2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
18 #include <linux/sched.h>
19 #include <linux/pagemap.h>
20 #include <linux/writeback.h>
21 #include <linux/blkdev.h>
22 #include <linux/sort.h>
23 #include <linux/rcupdate.h>
24 #include <linux/kthread.h>
29 #include "print-tree.h"
30 #include "transaction.h"
33 #include "free-space-cache.h"
35 static int update_block_group(struct btrfs_trans_handle *trans,
36 struct btrfs_root *root,
37 u64 bytenr, u64 num_bytes, int alloc,
39 static int update_reserved_extents(struct btrfs_block_group_cache *cache,
40 u64 num_bytes, int reserve);
41 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
42 struct btrfs_root *root,
43 u64 bytenr, u64 num_bytes, u64 parent,
44 u64 root_objectid, u64 owner_objectid,
45 u64 owner_offset, int refs_to_drop,
46 struct btrfs_delayed_extent_op *extra_op);
47 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
48 struct extent_buffer *leaf,
49 struct btrfs_extent_item *ei);
50 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
51 struct btrfs_root *root,
52 u64 parent, u64 root_objectid,
53 u64 flags, u64 owner, u64 offset,
54 struct btrfs_key *ins, int ref_mod);
55 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
56 struct btrfs_root *root,
57 u64 parent, u64 root_objectid,
58 u64 flags, struct btrfs_disk_key *key,
59 int level, struct btrfs_key *ins);
60 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
61 struct btrfs_root *extent_root, u64 alloc_bytes,
62 u64 flags, int force);
63 static int pin_down_bytes(struct btrfs_trans_handle *trans,
64 struct btrfs_root *root,
65 struct btrfs_path *path,
66 u64 bytenr, u64 num_bytes,
67 int is_data, int reserved,
68 struct extent_buffer **must_clean);
69 static int find_next_key(struct btrfs_path *path, int level,
70 struct btrfs_key *key);
73 block_group_cache_done(struct btrfs_block_group_cache *cache)
76 return cache->cached == BTRFS_CACHE_FINISHED;
79 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
81 return (cache->flags & bits) == bits;
85 * this adds the block group to the fs_info rb tree for the block group
88 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
89 struct btrfs_block_group_cache *block_group)
92 struct rb_node *parent = NULL;
93 struct btrfs_block_group_cache *cache;
95 spin_lock(&info->block_group_cache_lock);
96 p = &info->block_group_cache_tree.rb_node;
100 cache = rb_entry(parent, struct btrfs_block_group_cache,
102 if (block_group->key.objectid < cache->key.objectid) {
104 } else if (block_group->key.objectid > cache->key.objectid) {
107 spin_unlock(&info->block_group_cache_lock);
112 rb_link_node(&block_group->cache_node, parent, p);
113 rb_insert_color(&block_group->cache_node,
114 &info->block_group_cache_tree);
115 spin_unlock(&info->block_group_cache_lock);
121 * This will return the block group at or after bytenr if contains is 0, else
122 * it will return the block group that contains the bytenr
124 static struct btrfs_block_group_cache *
125 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
128 struct btrfs_block_group_cache *cache, *ret = NULL;
132 spin_lock(&info->block_group_cache_lock);
133 n = info->block_group_cache_tree.rb_node;
136 cache = rb_entry(n, struct btrfs_block_group_cache,
138 end = cache->key.objectid + cache->key.offset - 1;
139 start = cache->key.objectid;
141 if (bytenr < start) {
142 if (!contains && (!ret || start < ret->key.objectid))
145 } else if (bytenr > start) {
146 if (contains && bytenr <= end) {
157 atomic_inc(&ret->count);
158 spin_unlock(&info->block_group_cache_lock);
163 static int add_excluded_extent(struct btrfs_root *root,
164 u64 start, u64 num_bytes)
166 u64 end = start + num_bytes - 1;
167 set_extent_bits(&root->fs_info->freed_extents[0],
168 start, end, EXTENT_UPTODATE, GFP_NOFS);
169 set_extent_bits(&root->fs_info->freed_extents[1],
170 start, end, EXTENT_UPTODATE, GFP_NOFS);
174 static void free_excluded_extents(struct btrfs_root *root,
175 struct btrfs_block_group_cache *cache)
179 start = cache->key.objectid;
180 end = start + cache->key.offset - 1;
182 clear_extent_bits(&root->fs_info->freed_extents[0],
183 start, end, EXTENT_UPTODATE, GFP_NOFS);
184 clear_extent_bits(&root->fs_info->freed_extents[1],
185 start, end, EXTENT_UPTODATE, GFP_NOFS);
188 static int exclude_super_stripes(struct btrfs_root *root,
189 struct btrfs_block_group_cache *cache)
196 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
197 bytenr = btrfs_sb_offset(i);
198 ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
199 cache->key.objectid, bytenr,
200 0, &logical, &nr, &stripe_len);
204 cache->bytes_super += stripe_len;
205 ret = add_excluded_extent(root, logical[nr],
215 static struct btrfs_caching_control *
216 get_caching_control(struct btrfs_block_group_cache *cache)
218 struct btrfs_caching_control *ctl;
220 spin_lock(&cache->lock);
221 if (cache->cached != BTRFS_CACHE_STARTED) {
222 spin_unlock(&cache->lock);
226 ctl = cache->caching_ctl;
227 atomic_inc(&ctl->count);
228 spin_unlock(&cache->lock);
232 static void put_caching_control(struct btrfs_caching_control *ctl)
234 if (atomic_dec_and_test(&ctl->count))
239 * this is only called by cache_block_group, since we could have freed extents
240 * we need to check the pinned_extents for any extents that can't be used yet
241 * since their free space will be released as soon as the transaction commits.
243 static u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
244 struct btrfs_fs_info *info, u64 start, u64 end)
246 u64 extent_start, extent_end, size, total_added = 0;
249 while (start < end) {
250 ret = find_first_extent_bit(info->pinned_extents, start,
251 &extent_start, &extent_end,
252 EXTENT_DIRTY | EXTENT_UPTODATE);
256 if (extent_start == start) {
257 start = extent_end + 1;
258 } else if (extent_start > start && extent_start < end) {
259 size = extent_start - start;
261 ret = btrfs_add_free_space(block_group, start,
264 start = extent_end + 1;
273 ret = btrfs_add_free_space(block_group, start, size);
280 static int caching_kthread(void *data)
282 struct btrfs_block_group_cache *block_group = data;
283 struct btrfs_fs_info *fs_info = block_group->fs_info;
284 struct btrfs_caching_control *caching_ctl = block_group->caching_ctl;
285 struct btrfs_root *extent_root = fs_info->extent_root;
286 struct btrfs_path *path;
287 struct extent_buffer *leaf;
288 struct btrfs_key key;
294 path = btrfs_alloc_path();
298 exclude_super_stripes(extent_root, block_group);
299 spin_lock(&block_group->space_info->lock);
300 block_group->space_info->bytes_super += block_group->bytes_super;
301 spin_unlock(&block_group->space_info->lock);
303 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
306 * We don't want to deadlock with somebody trying to allocate a new
307 * extent for the extent root while also trying to search the extent
308 * root to add free space. So we skip locking and search the commit
309 * root, since its read-only
311 path->skip_locking = 1;
312 path->search_commit_root = 1;
317 key.type = BTRFS_EXTENT_ITEM_KEY;
319 mutex_lock(&caching_ctl->mutex);
320 /* need to make sure the commit_root doesn't disappear */
321 down_read(&fs_info->extent_commit_sem);
323 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
327 leaf = path->nodes[0];
328 nritems = btrfs_header_nritems(leaf);
332 if (fs_info->closing > 1) {
337 if (path->slots[0] < nritems) {
338 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
340 ret = find_next_key(path, 0, &key);
344 caching_ctl->progress = last;
345 btrfs_release_path(extent_root, path);
346 up_read(&fs_info->extent_commit_sem);
347 mutex_unlock(&caching_ctl->mutex);
348 if (btrfs_transaction_in_commit(fs_info))
355 if (key.objectid < block_group->key.objectid) {
360 if (key.objectid >= block_group->key.objectid +
361 block_group->key.offset)
364 if (key.type == BTRFS_EXTENT_ITEM_KEY) {
365 total_found += add_new_free_space(block_group,
368 last = key.objectid + key.offset;
370 if (total_found > (1024 * 1024 * 2)) {
372 wake_up(&caching_ctl->wait);
379 total_found += add_new_free_space(block_group, fs_info, last,
380 block_group->key.objectid +
381 block_group->key.offset);
382 caching_ctl->progress = (u64)-1;
384 spin_lock(&block_group->lock);
385 block_group->caching_ctl = NULL;
386 block_group->cached = BTRFS_CACHE_FINISHED;
387 spin_unlock(&block_group->lock);
390 btrfs_free_path(path);
391 up_read(&fs_info->extent_commit_sem);
393 free_excluded_extents(extent_root, block_group);
395 mutex_unlock(&caching_ctl->mutex);
396 wake_up(&caching_ctl->wait);
398 put_caching_control(caching_ctl);
399 atomic_dec(&block_group->space_info->caching_threads);
403 static int cache_block_group(struct btrfs_block_group_cache *cache)
405 struct btrfs_fs_info *fs_info = cache->fs_info;
406 struct btrfs_caching_control *caching_ctl;
407 struct task_struct *tsk;
411 if (cache->cached != BTRFS_CACHE_NO)
414 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_KERNEL);
415 BUG_ON(!caching_ctl);
417 INIT_LIST_HEAD(&caching_ctl->list);
418 mutex_init(&caching_ctl->mutex);
419 init_waitqueue_head(&caching_ctl->wait);
420 caching_ctl->block_group = cache;
421 caching_ctl->progress = cache->key.objectid;
422 /* one for caching kthread, one for caching block group list */
423 atomic_set(&caching_ctl->count, 2);
425 spin_lock(&cache->lock);
426 if (cache->cached != BTRFS_CACHE_NO) {
427 spin_unlock(&cache->lock);
431 cache->caching_ctl = caching_ctl;
432 cache->cached = BTRFS_CACHE_STARTED;
433 spin_unlock(&cache->lock);
435 down_write(&fs_info->extent_commit_sem);
436 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
437 up_write(&fs_info->extent_commit_sem);
439 atomic_inc(&cache->space_info->caching_threads);
441 tsk = kthread_run(caching_kthread, cache, "btrfs-cache-%llu\n",
442 cache->key.objectid);
445 printk(KERN_ERR "error running thread %d\n", ret);
453 * return the block group that starts at or after bytenr
455 static struct btrfs_block_group_cache *
456 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
458 struct btrfs_block_group_cache *cache;
460 cache = block_group_cache_tree_search(info, bytenr, 0);
466 * return the block group that contains the given bytenr
468 struct btrfs_block_group_cache *btrfs_lookup_block_group(
469 struct btrfs_fs_info *info,
472 struct btrfs_block_group_cache *cache;
474 cache = block_group_cache_tree_search(info, bytenr, 1);
479 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
481 if (atomic_dec_and_test(&cache->count))
485 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
488 struct list_head *head = &info->space_info;
489 struct btrfs_space_info *found;
492 list_for_each_entry_rcu(found, head, list) {
493 if (found->flags == flags) {
503 * after adding space to the filesystem, we need to clear the full flags
504 * on all the space infos.
506 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
508 struct list_head *head = &info->space_info;
509 struct btrfs_space_info *found;
512 list_for_each_entry_rcu(found, head, list)
517 static u64 div_factor(u64 num, int factor)
526 u64 btrfs_find_block_group(struct btrfs_root *root,
527 u64 search_start, u64 search_hint, int owner)
529 struct btrfs_block_group_cache *cache;
531 u64 last = max(search_hint, search_start);
538 cache = btrfs_lookup_first_block_group(root->fs_info, last);
542 spin_lock(&cache->lock);
543 last = cache->key.objectid + cache->key.offset;
544 used = btrfs_block_group_used(&cache->item);
546 if ((full_search || !cache->ro) &&
547 block_group_bits(cache, BTRFS_BLOCK_GROUP_METADATA)) {
548 if (used + cache->pinned + cache->reserved <
549 div_factor(cache->key.offset, factor)) {
550 group_start = cache->key.objectid;
551 spin_unlock(&cache->lock);
552 btrfs_put_block_group(cache);
556 spin_unlock(&cache->lock);
557 btrfs_put_block_group(cache);
565 if (!full_search && factor < 10) {
575 /* simple helper to search for an existing extent at a given offset */
576 int btrfs_lookup_extent(struct btrfs_root *root, u64 start, u64 len)
579 struct btrfs_key key;
580 struct btrfs_path *path;
582 path = btrfs_alloc_path();
584 key.objectid = start;
586 btrfs_set_key_type(&key, BTRFS_EXTENT_ITEM_KEY);
587 ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
589 btrfs_free_path(path);
594 * Back reference rules. Back refs have three main goals:
596 * 1) differentiate between all holders of references to an extent so that
597 * when a reference is dropped we can make sure it was a valid reference
598 * before freeing the extent.
600 * 2) Provide enough information to quickly find the holders of an extent
601 * if we notice a given block is corrupted or bad.
603 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
604 * maintenance. This is actually the same as #2, but with a slightly
605 * different use case.
607 * There are two kinds of back refs. The implicit back refs is optimized
608 * for pointers in non-shared tree blocks. For a given pointer in a block,
609 * back refs of this kind provide information about the block's owner tree
610 * and the pointer's key. These information allow us to find the block by
611 * b-tree searching. The full back refs is for pointers in tree blocks not
612 * referenced by their owner trees. The location of tree block is recorded
613 * in the back refs. Actually the full back refs is generic, and can be
614 * used in all cases the implicit back refs is used. The major shortcoming
615 * of the full back refs is its overhead. Every time a tree block gets
616 * COWed, we have to update back refs entry for all pointers in it.
618 * For a newly allocated tree block, we use implicit back refs for
619 * pointers in it. This means most tree related operations only involve
620 * implicit back refs. For a tree block created in old transaction, the
621 * only way to drop a reference to it is COW it. So we can detect the
622 * event that tree block loses its owner tree's reference and do the
623 * back refs conversion.
625 * When a tree block is COW'd through a tree, there are four cases:
627 * The reference count of the block is one and the tree is the block's
628 * owner tree. Nothing to do in this case.
630 * The reference count of the block is one and the tree is not the
631 * block's owner tree. In this case, full back refs is used for pointers
632 * in the block. Remove these full back refs, add implicit back refs for
633 * every pointers in the new block.
635 * The reference count of the block is greater than one and the tree is
636 * the block's owner tree. In this case, implicit back refs is used for
637 * pointers in the block. Add full back refs for every pointers in the
638 * block, increase lower level extents' reference counts. The original
639 * implicit back refs are entailed to the new block.
641 * The reference count of the block is greater than one and the tree is
642 * not the block's owner tree. Add implicit back refs for every pointer in
643 * the new block, increase lower level extents' reference count.
645 * Back Reference Key composing:
647 * The key objectid corresponds to the first byte in the extent,
648 * The key type is used to differentiate between types of back refs.
649 * There are different meanings of the key offset for different types
652 * File extents can be referenced by:
654 * - multiple snapshots, subvolumes, or different generations in one subvol
655 * - different files inside a single subvolume
656 * - different offsets inside a file (bookend extents in file.c)
658 * The extent ref structure for the implicit back refs has fields for:
660 * - Objectid of the subvolume root
661 * - objectid of the file holding the reference
662 * - original offset in the file
663 * - how many bookend extents
665 * The key offset for the implicit back refs is hash of the first
668 * The extent ref structure for the full back refs has field for:
670 * - number of pointers in the tree leaf
672 * The key offset for the implicit back refs is the first byte of
675 * When a file extent is allocated, The implicit back refs is used.
676 * the fields are filled in:
678 * (root_key.objectid, inode objectid, offset in file, 1)
680 * When a file extent is removed file truncation, we find the
681 * corresponding implicit back refs and check the following fields:
683 * (btrfs_header_owner(leaf), inode objectid, offset in file)
685 * Btree extents can be referenced by:
687 * - Different subvolumes
689 * Both the implicit back refs and the full back refs for tree blocks
690 * only consist of key. The key offset for the implicit back refs is
691 * objectid of block's owner tree. The key offset for the full back refs
692 * is the first byte of parent block.
694 * When implicit back refs is used, information about the lowest key and
695 * level of the tree block are required. These information are stored in
696 * tree block info structure.
699 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
700 static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
701 struct btrfs_root *root,
702 struct btrfs_path *path,
703 u64 owner, u32 extra_size)
705 struct btrfs_extent_item *item;
706 struct btrfs_extent_item_v0 *ei0;
707 struct btrfs_extent_ref_v0 *ref0;
708 struct btrfs_tree_block_info *bi;
709 struct extent_buffer *leaf;
710 struct btrfs_key key;
711 struct btrfs_key found_key;
712 u32 new_size = sizeof(*item);
716 leaf = path->nodes[0];
717 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
719 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
720 ei0 = btrfs_item_ptr(leaf, path->slots[0],
721 struct btrfs_extent_item_v0);
722 refs = btrfs_extent_refs_v0(leaf, ei0);
724 if (owner == (u64)-1) {
726 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
727 ret = btrfs_next_leaf(root, path);
731 leaf = path->nodes[0];
733 btrfs_item_key_to_cpu(leaf, &found_key,
735 BUG_ON(key.objectid != found_key.objectid);
736 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
740 ref0 = btrfs_item_ptr(leaf, path->slots[0],
741 struct btrfs_extent_ref_v0);
742 owner = btrfs_ref_objectid_v0(leaf, ref0);
746 btrfs_release_path(root, path);
748 if (owner < BTRFS_FIRST_FREE_OBJECTID)
749 new_size += sizeof(*bi);
751 new_size -= sizeof(*ei0);
752 ret = btrfs_search_slot(trans, root, &key, path,
753 new_size + extra_size, 1);
758 ret = btrfs_extend_item(trans, root, path, new_size);
761 leaf = path->nodes[0];
762 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
763 btrfs_set_extent_refs(leaf, item, refs);
764 /* FIXME: get real generation */
765 btrfs_set_extent_generation(leaf, item, 0);
766 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
767 btrfs_set_extent_flags(leaf, item,
768 BTRFS_EXTENT_FLAG_TREE_BLOCK |
769 BTRFS_BLOCK_FLAG_FULL_BACKREF);
770 bi = (struct btrfs_tree_block_info *)(item + 1);
771 /* FIXME: get first key of the block */
772 memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
773 btrfs_set_tree_block_level(leaf, bi, (int)owner);
775 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
777 btrfs_mark_buffer_dirty(leaf);
782 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
784 u32 high_crc = ~(u32)0;
785 u32 low_crc = ~(u32)0;
788 lenum = cpu_to_le64(root_objectid);
789 high_crc = crc32c(high_crc, &lenum, sizeof(lenum));
790 lenum = cpu_to_le64(owner);
791 low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
792 lenum = cpu_to_le64(offset);
793 low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
795 return ((u64)high_crc << 31) ^ (u64)low_crc;
798 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
799 struct btrfs_extent_data_ref *ref)
801 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
802 btrfs_extent_data_ref_objectid(leaf, ref),
803 btrfs_extent_data_ref_offset(leaf, ref));
806 static int match_extent_data_ref(struct extent_buffer *leaf,
807 struct btrfs_extent_data_ref *ref,
808 u64 root_objectid, u64 owner, u64 offset)
810 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
811 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
812 btrfs_extent_data_ref_offset(leaf, ref) != offset)
817 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
818 struct btrfs_root *root,
819 struct btrfs_path *path,
820 u64 bytenr, u64 parent,
822 u64 owner, u64 offset)
824 struct btrfs_key key;
825 struct btrfs_extent_data_ref *ref;
826 struct extent_buffer *leaf;
832 key.objectid = bytenr;
834 key.type = BTRFS_SHARED_DATA_REF_KEY;
837 key.type = BTRFS_EXTENT_DATA_REF_KEY;
838 key.offset = hash_extent_data_ref(root_objectid,
843 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
852 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
853 key.type = BTRFS_EXTENT_REF_V0_KEY;
854 btrfs_release_path(root, path);
855 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
866 leaf = path->nodes[0];
867 nritems = btrfs_header_nritems(leaf);
869 if (path->slots[0] >= nritems) {
870 ret = btrfs_next_leaf(root, path);
876 leaf = path->nodes[0];
877 nritems = btrfs_header_nritems(leaf);
881 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
882 if (key.objectid != bytenr ||
883 key.type != BTRFS_EXTENT_DATA_REF_KEY)
886 ref = btrfs_item_ptr(leaf, path->slots[0],
887 struct btrfs_extent_data_ref);
889 if (match_extent_data_ref(leaf, ref, root_objectid,
892 btrfs_release_path(root, path);
904 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
905 struct btrfs_root *root,
906 struct btrfs_path *path,
907 u64 bytenr, u64 parent,
908 u64 root_objectid, u64 owner,
909 u64 offset, int refs_to_add)
911 struct btrfs_key key;
912 struct extent_buffer *leaf;
917 key.objectid = bytenr;
919 key.type = BTRFS_SHARED_DATA_REF_KEY;
921 size = sizeof(struct btrfs_shared_data_ref);
923 key.type = BTRFS_EXTENT_DATA_REF_KEY;
924 key.offset = hash_extent_data_ref(root_objectid,
926 size = sizeof(struct btrfs_extent_data_ref);
929 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
930 if (ret && ret != -EEXIST)
933 leaf = path->nodes[0];
935 struct btrfs_shared_data_ref *ref;
936 ref = btrfs_item_ptr(leaf, path->slots[0],
937 struct btrfs_shared_data_ref);
939 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
941 num_refs = btrfs_shared_data_ref_count(leaf, ref);
942 num_refs += refs_to_add;
943 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
946 struct btrfs_extent_data_ref *ref;
947 while (ret == -EEXIST) {
948 ref = btrfs_item_ptr(leaf, path->slots[0],
949 struct btrfs_extent_data_ref);
950 if (match_extent_data_ref(leaf, ref, root_objectid,
953 btrfs_release_path(root, path);
955 ret = btrfs_insert_empty_item(trans, root, path, &key,
957 if (ret && ret != -EEXIST)
960 leaf = path->nodes[0];
962 ref = btrfs_item_ptr(leaf, path->slots[0],
963 struct btrfs_extent_data_ref);
965 btrfs_set_extent_data_ref_root(leaf, ref,
967 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
968 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
969 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
971 num_refs = btrfs_extent_data_ref_count(leaf, ref);
972 num_refs += refs_to_add;
973 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
976 btrfs_mark_buffer_dirty(leaf);
979 btrfs_release_path(root, path);
983 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
984 struct btrfs_root *root,
985 struct btrfs_path *path,
988 struct btrfs_key key;
989 struct btrfs_extent_data_ref *ref1 = NULL;
990 struct btrfs_shared_data_ref *ref2 = NULL;
991 struct extent_buffer *leaf;
995 leaf = path->nodes[0];
996 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
998 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
999 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1000 struct btrfs_extent_data_ref);
1001 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1002 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1003 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1004 struct btrfs_shared_data_ref);
1005 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1006 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1007 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1008 struct btrfs_extent_ref_v0 *ref0;
1009 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1010 struct btrfs_extent_ref_v0);
1011 num_refs = btrfs_ref_count_v0(leaf, ref0);
1017 BUG_ON(num_refs < refs_to_drop);
1018 num_refs -= refs_to_drop;
1020 if (num_refs == 0) {
1021 ret = btrfs_del_item(trans, root, path);
1023 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1024 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1025 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1026 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1027 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1029 struct btrfs_extent_ref_v0 *ref0;
1030 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1031 struct btrfs_extent_ref_v0);
1032 btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1035 btrfs_mark_buffer_dirty(leaf);
1040 static noinline u32 extent_data_ref_count(struct btrfs_root *root,
1041 struct btrfs_path *path,
1042 struct btrfs_extent_inline_ref *iref)
1044 struct btrfs_key key;
1045 struct extent_buffer *leaf;
1046 struct btrfs_extent_data_ref *ref1;
1047 struct btrfs_shared_data_ref *ref2;
1050 leaf = path->nodes[0];
1051 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1053 if (btrfs_extent_inline_ref_type(leaf, iref) ==
1054 BTRFS_EXTENT_DATA_REF_KEY) {
1055 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1056 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1058 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1059 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1061 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1062 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1063 struct btrfs_extent_data_ref);
1064 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1065 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1066 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1067 struct btrfs_shared_data_ref);
1068 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1069 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1070 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1071 struct btrfs_extent_ref_v0 *ref0;
1072 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1073 struct btrfs_extent_ref_v0);
1074 num_refs = btrfs_ref_count_v0(leaf, ref0);
1082 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1083 struct btrfs_root *root,
1084 struct btrfs_path *path,
1085 u64 bytenr, u64 parent,
1088 struct btrfs_key key;
1091 key.objectid = bytenr;
1093 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1094 key.offset = parent;
1096 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1097 key.offset = root_objectid;
1100 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1103 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1104 if (ret == -ENOENT && parent) {
1105 btrfs_release_path(root, path);
1106 key.type = BTRFS_EXTENT_REF_V0_KEY;
1107 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1115 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1116 struct btrfs_root *root,
1117 struct btrfs_path *path,
1118 u64 bytenr, u64 parent,
1121 struct btrfs_key key;
1124 key.objectid = bytenr;
1126 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1127 key.offset = parent;
1129 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1130 key.offset = root_objectid;
1133 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1134 btrfs_release_path(root, path);
1138 static inline int extent_ref_type(u64 parent, u64 owner)
1141 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1143 type = BTRFS_SHARED_BLOCK_REF_KEY;
1145 type = BTRFS_TREE_BLOCK_REF_KEY;
1148 type = BTRFS_SHARED_DATA_REF_KEY;
1150 type = BTRFS_EXTENT_DATA_REF_KEY;
1155 static int find_next_key(struct btrfs_path *path, int level,
1156 struct btrfs_key *key)
1159 for (; level < BTRFS_MAX_LEVEL; level++) {
1160 if (!path->nodes[level])
1162 if (path->slots[level] + 1 >=
1163 btrfs_header_nritems(path->nodes[level]))
1166 btrfs_item_key_to_cpu(path->nodes[level], key,
1167 path->slots[level] + 1);
1169 btrfs_node_key_to_cpu(path->nodes[level], key,
1170 path->slots[level] + 1);
1177 * look for inline back ref. if back ref is found, *ref_ret is set
1178 * to the address of inline back ref, and 0 is returned.
1180 * if back ref isn't found, *ref_ret is set to the address where it
1181 * should be inserted, and -ENOENT is returned.
1183 * if insert is true and there are too many inline back refs, the path
1184 * points to the extent item, and -EAGAIN is returned.
1186 * NOTE: inline back refs are ordered in the same way that back ref
1187 * items in the tree are ordered.
1189 static noinline_for_stack
1190 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1191 struct btrfs_root *root,
1192 struct btrfs_path *path,
1193 struct btrfs_extent_inline_ref **ref_ret,
1194 u64 bytenr, u64 num_bytes,
1195 u64 parent, u64 root_objectid,
1196 u64 owner, u64 offset, int insert)
1198 struct btrfs_key key;
1199 struct extent_buffer *leaf;
1200 struct btrfs_extent_item *ei;
1201 struct btrfs_extent_inline_ref *iref;
1212 key.objectid = bytenr;
1213 key.type = BTRFS_EXTENT_ITEM_KEY;
1214 key.offset = num_bytes;
1216 want = extent_ref_type(parent, owner);
1218 extra_size = btrfs_extent_inline_ref_size(want);
1219 path->keep_locks = 1;
1222 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1229 leaf = path->nodes[0];
1230 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1231 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1232 if (item_size < sizeof(*ei)) {
1237 ret = convert_extent_item_v0(trans, root, path, owner,
1243 leaf = path->nodes[0];
1244 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1247 BUG_ON(item_size < sizeof(*ei));
1249 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1250 flags = btrfs_extent_flags(leaf, ei);
1252 ptr = (unsigned long)(ei + 1);
1253 end = (unsigned long)ei + item_size;
1255 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1256 ptr += sizeof(struct btrfs_tree_block_info);
1259 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
1268 iref = (struct btrfs_extent_inline_ref *)ptr;
1269 type = btrfs_extent_inline_ref_type(leaf, iref);
1273 ptr += btrfs_extent_inline_ref_size(type);
1277 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1278 struct btrfs_extent_data_ref *dref;
1279 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1280 if (match_extent_data_ref(leaf, dref, root_objectid,
1285 if (hash_extent_data_ref_item(leaf, dref) <
1286 hash_extent_data_ref(root_objectid, owner, offset))
1290 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1292 if (parent == ref_offset) {
1296 if (ref_offset < parent)
1299 if (root_objectid == ref_offset) {
1303 if (ref_offset < root_objectid)
1307 ptr += btrfs_extent_inline_ref_size(type);
1309 if (err == -ENOENT && insert) {
1310 if (item_size + extra_size >=
1311 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1316 * To add new inline back ref, we have to make sure
1317 * there is no corresponding back ref item.
1318 * For simplicity, we just do not add new inline back
1319 * ref if there is any kind of item for this block
1321 if (find_next_key(path, 0, &key) == 0 &&
1322 key.objectid == bytenr &&
1323 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1328 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1331 path->keep_locks = 0;
1332 btrfs_unlock_up_safe(path, 1);
1338 * helper to add new inline back ref
1340 static noinline_for_stack
1341 int setup_inline_extent_backref(struct btrfs_trans_handle *trans,
1342 struct btrfs_root *root,
1343 struct btrfs_path *path,
1344 struct btrfs_extent_inline_ref *iref,
1345 u64 parent, u64 root_objectid,
1346 u64 owner, u64 offset, int refs_to_add,
1347 struct btrfs_delayed_extent_op *extent_op)
1349 struct extent_buffer *leaf;
1350 struct btrfs_extent_item *ei;
1353 unsigned long item_offset;
1359 leaf = path->nodes[0];
1360 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1361 item_offset = (unsigned long)iref - (unsigned long)ei;
1363 type = extent_ref_type(parent, owner);
1364 size = btrfs_extent_inline_ref_size(type);
1366 ret = btrfs_extend_item(trans, root, path, size);
1369 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1370 refs = btrfs_extent_refs(leaf, ei);
1371 refs += refs_to_add;
1372 btrfs_set_extent_refs(leaf, ei, refs);
1374 __run_delayed_extent_op(extent_op, leaf, ei);
1376 ptr = (unsigned long)ei + item_offset;
1377 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1378 if (ptr < end - size)
1379 memmove_extent_buffer(leaf, ptr + size, ptr,
1382 iref = (struct btrfs_extent_inline_ref *)ptr;
1383 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1384 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1385 struct btrfs_extent_data_ref *dref;
1386 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1387 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1388 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1389 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1390 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1391 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1392 struct btrfs_shared_data_ref *sref;
1393 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1394 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1395 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1396 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1397 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1399 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1401 btrfs_mark_buffer_dirty(leaf);
1405 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1406 struct btrfs_root *root,
1407 struct btrfs_path *path,
1408 struct btrfs_extent_inline_ref **ref_ret,
1409 u64 bytenr, u64 num_bytes, u64 parent,
1410 u64 root_objectid, u64 owner, u64 offset)
1414 ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
1415 bytenr, num_bytes, parent,
1416 root_objectid, owner, offset, 0);
1420 btrfs_release_path(root, path);
1423 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1424 ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
1427 ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
1428 root_objectid, owner, offset);
1434 * helper to update/remove inline back ref
1436 static noinline_for_stack
1437 int update_inline_extent_backref(struct btrfs_trans_handle *trans,
1438 struct btrfs_root *root,
1439 struct btrfs_path *path,
1440 struct btrfs_extent_inline_ref *iref,
1442 struct btrfs_delayed_extent_op *extent_op)
1444 struct extent_buffer *leaf;
1445 struct btrfs_extent_item *ei;
1446 struct btrfs_extent_data_ref *dref = NULL;
1447 struct btrfs_shared_data_ref *sref = NULL;
1456 leaf = path->nodes[0];
1457 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1458 refs = btrfs_extent_refs(leaf, ei);
1459 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1460 refs += refs_to_mod;
1461 btrfs_set_extent_refs(leaf, ei, refs);
1463 __run_delayed_extent_op(extent_op, leaf, ei);
1465 type = btrfs_extent_inline_ref_type(leaf, iref);
1467 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1468 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1469 refs = btrfs_extent_data_ref_count(leaf, dref);
1470 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1471 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1472 refs = btrfs_shared_data_ref_count(leaf, sref);
1475 BUG_ON(refs_to_mod != -1);
1478 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1479 refs += refs_to_mod;
1482 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1483 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1485 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1487 size = btrfs_extent_inline_ref_size(type);
1488 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1489 ptr = (unsigned long)iref;
1490 end = (unsigned long)ei + item_size;
1491 if (ptr + size < end)
1492 memmove_extent_buffer(leaf, ptr, ptr + size,
1495 ret = btrfs_truncate_item(trans, root, path, item_size, 1);
1498 btrfs_mark_buffer_dirty(leaf);
1502 static noinline_for_stack
1503 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1504 struct btrfs_root *root,
1505 struct btrfs_path *path,
1506 u64 bytenr, u64 num_bytes, u64 parent,
1507 u64 root_objectid, u64 owner,
1508 u64 offset, int refs_to_add,
1509 struct btrfs_delayed_extent_op *extent_op)
1511 struct btrfs_extent_inline_ref *iref;
1514 ret = lookup_inline_extent_backref(trans, root, path, &iref,
1515 bytenr, num_bytes, parent,
1516 root_objectid, owner, offset, 1);
1518 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1519 ret = update_inline_extent_backref(trans, root, path, iref,
1520 refs_to_add, extent_op);
1521 } else if (ret == -ENOENT) {
1522 ret = setup_inline_extent_backref(trans, root, path, iref,
1523 parent, root_objectid,
1524 owner, offset, refs_to_add,
1530 static int insert_extent_backref(struct btrfs_trans_handle *trans,
1531 struct btrfs_root *root,
1532 struct btrfs_path *path,
1533 u64 bytenr, u64 parent, u64 root_objectid,
1534 u64 owner, u64 offset, int refs_to_add)
1537 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1538 BUG_ON(refs_to_add != 1);
1539 ret = insert_tree_block_ref(trans, root, path, bytenr,
1540 parent, root_objectid);
1542 ret = insert_extent_data_ref(trans, root, path, bytenr,
1543 parent, root_objectid,
1544 owner, offset, refs_to_add);
1549 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1550 struct btrfs_root *root,
1551 struct btrfs_path *path,
1552 struct btrfs_extent_inline_ref *iref,
1553 int refs_to_drop, int is_data)
1557 BUG_ON(!is_data && refs_to_drop != 1);
1559 ret = update_inline_extent_backref(trans, root, path, iref,
1560 -refs_to_drop, NULL);
1561 } else if (is_data) {
1562 ret = remove_extent_data_ref(trans, root, path, refs_to_drop);
1564 ret = btrfs_del_item(trans, root, path);
1569 #ifdef BIO_RW_DISCARD
1570 static void btrfs_issue_discard(struct block_device *bdev,
1573 blkdev_issue_discard(bdev, start >> 9, len >> 9, GFP_KERNEL,
1574 DISCARD_FL_BARRIER);
1578 static int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
1581 #ifdef BIO_RW_DISCARD
1583 u64 map_length = num_bytes;
1584 struct btrfs_multi_bio *multi = NULL;
1586 /* Tell the block device(s) that the sectors can be discarded */
1587 ret = btrfs_map_block(&root->fs_info->mapping_tree, READ,
1588 bytenr, &map_length, &multi, 0);
1590 struct btrfs_bio_stripe *stripe = multi->stripes;
1593 if (map_length > num_bytes)
1594 map_length = num_bytes;
1596 for (i = 0; i < multi->num_stripes; i++, stripe++) {
1597 btrfs_issue_discard(stripe->dev->bdev,
1610 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1611 struct btrfs_root *root,
1612 u64 bytenr, u64 num_bytes, u64 parent,
1613 u64 root_objectid, u64 owner, u64 offset)
1616 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
1617 root_objectid == BTRFS_TREE_LOG_OBJECTID);
1619 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1620 ret = btrfs_add_delayed_tree_ref(trans, bytenr, num_bytes,
1621 parent, root_objectid, (int)owner,
1622 BTRFS_ADD_DELAYED_REF, NULL);
1624 ret = btrfs_add_delayed_data_ref(trans, bytenr, num_bytes,
1625 parent, root_objectid, owner, offset,
1626 BTRFS_ADD_DELAYED_REF, NULL);
1631 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1632 struct btrfs_root *root,
1633 u64 bytenr, u64 num_bytes,
1634 u64 parent, u64 root_objectid,
1635 u64 owner, u64 offset, int refs_to_add,
1636 struct btrfs_delayed_extent_op *extent_op)
1638 struct btrfs_path *path;
1639 struct extent_buffer *leaf;
1640 struct btrfs_extent_item *item;
1645 path = btrfs_alloc_path();
1650 path->leave_spinning = 1;
1651 /* this will setup the path even if it fails to insert the back ref */
1652 ret = insert_inline_extent_backref(trans, root->fs_info->extent_root,
1653 path, bytenr, num_bytes, parent,
1654 root_objectid, owner, offset,
1655 refs_to_add, extent_op);
1659 if (ret != -EAGAIN) {
1664 leaf = path->nodes[0];
1665 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1666 refs = btrfs_extent_refs(leaf, item);
1667 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
1669 __run_delayed_extent_op(extent_op, leaf, item);
1671 btrfs_mark_buffer_dirty(leaf);
1672 btrfs_release_path(root->fs_info->extent_root, path);
1675 path->leave_spinning = 1;
1677 /* now insert the actual backref */
1678 ret = insert_extent_backref(trans, root->fs_info->extent_root,
1679 path, bytenr, parent, root_objectid,
1680 owner, offset, refs_to_add);
1683 btrfs_free_path(path);
1687 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
1688 struct btrfs_root *root,
1689 struct btrfs_delayed_ref_node *node,
1690 struct btrfs_delayed_extent_op *extent_op,
1691 int insert_reserved)
1694 struct btrfs_delayed_data_ref *ref;
1695 struct btrfs_key ins;
1700 ins.objectid = node->bytenr;
1701 ins.offset = node->num_bytes;
1702 ins.type = BTRFS_EXTENT_ITEM_KEY;
1704 ref = btrfs_delayed_node_to_data_ref(node);
1705 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
1706 parent = ref->parent;
1708 ref_root = ref->root;
1710 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1712 BUG_ON(extent_op->update_key);
1713 flags |= extent_op->flags_to_set;
1715 ret = alloc_reserved_file_extent(trans, root,
1716 parent, ref_root, flags,
1717 ref->objectid, ref->offset,
1718 &ins, node->ref_mod);
1719 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
1720 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
1721 node->num_bytes, parent,
1722 ref_root, ref->objectid,
1723 ref->offset, node->ref_mod,
1725 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
1726 ret = __btrfs_free_extent(trans, root, node->bytenr,
1727 node->num_bytes, parent,
1728 ref_root, ref->objectid,
1729 ref->offset, node->ref_mod,
1737 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
1738 struct extent_buffer *leaf,
1739 struct btrfs_extent_item *ei)
1741 u64 flags = btrfs_extent_flags(leaf, ei);
1742 if (extent_op->update_flags) {
1743 flags |= extent_op->flags_to_set;
1744 btrfs_set_extent_flags(leaf, ei, flags);
1747 if (extent_op->update_key) {
1748 struct btrfs_tree_block_info *bi;
1749 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
1750 bi = (struct btrfs_tree_block_info *)(ei + 1);
1751 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
1755 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
1756 struct btrfs_root *root,
1757 struct btrfs_delayed_ref_node *node,
1758 struct btrfs_delayed_extent_op *extent_op)
1760 struct btrfs_key key;
1761 struct btrfs_path *path;
1762 struct btrfs_extent_item *ei;
1763 struct extent_buffer *leaf;
1768 path = btrfs_alloc_path();
1772 key.objectid = node->bytenr;
1773 key.type = BTRFS_EXTENT_ITEM_KEY;
1774 key.offset = node->num_bytes;
1777 path->leave_spinning = 1;
1778 ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
1789 leaf = path->nodes[0];
1790 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1791 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1792 if (item_size < sizeof(*ei)) {
1793 ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
1799 leaf = path->nodes[0];
1800 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1803 BUG_ON(item_size < sizeof(*ei));
1804 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1805 __run_delayed_extent_op(extent_op, leaf, ei);
1807 btrfs_mark_buffer_dirty(leaf);
1809 btrfs_free_path(path);
1813 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
1814 struct btrfs_root *root,
1815 struct btrfs_delayed_ref_node *node,
1816 struct btrfs_delayed_extent_op *extent_op,
1817 int insert_reserved)
1820 struct btrfs_delayed_tree_ref *ref;
1821 struct btrfs_key ins;
1825 ins.objectid = node->bytenr;
1826 ins.offset = node->num_bytes;
1827 ins.type = BTRFS_EXTENT_ITEM_KEY;
1829 ref = btrfs_delayed_node_to_tree_ref(node);
1830 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
1831 parent = ref->parent;
1833 ref_root = ref->root;
1835 BUG_ON(node->ref_mod != 1);
1836 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1837 BUG_ON(!extent_op || !extent_op->update_flags ||
1838 !extent_op->update_key);
1839 ret = alloc_reserved_tree_block(trans, root,
1841 extent_op->flags_to_set,
1844 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
1845 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
1846 node->num_bytes, parent, ref_root,
1847 ref->level, 0, 1, extent_op);
1848 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
1849 ret = __btrfs_free_extent(trans, root, node->bytenr,
1850 node->num_bytes, parent, ref_root,
1851 ref->level, 0, 1, extent_op);
1859 /* helper function to actually process a single delayed ref entry */
1860 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
1861 struct btrfs_root *root,
1862 struct btrfs_delayed_ref_node *node,
1863 struct btrfs_delayed_extent_op *extent_op,
1864 int insert_reserved)
1867 if (btrfs_delayed_ref_is_head(node)) {
1868 struct btrfs_delayed_ref_head *head;
1870 * we've hit the end of the chain and we were supposed
1871 * to insert this extent into the tree. But, it got
1872 * deleted before we ever needed to insert it, so all
1873 * we have to do is clean up the accounting
1876 head = btrfs_delayed_node_to_head(node);
1877 if (insert_reserved) {
1879 struct extent_buffer *must_clean = NULL;
1881 ret = pin_down_bytes(trans, root, NULL,
1882 node->bytenr, node->num_bytes,
1883 head->is_data, 1, &must_clean);
1888 clean_tree_block(NULL, root, must_clean);
1889 btrfs_tree_unlock(must_clean);
1890 free_extent_buffer(must_clean);
1892 if (head->is_data) {
1893 ret = btrfs_del_csums(trans, root,
1899 ret = btrfs_free_reserved_extent(root,
1905 mutex_unlock(&head->mutex);
1909 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
1910 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
1911 ret = run_delayed_tree_ref(trans, root, node, extent_op,
1913 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
1914 node->type == BTRFS_SHARED_DATA_REF_KEY)
1915 ret = run_delayed_data_ref(trans, root, node, extent_op,
1922 static noinline struct btrfs_delayed_ref_node *
1923 select_delayed_ref(struct btrfs_delayed_ref_head *head)
1925 struct rb_node *node;
1926 struct btrfs_delayed_ref_node *ref;
1927 int action = BTRFS_ADD_DELAYED_REF;
1930 * select delayed ref of type BTRFS_ADD_DELAYED_REF first.
1931 * this prevents ref count from going down to zero when
1932 * there still are pending delayed ref.
1934 node = rb_prev(&head->node.rb_node);
1938 ref = rb_entry(node, struct btrfs_delayed_ref_node,
1940 if (ref->bytenr != head->node.bytenr)
1942 if (ref->action == action)
1944 node = rb_prev(node);
1946 if (action == BTRFS_ADD_DELAYED_REF) {
1947 action = BTRFS_DROP_DELAYED_REF;
1953 static noinline int run_clustered_refs(struct btrfs_trans_handle *trans,
1954 struct btrfs_root *root,
1955 struct list_head *cluster)
1957 struct btrfs_delayed_ref_root *delayed_refs;
1958 struct btrfs_delayed_ref_node *ref;
1959 struct btrfs_delayed_ref_head *locked_ref = NULL;
1960 struct btrfs_delayed_extent_op *extent_op;
1963 int must_insert_reserved = 0;
1965 delayed_refs = &trans->transaction->delayed_refs;
1968 /* pick a new head ref from the cluster list */
1969 if (list_empty(cluster))
1972 locked_ref = list_entry(cluster->next,
1973 struct btrfs_delayed_ref_head, cluster);
1975 /* grab the lock that says we are going to process
1976 * all the refs for this head */
1977 ret = btrfs_delayed_ref_lock(trans, locked_ref);
1980 * we may have dropped the spin lock to get the head
1981 * mutex lock, and that might have given someone else
1982 * time to free the head. If that's true, it has been
1983 * removed from our list and we can move on.
1985 if (ret == -EAGAIN) {
1993 * record the must insert reserved flag before we
1994 * drop the spin lock.
1996 must_insert_reserved = locked_ref->must_insert_reserved;
1997 locked_ref->must_insert_reserved = 0;
1999 extent_op = locked_ref->extent_op;
2000 locked_ref->extent_op = NULL;
2003 * locked_ref is the head node, so we have to go one
2004 * node back for any delayed ref updates
2006 ref = select_delayed_ref(locked_ref);
2008 /* All delayed refs have been processed, Go ahead
2009 * and send the head node to run_one_delayed_ref,
2010 * so that any accounting fixes can happen
2012 ref = &locked_ref->node;
2014 if (extent_op && must_insert_reserved) {
2020 spin_unlock(&delayed_refs->lock);
2022 ret = run_delayed_extent_op(trans, root,
2028 spin_lock(&delayed_refs->lock);
2032 list_del_init(&locked_ref->cluster);
2037 rb_erase(&ref->rb_node, &delayed_refs->root);
2038 delayed_refs->num_entries--;
2040 spin_unlock(&delayed_refs->lock);
2042 ret = run_one_delayed_ref(trans, root, ref, extent_op,
2043 must_insert_reserved);
2046 btrfs_put_delayed_ref(ref);
2051 spin_lock(&delayed_refs->lock);
2057 * this starts processing the delayed reference count updates and
2058 * extent insertions we have queued up so far. count can be
2059 * 0, which means to process everything in the tree at the start
2060 * of the run (but not newly added entries), or it can be some target
2061 * number you'd like to process.
2063 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2064 struct btrfs_root *root, unsigned long count)
2066 struct rb_node *node;
2067 struct btrfs_delayed_ref_root *delayed_refs;
2068 struct btrfs_delayed_ref_node *ref;
2069 struct list_head cluster;
2071 int run_all = count == (unsigned long)-1;
2074 if (root == root->fs_info->extent_root)
2075 root = root->fs_info->tree_root;
2077 delayed_refs = &trans->transaction->delayed_refs;
2078 INIT_LIST_HEAD(&cluster);
2080 spin_lock(&delayed_refs->lock);
2082 count = delayed_refs->num_entries * 2;
2086 if (!(run_all || run_most) &&
2087 delayed_refs->num_heads_ready < 64)
2091 * go find something we can process in the rbtree. We start at
2092 * the beginning of the tree, and then build a cluster
2093 * of refs to process starting at the first one we are able to
2096 ret = btrfs_find_ref_cluster(trans, &cluster,
2097 delayed_refs->run_delayed_start);
2101 ret = run_clustered_refs(trans, root, &cluster);
2104 count -= min_t(unsigned long, ret, count);
2111 node = rb_first(&delayed_refs->root);
2114 count = (unsigned long)-1;
2117 ref = rb_entry(node, struct btrfs_delayed_ref_node,
2119 if (btrfs_delayed_ref_is_head(ref)) {
2120 struct btrfs_delayed_ref_head *head;
2122 head = btrfs_delayed_node_to_head(ref);
2123 atomic_inc(&ref->refs);
2125 spin_unlock(&delayed_refs->lock);
2126 mutex_lock(&head->mutex);
2127 mutex_unlock(&head->mutex);
2129 btrfs_put_delayed_ref(ref);
2133 node = rb_next(node);
2135 spin_unlock(&delayed_refs->lock);
2136 schedule_timeout(1);
2140 spin_unlock(&delayed_refs->lock);
2144 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2145 struct btrfs_root *root,
2146 u64 bytenr, u64 num_bytes, u64 flags,
2149 struct btrfs_delayed_extent_op *extent_op;
2152 extent_op = kmalloc(sizeof(*extent_op), GFP_NOFS);
2156 extent_op->flags_to_set = flags;
2157 extent_op->update_flags = 1;
2158 extent_op->update_key = 0;
2159 extent_op->is_data = is_data ? 1 : 0;
2161 ret = btrfs_add_delayed_extent_op(trans, bytenr, num_bytes, extent_op);
2167 static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
2168 struct btrfs_root *root,
2169 struct btrfs_path *path,
2170 u64 objectid, u64 offset, u64 bytenr)
2172 struct btrfs_delayed_ref_head *head;
2173 struct btrfs_delayed_ref_node *ref;
2174 struct btrfs_delayed_data_ref *data_ref;
2175 struct btrfs_delayed_ref_root *delayed_refs;
2176 struct rb_node *node;
2180 delayed_refs = &trans->transaction->delayed_refs;
2181 spin_lock(&delayed_refs->lock);
2182 head = btrfs_find_delayed_ref_head(trans, bytenr);
2186 if (!mutex_trylock(&head->mutex)) {
2187 atomic_inc(&head->node.refs);
2188 spin_unlock(&delayed_refs->lock);
2190 btrfs_release_path(root->fs_info->extent_root, path);
2192 mutex_lock(&head->mutex);
2193 mutex_unlock(&head->mutex);
2194 btrfs_put_delayed_ref(&head->node);
2198 node = rb_prev(&head->node.rb_node);
2202 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2204 if (ref->bytenr != bytenr)
2208 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY)
2211 data_ref = btrfs_delayed_node_to_data_ref(ref);
2213 node = rb_prev(node);
2215 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2216 if (ref->bytenr == bytenr)
2220 if (data_ref->root != root->root_key.objectid ||
2221 data_ref->objectid != objectid || data_ref->offset != offset)
2226 mutex_unlock(&head->mutex);
2228 spin_unlock(&delayed_refs->lock);
2232 static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
2233 struct btrfs_root *root,
2234 struct btrfs_path *path,
2235 u64 objectid, u64 offset, u64 bytenr)
2237 struct btrfs_root *extent_root = root->fs_info->extent_root;
2238 struct extent_buffer *leaf;
2239 struct btrfs_extent_data_ref *ref;
2240 struct btrfs_extent_inline_ref *iref;
2241 struct btrfs_extent_item *ei;
2242 struct btrfs_key key;
2246 key.objectid = bytenr;
2247 key.offset = (u64)-1;
2248 key.type = BTRFS_EXTENT_ITEM_KEY;
2250 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2256 if (path->slots[0] == 0)
2260 leaf = path->nodes[0];
2261 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2263 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
2267 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2268 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2269 if (item_size < sizeof(*ei)) {
2270 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
2274 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2276 if (item_size != sizeof(*ei) +
2277 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
2280 if (btrfs_extent_generation(leaf, ei) <=
2281 btrfs_root_last_snapshot(&root->root_item))
2284 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
2285 if (btrfs_extent_inline_ref_type(leaf, iref) !=
2286 BTRFS_EXTENT_DATA_REF_KEY)
2289 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
2290 if (btrfs_extent_refs(leaf, ei) !=
2291 btrfs_extent_data_ref_count(leaf, ref) ||
2292 btrfs_extent_data_ref_root(leaf, ref) !=
2293 root->root_key.objectid ||
2294 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
2295 btrfs_extent_data_ref_offset(leaf, ref) != offset)
2303 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
2304 struct btrfs_root *root,
2305 u64 objectid, u64 offset, u64 bytenr)
2307 struct btrfs_path *path;
2311 path = btrfs_alloc_path();
2316 ret = check_committed_ref(trans, root, path, objectid,
2318 if (ret && ret != -ENOENT)
2321 ret2 = check_delayed_ref(trans, root, path, objectid,
2323 } while (ret2 == -EAGAIN);
2325 if (ret2 && ret2 != -ENOENT) {
2330 if (ret != -ENOENT || ret2 != -ENOENT)
2333 btrfs_free_path(path);
2338 int btrfs_cache_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2339 struct extent_buffer *buf, u32 nr_extents)
2341 struct btrfs_key key;
2342 struct btrfs_file_extent_item *fi;
2350 if (!root->ref_cows)
2353 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
2355 root_gen = root->root_key.offset;
2358 root_gen = trans->transid - 1;
2361 level = btrfs_header_level(buf);
2362 nritems = btrfs_header_nritems(buf);
2365 struct btrfs_leaf_ref *ref;
2366 struct btrfs_extent_info *info;
2368 ref = btrfs_alloc_leaf_ref(root, nr_extents);
2374 ref->root_gen = root_gen;
2375 ref->bytenr = buf->start;
2376 ref->owner = btrfs_header_owner(buf);
2377 ref->generation = btrfs_header_generation(buf);
2378 ref->nritems = nr_extents;
2379 info = ref->extents;
2381 for (i = 0; nr_extents > 0 && i < nritems; i++) {
2383 btrfs_item_key_to_cpu(buf, &key, i);
2384 if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY)
2386 fi = btrfs_item_ptr(buf, i,
2387 struct btrfs_file_extent_item);
2388 if (btrfs_file_extent_type(buf, fi) ==
2389 BTRFS_FILE_EXTENT_INLINE)
2391 disk_bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
2392 if (disk_bytenr == 0)
2395 info->bytenr = disk_bytenr;
2397 btrfs_file_extent_disk_num_bytes(buf, fi);
2398 info->objectid = key.objectid;
2399 info->offset = key.offset;
2403 ret = btrfs_add_leaf_ref(root, ref, shared);
2404 if (ret == -EEXIST && shared) {
2405 struct btrfs_leaf_ref *old;
2406 old = btrfs_lookup_leaf_ref(root, ref->bytenr);
2408 btrfs_remove_leaf_ref(root, old);
2409 btrfs_free_leaf_ref(root, old);
2410 ret = btrfs_add_leaf_ref(root, ref, shared);
2413 btrfs_free_leaf_ref(root, ref);
2419 /* when a block goes through cow, we update the reference counts of
2420 * everything that block points to. The internal pointers of the block
2421 * can be in just about any order, and it is likely to have clusters of
2422 * things that are close together and clusters of things that are not.
2424 * To help reduce the seeks that come with updating all of these reference
2425 * counts, sort them by byte number before actual updates are done.
2427 * struct refsort is used to match byte number to slot in the btree block.
2428 * we sort based on the byte number and then use the slot to actually
2431 * struct refsort is smaller than strcut btrfs_item and smaller than
2432 * struct btrfs_key_ptr. Since we're currently limited to the page size
2433 * for a btree block, there's no way for a kmalloc of refsorts for a
2434 * single node to be bigger than a page.
2442 * for passing into sort()
2444 static int refsort_cmp(const void *a_void, const void *b_void)
2446 const struct refsort *a = a_void;
2447 const struct refsort *b = b_void;
2449 if (a->bytenr < b->bytenr)
2451 if (a->bytenr > b->bytenr)
2457 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
2458 struct btrfs_root *root,
2459 struct extent_buffer *buf,
2460 int full_backref, int inc)
2467 struct btrfs_key key;
2468 struct btrfs_file_extent_item *fi;
2472 int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
2473 u64, u64, u64, u64, u64, u64);
2475 ref_root = btrfs_header_owner(buf);
2476 nritems = btrfs_header_nritems(buf);
2477 level = btrfs_header_level(buf);
2479 if (!root->ref_cows && level == 0)
2483 process_func = btrfs_inc_extent_ref;
2485 process_func = btrfs_free_extent;
2488 parent = buf->start;
2492 for (i = 0; i < nritems; i++) {
2494 btrfs_item_key_to_cpu(buf, &key, i);
2495 if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY)
2497 fi = btrfs_item_ptr(buf, i,
2498 struct btrfs_file_extent_item);
2499 if (btrfs_file_extent_type(buf, fi) ==
2500 BTRFS_FILE_EXTENT_INLINE)
2502 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
2506 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
2507 key.offset -= btrfs_file_extent_offset(buf, fi);
2508 ret = process_func(trans, root, bytenr, num_bytes,
2509 parent, ref_root, key.objectid,
2514 bytenr = btrfs_node_blockptr(buf, i);
2515 num_bytes = btrfs_level_size(root, level - 1);
2516 ret = process_func(trans, root, bytenr, num_bytes,
2517 parent, ref_root, level - 1, 0);
2528 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2529 struct extent_buffer *buf, int full_backref)
2531 return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
2534 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2535 struct extent_buffer *buf, int full_backref)
2537 return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
2540 static int write_one_cache_group(struct btrfs_trans_handle *trans,
2541 struct btrfs_root *root,
2542 struct btrfs_path *path,
2543 struct btrfs_block_group_cache *cache)
2546 struct btrfs_root *extent_root = root->fs_info->extent_root;
2548 struct extent_buffer *leaf;
2550 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
2555 leaf = path->nodes[0];
2556 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
2557 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
2558 btrfs_mark_buffer_dirty(leaf);
2559 btrfs_release_path(extent_root, path);
2567 static struct btrfs_block_group_cache *
2568 next_block_group(struct btrfs_root *root,
2569 struct btrfs_block_group_cache *cache)
2571 struct rb_node *node;
2572 spin_lock(&root->fs_info->block_group_cache_lock);
2573 node = rb_next(&cache->cache_node);
2574 btrfs_put_block_group(cache);
2576 cache = rb_entry(node, struct btrfs_block_group_cache,
2578 atomic_inc(&cache->count);
2581 spin_unlock(&root->fs_info->block_group_cache_lock);
2585 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
2586 struct btrfs_root *root)
2588 struct btrfs_block_group_cache *cache;
2590 struct btrfs_path *path;
2593 path = btrfs_alloc_path();
2599 err = btrfs_run_delayed_refs(trans, root,
2604 cache = btrfs_lookup_first_block_group(root->fs_info, last);
2608 cache = next_block_group(root, cache);
2618 last = cache->key.objectid + cache->key.offset;
2620 err = write_one_cache_group(trans, root, path, cache);
2622 btrfs_put_block_group(cache);
2625 btrfs_free_path(path);
2629 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
2631 struct btrfs_block_group_cache *block_group;
2634 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
2635 if (!block_group || block_group->ro)
2638 btrfs_put_block_group(block_group);
2642 static int update_space_info(struct btrfs_fs_info *info, u64 flags,
2643 u64 total_bytes, u64 bytes_used,
2644 struct btrfs_space_info **space_info)
2646 struct btrfs_space_info *found;
2648 found = __find_space_info(info, flags);
2650 spin_lock(&found->lock);
2651 found->total_bytes += total_bytes;
2652 found->bytes_used += bytes_used;
2654 spin_unlock(&found->lock);
2655 *space_info = found;
2658 found = kzalloc(sizeof(*found), GFP_NOFS);
2662 INIT_LIST_HEAD(&found->block_groups);
2663 init_rwsem(&found->groups_sem);
2664 spin_lock_init(&found->lock);
2665 found->flags = flags;
2666 found->total_bytes = total_bytes;
2667 found->bytes_used = bytes_used;
2668 found->bytes_pinned = 0;
2669 found->bytes_reserved = 0;
2670 found->bytes_readonly = 0;
2671 found->bytes_delalloc = 0;
2673 found->force_alloc = 0;
2674 *space_info = found;
2675 list_add_rcu(&found->list, &info->space_info);
2676 atomic_set(&found->caching_threads, 0);
2680 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
2682 u64 extra_flags = flags & (BTRFS_BLOCK_GROUP_RAID0 |
2683 BTRFS_BLOCK_GROUP_RAID1 |
2684 BTRFS_BLOCK_GROUP_RAID10 |
2685 BTRFS_BLOCK_GROUP_DUP);
2687 if (flags & BTRFS_BLOCK_GROUP_DATA)
2688 fs_info->avail_data_alloc_bits |= extra_flags;
2689 if (flags & BTRFS_BLOCK_GROUP_METADATA)
2690 fs_info->avail_metadata_alloc_bits |= extra_flags;
2691 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
2692 fs_info->avail_system_alloc_bits |= extra_flags;
2696 static void set_block_group_readonly(struct btrfs_block_group_cache *cache)
2698 spin_lock(&cache->space_info->lock);
2699 spin_lock(&cache->lock);
2701 cache->space_info->bytes_readonly += cache->key.offset -
2702 btrfs_block_group_used(&cache->item);
2705 spin_unlock(&cache->lock);
2706 spin_unlock(&cache->space_info->lock);
2709 u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
2711 u64 num_devices = root->fs_info->fs_devices->rw_devices;
2713 if (num_devices == 1)
2714 flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0);
2715 if (num_devices < 4)
2716 flags &= ~BTRFS_BLOCK_GROUP_RAID10;
2718 if ((flags & BTRFS_BLOCK_GROUP_DUP) &&
2719 (flags & (BTRFS_BLOCK_GROUP_RAID1 |
2720 BTRFS_BLOCK_GROUP_RAID10))) {
2721 flags &= ~BTRFS_BLOCK_GROUP_DUP;
2724 if ((flags & BTRFS_BLOCK_GROUP_RAID1) &&
2725 (flags & BTRFS_BLOCK_GROUP_RAID10)) {
2726 flags &= ~BTRFS_BLOCK_GROUP_RAID1;
2729 if ((flags & BTRFS_BLOCK_GROUP_RAID0) &&
2730 ((flags & BTRFS_BLOCK_GROUP_RAID1) |
2731 (flags & BTRFS_BLOCK_GROUP_RAID10) |
2732 (flags & BTRFS_BLOCK_GROUP_DUP)))
2733 flags &= ~BTRFS_BLOCK_GROUP_RAID0;
2737 static u64 btrfs_get_alloc_profile(struct btrfs_root *root, u64 data)
2739 struct btrfs_fs_info *info = root->fs_info;
2743 alloc_profile = info->avail_data_alloc_bits &
2744 info->data_alloc_profile;
2745 data = BTRFS_BLOCK_GROUP_DATA | alloc_profile;
2746 } else if (root == root->fs_info->chunk_root) {
2747 alloc_profile = info->avail_system_alloc_bits &
2748 info->system_alloc_profile;
2749 data = BTRFS_BLOCK_GROUP_SYSTEM | alloc_profile;
2751 alloc_profile = info->avail_metadata_alloc_bits &
2752 info->metadata_alloc_profile;
2753 data = BTRFS_BLOCK_GROUP_METADATA | alloc_profile;
2756 return btrfs_reduce_alloc_profile(root, data);
2759 void btrfs_set_inode_space_info(struct btrfs_root *root, struct inode *inode)
2763 alloc_target = btrfs_get_alloc_profile(root, 1);
2764 BTRFS_I(inode)->space_info = __find_space_info(root->fs_info,
2769 * for now this just makes sure we have at least 5% of our metadata space free
2772 int btrfs_check_metadata_free_space(struct btrfs_root *root)
2774 struct btrfs_fs_info *info = root->fs_info;
2775 struct btrfs_space_info *meta_sinfo;
2776 u64 alloc_target, thresh;
2777 int committed = 0, ret;
2779 /* get the space info for where the metadata will live */
2780 alloc_target = btrfs_get_alloc_profile(root, 0);
2781 meta_sinfo = __find_space_info(info, alloc_target);
2786 spin_lock(&meta_sinfo->lock);
2787 if (!meta_sinfo->full)
2788 thresh = meta_sinfo->total_bytes * 80;
2790 thresh = meta_sinfo->total_bytes * 95;
2792 do_div(thresh, 100);
2794 if (meta_sinfo->bytes_used + meta_sinfo->bytes_reserved +
2795 meta_sinfo->bytes_pinned + meta_sinfo->bytes_readonly +
2796 meta_sinfo->bytes_super > thresh) {
2797 struct btrfs_trans_handle *trans;
2798 if (!meta_sinfo->full) {
2799 meta_sinfo->force_alloc = 1;
2800 spin_unlock(&meta_sinfo->lock);
2802 trans = btrfs_start_transaction(root, 1);
2806 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
2807 2 * 1024 * 1024, alloc_target, 0);
2808 btrfs_end_transaction(trans, root);
2810 meta_sinfo = __find_space_info(info,
2815 spin_unlock(&meta_sinfo->lock);
2819 trans = btrfs_join_transaction(root, 1);
2822 ret = btrfs_commit_transaction(trans, root);
2829 spin_unlock(&meta_sinfo->lock);
2835 * This will check the space that the inode allocates from to make sure we have
2836 * enough space for bytes.
2838 int btrfs_check_data_free_space(struct btrfs_root *root, struct inode *inode,
2841 struct btrfs_space_info *data_sinfo;
2842 int ret = 0, committed = 0;
2844 /* make sure bytes are sectorsize aligned */
2845 bytes = (bytes + root->sectorsize - 1) & ~((u64)root->sectorsize - 1);
2847 data_sinfo = BTRFS_I(inode)->space_info;
2852 /* make sure we have enough space to handle the data first */
2853 spin_lock(&data_sinfo->lock);
2854 if (data_sinfo->total_bytes - data_sinfo->bytes_used -
2855 data_sinfo->bytes_delalloc - data_sinfo->bytes_reserved -
2856 data_sinfo->bytes_pinned - data_sinfo->bytes_readonly -
2857 data_sinfo->bytes_may_use - data_sinfo->bytes_super < bytes) {
2858 struct btrfs_trans_handle *trans;
2861 * if we don't have enough free bytes in this space then we need
2862 * to alloc a new chunk.
2864 if (!data_sinfo->full) {
2867 data_sinfo->force_alloc = 1;
2868 spin_unlock(&data_sinfo->lock);
2870 alloc_target = btrfs_get_alloc_profile(root, 1);
2871 trans = btrfs_start_transaction(root, 1);
2875 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
2876 bytes + 2 * 1024 * 1024,
2878 btrfs_end_transaction(trans, root);
2883 btrfs_set_inode_space_info(root, inode);
2884 data_sinfo = BTRFS_I(inode)->space_info;
2888 spin_unlock(&data_sinfo->lock);
2890 /* commit the current transaction and try again */
2893 trans = btrfs_join_transaction(root, 1);
2896 ret = btrfs_commit_transaction(trans, root);
2902 printk(KERN_ERR "no space left, need %llu, %llu delalloc bytes"
2903 ", %llu bytes_used, %llu bytes_reserved, "
2904 "%llu bytes_pinned, %llu bytes_readonly, %llu may use "
2905 "%llu total\n", (unsigned long long)bytes,
2906 (unsigned long long)data_sinfo->bytes_delalloc,
2907 (unsigned long long)data_sinfo->bytes_used,
2908 (unsigned long long)data_sinfo->bytes_reserved,
2909 (unsigned long long)data_sinfo->bytes_pinned,
2910 (unsigned long long)data_sinfo->bytes_readonly,
2911 (unsigned long long)data_sinfo->bytes_may_use,
2912 (unsigned long long)data_sinfo->total_bytes);
2915 data_sinfo->bytes_may_use += bytes;
2916 BTRFS_I(inode)->reserved_bytes += bytes;
2917 spin_unlock(&data_sinfo->lock);
2919 return btrfs_check_metadata_free_space(root);
2923 * if there was an error for whatever reason after calling
2924 * btrfs_check_data_free_space, call this so we can cleanup the counters.
2926 void btrfs_free_reserved_data_space(struct btrfs_root *root,
2927 struct inode *inode, u64 bytes)
2929 struct btrfs_space_info *data_sinfo;
2931 /* make sure bytes are sectorsize aligned */
2932 bytes = (bytes + root->sectorsize - 1) & ~((u64)root->sectorsize - 1);
2934 data_sinfo = BTRFS_I(inode)->space_info;
2935 spin_lock(&data_sinfo->lock);
2936 data_sinfo->bytes_may_use -= bytes;
2937 BTRFS_I(inode)->reserved_bytes -= bytes;
2938 spin_unlock(&data_sinfo->lock);
2941 /* called when we are adding a delalloc extent to the inode's io_tree */
2942 void btrfs_delalloc_reserve_space(struct btrfs_root *root, struct inode *inode,
2945 struct btrfs_space_info *data_sinfo;
2947 /* get the space info for where this inode will be storing its data */
2948 data_sinfo = BTRFS_I(inode)->space_info;
2950 /* make sure we have enough space to handle the data first */
2951 spin_lock(&data_sinfo->lock);
2952 data_sinfo->bytes_delalloc += bytes;
2955 * we are adding a delalloc extent without calling
2956 * btrfs_check_data_free_space first. This happens on a weird
2957 * writepage condition, but shouldn't hurt our accounting
2959 if (unlikely(bytes > BTRFS_I(inode)->reserved_bytes)) {
2960 data_sinfo->bytes_may_use -= BTRFS_I(inode)->reserved_bytes;
2961 BTRFS_I(inode)->reserved_bytes = 0;
2963 data_sinfo->bytes_may_use -= bytes;
2964 BTRFS_I(inode)->reserved_bytes -= bytes;
2967 spin_unlock(&data_sinfo->lock);
2970 /* called when we are clearing an delalloc extent from the inode's io_tree */
2971 void btrfs_delalloc_free_space(struct btrfs_root *root, struct inode *inode,
2974 struct btrfs_space_info *info;
2976 info = BTRFS_I(inode)->space_info;
2978 spin_lock(&info->lock);
2979 info->bytes_delalloc -= bytes;
2980 spin_unlock(&info->lock);
2983 static void force_metadata_allocation(struct btrfs_fs_info *info)
2985 struct list_head *head = &info->space_info;
2986 struct btrfs_space_info *found;
2989 list_for_each_entry_rcu(found, head, list) {
2990 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
2991 found->force_alloc = 1;
2996 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
2997 struct btrfs_root *extent_root, u64 alloc_bytes,
2998 u64 flags, int force)
3000 struct btrfs_space_info *space_info;
3001 struct btrfs_fs_info *fs_info = extent_root->fs_info;
3005 mutex_lock(&fs_info->chunk_mutex);
3007 flags = btrfs_reduce_alloc_profile(extent_root, flags);
3009 space_info = __find_space_info(extent_root->fs_info, flags);
3011 ret = update_space_info(extent_root->fs_info, flags,
3015 BUG_ON(!space_info);
3017 spin_lock(&space_info->lock);
3018 if (space_info->force_alloc) {
3020 space_info->force_alloc = 0;
3022 if (space_info->full) {
3023 spin_unlock(&space_info->lock);
3027 thresh = space_info->total_bytes - space_info->bytes_readonly;
3028 thresh = div_factor(thresh, 6);
3030 (space_info->bytes_used + space_info->bytes_pinned +
3031 space_info->bytes_reserved + alloc_bytes) < thresh) {
3032 spin_unlock(&space_info->lock);
3035 spin_unlock(&space_info->lock);
3038 * if we're doing a data chunk, go ahead and make sure that
3039 * we keep a reasonable number of metadata chunks allocated in the
3042 if (flags & BTRFS_BLOCK_GROUP_DATA) {
3043 fs_info->data_chunk_allocations++;
3044 if (!(fs_info->data_chunk_allocations %
3045 fs_info->metadata_ratio))
3046 force_metadata_allocation(fs_info);
3049 ret = btrfs_alloc_chunk(trans, extent_root, flags);
3051 space_info->full = 1;
3053 mutex_unlock(&extent_root->fs_info->chunk_mutex);
3057 static int update_block_group(struct btrfs_trans_handle *trans,
3058 struct btrfs_root *root,
3059 u64 bytenr, u64 num_bytes, int alloc,
3062 struct btrfs_block_group_cache *cache;
3063 struct btrfs_fs_info *info = root->fs_info;
3064 u64 total = num_bytes;
3068 /* block accounting for super block */
3069 spin_lock(&info->delalloc_lock);
3070 old_val = btrfs_super_bytes_used(&info->super_copy);
3072 old_val += num_bytes;
3074 old_val -= num_bytes;
3075 btrfs_set_super_bytes_used(&info->super_copy, old_val);
3077 /* block accounting for root item */
3078 old_val = btrfs_root_used(&root->root_item);
3080 old_val += num_bytes;
3082 old_val -= num_bytes;
3083 btrfs_set_root_used(&root->root_item, old_val);
3084 spin_unlock(&info->delalloc_lock);
3087 cache = btrfs_lookup_block_group(info, bytenr);
3090 byte_in_group = bytenr - cache->key.objectid;
3091 WARN_ON(byte_in_group > cache->key.offset);
3093 spin_lock(&cache->space_info->lock);
3094 spin_lock(&cache->lock);
3096 old_val = btrfs_block_group_used(&cache->item);
3097 num_bytes = min(total, cache->key.offset - byte_in_group);
3099 old_val += num_bytes;
3100 btrfs_set_block_group_used(&cache->item, old_val);
3101 cache->reserved -= num_bytes;
3102 cache->space_info->bytes_used += num_bytes;
3103 cache->space_info->bytes_reserved -= num_bytes;
3105 cache->space_info->bytes_readonly -= num_bytes;
3106 spin_unlock(&cache->lock);
3107 spin_unlock(&cache->space_info->lock);
3109 old_val -= num_bytes;
3110 cache->space_info->bytes_used -= num_bytes;
3112 cache->space_info->bytes_readonly += num_bytes;
3113 btrfs_set_block_group_used(&cache->item, old_val);
3114 spin_unlock(&cache->lock);
3115 spin_unlock(&cache->space_info->lock);
3119 ret = btrfs_discard_extent(root, bytenr,
3123 ret = btrfs_add_free_space(cache, bytenr,
3128 btrfs_put_block_group(cache);
3130 bytenr += num_bytes;
3135 static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
3137 struct btrfs_block_group_cache *cache;
3140 cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
3144 bytenr = cache->key.objectid;
3145 btrfs_put_block_group(cache);
3151 * this function must be called within transaction
3153 int btrfs_pin_extent(struct btrfs_root *root,
3154 u64 bytenr, u64 num_bytes, int reserved)
3156 struct btrfs_fs_info *fs_info = root->fs_info;
3157 struct btrfs_block_group_cache *cache;
3159 cache = btrfs_lookup_block_group(fs_info, bytenr);
3162 spin_lock(&cache->space_info->lock);
3163 spin_lock(&cache->lock);
3164 cache->pinned += num_bytes;
3165 cache->space_info->bytes_pinned += num_bytes;
3167 cache->reserved -= num_bytes;
3168 cache->space_info->bytes_reserved -= num_bytes;
3170 spin_unlock(&cache->lock);
3171 spin_unlock(&cache->space_info->lock);
3173 btrfs_put_block_group(cache);
3175 set_extent_dirty(fs_info->pinned_extents,
3176 bytenr, bytenr + num_bytes - 1, GFP_NOFS);
3180 static int update_reserved_extents(struct btrfs_block_group_cache *cache,
3181 u64 num_bytes, int reserve)
3183 spin_lock(&cache->space_info->lock);
3184 spin_lock(&cache->lock);
3186 cache->reserved += num_bytes;
3187 cache->space_info->bytes_reserved += num_bytes;
3189 cache->reserved -= num_bytes;
3190 cache->space_info->bytes_reserved -= num_bytes;
3192 spin_unlock(&cache->lock);
3193 spin_unlock(&cache->space_info->lock);
3197 int btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
3198 struct btrfs_root *root)
3200 struct btrfs_fs_info *fs_info = root->fs_info;
3201 struct btrfs_caching_control *next;
3202 struct btrfs_caching_control *caching_ctl;
3203 struct btrfs_block_group_cache *cache;
3205 down_write(&fs_info->extent_commit_sem);
3207 list_for_each_entry_safe(caching_ctl, next,
3208 &fs_info->caching_block_groups, list) {
3209 cache = caching_ctl->block_group;
3210 if (block_group_cache_done(cache)) {
3211 cache->last_byte_to_unpin = (u64)-1;
3212 list_del_init(&caching_ctl->list);
3213 put_caching_control(caching_ctl);
3215 cache->last_byte_to_unpin = caching_ctl->progress;
3219 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
3220 fs_info->pinned_extents = &fs_info->freed_extents[1];
3222 fs_info->pinned_extents = &fs_info->freed_extents[0];
3224 up_write(&fs_info->extent_commit_sem);
3228 static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
3230 struct btrfs_fs_info *fs_info = root->fs_info;
3231 struct btrfs_block_group_cache *cache = NULL;
3234 while (start <= end) {
3236 start >= cache->key.objectid + cache->key.offset) {
3238 btrfs_put_block_group(cache);
3239 cache = btrfs_lookup_block_group(fs_info, start);
3243 len = cache->key.objectid + cache->key.offset - start;
3244 len = min(len, end + 1 - start);
3246 if (start < cache->last_byte_to_unpin) {
3247 len = min(len, cache->last_byte_to_unpin - start);
3248 btrfs_add_free_space(cache, start, len);
3251 spin_lock(&cache->space_info->lock);
3252 spin_lock(&cache->lock);
3253 cache->pinned -= len;
3254 cache->space_info->bytes_pinned -= len;
3255 spin_unlock(&cache->lock);
3256 spin_unlock(&cache->space_info->lock);
3262 btrfs_put_block_group(cache);
3266 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
3267 struct btrfs_root *root)
3269 struct btrfs_fs_info *fs_info = root->fs_info;
3270 struct extent_io_tree *unpin;
3275 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
3276 unpin = &fs_info->freed_extents[1];
3278 unpin = &fs_info->freed_extents[0];
3281 ret = find_first_extent_bit(unpin, 0, &start, &end,
3286 ret = btrfs_discard_extent(root, start, end + 1 - start);
3288 clear_extent_dirty(unpin, start, end, GFP_NOFS);
3289 unpin_extent_range(root, start, end);
3296 static int pin_down_bytes(struct btrfs_trans_handle *trans,
3297 struct btrfs_root *root,
3298 struct btrfs_path *path,
3299 u64 bytenr, u64 num_bytes,
3300 int is_data, int reserved,
3301 struct extent_buffer **must_clean)
3304 struct extent_buffer *buf;
3309 buf = btrfs_find_tree_block(root, bytenr, num_bytes);
3313 /* we can reuse a block if it hasn't been written
3314 * and it is from this transaction. We can't
3315 * reuse anything from the tree log root because
3316 * it has tiny sub-transactions.
3318 if (btrfs_buffer_uptodate(buf, 0) &&
3319 btrfs_try_tree_lock(buf)) {
3320 u64 header_owner = btrfs_header_owner(buf);
3321 u64 header_transid = btrfs_header_generation(buf);
3322 if (header_owner != BTRFS_TREE_LOG_OBJECTID &&
3323 header_transid == trans->transid &&
3324 !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
3328 btrfs_tree_unlock(buf);
3330 free_extent_buffer(buf);
3333 btrfs_set_path_blocking(path);
3334 /* unlocks the pinned mutex */
3335 btrfs_pin_extent(root, bytenr, num_bytes, reserved);
3341 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
3342 struct btrfs_root *root,
3343 u64 bytenr, u64 num_bytes, u64 parent,
3344 u64 root_objectid, u64 owner_objectid,
3345 u64 owner_offset, int refs_to_drop,
3346 struct btrfs_delayed_extent_op *extent_op)
3348 struct btrfs_key key;
3349 struct btrfs_path *path;
3350 struct btrfs_fs_info *info = root->fs_info;
3351 struct btrfs_root *extent_root = info->extent_root;
3352 struct extent_buffer *leaf;
3353 struct btrfs_extent_item *ei;
3354 struct btrfs_extent_inline_ref *iref;
3357 int extent_slot = 0;
3358 int found_extent = 0;
3363 path = btrfs_alloc_path();
3368 path->leave_spinning = 1;
3370 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
3371 BUG_ON(!is_data && refs_to_drop != 1);
3373 ret = lookup_extent_backref(trans, extent_root, path, &iref,
3374 bytenr, num_bytes, parent,
3375 root_objectid, owner_objectid,
3378 extent_slot = path->slots[0];
3379 while (extent_slot >= 0) {
3380 btrfs_item_key_to_cpu(path->nodes[0], &key,
3382 if (key.objectid != bytenr)
3384 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
3385 key.offset == num_bytes) {
3389 if (path->slots[0] - extent_slot > 5)
3393 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3394 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
3395 if (found_extent && item_size < sizeof(*ei))
3398 if (!found_extent) {
3400 ret = remove_extent_backref(trans, extent_root, path,
3404 btrfs_release_path(extent_root, path);
3405 path->leave_spinning = 1;
3407 key.objectid = bytenr;
3408 key.type = BTRFS_EXTENT_ITEM_KEY;
3409 key.offset = num_bytes;
3411 ret = btrfs_search_slot(trans, extent_root,
3414 printk(KERN_ERR "umm, got %d back from search"
3415 ", was looking for %llu\n", ret,
3416 (unsigned long long)bytenr);
3417 btrfs_print_leaf(extent_root, path->nodes[0]);
3420 extent_slot = path->slots[0];
3423 btrfs_print_leaf(extent_root, path->nodes[0]);
3425 printk(KERN_ERR "btrfs unable to find ref byte nr %llu "
3426 "parent %llu root %llu owner %llu offset %llu\n",
3427 (unsigned long long)bytenr,
3428 (unsigned long long)parent,
3429 (unsigned long long)root_objectid,
3430 (unsigned long long)owner_objectid,
3431 (unsigned long long)owner_offset);
3434 leaf = path->nodes[0];
3435 item_size = btrfs_item_size_nr(leaf, extent_slot);
3436 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3437 if (item_size < sizeof(*ei)) {
3438 BUG_ON(found_extent || extent_slot != path->slots[0]);
3439 ret = convert_extent_item_v0(trans, extent_root, path,
3443 btrfs_release_path(extent_root, path);
3444 path->leave_spinning = 1;
3446 key.objectid = bytenr;
3447 key.type = BTRFS_EXTENT_ITEM_KEY;
3448 key.offset = num_bytes;
3450 ret = btrfs_search_slot(trans, extent_root, &key, path,
3453 printk(KERN_ERR "umm, got %d back from search"
3454 ", was looking for %llu\n", ret,
3455 (unsigned long long)bytenr);
3456 btrfs_print_leaf(extent_root, path->nodes[0]);
3459 extent_slot = path->slots[0];
3460 leaf = path->nodes[0];
3461 item_size = btrfs_item_size_nr(leaf, extent_slot);
3464 BUG_ON(item_size < sizeof(*ei));
3465 ei = btrfs_item_ptr(leaf, extent_slot,
3466 struct btrfs_extent_item);
3467 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID) {
3468 struct btrfs_tree_block_info *bi;
3469 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
3470 bi = (struct btrfs_tree_block_info *)(ei + 1);
3471 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
3474 refs = btrfs_extent_refs(leaf, ei);
3475 BUG_ON(refs < refs_to_drop);
3476 refs -= refs_to_drop;
3480 __run_delayed_extent_op(extent_op, leaf, ei);
3482 * In the case of inline back ref, reference count will
3483 * be updated by remove_extent_backref
3486 BUG_ON(!found_extent);
3488 btrfs_set_extent_refs(leaf, ei, refs);
3489 btrfs_mark_buffer_dirty(leaf);
3492 ret = remove_extent_backref(trans, extent_root, path,
3499 struct extent_buffer *must_clean = NULL;
3502 BUG_ON(is_data && refs_to_drop !=
3503 extent_data_ref_count(root, path, iref));
3505 BUG_ON(path->slots[0] != extent_slot);
3507 BUG_ON(path->slots[0] != extent_slot + 1);
3508 path->slots[0] = extent_slot;
3513 ret = pin_down_bytes(trans, root, path, bytenr,
3514 num_bytes, is_data, 0, &must_clean);
3519 * it is going to be very rare for someone to be waiting
3520 * on the block we're freeing. del_items might need to
3521 * schedule, so rather than get fancy, just force it
3525 btrfs_set_lock_blocking(must_clean);
3527 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
3530 btrfs_release_path(extent_root, path);
3533 clean_tree_block(NULL, root, must_clean);
3534 btrfs_tree_unlock(must_clean);
3535 free_extent_buffer(must_clean);
3539 ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
3542 invalidate_mapping_pages(info->btree_inode->i_mapping,
3543 bytenr >> PAGE_CACHE_SHIFT,
3544 (bytenr + num_bytes - 1) >> PAGE_CACHE_SHIFT);
3547 ret = update_block_group(trans, root, bytenr, num_bytes, 0,
3551 btrfs_free_path(path);
3556 * when we free an extent, it is possible (and likely) that we free the last
3557 * delayed ref for that extent as well. This searches the delayed ref tree for
3558 * a given extent, and if there are no other delayed refs to be processed, it
3559 * removes it from the tree.
3561 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
3562 struct btrfs_root *root, u64 bytenr)
3564 struct btrfs_delayed_ref_head *head;
3565 struct btrfs_delayed_ref_root *delayed_refs;
3566 struct btrfs_delayed_ref_node *ref;
3567 struct rb_node *node;
3570 delayed_refs = &trans->transaction->delayed_refs;
3571 spin_lock(&delayed_refs->lock);
3572 head = btrfs_find_delayed_ref_head(trans, bytenr);
3576 node = rb_prev(&head->node.rb_node);
3580 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
3582 /* there are still entries for this ref, we can't drop it */
3583 if (ref->bytenr == bytenr)
3586 if (head->extent_op) {
3587 if (!head->must_insert_reserved)
3589 kfree(head->extent_op);
3590 head->extent_op = NULL;
3594 * waiting for the lock here would deadlock. If someone else has it
3595 * locked they are already in the process of dropping it anyway
3597 if (!mutex_trylock(&head->mutex))
3601 * at this point we have a head with no other entries. Go
3602 * ahead and process it.
3604 head->node.in_tree = 0;
3605 rb_erase(&head->node.rb_node, &delayed_refs->root);
3607 delayed_refs->num_entries--;
3610 * we don't take a ref on the node because we're removing it from the
3611 * tree, so we just steal the ref the tree was holding.
3613 delayed_refs->num_heads--;
3614 if (list_empty(&head->cluster))
3615 delayed_refs->num_heads_ready--;
3617 list_del_init(&head->cluster);
3618 spin_unlock(&delayed_refs->lock);
3620 ret = run_one_delayed_ref(trans, root->fs_info->tree_root,
3621 &head->node, head->extent_op,
3622 head->must_insert_reserved);
3624 btrfs_put_delayed_ref(&head->node);
3627 spin_unlock(&delayed_refs->lock);
3631 int btrfs_free_extent(struct btrfs_trans_handle *trans,
3632 struct btrfs_root *root,
3633 u64 bytenr, u64 num_bytes, u64 parent,
3634 u64 root_objectid, u64 owner, u64 offset)
3639 * tree log blocks never actually go into the extent allocation
3640 * tree, just update pinning info and exit early.
3642 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
3643 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
3644 /* unlocks the pinned mutex */
3645 btrfs_pin_extent(root, bytenr, num_bytes, 1);
3647 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
3648 ret = btrfs_add_delayed_tree_ref(trans, bytenr, num_bytes,
3649 parent, root_objectid, (int)owner,
3650 BTRFS_DROP_DELAYED_REF, NULL);
3652 ret = check_ref_cleanup(trans, root, bytenr);
3655 ret = btrfs_add_delayed_data_ref(trans, bytenr, num_bytes,
3656 parent, root_objectid, owner,
3657 offset, BTRFS_DROP_DELAYED_REF, NULL);
3663 static u64 stripe_align(struct btrfs_root *root, u64 val)
3665 u64 mask = ((u64)root->stripesize - 1);
3666 u64 ret = (val + mask) & ~mask;
3671 * when we wait for progress in the block group caching, its because
3672 * our allocation attempt failed at least once. So, we must sleep
3673 * and let some progress happen before we try again.
3675 * This function will sleep at least once waiting for new free space to
3676 * show up, and then it will check the block group free space numbers
3677 * for our min num_bytes. Another option is to have it go ahead
3678 * and look in the rbtree for a free extent of a given size, but this
3682 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
3685 struct btrfs_caching_control *caching_ctl;
3688 caching_ctl = get_caching_control(cache);
3692 wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
3693 (cache->free_space >= num_bytes));
3695 put_caching_control(caching_ctl);
3700 wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
3702 struct btrfs_caching_control *caching_ctl;
3705 caching_ctl = get_caching_control(cache);
3709 wait_event(caching_ctl->wait, block_group_cache_done(cache));
3711 put_caching_control(caching_ctl);
3715 enum btrfs_loop_type {
3716 LOOP_CACHED_ONLY = 0,
3717 LOOP_CACHING_NOWAIT = 1,
3718 LOOP_CACHING_WAIT = 2,
3719 LOOP_ALLOC_CHUNK = 3,
3720 LOOP_NO_EMPTY_SIZE = 4,
3724 * walks the btree of allocated extents and find a hole of a given size.
3725 * The key ins is changed to record the hole:
3726 * ins->objectid == block start
3727 * ins->flags = BTRFS_EXTENT_ITEM_KEY
3728 * ins->offset == number of blocks
3729 * Any available blocks before search_start are skipped.
3731 static noinline int find_free_extent(struct btrfs_trans_handle *trans,
3732 struct btrfs_root *orig_root,
3733 u64 num_bytes, u64 empty_size,
3734 u64 search_start, u64 search_end,
3735 u64 hint_byte, struct btrfs_key *ins,
3736 u64 exclude_start, u64 exclude_nr,
3740 struct btrfs_root *root = orig_root->fs_info->extent_root;
3741 struct btrfs_free_cluster *last_ptr = NULL;
3742 struct btrfs_block_group_cache *block_group = NULL;
3743 int empty_cluster = 2 * 1024 * 1024;
3744 int allowed_chunk_alloc = 0;
3745 struct btrfs_space_info *space_info;
3746 int last_ptr_loop = 0;
3748 bool found_uncached_bg = false;
3749 bool failed_cluster_refill = false;
3751 WARN_ON(num_bytes < root->sectorsize);
3752 btrfs_set_key_type(ins, BTRFS_EXTENT_ITEM_KEY);
3756 space_info = __find_space_info(root->fs_info, data);
3758 if (orig_root->ref_cows || empty_size)
3759 allowed_chunk_alloc = 1;
3761 if (data & BTRFS_BLOCK_GROUP_METADATA) {
3762 last_ptr = &root->fs_info->meta_alloc_cluster;
3763 if (!btrfs_test_opt(root, SSD))
3764 empty_cluster = 64 * 1024;
3767 if ((data & BTRFS_BLOCK_GROUP_DATA) && btrfs_test_opt(root, SSD)) {
3768 last_ptr = &root->fs_info->data_alloc_cluster;
3772 spin_lock(&last_ptr->lock);
3773 if (last_ptr->block_group)
3774 hint_byte = last_ptr->window_start;
3775 spin_unlock(&last_ptr->lock);
3778 search_start = max(search_start, first_logical_byte(root, 0));
3779 search_start = max(search_start, hint_byte);
3784 if (search_start == hint_byte) {
3785 block_group = btrfs_lookup_block_group(root->fs_info,
3788 * we don't want to use the block group if it doesn't match our
3789 * allocation bits, or if its not cached.
3791 if (block_group && block_group_bits(block_group, data) &&
3792 block_group_cache_done(block_group)) {
3793 down_read(&space_info->groups_sem);
3794 if (list_empty(&block_group->list) ||
3797 * someone is removing this block group,
3798 * we can't jump into the have_block_group
3799 * target because our list pointers are not
3802 btrfs_put_block_group(block_group);
3803 up_read(&space_info->groups_sem);
3805 goto have_block_group;
3806 } else if (block_group) {
3807 btrfs_put_block_group(block_group);
3812 down_read(&space_info->groups_sem);
3813 list_for_each_entry(block_group, &space_info->block_groups, list) {
3817 atomic_inc(&block_group->count);
3818 search_start = block_group->key.objectid;
3821 if (unlikely(block_group->cached == BTRFS_CACHE_NO)) {
3823 * we want to start caching kthreads, but not too many
3824 * right off the bat so we don't overwhelm the system,
3825 * so only start them if there are less than 2 and we're
3826 * in the initial allocation phase.
3828 if (loop > LOOP_CACHING_NOWAIT ||
3829 atomic_read(&space_info->caching_threads) < 2) {
3830 ret = cache_block_group(block_group);
3835 cached = block_group_cache_done(block_group);
3836 if (unlikely(!cached)) {
3837 found_uncached_bg = true;
3839 /* if we only want cached bgs, loop */
3840 if (loop == LOOP_CACHED_ONLY)
3844 if (unlikely(block_group->ro))
3848 * Ok we want to try and use the cluster allocator, so lets look
3849 * there, unless we are on LOOP_NO_EMPTY_SIZE, since we will
3850 * have tried the cluster allocator plenty of times at this
3851 * point and not have found anything, so we are likely way too
3852 * fragmented for the clustering stuff to find anything, so lets
3853 * just skip it and let the allocator find whatever block it can
3856 if (last_ptr && loop < LOOP_NO_EMPTY_SIZE) {
3858 * the refill lock keeps out other
3859 * people trying to start a new cluster
3861 spin_lock(&last_ptr->refill_lock);
3862 if (last_ptr->block_group &&
3863 (last_ptr->block_group->ro ||
3864 !block_group_bits(last_ptr->block_group, data))) {
3866 goto refill_cluster;
3869 offset = btrfs_alloc_from_cluster(block_group, last_ptr,
3870 num_bytes, search_start);
3872 /* we have a block, we're done */
3873 spin_unlock(&last_ptr->refill_lock);
3877 spin_lock(&last_ptr->lock);
3879 * whoops, this cluster doesn't actually point to
3880 * this block group. Get a ref on the block
3881 * group is does point to and try again
3883 if (!last_ptr_loop && last_ptr->block_group &&
3884 last_ptr->block_group != block_group) {
3886 btrfs_put_block_group(block_group);
3887 block_group = last_ptr->block_group;
3888 atomic_inc(&block_group->count);
3889 spin_unlock(&last_ptr->lock);
3890 spin_unlock(&last_ptr->refill_lock);
3893 search_start = block_group->key.objectid;
3895 * we know this block group is properly
3896 * in the list because
3897 * btrfs_remove_block_group, drops the
3898 * cluster before it removes the block
3899 * group from the list
3901 goto have_block_group;
3903 spin_unlock(&last_ptr->lock);
3906 * this cluster didn't work out, free it and
3909 btrfs_return_cluster_to_free_space(NULL, last_ptr);
3913 /* allocate a cluster in this block group */
3914 ret = btrfs_find_space_cluster(trans, root,
3915 block_group, last_ptr,
3917 empty_cluster + empty_size);
3920 * now pull our allocation out of this
3923 offset = btrfs_alloc_from_cluster(block_group,
3924 last_ptr, num_bytes,
3927 /* we found one, proceed */
3928 spin_unlock(&last_ptr->refill_lock);
3931 } else if (!cached && loop > LOOP_CACHING_NOWAIT
3932 && !failed_cluster_refill) {
3933 spin_unlock(&last_ptr->refill_lock);
3935 failed_cluster_refill = true;
3936 wait_block_group_cache_progress(block_group,
3937 num_bytes + empty_cluster + empty_size);
3938 goto have_block_group;
3942 * at this point we either didn't find a cluster
3943 * or we weren't able to allocate a block from our
3944 * cluster. Free the cluster we've been trying
3945 * to use, and go to the next block group
3947 btrfs_return_cluster_to_free_space(NULL, last_ptr);
3948 spin_unlock(&last_ptr->refill_lock);
3952 offset = btrfs_find_space_for_alloc(block_group, search_start,
3953 num_bytes, empty_size);
3954 if (!offset && (cached || (!cached &&
3955 loop == LOOP_CACHING_NOWAIT))) {
3957 } else if (!offset && (!cached &&
3958 loop > LOOP_CACHING_NOWAIT)) {
3959 wait_block_group_cache_progress(block_group,
3960 num_bytes + empty_size);
3961 goto have_block_group;
3964 search_start = stripe_align(root, offset);
3965 /* move on to the next group */
3966 if (search_start + num_bytes >= search_end) {
3967 btrfs_add_free_space(block_group, offset, num_bytes);
3971 /* move on to the next group */
3972 if (search_start + num_bytes >
3973 block_group->key.objectid + block_group->key.offset) {
3974 btrfs_add_free_space(block_group, offset, num_bytes);
3978 if (exclude_nr > 0 &&
3979 (search_start + num_bytes > exclude_start &&
3980 search_start < exclude_start + exclude_nr)) {
3981 search_start = exclude_start + exclude_nr;
3983 btrfs_add_free_space(block_group, offset, num_bytes);
3985 * if search_start is still in this block group
3986 * then we just re-search this block group
3988 if (search_start >= block_group->key.objectid &&
3989 search_start < (block_group->key.objectid +
3990 block_group->key.offset))
3991 goto have_block_group;
3995 ins->objectid = search_start;
3996 ins->offset = num_bytes;
3998 if (offset < search_start)
3999 btrfs_add_free_space(block_group, offset,
4000 search_start - offset);
4001 BUG_ON(offset > search_start);
4003 update_reserved_extents(block_group, num_bytes, 1);
4005 /* we are all good, lets return */
4008 failed_cluster_refill = false;
4009 btrfs_put_block_group(block_group);
4011 up_read(&space_info->groups_sem);
4013 /* LOOP_CACHED_ONLY, only search fully cached block groups
4014 * LOOP_CACHING_NOWAIT, search partially cached block groups, but
4015 * dont wait foR them to finish caching
4016 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
4017 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
4018 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
4021 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE &&
4022 (found_uncached_bg || empty_size || empty_cluster ||
4023 allowed_chunk_alloc)) {
4024 if (found_uncached_bg) {
4025 found_uncached_bg = false;
4026 if (loop < LOOP_CACHING_WAIT) {
4032 if (loop == LOOP_ALLOC_CHUNK) {
4037 if (allowed_chunk_alloc) {
4038 ret = do_chunk_alloc(trans, root, num_bytes +
4039 2 * 1024 * 1024, data, 1);
4040 allowed_chunk_alloc = 0;
4042 space_info->force_alloc = 1;
4045 if (loop < LOOP_NO_EMPTY_SIZE) {
4050 } else if (!ins->objectid) {
4054 /* we found what we needed */
4055 if (ins->objectid) {
4056 if (!(data & BTRFS_BLOCK_GROUP_DATA))
4057 trans->block_group = block_group->key.objectid;
4059 btrfs_put_block_group(block_group);
4066 static void dump_space_info(struct btrfs_space_info *info, u64 bytes)
4068 struct btrfs_block_group_cache *cache;
4070 printk(KERN_INFO "space_info has %llu free, is %sfull\n",
4071 (unsigned long long)(info->total_bytes - info->bytes_used -
4072 info->bytes_pinned - info->bytes_reserved),
4073 (info->full) ? "" : "not ");
4074 printk(KERN_INFO "space_info total=%llu, pinned=%llu, delalloc=%llu,"
4075 " may_use=%llu, used=%llu\n",
4076 (unsigned long long)info->total_bytes,
4077 (unsigned long long)info->bytes_pinned,
4078 (unsigned long long)info->bytes_delalloc,
4079 (unsigned long long)info->bytes_may_use,
4080 (unsigned long long)info->bytes_used);
4082 down_read(&info->groups_sem);
4083 list_for_each_entry(cache, &info->block_groups, list) {
4084 spin_lock(&cache->lock);
4085 printk(KERN_INFO "block group %llu has %llu bytes, %llu used "
4086 "%llu pinned %llu reserved\n",
4087 (unsigned long long)cache->key.objectid,
4088 (unsigned long long)cache->key.offset,
4089 (unsigned long long)btrfs_block_group_used(&cache->item),
4090 (unsigned long long)cache->pinned,
4091 (unsigned long long)cache->reserved);
4092 btrfs_dump_free_space(cache, bytes);
4093 spin_unlock(&cache->lock);
4095 up_read(&info->groups_sem);
4098 int btrfs_reserve_extent(struct btrfs_trans_handle *trans,
4099 struct btrfs_root *root,
4100 u64 num_bytes, u64 min_alloc_size,
4101 u64 empty_size, u64 hint_byte,
4102 u64 search_end, struct btrfs_key *ins,
4106 u64 search_start = 0;
4107 struct btrfs_fs_info *info = root->fs_info;
4109 data = btrfs_get_alloc_profile(root, data);
4112 * the only place that sets empty_size is btrfs_realloc_node, which
4113 * is not called recursively on allocations
4115 if (empty_size || root->ref_cows) {
4116 if (!(data & BTRFS_BLOCK_GROUP_METADATA)) {
4117 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
4119 BTRFS_BLOCK_GROUP_METADATA |
4120 (info->metadata_alloc_profile &
4121 info->avail_metadata_alloc_bits), 0);
4123 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
4124 num_bytes + 2 * 1024 * 1024, data, 0);
4127 WARN_ON(num_bytes < root->sectorsize);
4128 ret = find_free_extent(trans, root, num_bytes, empty_size,
4129 search_start, search_end, hint_byte, ins,
4130 trans->alloc_exclude_start,
4131 trans->alloc_exclude_nr, data);
4133 if (ret == -ENOSPC && num_bytes > min_alloc_size) {
4134 num_bytes = num_bytes >> 1;
4135 num_bytes = num_bytes & ~(root->sectorsize - 1);
4136 num_bytes = max(num_bytes, min_alloc_size);
4137 do_chunk_alloc(trans, root->fs_info->extent_root,
4138 num_bytes, data, 1);
4141 if (ret == -ENOSPC) {
4142 struct btrfs_space_info *sinfo;
4144 sinfo = __find_space_info(root->fs_info, data);
4145 printk(KERN_ERR "btrfs allocation failed flags %llu, "
4146 "wanted %llu\n", (unsigned long long)data,
4147 (unsigned long long)num_bytes);
4148 dump_space_info(sinfo, num_bytes);
4154 int btrfs_free_reserved_extent(struct btrfs_root *root, u64 start, u64 len)
4156 struct btrfs_block_group_cache *cache;
4159 cache = btrfs_lookup_block_group(root->fs_info, start);
4161 printk(KERN_ERR "Unable to find block group for %llu\n",
4162 (unsigned long long)start);
4166 ret = btrfs_discard_extent(root, start, len);
4168 btrfs_add_free_space(cache, start, len);
4169 update_reserved_extents(cache, len, 0);
4170 btrfs_put_block_group(cache);
4175 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
4176 struct btrfs_root *root,
4177 u64 parent, u64 root_objectid,
4178 u64 flags, u64 owner, u64 offset,
4179 struct btrfs_key *ins, int ref_mod)
4182 struct btrfs_fs_info *fs_info = root->fs_info;
4183 struct btrfs_extent_item *extent_item;
4184 struct btrfs_extent_inline_ref *iref;
4185 struct btrfs_path *path;
4186 struct extent_buffer *leaf;
4191 type = BTRFS_SHARED_DATA_REF_KEY;
4193 type = BTRFS_EXTENT_DATA_REF_KEY;
4195 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
4197 path = btrfs_alloc_path();
4200 path->leave_spinning = 1;
4201 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
4205 leaf = path->nodes[0];
4206 extent_item = btrfs_item_ptr(leaf, path->slots[0],
4207 struct btrfs_extent_item);
4208 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
4209 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
4210 btrfs_set_extent_flags(leaf, extent_item,
4211 flags | BTRFS_EXTENT_FLAG_DATA);
4213 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
4214 btrfs_set_extent_inline_ref_type(leaf, iref, type);
4216 struct btrfs_shared_data_ref *ref;
4217 ref = (struct btrfs_shared_data_ref *)(iref + 1);
4218 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
4219 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
4221 struct btrfs_extent_data_ref *ref;
4222 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
4223 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
4224 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
4225 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
4226 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
4229 btrfs_mark_buffer_dirty(path->nodes[0]);
4230 btrfs_free_path(path);
4232 ret = update_block_group(trans, root, ins->objectid, ins->offset,
4235 printk(KERN_ERR "btrfs update block group failed for %llu "
4236 "%llu\n", (unsigned long long)ins->objectid,
4237 (unsigned long long)ins->offset);
4243 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
4244 struct btrfs_root *root,
4245 u64 parent, u64 root_objectid,
4246 u64 flags, struct btrfs_disk_key *key,
4247 int level, struct btrfs_key *ins)
4250 struct btrfs_fs_info *fs_info = root->fs_info;
4251 struct btrfs_extent_item *extent_item;
4252 struct btrfs_tree_block_info *block_info;
4253 struct btrfs_extent_inline_ref *iref;
4254 struct btrfs_path *path;
4255 struct extent_buffer *leaf;
4256 u32 size = sizeof(*extent_item) + sizeof(*block_info) + sizeof(*iref);
4258 path = btrfs_alloc_path();
4261 path->leave_spinning = 1;
4262 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
4266 leaf = path->nodes[0];
4267 extent_item = btrfs_item_ptr(leaf, path->slots[0],
4268 struct btrfs_extent_item);
4269 btrfs_set_extent_refs(leaf, extent_item, 1);
4270 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
4271 btrfs_set_extent_flags(leaf, extent_item,
4272 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
4273 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
4275 btrfs_set_tree_block_key(leaf, block_info, key);
4276 btrfs_set_tree_block_level(leaf, block_info, level);
4278 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
4280 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
4281 btrfs_set_extent_inline_ref_type(leaf, iref,
4282 BTRFS_SHARED_BLOCK_REF_KEY);
4283 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
4285 btrfs_set_extent_inline_ref_type(leaf, iref,
4286 BTRFS_TREE_BLOCK_REF_KEY);
4287 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
4290 btrfs_mark_buffer_dirty(leaf);
4291 btrfs_free_path(path);
4293 ret = update_block_group(trans, root, ins->objectid, ins->offset,
4296 printk(KERN_ERR "btrfs update block group failed for %llu "
4297 "%llu\n", (unsigned long long)ins->objectid,
4298 (unsigned long long)ins->offset);
4304 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
4305 struct btrfs_root *root,
4306 u64 root_objectid, u64 owner,
4307 u64 offset, struct btrfs_key *ins)
4311 BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
4313 ret = btrfs_add_delayed_data_ref(trans, ins->objectid, ins->offset,
4314 0, root_objectid, owner, offset,
4315 BTRFS_ADD_DELAYED_EXTENT, NULL);
4320 * this is used by the tree logging recovery code. It records that
4321 * an extent has been allocated and makes sure to clear the free
4322 * space cache bits as well
4324 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
4325 struct btrfs_root *root,
4326 u64 root_objectid, u64 owner, u64 offset,
4327 struct btrfs_key *ins)
4330 struct btrfs_block_group_cache *block_group;
4331 struct btrfs_caching_control *caching_ctl;
4332 u64 start = ins->objectid;
4333 u64 num_bytes = ins->offset;
4335 block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
4336 cache_block_group(block_group);
4337 caching_ctl = get_caching_control(block_group);
4340 BUG_ON(!block_group_cache_done(block_group));
4341 ret = btrfs_remove_free_space(block_group, start, num_bytes);
4344 mutex_lock(&caching_ctl->mutex);
4346 if (start >= caching_ctl->progress) {
4347 ret = add_excluded_extent(root, start, num_bytes);
4349 } else if (start + num_bytes <= caching_ctl->progress) {
4350 ret = btrfs_remove_free_space(block_group,
4354 num_bytes = caching_ctl->progress - start;
4355 ret = btrfs_remove_free_space(block_group,
4359 start = caching_ctl->progress;
4360 num_bytes = ins->objectid + ins->offset -
4361 caching_ctl->progress;
4362 ret = add_excluded_extent(root, start, num_bytes);
4366 mutex_unlock(&caching_ctl->mutex);
4367 put_caching_control(caching_ctl);
4370 update_reserved_extents(block_group, ins->offset, 1);
4371 btrfs_put_block_group(block_group);
4372 ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
4373 0, owner, offset, ins, 1);
4378 * finds a free extent and does all the dirty work required for allocation
4379 * returns the key for the extent through ins, and a tree buffer for
4380 * the first block of the extent through buf.
4382 * returns 0 if everything worked, non-zero otherwise.
4384 static int alloc_tree_block(struct btrfs_trans_handle *trans,
4385 struct btrfs_root *root,
4386 u64 num_bytes, u64 parent, u64 root_objectid,
4387 struct btrfs_disk_key *key, int level,
4388 u64 empty_size, u64 hint_byte, u64 search_end,
4389 struct btrfs_key *ins)
4394 ret = btrfs_reserve_extent(trans, root, num_bytes, num_bytes,
4395 empty_size, hint_byte, search_end,
4400 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
4402 parent = ins->objectid;
4403 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
4407 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
4408 struct btrfs_delayed_extent_op *extent_op;
4409 extent_op = kmalloc(sizeof(*extent_op), GFP_NOFS);
4412 memcpy(&extent_op->key, key, sizeof(extent_op->key));
4414 memset(&extent_op->key, 0, sizeof(extent_op->key));
4415 extent_op->flags_to_set = flags;
4416 extent_op->update_key = 1;
4417 extent_op->update_flags = 1;
4418 extent_op->is_data = 0;
4420 ret = btrfs_add_delayed_tree_ref(trans, ins->objectid,
4421 ins->offset, parent, root_objectid,
4422 level, BTRFS_ADD_DELAYED_EXTENT,
4429 struct extent_buffer *btrfs_init_new_buffer(struct btrfs_trans_handle *trans,
4430 struct btrfs_root *root,
4431 u64 bytenr, u32 blocksize,
4434 struct extent_buffer *buf;
4436 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
4438 return ERR_PTR(-ENOMEM);
4439 btrfs_set_header_generation(buf, trans->transid);
4440 btrfs_set_buffer_lockdep_class(buf, level);
4441 btrfs_tree_lock(buf);
4442 clean_tree_block(trans, root, buf);
4444 btrfs_set_lock_blocking(buf);
4445 btrfs_set_buffer_uptodate(buf);
4447 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
4448 set_extent_dirty(&root->dirty_log_pages, buf->start,
4449 buf->start + buf->len - 1, GFP_NOFS);
4451 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
4452 buf->start + buf->len - 1, GFP_NOFS);
4454 trans->blocks_used++;
4455 /* this returns a buffer locked for blocking */
4460 * helper function to allocate a block for a given tree
4461 * returns the tree buffer or NULL.
4463 struct extent_buffer *btrfs_alloc_free_block(struct btrfs_trans_handle *trans,
4464 struct btrfs_root *root, u32 blocksize,
4465 u64 parent, u64 root_objectid,
4466 struct btrfs_disk_key *key, int level,
4467 u64 hint, u64 empty_size)
4469 struct btrfs_key ins;
4471 struct extent_buffer *buf;
4473 ret = alloc_tree_block(trans, root, blocksize, parent, root_objectid,
4474 key, level, empty_size, hint, (u64)-1, &ins);
4477 return ERR_PTR(ret);
4480 buf = btrfs_init_new_buffer(trans, root, ins.objectid,
4485 struct walk_control {
4486 u64 refs[BTRFS_MAX_LEVEL];
4487 u64 flags[BTRFS_MAX_LEVEL];
4488 struct btrfs_key update_progress;
4498 #define DROP_REFERENCE 1
4499 #define UPDATE_BACKREF 2
4501 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
4502 struct btrfs_root *root,
4503 struct walk_control *wc,
4504 struct btrfs_path *path)
4512 struct btrfs_key key;
4513 struct extent_buffer *eb;
4518 if (path->slots[wc->level] < wc->reada_slot) {
4519 wc->reada_count = wc->reada_count * 2 / 3;
4520 wc->reada_count = max(wc->reada_count, 2);
4522 wc->reada_count = wc->reada_count * 3 / 2;
4523 wc->reada_count = min_t(int, wc->reada_count,
4524 BTRFS_NODEPTRS_PER_BLOCK(root));
4527 eb = path->nodes[wc->level];
4528 nritems = btrfs_header_nritems(eb);
4529 blocksize = btrfs_level_size(root, wc->level - 1);
4531 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
4532 if (nread >= wc->reada_count)
4536 bytenr = btrfs_node_blockptr(eb, slot);
4537 generation = btrfs_node_ptr_generation(eb, slot);
4539 if (slot == path->slots[wc->level])
4542 if (wc->stage == UPDATE_BACKREF &&
4543 generation <= root->root_key.offset)
4546 if (wc->stage == DROP_REFERENCE) {
4547 ret = btrfs_lookup_extent_info(trans, root,
4555 if (!wc->update_ref ||
4556 generation <= root->root_key.offset)
4558 btrfs_node_key_to_cpu(eb, &key, slot);
4559 ret = btrfs_comp_cpu_keys(&key,
4560 &wc->update_progress);
4565 ret = readahead_tree_block(root, bytenr, blocksize,
4569 last = bytenr + blocksize;
4572 wc->reada_slot = slot;
4576 * hepler to process tree block while walking down the tree.
4578 * when wc->stage == UPDATE_BACKREF, this function updates
4579 * back refs for pointers in the block.
4581 * NOTE: return value 1 means we should stop walking down.
4583 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
4584 struct btrfs_root *root,
4585 struct btrfs_path *path,
4586 struct walk_control *wc)
4588 int level = wc->level;
4589 struct extent_buffer *eb = path->nodes[level];
4590 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
4593 if (wc->stage == UPDATE_BACKREF &&
4594 btrfs_header_owner(eb) != root->root_key.objectid)
4598 * when reference count of tree block is 1, it won't increase
4599 * again. once full backref flag is set, we never clear it.
4601 if ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
4602 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag))) {
4603 BUG_ON(!path->locks[level]);
4604 ret = btrfs_lookup_extent_info(trans, root,
4609 BUG_ON(wc->refs[level] == 0);
4612 if (wc->stage == DROP_REFERENCE) {
4613 if (wc->refs[level] > 1)
4616 if (path->locks[level] && !wc->keep_locks) {
4617 btrfs_tree_unlock(eb);
4618 path->locks[level] = 0;
4623 /* wc->stage == UPDATE_BACKREF */
4624 if (!(wc->flags[level] & flag)) {
4625 BUG_ON(!path->locks[level]);
4626 ret = btrfs_inc_ref(trans, root, eb, 1);
4628 ret = btrfs_dec_ref(trans, root, eb, 0);
4630 ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
4633 wc->flags[level] |= flag;
4637 * the block is shared by multiple trees, so it's not good to
4638 * keep the tree lock
4640 if (path->locks[level] && level > 0) {
4641 btrfs_tree_unlock(eb);
4642 path->locks[level] = 0;
4648 * hepler to process tree block pointer.
4650 * when wc->stage == DROP_REFERENCE, this function checks
4651 * reference count of the block pointed to. if the block
4652 * is shared and we need update back refs for the subtree
4653 * rooted at the block, this function changes wc->stage to
4654 * UPDATE_BACKREF. if the block is shared and there is no
4655 * need to update back, this function drops the reference
4658 * NOTE: return value 1 means we should stop walking down.
4660 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
4661 struct btrfs_root *root,
4662 struct btrfs_path *path,
4663 struct walk_control *wc)
4669 struct btrfs_key key;
4670 struct extent_buffer *next;
4671 int level = wc->level;
4675 generation = btrfs_node_ptr_generation(path->nodes[level],
4676 path->slots[level]);
4678 * if the lower level block was created before the snapshot
4679 * was created, we know there is no need to update back refs
4682 if (wc->stage == UPDATE_BACKREF &&
4683 generation <= root->root_key.offset)
4686 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
4687 blocksize = btrfs_level_size(root, level - 1);
4689 next = btrfs_find_tree_block(root, bytenr, blocksize);
4691 next = btrfs_find_create_tree_block(root, bytenr, blocksize);
4694 btrfs_tree_lock(next);
4695 btrfs_set_lock_blocking(next);
4697 if (wc->stage == DROP_REFERENCE) {
4698 ret = btrfs_lookup_extent_info(trans, root, bytenr, blocksize,
4699 &wc->refs[level - 1],
4700 &wc->flags[level - 1]);
4702 BUG_ON(wc->refs[level - 1] == 0);
4704 if (wc->refs[level - 1] > 1) {
4705 if (!wc->update_ref ||
4706 generation <= root->root_key.offset)
4709 btrfs_node_key_to_cpu(path->nodes[level], &key,
4710 path->slots[level]);
4711 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
4715 wc->stage = UPDATE_BACKREF;
4716 wc->shared_level = level - 1;
4720 if (!btrfs_buffer_uptodate(next, generation)) {
4721 btrfs_tree_unlock(next);
4722 free_extent_buffer(next);
4727 if (reada && level == 1)
4728 reada_walk_down(trans, root, wc, path);
4729 next = read_tree_block(root, bytenr, blocksize, generation);
4730 btrfs_tree_lock(next);
4731 btrfs_set_lock_blocking(next);
4735 BUG_ON(level != btrfs_header_level(next));
4736 path->nodes[level] = next;
4737 path->slots[level] = 0;
4738 path->locks[level] = 1;
4744 wc->refs[level - 1] = 0;
4745 wc->flags[level - 1] = 0;
4747 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
4748 parent = path->nodes[level]->start;
4750 BUG_ON(root->root_key.objectid !=
4751 btrfs_header_owner(path->nodes[level]));
4755 ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
4756 root->root_key.objectid, level - 1, 0);
4759 btrfs_tree_unlock(next);
4760 free_extent_buffer(next);
4765 * hepler to process tree block while walking up the tree.
4767 * when wc->stage == DROP_REFERENCE, this function drops
4768 * reference count on the block.
4770 * when wc->stage == UPDATE_BACKREF, this function changes
4771 * wc->stage back to DROP_REFERENCE if we changed wc->stage
4772 * to UPDATE_BACKREF previously while processing the block.
4774 * NOTE: return value 1 means we should stop walking up.
4776 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
4777 struct btrfs_root *root,
4778 struct btrfs_path *path,
4779 struct walk_control *wc)
4782 int level = wc->level;
4783 struct extent_buffer *eb = path->nodes[level];
4786 if (wc->stage == UPDATE_BACKREF) {
4787 BUG_ON(wc->shared_level < level);
4788 if (level < wc->shared_level)
4791 ret = find_next_key(path, level + 1, &wc->update_progress);
4795 wc->stage = DROP_REFERENCE;
4796 wc->shared_level = -1;
4797 path->slots[level] = 0;
4800 * check reference count again if the block isn't locked.
4801 * we should start walking down the tree again if reference
4804 if (!path->locks[level]) {
4806 btrfs_tree_lock(eb);
4807 btrfs_set_lock_blocking(eb);
4808 path->locks[level] = 1;
4810 ret = btrfs_lookup_extent_info(trans, root,
4815 BUG_ON(wc->refs[level] == 0);
4816 if (wc->refs[level] == 1) {
4817 btrfs_tree_unlock(eb);
4818 path->locks[level] = 0;
4824 /* wc->stage == DROP_REFERENCE */
4825 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
4827 if (wc->refs[level] == 1) {
4829 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
4830 ret = btrfs_dec_ref(trans, root, eb, 1);
4832 ret = btrfs_dec_ref(trans, root, eb, 0);
4835 /* make block locked assertion in clean_tree_block happy */
4836 if (!path->locks[level] &&
4837 btrfs_header_generation(eb) == trans->transid) {
4838 btrfs_tree_lock(eb);
4839 btrfs_set_lock_blocking(eb);
4840 path->locks[level] = 1;
4842 clean_tree_block(trans, root, eb);
4845 if (eb == root->node) {
4846 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
4849 BUG_ON(root->root_key.objectid !=
4850 btrfs_header_owner(eb));
4852 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
4853 parent = path->nodes[level + 1]->start;
4855 BUG_ON(root->root_key.objectid !=
4856 btrfs_header_owner(path->nodes[level + 1]));
4859 ret = btrfs_free_extent(trans, root, eb->start, eb->len, parent,
4860 root->root_key.objectid, level, 0);
4863 wc->refs[level] = 0;
4864 wc->flags[level] = 0;
4868 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
4869 struct btrfs_root *root,
4870 struct btrfs_path *path,
4871 struct walk_control *wc)
4873 int level = wc->level;
4876 while (level >= 0) {
4877 if (path->slots[level] >=
4878 btrfs_header_nritems(path->nodes[level]))
4881 ret = walk_down_proc(trans, root, path, wc);
4888 ret = do_walk_down(trans, root, path, wc);
4890 path->slots[level]++;
4898 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
4899 struct btrfs_root *root,
4900 struct btrfs_path *path,
4901 struct walk_control *wc, int max_level)
4903 int level = wc->level;
4906 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
4907 while (level < max_level && path->nodes[level]) {
4909 if (path->slots[level] + 1 <
4910 btrfs_header_nritems(path->nodes[level])) {
4911 path->slots[level]++;
4914 ret = walk_up_proc(trans, root, path, wc);
4918 if (path->locks[level]) {
4919 btrfs_tree_unlock(path->nodes[level]);
4920 path->locks[level] = 0;
4922 free_extent_buffer(path->nodes[level]);
4923 path->nodes[level] = NULL;
4931 * drop a subvolume tree.
4933 * this function traverses the tree freeing any blocks that only
4934 * referenced by the tree.
4936 * when a shared tree block is found. this function decreases its
4937 * reference count by one. if update_ref is true, this function
4938 * also make sure backrefs for the shared block and all lower level
4939 * blocks are properly updated.
4941 int btrfs_drop_snapshot(struct btrfs_root *root, int update_ref)
4943 struct btrfs_path *path;
4944 struct btrfs_trans_handle *trans;
4945 struct btrfs_root *tree_root = root->fs_info->tree_root;
4946 struct btrfs_root_item *root_item = &root->root_item;
4947 struct walk_control *wc;
4948 struct btrfs_key key;
4953 path = btrfs_alloc_path();
4956 wc = kzalloc(sizeof(*wc), GFP_NOFS);
4959 trans = btrfs_start_transaction(tree_root, 1);
4961 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
4962 level = btrfs_header_level(root->node);
4963 path->nodes[level] = btrfs_lock_root_node(root);
4964 btrfs_set_lock_blocking(path->nodes[level]);
4965 path->slots[level] = 0;
4966 path->locks[level] = 1;
4967 memset(&wc->update_progress, 0,
4968 sizeof(wc->update_progress));
4970 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
4971 memcpy(&wc->update_progress, &key,
4972 sizeof(wc->update_progress));
4974 level = root_item->drop_level;
4976 path->lowest_level = level;
4977 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4978 path->lowest_level = 0;
4986 * unlock our path, this is safe because only this
4987 * function is allowed to delete this snapshot
4989 btrfs_unlock_up_safe(path, 0);
4991 level = btrfs_header_level(root->node);
4993 btrfs_tree_lock(path->nodes[level]);
4994 btrfs_set_lock_blocking(path->nodes[level]);
4996 ret = btrfs_lookup_extent_info(trans, root,
4997 path->nodes[level]->start,
4998 path->nodes[level]->len,
5002 BUG_ON(wc->refs[level] == 0);
5004 if (level == root_item->drop_level)
5007 btrfs_tree_unlock(path->nodes[level]);
5008 WARN_ON(wc->refs[level] != 1);
5014 wc->shared_level = -1;
5015 wc->stage = DROP_REFERENCE;
5016 wc->update_ref = update_ref;
5018 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
5021 ret = walk_down_tree(trans, root, path, wc);
5027 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
5034 BUG_ON(wc->stage != DROP_REFERENCE);
5038 if (wc->stage == DROP_REFERENCE) {
5040 btrfs_node_key(path->nodes[level],
5041 &root_item->drop_progress,
5042 path->slots[level]);
5043 root_item->drop_level = level;
5046 BUG_ON(wc->level == 0);
5047 if (trans->transaction->in_commit ||
5048 trans->transaction->delayed_refs.flushing) {
5049 ret = btrfs_update_root(trans, tree_root,
5054 btrfs_end_transaction(trans, tree_root);
5055 trans = btrfs_start_transaction(tree_root, 1);
5057 unsigned long update;
5058 update = trans->delayed_ref_updates;
5059 trans->delayed_ref_updates = 0;
5061 btrfs_run_delayed_refs(trans, tree_root,
5065 btrfs_release_path(root, path);
5068 ret = btrfs_del_root(trans, tree_root, &root->root_key);
5071 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
5072 ret = btrfs_find_last_root(tree_root, root->root_key.objectid,
5076 ret = btrfs_del_orphan_item(trans, tree_root,
5077 root->root_key.objectid);
5082 if (root->in_radix) {
5083 btrfs_free_fs_root(tree_root->fs_info, root);
5085 free_extent_buffer(root->node);
5086 free_extent_buffer(root->commit_root);
5090 btrfs_end_transaction(trans, tree_root);
5092 btrfs_free_path(path);
5097 * drop subtree rooted at tree block 'node'.
5099 * NOTE: this function will unlock and release tree block 'node'
5101 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
5102 struct btrfs_root *root,
5103 struct extent_buffer *node,
5104 struct extent_buffer *parent)
5106 struct btrfs_path *path;
5107 struct walk_control *wc;
5113 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
5115 path = btrfs_alloc_path();
5118 wc = kzalloc(sizeof(*wc), GFP_NOFS);
5121 btrfs_assert_tree_locked(parent);
5122 parent_level = btrfs_header_level(parent);
5123 extent_buffer_get(parent);
5124 path->nodes[parent_level] = parent;
5125 path->slots[parent_level] = btrfs_header_nritems(parent);
5127 btrfs_assert_tree_locked(node);
5128 level = btrfs_header_level(node);
5129 path->nodes[level] = node;
5130 path->slots[level] = 0;
5131 path->locks[level] = 1;
5133 wc->refs[parent_level] = 1;
5134 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
5136 wc->shared_level = -1;
5137 wc->stage = DROP_REFERENCE;
5140 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
5143 wret = walk_down_tree(trans, root, path, wc);
5149 wret = walk_up_tree(trans, root, path, wc, parent_level);
5157 btrfs_free_path(path);
5162 static unsigned long calc_ra(unsigned long start, unsigned long last,
5165 return min(last, start + nr - 1);
5168 static noinline int relocate_inode_pages(struct inode *inode, u64 start,
5173 unsigned long first_index;
5174 unsigned long last_index;
5177 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5178 struct file_ra_state *ra;
5179 struct btrfs_ordered_extent *ordered;
5180 unsigned int total_read = 0;
5181 unsigned int total_dirty = 0;
5184 ra = kzalloc(sizeof(*ra), GFP_NOFS);
5186 mutex_lock(&inode->i_mutex);
5187 first_index = start >> PAGE_CACHE_SHIFT;
5188 last_index = (start + len - 1) >> PAGE_CACHE_SHIFT;
5190 /* make sure the dirty trick played by the caller work */
5191 ret = invalidate_inode_pages2_range(inode->i_mapping,
5192 first_index, last_index);
5196 file_ra_state_init(ra, inode->i_mapping);
5198 for (i = first_index ; i <= last_index; i++) {
5199 if (total_read % ra->ra_pages == 0) {
5200 btrfs_force_ra(inode->i_mapping, ra, NULL, i,
5201 calc_ra(i, last_index, ra->ra_pages));
5205 if (((u64)i << PAGE_CACHE_SHIFT) > i_size_read(inode))
5207 page = grab_cache_page(inode->i_mapping, i);
5212 if (!PageUptodate(page)) {
5213 btrfs_readpage(NULL, page);
5215 if (!PageUptodate(page)) {
5217 page_cache_release(page);
5222 wait_on_page_writeback(page);
5224 page_start = (u64)page->index << PAGE_CACHE_SHIFT;
5225 page_end = page_start + PAGE_CACHE_SIZE - 1;
5226 lock_extent(io_tree, page_start, page_end, GFP_NOFS);
5228 ordered = btrfs_lookup_ordered_extent(inode, page_start);
5230 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
5232 page_cache_release(page);
5233 btrfs_start_ordered_extent(inode, ordered, 1);
5234 btrfs_put_ordered_extent(ordered);
5237 set_page_extent_mapped(page);
5239 if (i == first_index)
5240 set_extent_bits(io_tree, page_start, page_end,
5241 EXTENT_BOUNDARY, GFP_NOFS);
5242 btrfs_set_extent_delalloc(inode, page_start, page_end);
5244 set_page_dirty(page);
5247 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
5249 page_cache_release(page);
5254 mutex_unlock(&inode->i_mutex);
5255 balance_dirty_pages_ratelimited_nr(inode->i_mapping, total_dirty);
5259 static noinline int relocate_data_extent(struct inode *reloc_inode,
5260 struct btrfs_key *extent_key,
5263 struct btrfs_root *root = BTRFS_I(reloc_inode)->root;
5264 struct extent_map_tree *em_tree = &BTRFS_I(reloc_inode)->extent_tree;
5265 struct extent_map *em;
5266 u64 start = extent_key->objectid - offset;
5267 u64 end = start + extent_key->offset - 1;
5269 em = alloc_extent_map(GFP_NOFS);
5270 BUG_ON(!em || IS_ERR(em));
5273 em->len = extent_key->offset;
5274 em->block_len = extent_key->offset;
5275 em->block_start = extent_key->objectid;
5276 em->bdev = root->fs_info->fs_devices->latest_bdev;
5277 set_bit(EXTENT_FLAG_PINNED, &em->flags);
5279 /* setup extent map to cheat btrfs_readpage */
5280 lock_extent(&BTRFS_I(reloc_inode)->io_tree, start, end, GFP_NOFS);
5283 write_lock(&em_tree->lock);
5284 ret = add_extent_mapping(em_tree, em);
5285 write_unlock(&em_tree->lock);
5286 if (ret != -EEXIST) {
5287 free_extent_map(em);
5290 btrfs_drop_extent_cache(reloc_inode, start, end, 0);
5292 unlock_extent(&BTRFS_I(reloc_inode)->io_tree, start, end, GFP_NOFS);
5294 return relocate_inode_pages(reloc_inode, start, extent_key->offset);
5297 struct btrfs_ref_path {
5299 u64 nodes[BTRFS_MAX_LEVEL];
5301 u64 root_generation;
5308 struct btrfs_key node_keys[BTRFS_MAX_LEVEL];
5309 u64 new_nodes[BTRFS_MAX_LEVEL];
5312 struct disk_extent {
5323 static int is_cowonly_root(u64 root_objectid)
5325 if (root_objectid == BTRFS_ROOT_TREE_OBJECTID ||
5326 root_objectid == BTRFS_EXTENT_TREE_OBJECTID ||
5327 root_objectid == BTRFS_CHUNK_TREE_OBJECTID ||
5328 root_objectid == BTRFS_DEV_TREE_OBJECTID ||
5329 root_objectid == BTRFS_TREE_LOG_OBJECTID ||
5330 root_objectid == BTRFS_CSUM_TREE_OBJECTID)
5335 static noinline int __next_ref_path(struct btrfs_trans_handle *trans,
5336 struct btrfs_root *extent_root,
5337 struct btrfs_ref_path *ref_path,
5340 struct extent_buffer *leaf;
5341 struct btrfs_path *path;
5342 struct btrfs_extent_ref *ref;
5343 struct btrfs_key key;
5344 struct btrfs_key found_key;
5350 path = btrfs_alloc_path();
5355 ref_path->lowest_level = -1;
5356 ref_path->current_level = -1;
5357 ref_path->shared_level = -1;
5361 level = ref_path->current_level - 1;
5362 while (level >= -1) {
5364 if (level < ref_path->lowest_level)
5368 bytenr = ref_path->nodes[level];
5370 bytenr = ref_path->extent_start;
5371 BUG_ON(bytenr == 0);
5373 parent = ref_path->nodes[level + 1];
5374 ref_path->nodes[level + 1] = 0;
5375 ref_path->current_level = level;
5376 BUG_ON(parent == 0);
5378 key.objectid = bytenr;
5379 key.offset = parent + 1;
5380 key.type = BTRFS_EXTENT_REF_KEY;
5382 ret = btrfs_search_slot(trans, extent_root, &key, path, 0, 0);
5387 leaf = path->nodes[0];
5388 nritems = btrfs_header_nritems(leaf);
5389 if (path->slots[0] >= nritems) {
5390 ret = btrfs_next_leaf(extent_root, path);
5395 leaf = path->nodes[0];
5398 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5399 if (found_key.objectid == bytenr &&
5400 found_key.type == BTRFS_EXTENT_REF_KEY) {
5401 if (level < ref_path->shared_level)
5402 ref_path->shared_level = level;
5407 btrfs_release_path(extent_root, path);
5410 /* reached lowest level */
5414 level = ref_path->current_level;
5415 while (level < BTRFS_MAX_LEVEL - 1) {
5419 bytenr = ref_path->nodes[level];
5421 bytenr = ref_path->extent_start;
5423 BUG_ON(bytenr == 0);
5425 key.objectid = bytenr;
5427 key.type = BTRFS_EXTENT_REF_KEY;
5429 ret = btrfs_search_slot(trans, extent_root, &key, path, 0, 0);
5433 leaf = path->nodes[0];
5434 nritems = btrfs_header_nritems(leaf);
5435 if (path->slots[0] >= nritems) {
5436 ret = btrfs_next_leaf(extent_root, path);
5440 /* the extent was freed by someone */
5441 if (ref_path->lowest_level == level)
5443 btrfs_release_path(extent_root, path);
5446 leaf = path->nodes[0];
5449 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5450 if (found_key.objectid != bytenr ||
5451 found_key.type != BTRFS_EXTENT_REF_KEY) {
5452 /* the extent was freed by someone */
5453 if (ref_path->lowest_level == level) {
5457 btrfs_release_path(extent_root, path);
5461 ref = btrfs_item_ptr(leaf, path->slots[0],
5462 struct btrfs_extent_ref);
5463 ref_objectid = btrfs_ref_objectid(leaf, ref);
5464 if (ref_objectid < BTRFS_FIRST_FREE_OBJECTID) {
5466 level = (int)ref_objectid;
5467 BUG_ON(level >= BTRFS_MAX_LEVEL);
5468 ref_path->lowest_level = level;
5469 ref_path->current_level = level;
5470 ref_path->nodes[level] = bytenr;
5472 WARN_ON(ref_objectid != level);
5475 WARN_ON(level != -1);
5479 if (ref_path->lowest_level == level) {
5480 ref_path->owner_objectid = ref_objectid;
5481 ref_path->num_refs = btrfs_ref_num_refs(leaf, ref);
5485 * the block is tree root or the block isn't in reference
5488 if (found_key.objectid == found_key.offset ||
5489 is_cowonly_root(btrfs_ref_root(leaf, ref))) {
5490 ref_path->root_objectid = btrfs_ref_root(leaf, ref);
5491 ref_path->root_generation =
5492 btrfs_ref_generation(leaf, ref);
5494 /* special reference from the tree log */
5495 ref_path->nodes[0] = found_key.offset;
5496 ref_path->current_level = 0;
5503 BUG_ON(ref_path->nodes[level] != 0);
5504 ref_path->nodes[level] = found_key.offset;
5505 ref_path->current_level = level;
5508 * the reference was created in the running transaction,
5509 * no need to continue walking up.
5511 if (btrfs_ref_generation(leaf, ref) == trans->transid) {
5512 ref_path->root_objectid = btrfs_ref_root(leaf, ref);
5513 ref_path->root_generation =
5514 btrfs_ref_generation(leaf, ref);
5519 btrfs_release_path(extent_root, path);
5522 /* reached max tree level, but no tree root found. */
5525 btrfs_free_path(path);
5529 static int btrfs_first_ref_path(struct btrfs_trans_handle *trans,
5530 struct btrfs_root *extent_root,
5531 struct btrfs_ref_path *ref_path,
5534 memset(ref_path, 0, sizeof(*ref_path));
5535 ref_path->extent_start = extent_start;
5537 return __next_ref_path(trans, extent_root, ref_path, 1);
5540 static int btrfs_next_ref_path(struct btrfs_trans_handle *trans,
5541 struct btrfs_root *extent_root,
5542 struct btrfs_ref_path *ref_path)
5544 return __next_ref_path(trans, extent_root, ref_path, 0);
5547 static noinline int get_new_locations(struct inode *reloc_inode,
5548 struct btrfs_key *extent_key,
5549 u64 offset, int no_fragment,
5550 struct disk_extent **extents,
5553 struct btrfs_root *root = BTRFS_I(reloc_inode)->root;
5554 struct btrfs_path *path;
5555 struct btrfs_file_extent_item *fi;
5556 struct extent_buffer *leaf;
5557 struct disk_extent *exts = *extents;
5558 struct btrfs_key found_key;
5563 int max = *nr_extents;
5566 WARN_ON(!no_fragment && *extents);
5569 exts = kmalloc(sizeof(*exts) * max, GFP_NOFS);
5574 path = btrfs_alloc_path();
5577 cur_pos = extent_key->objectid - offset;
5578 last_byte = extent_key->objectid + extent_key->offset;
5579 ret = btrfs_lookup_file_extent(NULL, root, path, reloc_inode->i_ino,
5589 leaf = path->nodes[0];
5590 nritems = btrfs_header_nritems(leaf);
5591 if (path->slots[0] >= nritems) {
5592 ret = btrfs_next_leaf(root, path);
5597 leaf = path->nodes[0];
5600 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5601 if (found_key.offset != cur_pos ||
5602 found_key.type != BTRFS_EXTENT_DATA_KEY ||
5603 found_key.objectid != reloc_inode->i_ino)
5606 fi = btrfs_item_ptr(leaf, path->slots[0],
5607 struct btrfs_file_extent_item);
5608 if (btrfs_file_extent_type(leaf, fi) !=
5609 BTRFS_FILE_EXTENT_REG ||
5610 btrfs_file_extent_disk_bytenr(leaf, fi) == 0)
5614 struct disk_extent *old = exts;
5616 exts = kzalloc(sizeof(*exts) * max, GFP_NOFS);
5617 memcpy(exts, old, sizeof(*exts) * nr);
5618 if (old != *extents)
5622 exts[nr].disk_bytenr =
5623 btrfs_file_extent_disk_bytenr(leaf, fi);
5624 exts[nr].disk_num_bytes =
5625 btrfs_file_extent_disk_num_bytes(leaf, fi);
5626 exts[nr].offset = btrfs_file_extent_offset(leaf, fi);
5627 exts[nr].num_bytes = btrfs_file_extent_num_bytes(leaf, fi);
5628 exts[nr].ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
5629 exts[nr].compression = btrfs_file_extent_compression(leaf, fi);
5630 exts[nr].encryption = btrfs_file_extent_encryption(leaf, fi);
5631 exts[nr].other_encoding = btrfs_file_extent_other_encoding(leaf,
5633 BUG_ON(exts[nr].offset > 0);
5634 BUG_ON(exts[nr].compression || exts[nr].encryption);
5635 BUG_ON(exts[nr].num_bytes != exts[nr].disk_num_bytes);
5637 cur_pos += exts[nr].num_bytes;
5640 if (cur_pos + offset >= last_byte)
5650 BUG_ON(cur_pos + offset > last_byte);
5651 if (cur_pos + offset < last_byte) {
5657 btrfs_free_path(path);
5659 if (exts != *extents)
5668 static noinline int replace_one_extent(struct btrfs_trans_handle *trans,
5669 struct btrfs_root *root,
5670 struct btrfs_path *path,
5671 struct btrfs_key *extent_key,
5672 struct btrfs_key *leaf_key,
5673 struct btrfs_ref_path *ref_path,
5674 struct disk_extent *new_extents,
5677 struct extent_buffer *leaf;
5678 struct btrfs_file_extent_item *fi;
5679 struct inode *inode = NULL;
5680 struct btrfs_key key;
5685 u64 search_end = (u64)-1;
5688 int extent_locked = 0;
5692 memcpy(&key, leaf_key, sizeof(key));
5693 if (ref_path->owner_objectid != BTRFS_MULTIPLE_OBJECTIDS) {
5694 if (key.objectid < ref_path->owner_objectid ||
5695 (key.objectid == ref_path->owner_objectid &&
5696 key.type < BTRFS_EXTENT_DATA_KEY)) {
5697 key.objectid = ref_path->owner_objectid;
5698 key.type = BTRFS_EXTENT_DATA_KEY;
5704 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
5708 leaf = path->nodes[0];
5709 nritems = btrfs_header_nritems(leaf);
5711 if (extent_locked && ret > 0) {
5713 * the file extent item was modified by someone
5714 * before the extent got locked.
5716 unlock_extent(&BTRFS_I(inode)->io_tree, lock_start,
5717 lock_end, GFP_NOFS);
5721 if (path->slots[0] >= nritems) {
5722 if (++nr_scaned > 2)
5725 BUG_ON(extent_locked);
5726 ret = btrfs_next_leaf(root, path);
5731 leaf = path->nodes[0];
5732 nritems = btrfs_header_nritems(leaf);
5735 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
5737 if (ref_path->owner_objectid != BTRFS_MULTIPLE_OBJECTIDS) {
5738 if ((key.objectid > ref_path->owner_objectid) ||
5739 (key.objectid == ref_path->owner_objectid &&
5740 key.type > BTRFS_EXTENT_DATA_KEY) ||
5741 key.offset >= search_end)
5745 if (inode && key.objectid != inode->i_ino) {
5746 BUG_ON(extent_locked);
5747 btrfs_release_path(root, path);
5748 mutex_unlock(&inode->i_mutex);
5754 if (key.type != BTRFS_EXTENT_DATA_KEY) {
5759 fi = btrfs_item_ptr(leaf, path->slots[0],
5760 struct btrfs_file_extent_item);
5761 extent_type = btrfs_file_extent_type(leaf, fi);
5762 if ((extent_type != BTRFS_FILE_EXTENT_REG &&
5763 extent_type != BTRFS_FILE_EXTENT_PREALLOC) ||
5764 (btrfs_file_extent_disk_bytenr(leaf, fi) !=
5765 extent_key->objectid)) {
5771 num_bytes = btrfs_file_extent_num_bytes(leaf, fi);
5772 ext_offset = btrfs_file_extent_offset(leaf, fi);
5774 if (search_end == (u64)-1) {
5775 search_end = key.offset - ext_offset +
5776 btrfs_file_extent_ram_bytes(leaf, fi);
5779 if (!extent_locked) {
5780 lock_start = key.offset;
5781 lock_end = lock_start + num_bytes - 1;
5783 if (lock_start > key.offset ||
5784 lock_end + 1 < key.offset + num_bytes) {
5785 unlock_extent(&BTRFS_I(inode)->io_tree,
5786 lock_start, lock_end, GFP_NOFS);
5792 btrfs_release_path(root, path);
5794 inode = btrfs_iget_locked(root->fs_info->sb,
5795 key.objectid, root);
5796 if (inode->i_state & I_NEW) {
5797 BTRFS_I(inode)->root = root;
5798 BTRFS_I(inode)->location.objectid =
5800 BTRFS_I(inode)->location.type =
5801 BTRFS_INODE_ITEM_KEY;
5802 BTRFS_I(inode)->location.offset = 0;
5803 btrfs_read_locked_inode(inode);
5804 unlock_new_inode(inode);
5807 * some code call btrfs_commit_transaction while
5808 * holding the i_mutex, so we can't use mutex_lock
5811 if (is_bad_inode(inode) ||
5812 !mutex_trylock(&inode->i_mutex)) {
5815 key.offset = (u64)-1;
5820 if (!extent_locked) {
5821 struct btrfs_ordered_extent *ordered;
5823 btrfs_release_path(root, path);
5825 lock_extent(&BTRFS_I(inode)->io_tree, lock_start,
5826 lock_end, GFP_NOFS);
5827 ordered = btrfs_lookup_first_ordered_extent(inode,
5830 ordered->file_offset <= lock_end &&
5831 ordered->file_offset + ordered->len > lock_start) {
5832 unlock_extent(&BTRFS_I(inode)->io_tree,
5833 lock_start, lock_end, GFP_NOFS);
5834 btrfs_start_ordered_extent(inode, ordered, 1);
5835 btrfs_put_ordered_extent(ordered);
5836 key.offset += num_bytes;
5840 btrfs_put_ordered_extent(ordered);
5846 if (nr_extents == 1) {
5847 /* update extent pointer in place */
5848 btrfs_set_file_extent_disk_bytenr(leaf, fi,
5849 new_extents[0].disk_bytenr);
5850 btrfs_set_file_extent_disk_num_bytes(leaf, fi,
5851 new_extents[0].disk_num_bytes);
5852 btrfs_mark_buffer_dirty(leaf);
5854 btrfs_drop_extent_cache(inode, key.offset,
5855 key.offset + num_bytes - 1, 0);
5857 ret = btrfs_inc_extent_ref(trans, root,
5858 new_extents[0].disk_bytenr,
5859 new_extents[0].disk_num_bytes,
5861 root->root_key.objectid,
5866 ret = btrfs_free_extent(trans, root,
5867 extent_key->objectid,
5870 btrfs_header_owner(leaf),
5871 btrfs_header_generation(leaf),
5875 btrfs_release_path(root, path);
5876 key.offset += num_bytes;
5884 * drop old extent pointer at first, then insert the
5885 * new pointers one bye one
5887 btrfs_release_path(root, path);
5888 ret = btrfs_drop_extents(trans, root, inode, key.offset,
5889 key.offset + num_bytes,
5890 key.offset, &alloc_hint);
5893 for (i = 0; i < nr_extents; i++) {
5894 if (ext_offset >= new_extents[i].num_bytes) {
5895 ext_offset -= new_extents[i].num_bytes;
5898 extent_len = min(new_extents[i].num_bytes -
5899 ext_offset, num_bytes);
5901 ret = btrfs_insert_empty_item(trans, root,
5906 leaf = path->nodes[0];
5907 fi = btrfs_item_ptr(leaf, path->slots[0],
5908 struct btrfs_file_extent_item);
5909 btrfs_set_file_extent_generation(leaf, fi,
5911 btrfs_set_file_extent_type(leaf, fi,
5912 BTRFS_FILE_EXTENT_REG);
5913 btrfs_set_file_extent_disk_bytenr(leaf, fi,
5914 new_extents[i].disk_bytenr);
5915 btrfs_set_file_extent_disk_num_bytes(leaf, fi,
5916 new_extents[i].disk_num_bytes);
5917 btrfs_set_file_extent_ram_bytes(leaf, fi,
5918 new_extents[i].ram_bytes);
5920 btrfs_set_file_extent_compression(leaf, fi,
5921 new_extents[i].compression);
5922 btrfs_set_file_extent_encryption(leaf, fi,
5923 new_extents[i].encryption);
5924 btrfs_set_file_extent_other_encoding(leaf, fi,
5925 new_extents[i].other_encoding);
5927 btrfs_set_file_extent_num_bytes(leaf, fi,
5929 ext_offset += new_extents[i].offset;
5930 btrfs_set_file_extent_offset(leaf, fi,
5932 btrfs_mark_buffer_dirty(leaf);
5934 btrfs_drop_extent_cache(inode, key.offset,
5935 key.offset + extent_len - 1, 0);
5937 ret = btrfs_inc_extent_ref(trans, root,
5938 new_extents[i].disk_bytenr,
5939 new_extents[i].disk_num_bytes,
5941 root->root_key.objectid,
5942 trans->transid, key.objectid);
5944 btrfs_release_path(root, path);
5946 inode_add_bytes(inode, extent_len);
5949 num_bytes -= extent_len;
5950 key.offset += extent_len;
5955 BUG_ON(i >= nr_extents);
5959 if (extent_locked) {
5960 unlock_extent(&BTRFS_I(inode)->io_tree, lock_start,
5961 lock_end, GFP_NOFS);
5965 if (ref_path->owner_objectid != BTRFS_MULTIPLE_OBJECTIDS &&
5966 key.offset >= search_end)
5973 btrfs_release_path(root, path);
5975 mutex_unlock(&inode->i_mutex);
5976 if (extent_locked) {
5977 unlock_extent(&BTRFS_I(inode)->io_tree, lock_start,
5978 lock_end, GFP_NOFS);
5985 int btrfs_reloc_tree_cache_ref(struct btrfs_trans_handle *trans,
5986 struct btrfs_root *root,
5987 struct extent_buffer *buf, u64 orig_start)
5992 BUG_ON(btrfs_header_generation(buf) != trans->transid);
5993 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
5995 level = btrfs_header_level(buf);
5997 struct btrfs_leaf_ref *ref;
5998 struct btrfs_leaf_ref *orig_ref;
6000 orig_ref = btrfs_lookup_leaf_ref(root, orig_start);
6004 ref = btrfs_alloc_leaf_ref(root, orig_ref->nritems);
6006 btrfs_free_leaf_ref(root, orig_ref);
6010 ref->nritems = orig_ref->nritems;
6011 memcpy(ref->extents, orig_ref->extents,
6012 sizeof(ref->extents[0]) * ref->nritems);
6014 btrfs_free_leaf_ref(root, orig_ref);
6016 ref->root_gen = trans->transid;
6017 ref->bytenr = buf->start;
6018 ref->owner = btrfs_header_owner(buf);
6019 ref->generation = btrfs_header_generation(buf);
6021 ret = btrfs_add_leaf_ref(root, ref, 0);
6023 btrfs_free_leaf_ref(root, ref);
6028 static noinline int invalidate_extent_cache(struct btrfs_root *root,
6029 struct extent_buffer *leaf,
6030 struct btrfs_block_group_cache *group,
6031 struct btrfs_root *target_root)
6033 struct btrfs_key key;
6034 struct inode *inode = NULL;
6035 struct btrfs_file_extent_item *fi;
6037 u64 skip_objectid = 0;
6041 nritems = btrfs_header_nritems(leaf);
6042 for (i = 0; i < nritems; i++) {
6043 btrfs_item_key_to_cpu(leaf, &key, i);
6044 if (key.objectid == skip_objectid ||
6045 key.type != BTRFS_EXTENT_DATA_KEY)
6047 fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
6048 if (btrfs_file_extent_type(leaf, fi) ==
6049 BTRFS_FILE_EXTENT_INLINE)
6051 if (btrfs_file_extent_disk_bytenr(leaf, fi) == 0)
6053 if (!inode || inode->i_ino != key.objectid) {
6055 inode = btrfs_ilookup(target_root->fs_info->sb,
6056 key.objectid, target_root, 1);
6059 skip_objectid = key.objectid;
6062 num_bytes = btrfs_file_extent_num_bytes(leaf, fi);
6064 lock_extent(&BTRFS_I(inode)->io_tree, key.offset,
6065 key.offset + num_bytes - 1, GFP_NOFS);
6066 btrfs_drop_extent_cache(inode, key.offset,
6067 key.offset + num_bytes - 1, 1);
6068 unlock_extent(&BTRFS_I(inode)->io_tree, key.offset,
6069 key.offset + num_bytes - 1, GFP_NOFS);
6076 static noinline int replace_extents_in_leaf(struct btrfs_trans_handle *trans,
6077 struct btrfs_root *root,
6078 struct extent_buffer *leaf,
6079 struct btrfs_block_group_cache *group,
6080 struct inode *reloc_inode)
6082 struct btrfs_key key;
6083 struct btrfs_key extent_key;
6084 struct btrfs_file_extent_item *fi;
6085 struct btrfs_leaf_ref *ref;
6086 struct disk_extent *new_extent;
6095 new_extent = kmalloc(sizeof(*new_extent), GFP_NOFS);
6096 BUG_ON(!new_extent);
6098 ref = btrfs_lookup_leaf_ref(root, leaf->start);
6102 nritems = btrfs_header_nritems(leaf);
6103 for (i = 0; i < nritems; i++) {
6104 btrfs_item_key_to_cpu(leaf, &key, i);
6105 if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY)
6107 fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
6108 if (btrfs_file_extent_type(leaf, fi) ==
6109 BTRFS_FILE_EXTENT_INLINE)
6111 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
6112 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
6117 if (bytenr >= group->key.objectid + group->key.offset ||
6118 bytenr + num_bytes <= group->key.objectid)
6121 extent_key.objectid = bytenr;
6122 extent_key.offset = num_bytes;
6123 extent_key.type = BTRFS_EXTENT_ITEM_KEY;
6125 ret = get_new_locations(reloc_inode, &extent_key,
6126 group->key.objectid, 1,
6127 &new_extent, &nr_extent);
6132 BUG_ON(ref->extents[ext_index].bytenr != bytenr);
6133 BUG_ON(ref->extents[ext_index].num_bytes != num_bytes);
6134 ref->extents[ext_index].bytenr = new_extent->disk_bytenr;
6135 ref->extents[ext_index].num_bytes = new_extent->disk_num_bytes;
6137 btrfs_set_file_extent_disk_bytenr(leaf, fi,
6138 new_extent->disk_bytenr);
6139 btrfs_set_file_extent_disk_num_bytes(leaf, fi,
6140 new_extent->disk_num_bytes);
6141 btrfs_mark_buffer_dirty(leaf);
6143 ret = btrfs_inc_extent_ref(trans, root,
6144 new_extent->disk_bytenr,
6145 new_extent->disk_num_bytes,
6147 root->root_key.objectid,
6148 trans->transid, key.objectid);
6151 ret = btrfs_free_extent(trans, root,
6152 bytenr, num_bytes, leaf->start,
6153 btrfs_header_owner(leaf),
6154 btrfs_header_generation(leaf),
6160 BUG_ON(ext_index + 1 != ref->nritems);
6161 btrfs_free_leaf_ref(root, ref);
6165 int btrfs_free_reloc_root(struct btrfs_trans_handle *trans,
6166 struct btrfs_root *root)
6168 struct btrfs_root *reloc_root;
6171 if (root->reloc_root) {
6172 reloc_root = root->reloc_root;
6173 root->reloc_root = NULL;
6174 list_add(&reloc_root->dead_list,
6175 &root->fs_info->dead_reloc_roots);
6177 btrfs_set_root_bytenr(&reloc_root->root_item,
6178 reloc_root->node->start);
6179 btrfs_set_root_level(&root->root_item,
6180 btrfs_header_level(reloc_root->node));
6181 memset(&reloc_root->root_item.drop_progress, 0,
6182 sizeof(struct btrfs_disk_key));
6183 reloc_root->root_item.drop_level = 0;
6185 ret = btrfs_update_root(trans, root->fs_info->tree_root,
6186 &reloc_root->root_key,
6187 &reloc_root->root_item);
6193 int btrfs_drop_dead_reloc_roots(struct btrfs_root *root)
6195 struct btrfs_trans_handle *trans;
6196 struct btrfs_root *reloc_root;
6197 struct btrfs_root *prev_root = NULL;
6198 struct list_head dead_roots;
6202 INIT_LIST_HEAD(&dead_roots);
6203 list_splice_init(&root->fs_info->dead_reloc_roots, &dead_roots);
6205 while (!list_empty(&dead_roots)) {
6206 reloc_root = list_entry(dead_roots.prev,
6207 struct btrfs_root, dead_list);
6208 list_del_init(&reloc_root->dead_list);
6210 BUG_ON(reloc_root->commit_root != NULL);
6212 trans = btrfs_join_transaction(root, 1);
6215 mutex_lock(&root->fs_info->drop_mutex);
6216 ret = btrfs_drop_snapshot(trans, reloc_root);
6219 mutex_unlock(&root->fs_info->drop_mutex);
6221 nr = trans->blocks_used;
6222 ret = btrfs_end_transaction(trans, root);
6224 btrfs_btree_balance_dirty(root, nr);
6227 free_extent_buffer(reloc_root->node);
6229 ret = btrfs_del_root(trans, root->fs_info->tree_root,
6230 &reloc_root->root_key);
6232 mutex_unlock(&root->fs_info->drop_mutex);
6234 nr = trans->blocks_used;
6235 ret = btrfs_end_transaction(trans, root);
6237 btrfs_btree_balance_dirty(root, nr);
6240 prev_root = reloc_root;
6243 btrfs_remove_leaf_refs(prev_root, (u64)-1, 0);
6249 int btrfs_add_dead_reloc_root(struct btrfs_root *root)
6251 list_add(&root->dead_list, &root->fs_info->dead_reloc_roots);
6255 int btrfs_cleanup_reloc_trees(struct btrfs_root *root)
6257 struct btrfs_root *reloc_root;
6258 struct btrfs_trans_handle *trans;
6259 struct btrfs_key location;
6263 mutex_lock(&root->fs_info->tree_reloc_mutex);
6264 ret = btrfs_find_dead_roots(root, BTRFS_TREE_RELOC_OBJECTID, NULL);
6266 found = !list_empty(&root->fs_info->dead_reloc_roots);
6267 mutex_unlock(&root->fs_info->tree_reloc_mutex);
6270 trans = btrfs_start_transaction(root, 1);
6272 ret = btrfs_commit_transaction(trans, root);
6276 location.objectid = BTRFS_DATA_RELOC_TREE_OBJECTID;
6277 location.offset = (u64)-1;
6278 location.type = BTRFS_ROOT_ITEM_KEY;
6280 reloc_root = btrfs_read_fs_root_no_name(root->fs_info, &location);
6281 BUG_ON(!reloc_root);
6282 btrfs_orphan_cleanup(reloc_root);
6286 static noinline int init_reloc_tree(struct btrfs_trans_handle *trans,
6287 struct btrfs_root *root)
6289 struct btrfs_root *reloc_root;
6290 struct extent_buffer *eb;
6291 struct btrfs_root_item *root_item;
6292 struct btrfs_key root_key;
6295 BUG_ON(!root->ref_cows);
6296 if (root->reloc_root)
6299 root_item = kmalloc(sizeof(*root_item), GFP_NOFS);
6302 ret = btrfs_copy_root(trans, root, root->commit_root,
6303 &eb, BTRFS_TREE_RELOC_OBJECTID);
6306 root_key.objectid = BTRFS_TREE_RELOC_OBJECTID;
6307 root_key.offset = root->root_key.objectid;
6308 root_key.type = BTRFS_ROOT_ITEM_KEY;
6310 memcpy(root_item, &root->root_item, sizeof(root_item));
6311 btrfs_set_root_refs(root_item, 0);
6312 btrfs_set_root_bytenr(root_item, eb->start);
6313 btrfs_set_root_level(root_item, btrfs_header_level(eb));
6314 btrfs_set_root_generation(root_item, trans->transid);
6316 btrfs_tree_unlock(eb);
6317 free_extent_buffer(eb);
6319 ret = btrfs_insert_root(trans, root->fs_info->tree_root,
6320 &root_key, root_item);
6324 reloc_root = btrfs_read_fs_root_no_radix(root->fs_info->tree_root,
6326 BUG_ON(!reloc_root);
6327 reloc_root->last_trans = trans->transid;
6328 reloc_root->commit_root = NULL;
6329 reloc_root->ref_tree = &root->fs_info->reloc_ref_tree;
6331 root->reloc_root = reloc_root;
6336 * Core function of space balance.
6338 * The idea is using reloc trees to relocate tree blocks in reference
6339 * counted roots. There is one reloc tree for each subvol, and all
6340 * reloc trees share same root key objectid. Reloc trees are snapshots
6341 * of the latest committed roots of subvols (root->commit_root).
6343 * To relocate a tree block referenced by a subvol, there are two steps.
6344 * COW the block through subvol's reloc tree, then update block pointer
6345 * in the subvol to point to the new block. Since all reloc trees share
6346 * same root key objectid, doing special handing for tree blocks owned
6347 * by them is easy. Once a tree block has been COWed in one reloc tree,
6348 * we can use the resulting new block directly when the same block is
6349 * required to COW again through other reloc trees. By this way, relocated
6350 * tree blocks are shared between reloc trees, so they are also shared
6353 static noinline int relocate_one_path(struct btrfs_trans_handle *trans,
6354 struct btrfs_root *root,
6355 struct btrfs_path *path,
6356 struct btrfs_key *first_key,
6357 struct btrfs_ref_path *ref_path,
6358 struct btrfs_block_group_cache *group,
6359 struct inode *reloc_inode)
6361 struct btrfs_root *reloc_root;
6362 struct extent_buffer *eb = NULL;
6363 struct btrfs_key *keys;
6367 int lowest_level = 0;
6370 if (ref_path->owner_objectid < BTRFS_FIRST_FREE_OBJECTID)
6371 lowest_level = ref_path->owner_objectid;
6373 if (!root->ref_cows) {
6374 path->lowest_level = lowest_level;
6375 ret = btrfs_search_slot(trans, root, first_key, path, 0, 1);
6377 path->lowest_level = 0;
6378 btrfs_release_path(root, path);
6382 mutex_lock(&root->fs_info->tree_reloc_mutex);
6383 ret = init_reloc_tree(trans, root);
6385 reloc_root = root->reloc_root;
6387 shared_level = ref_path->shared_level;
6388 ref_path->shared_level = BTRFS_MAX_LEVEL - 1;
6390 keys = ref_path->node_keys;
6391 nodes = ref_path->new_nodes;
6392 memset(&keys[shared_level + 1], 0,
6393 sizeof(*keys) * (BTRFS_MAX_LEVEL - shared_level - 1));
6394 memset(&nodes[shared_level + 1], 0,
6395 sizeof(*nodes) * (BTRFS_MAX_LEVEL - shared_level - 1));
6397 if (nodes[lowest_level] == 0) {
6398 path->lowest_level = lowest_level;
6399 ret = btrfs_search_slot(trans, reloc_root, first_key, path,
6402 for (level = lowest_level; level < BTRFS_MAX_LEVEL; level++) {
6403 eb = path->nodes[level];
6404 if (!eb || eb == reloc_root->node)
6406 nodes[level] = eb->start;
6408 btrfs_item_key_to_cpu(eb, &keys[level], 0);
6410 btrfs_node_key_to_cpu(eb, &keys[level], 0);
6413 ref_path->owner_objectid >= BTRFS_FIRST_FREE_OBJECTID) {
6414 eb = path->nodes[0];
6415 ret = replace_extents_in_leaf(trans, reloc_root, eb,
6416 group, reloc_inode);
6419 btrfs_release_path(reloc_root, path);
6421 ret = btrfs_merge_path(trans, reloc_root, keys, nodes,
6427 * replace tree blocks in the fs tree with tree blocks in
6430 ret = btrfs_merge_path(trans, root, keys, nodes, lowest_level);
6433 if (ref_path->owner_objectid >= BTRFS_FIRST_FREE_OBJECTID) {
6434 ret = btrfs_search_slot(trans, reloc_root, first_key, path,
6437 extent_buffer_get(path->nodes[0]);
6438 eb = path->nodes[0];
6439 btrfs_release_path(reloc_root, path);
6440 ret = invalidate_extent_cache(reloc_root, eb, group, root);
6442 free_extent_buffer(eb);
6445 mutex_unlock(&root->fs_info->tree_reloc_mutex);
6446 path->lowest_level = 0;
6450 static noinline int relocate_tree_block(struct btrfs_trans_handle *trans,
6451 struct btrfs_root *root,
6452 struct btrfs_path *path,
6453 struct btrfs_key *first_key,
6454 struct btrfs_ref_path *ref_path)
6458 ret = relocate_one_path(trans, root, path, first_key,
6459 ref_path, NULL, NULL);
6465 static noinline int del_extent_zero(struct btrfs_trans_handle *trans,
6466 struct btrfs_root *extent_root,
6467 struct btrfs_path *path,
6468 struct btrfs_key *extent_key)
6472 ret = btrfs_search_slot(trans, extent_root, extent_key, path, -1, 1);
6475 ret = btrfs_del_item(trans, extent_root, path);
6477 btrfs_release_path(extent_root, path);
6481 static noinline struct btrfs_root *read_ref_root(struct btrfs_fs_info *fs_info,
6482 struct btrfs_ref_path *ref_path)
6484 struct btrfs_key root_key;
6486 root_key.objectid = ref_path->root_objectid;
6487 root_key.type = BTRFS_ROOT_ITEM_KEY;
6488 if (is_cowonly_root(ref_path->root_objectid))
6489 root_key.offset = 0;
6491 root_key.offset = (u64)-1;
6493 return btrfs_read_fs_root_no_name(fs_info, &root_key);
6496 static noinline int relocate_one_extent(struct btrfs_root *extent_root,
6497 struct btrfs_path *path,
6498 struct btrfs_key *extent_key,
6499 struct btrfs_block_group_cache *group,
6500 struct inode *reloc_inode, int pass)
6502 struct btrfs_trans_handle *trans;
6503 struct btrfs_root *found_root;
6504 struct btrfs_ref_path *ref_path = NULL;
6505 struct disk_extent *new_extents = NULL;
6510 struct btrfs_key first_key;
6514 trans = btrfs_start_transaction(extent_root, 1);
6517 if (extent_key->objectid == 0) {
6518 ret = del_extent_zero(trans, extent_root, path, extent_key);
6522 ref_path = kmalloc(sizeof(*ref_path), GFP_NOFS);
6528 for (loops = 0; ; loops++) {
6530 ret = btrfs_first_ref_path(trans, extent_root, ref_path,
6531 extent_key->objectid);
6533 ret = btrfs_next_ref_path(trans, extent_root, ref_path);
6540 if (ref_path->root_objectid == BTRFS_TREE_LOG_OBJECTID ||
6541 ref_path->root_objectid == BTRFS_TREE_RELOC_OBJECTID)
6544 found_root = read_ref_root(extent_root->fs_info, ref_path);
6545 BUG_ON(!found_root);
6547 * for reference counted tree, only process reference paths
6548 * rooted at the latest committed root.
6550 if (found_root->ref_cows &&
6551 ref_path->root_generation != found_root->root_key.offset)
6554 if (ref_path->owner_objectid >= BTRFS_FIRST_FREE_OBJECTID) {
6557 * copy data extents to new locations
6559 u64 group_start = group->key.objectid;
6560 ret = relocate_data_extent(reloc_inode,
6569 level = ref_path->owner_objectid;
6572 if (prev_block != ref_path->nodes[level]) {
6573 struct extent_buffer *eb;
6574 u64 block_start = ref_path->nodes[level];
6575 u64 block_size = btrfs_level_size(found_root, level);
6577 eb = read_tree_block(found_root, block_start,
6579 btrfs_tree_lock(eb);
6580 BUG_ON(level != btrfs_header_level(eb));
6583 btrfs_item_key_to_cpu(eb, &first_key, 0);
6585 btrfs_node_key_to_cpu(eb, &first_key, 0);
6587 btrfs_tree_unlock(eb);
6588 free_extent_buffer(eb);
6589 prev_block = block_start;
6592 mutex_lock(&extent_root->fs_info->trans_mutex);
6593 btrfs_record_root_in_trans(found_root);
6594 mutex_unlock(&extent_root->fs_info->trans_mutex);
6595 if (ref_path->owner_objectid >= BTRFS_FIRST_FREE_OBJECTID) {
6597 * try to update data extent references while
6598 * keeping metadata shared between snapshots.
6601 ret = relocate_one_path(trans, found_root,
6602 path, &first_key, ref_path,
6603 group, reloc_inode);
6609 * use fallback method to process the remaining
6613 u64 group_start = group->key.objectid;
6614 new_extents = kmalloc(sizeof(*new_extents),
6617 ret = get_new_locations(reloc_inode,
6625 ret = replace_one_extent(trans, found_root,
6627 &first_key, ref_path,
6628 new_extents, nr_extents);
6630 ret = relocate_tree_block(trans, found_root, path,
6631 &first_key, ref_path);
6638 btrfs_end_transaction(trans, extent_root);
6645 static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
6648 u64 stripped = BTRFS_BLOCK_GROUP_RAID0 |
6649 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
6651 num_devices = root->fs_info->fs_devices->rw_devices;
6652 if (num_devices == 1) {
6653 stripped |= BTRFS_BLOCK_GROUP_DUP;
6654 stripped = flags & ~stripped;
6656 /* turn raid0 into single device chunks */
6657 if (flags & BTRFS_BLOCK_GROUP_RAID0)
6660 /* turn mirroring into duplication */
6661 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
6662 BTRFS_BLOCK_GROUP_RAID10))
6663 return stripped | BTRFS_BLOCK_GROUP_DUP;
6666 /* they already had raid on here, just return */
6667 if (flags & stripped)
6670 stripped |= BTRFS_BLOCK_GROUP_DUP;
6671 stripped = flags & ~stripped;
6673 /* switch duplicated blocks with raid1 */
6674 if (flags & BTRFS_BLOCK_GROUP_DUP)
6675 return stripped | BTRFS_BLOCK_GROUP_RAID1;
6677 /* turn single device chunks into raid0 */
6678 return stripped | BTRFS_BLOCK_GROUP_RAID0;
6683 static int __alloc_chunk_for_shrink(struct btrfs_root *root,
6684 struct btrfs_block_group_cache *shrink_block_group,
6687 struct btrfs_trans_handle *trans;
6688 u64 new_alloc_flags;
6691 spin_lock(&shrink_block_group->lock);
6692 if (btrfs_block_group_used(&shrink_block_group->item) +
6693 shrink_block_group->reserved > 0) {
6694 spin_unlock(&shrink_block_group->lock);
6696 trans = btrfs_start_transaction(root, 1);
6697 spin_lock(&shrink_block_group->lock);
6699 new_alloc_flags = update_block_group_flags(root,
6700 shrink_block_group->flags);
6701 if (new_alloc_flags != shrink_block_group->flags) {
6703 btrfs_block_group_used(&shrink_block_group->item);
6705 calc = shrink_block_group->key.offset;
6707 spin_unlock(&shrink_block_group->lock);
6709 do_chunk_alloc(trans, root->fs_info->extent_root,
6710 calc + 2 * 1024 * 1024, new_alloc_flags, force);
6712 btrfs_end_transaction(trans, root);
6714 spin_unlock(&shrink_block_group->lock);
6719 int btrfs_prepare_block_group_relocation(struct btrfs_root *root,
6720 struct btrfs_block_group_cache *group)
6723 __alloc_chunk_for_shrink(root, group, 1);
6724 set_block_group_readonly(group);
6729 * checks to see if its even possible to relocate this block group.
6731 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
6732 * ok to go ahead and try.
6734 int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
6736 struct btrfs_block_group_cache *block_group;
6737 struct btrfs_space_info *space_info;
6738 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
6739 struct btrfs_device *device;
6743 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
6745 /* odd, couldn't find the block group, leave it alone */
6749 /* no bytes used, we're good */
6750 if (!btrfs_block_group_used(&block_group->item))
6753 space_info = block_group->space_info;
6754 spin_lock(&space_info->lock);
6756 full = space_info->full;
6759 * if this is the last block group we have in this space, we can't
6760 * relocate it unless we're able to allocate a new chunk below.
6762 * Otherwise, we need to make sure we have room in the space to handle
6763 * all of the extents from this block group. If we can, we're good
6765 if ((space_info->total_bytes != block_group->key.offset) &&
6766 (space_info->bytes_used + space_info->bytes_reserved +
6767 space_info->bytes_pinned + space_info->bytes_readonly +
6768 btrfs_block_group_used(&block_group->item) <
6769 space_info->total_bytes)) {
6770 spin_unlock(&space_info->lock);
6773 spin_unlock(&space_info->lock);
6776 * ok we don't have enough space, but maybe we have free space on our
6777 * devices to allocate new chunks for relocation, so loop through our
6778 * alloc devices and guess if we have enough space. However, if we
6779 * were marked as full, then we know there aren't enough chunks, and we
6786 mutex_lock(&root->fs_info->chunk_mutex);
6787 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
6788 u64 min_free = btrfs_block_group_used(&block_group->item);
6789 u64 dev_offset, max_avail;
6792 * check to make sure we can actually find a chunk with enough
6793 * space to fit our block group in.
6795 if (device->total_bytes > device->bytes_used + min_free) {
6796 ret = find_free_dev_extent(NULL, device, min_free,
6797 &dev_offset, &max_avail);
6803 mutex_unlock(&root->fs_info->chunk_mutex);
6805 btrfs_put_block_group(block_group);
6809 static int find_first_block_group(struct btrfs_root *root,
6810 struct btrfs_path *path, struct btrfs_key *key)
6813 struct btrfs_key found_key;
6814 struct extent_buffer *leaf;
6817 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
6822 slot = path->slots[0];
6823 leaf = path->nodes[0];
6824 if (slot >= btrfs_header_nritems(leaf)) {
6825 ret = btrfs_next_leaf(root, path);
6832 btrfs_item_key_to_cpu(leaf, &found_key, slot);
6834 if (found_key.objectid >= key->objectid &&
6835 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
6846 int btrfs_free_block_groups(struct btrfs_fs_info *info)
6848 struct btrfs_block_group_cache *block_group;
6849 struct btrfs_space_info *space_info;
6850 struct btrfs_caching_control *caching_ctl;
6853 down_write(&info->extent_commit_sem);
6854 while (!list_empty(&info->caching_block_groups)) {
6855 caching_ctl = list_entry(info->caching_block_groups.next,
6856 struct btrfs_caching_control, list);
6857 list_del(&caching_ctl->list);
6858 put_caching_control(caching_ctl);
6860 up_write(&info->extent_commit_sem);
6862 spin_lock(&info->block_group_cache_lock);
6863 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
6864 block_group = rb_entry(n, struct btrfs_block_group_cache,
6866 rb_erase(&block_group->cache_node,
6867 &info->block_group_cache_tree);
6868 spin_unlock(&info->block_group_cache_lock);
6870 down_write(&block_group->space_info->groups_sem);
6871 list_del(&block_group->list);
6872 up_write(&block_group->space_info->groups_sem);
6874 if (block_group->cached == BTRFS_CACHE_STARTED)
6875 wait_block_group_cache_done(block_group);
6877 btrfs_remove_free_space_cache(block_group);
6879 WARN_ON(atomic_read(&block_group->count) != 1);
6882 spin_lock(&info->block_group_cache_lock);
6884 spin_unlock(&info->block_group_cache_lock);
6886 /* now that all the block groups are freed, go through and
6887 * free all the space_info structs. This is only called during
6888 * the final stages of unmount, and so we know nobody is
6889 * using them. We call synchronize_rcu() once before we start,
6890 * just to be on the safe side.
6894 while(!list_empty(&info->space_info)) {
6895 space_info = list_entry(info->space_info.next,
6896 struct btrfs_space_info,
6899 list_del(&space_info->list);
6905 int btrfs_read_block_groups(struct btrfs_root *root)
6907 struct btrfs_path *path;
6909 struct btrfs_block_group_cache *cache;
6910 struct btrfs_fs_info *info = root->fs_info;
6911 struct btrfs_space_info *space_info;
6912 struct btrfs_key key;
6913 struct btrfs_key found_key;
6914 struct extent_buffer *leaf;
6916 root = info->extent_root;
6919 btrfs_set_key_type(&key, BTRFS_BLOCK_GROUP_ITEM_KEY);
6920 path = btrfs_alloc_path();
6925 ret = find_first_block_group(root, path, &key);
6933 leaf = path->nodes[0];
6934 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6935 cache = kzalloc(sizeof(*cache), GFP_NOFS);
6941 atomic_set(&cache->count, 1);
6942 spin_lock_init(&cache->lock);
6943 spin_lock_init(&cache->tree_lock);
6944 cache->fs_info = info;
6945 INIT_LIST_HEAD(&cache->list);
6946 INIT_LIST_HEAD(&cache->cluster_list);
6949 * we only want to have 32k of ram per block group for keeping
6950 * track of free space, and if we pass 1/2 of that we want to
6951 * start converting things over to using bitmaps
6953 cache->extents_thresh = ((1024 * 32) / 2) /
6954 sizeof(struct btrfs_free_space);
6956 read_extent_buffer(leaf, &cache->item,
6957 btrfs_item_ptr_offset(leaf, path->slots[0]),
6958 sizeof(cache->item));
6959 memcpy(&cache->key, &found_key, sizeof(found_key));
6961 key.objectid = found_key.objectid + found_key.offset;
6962 btrfs_release_path(root, path);
6963 cache->flags = btrfs_block_group_flags(&cache->item);
6964 cache->sectorsize = root->sectorsize;
6967 * check for two cases, either we are full, and therefore
6968 * don't need to bother with the caching work since we won't
6969 * find any space, or we are empty, and we can just add all
6970 * the space in and be done with it. This saves us _alot_ of
6971 * time, particularly in the full case.
6973 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
6974 exclude_super_stripes(root, cache);
6975 cache->last_byte_to_unpin = (u64)-1;
6976 cache->cached = BTRFS_CACHE_FINISHED;
6977 free_excluded_extents(root, cache);
6978 } else if (btrfs_block_group_used(&cache->item) == 0) {
6979 exclude_super_stripes(root, cache);
6980 cache->last_byte_to_unpin = (u64)-1;
6981 cache->cached = BTRFS_CACHE_FINISHED;
6982 add_new_free_space(cache, root->fs_info,
6984 found_key.objectid +
6986 free_excluded_extents(root, cache);
6989 ret = update_space_info(info, cache->flags, found_key.offset,
6990 btrfs_block_group_used(&cache->item),
6993 cache->space_info = space_info;
6994 spin_lock(&cache->space_info->lock);
6995 cache->space_info->bytes_super += cache->bytes_super;
6996 spin_unlock(&cache->space_info->lock);
6998 down_write(&space_info->groups_sem);
6999 list_add_tail(&cache->list, &space_info->block_groups);
7000 up_write(&space_info->groups_sem);
7002 ret = btrfs_add_block_group_cache(root->fs_info, cache);
7005 set_avail_alloc_bits(root->fs_info, cache->flags);
7006 if (btrfs_chunk_readonly(root, cache->key.objectid))
7007 set_block_group_readonly(cache);
7011 btrfs_free_path(path);
7015 int btrfs_make_block_group(struct btrfs_trans_handle *trans,
7016 struct btrfs_root *root, u64 bytes_used,
7017 u64 type, u64 chunk_objectid, u64 chunk_offset,
7021 struct btrfs_root *extent_root;
7022 struct btrfs_block_group_cache *cache;
7024 extent_root = root->fs_info->extent_root;
7026 root->fs_info->last_trans_log_full_commit = trans->transid;
7028 cache = kzalloc(sizeof(*cache), GFP_NOFS);
7032 cache->key.objectid = chunk_offset;
7033 cache->key.offset = size;
7034 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
7035 cache->sectorsize = root->sectorsize;
7038 * we only want to have 32k of ram per block group for keeping track
7039 * of free space, and if we pass 1/2 of that we want to start
7040 * converting things over to using bitmaps
7042 cache->extents_thresh = ((1024 * 32) / 2) /
7043 sizeof(struct btrfs_free_space);
7044 atomic_set(&cache->count, 1);
7045 spin_lock_init(&cache->lock);
7046 spin_lock_init(&cache->tree_lock);
7047 INIT_LIST_HEAD(&cache->list);
7048 INIT_LIST_HEAD(&cache->cluster_list);
7050 btrfs_set_block_group_used(&cache->item, bytes_used);
7051 btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
7052 cache->flags = type;
7053 btrfs_set_block_group_flags(&cache->item, type);
7055 cache->last_byte_to_unpin = (u64)-1;
7056 cache->cached = BTRFS_CACHE_FINISHED;
7057 exclude_super_stripes(root, cache);
7059 add_new_free_space(cache, root->fs_info, chunk_offset,
7060 chunk_offset + size);
7062 free_excluded_extents(root, cache);
7064 ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
7065 &cache->space_info);
7068 spin_lock(&cache->space_info->lock);
7069 cache->space_info->bytes_super += cache->bytes_super;
7070 spin_unlock(&cache->space_info->lock);
7072 down_write(&cache->space_info->groups_sem);
7073 list_add_tail(&cache->list, &cache->space_info->block_groups);
7074 up_write(&cache->space_info->groups_sem);
7076 ret = btrfs_add_block_group_cache(root->fs_info, cache);
7079 ret = btrfs_insert_item(trans, extent_root, &cache->key, &cache->item,
7080 sizeof(cache->item));
7083 set_avail_alloc_bits(extent_root->fs_info, type);
7088 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
7089 struct btrfs_root *root, u64 group_start)
7091 struct btrfs_path *path;
7092 struct btrfs_block_group_cache *block_group;
7093 struct btrfs_free_cluster *cluster;
7094 struct btrfs_key key;
7097 root = root->fs_info->extent_root;
7099 block_group = btrfs_lookup_block_group(root->fs_info, group_start);
7100 BUG_ON(!block_group);
7101 BUG_ON(!block_group->ro);
7103 memcpy(&key, &block_group->key, sizeof(key));
7105 /* make sure this block group isn't part of an allocation cluster */
7106 cluster = &root->fs_info->data_alloc_cluster;
7107 spin_lock(&cluster->refill_lock);
7108 btrfs_return_cluster_to_free_space(block_group, cluster);
7109 spin_unlock(&cluster->refill_lock);
7112 * make sure this block group isn't part of a metadata
7113 * allocation cluster
7115 cluster = &root->fs_info->meta_alloc_cluster;
7116 spin_lock(&cluster->refill_lock);
7117 btrfs_return_cluster_to_free_space(block_group, cluster);
7118 spin_unlock(&cluster->refill_lock);
7120 path = btrfs_alloc_path();
7123 spin_lock(&root->fs_info->block_group_cache_lock);
7124 rb_erase(&block_group->cache_node,
7125 &root->fs_info->block_group_cache_tree);
7126 spin_unlock(&root->fs_info->block_group_cache_lock);
7128 down_write(&block_group->space_info->groups_sem);
7130 * we must use list_del_init so people can check to see if they
7131 * are still on the list after taking the semaphore
7133 list_del_init(&block_group->list);
7134 up_write(&block_group->space_info->groups_sem);
7136 if (block_group->cached == BTRFS_CACHE_STARTED)
7137 wait_block_group_cache_done(block_group);
7139 btrfs_remove_free_space_cache(block_group);
7141 spin_lock(&block_group->space_info->lock);
7142 block_group->space_info->total_bytes -= block_group->key.offset;
7143 block_group->space_info->bytes_readonly -= block_group->key.offset;
7144 spin_unlock(&block_group->space_info->lock);
7146 btrfs_clear_space_info_full(root->fs_info);
7148 btrfs_put_block_group(block_group);
7149 btrfs_put_block_group(block_group);
7151 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
7157 ret = btrfs_del_item(trans, root, path);
7159 btrfs_free_path(path);