 u64 transid = trans->transid;
9435
9436                 mutex_unlock(&fs_info->ro_block_group_mutex);
9437                 btrfs_end_transaction(trans);
9438
9439                 ret = btrfs_wait_for_commit(fs_info, transid);
9440                 if (ret)
9441                         return ret;
9442                 goto again;
9443         }
9444
9445         /*
9446          * if we are changing raid levels, try to allocate a corresponding
9447          * block group with the new raid level.
9448          */
9449         alloc_flags = update_block_group_flags(fs_info, cache->flags);
9450         if (alloc_flags != cache->flags) {
9451                 ret = do_chunk_alloc(trans, fs_info, alloc_flags,
9452                                      CHUNK_ALLOC_FORCE);
9453                 /*
9454                  * ENOSPC is allowed here, we may have enough space
9455                  * already allocated at the new raid level to
9456                  * carry on
9457                  */
9458                 if (ret == -ENOSPC)
9459                         ret = 0;
9460                 if (ret < 0)
9461                         goto out;
9462         }
9463
9464         ret = inc_block_group_ro(cache, 0);
9465         if (!ret)
9466                 goto out;
9467         alloc_flags = get_alloc_profile(fs_info, cache->space_info->flags);
9468         ret = do_chunk_alloc(trans, fs_info, alloc_flags,
9469                              CHUNK_ALLOC_FORCE);
9470         if (ret < 0)
9471                 goto out;
9472         ret = inc_block_group_ro(cache, 0);
9473 out:
9474         if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
9475                 alloc_flags = update_block_group_flags(fs_info, cache->flags);
9476                 mutex_lock(&fs_info->chunk_mutex);
9477                 check_system_chunk(trans, fs_info, alloc_flags);
9478                 mutex_unlock(&fs_info->chunk_mutex);
9479         }
9480         mutex_unlock(&fs_info->ro_block_group_mutex);
9481
9482         btrfs_end_transaction(trans);
9483         return ret;
9484 }
9485
9486 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
9487                             struct btrfs_fs_info *fs_info, u64 type)
9488 {
9489         u64 alloc_flags = get_alloc_profile(fs_info, type);
9490
9491         return do_chunk_alloc(trans, fs_info, alloc_flags, CHUNK_ALLOC_FORCE);
9492 }
9493
9494 /*
9495  * helper to account the unused space of all the readonly block group in the
9496  * space_info. takes mirrors into account.
9497  */
9498 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
9499 {
9500         struct btrfs_block_group_cache *block_group;
9501         u64 free_bytes = 0;
9502         int factor;
9503
9504         /* It's df, we don't care if it's racy */
9505         if (list_empty(&sinfo->ro_bgs))
9506                 return 0;
9507
9508         spin_lock(&sinfo->lock);
9509         list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
9510                 spin_lock(&block_group->lock);
9511
9512                 if (!block_group->ro) {
9513                         spin_unlock(&block_group->lock);
9514                         continue;
9515                 }
9516
9517                 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
9518                                           BTRFS_BLOCK_GROUP_RAID10 |
9519                                           BTRFS_BLOCK_GROUP_DUP))
9520                         factor = 2;
9521                 else
9522                         factor = 1;
9523
9524                 free_bytes += (block_group->key.offset -
9525                                btrfs_block_group_used(&block_group->item)) *
9526                                factor;
9527
9528                 spin_unlock(&block_group->lock);
9529         }
9530         spin_unlock(&sinfo->lock);
9531
9532         return free_bytes;
9533 }
9534
9535 void btrfs_dec_block_group_ro(struct btrfs_block_group_cache *cache)
9536 {
9537         struct btrfs_space_info *sinfo = cache->space_info;
9538         u64 num_bytes;
9539
9540         BUG_ON(!cache->ro);
9541
9542         spin_lock(&sinfo->lock);
9543         spin_lock(&cache->lock);
9544         if (!--cache->ro) {
9545                 num_bytes = cache->key.offset - cache->reserved -
9546                             cache->pinned - cache->bytes_super -
9547                             btrfs_block_group_used(&cache->item);
9548                 sinfo->bytes_readonly -= num_bytes;
9549                 list_del_init(&cache->ro_list);
9550         }
9551         spin_unlock(&cache->lock);
9552         spin_unlock(&sinfo->lock);
9553 }
9554
9555 /*
9556  * checks to see if its even possible to relocate this block group.
9557  *
9558  * @return - -1 if it's not a good idea to relocate this block group, 0 if its
9559  * ok to go ahead and try.
9560  */
9561 int btrfs_can_relocate(struct btrfs_fs_info *fs_info, u64 bytenr)
9562 {
9563         struct btrfs_root *root = fs_info->extent_root;
9564         struct btrfs_block_group_cache *block_group;
9565         struct btrfs_space_info *space_info;
9566         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
9567         struct btrfs_device *device;
9568         struct btrfs_trans_handle *trans;
9569         u64 min_free;
9570         u64 dev_min = 1;
9571         u64 dev_nr = 0;
9572         u64 target;
9573         int debug;
9574         int index;
9575         int full = 0;
9576         int ret = 0;
9577
9578         debug = btrfs_test_opt(fs_info, ENOSPC_DEBUG);
9579
9580         block_group = btrfs_lookup_block_group(fs_info, bytenr);
9581
9582         /* odd, couldn't find the block group, leave it alone */
9583         if (!block_group) {
9584                 if (debug)
9585                         btrfs_warn(fs_info,
9586                                    "can't find block group for bytenr %llu",
9587                                    bytenr);
9588                 return -1;
9589         }
9590
9591         min_free = btrfs_block_group_used(&block_group->item);
9592
9593         /* no bytes used, we're good */
9594         if (!min_free)
9595                 goto out;
9596
9597         space_info = block_group->space_info;
9598         spin_lock(&space_info->lock);
9599
9600         full = space_info->full;
9601
9602         /*
9603          * if this is the last block group we have in this space, we can't
9604          * relocate it unless we're able to allocate a new chunk below.
9605          *
9606          * Otherwise, we need to make sure we have room in the space to handle
9607          * all of the extents from this block group.  If we can, we're good
9608          */
9609         if ((space_info->total_bytes != block_group->key.offset) &&
9610             (btrfs_space_info_used(space_info, false) + min_free <
9611              space_info->total_bytes)) {
9612                 spin_unlock(&space_info->lock);
9613                 goto out;
9614         }
9615         spin_unlock(&space_info->lock);
9616
9617         /*
9618          * ok we don't have enough space, but maybe we have free space on our
9619          * devices to allocate new chunks for relocation, so loop through our
9620          * alloc devices and guess if we have enough space.  if this block
9621          * group is going to be restriped, run checks against the target
9622          * profile instead of the current one.
9623          */
9624         ret = -1;
9625
9626         /*
9627          * index:
9628          *      0: raid10
9629          *      1: raid1
9630          *      2: dup
9631          *      3: raid0
9632          *      4: single
9633          */
9634         target = get_restripe_target(fs_info, block_group->flags);
9635         if (target) {
9636                 index = __get_raid_index(extended_to_chunk(target));
9637         } else {
9638                 /*
9639                  * this is just a balance, so if we were marked as full
9640                  * we know there is no space for a new chunk
9641                  */
9642                 if (full) {
9643                         if (debug)
9644                                 btrfs_warn(fs_info,
9645                                            "no space to alloc new chunk for block group %llu",
9646                                            block_group->key.objectid);
9647                         goto out;
9648                 }
9649
9650                 index = get_block_group_index(block_group);
9651         }
9652
9653         if (index == BTRFS_RAID_RAID10) {
9654                 dev_min = 4;
9655                 /* Divide by 2 */
9656                 min_free >>= 1;
9657         } else if (index == BTRFS_RAID_RAID1) {
9658                 dev_min = 2;
9659         } else if (index == BTRFS_RAID_DUP) {
9660                 /* Multiply by 2 */
9661                 min_free <<= 1;
9662         } else if (index == BTRFS_RAID_RAID0) {
9663                 dev_min = fs_devices->rw_devices;
9664                 min_free = div64_u64(min_free, dev_min);
9665         }
9666
9667         /* We need to do this so that we can look at pending chunks */
9668         trans = btrfs_join_transaction(root);
9669         if (IS_ERR(trans)) {
9670                 ret = PTR_ERR(trans);
9671                 goto out;
9672         }
9673
9674         mutex_lock(&fs_info->chunk_mutex);
9675         list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
9676                 u64 dev_offset;
9677
9678                 /*
9679                  * check to make sure we can actually find a chunk with enough
9680                  * space to fit our block group in.
9681                  */
9682                 if (device->total_bytes > device->bytes_used + min_free &&
9683                     !device->is_tgtdev_for_dev_replace) {
9684                         ret = find_free_dev_extent(trans, device, min_free,
9685                                                    &dev_offset, NULL);
9686                         if (!ret)
9687                                 dev_nr++;
9688
9689                         if (dev_nr >= dev_min)
9690                                 break;
9691
9692                         ret = -1;
9693                 }
9694         }
9695         if (debug && ret == -1)
9696                 btrfs_warn(fs_info,
9697                            "no space to allocate a new chunk for block group %llu",
9698                            block_group->key.objectid);
9699         mutex_unlock(&fs_info->chunk_mutex);
9700         btrfs_end_transaction(trans);
9701 out:
9702         btrfs_put_block_group(block_group);
9703         return ret;
9704 }
9705
9706 static int find_first_block_group(struct btrfs_fs_info *fs_info,
9707                                   struct btrfs_path *path,
9708                                   struct btrfs_key *key)
9709 {
9710         struct btrfs_root *root = fs_info->extent_root;
9711         int ret = 0;
9712         struct btrfs_key found_key;
9713         struct extent_buffer *leaf;
9714         int slot;
9715
9716         ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
9717         if (ret < 0)
9718                 goto out;
9719
9720         while (1) {
9721                 slot = path->slots[0];
9722                 leaf = path->nodes[0];
9723                 if (slot >= btrfs_header_nritems(leaf)) {
9724                         ret = btrfs_next_leaf(root, path);
9725                         if (ret == 0)
9726                                 continue;
9727                         if (ret < 0)
9728                                 goto out;
9729                         break;
9730                 }
9731                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
9732
9733                 if (found_key.objectid >= key->objectid &&
9734                     found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
9735                         struct extent_map_tree *em_tree;
9736                         struct extent_map *em;
9737
9738                         em_tree = &root->fs_info->mapping_tree.map_tree;
9739                         read_lock(&em_tree->lock);
9740                         em = lookup_extent_mapping(em_tree, found_key.objectid,
9741                                                    found_key.offset);
9742                         read_unlock(&em_tree->lock);
9743                         if (!em) {
9744                                 btrfs_err(fs_info,
9745                         "logical %llu len %llu found bg but no related chunk",
9746                                           found_key.objectid, found_key.offset);
9747                                 ret = -ENOENT;
9748                         } else {
9749                                 ret = 0;
9750                         }
9751                         free_extent_map(em);
9752                         goto out;
9753                 }
9754                 path->slots[0]++;
9755         }
9756 out:
9757         return ret;
9758 }
9759
9760 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
9761 {
9762         struct btrfs_block_group_cache *block_group;
9763         u64 last = 0;
9764
9765         while (1) {
9766                 struct inode *inode;
9767
9768                 block_group = btrfs_lookup_first_block_group(info, last);
9769                 while (block_group) {
9770                         spin_lock(&block_group->lock);
9771                         if (block_group->iref)
9772                                 break;
9773                         spin_unlock(&block_group->lock);
9774                         block_group = next_block_group(info, block_group);
9775                 }
9776                 if (!block_group) {
9777                         if (last == 0)
9778                                 break;
9779                         last = 0;
9780                         continue;
9781                 }
9782
9783                 inode = block_group->inode;
9784                 block_group->iref = 0;
9785                 block_group->inode = NULL;
9786                 spin_unlock(&block_group->lock);
9787                 ASSERT(block_group->io_ctl.inode == NULL);
9788                 iput(inode);
9789                 last = block_group->key.objectid + block_group->key.offset;
9790                 btrfs_put_block_group(block_group);
9791         }
9792 }
9793
9794 /*
9795  * Must be called only after stopping all workers, since we could have block
9796  * group caching kthreads running, and therefore they could race with us if we
9797  * freed the block groups before stopping them.
9798  */
9799 int btrfs_free_block_groups(struct btrfs_fs_info *info)
9800 {
9801         struct btrfs_block_group_cache *block_group;
9802         struct btrfs_space_info *space_info;
9803         struct btrfs_caching_control *caching_ctl;
9804         struct rb_node *n;
9805
9806         down_write(&info->commit_root_sem);
9807         while (!list_empty(&info->caching_block_groups)) {
9808                 caching_ctl = list_entry(info->caching_block_groups.next,
9809                                          struct btrfs_caching_control, list);
9810                 list_del(&caching_ctl->list);
9811                 put_caching_control(caching_ctl);
9812         }
9813         up_write(&info->commit_root_sem);
9814
9815         spin_lock(&info->unused_bgs_lock);
9816         while (!list_empty(&info->unused_bgs)) {
9817                 block_group = list_first_entry(&info->unused_bgs,
9818                                                struct btrfs_block_group_cache,
9819                                                bg_list);
9820                 list_del_init(&block_group->bg_list);
9821                 btrfs_put_block_group(block_group);
9822         }
9823         spin_unlock(&info->unused_bgs_lock);
9824
9825         spin_lock(&info->block_group_cache_lock);
9826         while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
9827                 block_group = rb_entry(n, struct btrfs_block_group_cache,
9828                                        cache_node);
9829                 rb_erase(&block_group->cache_node,
9830                          &info->block_group_cache_tree);
9831                 RB_CLEAR_NODE(&block_group->cache_node);
9832                 spin_unlock(&info->block_group_cache_lock);
9833
9834                 down_write(&block_group->space_info->groups_sem);
9835                 list_del(&block_group->list);
9836                 up_write(&block_group->space_info->groups_sem);
9837
9838                 /*
9839                  * We haven't cached this block group, which means we could
9840                  * possibly have excluded extents on this block group.
9841                  */
9842                 if (block_group->cached == BTRFS_CACHE_NO ||
9843                     block_group->cached == BTRFS_CACHE_ERROR)
9844                         free_excluded_extents(info, block_group);
9845
9846                 btrfs_remove_free_space_cache(block_group);
9847                 ASSERT(block_group->cached != BTRFS_CACHE_STARTED);
9848                 ASSERT(list_empty(&block_group->dirty_list));
9849                 ASSERT(list_empty(&block_group->io_list));
9850                 ASSERT(list_empty(&block_group->bg_list));
9851                 ASSERT(atomic_read(&block_group->count) == 1);
9852                 btrfs_put_block_group(block_group);
9853
9854                 spin_lock(&info->block_group_cache_lock);
9855         }
9856         spin_unlock(&info->block_group_cache_lock);
9857
9858         /* now that all the block groups are freed, go through and
9859          * free all the space_info structs.  This is only called during
9860          * the final stages of unmount, and so we know nobody is
9861          * using them.  We call synchronize_rcu() once before we start,
9862          * just to be on the safe side.
9863          */
9864         synchronize_rcu();
9865
9866         release_global_block_rsv(info);
9867
9868         while (!list_empty(&info->space_info)) {
9869                 int i;
9870
9871                 space_info = list_entry(info->space_info.next,
9872                                         struct btrfs_space_info,
9873                                         list);
9874
9875                 /*
9876                  * Do not hide this behind enospc_debug, this is actually
9877                  * important and indicates a real bug if this happens.
9878                  */
9879                 if (WARN_ON(space_info->bytes_pinned > 0 ||
9880                             space_info->bytes_reserved > 0 ||
9881                             space_info->bytes_may_use > 0))
9882                         dump_space_info(info, space_info, 0, 0);
9883                 list_del(&space_info->list);
9884                 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
9885                         struct kobject *kobj;
9886                         kobj = space_info->block_group_kobjs[i];
9887                         space_info->block_group_kobjs[i] = NULL;
9888                         if (kobj) {
9889                                 kobject_del(kobj);
9890                                 kobject_put(kobj);
9891                         }
9892                 }
9893                 kobject_del(&space_info->kobj);
9894                 kobject_put(&space_info->kobj);
9895         }
9896         return 0;
9897 }
9898
9899 static void __link_block_group(struct btrfs_space_info *space_info,
9900                                struct btrfs_block_group_cache *cache)
9901 {
9902         int index = get_block_group_index(cache);
9903         bool first = false;
9904
9905         down_write(&space_info->groups_sem);
9906         if (list_empty(&space_info->block_groups[index]))
9907                 first = true;
9908         list_add_tail(&cache->list, &space_info->block_groups[index]);
9909         up_write(&space_info->groups_sem);
9910
9911         if (first) {
9912                 struct raid_kobject *rkobj;
9913                 int ret;
9914
9915                 rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS);
9916                 if (!rkobj)
9917                         goto out_err;
9918                 rkobj->raid_type = index;
9919                 kobject_init(&rkobj->kobj, &btrfs_raid_ktype);
9920                 ret = kobject_add(&rkobj->kobj, &space_info->kobj,
9921                                   "%s", get_raid_name(index));
9922                 if (ret) {
9923                         kobject_put(&rkobj->kobj);
9924                         goto out_err;
9925                 }
9926                 space_info->block_group_kobjs[index] = &rkobj->kobj;
9927         }
9928
9929         return;
9930 out_err:
9931         btrfs_warn(cache->fs_info,
9932                    "failed to add kobject for block cache, ignoring");
9933 }
9934
9935 static struct btrfs_block_group_cache *
9936 btrfs_create_block_group_cache(struct btrfs_fs_info *fs_info,
9937                                u64 start, u64 size)
9938 {
9939         struct btrfs_block_group_cache *cache;
9940
9941         cache = kzalloc(sizeof(*cache), GFP_NOFS);
9942         if (!cache)
9943                 return NULL;
9944
9945         cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
9946                                         GFP_NOFS);
9947         if (!cache->free_space_ctl) {
9948                 kfree(cache);
9949                 return NULL;
9950         }
9951
9952         cache->key.objectid = start;
9953         cache->key.offset = size;
9954         cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9955
9956         cache->sectorsize = fs_info->sectorsize;
9957         cache->fs_info = fs_info;
9958         cache->full_stripe_len = btrfs_full_stripe_len(fs_info,
9959                                                        &fs_info->mapping_tree,
9960                                                        start);
9961         set_free_space_tree_thresholds(cache);
9962
9963         atomic_set(&cache->count, 1);
9964         spin_lock_init(&cache->lock);
9965         init_rwsem(&cache->data_rwsem);
9966         INIT_LIST_HEAD(&cache->list);
9967         INIT_LIST_HEAD(&cache->cluster_list);
9968         INIT_LIST_HEAD(&cache->bg_list);
9969         INIT_LIST_HEAD(&cache->ro_list);
9970         INIT_LIST_HEAD(&cache->dirty_list);
9971         INIT_LIST_HEAD(&cache->io_list);
9972         btrfs_init_free_space_ctl(cache);
9973         atomic_set(&cache->trimming, 0);
9974         mutex_init(&cache->free_space_lock);
9975         btrfs_init_full_stripe_locks_tree(&cache->full_stripe_locks_root);
9976
9977         return cache;
9978 }
9979
9980 int btrfs_read_block_groups(struct btrfs_fs_info *info)
9981 {
9982         struct btrfs_path *path;
9983         int ret;
9984         struct btrfs_block_group_cache *cache;
9985         struct btrfs_space_info *space_info;
9986         struct btrfs_key key;
9987         struct btrfs_key found_key;
9988         struct extent_buffer *leaf;
9989         int need_clear = 0;
9990         u64 cache_gen;
9991         u64 feature;
9992         int mixed;
9993
9994         feature = btrfs_super_incompat_flags(info->super_copy);
9995         mixed = !!(feature & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS);
9996
9997         key.objectid = 0;
9998         key.offset = 0;
9999         key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
10000         path = btrfs_alloc_path();
10001         if (!path)
10002                 return -ENOMEM;
10003         path->reada = READA_FORWARD;
10004
10005         cache_gen = btrfs_super_cache_generation(info->super_copy);
10006         if (btrfs_test_opt(info, SPACE_CACHE) &&
10007             btrfs_super_generation(info->super_copy) != cache_gen)
10008                 need_clear = 1;
10009         if (btrfs_test_opt(info, CLEAR_CACHE))
10010                 need_clear = 1;
10011
10012         while (1) {
10013                 ret = find_first_block_group(info, path, &key);
10014                 if (ret > 0)
10015                         break;
10016                 if (ret != 0)
10017                         goto error;
10018
10019                 leaf = path->nodes[0];
10020                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
10021
10022                 cache = btrfs_create_block_group_cache(info, found_key.objectid,
10023                                                        found_key.offset);
10024                 if (!cache) {
10025                         ret = -ENOMEM;
10026                         goto error;
10027                 }
10028
10029                 if (need_clear) {
10030                         /*
10031                          * When we mount with old space cache, we need to
10032                          * set BTRFS_DC_CLEAR and set dirty flag.
10033                          *
10034                          * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
10035                          *    truncate the old free space cache inode and
10036                          *    setup a new one.
10037                          * b) Setting 'dirty flag' makes sure that we flush
10038                          *    the new space cache info onto disk.
10039                          */
10040                         if (btrfs_test_opt(info, SPACE_CACHE))
10041                                 cache->disk_cache_state = BTRFS_DC_CLEAR;
10042                 }
10043
10044                 read_extent_buffer(leaf, &cache->item,
10045                                    btrfs_item_ptr_offset(leaf, path->slots[0]),
10046                                    sizeof(cache->item));
10047                 cache->flags = btrfs_block_group_flags(&cache->item);
10048                 if (!mixed &&
10049                     ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) &&
10050                     (cache->flags & BTRFS_BLOCK_GROUP_DATA))) {
10051                         btrfs_err(info,
10052 "bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups",
10053                                   cache->key.objectid);
10054                         ret = -EINVAL;
10055                         goto error;
10056                 }
10057
10058                 key.objectid = found_key.objectid + found_key.offset;
10059                 btrfs_release_path(path);
10060
10061                 /*
10062                  * We need to exclude the super stripes now so that the space
10063                  * info has super bytes accounted for, otherwise we'll think
10064                  * we have more space than we actually do.
10065                  */
10066                 ret = exclude_super_stripes(info, cache);
10067                 if (ret) {
10068                         /*
10069                          * We may have excluded something, so call this just in
10070                          * case.
10071                          */
10072                         free_excluded_extents(info, cache);
10073                         btrfs_put_block_group(cache);
10074                         goto error;
10075                 }
10076
10077                 /*
10078                  * check for two cases, either we are full, and therefore
10079                  * don't need to bother with the caching work since we won't
10080                  * find any space, or we are empty, and we can just add all
10081                  * the space in and be done with it.  This saves us _alot_ of
10082                  * time, particularly in the full case.
10083                  */
10084                 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
10085                         cache->last_byte_to_unpin = (u64)-1;
10086                         cache->cached = BTRFS_CACHE_FINISHED;
10087                         free_excluded_extents(info, cache);
10088                 } else if (btrfs_block_group_used(&cache->item) == 0) {
10089                         cache->last_byte_to_unpin = (u64)-1;
10090                         cache->cached = BTRFS_CACHE_FINISHED;
10091                         add_new_free_space(cache, info,
10092                                            found_key.objectid,
10093                                            found_key.objectid +
10094                                            found_key.offset);
10095                         free_excluded_extents(info, cache);
10096                 }
10097
10098                 ret = btrfs_add_block_group_cache(info, cache);
10099                 if (ret) {
10100                         btrfs_remove_free_space_cache(cache);
10101                         btrfs_put_block_group(cache);
10102                         goto error;
10103                 }
10104
10105                 trace_btrfs_add_block_group(info, cache, 0);
10106                 update_space_info(info, cache->flags, found_key.offset,
10107                                   btrfs_block_group_used(&cache->item),
10108                                   cache->bytes_super, &space_info);
10109
10110                 cache->space_info = space_info;
10111
10112                 __link_block_group(space_info, cache);
10113
10114                 set_avail_alloc_bits(info, cache->flags);
10115                 if (btrfs_chunk_readonly(info, cache->key.objectid)) {
10116                         inc_block_group_ro(cache, 1);
10117                 } else if (btrfs_block_group_used(&cache->item) == 0) {
10118                         spin_lock(&info->unused_bgs_lock);
10119                         /* Should always be true but just in case. */
10120                         if (list_empty(&cache->bg_list)) {
10121                                 btrfs_get_block_group(cache);
10122                                 list_add_tail(&cache->bg_list,
10123                                               &info->unused_bgs);
10124                         }
10125                         spin_unlock(&info->unused_bgs_lock);
10126                 }
10127         }
10128
10129         list_for_each_entry_rcu(space_info, &info->space_info, list) {
10130                 if (!(get_alloc_profile(info, space_info->flags) &
10131                       (BTRFS_BLOCK_GROUP_RAID10 |
10132                        BTRFS_BLOCK_GROUP_RAID1 |
10133                        BTRFS_BLOCK_GROUP_RAID5 |
10134                        BTRFS_BLOCK_GROUP_RAID6 |
10135                        BTRFS_BLOCK_GROUP_DUP)))
10136                         continue;
10137                 /*
10138                  * avoid allocating from un-mirrored block group if there are
10139                  * mirrored block groups.
10140                  */
10141                 list_for_each_entry(cache,
10142                                 &space_info->block_groups[BTRFS_RAID_RAID0],
10143                                 list)
10144                         inc_block_group_ro(cache, 1);
10145                 list_for_each_entry(cache,
10146                                 &space_info->block_groups[BTRFS_RAID_SINGLE],
10147                                 list)
10148                         inc_block_group_ro(cache, 1);
10149         }
10150
10151         init_global_block_rsv(info);
10152         ret = 0;
10153 error:
10154         btrfs_free_path(path);
10155         return ret;
10156 }
10157
10158 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
10159                                        struct btrfs_fs_info *fs_info)
10160 {
10161         struct btrfs_block_group_cache *block_group, *tmp;
10162         struct btrfs_root *extent_root = fs_info->extent_root;
10163         struct btrfs_block_group_item item;
10164         struct btrfs_key key;
10165         int ret = 0;
10166         bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
10167
10168         trans->can_flush_pending_bgs = false;
10169         list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
10170                 if (ret)
10171                         goto next;
10172
10173                 spin_lock(&block_group->lock);
10174                 memcpy(&item, &block_group->item, sizeof(item));
10175                 memcpy(&key, &block_group->key, sizeof(key));
10176                 spin_unlock(&block_group->lock);
10177
10178                 ret = btrfs_insert_item(trans, extent_root, &key, &item,
10179                                         sizeof(item));
10180                 if (ret)
10181                         btrfs_abort_transaction(trans, ret);
10182                 ret = btrfs_finish_chunk_alloc(trans, fs_info, key.objectid,
10183                                                key.offset);
10184                 if (ret)
10185                         btrfs_abort_transaction(trans, ret);
10186                 add_block_group_free_space(trans, fs_info, block_group);
10187                 /* already aborted the transaction if it failed. */
10188 next:
10189                 list_del_init(&block_group->bg_list);
10190         }
10191         trans->can_flush_pending_bgs = can_flush_pending_bgs;
10192 }
10193
10194 int btrfs_make_block_group(struct btrfs_trans_handle *trans,
10195                            struct btrfs_fs_info *fs_info, u64 bytes_used,
10196                            u64 type, u64 chunk_objectid, u64 chunk_offset,
10197                            u64 size)
10198 {
10199         struct btrfs_block_group_cache *cache;
10200         int ret;
10201
10202         btrfs_set_log_full_commit(fs_info, trans);
10203
10204         cache = btrfs_create_block_group_cache(fs_info, chunk_offset, size);
10205         if (!cache)
10206                 return -ENOMEM;
10207
10208         btrfs_set_block_group_used(&cache->item, bytes_used);
10209         btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
10210         btrfs_set_block_group_flags(&cache->item, type);
10211
10212         cache->flags = type;
10213         cache->last_byte_to_unpin = (u64)-1;
10214         cache->cached = BTRFS_CACHE_FINISHED;
10215         cache->needs_free_space = 1;
10216         ret = exclude_super_stripes(fs_info, cache);
10217         if (ret) {
10218                 /*
10219                  * We may have excluded something, so call this just in
10220                  * case.
10221                  */
10222                 free_excluded_extents(fs_info, cache);
10223                 btrfs_put_block_group(cache);
10224                 return ret;
10225         }
10226
10227         add_new_free_space(cache, fs_info, chunk_offset, chunk_offset + size);
10228
10229         free_excluded_extents(fs_info, cache);
10230
10231 #ifdef CONFIG_BTRFS_DEBUG
10232         if (btrfs_should_fragment_free_space(cache)) {
10233                 u64 new_bytes_used = size - bytes_used;
10234
10235                 bytes_used += new_bytes_used >> 1;
10236                 fragment_free_space(cache);
10237         }
10238 #endif
10239         /*
10240          * Ensure the corresponding space_info object is created and
10241          * assigned to our block group. We want our bg to be added to the rbtree
10242          * with its ->space_info set.
10243          */
10244         cache->space_info = __find_space_info(fs_info, cache->flags);
10245         if (!cache->space_info) {
10246                 ret = create_space_info(fs_info, cache->flags,
10247                                        &cache->space_info);
10248                 if (ret) {
10249                         btrfs_remove_free_space_cache(cache);
10250                         btrfs_put_block_group(cache);
10251                         return ret;
10252                 }
10253         }
10254
10255         ret = btrfs_add_block_group_cache(fs_info, cache);
10256         if (ret) {
10257                 btrfs_remove_free_space_cache(cache);
10258                 btrfs_put_block_group(cache);
10259                 return ret;
10260         }
10261
10262         /*
10263          * Now that our block group has its ->space_info set and is inserted in
10264          * the rbtree, update the space info's counters.
10265          */
10266         trace_btrfs_add_block_group(fs_info, cache, 1);
10267         update_space_info(fs_info, cache->flags, size, bytes_used,
10268                                 cache->bytes_super, &cache->space_info);
10269         update_global_block_rsv(fs_info);
10270
10271         __link_block_group(cache->space_info, cache);
10272
10273         list_add_tail(&cache->bg_list, &trans->new_bgs);
10274
10275         set_avail_alloc_bits(fs_info, type);
10276         return 0;
10277 }
10278
10279 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
10280 {
10281         u64 extra_flags = chunk_to_extended(flags) &
10282                                 BTRFS_EXTENDED_PROFILE_MASK;
10283
10284         write_seqlock(&fs_info->profiles_lock);
10285         if (flags & BTRFS_BLOCK_GROUP_DATA)
10286                 fs_info->avail_data_alloc_bits &= ~extra_flags;
10287         if (flags & BTRFS_BLOCK_GROUP_METADATA)
10288                 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
10289         if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
10290                 fs_info->avail_system_alloc_bits &= ~extra_flags;
10291         write_sequnlock(&fs_info->profiles_lock);
10292 }
10293
10294 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
10295                              struct btrfs_fs_info *fs_info, u64 group_start,
10296                              struct extent_map *em)
10297 {
10298         struct btrfs_root *root = fs_info->extent_root;
10299         struct btrfs_path *path;
10300         struct btrfs_block_group_cache *block_group;
10301         struct btrfs_free_cluster *cluster;
10302         struct btrfs_root *tree_root = fs_info->tree_root;
10303         struct btrfs_key key;
10304         struct inode *inode;
10305         struct kobject *kobj = NULL;
10306         int ret;
10307         int index;
10308         int factor;
10309         struct btrfs_caching_control *caching_ctl = NULL;
10310         bool remove_em;
10311
10312         block_group = btrfs_lookup_block_group(fs_info, group_start);
10313         BUG_ON(!block_group);
10314         BUG_ON(!block_group->ro);
10315
10316         /*
10317          * Free the reserved super bytes from this block group before
10318          * remove it.
10319          */
10320         free_excluded_extents(fs_info, block_group);
10321
10322         memcpy(&key, &block_group->key, sizeof(key));
10323         index = get_block_group_index(block_group);
10324         if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
10325                                   BTRFS_BLOCK_GROUP_RAID1 |
10326                                   BTRFS_BLOCK_GROUP_RAID10))
10327                 factor = 2;
10328         else
10329                 factor = 1;
10330
10331         /* make sure this block group isn't part of an allocation cluster */
10332         cluster = &fs_info->data_alloc_cluster;
10333         spin_lock(&cluster->refill_lock);
10334         btrfs_return_cluster_to_free_space(block_group, cluster);
10335         spin_unlock(&cluster->refill_lock);
10336
10337         /*
10338          * make sure this block group isn't part of a metadata
10339          * allocation cluster
10340          */
10341         cluster = &fs_info->meta_alloc_cluster;
10342         spin_lock(&cluster->refill_lock);
10343         btrfs_return_cluster_to_free_space(block_group, cluster);
10344         spin_unlock(&cluster->refill_lock);
10345
10346         path = btrfs_alloc_path();
10347         if (!path) {
10348                 ret = -ENOMEM;
10349                 goto out;
10350         }
10351
10352         /*
10353          * get the inode first so any iput calls done for the io_list
10354          * aren't the final iput (no unlinks allowed now)
10355          */
10356         inode = lookup_free_space_inode(fs_info, block_group, path);
10357
10358         mutex_lock(&trans->transaction->cache_write_mutex);
10359         /*
10360          * make sure our free spache cache IO is done before remove the
10361          * free space inode
10362          */
10363         spin_lock(&trans->transaction->dirty_bgs_lock);
10364         if (!list_empty(&block_group->io_list)) {
10365                 list_del_init(&block_group->io_list);
10366
10367                 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
10368
10369                 spin_unlock(&trans->transaction->dirty_bgs_lock);
10370                 btrfs_wait_cache_io(trans, block_group, path);
10371                 btrfs_put_block_group(block_group);
10372                 spin_lock(&trans->transaction->dirty_bgs_lock);
10373         }
10374
10375         if (!list_empty(&block_group->dirty_list)) {
10376                 list_del_init(&block_group->dirty_list);
10377                 btrfs_put_block_group(block_group);
10378         }
10379         spin_unlock(&trans->transaction->dirty_bgs_lock);
10380         mutex_unlock(&trans->transaction->cache_write_mutex);
10381
10382         if (!IS_ERR(inode)) {
10383                 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
10384                 if (ret) {
10385                         btrfs_add_delayed_iput(inode);
10386                         goto out;
10387                 }
10388                 clear_nlink(inode);
10389                 /* One for the block groups ref */
10390                 spin_lock(&block_group->lock);
10391                 if (block_group->iref) {
10392                         block_group->iref = 0;
10393                         block_group->inode = NULL;
10394                         spin_unlock(&block_group->lock);
10395                         iput(inode);
10396                 } else {
10397                         spin_unlock(&block_group->lock);
10398                 }
10399                 /* One for our lookup ref */
10400                 btrfs_add_delayed_iput(inode);
10401         }
10402
10403         key.objectid = BTRFS_FREE_SPACE_OBJECTID;
10404         key.offset = block_group->key.objectid;
10405         key.type = 0;
10406
10407         ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
10408         if (ret < 0)
10409                 goto out;
10410         if (ret > 0)
10411                 btrfs_release_path(path);
10412         if (ret == 0) {
10413                 ret = btrfs_del_item(trans, tree_root, path);
10414                 if (ret)
10415                         goto out;
10416                 btrfs_release_path(path);
10417         }
10418
10419         spin_lock(&fs_info->block_group_cache_lock);
10420         rb_erase(&block_group->cache_node,
10421                  &fs_info->block_group_cache_tree);
10422         RB_CLEAR_NODE(&block_group->cache_node);
10423
10424         if (fs_info->first_logical_byte == block_group->key.objectid)
10425                 fs_info->first_logical_byte = (u64)-1;
10426         spin_unlock(&fs_info->block_group_cache_lock);
10427
10428         down_write(&block_group->space_info->groups_sem);
10429         /*
10430          * we must use list_del_init so people can check to see if they
10431          * are still on the list after taking the semaphore
10432          */
10433         list_del_init(&block_group->list);
10434         if (list_empty(&block_group->space_info->block_groups[index])) {
10435                 kobj = block_group->space_info->block_group_kobjs[index];
10436                 block_group->space_info->block_group_kobjs[index] = NULL;
10437                 clear_avail_alloc_bits(fs_info, block_group->flags);
10438         }
10439         up_write(&block_group->space_info->groups_sem);
10440         if (kobj) {
10441                 kobject_del(kobj);
10442                 kobject_put(kobj);
10443         }
10444
10445         if (block_group->has_caching_ctl)
10446                 caching_ctl = get_caching_control(block_group);
10447         if (block_group->cached == BTRFS_CACHE_STARTED)
10448                 wait_block_group_cache_done(block_group);
10449         if (block_group->has_caching_ctl) {
10450                 down_write(&fs_info->commit_root_sem);
10451                 if (!caching_ctl) {
10452                         struct btrfs_caching_control *ctl;
10453
10454                         list_for_each_entry(ctl,
10455                                     &fs_info->caching_block_groups, list)
10456                                 if (ctl->block_group == block_group) {
10457                                         caching_ctl = ctl;
10458                                         refcount_inc(&caching_ctl->count);
10459                                         break;
10460                                 }
10461                 }
10462                 if (caching_ctl)
10463                         list_del_init(&caching_ctl->list);
10464                 up_write(&fs_info->commit_root_sem);
10465                 if (caching_ctl) {
10466                         /* Once for the caching bgs list and once for us. */
10467                         put_caching_control(caching_ctl);
10468                         put_caching_control(caching_ctl);
10469                 }
10470         }
10471
10472         spin_lock(&trans->transaction->dirty_bgs_lock);
10473         if (!list_empty(&block_group->dirty_list)) {
10474                 WARN_ON(1);
10475         }
10476         if (!list_empty(&block_group->io_list)) {
10477                 WARN_ON(1);
10478         }
10479         spin_unlock(&trans->transaction->dirty_bgs_lock);
10480         btrfs_remove_free_space_cache(block_group);
10481
10482         spin_lock(&block_group->space_info->lock);
10483         list_del_init(&block_group->ro_list);
10484
10485         if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
10486                 WARN_ON(block_group->space_info->total_bytes
10487                         < block_group->key.offset);
10488                 WARN_ON(block_group->space_info->bytes_readonly
10489                         < block_group->key.offset);
10490                 WARN_ON(block_group->space_info->disk_total
10491                         < block_group->key.offset * factor);
10492         }
10493         block_group->space_info->total_bytes -= block_group->key.offset;
10494         block_group->space_info->bytes_readonly -= block_group->key.offset;
10495         block_group->space_info->disk_total -= block_group->key.offset * factor;
10496
10497         spin_unlock(&block_group->space_info->lock);
10498
10499         memcpy(&key, &block_group->key, sizeof(key));
10500
10501         mutex_lock(&fs_info->chunk_mutex);
10502         if (!list_empty(&em->list)) {
10503                 /* We're in the transaction->pending_chunks list. */
10504                 free_extent_map(em);
10505         }
10506         spin_lock(&block_group->lock);
10507         block_group->removed = 1;
10508         /*
10509          * At this point trimming can't start on this block group, because we
10510          * removed the block group from the tree fs_info->block_group_cache_tree
10511          * so no one can't find it anymore and even if someone already got this
10512          * block group before we removed it from the rbtree, they have already
10513          * incremented block_group->trimming - if they didn't, they won't find
10514          * any free space entries because we already removed them all when we
10515          * called btrfs_remove_free_space_cache().
10516          *
10517          * And we must not remove the extent map from the fs_info->mapping_tree
10518          * to prevent the same logical address range and physical device space
10519          * ranges from being reused for a new block group. This is because our
10520          * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
10521          * completely transactionless, so while it is trimming a range the
10522          * currently running transaction might finish and a new one start,
10523          * allowing for new block groups to be created that can reuse the same
10524          * physical device locations unless we take this special care.
10525          *
10526          * There may also be an implicit trim operation if the file system
10527          * is mounted with -odiscard. The same protections must remain
10528          * in place until the extents have been discarded completely when
10529          * the transaction commit has completed.
10530          */
10531         remove_em = (atomic_read(&block_group->trimming) == 0);
10532         /*
10533          * Make sure a trimmer task always sees the em in the pinned_chunks list
10534          * if it sees block_group->removed == 1 (needs to lock block_group->lock
10535          * before checking block_group->removed).
10536          */
10537         if (!remove_em) {
10538                 /*
10539                  * Our em might be in trans->transaction->pending_chunks which
10540                  * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks),
10541                  * and so is the fs_info->pinned_chunks list.
10542                  *
10543                  * So at this point we must be holding the chunk_mutex to avoid
10544                  * any races with chunk allocation (more specifically at
10545                  * volumes.c:contains_pending_extent()), to ensure it always
10546                  * sees the em, either in the pending_chunks list or in the
10547                  * pinned_chunks list.
10548                  */
10549                 list_move_tail(&em->list, &fs_info->pinned_chunks);
10550         }
10551         spin_unlock(&block_group->lock);
10552
10553         if (remove_em) {
10554                 struct extent_map_tree *em_tree;
10555
10556                 em_tree = &fs_info->mapping_tree.map_tree;
10557                 write_lock(&em_tree->lock);
10558                 /*
10559                  * The em might be in the pending_chunks list, so make sure the
10560                  * chunk mutex is locked, since remove_extent_mapping() will
10561                  * delete us from that list.
10562                  */
10563                 remove_extent_mapping(em_tree, em);
10564                 write_unlock(&em_tree->lock);
10565                 /* once for the tree */
10566                 free_extent_map(em);
10567         }
10568
10569         mutex_unlock(&fs_info->chunk_mutex);
10570
10571         ret = remove_block_group_free_space(trans, fs_info, block_group);
10572         if (ret)
10573                 goto out;
10574
10575         btrfs_put_block_group(block_group);
10576         btrfs_put_block_group(block_group);
10577
10578         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
10579         if (ret > 0)
10580                 ret = -EIO;
10581         if (ret < 0)
10582                 goto out;
10583
10584         ret = btrfs_del_item(trans, root, path);
10585 out:
10586         btrfs_free_path(path);
10587         return ret;
10588 }
10589
10590 struct btrfs_trans_handle *
10591 btrfs_start_trans_remove_block_group(struct btrfs_fs_info *fs_info,
10592                                      const u64 chunk_offset)
10593 {
10594         struct extent_map_tree *em_tree = &fs_info->mapping_tree.map_tree;
10595         struct extent_map *em;
10596         struct map_lookup *map;
10597         unsigned int num_items;
10598
10599         read_lock(&em_tree->lock);
10600         em = lookup_extent_mapping(em_tree, chunk_offset, 1);
10601         read_unlock(&em_tree->lock);
10602         ASSERT(em && em->start == chunk_offset);
10603
10604         /*
10605          * We need to reserve 3 + N units from the metadata space info in order
10606          * to remove a block group (done at btrfs_remove_chunk() and at
10607          * btrfs_remove_block_group()), which are used for:
10608          *
10609          * 1 unit for adding the free space inode's orphan (located in the tree
10610          * of tree roots).
10611          * 1 unit for deleting the block group item (located in the extent
10612          * tree).
10613          * 1 unit for deleting the free space item (located in tree of tree
10614          * roots).
10615          * N units for deleting N device extent items corresponding to each
10616          * stripe (located in the device tree).
10617          *
10618          * In order to remove a block group we also need to reserve units in the
10619          * system space info in order to update the chunk tree (update one or
10620          * more device items and remove one chunk item), but this is done at
10621          * btrfs_remove_chunk() through a call to check_system_chunk().
10622          */
10623         map = em->map_lookup;
10624         num_items = 3 + map->num_stripes;
10625         free_extent_map(em);
10626
10627         return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root,
10628                                                            num_items, 1);
10629 }
10630
10631 /*
10632  * Process the unused_bgs list and remove any that don't have any allocated
10633  * space inside of them.
10634  */
10635 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
10636 {
10637         struct btrfs_block_group_cache *block_group;
10638         struct btrfs_space_info *space_info;
10639         struct btrfs_trans_handle *trans;
10640         int ret = 0;
10641
10642         if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
10643                 return;
10644
10645         spin_lock(&fs_info->unused_bgs_lock);
10646         while (!list_empty(&fs_info->unused_bgs)) {
10647                 u64 start, end;
10648                 int trimming;
10649
10650                 block_group = list_first_entry(&fs_info->unused_bgs,
10651                                                struct btrfs_block_group_cache,
10652                                                bg_list);
10653                 list_del_init(&block_group->bg_list);
10654
10655                 space_info = block_group->space_info;
10656
10657                 if (ret || btrfs_mixed_space_info(space_info)) {
10658                         btrfs_put_block_group(block_group);
10659                         continue;
10660                 }
10661                 spin_unlock(&fs_info->unused_bgs_lock);
10662
10663                 mutex_lock(&fs_info->delete_unused_bgs_mutex);
10664
10665                 /* Don't want to race with allocators so take the groups_sem */
10666                 down_write(&space_info->groups_sem);
10667                 spin_lock(&block_group->lock);
10668                 if (block_group->reserved ||
10669                     btrfs_block_group_used(&block_group->item) ||
10670                     block_group->ro ||
10671                     list_is_singular(&block_group->list)) {
10672                         /*
10673                          * We want to bail if we made new allocations or have
10674                          * outstanding allocations in this block group.  We do
10675                          * the ro check in case balance is currently acting on
10676                          * this block group.
10677                          */
10678                         spin_unlock(&block_group->lock);
10679                         up_write(&space_info->groups_sem);
10680                         goto next;
10681                 }
10682                 spin_unlock(&block_group->lock);
10683
10684                 /* We don't want to force the issue, only flip if it's ok. */
10685                 ret = inc_block_group_ro(block_group, 0);
10686                 up_write(&space_info->groups_sem);
10687                 if (ret < 0) {
10688                         ret = 0;
10689                         goto next;
10690                 }
10691
10692                 /*
10693                  * Want to do this before we do anything else so we can recover
10694                  * properly if we fail to join the transaction.
10695                  */
10696                 trans = btrfs_start_trans_remove_block_group(fs_info,
10697                                                      block_group->key.objectid);
10698                 if (IS_ERR(trans)) {
10699                         btrfs_dec_block_group_ro(block_group);
10700                         ret = PTR_ERR(trans);
10701                         goto next;
10702                 }
10703
10704                 /*
10705                  * We could have pending pinned extents for this block group,
10706                  * just delete them, we don't care about them anymore.
10707                  */
10708                 start = block_group->key.objectid;
10709                 end = start + block_group->key.offset - 1;
10710                 /*
10711                  * Hold the unused_bg_unpin_mutex lock to avoid racing with
10712                  * btrfs_finish_extent_commit(). If we are at transaction N,
10713                  * another task might be running finish_extent_commit() for the
10714                  * previous transaction N - 1, and have seen a range belonging
10715                  * to the block group in freed_extents[] before we were able to
10716                  * clear the whole block group range from freed_extents[]. This
10717                  * means that task can lookup for the block group after we
10718                  * unpinned it from freed_extents[] and removed it, leading to
10719                  * a BUG_ON() at btrfs_unpin_extent_range().
10720                  */
10721                 mutex_lock(&fs_info->unused_bg_unpin_mutex);
10722                 ret = clear_extent_bits(&fs_info->freed_extents[0], start, end,
10723                                   EXTENT_DIRTY);
10724                 if (ret) {
10725                         mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10726                         btrfs_dec_block_group_ro(block_group);
10727                         goto end_trans;
10728                 }
10729                 ret = clear_extent_bits(&fs_info->freed_extents[1], start, end,
10730                                   EXTENT_DIRTY);
10731                 if (ret) {
10732                         mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10733                         btrfs_dec_block_group_ro(block_group);
10734                         goto end_trans;
10735                 }
10736                 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10737
10738                 /* Reset pinned so btrfs_put_block_group doesn't complain */
10739                 spin_lock(&space_info->lock);
10740                 spin_lock(&block_group->lock);
10741
10742                 space_info->bytes_pinned -= block_group->pinned;
10743                 space_info->bytes_readonly += block_group->pinned;
10744                 percpu_counter_add(&space_info->total_bytes_pinned,
10745                                    -block_group->pinned);
10746                 block_group->pinned = 0;
10747
10748                 spin_unlock(&block_group->lock);
10749                 spin_unlock(&space_info->lock);
10750
10751                 /* DISCARD can flip during remount */
10752                 trimming = btrfs_test_opt(fs_info, DISCARD);
10753
10754                 /* Implicit trim during transaction commit. */
10755                 if (trimming)
10756                         btrfs_get_block_group_trimming(block_group);
10757
10758                 /*
10759                  * Btrfs_remove_chunk will abort the transaction if things go
10760                  * horribly wrong.
10761                  */
10762                 ret = btrfs_remove_chunk(trans, fs_info,
10763                                          block_group->key.objectid);
10764
10765                 if (ret) {
10766                         if (trimming)
10767                                 btrfs_put_block_group_trimming(block_group);
10768                         goto end_trans;
10769                 }
10770
10771                 /*
10772                  * If we're not mounted with -odiscard, we can just forget
10773                  * about this block group. Otherwise we'll need to wait
10774                  * until transaction commit to do the actual discard.
10775                  */
10776                 if (trimming) {
10777                         spin_lock(&fs_info->unused_bgs_lock);
10778                         /*
10779                          * A concurrent scrub might have added us to the list
10780                          * fs_info->unused_bgs, so use a list_move operation
10781                          * to add the block group to the deleted_bgs list.
10782                          */
10783                         list_move(&block_group->bg_list,
10784                                   &trans->transaction->deleted_bgs);
10785                         spin_unlock(&fs_info->unused_bgs_lock);
10786                         btrfs_get_block_group(block_group);
10787                 }
10788 end_trans:
10789                 btrfs_end_transaction(trans);
10790 next:
10791                 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
10792                 btrfs_put_block_group(block_group);
10793                 spin_lock(&fs_info->unused_bgs_lock);
10794         }
10795         spin_unlock(&fs_info->unused_bgs_lock);
10796 }
10797
10798 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
10799 {
10800         struct btrfs_space_info *space_info;
10801         struct btrfs_super_block *disk_super;
10802         u64 features;
10803         u64 flags;
10804         int mixed = 0;
10805         int ret;
10806
10807         disk_super = fs_info->super_copy;
10808         if (!btrfs_super_root(disk_super))
10809                 return -EINVAL;
10810
10811         features = btrfs_super_incompat_flags(disk_super);
10812         if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
10813                 mixed = 1;
10814
10815         flags = BTRFS_BLOCK_GROUP_SYSTEM;
10816         ret = create_space_info(fs_info, flags, &space_info);
10817         if (ret)
10818                 goto out;
10819
10820         if (mixed) {
10821                 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
10822                 ret = create_space_info(fs_info, flags, &space_info);
10823         } else {
10824                 flags = BTRFS_BLOCK_GROUP_METADATA;
10825                 ret = create_space_info(fs_info, flags, &space_info);
10826                 if (ret)
10827                         goto out;
10828
10829                 flags = BTRFS_BLOCK_GROUP_DATA;
10830                 ret = create_space_info(fs_info, flags, &space_info);
10831         }
10832 out:
10833         return ret;
10834 }
10835
10836 int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info,
10837                                    u64 start, u64 end)
10838 {
10839         return unpin_extent_range(fs_info, start, end, false);
10840 }
10841
10842 /*
10843  * It used to be that old block groups would be left around forever.
10844  * Iterating over them would be enough to trim unused space.  Since we
10845  * now automatically remove them, we also need to iterate over unallocated
10846  * space.
10847  *
10848  * We don't want a transaction for this since the discard may take a
10849  * substantial amount of time.  We don't require that a transaction be
10850  * running, but we do need to take a running transaction into account
10851  * to ensure that we're not discarding chunks that were released in
10852  * the current transaction.
10853  *
10854  * Holding the chunks lock will prevent other threads from allocating
10855  * or releasing chunks, but it won't prevent a running transaction
10856  * from committing and releasing the memory that the pending chunks
10857  * list head uses.  For that, we need to take a reference to the
10858  * transaction.
10859  */
10860 static int btrfs_trim_free_extents(struct btrfs_device *device,
10861                                    u64 minlen, u64 *trimmed)
10862 {
10863         u64 start = 0, len = 0;
10864         int ret;
10865
10866         *trimmed = 0;
10867
10868         /* Not writeable = nothing to do. */
10869         if (!device->writeable)
10870                 return 0;
10871
10872         /* No free space = nothing to do. */
10873         if (device->total_bytes <= device->bytes_used)
10874                 return 0;
10875
10876         ret = 0;
10877
10878         while (1) {
10879                 struct btrfs_fs_info *fs_info = device->fs_info;
10880                 struct btrfs_transaction *trans;
10881                 u64 bytes;
10882
10883                 ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
10884                 if (ret)
10885                         return ret;
10886
10887                 down_read(&fs_info->commit_root_sem);
10888
10889                 spin_lock(&fs_info->trans_lock);
10890                 trans = fs_info->running_transaction;
10891                 if (trans)
10892                         refcount_inc(&trans->use_count);
10893                 spin_unlock(&fs_info->trans_lock);
10894
10895                 ret = find_free_dev_extent_start(trans, device, minlen, start,
10896                                                  &start, &len);
10897                 if (trans)
10898                         btrfs_put_transaction(trans);
10899
10900                 if (ret) {
10901                         up_read(&fs_info->commit_root_sem);
10902                         mutex_unlock(&fs_info->chunk_mutex);
10903                         if (ret == -ENOSPC)
10904                                 ret = 0;
10905                         break;
10906                 }
10907
10908                 ret = btrfs_issue_discard(device->bdev, start, len, &bytes);
10909                 up_read(&fs_info->commit_root_sem);
10910                 mutex_unlock(&fs_info->chunk_mutex);
10911
10912                 if (ret)
10913                         break;
10914
10915                 start += len;
10916                 *trimmed += bytes;
10917
10918                 if (fatal_signal_pending(current)) {
10919                         ret = -ERESTARTSYS;
10920                         break;
10921                 }
10922
10923                 cond_resched();
10924         }
10925
10926         return ret;
10927 }
10928
10929 int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range)
10930 {
10931         struct btrfs_block_group_cache *cache = NULL;
10932         struct btrfs_device *device;
10933         struct list_head *devices;
10934         u64 group_trimmed;
10935         u64 start;
10936         u64 end;
10937         u64 trimmed = 0;
10938         u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
10939         int ret = 0;
10940
10941         /*
10942          * try to trim all FS space, our block group may start from non-zero.
10943          */
10944         if (range->len == total_bytes)
10945                 cache = btrfs_lookup_first_block_group(fs_info, range->start);
10946         else
10947                 cache = btrfs_lookup_block_group(fs_info, range->start);
10948
10949         while (cache) {
10950                 if (cache->key.objectid >= (range->start + range->len)) {
10951                         btrfs_put_block_group(cache);
10952                         break;
10953                 }
10954
10955                 start = max(range->start, cache->key.objectid);
10956                 end = min(range->start + range->len,
10957                                 cache->key.objectid + cache->key.offset);
10958
10959                 if (end - start >= range->minlen) {
10960                         if (!block_group_cache_done(cache)) {
10961                                 ret = cache_block_group(cache, 0);
10962                                 if (ret) {
10963                                         btrfs_put_block_group(cache);
10964                                         break;
10965                                 }
10966                                 ret = wait_block_group_cache_done(cache);
10967                                 if (ret) {
10968                                         btrfs_put_block_group(cache);
10969                                         break;
10970                                 }
10971                         }
10972                         ret = btrfs_trim_block_group(cache,
10973                                                      &group_trimmed,
10974                                                      start,
10975                                                      end,
10976                                                      range->minlen);
10977
10978                         trimmed += group_trimmed;
10979                         if (ret) {
10980                                 btrfs_put_block_group(cache);
10981                                 break;
10982                         }
10983                 }
10984
10985                 cache = next_block_group(fs_info, cache);
10986         }
10987
10988         mutex_lock(&fs_info->fs_devices->device_list_mutex);
10989         devices = &fs_info->fs_devices->alloc_list;
10990         list_for_each_entry(device, devices, dev_alloc_list) {
10991                 ret = btrfs_trim_free_extents(device, range->minlen,
10992                                               &group_trimmed);
10993                 if (ret)
10994                         break;
10995
10996                 trimmed += group_trimmed;
10997         }
10998         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
10999
11000         range->len = trimmed;
11001         return ret;
11002 }
11003
11004 /*
11005  * btrfs_{start,end}_write_no_snapshoting() are similar to
11006  * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
11007  * data into the page cache through nocow before the subvolume is snapshoted,
11008  * but flush the data into disk after the snapshot creation, or to prevent
11009  * operations while snapshoting is ongoing and that cause the snapshot to be
11010  * inconsistent (writes followed by expanding truncates for example).
11011  */
11012 void btrfs_end_write_no_snapshoting(struct btrfs_root *root)
11013 {
11014         percpu_counter_dec(&root->subv_writers->counter);
11015         /*
11016          * Make sure counter is updated before we wake up waiters.
11017          */
11018         smp_mb();
11019         if (waitqueue_active(&root->subv_writers->wait))
11020                 wake_up(&root->subv_writers->wait);
11021 }
11022
11023 int btrfs_start_write_no_snapshoting(struct btrfs_root *root)
11024 {
11025         if (atomic_read(&root->will_be_snapshoted))
11026                 return 0;
11027
11028         percpu_counter_inc(&root->subv_writers->counter);
11029         /*
11030          * Make sure counter is updated before we check for snapshot creation.
11031          */
11032         smp_mb();
11033         if (atomic_read(&root->will_be_snapshoted)) {
11034                 btrfs_end_write_no_snapshoting(root);
11035                 return 0;
11036         }
11037         return 1;
11038 }
11039
11040 static int wait_snapshoting_atomic_t(atomic_t *a)
11041 {
11042         schedule();
11043         return 0;
11044 }
11045
11046 void btrfs_wait_for_snapshot_creation(struct btrfs_root *root)
11047 {
11048         while (true) {
11049                 int ret;
11050
11051                 ret = btrfs_start_write_no_snapshoting(root);
11052                 if (ret)
11053                         break;
11054                 wait_on_atomic_t(&root->will_be_snapshoted,
11055                                  wait_snapshoting_atomic_t,
11056                                  TASK_UNINTERRUPTIBLE);
11057         }
11058 }