2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
18 #include <linux/sched.h>
19 #include <linux/pagemap.h>
20 #include <linux/writeback.h>
21 #include <linux/blkdev.h>
22 #include <linux/sort.h>
23 #include <linux/rcupdate.h>
24 #include <linux/kthread.h>
25 #include <linux/slab.h>
26 #include <linux/ratelimit.h>
31 #include "print-tree.h"
32 #include "transaction.h"
35 #include "free-space-cache.h"
37 /* control flags for do_chunk_alloc's force field
38 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
39 * if we really need one.
41 * CHUNK_ALLOC_FORCE means it must try to allocate one
43 * CHUNK_ALLOC_LIMITED means to only try and allocate one
44 * if we have very few chunks already allocated. This is
45 * used as part of the clustering code to help make sure
46 * we have a good pool of storage to cluster in, without
47 * filling the FS with empty chunks
51 CHUNK_ALLOC_NO_FORCE = 0,
52 CHUNK_ALLOC_FORCE = 1,
53 CHUNK_ALLOC_LIMITED = 2,
57 * Control how reservations are dealt with.
59 * RESERVE_FREE - freeing a reservation.
60 * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for
62 * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update
63 * bytes_may_use as the ENOSPC accounting is done elsewhere
68 RESERVE_ALLOC_NO_ACCOUNT = 2,
71 static int update_block_group(struct btrfs_trans_handle *trans,
72 struct btrfs_root *root,
73 u64 bytenr, u64 num_bytes, int alloc);
74 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
75 struct btrfs_root *root,
76 u64 bytenr, u64 num_bytes, u64 parent,
77 u64 root_objectid, u64 owner_objectid,
78 u64 owner_offset, int refs_to_drop,
79 struct btrfs_delayed_extent_op *extra_op);
80 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
81 struct extent_buffer *leaf,
82 struct btrfs_extent_item *ei);
83 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
84 struct btrfs_root *root,
85 u64 parent, u64 root_objectid,
86 u64 flags, u64 owner, u64 offset,
87 struct btrfs_key *ins, int ref_mod);
88 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
89 struct btrfs_root *root,
90 u64 parent, u64 root_objectid,
91 u64 flags, struct btrfs_disk_key *key,
92 int level, struct btrfs_key *ins);
93 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
94 struct btrfs_root *extent_root, u64 alloc_bytes,
95 u64 flags, int force);
96 static int find_next_key(struct btrfs_path *path, int level,
97 struct btrfs_key *key);
98 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
99 int dump_block_groups);
100 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
101 u64 num_bytes, int reserve);
104 block_group_cache_done(struct btrfs_block_group_cache *cache)
107 return cache->cached == BTRFS_CACHE_FINISHED;
110 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
112 return (cache->flags & bits) == bits;
115 static void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
117 atomic_inc(&cache->count);
120 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
122 if (atomic_dec_and_test(&cache->count)) {
123 WARN_ON(cache->pinned > 0);
124 WARN_ON(cache->reserved > 0);
125 kfree(cache->free_space_ctl);
131 * this adds the block group to the fs_info rb tree for the block group
134 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
135 struct btrfs_block_group_cache *block_group)
138 struct rb_node *parent = NULL;
139 struct btrfs_block_group_cache *cache;
141 spin_lock(&info->block_group_cache_lock);
142 p = &info->block_group_cache_tree.rb_node;
146 cache = rb_entry(parent, struct btrfs_block_group_cache,
148 if (block_group->key.objectid < cache->key.objectid) {
150 } else if (block_group->key.objectid > cache->key.objectid) {
153 spin_unlock(&info->block_group_cache_lock);
158 rb_link_node(&block_group->cache_node, parent, p);
159 rb_insert_color(&block_group->cache_node,
160 &info->block_group_cache_tree);
161 spin_unlock(&info->block_group_cache_lock);
167 * This will return the block group at or after bytenr if contains is 0, else
168 * it will return the block group that contains the bytenr
170 static struct btrfs_block_group_cache *
171 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
174 struct btrfs_block_group_cache *cache, *ret = NULL;
178 spin_lock(&info->block_group_cache_lock);
179 n = info->block_group_cache_tree.rb_node;
182 cache = rb_entry(n, struct btrfs_block_group_cache,
184 end = cache->key.objectid + cache->key.offset - 1;
185 start = cache->key.objectid;
187 if (bytenr < start) {
188 if (!contains && (!ret || start < ret->key.objectid))
191 } else if (bytenr > start) {
192 if (contains && bytenr <= end) {
203 btrfs_get_block_group(ret);
204 spin_unlock(&info->block_group_cache_lock);
209 static int add_excluded_extent(struct btrfs_root *root,
210 u64 start, u64 num_bytes)
212 u64 end = start + num_bytes - 1;
213 set_extent_bits(&root->fs_info->freed_extents[0],
214 start, end, EXTENT_UPTODATE, GFP_NOFS);
215 set_extent_bits(&root->fs_info->freed_extents[1],
216 start, end, EXTENT_UPTODATE, GFP_NOFS);
220 static void free_excluded_extents(struct btrfs_root *root,
221 struct btrfs_block_group_cache *cache)
225 start = cache->key.objectid;
226 end = start + cache->key.offset - 1;
228 clear_extent_bits(&root->fs_info->freed_extents[0],
229 start, end, EXTENT_UPTODATE, GFP_NOFS);
230 clear_extent_bits(&root->fs_info->freed_extents[1],
231 start, end, EXTENT_UPTODATE, GFP_NOFS);
234 static int exclude_super_stripes(struct btrfs_root *root,
235 struct btrfs_block_group_cache *cache)
242 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
243 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
244 cache->bytes_super += stripe_len;
245 ret = add_excluded_extent(root, cache->key.objectid,
250 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
251 bytenr = btrfs_sb_offset(i);
252 ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
253 cache->key.objectid, bytenr,
254 0, &logical, &nr, &stripe_len);
258 cache->bytes_super += stripe_len;
259 ret = add_excluded_extent(root, logical[nr],
269 static struct btrfs_caching_control *
270 get_caching_control(struct btrfs_block_group_cache *cache)
272 struct btrfs_caching_control *ctl;
274 spin_lock(&cache->lock);
275 if (cache->cached != BTRFS_CACHE_STARTED) {
276 spin_unlock(&cache->lock);
280 /* We're loading it the fast way, so we don't have a caching_ctl. */
281 if (!cache->caching_ctl) {
282 spin_unlock(&cache->lock);
286 ctl = cache->caching_ctl;
287 atomic_inc(&ctl->count);
288 spin_unlock(&cache->lock);
292 static void put_caching_control(struct btrfs_caching_control *ctl)
294 if (atomic_dec_and_test(&ctl->count))
299 * this is only called by cache_block_group, since we could have freed extents
300 * we need to check the pinned_extents for any extents that can't be used yet
301 * since their free space will be released as soon as the transaction commits.
303 static u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
304 struct btrfs_fs_info *info, u64 start, u64 end)
306 u64 extent_start, extent_end, size, total_added = 0;
309 while (start < end) {
310 ret = find_first_extent_bit(info->pinned_extents, start,
311 &extent_start, &extent_end,
312 EXTENT_DIRTY | EXTENT_UPTODATE);
316 if (extent_start <= start) {
317 start = extent_end + 1;
318 } else if (extent_start > start && extent_start < end) {
319 size = extent_start - start;
321 ret = btrfs_add_free_space(block_group, start,
324 start = extent_end + 1;
333 ret = btrfs_add_free_space(block_group, start, size);
340 static noinline void caching_thread(struct btrfs_work *work)
342 struct btrfs_block_group_cache *block_group;
343 struct btrfs_fs_info *fs_info;
344 struct btrfs_caching_control *caching_ctl;
345 struct btrfs_root *extent_root;
346 struct btrfs_path *path;
347 struct extent_buffer *leaf;
348 struct btrfs_key key;
354 caching_ctl = container_of(work, struct btrfs_caching_control, work);
355 block_group = caching_ctl->block_group;
356 fs_info = block_group->fs_info;
357 extent_root = fs_info->extent_root;
359 path = btrfs_alloc_path();
363 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
366 * We don't want to deadlock with somebody trying to allocate a new
367 * extent for the extent root while also trying to search the extent
368 * root to add free space. So we skip locking and search the commit
369 * root, since its read-only
371 path->skip_locking = 1;
372 path->search_commit_root = 1;
377 key.type = BTRFS_EXTENT_ITEM_KEY;
379 mutex_lock(&caching_ctl->mutex);
380 /* need to make sure the commit_root doesn't disappear */
381 down_read(&fs_info->extent_commit_sem);
383 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
387 leaf = path->nodes[0];
388 nritems = btrfs_header_nritems(leaf);
391 if (btrfs_fs_closing(fs_info) > 1) {
396 if (path->slots[0] < nritems) {
397 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
399 ret = find_next_key(path, 0, &key);
403 if (need_resched() ||
404 btrfs_next_leaf(extent_root, path)) {
405 caching_ctl->progress = last;
406 btrfs_release_path(path);
407 up_read(&fs_info->extent_commit_sem);
408 mutex_unlock(&caching_ctl->mutex);
412 leaf = path->nodes[0];
413 nritems = btrfs_header_nritems(leaf);
417 if (key.objectid < block_group->key.objectid) {
422 if (key.objectid >= block_group->key.objectid +
423 block_group->key.offset)
426 if (key.type == BTRFS_EXTENT_ITEM_KEY) {
427 total_found += add_new_free_space(block_group,
430 last = key.objectid + key.offset;
432 if (total_found > (1024 * 1024 * 2)) {
434 wake_up(&caching_ctl->wait);
441 total_found += add_new_free_space(block_group, fs_info, last,
442 block_group->key.objectid +
443 block_group->key.offset);
444 caching_ctl->progress = (u64)-1;
446 spin_lock(&block_group->lock);
447 block_group->caching_ctl = NULL;
448 block_group->cached = BTRFS_CACHE_FINISHED;
449 spin_unlock(&block_group->lock);
452 btrfs_free_path(path);
453 up_read(&fs_info->extent_commit_sem);
455 free_excluded_extents(extent_root, block_group);
457 mutex_unlock(&caching_ctl->mutex);
459 wake_up(&caching_ctl->wait);
461 put_caching_control(caching_ctl);
462 btrfs_put_block_group(block_group);
465 static int cache_block_group(struct btrfs_block_group_cache *cache,
466 struct btrfs_trans_handle *trans,
467 struct btrfs_root *root,
471 struct btrfs_fs_info *fs_info = cache->fs_info;
472 struct btrfs_caching_control *caching_ctl;
475 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
476 BUG_ON(!caching_ctl);
478 INIT_LIST_HEAD(&caching_ctl->list);
479 mutex_init(&caching_ctl->mutex);
480 init_waitqueue_head(&caching_ctl->wait);
481 caching_ctl->block_group = cache;
482 caching_ctl->progress = cache->key.objectid;
483 atomic_set(&caching_ctl->count, 1);
484 caching_ctl->work.func = caching_thread;
486 spin_lock(&cache->lock);
488 * This should be a rare occasion, but this could happen I think in the
489 * case where one thread starts to load the space cache info, and then
490 * some other thread starts a transaction commit which tries to do an
491 * allocation while the other thread is still loading the space cache
492 * info. The previous loop should have kept us from choosing this block
493 * group, but if we've moved to the state where we will wait on caching
494 * block groups we need to first check if we're doing a fast load here,
495 * so we can wait for it to finish, otherwise we could end up allocating
496 * from a block group who's cache gets evicted for one reason or
499 while (cache->cached == BTRFS_CACHE_FAST) {
500 struct btrfs_caching_control *ctl;
502 ctl = cache->caching_ctl;
503 atomic_inc(&ctl->count);
504 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
505 spin_unlock(&cache->lock);
509 finish_wait(&ctl->wait, &wait);
510 put_caching_control(ctl);
511 spin_lock(&cache->lock);
514 if (cache->cached != BTRFS_CACHE_NO) {
515 spin_unlock(&cache->lock);
519 WARN_ON(cache->caching_ctl);
520 cache->caching_ctl = caching_ctl;
521 cache->cached = BTRFS_CACHE_FAST;
522 spin_unlock(&cache->lock);
525 * We can't do the read from on-disk cache during a commit since we need
526 * to have the normal tree locking. Also if we are currently trying to
527 * allocate blocks for the tree root we can't do the fast caching since
528 * we likely hold important locks.
530 if (trans && (!trans->transaction->in_commit) &&
531 (root && root != root->fs_info->tree_root) &&
532 btrfs_test_opt(root, SPACE_CACHE)) {
533 ret = load_free_space_cache(fs_info, cache);
535 spin_lock(&cache->lock);
537 cache->caching_ctl = NULL;
538 cache->cached = BTRFS_CACHE_FINISHED;
539 cache->last_byte_to_unpin = (u64)-1;
541 if (load_cache_only) {
542 cache->caching_ctl = NULL;
543 cache->cached = BTRFS_CACHE_NO;
545 cache->cached = BTRFS_CACHE_STARTED;
548 spin_unlock(&cache->lock);
549 wake_up(&caching_ctl->wait);
551 put_caching_control(caching_ctl);
552 free_excluded_extents(fs_info->extent_root, cache);
557 * We are not going to do the fast caching, set cached to the
558 * appropriate value and wakeup any waiters.
560 spin_lock(&cache->lock);
561 if (load_cache_only) {
562 cache->caching_ctl = NULL;
563 cache->cached = BTRFS_CACHE_NO;
565 cache->cached = BTRFS_CACHE_STARTED;
567 spin_unlock(&cache->lock);
568 wake_up(&caching_ctl->wait);
571 if (load_cache_only) {
572 put_caching_control(caching_ctl);
576 down_write(&fs_info->extent_commit_sem);
577 atomic_inc(&caching_ctl->count);
578 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
579 up_write(&fs_info->extent_commit_sem);
581 btrfs_get_block_group(cache);
583 btrfs_queue_worker(&fs_info->caching_workers, &caching_ctl->work);
589 * return the block group that starts at or after bytenr
591 static struct btrfs_block_group_cache *
592 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
594 struct btrfs_block_group_cache *cache;
596 cache = block_group_cache_tree_search(info, bytenr, 0);
602 * return the block group that contains the given bytenr
604 struct btrfs_block_group_cache *btrfs_lookup_block_group(
605 struct btrfs_fs_info *info,
608 struct btrfs_block_group_cache *cache;
610 cache = block_group_cache_tree_search(info, bytenr, 1);
615 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
618 struct list_head *head = &info->space_info;
619 struct btrfs_space_info *found;
621 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
624 list_for_each_entry_rcu(found, head, list) {
625 if (found->flags & flags) {
635 * after adding space to the filesystem, we need to clear the full flags
636 * on all the space infos.
638 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
640 struct list_head *head = &info->space_info;
641 struct btrfs_space_info *found;
644 list_for_each_entry_rcu(found, head, list)
649 static u64 div_factor(u64 num, int factor)
658 static u64 div_factor_fine(u64 num, int factor)
667 u64 btrfs_find_block_group(struct btrfs_root *root,
668 u64 search_start, u64 search_hint, int owner)
670 struct btrfs_block_group_cache *cache;
672 u64 last = max(search_hint, search_start);
679 cache = btrfs_lookup_first_block_group(root->fs_info, last);
683 spin_lock(&cache->lock);
684 last = cache->key.objectid + cache->key.offset;
685 used = btrfs_block_group_used(&cache->item);
687 if ((full_search || !cache->ro) &&
688 block_group_bits(cache, BTRFS_BLOCK_GROUP_METADATA)) {
689 if (used + cache->pinned + cache->reserved <
690 div_factor(cache->key.offset, factor)) {
691 group_start = cache->key.objectid;
692 spin_unlock(&cache->lock);
693 btrfs_put_block_group(cache);
697 spin_unlock(&cache->lock);
698 btrfs_put_block_group(cache);
706 if (!full_search && factor < 10) {
716 /* simple helper to search for an existing extent at a given offset */
717 int btrfs_lookup_extent(struct btrfs_root *root, u64 start, u64 len)
720 struct btrfs_key key;
721 struct btrfs_path *path;
723 path = btrfs_alloc_path();
727 key.objectid = start;
729 btrfs_set_key_type(&key, BTRFS_EXTENT_ITEM_KEY);
730 ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
732 btrfs_free_path(path);
737 * helper function to lookup reference count and flags of extent.
739 * the head node for delayed ref is used to store the sum of all the
740 * reference count modifications queued up in the rbtree. the head
741 * node may also store the extent flags to set. This way you can check
742 * to see what the reference count and extent flags would be if all of
743 * the delayed refs are not processed.
745 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
746 struct btrfs_root *root, u64 bytenr,
747 u64 num_bytes, u64 *refs, u64 *flags)
749 struct btrfs_delayed_ref_head *head;
750 struct btrfs_delayed_ref_root *delayed_refs;
751 struct btrfs_path *path;
752 struct btrfs_extent_item *ei;
753 struct extent_buffer *leaf;
754 struct btrfs_key key;
760 path = btrfs_alloc_path();
764 key.objectid = bytenr;
765 key.type = BTRFS_EXTENT_ITEM_KEY;
766 key.offset = num_bytes;
768 path->skip_locking = 1;
769 path->search_commit_root = 1;
772 ret = btrfs_search_slot(trans, root->fs_info->extent_root,
778 leaf = path->nodes[0];
779 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
780 if (item_size >= sizeof(*ei)) {
781 ei = btrfs_item_ptr(leaf, path->slots[0],
782 struct btrfs_extent_item);
783 num_refs = btrfs_extent_refs(leaf, ei);
784 extent_flags = btrfs_extent_flags(leaf, ei);
786 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
787 struct btrfs_extent_item_v0 *ei0;
788 BUG_ON(item_size != sizeof(*ei0));
789 ei0 = btrfs_item_ptr(leaf, path->slots[0],
790 struct btrfs_extent_item_v0);
791 num_refs = btrfs_extent_refs_v0(leaf, ei0);
792 /* FIXME: this isn't correct for data */
793 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
798 BUG_ON(num_refs == 0);
808 delayed_refs = &trans->transaction->delayed_refs;
809 spin_lock(&delayed_refs->lock);
810 head = btrfs_find_delayed_ref_head(trans, bytenr);
812 if (!mutex_trylock(&head->mutex)) {
813 atomic_inc(&head->node.refs);
814 spin_unlock(&delayed_refs->lock);
816 btrfs_release_path(path);
819 * Mutex was contended, block until it's released and try
822 mutex_lock(&head->mutex);
823 mutex_unlock(&head->mutex);
824 btrfs_put_delayed_ref(&head->node);
827 if (head->extent_op && head->extent_op->update_flags)
828 extent_flags |= head->extent_op->flags_to_set;
830 BUG_ON(num_refs == 0);
832 num_refs += head->node.ref_mod;
833 mutex_unlock(&head->mutex);
835 spin_unlock(&delayed_refs->lock);
837 WARN_ON(num_refs == 0);
841 *flags = extent_flags;
843 btrfs_free_path(path);
848 * Back reference rules. Back refs have three main goals:
850 * 1) differentiate between all holders of references to an extent so that
851 * when a reference is dropped we can make sure it was a valid reference
852 * before freeing the extent.
854 * 2) Provide enough information to quickly find the holders of an extent
855 * if we notice a given block is corrupted or bad.
857 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
858 * maintenance. This is actually the same as #2, but with a slightly
859 * different use case.
861 * There are two kinds of back refs. The implicit back refs is optimized
862 * for pointers in non-shared tree blocks. For a given pointer in a block,
863 * back refs of this kind provide information about the block's owner tree
864 * and the pointer's key. These information allow us to find the block by
865 * b-tree searching. The full back refs is for pointers in tree blocks not
866 * referenced by their owner trees. The location of tree block is recorded
867 * in the back refs. Actually the full back refs is generic, and can be
868 * used in all cases the implicit back refs is used. The major shortcoming
869 * of the full back refs is its overhead. Every time a tree block gets
870 * COWed, we have to update back refs entry for all pointers in it.
872 * For a newly allocated tree block, we use implicit back refs for
873 * pointers in it. This means most tree related operations only involve
874 * implicit back refs. For a tree block created in old transaction, the
875 * only way to drop a reference to it is COW it. So we can detect the
876 * event that tree block loses its owner tree's reference and do the
877 * back refs conversion.
879 * When a tree block is COW'd through a tree, there are four cases:
881 * The reference count of the block is one and the tree is the block's
882 * owner tree. Nothing to do in this case.
884 * The reference count of the block is one and the tree is not the
885 * block's owner tree. In this case, full back refs is used for pointers
886 * in the block. Remove these full back refs, add implicit back refs for
887 * every pointers in the new block.
889 * The reference count of the block is greater than one and the tree is
890 * the block's owner tree. In this case, implicit back refs is used for
891 * pointers in the block. Add full back refs for every pointers in the
892 * block, increase lower level extents' reference counts. The original
893 * implicit back refs are entailed to the new block.
895 * The reference count of the block is greater than one and the tree is
896 * not the block's owner tree. Add implicit back refs for every pointer in
897 * the new block, increase lower level extents' reference count.
899 * Back Reference Key composing:
901 * The key objectid corresponds to the first byte in the extent,
902 * The key type is used to differentiate between types of back refs.
903 * There are different meanings of the key offset for different types
906 * File extents can be referenced by:
908 * - multiple snapshots, subvolumes, or different generations in one subvol
909 * - different files inside a single subvolume
910 * - different offsets inside a file (bookend extents in file.c)
912 * The extent ref structure for the implicit back refs has fields for:
914 * - Objectid of the subvolume root
915 * - objectid of the file holding the reference
916 * - original offset in the file
917 * - how many bookend extents
919 * The key offset for the implicit back refs is hash of the first
922 * The extent ref structure for the full back refs has field for:
924 * - number of pointers in the tree leaf
926 * The key offset for the implicit back refs is the first byte of
929 * When a file extent is allocated, The implicit back refs is used.
930 * the fields are filled in:
932 * (root_key.objectid, inode objectid, offset in file, 1)
934 * When a file extent is removed file truncation, we find the
935 * corresponding implicit back refs and check the following fields:
937 * (btrfs_header_owner(leaf), inode objectid, offset in file)
939 * Btree extents can be referenced by:
941 * - Different subvolumes
943 * Both the implicit back refs and the full back refs for tree blocks
944 * only consist of key. The key offset for the implicit back refs is
945 * objectid of block's owner tree. The key offset for the full back refs
946 * is the first byte of parent block.
948 * When implicit back refs is used, information about the lowest key and
949 * level of the tree block are required. These information are stored in
950 * tree block info structure.
953 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
954 static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
955 struct btrfs_root *root,
956 struct btrfs_path *path,
957 u64 owner, u32 extra_size)
959 struct btrfs_extent_item *item;
960 struct btrfs_extent_item_v0 *ei0;
961 struct btrfs_extent_ref_v0 *ref0;
962 struct btrfs_tree_block_info *bi;
963 struct extent_buffer *leaf;
964 struct btrfs_key key;
965 struct btrfs_key found_key;
966 u32 new_size = sizeof(*item);
970 leaf = path->nodes[0];
971 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
973 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
974 ei0 = btrfs_item_ptr(leaf, path->slots[0],
975 struct btrfs_extent_item_v0);
976 refs = btrfs_extent_refs_v0(leaf, ei0);
978 if (owner == (u64)-1) {
980 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
981 ret = btrfs_next_leaf(root, path);
985 leaf = path->nodes[0];
987 btrfs_item_key_to_cpu(leaf, &found_key,
989 BUG_ON(key.objectid != found_key.objectid);
990 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
994 ref0 = btrfs_item_ptr(leaf, path->slots[0],
995 struct btrfs_extent_ref_v0);
996 owner = btrfs_ref_objectid_v0(leaf, ref0);
1000 btrfs_release_path(path);
1002 if (owner < BTRFS_FIRST_FREE_OBJECTID)
1003 new_size += sizeof(*bi);
1005 new_size -= sizeof(*ei0);
1006 ret = btrfs_search_slot(trans, root, &key, path,
1007 new_size + extra_size, 1);
1012 ret = btrfs_extend_item(trans, root, path, new_size);
1014 leaf = path->nodes[0];
1015 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1016 btrfs_set_extent_refs(leaf, item, refs);
1017 /* FIXME: get real generation */
1018 btrfs_set_extent_generation(leaf, item, 0);
1019 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1020 btrfs_set_extent_flags(leaf, item,
1021 BTRFS_EXTENT_FLAG_TREE_BLOCK |
1022 BTRFS_BLOCK_FLAG_FULL_BACKREF);
1023 bi = (struct btrfs_tree_block_info *)(item + 1);
1024 /* FIXME: get first key of the block */
1025 memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
1026 btrfs_set_tree_block_level(leaf, bi, (int)owner);
1028 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1030 btrfs_mark_buffer_dirty(leaf);
1035 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1037 u32 high_crc = ~(u32)0;
1038 u32 low_crc = ~(u32)0;
1041 lenum = cpu_to_le64(root_objectid);
1042 high_crc = crc32c(high_crc, &lenum, sizeof(lenum));
1043 lenum = cpu_to_le64(owner);
1044 low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
1045 lenum = cpu_to_le64(offset);
1046 low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
1048 return ((u64)high_crc << 31) ^ (u64)low_crc;
1051 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1052 struct btrfs_extent_data_ref *ref)
1054 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1055 btrfs_extent_data_ref_objectid(leaf, ref),
1056 btrfs_extent_data_ref_offset(leaf, ref));
1059 static int match_extent_data_ref(struct extent_buffer *leaf,
1060 struct btrfs_extent_data_ref *ref,
1061 u64 root_objectid, u64 owner, u64 offset)
1063 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1064 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1065 btrfs_extent_data_ref_offset(leaf, ref) != offset)
1070 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1071 struct btrfs_root *root,
1072 struct btrfs_path *path,
1073 u64 bytenr, u64 parent,
1075 u64 owner, u64 offset)
1077 struct btrfs_key key;
1078 struct btrfs_extent_data_ref *ref;
1079 struct extent_buffer *leaf;
1085 key.objectid = bytenr;
1087 key.type = BTRFS_SHARED_DATA_REF_KEY;
1088 key.offset = parent;
1090 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1091 key.offset = hash_extent_data_ref(root_objectid,
1096 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1105 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1106 key.type = BTRFS_EXTENT_REF_V0_KEY;
1107 btrfs_release_path(path);
1108 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1119 leaf = path->nodes[0];
1120 nritems = btrfs_header_nritems(leaf);
1122 if (path->slots[0] >= nritems) {
1123 ret = btrfs_next_leaf(root, path);
1129 leaf = path->nodes[0];
1130 nritems = btrfs_header_nritems(leaf);
1134 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1135 if (key.objectid != bytenr ||
1136 key.type != BTRFS_EXTENT_DATA_REF_KEY)
1139 ref = btrfs_item_ptr(leaf, path->slots[0],
1140 struct btrfs_extent_data_ref);
1142 if (match_extent_data_ref(leaf, ref, root_objectid,
1145 btrfs_release_path(path);
1157 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1158 struct btrfs_root *root,
1159 struct btrfs_path *path,
1160 u64 bytenr, u64 parent,
1161 u64 root_objectid, u64 owner,
1162 u64 offset, int refs_to_add)
1164 struct btrfs_key key;
1165 struct extent_buffer *leaf;
1170 key.objectid = bytenr;
1172 key.type = BTRFS_SHARED_DATA_REF_KEY;
1173 key.offset = parent;
1174 size = sizeof(struct btrfs_shared_data_ref);
1176 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1177 key.offset = hash_extent_data_ref(root_objectid,
1179 size = sizeof(struct btrfs_extent_data_ref);
1182 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1183 if (ret && ret != -EEXIST)
1186 leaf = path->nodes[0];
1188 struct btrfs_shared_data_ref *ref;
1189 ref = btrfs_item_ptr(leaf, path->slots[0],
1190 struct btrfs_shared_data_ref);
1192 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1194 num_refs = btrfs_shared_data_ref_count(leaf, ref);
1195 num_refs += refs_to_add;
1196 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1199 struct btrfs_extent_data_ref *ref;
1200 while (ret == -EEXIST) {
1201 ref = btrfs_item_ptr(leaf, path->slots[0],
1202 struct btrfs_extent_data_ref);
1203 if (match_extent_data_ref(leaf, ref, root_objectid,
1206 btrfs_release_path(path);
1208 ret = btrfs_insert_empty_item(trans, root, path, &key,
1210 if (ret && ret != -EEXIST)
1213 leaf = path->nodes[0];
1215 ref = btrfs_item_ptr(leaf, path->slots[0],
1216 struct btrfs_extent_data_ref);
1218 btrfs_set_extent_data_ref_root(leaf, ref,
1220 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1221 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1222 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1224 num_refs = btrfs_extent_data_ref_count(leaf, ref);
1225 num_refs += refs_to_add;
1226 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1229 btrfs_mark_buffer_dirty(leaf);
1232 btrfs_release_path(path);
1236 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1237 struct btrfs_root *root,
1238 struct btrfs_path *path,
1241 struct btrfs_key key;
1242 struct btrfs_extent_data_ref *ref1 = NULL;
1243 struct btrfs_shared_data_ref *ref2 = NULL;
1244 struct extent_buffer *leaf;
1248 leaf = path->nodes[0];
1249 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1251 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1252 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1253 struct btrfs_extent_data_ref);
1254 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1255 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1256 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1257 struct btrfs_shared_data_ref);
1258 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1259 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1260 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1261 struct btrfs_extent_ref_v0 *ref0;
1262 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1263 struct btrfs_extent_ref_v0);
1264 num_refs = btrfs_ref_count_v0(leaf, ref0);
1270 BUG_ON(num_refs < refs_to_drop);
1271 num_refs -= refs_to_drop;
1273 if (num_refs == 0) {
1274 ret = btrfs_del_item(trans, root, path);
1276 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1277 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1278 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1279 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1280 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1282 struct btrfs_extent_ref_v0 *ref0;
1283 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1284 struct btrfs_extent_ref_v0);
1285 btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1288 btrfs_mark_buffer_dirty(leaf);
1293 static noinline u32 extent_data_ref_count(struct btrfs_root *root,
1294 struct btrfs_path *path,
1295 struct btrfs_extent_inline_ref *iref)
1297 struct btrfs_key key;
1298 struct extent_buffer *leaf;
1299 struct btrfs_extent_data_ref *ref1;
1300 struct btrfs_shared_data_ref *ref2;
1303 leaf = path->nodes[0];
1304 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1306 if (btrfs_extent_inline_ref_type(leaf, iref) ==
1307 BTRFS_EXTENT_DATA_REF_KEY) {
1308 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1309 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1311 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1312 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1314 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1315 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1316 struct btrfs_extent_data_ref);
1317 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1318 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1319 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1320 struct btrfs_shared_data_ref);
1321 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1322 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1323 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1324 struct btrfs_extent_ref_v0 *ref0;
1325 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1326 struct btrfs_extent_ref_v0);
1327 num_refs = btrfs_ref_count_v0(leaf, ref0);
1335 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1336 struct btrfs_root *root,
1337 struct btrfs_path *path,
1338 u64 bytenr, u64 parent,
1341 struct btrfs_key key;
1344 key.objectid = bytenr;
1346 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1347 key.offset = parent;
1349 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1350 key.offset = root_objectid;
1353 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1356 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1357 if (ret == -ENOENT && parent) {
1358 btrfs_release_path(path);
1359 key.type = BTRFS_EXTENT_REF_V0_KEY;
1360 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1368 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1369 struct btrfs_root *root,
1370 struct btrfs_path *path,
1371 u64 bytenr, u64 parent,
1374 struct btrfs_key key;
1377 key.objectid = bytenr;
1379 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1380 key.offset = parent;
1382 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1383 key.offset = root_objectid;
1386 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1387 btrfs_release_path(path);
1391 static inline int extent_ref_type(u64 parent, u64 owner)
1394 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1396 type = BTRFS_SHARED_BLOCK_REF_KEY;
1398 type = BTRFS_TREE_BLOCK_REF_KEY;
1401 type = BTRFS_SHARED_DATA_REF_KEY;
1403 type = BTRFS_EXTENT_DATA_REF_KEY;
1408 static int find_next_key(struct btrfs_path *path, int level,
1409 struct btrfs_key *key)
1412 for (; level < BTRFS_MAX_LEVEL; level++) {
1413 if (!path->nodes[level])
1415 if (path->slots[level] + 1 >=
1416 btrfs_header_nritems(path->nodes[level]))
1419 btrfs_item_key_to_cpu(path->nodes[level], key,
1420 path->slots[level] + 1);
1422 btrfs_node_key_to_cpu(path->nodes[level], key,
1423 path->slots[level] + 1);
1430 * look for inline back ref. if back ref is found, *ref_ret is set
1431 * to the address of inline back ref, and 0 is returned.
1433 * if back ref isn't found, *ref_ret is set to the address where it
1434 * should be inserted, and -ENOENT is returned.
1436 * if insert is true and there are too many inline back refs, the path
1437 * points to the extent item, and -EAGAIN is returned.
1439 * NOTE: inline back refs are ordered in the same way that back ref
1440 * items in the tree are ordered.
1442 static noinline_for_stack
1443 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1444 struct btrfs_root *root,
1445 struct btrfs_path *path,
1446 struct btrfs_extent_inline_ref **ref_ret,
1447 u64 bytenr, u64 num_bytes,
1448 u64 parent, u64 root_objectid,
1449 u64 owner, u64 offset, int insert)
1451 struct btrfs_key key;
1452 struct extent_buffer *leaf;
1453 struct btrfs_extent_item *ei;
1454 struct btrfs_extent_inline_ref *iref;
1465 key.objectid = bytenr;
1466 key.type = BTRFS_EXTENT_ITEM_KEY;
1467 key.offset = num_bytes;
1469 want = extent_ref_type(parent, owner);
1471 extra_size = btrfs_extent_inline_ref_size(want);
1472 path->keep_locks = 1;
1475 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1482 leaf = path->nodes[0];
1483 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1484 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1485 if (item_size < sizeof(*ei)) {
1490 ret = convert_extent_item_v0(trans, root, path, owner,
1496 leaf = path->nodes[0];
1497 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1500 BUG_ON(item_size < sizeof(*ei));
1502 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1503 flags = btrfs_extent_flags(leaf, ei);
1505 ptr = (unsigned long)(ei + 1);
1506 end = (unsigned long)ei + item_size;
1508 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1509 ptr += sizeof(struct btrfs_tree_block_info);
1512 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
1521 iref = (struct btrfs_extent_inline_ref *)ptr;
1522 type = btrfs_extent_inline_ref_type(leaf, iref);
1526 ptr += btrfs_extent_inline_ref_size(type);
1530 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1531 struct btrfs_extent_data_ref *dref;
1532 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1533 if (match_extent_data_ref(leaf, dref, root_objectid,
1538 if (hash_extent_data_ref_item(leaf, dref) <
1539 hash_extent_data_ref(root_objectid, owner, offset))
1543 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1545 if (parent == ref_offset) {
1549 if (ref_offset < parent)
1552 if (root_objectid == ref_offset) {
1556 if (ref_offset < root_objectid)
1560 ptr += btrfs_extent_inline_ref_size(type);
1562 if (err == -ENOENT && insert) {
1563 if (item_size + extra_size >=
1564 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1569 * To add new inline back ref, we have to make sure
1570 * there is no corresponding back ref item.
1571 * For simplicity, we just do not add new inline back
1572 * ref if there is any kind of item for this block
1574 if (find_next_key(path, 0, &key) == 0 &&
1575 key.objectid == bytenr &&
1576 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1581 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1584 path->keep_locks = 0;
1585 btrfs_unlock_up_safe(path, 1);
1591 * helper to add new inline back ref
1593 static noinline_for_stack
1594 int setup_inline_extent_backref(struct btrfs_trans_handle *trans,
1595 struct btrfs_root *root,
1596 struct btrfs_path *path,
1597 struct btrfs_extent_inline_ref *iref,
1598 u64 parent, u64 root_objectid,
1599 u64 owner, u64 offset, int refs_to_add,
1600 struct btrfs_delayed_extent_op *extent_op)
1602 struct extent_buffer *leaf;
1603 struct btrfs_extent_item *ei;
1606 unsigned long item_offset;
1612 leaf = path->nodes[0];
1613 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1614 item_offset = (unsigned long)iref - (unsigned long)ei;
1616 type = extent_ref_type(parent, owner);
1617 size = btrfs_extent_inline_ref_size(type);
1619 ret = btrfs_extend_item(trans, root, path, size);
1621 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1622 refs = btrfs_extent_refs(leaf, ei);
1623 refs += refs_to_add;
1624 btrfs_set_extent_refs(leaf, ei, refs);
1626 __run_delayed_extent_op(extent_op, leaf, ei);
1628 ptr = (unsigned long)ei + item_offset;
1629 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1630 if (ptr < end - size)
1631 memmove_extent_buffer(leaf, ptr + size, ptr,
1634 iref = (struct btrfs_extent_inline_ref *)ptr;
1635 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1636 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1637 struct btrfs_extent_data_ref *dref;
1638 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1639 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1640 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1641 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1642 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1643 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1644 struct btrfs_shared_data_ref *sref;
1645 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1646 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1647 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1648 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1649 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1651 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1653 btrfs_mark_buffer_dirty(leaf);
1657 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1658 struct btrfs_root *root,
1659 struct btrfs_path *path,
1660 struct btrfs_extent_inline_ref **ref_ret,
1661 u64 bytenr, u64 num_bytes, u64 parent,
1662 u64 root_objectid, u64 owner, u64 offset)
1666 ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
1667 bytenr, num_bytes, parent,
1668 root_objectid, owner, offset, 0);
1672 btrfs_release_path(path);
1675 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1676 ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
1679 ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
1680 root_objectid, owner, offset);
1686 * helper to update/remove inline back ref
1688 static noinline_for_stack
1689 int update_inline_extent_backref(struct btrfs_trans_handle *trans,
1690 struct btrfs_root *root,
1691 struct btrfs_path *path,
1692 struct btrfs_extent_inline_ref *iref,
1694 struct btrfs_delayed_extent_op *extent_op)
1696 struct extent_buffer *leaf;
1697 struct btrfs_extent_item *ei;
1698 struct btrfs_extent_data_ref *dref = NULL;
1699 struct btrfs_shared_data_ref *sref = NULL;
1708 leaf = path->nodes[0];
1709 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1710 refs = btrfs_extent_refs(leaf, ei);
1711 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1712 refs += refs_to_mod;
1713 btrfs_set_extent_refs(leaf, ei, refs);
1715 __run_delayed_extent_op(extent_op, leaf, ei);
1717 type = btrfs_extent_inline_ref_type(leaf, iref);
1719 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1720 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1721 refs = btrfs_extent_data_ref_count(leaf, dref);
1722 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1723 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1724 refs = btrfs_shared_data_ref_count(leaf, sref);
1727 BUG_ON(refs_to_mod != -1);
1730 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1731 refs += refs_to_mod;
1734 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1735 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1737 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1739 size = btrfs_extent_inline_ref_size(type);
1740 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1741 ptr = (unsigned long)iref;
1742 end = (unsigned long)ei + item_size;
1743 if (ptr + size < end)
1744 memmove_extent_buffer(leaf, ptr, ptr + size,
1747 ret = btrfs_truncate_item(trans, root, path, item_size, 1);
1749 btrfs_mark_buffer_dirty(leaf);
1753 static noinline_for_stack
1754 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1755 struct btrfs_root *root,
1756 struct btrfs_path *path,
1757 u64 bytenr, u64 num_bytes, u64 parent,
1758 u64 root_objectid, u64 owner,
1759 u64 offset, int refs_to_add,
1760 struct btrfs_delayed_extent_op *extent_op)
1762 struct btrfs_extent_inline_ref *iref;
1765 ret = lookup_inline_extent_backref(trans, root, path, &iref,
1766 bytenr, num_bytes, parent,
1767 root_objectid, owner, offset, 1);
1769 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1770 ret = update_inline_extent_backref(trans, root, path, iref,
1771 refs_to_add, extent_op);
1772 } else if (ret == -ENOENT) {
1773 ret = setup_inline_extent_backref(trans, root, path, iref,
1774 parent, root_objectid,
1775 owner, offset, refs_to_add,
1781 static int insert_extent_backref(struct btrfs_trans_handle *trans,
1782 struct btrfs_root *root,
1783 struct btrfs_path *path,
1784 u64 bytenr, u64 parent, u64 root_objectid,
1785 u64 owner, u64 offset, int refs_to_add)
1788 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1789 BUG_ON(refs_to_add != 1);
1790 ret = insert_tree_block_ref(trans, root, path, bytenr,
1791 parent, root_objectid);
1793 ret = insert_extent_data_ref(trans, root, path, bytenr,
1794 parent, root_objectid,
1795 owner, offset, refs_to_add);
1800 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1801 struct btrfs_root *root,
1802 struct btrfs_path *path,
1803 struct btrfs_extent_inline_ref *iref,
1804 int refs_to_drop, int is_data)
1808 BUG_ON(!is_data && refs_to_drop != 1);
1810 ret = update_inline_extent_backref(trans, root, path, iref,
1811 -refs_to_drop, NULL);
1812 } else if (is_data) {
1813 ret = remove_extent_data_ref(trans, root, path, refs_to_drop);
1815 ret = btrfs_del_item(trans, root, path);
1820 static int btrfs_issue_discard(struct block_device *bdev,
1823 return blkdev_issue_discard(bdev, start >> 9, len >> 9, GFP_NOFS, 0);
1826 static int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
1827 u64 num_bytes, u64 *actual_bytes)
1830 u64 discarded_bytes = 0;
1831 struct btrfs_bio *bbio = NULL;
1834 /* Tell the block device(s) that the sectors can be discarded */
1835 ret = btrfs_map_block(&root->fs_info->mapping_tree, REQ_DISCARD,
1836 bytenr, &num_bytes, &bbio, 0);
1838 struct btrfs_bio_stripe *stripe = bbio->stripes;
1842 for (i = 0; i < bbio->num_stripes; i++, stripe++) {
1843 if (!stripe->dev->can_discard)
1846 ret = btrfs_issue_discard(stripe->dev->bdev,
1850 discarded_bytes += stripe->length;
1851 else if (ret != -EOPNOTSUPP)
1855 * Just in case we get back EOPNOTSUPP for some reason,
1856 * just ignore the return value so we don't screw up
1857 * people calling discard_extent.
1865 *actual_bytes = discarded_bytes;
1871 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1872 struct btrfs_root *root,
1873 u64 bytenr, u64 num_bytes, u64 parent,
1874 u64 root_objectid, u64 owner, u64 offset, int for_cow)
1877 struct btrfs_fs_info *fs_info = root->fs_info;
1879 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
1880 root_objectid == BTRFS_TREE_LOG_OBJECTID);
1882 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1883 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
1885 parent, root_objectid, (int)owner,
1886 BTRFS_ADD_DELAYED_REF, NULL, for_cow);
1888 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
1890 parent, root_objectid, owner, offset,
1891 BTRFS_ADD_DELAYED_REF, NULL, for_cow);
1896 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1897 struct btrfs_root *root,
1898 u64 bytenr, u64 num_bytes,
1899 u64 parent, u64 root_objectid,
1900 u64 owner, u64 offset, int refs_to_add,
1901 struct btrfs_delayed_extent_op *extent_op)
1903 struct btrfs_path *path;
1904 struct extent_buffer *leaf;
1905 struct btrfs_extent_item *item;
1910 path = btrfs_alloc_path();
1915 path->leave_spinning = 1;
1916 /* this will setup the path even if it fails to insert the back ref */
1917 ret = insert_inline_extent_backref(trans, root->fs_info->extent_root,
1918 path, bytenr, num_bytes, parent,
1919 root_objectid, owner, offset,
1920 refs_to_add, extent_op);
1924 if (ret != -EAGAIN) {
1929 leaf = path->nodes[0];
1930 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1931 refs = btrfs_extent_refs(leaf, item);
1932 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
1934 __run_delayed_extent_op(extent_op, leaf, item);
1936 btrfs_mark_buffer_dirty(leaf);
1937 btrfs_release_path(path);
1940 path->leave_spinning = 1;
1942 /* now insert the actual backref */
1943 ret = insert_extent_backref(trans, root->fs_info->extent_root,
1944 path, bytenr, parent, root_objectid,
1945 owner, offset, refs_to_add);
1948 btrfs_free_path(path);
1952 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
1953 struct btrfs_root *root,
1954 struct btrfs_delayed_ref_node *node,
1955 struct btrfs_delayed_extent_op *extent_op,
1956 int insert_reserved)
1959 struct btrfs_delayed_data_ref *ref;
1960 struct btrfs_key ins;
1965 ins.objectid = node->bytenr;
1966 ins.offset = node->num_bytes;
1967 ins.type = BTRFS_EXTENT_ITEM_KEY;
1969 ref = btrfs_delayed_node_to_data_ref(node);
1970 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
1971 parent = ref->parent;
1973 ref_root = ref->root;
1975 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1977 BUG_ON(extent_op->update_key);
1978 flags |= extent_op->flags_to_set;
1980 ret = alloc_reserved_file_extent(trans, root,
1981 parent, ref_root, flags,
1982 ref->objectid, ref->offset,
1983 &ins, node->ref_mod);
1984 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
1985 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
1986 node->num_bytes, parent,
1987 ref_root, ref->objectid,
1988 ref->offset, node->ref_mod,
1990 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
1991 ret = __btrfs_free_extent(trans, root, node->bytenr,
1992 node->num_bytes, parent,
1993 ref_root, ref->objectid,
1994 ref->offset, node->ref_mod,
2002 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2003 struct extent_buffer *leaf,
2004 struct btrfs_extent_item *ei)
2006 u64 flags = btrfs_extent_flags(leaf, ei);
2007 if (extent_op->update_flags) {
2008 flags |= extent_op->flags_to_set;
2009 btrfs_set_extent_flags(leaf, ei, flags);
2012 if (extent_op->update_key) {
2013 struct btrfs_tree_block_info *bi;
2014 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2015 bi = (struct btrfs_tree_block_info *)(ei + 1);
2016 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2020 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2021 struct btrfs_root *root,
2022 struct btrfs_delayed_ref_node *node,
2023 struct btrfs_delayed_extent_op *extent_op)
2025 struct btrfs_key key;
2026 struct btrfs_path *path;
2027 struct btrfs_extent_item *ei;
2028 struct extent_buffer *leaf;
2033 path = btrfs_alloc_path();
2037 key.objectid = node->bytenr;
2038 key.type = BTRFS_EXTENT_ITEM_KEY;
2039 key.offset = node->num_bytes;
2042 path->leave_spinning = 1;
2043 ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
2054 leaf = path->nodes[0];
2055 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2056 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2057 if (item_size < sizeof(*ei)) {
2058 ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
2064 leaf = path->nodes[0];
2065 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2068 BUG_ON(item_size < sizeof(*ei));
2069 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2070 __run_delayed_extent_op(extent_op, leaf, ei);
2072 btrfs_mark_buffer_dirty(leaf);
2074 btrfs_free_path(path);
2078 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2079 struct btrfs_root *root,
2080 struct btrfs_delayed_ref_node *node,
2081 struct btrfs_delayed_extent_op *extent_op,
2082 int insert_reserved)
2085 struct btrfs_delayed_tree_ref *ref;
2086 struct btrfs_key ins;
2090 ins.objectid = node->bytenr;
2091 ins.offset = node->num_bytes;
2092 ins.type = BTRFS_EXTENT_ITEM_KEY;
2094 ref = btrfs_delayed_node_to_tree_ref(node);
2095 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2096 parent = ref->parent;
2098 ref_root = ref->root;
2100 BUG_ON(node->ref_mod != 1);
2101 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2102 BUG_ON(!extent_op || !extent_op->update_flags ||
2103 !extent_op->update_key);
2104 ret = alloc_reserved_tree_block(trans, root,
2106 extent_op->flags_to_set,
2109 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2110 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
2111 node->num_bytes, parent, ref_root,
2112 ref->level, 0, 1, extent_op);
2113 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2114 ret = __btrfs_free_extent(trans, root, node->bytenr,
2115 node->num_bytes, parent, ref_root,
2116 ref->level, 0, 1, extent_op);
2123 /* helper function to actually process a single delayed ref entry */
2124 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2125 struct btrfs_root *root,
2126 struct btrfs_delayed_ref_node *node,
2127 struct btrfs_delayed_extent_op *extent_op,
2128 int insert_reserved)
2131 if (btrfs_delayed_ref_is_head(node)) {
2132 struct btrfs_delayed_ref_head *head;
2134 * we've hit the end of the chain and we were supposed
2135 * to insert this extent into the tree. But, it got
2136 * deleted before we ever needed to insert it, so all
2137 * we have to do is clean up the accounting
2140 head = btrfs_delayed_node_to_head(node);
2141 if (insert_reserved) {
2142 btrfs_pin_extent(root, node->bytenr,
2143 node->num_bytes, 1);
2144 if (head->is_data) {
2145 ret = btrfs_del_csums(trans, root,
2151 mutex_unlock(&head->mutex);
2155 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2156 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2157 ret = run_delayed_tree_ref(trans, root, node, extent_op,
2159 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2160 node->type == BTRFS_SHARED_DATA_REF_KEY)
2161 ret = run_delayed_data_ref(trans, root, node, extent_op,
2168 static noinline struct btrfs_delayed_ref_node *
2169 select_delayed_ref(struct btrfs_delayed_ref_head *head)
2171 struct rb_node *node;
2172 struct btrfs_delayed_ref_node *ref;
2173 int action = BTRFS_ADD_DELAYED_REF;
2176 * select delayed ref of type BTRFS_ADD_DELAYED_REF first.
2177 * this prevents ref count from going down to zero when
2178 * there still are pending delayed ref.
2180 node = rb_prev(&head->node.rb_node);
2184 ref = rb_entry(node, struct btrfs_delayed_ref_node,
2186 if (ref->bytenr != head->node.bytenr)
2188 if (ref->action == action)
2190 node = rb_prev(node);
2192 if (action == BTRFS_ADD_DELAYED_REF) {
2193 action = BTRFS_DROP_DELAYED_REF;
2199 static noinline int run_clustered_refs(struct btrfs_trans_handle *trans,
2200 struct btrfs_root *root,
2201 struct list_head *cluster)
2203 struct btrfs_delayed_ref_root *delayed_refs;
2204 struct btrfs_delayed_ref_node *ref;
2205 struct btrfs_delayed_ref_head *locked_ref = NULL;
2206 struct btrfs_delayed_extent_op *extent_op;
2209 int must_insert_reserved = 0;
2211 delayed_refs = &trans->transaction->delayed_refs;
2214 /* pick a new head ref from the cluster list */
2215 if (list_empty(cluster))
2218 locked_ref = list_entry(cluster->next,
2219 struct btrfs_delayed_ref_head, cluster);
2221 /* grab the lock that says we are going to process
2222 * all the refs for this head */
2223 ret = btrfs_delayed_ref_lock(trans, locked_ref);
2226 * we may have dropped the spin lock to get the head
2227 * mutex lock, and that might have given someone else
2228 * time to free the head. If that's true, it has been
2229 * removed from our list and we can move on.
2231 if (ret == -EAGAIN) {
2239 * locked_ref is the head node, so we have to go one
2240 * node back for any delayed ref updates
2242 ref = select_delayed_ref(locked_ref);
2244 if (ref && ref->seq &&
2245 btrfs_check_delayed_seq(delayed_refs, ref->seq)) {
2247 * there are still refs with lower seq numbers in the
2248 * process of being added. Don't run this ref yet.
2250 list_del_init(&locked_ref->cluster);
2251 mutex_unlock(&locked_ref->mutex);
2253 delayed_refs->num_heads_ready++;
2254 spin_unlock(&delayed_refs->lock);
2256 spin_lock(&delayed_refs->lock);
2261 * record the must insert reserved flag before we
2262 * drop the spin lock.
2264 must_insert_reserved = locked_ref->must_insert_reserved;
2265 locked_ref->must_insert_reserved = 0;
2267 extent_op = locked_ref->extent_op;
2268 locked_ref->extent_op = NULL;
2271 /* All delayed refs have been processed, Go ahead
2272 * and send the head node to run_one_delayed_ref,
2273 * so that any accounting fixes can happen
2275 ref = &locked_ref->node;
2277 if (extent_op && must_insert_reserved) {
2283 spin_unlock(&delayed_refs->lock);
2285 ret = run_delayed_extent_op(trans, root,
2293 list_del_init(&locked_ref->cluster);
2298 rb_erase(&ref->rb_node, &delayed_refs->root);
2299 delayed_refs->num_entries--;
2301 * we modified num_entries, but as we're currently running
2302 * delayed refs, skip
2303 * wake_up(&delayed_refs->seq_wait);
2306 spin_unlock(&delayed_refs->lock);
2308 ret = run_one_delayed_ref(trans, root, ref, extent_op,
2309 must_insert_reserved);
2312 btrfs_put_delayed_ref(ref);
2316 do_chunk_alloc(trans, root->fs_info->extent_root,
2318 btrfs_get_alloc_profile(root, 0),
2319 CHUNK_ALLOC_NO_FORCE);
2321 spin_lock(&delayed_refs->lock);
2327 static void wait_for_more_refs(struct btrfs_delayed_ref_root *delayed_refs,
2328 unsigned long num_refs)
2330 struct list_head *first_seq = delayed_refs->seq_head.next;
2332 spin_unlock(&delayed_refs->lock);
2333 pr_debug("waiting for more refs (num %ld, first %p)\n",
2334 num_refs, first_seq);
2335 wait_event(delayed_refs->seq_wait,
2336 num_refs != delayed_refs->num_entries ||
2337 delayed_refs->seq_head.next != first_seq);
2338 pr_debug("done waiting for more refs (num %ld, first %p)\n",
2339 delayed_refs->num_entries, delayed_refs->seq_head.next);
2340 spin_lock(&delayed_refs->lock);
2344 * this starts processing the delayed reference count updates and
2345 * extent insertions we have queued up so far. count can be
2346 * 0, which means to process everything in the tree at the start
2347 * of the run (but not newly added entries), or it can be some target
2348 * number you'd like to process.
2350 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2351 struct btrfs_root *root, unsigned long count)
2353 struct rb_node *node;
2354 struct btrfs_delayed_ref_root *delayed_refs;
2355 struct btrfs_delayed_ref_node *ref;
2356 struct list_head cluster;
2359 int run_all = count == (unsigned long)-1;
2361 unsigned long num_refs = 0;
2362 int consider_waiting;
2364 if (root == root->fs_info->extent_root)
2365 root = root->fs_info->tree_root;
2367 do_chunk_alloc(trans, root->fs_info->extent_root,
2368 2 * 1024 * 1024, btrfs_get_alloc_profile(root, 0),
2369 CHUNK_ALLOC_NO_FORCE);
2371 delayed_refs = &trans->transaction->delayed_refs;
2372 INIT_LIST_HEAD(&cluster);
2374 consider_waiting = 0;
2375 spin_lock(&delayed_refs->lock);
2377 count = delayed_refs->num_entries * 2;
2381 if (!(run_all || run_most) &&
2382 delayed_refs->num_heads_ready < 64)
2386 * go find something we can process in the rbtree. We start at
2387 * the beginning of the tree, and then build a cluster
2388 * of refs to process starting at the first one we are able to
2391 delayed_start = delayed_refs->run_delayed_start;
2392 ret = btrfs_find_ref_cluster(trans, &cluster,
2393 delayed_refs->run_delayed_start);
2397 if (delayed_start >= delayed_refs->run_delayed_start) {
2398 if (consider_waiting == 0) {
2400 * btrfs_find_ref_cluster looped. let's do one
2401 * more cycle. if we don't run any delayed ref
2402 * during that cycle (because we can't because
2403 * all of them are blocked) and if the number of
2404 * refs doesn't change, we avoid busy waiting.
2406 consider_waiting = 1;
2407 num_refs = delayed_refs->num_entries;
2409 wait_for_more_refs(delayed_refs, num_refs);
2411 * after waiting, things have changed. we
2412 * dropped the lock and someone else might have
2413 * run some refs, built new clusters and so on.
2414 * therefore, we restart staleness detection.
2416 consider_waiting = 0;
2420 ret = run_clustered_refs(trans, root, &cluster);
2423 count -= min_t(unsigned long, ret, count);
2428 if (ret || delayed_refs->run_delayed_start == 0) {
2429 /* refs were run, let's reset staleness detection */
2430 consider_waiting = 0;
2435 node = rb_first(&delayed_refs->root);
2438 count = (unsigned long)-1;
2441 ref = rb_entry(node, struct btrfs_delayed_ref_node,
2443 if (btrfs_delayed_ref_is_head(ref)) {
2444 struct btrfs_delayed_ref_head *head;
2446 head = btrfs_delayed_node_to_head(ref);
2447 atomic_inc(&ref->refs);
2449 spin_unlock(&delayed_refs->lock);
2451 * Mutex was contended, block until it's
2452 * released and try again
2454 mutex_lock(&head->mutex);
2455 mutex_unlock(&head->mutex);
2457 btrfs_put_delayed_ref(ref);
2461 node = rb_next(node);
2463 spin_unlock(&delayed_refs->lock);
2464 schedule_timeout(1);
2468 spin_unlock(&delayed_refs->lock);
2472 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2473 struct btrfs_root *root,
2474 u64 bytenr, u64 num_bytes, u64 flags,
2477 struct btrfs_delayed_extent_op *extent_op;
2480 extent_op = kmalloc(sizeof(*extent_op), GFP_NOFS);
2484 extent_op->flags_to_set = flags;
2485 extent_op->update_flags = 1;
2486 extent_op->update_key = 0;
2487 extent_op->is_data = is_data ? 1 : 0;
2489 ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr,
2490 num_bytes, extent_op);
2496 static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
2497 struct btrfs_root *root,
2498 struct btrfs_path *path,
2499 u64 objectid, u64 offset, u64 bytenr)
2501 struct btrfs_delayed_ref_head *head;
2502 struct btrfs_delayed_ref_node *ref;
2503 struct btrfs_delayed_data_ref *data_ref;
2504 struct btrfs_delayed_ref_root *delayed_refs;
2505 struct rb_node *node;
2509 delayed_refs = &trans->transaction->delayed_refs;
2510 spin_lock(&delayed_refs->lock);
2511 head = btrfs_find_delayed_ref_head(trans, bytenr);
2515 if (!mutex_trylock(&head->mutex)) {
2516 atomic_inc(&head->node.refs);
2517 spin_unlock(&delayed_refs->lock);
2519 btrfs_release_path(path);
2522 * Mutex was contended, block until it's released and let
2525 mutex_lock(&head->mutex);
2526 mutex_unlock(&head->mutex);
2527 btrfs_put_delayed_ref(&head->node);
2531 node = rb_prev(&head->node.rb_node);
2535 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2537 if (ref->bytenr != bytenr)
2541 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY)
2544 data_ref = btrfs_delayed_node_to_data_ref(ref);
2546 node = rb_prev(node);
2548 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2549 if (ref->bytenr == bytenr)
2553 if (data_ref->root != root->root_key.objectid ||
2554 data_ref->objectid != objectid || data_ref->offset != offset)
2559 mutex_unlock(&head->mutex);
2561 spin_unlock(&delayed_refs->lock);
2565 static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
2566 struct btrfs_root *root,
2567 struct btrfs_path *path,
2568 u64 objectid, u64 offset, u64 bytenr)
2570 struct btrfs_root *extent_root = root->fs_info->extent_root;
2571 struct extent_buffer *leaf;
2572 struct btrfs_extent_data_ref *ref;
2573 struct btrfs_extent_inline_ref *iref;
2574 struct btrfs_extent_item *ei;
2575 struct btrfs_key key;
2579 key.objectid = bytenr;
2580 key.offset = (u64)-1;
2581 key.type = BTRFS_EXTENT_ITEM_KEY;
2583 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2589 if (path->slots[0] == 0)
2593 leaf = path->nodes[0];
2594 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2596 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
2600 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2601 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2602 if (item_size < sizeof(*ei)) {
2603 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
2607 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2609 if (item_size != sizeof(*ei) +
2610 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
2613 if (btrfs_extent_generation(leaf, ei) <=
2614 btrfs_root_last_snapshot(&root->root_item))
2617 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
2618 if (btrfs_extent_inline_ref_type(leaf, iref) !=
2619 BTRFS_EXTENT_DATA_REF_KEY)
2622 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
2623 if (btrfs_extent_refs(leaf, ei) !=
2624 btrfs_extent_data_ref_count(leaf, ref) ||
2625 btrfs_extent_data_ref_root(leaf, ref) !=
2626 root->root_key.objectid ||
2627 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
2628 btrfs_extent_data_ref_offset(leaf, ref) != offset)
2636 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
2637 struct btrfs_root *root,
2638 u64 objectid, u64 offset, u64 bytenr)
2640 struct btrfs_path *path;
2644 path = btrfs_alloc_path();
2649 ret = check_committed_ref(trans, root, path, objectid,
2651 if (ret && ret != -ENOENT)
2654 ret2 = check_delayed_ref(trans, root, path, objectid,
2656 } while (ret2 == -EAGAIN);
2658 if (ret2 && ret2 != -ENOENT) {
2663 if (ret != -ENOENT || ret2 != -ENOENT)
2666 btrfs_free_path(path);
2667 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
2672 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
2673 struct btrfs_root *root,
2674 struct extent_buffer *buf,
2675 int full_backref, int inc, int for_cow)
2682 struct btrfs_key key;
2683 struct btrfs_file_extent_item *fi;
2687 int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
2688 u64, u64, u64, u64, u64, u64, int);
2690 ref_root = btrfs_header_owner(buf);
2691 nritems = btrfs_header_nritems(buf);
2692 level = btrfs_header_level(buf);
2694 if (!root->ref_cows && level == 0)
2698 process_func = btrfs_inc_extent_ref;
2700 process_func = btrfs_free_extent;
2703 parent = buf->start;
2707 for (i = 0; i < nritems; i++) {
2709 btrfs_item_key_to_cpu(buf, &key, i);
2710 if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY)
2712 fi = btrfs_item_ptr(buf, i,
2713 struct btrfs_file_extent_item);
2714 if (btrfs_file_extent_type(buf, fi) ==
2715 BTRFS_FILE_EXTENT_INLINE)
2717 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
2721 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
2722 key.offset -= btrfs_file_extent_offset(buf, fi);
2723 ret = process_func(trans, root, bytenr, num_bytes,
2724 parent, ref_root, key.objectid,
2725 key.offset, for_cow);
2729 bytenr = btrfs_node_blockptr(buf, i);
2730 num_bytes = btrfs_level_size(root, level - 1);
2731 ret = process_func(trans, root, bytenr, num_bytes,
2732 parent, ref_root, level - 1, 0,
2744 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2745 struct extent_buffer *buf, int full_backref, int for_cow)
2747 return __btrfs_mod_ref(trans, root, buf, full_backref, 1, for_cow);
2750 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2751 struct extent_buffer *buf, int full_backref, int for_cow)
2753 return __btrfs_mod_ref(trans, root, buf, full_backref, 0, for_cow);
2756 static int write_one_cache_group(struct btrfs_trans_handle *trans,
2757 struct btrfs_root *root,
2758 struct btrfs_path *path,
2759 struct btrfs_block_group_cache *cache)
2762 struct btrfs_root *extent_root = root->fs_info->extent_root;
2764 struct extent_buffer *leaf;
2766 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
2771 leaf = path->nodes[0];
2772 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
2773 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
2774 btrfs_mark_buffer_dirty(leaf);
2775 btrfs_release_path(path);
2783 static struct btrfs_block_group_cache *
2784 next_block_group(struct btrfs_root *root,
2785 struct btrfs_block_group_cache *cache)
2787 struct rb_node *node;
2788 spin_lock(&root->fs_info->block_group_cache_lock);
2789 node = rb_next(&cache->cache_node);
2790 btrfs_put_block_group(cache);
2792 cache = rb_entry(node, struct btrfs_block_group_cache,
2794 btrfs_get_block_group(cache);
2797 spin_unlock(&root->fs_info->block_group_cache_lock);
2801 static int cache_save_setup(struct btrfs_block_group_cache *block_group,
2802 struct btrfs_trans_handle *trans,
2803 struct btrfs_path *path)
2805 struct btrfs_root *root = block_group->fs_info->tree_root;
2806 struct inode *inode = NULL;
2808 int dcs = BTRFS_DC_ERROR;
2814 * If this block group is smaller than 100 megs don't bother caching the
2817 if (block_group->key.offset < (100 * 1024 * 1024)) {
2818 spin_lock(&block_group->lock);
2819 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
2820 spin_unlock(&block_group->lock);
2825 inode = lookup_free_space_inode(root, block_group, path);
2826 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
2827 ret = PTR_ERR(inode);
2828 btrfs_release_path(path);
2832 if (IS_ERR(inode)) {
2836 if (block_group->ro)
2839 ret = create_free_space_inode(root, trans, block_group, path);
2845 /* We've already setup this transaction, go ahead and exit */
2846 if (block_group->cache_generation == trans->transid &&
2847 i_size_read(inode)) {
2848 dcs = BTRFS_DC_SETUP;
2853 * We want to set the generation to 0, that way if anything goes wrong
2854 * from here on out we know not to trust this cache when we load up next
2857 BTRFS_I(inode)->generation = 0;
2858 ret = btrfs_update_inode(trans, root, inode);
2861 if (i_size_read(inode) > 0) {
2862 ret = btrfs_truncate_free_space_cache(root, trans, path,
2868 spin_lock(&block_group->lock);
2869 if (block_group->cached != BTRFS_CACHE_FINISHED) {
2870 /* We're not cached, don't bother trying to write stuff out */
2871 dcs = BTRFS_DC_WRITTEN;
2872 spin_unlock(&block_group->lock);
2875 spin_unlock(&block_group->lock);
2877 num_pages = (int)div64_u64(block_group->key.offset, 1024 * 1024 * 1024);
2882 * Just to make absolutely sure we have enough space, we're going to
2883 * preallocate 12 pages worth of space for each block group. In
2884 * practice we ought to use at most 8, but we need extra space so we can
2885 * add our header and have a terminator between the extents and the
2889 num_pages *= PAGE_CACHE_SIZE;
2891 ret = btrfs_check_data_free_space(inode, num_pages);
2895 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
2896 num_pages, num_pages,
2899 dcs = BTRFS_DC_SETUP;
2900 btrfs_free_reserved_data_space(inode, num_pages);
2905 btrfs_release_path(path);
2907 spin_lock(&block_group->lock);
2908 if (!ret && dcs == BTRFS_DC_SETUP)
2909 block_group->cache_generation = trans->transid;
2910 block_group->disk_cache_state = dcs;
2911 spin_unlock(&block_group->lock);
2916 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
2917 struct btrfs_root *root)
2919 struct btrfs_block_group_cache *cache;
2921 struct btrfs_path *path;
2924 path = btrfs_alloc_path();
2930 cache = btrfs_lookup_first_block_group(root->fs_info, last);
2932 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
2934 cache = next_block_group(root, cache);
2942 err = cache_save_setup(cache, trans, path);
2943 last = cache->key.objectid + cache->key.offset;
2944 btrfs_put_block_group(cache);
2949 err = btrfs_run_delayed_refs(trans, root,
2954 cache = btrfs_lookup_first_block_group(root->fs_info, last);
2956 if (cache->disk_cache_state == BTRFS_DC_CLEAR) {
2957 btrfs_put_block_group(cache);
2963 cache = next_block_group(root, cache);
2972 if (cache->disk_cache_state == BTRFS_DC_SETUP)
2973 cache->disk_cache_state = BTRFS_DC_NEED_WRITE;
2975 last = cache->key.objectid + cache->key.offset;
2977 err = write_one_cache_group(trans, root, path, cache);
2979 btrfs_put_block_group(cache);
2984 * I don't think this is needed since we're just marking our
2985 * preallocated extent as written, but just in case it can't
2989 err = btrfs_run_delayed_refs(trans, root,
2994 cache = btrfs_lookup_first_block_group(root->fs_info, last);
2997 * Really this shouldn't happen, but it could if we
2998 * couldn't write the entire preallocated extent and
2999 * splitting the extent resulted in a new block.
3002 btrfs_put_block_group(cache);
3005 if (cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
3007 cache = next_block_group(root, cache);
3016 btrfs_write_out_cache(root, trans, cache, path);
3019 * If we didn't have an error then the cache state is still
3020 * NEED_WRITE, so we can set it to WRITTEN.
3022 if (cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
3023 cache->disk_cache_state = BTRFS_DC_WRITTEN;
3024 last = cache->key.objectid + cache->key.offset;
3025 btrfs_put_block_group(cache);
3028 btrfs_free_path(path);
3032 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
3034 struct btrfs_block_group_cache *block_group;
3037 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
3038 if (!block_group || block_group->ro)
3041 btrfs_put_block_group(block_group);
3045 static int update_space_info(struct btrfs_fs_info *info, u64 flags,
3046 u64 total_bytes, u64 bytes_used,
3047 struct btrfs_space_info **space_info)
3049 struct btrfs_space_info *found;
3053 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3054 BTRFS_BLOCK_GROUP_RAID10))
3059 found = __find_space_info(info, flags);
3061 spin_lock(&found->lock);
3062 found->total_bytes += total_bytes;
3063 found->disk_total += total_bytes * factor;
3064 found->bytes_used += bytes_used;
3065 found->disk_used += bytes_used * factor;
3067 spin_unlock(&found->lock);
3068 *space_info = found;
3071 found = kzalloc(sizeof(*found), GFP_NOFS);
3075 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
3076 INIT_LIST_HEAD(&found->block_groups[i]);
3077 init_rwsem(&found->groups_sem);
3078 spin_lock_init(&found->lock);
3079 found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
3080 found->total_bytes = total_bytes;
3081 found->disk_total = total_bytes * factor;
3082 found->bytes_used = bytes_used;
3083 found->disk_used = bytes_used * factor;
3084 found->bytes_pinned = 0;
3085 found->bytes_reserved = 0;
3086 found->bytes_readonly = 0;
3087 found->bytes_may_use = 0;
3089 found->force_alloc = CHUNK_ALLOC_NO_FORCE;
3090 found->chunk_alloc = 0;
3092 init_waitqueue_head(&found->wait);
3093 *space_info = found;
3094 list_add_rcu(&found->list, &info->space_info);
3098 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
3100 u64 extra_flags = flags & BTRFS_BLOCK_GROUP_PROFILE_MASK;
3102 /* chunk -> extended profile */
3103 if (extra_flags == 0)
3104 extra_flags = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
3106 if (flags & BTRFS_BLOCK_GROUP_DATA)
3107 fs_info->avail_data_alloc_bits |= extra_flags;
3108 if (flags & BTRFS_BLOCK_GROUP_METADATA)
3109 fs_info->avail_metadata_alloc_bits |= extra_flags;
3110 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3111 fs_info->avail_system_alloc_bits |= extra_flags;
3115 * @flags: available profiles in extended format (see ctree.h)
3117 * Returns reduced profile in chunk format. If profile changing is in
3118 * progress (either running or paused) picks the target profile (if it's
3119 * already available), otherwise falls back to plain reducing.
3121 u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
3124 * we add in the count of missing devices because we want
3125 * to make sure that any RAID levels on a degraded FS
3126 * continue to be honored.
3128 u64 num_devices = root->fs_info->fs_devices->rw_devices +
3129 root->fs_info->fs_devices->missing_devices;
3131 /* pick restriper's target profile if it's available */
3132 spin_lock(&root->fs_info->balance_lock);
3133 if (root->fs_info->balance_ctl) {
3134 struct btrfs_balance_control *bctl = root->fs_info->balance_ctl;
3137 if ((flags & BTRFS_BLOCK_GROUP_DATA) &&
3138 (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3139 (flags & bctl->data.target)) {
3140 tgt = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
3141 } else if ((flags & BTRFS_BLOCK_GROUP_SYSTEM) &&
3142 (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3143 (flags & bctl->sys.target)) {
3144 tgt = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
3145 } else if ((flags & BTRFS_BLOCK_GROUP_METADATA) &&
3146 (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3147 (flags & bctl->meta.target)) {
3148 tgt = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
3152 spin_unlock(&root->fs_info->balance_lock);
3157 spin_unlock(&root->fs_info->balance_lock);
3159 if (num_devices == 1)
3160 flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0);
3161 if (num_devices < 4)
3162 flags &= ~BTRFS_BLOCK_GROUP_RAID10;
3164 if ((flags & BTRFS_BLOCK_GROUP_DUP) &&
3165 (flags & (BTRFS_BLOCK_GROUP_RAID1 |
3166 BTRFS_BLOCK_GROUP_RAID10))) {
3167 flags &= ~BTRFS_BLOCK_GROUP_DUP;
3170 if ((flags & BTRFS_BLOCK_GROUP_RAID1) &&
3171 (flags & BTRFS_BLOCK_GROUP_RAID10)) {
3172 flags &= ~BTRFS_BLOCK_GROUP_RAID1;
3175 if ((flags & BTRFS_BLOCK_GROUP_RAID0) &&
3176 ((flags & BTRFS_BLOCK_GROUP_RAID1) |
3177 (flags & BTRFS_BLOCK_GROUP_RAID10) |
3178 (flags & BTRFS_BLOCK_GROUP_DUP))) {
3179 flags &= ~BTRFS_BLOCK_GROUP_RAID0;
3183 /* extended -> chunk profile */
3184 flags &= ~BTRFS_AVAIL_ALLOC_BIT_SINGLE;
3188 static u64 get_alloc_profile(struct btrfs_root *root, u64 flags)
3190 if (flags & BTRFS_BLOCK_GROUP_DATA)
3191 flags |= root->fs_info->avail_data_alloc_bits;
3192 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3193 flags |= root->fs_info->avail_system_alloc_bits;
3194 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
3195 flags |= root->fs_info->avail_metadata_alloc_bits;
3197 return btrfs_reduce_alloc_profile(root, flags);
3200 u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
3205 flags = BTRFS_BLOCK_GROUP_DATA;
3206 else if (root == root->fs_info->chunk_root)
3207 flags = BTRFS_BLOCK_GROUP_SYSTEM;
3209 flags = BTRFS_BLOCK_GROUP_METADATA;
3211 return get_alloc_profile(root, flags);
3214 void btrfs_set_inode_space_info(struct btrfs_root *root, struct inode *inode)
3216 BTRFS_I(inode)->space_info = __find_space_info(root->fs_info,
3217 BTRFS_BLOCK_GROUP_DATA);
3221 * This will check the space that the inode allocates from to make sure we have
3222 * enough space for bytes.
3224 int btrfs_check_data_free_space(struct inode *inode, u64 bytes)
3226 struct btrfs_space_info *data_sinfo;
3227 struct btrfs_root *root = BTRFS_I(inode)->root;
3229 int ret = 0, committed = 0, alloc_chunk = 1;
3231 /* make sure bytes are sectorsize aligned */
3232 bytes = (bytes + root->sectorsize - 1) & ~((u64)root->sectorsize - 1);
3234 if (root == root->fs_info->tree_root ||
3235 BTRFS_I(inode)->location.objectid == BTRFS_FREE_INO_OBJECTID) {
3240 data_sinfo = BTRFS_I(inode)->space_info;
3245 /* make sure we have enough space to handle the data first */
3246 spin_lock(&data_sinfo->lock);
3247 used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
3248 data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
3249 data_sinfo->bytes_may_use;
3251 if (used + bytes > data_sinfo->total_bytes) {
3252 struct btrfs_trans_handle *trans;
3255 * if we don't have enough free bytes in this space then we need
3256 * to alloc a new chunk.
3258 if (!data_sinfo->full && alloc_chunk) {
3261 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
3262 spin_unlock(&data_sinfo->lock);
3264 alloc_target = btrfs_get_alloc_profile(root, 1);
3265 trans = btrfs_join_transaction(root);
3267 return PTR_ERR(trans);
3269 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
3270 bytes + 2 * 1024 * 1024,
3272 CHUNK_ALLOC_NO_FORCE);
3273 btrfs_end_transaction(trans, root);
3282 btrfs_set_inode_space_info(root, inode);
3283 data_sinfo = BTRFS_I(inode)->space_info;
3289 * If we have less pinned bytes than we want to allocate then
3290 * don't bother committing the transaction, it won't help us.
3292 if (data_sinfo->bytes_pinned < bytes)
3294 spin_unlock(&data_sinfo->lock);
3296 /* commit the current transaction and try again */
3299 !atomic_read(&root->fs_info->open_ioctl_trans)) {
3301 trans = btrfs_join_transaction(root);
3303 return PTR_ERR(trans);
3304 ret = btrfs_commit_transaction(trans, root);
3312 data_sinfo->bytes_may_use += bytes;
3313 trace_btrfs_space_reservation(root->fs_info, "space_info",
3314 (u64)data_sinfo, bytes, 1);
3315 spin_unlock(&data_sinfo->lock);
3321 * Called if we need to clear a data reservation for this inode.
3323 void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes)
3325 struct btrfs_root *root = BTRFS_I(inode)->root;
3326 struct btrfs_space_info *data_sinfo;
3328 /* make sure bytes are sectorsize aligned */
3329 bytes = (bytes + root->sectorsize - 1) & ~((u64)root->sectorsize - 1);
3331 data_sinfo = BTRFS_I(inode)->space_info;
3332 spin_lock(&data_sinfo->lock);
3333 data_sinfo->bytes_may_use -= bytes;
3334 trace_btrfs_space_reservation(root->fs_info, "space_info",
3335 (u64)data_sinfo, bytes, 0);
3336 spin_unlock(&data_sinfo->lock);
3339 static void force_metadata_allocation(struct btrfs_fs_info *info)
3341 struct list_head *head = &info->space_info;
3342 struct btrfs_space_info *found;
3345 list_for_each_entry_rcu(found, head, list) {
3346 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
3347 found->force_alloc = CHUNK_ALLOC_FORCE;
3352 static int should_alloc_chunk(struct btrfs_root *root,
3353 struct btrfs_space_info *sinfo, u64 alloc_bytes,
3356 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
3357 u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
3358 u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
3361 if (force == CHUNK_ALLOC_FORCE)
3365 * We need to take into account the global rsv because for all intents
3366 * and purposes it's used space. Don't worry about locking the
3367 * global_rsv, it doesn't change except when the transaction commits.
3369 num_allocated += global_rsv->size;
3372 * in limited mode, we want to have some free space up to
3373 * about 1% of the FS size.
3375 if (force == CHUNK_ALLOC_LIMITED) {
3376 thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
3377 thresh = max_t(u64, 64 * 1024 * 1024,
3378 div_factor_fine(thresh, 1));
3380 if (num_bytes - num_allocated < thresh)
3383 thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
3385 /* 256MB or 2% of the FS */
3386 thresh = max_t(u64, 256 * 1024 * 1024, div_factor_fine(thresh, 2));
3387 /* system chunks need a much small threshold */
3388 if (sinfo->flags & BTRFS_BLOCK_GROUP_SYSTEM)
3389 thresh = 32 * 1024 * 1024;
3391 if (num_bytes > thresh && sinfo->bytes_used < div_factor(num_bytes, 8))
3396 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
3397 struct btrfs_root *extent_root, u64 alloc_bytes,
3398 u64 flags, int force)
3400 struct btrfs_space_info *space_info;
3401 struct btrfs_fs_info *fs_info = extent_root->fs_info;
3402 int wait_for_alloc = 0;
3405 BUG_ON(!profile_is_valid(flags, 0));
3407 space_info = __find_space_info(extent_root->fs_info, flags);
3409 ret = update_space_info(extent_root->fs_info, flags,
3413 BUG_ON(!space_info);
3416 spin_lock(&space_info->lock);
3417 if (space_info->force_alloc)
3418 force = space_info->force_alloc;
3419 if (space_info->full) {
3420 spin_unlock(&space_info->lock);
3424 if (!should_alloc_chunk(extent_root, space_info, alloc_bytes, force)) {
3425 spin_unlock(&space_info->lock);
3427 } else if (space_info->chunk_alloc) {
3430 space_info->chunk_alloc = 1;
3433 spin_unlock(&space_info->lock);
3435 mutex_lock(&fs_info->chunk_mutex);
3438 * The chunk_mutex is held throughout the entirety of a chunk
3439 * allocation, so once we've acquired the chunk_mutex we know that the
3440 * other guy is done and we need to recheck and see if we should
3443 if (wait_for_alloc) {
3444 mutex_unlock(&fs_info->chunk_mutex);
3450 * If we have mixed data/metadata chunks we want to make sure we keep
3451 * allocating mixed chunks instead of individual chunks.
3453 if (btrfs_mixed_space_info(space_info))
3454 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
3457 * if we're doing a data chunk, go ahead and make sure that
3458 * we keep a reasonable number of metadata chunks allocated in the
3461 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
3462 fs_info->data_chunk_allocations++;
3463 if (!(fs_info->data_chunk_allocations %
3464 fs_info->metadata_ratio))
3465 force_metadata_allocation(fs_info);
3468 ret = btrfs_alloc_chunk(trans, extent_root, flags);
3469 if (ret < 0 && ret != -ENOSPC)
3472 spin_lock(&space_info->lock);
3474 space_info->full = 1;
3478 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
3479 space_info->chunk_alloc = 0;
3480 spin_unlock(&space_info->lock);
3482 mutex_unlock(&extent_root->fs_info->chunk_mutex);
3487 * shrink metadata reservation for delalloc
3489 static int shrink_delalloc(struct btrfs_root *root, u64 to_reclaim,
3492 struct btrfs_block_rsv *block_rsv;
3493 struct btrfs_space_info *space_info;
3494 struct btrfs_trans_handle *trans;
3499 unsigned long nr_pages = (2 * 1024 * 1024) >> PAGE_CACHE_SHIFT;
3501 unsigned long progress;
3503 trans = (struct btrfs_trans_handle *)current->journal_info;
3504 block_rsv = &root->fs_info->delalloc_block_rsv;
3505 space_info = block_rsv->space_info;
3508 reserved = space_info->bytes_may_use;
3509 progress = space_info->reservation_progress;
3515 if (root->fs_info->delalloc_bytes == 0) {
3518 btrfs_wait_ordered_extents(root, 0, 0);
3522 max_reclaim = min(reserved, to_reclaim);
3523 nr_pages = max_t(unsigned long, nr_pages,
3524 max_reclaim >> PAGE_CACHE_SHIFT);
3525 while (loops < 1024) {
3526 /* have the flusher threads jump in and do some IO */
3528 nr_pages = min_t(unsigned long, nr_pages,
3529 root->fs_info->delalloc_bytes >> PAGE_CACHE_SHIFT);
3530 writeback_inodes_sb_nr_if_idle(root->fs_info->sb, nr_pages,
3531 WB_REASON_FS_FREE_SPACE);
3533 spin_lock(&space_info->lock);
3534 if (reserved > space_info->bytes_may_use)
3535 reclaimed += reserved - space_info->bytes_may_use;
3536 reserved = space_info->bytes_may_use;
3537 spin_unlock(&space_info->lock);
3541 if (reserved == 0 || reclaimed >= max_reclaim)
3544 if (trans && trans->transaction->blocked)
3547 if (wait_ordered && !trans) {
3548 btrfs_wait_ordered_extents(root, 0, 0);
3550 time_left = schedule_timeout_interruptible(1);
3552 /* We were interrupted, exit */
3557 /* we've kicked the IO a few times, if anything has been freed,
3558 * exit. There is no sense in looping here for a long time
3559 * when we really need to commit the transaction, or there are
3560 * just too many writers without enough free space
3565 if (progress != space_info->reservation_progress)
3571 return reclaimed >= to_reclaim;
3575 * maybe_commit_transaction - possibly commit the transaction if its ok to
3576 * @root - the root we're allocating for
3577 * @bytes - the number of bytes we want to reserve
3578 * @force - force the commit
3580 * This will check to make sure that committing the transaction will actually
3581 * get us somewhere and then commit the transaction if it does. Otherwise it
3582 * will return -ENOSPC.
3584 static int may_commit_transaction(struct btrfs_root *root,
3585 struct btrfs_space_info *space_info,
3586 u64 bytes, int force)
3588 struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv;
3589 struct btrfs_trans_handle *trans;
3591 trans = (struct btrfs_trans_handle *)current->journal_info;
3598 /* See if there is enough pinned space to make this reservation */
3599 spin_lock(&space_info->lock);
3600 if (space_info->bytes_pinned >= bytes) {
3601 spin_unlock(&space_info->lock);
3604 spin_unlock(&space_info->lock);
3607 * See if there is some space in the delayed insertion reservation for
3610 if (space_info != delayed_rsv->space_info)
3613 spin_lock(&delayed_rsv->lock);
3614 if (delayed_rsv->size < bytes) {
3615 spin_unlock(&delayed_rsv->lock);
3618 spin_unlock(&delayed_rsv->lock);
3621 trans = btrfs_join_transaction(root);
3625 return btrfs_commit_transaction(trans, root);
3629 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
3630 * @root - the root we're allocating for
3631 * @block_rsv - the block_rsv we're allocating for
3632 * @orig_bytes - the number of bytes we want
3633 * @flush - wether or not we can flush to make our reservation
3635 * This will reserve orgi_bytes number of bytes from the space info associated
3636 * with the block_rsv. If there is not enough space it will make an attempt to
3637 * flush out space to make room. It will do this by flushing delalloc if
3638 * possible or committing the transaction. If flush is 0 then no attempts to
3639 * regain reservations will be made and this will fail if there is not enough
3642 static int reserve_metadata_bytes(struct btrfs_root *root,
3643 struct btrfs_block_rsv *block_rsv,
3644 u64 orig_bytes, int flush)
3646 struct btrfs_space_info *space_info = block_rsv->space_info;
3648 u64 num_bytes = orig_bytes;
3651 bool committed = false;
3652 bool flushing = false;
3653 bool wait_ordered = false;
3657 spin_lock(&space_info->lock);
3659 * We only want to wait if somebody other than us is flushing and we are
3660 * actually alloed to flush.
3662 while (flush && !flushing && space_info->flush) {
3663 spin_unlock(&space_info->lock);
3665 * If we have a trans handle we can't wait because the flusher
3666 * may have to commit the transaction, which would mean we would
3667 * deadlock since we are waiting for the flusher to finish, but
3668 * hold the current transaction open.
3670 if (current->journal_info)
3672 ret = wait_event_interruptible(space_info->wait,
3673 !space_info->flush);
3674 /* Must have been interrupted, return */
3678 spin_lock(&space_info->lock);
3682 used = space_info->bytes_used + space_info->bytes_reserved +
3683 space_info->bytes_pinned + space_info->bytes_readonly +
3684 space_info->bytes_may_use;
3687 * The idea here is that we've not already over-reserved the block group
3688 * then we can go ahead and save our reservation first and then start
3689 * flushing if we need to. Otherwise if we've already overcommitted
3690 * lets start flushing stuff first and then come back and try to make
3693 if (used <= space_info->total_bytes) {
3694 if (used + orig_bytes <= space_info->total_bytes) {
3695 space_info->bytes_may_use += orig_bytes;
3696 trace_btrfs_space_reservation(root->fs_info,
3703 * Ok set num_bytes to orig_bytes since we aren't
3704 * overocmmitted, this way we only try and reclaim what
3707 num_bytes = orig_bytes;
3711 * Ok we're over committed, set num_bytes to the overcommitted
3712 * amount plus the amount of bytes that we need for this
3715 wait_ordered = true;
3716 num_bytes = used - space_info->total_bytes +
3717 (orig_bytes * (retries + 1));
3721 u64 profile = btrfs_get_alloc_profile(root, 0);
3725 * If we have a lot of space that's pinned, don't bother doing
3726 * the overcommit dance yet and just commit the transaction.
3728 avail = (space_info->total_bytes - space_info->bytes_used) * 8;
3730 if (space_info->bytes_pinned >= avail && flush && !committed) {
3731 space_info->flush = 1;
3733 spin_unlock(&space_info->lock);
3734 ret = may_commit_transaction(root, space_info,
3742 spin_lock(&root->fs_info->free_chunk_lock);
3743 avail = root->fs_info->free_chunk_space;
3746 * If we have dup, raid1 or raid10 then only half of the free
3747 * space is actually useable.
3749 if (profile & (BTRFS_BLOCK_GROUP_DUP |
3750 BTRFS_BLOCK_GROUP_RAID1 |
3751 BTRFS_BLOCK_GROUP_RAID10))
3755 * If we aren't flushing don't let us overcommit too much, say
3756 * 1/8th of the space. If we can flush, let it overcommit up to
3763 spin_unlock(&root->fs_info->free_chunk_lock);
3765 if (used + num_bytes < space_info->total_bytes + avail) {
3766 space_info->bytes_may_use += orig_bytes;
3767 trace_btrfs_space_reservation(root->fs_info,
3773 wait_ordered = true;
3778 * Couldn't make our reservation, save our place so while we're trying
3779 * to reclaim space we can actually use it instead of somebody else
3780 * stealing it from us.
3784 space_info->flush = 1;
3787 spin_unlock(&space_info->lock);
3793 * We do synchronous shrinking since we don't actually unreserve
3794 * metadata until after the IO is completed.
3796 ret = shrink_delalloc(root, num_bytes, wait_ordered);
3803 * So if we were overcommitted it's possible that somebody else flushed
3804 * out enough space and we simply didn't have enough space to reclaim,
3805 * so go back around and try again.
3808 wait_ordered = true;
3817 ret = may_commit_transaction(root, space_info, orig_bytes, 0);
3825 spin_lock(&space_info->lock);
3826 space_info->flush = 0;
3827 wake_up_all(&space_info->wait);
3828 spin_unlock(&space_info->lock);
3833 static struct btrfs_block_rsv *get_block_rsv(struct btrfs_trans_handle *trans,
3834 struct btrfs_root *root)
3836 struct btrfs_block_rsv *block_rsv = NULL;
3838 if (root->ref_cows || root == root->fs_info->csum_root)
3839 block_rsv = trans->block_rsv;
3842 block_rsv = root->block_rsv;
3845 block_rsv = &root->fs_info->empty_block_rsv;
3850 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
3854 spin_lock(&block_rsv->lock);
3855 if (block_rsv->reserved >= num_bytes) {
3856 block_rsv->reserved -= num_bytes;
3857 if (block_rsv->reserved < block_rsv->size)
3858 block_rsv->full = 0;
3861 spin_unlock(&block_rsv->lock);
3865 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
3866 u64 num_bytes, int update_size)
3868 spin_lock(&block_rsv->lock);
3869 block_rsv->reserved += num_bytes;
3871 block_rsv->size += num_bytes;
3872 else if (block_rsv->reserved >= block_rsv->size)
3873 block_rsv->full = 1;
3874 spin_unlock(&block_rsv->lock);
3877 static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
3878 struct btrfs_block_rsv *block_rsv,
3879 struct btrfs_block_rsv *dest, u64 num_bytes)
3881 struct btrfs_space_info *space_info = block_rsv->space_info;
3883 spin_lock(&block_rsv->lock);
3884 if (num_bytes == (u64)-1)
3885 num_bytes = block_rsv->size;
3886 block_rsv->size -= num_bytes;
3887 if (block_rsv->reserved >= block_rsv->size) {
3888 num_bytes = block_rsv->reserved - block_rsv->size;
3889 block_rsv->reserved = block_rsv->size;
3890 block_rsv->full = 1;
3894 spin_unlock(&block_rsv->lock);
3896 if (num_bytes > 0) {
3898 spin_lock(&dest->lock);
3902 bytes_to_add = dest->size - dest->reserved;
3903 bytes_to_add = min(num_bytes, bytes_to_add);
3904 dest->reserved += bytes_to_add;
3905 if (dest->reserved >= dest->size)
3907 num_bytes -= bytes_to_add;
3909 spin_unlock(&dest->lock);
3912 spin_lock(&space_info->lock);
3913 space_info->bytes_may_use -= num_bytes;
3914 trace_btrfs_space_reservation(fs_info, "space_info",
3917 space_info->reservation_progress++;
3918 spin_unlock(&space_info->lock);
3923 static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src,
3924 struct btrfs_block_rsv *dst, u64 num_bytes)
3928 ret = block_rsv_use_bytes(src, num_bytes);
3932 block_rsv_add_bytes(dst, num_bytes, 1);
3936 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv)
3938 memset(rsv, 0, sizeof(*rsv));
3939 spin_lock_init(&rsv->lock);
3942 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root)
3944 struct btrfs_block_rsv *block_rsv;
3945 struct btrfs_fs_info *fs_info = root->fs_info;
3947 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
3951 btrfs_init_block_rsv(block_rsv);
3952 block_rsv->space_info = __find_space_info(fs_info,
3953 BTRFS_BLOCK_GROUP_METADATA);
3957 void btrfs_free_block_rsv(struct btrfs_root *root,
3958 struct btrfs_block_rsv *rsv)
3960 btrfs_block_rsv_release(root, rsv, (u64)-1);
3964 static inline int __block_rsv_add(struct btrfs_root *root,
3965 struct btrfs_block_rsv *block_rsv,
3966 u64 num_bytes, int flush)
3973 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
3975 block_rsv_add_bytes(block_rsv, num_bytes, 1);
3982 int btrfs_block_rsv_add(struct btrfs_root *root,
3983 struct btrfs_block_rsv *block_rsv,
3986 return __block_rsv_add(root, block_rsv, num_bytes, 1);
3989 int btrfs_block_rsv_add_noflush(struct btrfs_root *root,
3990 struct btrfs_block_rsv *block_rsv,
3993 return __block_rsv_add(root, block_rsv, num_bytes, 0);
3996 int btrfs_block_rsv_check(struct btrfs_root *root,
3997 struct btrfs_block_rsv *block_rsv, int min_factor)
4005 spin_lock(&block_rsv->lock);
4006 num_bytes = div_factor(block_rsv->size, min_factor);
4007 if (block_rsv->reserved >= num_bytes)
4009 spin_unlock(&block_rsv->lock);
4014 static inline int __btrfs_block_rsv_refill(struct btrfs_root *root,
4015 struct btrfs_block_rsv *block_rsv,
4016 u64 min_reserved, int flush)
4024 spin_lock(&block_rsv->lock);
4025 num_bytes = min_reserved;
4026 if (block_rsv->reserved >= num_bytes)
4029 num_bytes -= block_rsv->reserved;
4030 spin_unlock(&block_rsv->lock);
4035 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
4037 block_rsv_add_bytes(block_rsv, num_bytes, 0);
4044 int btrfs_block_rsv_refill(struct btrfs_root *root,
4045 struct btrfs_block_rsv *block_rsv,
4048 return __btrfs_block_rsv_refill(root, block_rsv, min_reserved, 1);
4051 int btrfs_block_rsv_refill_noflush(struct btrfs_root *root,
4052 struct btrfs_block_rsv *block_rsv,
4055 return __btrfs_block_rsv_refill(root, block_rsv, min_reserved, 0);
4058 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
4059 struct btrfs_block_rsv *dst_rsv,
4062 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
4065 void btrfs_block_rsv_release(struct btrfs_root *root,
4066 struct btrfs_block_rsv *block_rsv,
4069 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4070 if (global_rsv->full || global_rsv == block_rsv ||
4071 block_rsv->space_info != global_rsv->space_info)
4073 block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv,
4078 * helper to calculate size of global block reservation.
4079 * the desired value is sum of space used by extent tree,
4080 * checksum tree and root tree
4082 static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info)
4084 struct btrfs_space_info *sinfo;
4088 int csum_size = btrfs_super_csum_size(fs_info->super_copy);
4090 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA);
4091 spin_lock(&sinfo->lock);
4092 data_used = sinfo->bytes_used;
4093 spin_unlock(&sinfo->lock);
4095 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4096 spin_lock(&sinfo->lock);
4097 if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA)
4099 meta_used = sinfo->bytes_used;
4100 spin_unlock(&sinfo->lock);
4102 num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) *
4104 num_bytes += div64_u64(data_used + meta_used, 50);
4106 if (num_bytes * 3 > meta_used)
4107 num_bytes = div64_u64(meta_used, 3);
4109 return ALIGN(num_bytes, fs_info->extent_root->leafsize << 10);
4112 static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
4114 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
4115 struct btrfs_space_info *sinfo = block_rsv->space_info;
4118 num_bytes = calc_global_metadata_size(fs_info);
4120 spin_lock(&block_rsv->lock);
4121 spin_lock(&sinfo->lock);
4123 block_rsv->size = num_bytes;
4125 num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
4126 sinfo->bytes_reserved + sinfo->bytes_readonly +
4127 sinfo->bytes_may_use;
4129 if (sinfo->total_bytes > num_bytes) {
4130 num_bytes = sinfo->total_bytes - num_bytes;
4131 block_rsv->reserved += num_bytes;
4132 sinfo->bytes_may_use += num_bytes;
4133 trace_btrfs_space_reservation(fs_info, "space_info",
4134 (u64)sinfo, num_bytes, 1);
4137 if (block_rsv->reserved >= block_rsv->size) {
4138 num_bytes = block_rsv->reserved - block_rsv->size;
4139 sinfo->bytes_may_use -= num_bytes;
4140 trace_btrfs_space_reservation(fs_info, "space_info",
4141 (u64)sinfo, num_bytes, 0);
4142 sinfo->reservation_progress++;
4143 block_rsv->reserved = block_rsv->size;
4144 block_rsv->full = 1;
4147 spin_unlock(&sinfo->lock);
4148 spin_unlock(&block_rsv->lock);
4151 static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
4153 struct btrfs_space_info *space_info;
4155 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4156 fs_info->chunk_block_rsv.space_info = space_info;
4158 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4159 fs_info->global_block_rsv.space_info = space_info;
4160 fs_info->delalloc_block_rsv.space_info = space_info;
4161 fs_info->trans_block_rsv.space_info = space_info;
4162 fs_info->empty_block_rsv.space_info = space_info;
4163 fs_info->delayed_block_rsv.space_info = space_info;
4165 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
4166 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
4167 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
4168 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
4169 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
4171 update_global_block_rsv(fs_info);
4174 static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
4176 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
4178 WARN_ON(fs_info->delalloc_block_rsv.size > 0);
4179 WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
4180 WARN_ON(fs_info->trans_block_rsv.size > 0);
4181 WARN_ON(fs_info->trans_block_rsv.reserved > 0);
4182 WARN_ON(fs_info->chunk_block_rsv.size > 0);
4183 WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
4184 WARN_ON(fs_info->delayed_block_rsv.size > 0);
4185 WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
4188 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
4189 struct btrfs_root *root)
4191 if (!trans->bytes_reserved)
4194 trace_btrfs_space_reservation(root->fs_info, "transaction", (u64)trans,
4195 trans->bytes_reserved, 0);
4196 btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved);
4197 trans->bytes_reserved = 0;
4200 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
4201 struct inode *inode)
4203 struct btrfs_root *root = BTRFS_I(inode)->root;
4204 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
4205 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
4208 * We need to hold space in order to delete our orphan item once we've
4209 * added it, so this takes the reservation so we can release it later
4210 * when we are truly done with the orphan item.
4212 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
4213 trace_btrfs_space_reservation(root->fs_info, "orphan",
4214 btrfs_ino(inode), num_bytes, 1);
4215 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
4218 void btrfs_orphan_release_metadata(struct inode *inode)
4220 struct btrfs_root *root = BTRFS_I(inode)->root;
4221 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
4222 trace_btrfs_space_reservation(root->fs_info, "orphan",
4223 btrfs_ino(inode), num_bytes, 0);
4224 btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes);
4227 int btrfs_snap_reserve_metadata(struct btrfs_trans_handle *trans,
4228 struct btrfs_pending_snapshot *pending)
4230 struct btrfs_root *root = pending->root;
4231 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
4232 struct btrfs_block_rsv *dst_rsv = &pending->block_rsv;
4234 * two for root back/forward refs, two for directory entries
4235 * and one for root of the snapshot.
4237 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 5);
4238 dst_rsv->space_info = src_rsv->space_info;
4239 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
4243 * drop_outstanding_extent - drop an outstanding extent
4244 * @inode: the inode we're dropping the extent for
4246 * This is called when we are freeing up an outstanding extent, either called
4247 * after an error or after an extent is written. This will return the number of
4248 * reserved extents that need to be freed. This must be called with
4249 * BTRFS_I(inode)->lock held.
4251 static unsigned drop_outstanding_extent(struct inode *inode)
4253 unsigned drop_inode_space = 0;
4254 unsigned dropped_extents = 0;
4256 BUG_ON(!BTRFS_I(inode)->outstanding_extents);
4257 BTRFS_I(inode)->outstanding_extents--;
4259 if (BTRFS_I(inode)->outstanding_extents == 0 &&
4260 BTRFS_I(inode)->delalloc_meta_reserved) {
4261 drop_inode_space = 1;
4262 BTRFS_I(inode)->delalloc_meta_reserved = 0;
4266 * If we have more or the same amount of outsanding extents than we have
4267 * reserved then we need to leave the reserved extents count alone.
4269 if (BTRFS_I(inode)->outstanding_extents >=
4270 BTRFS_I(inode)->reserved_extents)
4271 return drop_inode_space;
4273 dropped_extents = BTRFS_I(inode)->reserved_extents -
4274 BTRFS_I(inode)->outstanding_extents;
4275 BTRFS_I(inode)->reserved_extents -= dropped_extents;
4276 return dropped_extents + drop_inode_space;
4280 * calc_csum_metadata_size - return the amount of metada space that must be
4281 * reserved/free'd for the given bytes.
4282 * @inode: the inode we're manipulating
4283 * @num_bytes: the number of bytes in question
4284 * @reserve: 1 if we are reserving space, 0 if we are freeing space
4286 * This adjusts the number of csum_bytes in the inode and then returns the
4287 * correct amount of metadata that must either be reserved or freed. We
4288 * calculate how many checksums we can fit into one leaf and then divide the
4289 * number of bytes that will need to be checksumed by this value to figure out
4290 * how many checksums will be required. If we are adding bytes then the number
4291 * may go up and we will return the number of additional bytes that must be
4292 * reserved. If it is going down we will return the number of bytes that must
4295 * This must be called with BTRFS_I(inode)->lock held.
4297 static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes,
4300 struct btrfs_root *root = BTRFS_I(inode)->root;
4302 int num_csums_per_leaf;
4306 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM &&
4307 BTRFS_I(inode)->csum_bytes == 0)
4310 old_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize);
4312 BTRFS_I(inode)->csum_bytes += num_bytes;
4314 BTRFS_I(inode)->csum_bytes -= num_bytes;
4315 csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item);
4316 num_csums_per_leaf = (int)div64_u64(csum_size,
4317 sizeof(struct btrfs_csum_item) +
4318 sizeof(struct btrfs_disk_key));
4319 num_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize);
4320 num_csums = num_csums + num_csums_per_leaf - 1;
4321 num_csums = num_csums / num_csums_per_leaf;
4323 old_csums = old_csums + num_csums_per_leaf - 1;
4324 old_csums = old_csums / num_csums_per_leaf;
4326 /* No change, no need to reserve more */
4327 if (old_csums == num_csums)
4331 return btrfs_calc_trans_metadata_size(root,
4332 num_csums - old_csums);
4334 return btrfs_calc_trans_metadata_size(root, old_csums - num_csums);
4337 int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
4339 struct btrfs_root *root = BTRFS_I(inode)->root;
4340 struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv;
4343 unsigned nr_extents = 0;
4344 int extra_reserve = 0;
4348 /* Need to be holding the i_mutex here if we aren't free space cache */
4349 if (btrfs_is_free_space_inode(root, inode))
4352 if (flush && btrfs_transaction_in_commit(root->fs_info))
4353 schedule_timeout(1);
4355 mutex_lock(&BTRFS_I(inode)->delalloc_mutex);
4356 num_bytes = ALIGN(num_bytes, root->sectorsize);
4358 spin_lock(&BTRFS_I(inode)->lock);
4359 BTRFS_I(inode)->outstanding_extents++;
4361 if (BTRFS_I(inode)->outstanding_extents >
4362 BTRFS_I(inode)->reserved_extents)
4363 nr_extents = BTRFS_I(inode)->outstanding_extents -
4364 BTRFS_I(inode)->reserved_extents;
4367 * Add an item to reserve for updating the inode when we complete the
4370 if (!BTRFS_I(inode)->delalloc_meta_reserved) {
4375 to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents);
4376 to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
4377 csum_bytes = BTRFS_I(inode)->csum_bytes;
4378 spin_unlock(&BTRFS_I(inode)->lock);
4380 ret = reserve_metadata_bytes(root, block_rsv, to_reserve, flush);
4385 spin_lock(&BTRFS_I(inode)->lock);
4386 dropped = drop_outstanding_extent(inode);
4388 * If the inodes csum_bytes is the same as the original
4389 * csum_bytes then we know we haven't raced with any free()ers
4390 * so we can just reduce our inodes csum bytes and carry on.
4391 * Otherwise we have to do the normal free thing to account for
4392 * the case that the free side didn't free up its reserve
4393 * because of this outstanding reservation.
4395 if (BTRFS_I(inode)->csum_bytes == csum_bytes)
4396 calc_csum_metadata_size(inode, num_bytes, 0);
4398 to_free = calc_csum_metadata_size(inode, num_bytes, 0);
4399 spin_unlock(&BTRFS_I(inode)->lock);
4401 to_free += btrfs_calc_trans_metadata_size(root, dropped);
4404 btrfs_block_rsv_release(root, block_rsv, to_free);
4405 trace_btrfs_space_reservation(root->fs_info,
4410 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
4414 spin_lock(&BTRFS_I(inode)->lock);
4415 if (extra_reserve) {
4416 BTRFS_I(inode)->delalloc_meta_reserved = 1;
4419 BTRFS_I(inode)->reserved_extents += nr_extents;
4420 spin_unlock(&BTRFS_I(inode)->lock);
4421 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
4424 trace_btrfs_space_reservation(root->fs_info,"delalloc",
4425 btrfs_ino(inode), to_reserve, 1);
4426 block_rsv_add_bytes(block_rsv, to_reserve, 1);
4432 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
4433 * @inode: the inode to release the reservation for
4434 * @num_bytes: the number of bytes we're releasing
4436 * This will release the metadata reservation for an inode. This can be called
4437 * once we complete IO for a given set of bytes to release their metadata
4440 void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
4442 struct btrfs_root *root = BTRFS_I(inode)->root;
4446 num_bytes = ALIGN(num_bytes, root->sectorsize);
4447 spin_lock(&BTRFS_I(inode)->lock);
4448 dropped = drop_outstanding_extent(inode);
4450 to_free = calc_csum_metadata_size(inode, num_bytes, 0);
4451 spin_unlock(&BTRFS_I(inode)->lock);
4453 to_free += btrfs_calc_trans_metadata_size(root, dropped);
4455 trace_btrfs_space_reservation(root->fs_info, "delalloc",
4456 btrfs_ino(inode), to_free, 0);
4457 btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv,
4462 * btrfs_delalloc_reserve_space - reserve data and metadata space for delalloc
4463 * @inode: inode we're writing to
4464 * @num_bytes: the number of bytes we want to allocate
4466 * This will do the following things
4468 * o reserve space in the data space info for num_bytes
4469 * o reserve space in the metadata space info based on number of outstanding
4470 * extents and how much csums will be needed
4471 * o add to the inodes ->delalloc_bytes
4472 * o add it to the fs_info's delalloc inodes list.
4474 * This will return 0 for success and -ENOSPC if there is no space left.
4476 int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes)
4480 ret = btrfs_check_data_free_space(inode, num_bytes);
4484 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes);
4486 btrfs_free_reserved_data_space(inode, num_bytes);
4494 * btrfs_delalloc_release_space - release data and metadata space for delalloc
4495 * @inode: inode we're releasing space for
4496 * @num_bytes: the number of bytes we want to free up
4498 * This must be matched with a call to btrfs_delalloc_reserve_space. This is
4499 * called in the case that we don't need the metadata AND data reservations
4500 * anymore. So if there is an error or we insert an inline extent.
4502 * This function will release the metadata space that was not used and will
4503 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
4504 * list if there are no delalloc bytes left.
4506 void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes)
4508 btrfs_delalloc_release_metadata(inode, num_bytes);
4509 btrfs_free_reserved_data_space(inode, num_bytes);
4512 static int update_block_group(struct btrfs_trans_handle *trans,
4513 struct btrfs_root *root,
4514 u64 bytenr, u64 num_bytes, int alloc)
4516 struct btrfs_block_group_cache *cache = NULL;
4517 struct btrfs_fs_info *info = root->fs_info;
4518 u64 total = num_bytes;
4523 /* block accounting for super block */
4524 spin_lock(&info->delalloc_lock);
4525 old_val = btrfs_super_bytes_used(info->super_copy);
4527 old_val += num_bytes;
4529 old_val -= num_bytes;
4530 btrfs_set_super_bytes_used(info->super_copy, old_val);
4531 spin_unlock(&info->delalloc_lock);
4534 cache = btrfs_lookup_block_group(info, bytenr);
4537 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
4538 BTRFS_BLOCK_GROUP_RAID1 |
4539 BTRFS_BLOCK_GROUP_RAID10))
4544 * If this block group has free space cache written out, we
4545 * need to make sure to load it if we are removing space. This
4546 * is because we need the unpinning stage to actually add the
4547 * space back to the block group, otherwise we will leak space.
4549 if (!alloc && cache->cached == BTRFS_CACHE_NO)
4550 cache_block_group(cache, trans, NULL, 1);
4552 byte_in_group = bytenr - cache->key.objectid;
4553 WARN_ON(byte_in_group > cache->key.offset);
4555 spin_lock(&cache->space_info->lock);
4556 spin_lock(&cache->lock);
4558 if (btrfs_test_opt(root, SPACE_CACHE) &&
4559 cache->disk_cache_state < BTRFS_DC_CLEAR)
4560 cache->disk_cache_state = BTRFS_DC_CLEAR;
4563 old_val = btrfs_block_group_used(&cache->item);
4564 num_bytes = min(total, cache->key.offset - byte_in_group);
4566 old_val += num_bytes;
4567 btrfs_set_block_group_used(&cache->item, old_val);
4568 cache->reserved -= num_bytes;
4569 cache->space_info->bytes_reserved -= num_bytes;
4570 cache->space_info->bytes_used += num_bytes;
4571 cache->space_info->disk_used += num_bytes * factor;
4572 spin_unlock(&cache->lock);
4573 spin_unlock(&cache->space_info->lock);
4575 old_val -= num_bytes;
4576 btrfs_set_block_group_used(&cache->item, old_val);
4577 cache->pinned += num_bytes;
4578 cache->space_info->bytes_pinned += num_bytes;
4579 cache->space_info->bytes_used -= num_bytes;
4580 cache->space_info->disk_used -= num_bytes * factor;
4581 spin_unlock(&cache->lock);
4582 spin_unlock(&cache->space_info->lock);
4584 set_extent_dirty(info->pinned_extents,
4585 bytenr, bytenr + num_bytes - 1,
4586 GFP_NOFS | __GFP_NOFAIL);
4588 btrfs_put_block_group(cache);
4590 bytenr += num_bytes;
4595 static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
4597 struct btrfs_block_group_cache *cache;
4600 cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
4604 bytenr = cache->key.objectid;
4605 btrfs_put_block_group(cache);
4610 static int pin_down_extent(struct btrfs_root *root,
4611 struct btrfs_block_group_cache *cache,
4612 u64 bytenr, u64 num_bytes, int reserved)
4614 spin_lock(&cache->space_info->lock);
4615 spin_lock(&cache->lock);
4616 cache->pinned += num_bytes;
4617 cache->space_info->bytes_pinned += num_bytes;
4619 cache->reserved -= num_bytes;
4620 cache->space_info->bytes_reserved -= num_bytes;
4622 spin_unlock(&cache->lock);
4623 spin_unlock(&cache->space_info->lock);
4625 set_extent_dirty(root->fs_info->pinned_extents, bytenr,
4626 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
4631 * this function must be called within transaction
4633 int btrfs_pin_extent(struct btrfs_root *root,
4634 u64 bytenr, u64 num_bytes, int reserved)
4636 struct btrfs_block_group_cache *cache;
4638 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
4641 pin_down_extent(root, cache, bytenr, num_bytes, reserved);
4643 btrfs_put_block_group(cache);
4648 * this function must be called within transaction
4650 int btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle *trans,
4651 struct btrfs_root *root,
4652 u64 bytenr, u64 num_bytes)
4654 struct btrfs_block_group_cache *cache;
4656 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
4660 * pull in the free space cache (if any) so that our pin
4661 * removes the free space from the cache. We have load_only set
4662 * to one because the slow code to read in the free extents does check
4663 * the pinned extents.
4665 cache_block_group(cache, trans, root, 1);
4667 pin_down_extent(root, cache, bytenr, num_bytes, 0);
4669 /* remove us from the free space cache (if we're there at all) */
4670 btrfs_remove_free_space(cache, bytenr, num_bytes);
4671 btrfs_put_block_group(cache);
4676 * btrfs_update_reserved_bytes - update the block_group and space info counters
4677 * @cache: The cache we are manipulating
4678 * @num_bytes: The number of bytes in question
4679 * @reserve: One of the reservation enums
4681 * This is called by the allocator when it reserves space, or by somebody who is
4682 * freeing space that was never actually used on disk. For example if you
4683 * reserve some space for a new leaf in transaction A and before transaction A
4684 * commits you free that leaf, you call this with reserve set to 0 in order to
4685 * clear the reservation.
4687 * Metadata reservations should be called with RESERVE_ALLOC so we do the proper
4688 * ENOSPC accounting. For data we handle the reservation through clearing the
4689 * delalloc bits in the io_tree. We have to do this since we could end up
4690 * allocating less disk space for the amount of data we have reserved in the
4691 * case of compression.
4693 * If this is a reservation and the block group has become read only we cannot
4694 * make the reservation and return -EAGAIN, otherwise this function always
4697 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
4698 u64 num_bytes, int reserve)
4700 struct btrfs_space_info *space_info = cache->space_info;
4702 spin_lock(&space_info->lock);
4703 spin_lock(&cache->lock);
4704 if (reserve != RESERVE_FREE) {
4708 cache->reserved += num_bytes;
4709 space_info->bytes_reserved += num_bytes;
4710 if (reserve == RESERVE_ALLOC) {
4711 trace_btrfs_space_reservation(cache->fs_info,
4715 space_info->bytes_may_use -= num_bytes;
4720 space_info->bytes_readonly += num_bytes;
4721 cache->reserved -= num_bytes;
4722 space_info->bytes_reserved -= num_bytes;
4723 space_info->reservation_progress++;
4725 spin_unlock(&cache->lock);
4726 spin_unlock(&space_info->lock);
4730 int btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
4731 struct btrfs_root *root)
4733 struct btrfs_fs_info *fs_info = root->fs_info;
4734 struct btrfs_caching_control *next;
4735 struct btrfs_caching_control *caching_ctl;
4736 struct btrfs_block_group_cache *cache;
4738 down_write(&fs_info->extent_commit_sem);
4740 list_for_each_entry_safe(caching_ctl, next,
4741 &fs_info->caching_block_groups, list) {
4742 cache = caching_ctl->block_group;
4743 if (block_group_cache_done(cache)) {
4744 cache->last_byte_to_unpin = (u64)-1;
4745 list_del_init(&caching_ctl->list);
4746 put_caching_control(caching_ctl);
4748 cache->last_byte_to_unpin = caching_ctl->progress;
4752 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
4753 fs_info->pinned_extents = &fs_info->freed_extents[1];
4755 fs_info->pinned_extents = &fs_info->freed_extents[0];
4757 up_write(&fs_info->extent_commit_sem);
4759 update_global_block_rsv(fs_info);
4763 static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
4765 struct btrfs_fs_info *fs_info = root->fs_info;
4766 struct btrfs_block_group_cache *cache = NULL;
4769 while (start <= end) {
4771 start >= cache->key.objectid + cache->key.offset) {
4773 btrfs_put_block_group(cache);
4774 cache = btrfs_lookup_block_group(fs_info, start);
4778 len = cache->key.objectid + cache->key.offset - start;
4779 len = min(len, end + 1 - start);
4781 if (start < cache->last_byte_to_unpin) {
4782 len = min(len, cache->last_byte_to_unpin - start);
4783 btrfs_add_free_space(cache, start, len);
4788 spin_lock(&cache->space_info->lock);
4789 spin_lock(&cache->lock);
4790 cache->pinned -= len;
4791 cache->space_info->bytes_pinned -= len;
4793 cache->space_info->bytes_readonly += len;
4794 spin_unlock(&cache->lock);
4795 spin_unlock(&cache->space_info->lock);
4799 btrfs_put_block_group(cache);
4803 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
4804 struct btrfs_root *root)
4806 struct btrfs_fs_info *fs_info = root->fs_info;
4807 struct extent_io_tree *unpin;
4812 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
4813 unpin = &fs_info->freed_extents[1];
4815 unpin = &fs_info->freed_extents[0];
4818 ret = find_first_extent_bit(unpin, 0, &start, &end,
4823 if (btrfs_test_opt(root, DISCARD))
4824 ret = btrfs_discard_extent(root, start,
4825 end + 1 - start, NULL);
4827 clear_extent_dirty(unpin, start, end, GFP_NOFS);
4828 unpin_extent_range(root, start, end);
4835 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
4836 struct btrfs_root *root,
4837 u64 bytenr, u64 num_bytes, u64 parent,
4838 u64 root_objectid, u64 owner_objectid,
4839 u64 owner_offset, int refs_to_drop,
4840 struct btrfs_delayed_extent_op *extent_op)
4842 struct btrfs_key key;
4843 struct btrfs_path *path;
4844 struct btrfs_fs_info *info = root->fs_info;
4845 struct btrfs_root *extent_root = info->extent_root;
4846 struct extent_buffer *leaf;
4847 struct btrfs_extent_item *ei;
4848 struct btrfs_extent_inline_ref *iref;
4851 int extent_slot = 0;
4852 int found_extent = 0;
4857 path = btrfs_alloc_path();
4862 path->leave_spinning = 1;
4864 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
4865 BUG_ON(!is_data && refs_to_drop != 1);
4867 ret = lookup_extent_backref(trans, extent_root, path, &iref,
4868 bytenr, num_bytes, parent,
4869 root_objectid, owner_objectid,
4872 extent_slot = path->slots[0];
4873 while (extent_slot >= 0) {
4874 btrfs_item_key_to_cpu(path->nodes[0], &key,
4876 if (key.objectid != bytenr)
4878 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
4879 key.offset == num_bytes) {
4883 if (path->slots[0] - extent_slot > 5)
4887 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
4888 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
4889 if (found_extent && item_size < sizeof(*ei))
4892 if (!found_extent) {
4894 ret = remove_extent_backref(trans, extent_root, path,
4898 btrfs_release_path(path);
4899 path->leave_spinning = 1;
4901 key.objectid = bytenr;
4902 key.type = BTRFS_EXTENT_ITEM_KEY;
4903 key.offset = num_bytes;
4905 ret = btrfs_search_slot(trans, extent_root,
4908 printk(KERN_ERR "umm, got %d back from search"
4909 ", was looking for %llu\n", ret,
4910 (unsigned long long)bytenr);
4912 btrfs_print_leaf(extent_root,
4916 extent_slot = path->slots[0];
4919 btrfs_print_leaf(extent_root, path->nodes[0]);
4921 printk(KERN_ERR "btrfs unable to find ref byte nr %llu "
4922 "parent %llu root %llu owner %llu offset %llu\n",
4923 (unsigned long long)bytenr,
4924 (unsigned long long)parent,
4925 (unsigned long long)root_objectid,
4926 (unsigned long long)owner_objectid,
4927 (unsigned long long)owner_offset);
4930 leaf = path->nodes[0];
4931 item_size = btrfs_item_size_nr(leaf, extent_slot);
4932 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
4933 if (item_size < sizeof(*ei)) {
4934 BUG_ON(found_extent || extent_slot != path->slots[0]);
4935 ret = convert_extent_item_v0(trans, extent_root, path,
4939 btrfs_release_path(path);
4940 path->leave_spinning = 1;
4942 key.objectid = bytenr;
4943 key.type = BTRFS_EXTENT_ITEM_KEY;
4944 key.offset = num_bytes;
4946 ret = btrfs_search_slot(trans, extent_root, &key, path,
4949 printk(KERN_ERR "umm, got %d back from search"
4950 ", was looking for %llu\n", ret,
4951 (unsigned long long)bytenr);
4952 btrfs_print_leaf(extent_root, path->nodes[0]);
4955 extent_slot = path->slots[0];
4956 leaf = path->nodes[0];
4957 item_size = btrfs_item_size_nr(leaf, extent_slot);
4960 BUG_ON(item_size < sizeof(*ei));
4961 ei = btrfs_item_ptr(leaf, extent_slot,
4962 struct btrfs_extent_item);
4963 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID) {
4964 struct btrfs_tree_block_info *bi;
4965 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
4966 bi = (struct btrfs_tree_block_info *)(ei + 1);
4967 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
4970 refs = btrfs_extent_refs(leaf, ei);
4971 BUG_ON(refs < refs_to_drop);
4972 refs -= refs_to_drop;
4976 __run_delayed_extent_op(extent_op, leaf, ei);
4978 * In the case of inline back ref, reference count will
4979 * be updated by remove_extent_backref
4982 BUG_ON(!found_extent);
4984 btrfs_set_extent_refs(leaf, ei, refs);
4985 btrfs_mark_buffer_dirty(leaf);
4988 ret = remove_extent_backref(trans, extent_root, path,
4995 BUG_ON(is_data && refs_to_drop !=
4996 extent_data_ref_count(root, path, iref));
4998 BUG_ON(path->slots[0] != extent_slot);
5000 BUG_ON(path->slots[0] != extent_slot + 1);
5001 path->slots[0] = extent_slot;
5006 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
5009 btrfs_release_path(path);
5012 ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
5015 invalidate_mapping_pages(info->btree_inode->i_mapping,
5016 bytenr >> PAGE_CACHE_SHIFT,
5017 (bytenr + num_bytes - 1) >> PAGE_CACHE_SHIFT);
5020 ret = update_block_group(trans, root, bytenr, num_bytes, 0);
5023 btrfs_free_path(path);
5028 * when we free an block, it is possible (and likely) that we free the last
5029 * delayed ref for that extent as well. This searches the delayed ref tree for
5030 * a given extent, and if there are no other delayed refs to be processed, it
5031 * removes it from the tree.
5033 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
5034 struct btrfs_root *root, u64 bytenr)
5036 struct btrfs_delayed_ref_head *head;
5037 struct btrfs_delayed_ref_root *delayed_refs;
5038 struct btrfs_delayed_ref_node *ref;
5039 struct rb_node *node;
5042 delayed_refs = &trans->transaction->delayed_refs;
5043 spin_lock(&delayed_refs->lock);
5044 head = btrfs_find_delayed_ref_head(trans, bytenr);
5048 node = rb_prev(&head->node.rb_node);
5052 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
5054 /* there are still entries for this ref, we can't drop it */
5055 if (ref->bytenr == bytenr)
5058 if (head->extent_op) {
5059 if (!head->must_insert_reserved)
5061 kfree(head->extent_op);
5062 head->extent_op = NULL;
5066 * waiting for the lock here would deadlock. If someone else has it
5067 * locked they are already in the process of dropping it anyway
5069 if (!mutex_trylock(&head->mutex))
5073 * at this point we have a head with no other entries. Go
5074 * ahead and process it.
5076 head->node.in_tree = 0;
5077 rb_erase(&head->node.rb_node, &delayed_refs->root);
5079 delayed_refs->num_entries--;
5080 if (waitqueue_active(&delayed_refs->seq_wait))
5081 wake_up(&delayed_refs->seq_wait);
5084 * we don't take a ref on the node because we're removing it from the
5085 * tree, so we just steal the ref the tree was holding.
5087 delayed_refs->num_heads--;
5088 if (list_empty(&head->cluster))
5089 delayed_refs->num_heads_ready--;
5091 list_del_init(&head->cluster);
5092 spin_unlock(&delayed_refs->lock);
5094 BUG_ON(head->extent_op);
5095 if (head->must_insert_reserved)
5098 mutex_unlock(&head->mutex);
5099 btrfs_put_delayed_ref(&head->node);
5102 spin_unlock(&delayed_refs->lock);
5106 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
5107 struct btrfs_root *root,
5108 struct extent_buffer *buf,
5109 u64 parent, int last_ref, int for_cow)
5111 struct btrfs_block_group_cache *cache = NULL;
5114 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
5115 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
5116 buf->start, buf->len,
5117 parent, root->root_key.objectid,
5118 btrfs_header_level(buf),
5119 BTRFS_DROP_DELAYED_REF, NULL, for_cow);
5126 cache = btrfs_lookup_block_group(root->fs_info, buf->start);
5128 if (btrfs_header_generation(buf) == trans->transid) {
5129 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
5130 ret = check_ref_cleanup(trans, root, buf->start);
5135 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
5136 pin_down_extent(root, cache, buf->start, buf->len, 1);
5140 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
5142 btrfs_add_free_space(cache, buf->start, buf->len);
5143 btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE);
5147 * Deleting the buffer, clear the corrupt flag since it doesn't matter
5150 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
5151 btrfs_put_block_group(cache);
5154 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root,
5155 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
5156 u64 owner, u64 offset, int for_cow)
5159 struct btrfs_fs_info *fs_info = root->fs_info;
5162 * tree log blocks never actually go into the extent allocation
5163 * tree, just update pinning info and exit early.
5165 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
5166 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
5167 /* unlocks the pinned mutex */
5168 btrfs_pin_extent(root, bytenr, num_bytes, 1);
5170 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
5171 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
5173 parent, root_objectid, (int)owner,
5174 BTRFS_DROP_DELAYED_REF, NULL, for_cow);
5177 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
5179 parent, root_objectid, owner,
5180 offset, BTRFS_DROP_DELAYED_REF,
5187 static u64 stripe_align(struct btrfs_root *root, u64 val)
5189 u64 mask = ((u64)root->stripesize - 1);
5190 u64 ret = (val + mask) & ~mask;
5195 * when we wait for progress in the block group caching, its because
5196 * our allocation attempt failed at least once. So, we must sleep
5197 * and let some progress happen before we try again.
5199 * This function will sleep at least once waiting for new free space to
5200 * show up, and then it will check the block group free space numbers
5201 * for our min num_bytes. Another option is to have it go ahead
5202 * and look in the rbtree for a free extent of a given size, but this
5206 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
5209 struct btrfs_caching_control *caching_ctl;
5212 caching_ctl = get_caching_control(cache);
5216 wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
5217 (cache->free_space_ctl->free_space >= num_bytes));
5219 put_caching_control(caching_ctl);
5224 wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
5226 struct btrfs_caching_control *caching_ctl;
5229 caching_ctl = get_caching_control(cache);
5233 wait_event(caching_ctl->wait, block_group_cache_done(cache));
5235 put_caching_control(caching_ctl);
5239 static int get_block_group_index(struct btrfs_block_group_cache *cache)
5242 if (cache->flags & BTRFS_BLOCK_GROUP_RAID10)
5244 else if (cache->flags & BTRFS_BLOCK_GROUP_RAID1)
5246 else if (cache->flags & BTRFS_BLOCK_GROUP_DUP)
5248 else if (cache->flags & BTRFS_BLOCK_GROUP_RAID0)
5255 enum btrfs_loop_type {
5256 LOOP_FIND_IDEAL = 0,
5257 LOOP_CACHING_NOWAIT = 1,
5258 LOOP_CACHING_WAIT = 2,
5259 LOOP_ALLOC_CHUNK = 3,
5260 LOOP_NO_EMPTY_SIZE = 4,
5264 * walks the btree of allocated extents and find a hole of a given size.
5265 * The key ins is changed to record the hole:
5266 * ins->objectid == block start
5267 * ins->flags = BTRFS_EXTENT_ITEM_KEY
5268 * ins->offset == number of blocks
5269 * Any available blocks before search_start are skipped.
5271 static noinline int find_free_extent(struct btrfs_trans_handle *trans,
5272 struct btrfs_root *orig_root,
5273 u64 num_bytes, u64 empty_size,
5274 u64 search_start, u64 search_end,
5275 u64 hint_byte, struct btrfs_key *ins,
5279 struct btrfs_root *root = orig_root->fs_info->extent_root;
5280 struct btrfs_free_cluster *last_ptr = NULL;
5281 struct btrfs_block_group_cache *block_group = NULL;
5282 struct btrfs_block_group_cache *used_block_group;
5283 int empty_cluster = 2 * 1024 * 1024;
5284 int allowed_chunk_alloc = 0;
5285 int done_chunk_alloc = 0;
5286 struct btrfs_space_info *space_info;
5289 int alloc_type = (data & BTRFS_BLOCK_GROUP_DATA) ?
5290 RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC;
5291 bool found_uncached_bg = false;
5292 bool failed_cluster_refill = false;
5293 bool failed_alloc = false;
5294 bool use_cluster = true;
5295 bool have_caching_bg = false;
5296 u64 ideal_cache_percent = 0;
5297 u64 ideal_cache_offset = 0;
5299 WARN_ON(num_bytes < root->sectorsize);
5300 btrfs_set_key_type(ins, BTRFS_EXTENT_ITEM_KEY);
5304 trace_find_free_extent(orig_root, num_bytes, empty_size, data);
5306 space_info = __find_space_info(root->fs_info, data);
5308 printk(KERN_ERR "No space info for %llu\n", data);
5313 * If the space info is for both data and metadata it means we have a
5314 * small filesystem and we can't use the clustering stuff.
5316 if (btrfs_mixed_space_info(space_info))
5317 use_cluster = false;
5319 if (orig_root->ref_cows || empty_size)
5320 allowed_chunk_alloc = 1;
5322 if (data & BTRFS_BLOCK_GROUP_METADATA && use_cluster) {
5323 last_ptr = &root->fs_info->meta_alloc_cluster;
5324 if (!btrfs_test_opt(root, SSD))
5325 empty_cluster = 64 * 1024;
5328 if ((data & BTRFS_BLOCK_GROUP_DATA) && use_cluster &&
5329 btrfs_test_opt(root, SSD)) {
5330 last_ptr = &root->fs_info->data_alloc_cluster;
5334 spin_lock(&last_ptr->lock);
5335 if (last_ptr->block_group)
5336 hint_byte = last_ptr->window_start;
5337 spin_unlock(&last_ptr->lock);
5340 search_start = max(search_start, first_logical_byte(root, 0));
5341 search_start = max(search_start, hint_byte);
5346 if (search_start == hint_byte) {
5348 block_group = btrfs_lookup_block_group(root->fs_info,
5350 used_block_group = block_group;
5352 * we don't want to use the block group if it doesn't match our
5353 * allocation bits, or if its not cached.
5355 * However if we are re-searching with an ideal block group
5356 * picked out then we don't care that the block group is cached.
5358 if (block_group && block_group_bits(block_group, data) &&
5359 (block_group->cached != BTRFS_CACHE_NO ||
5360 search_start == ideal_cache_offset)) {
5361 down_read(&space_info->groups_sem);
5362 if (list_empty(&block_group->list) ||
5365 * someone is removing this block group,
5366 * we can't jump into the have_block_group
5367 * target because our list pointers are not
5370 btrfs_put_block_group(block_group);
5371 up_read(&space_info->groups_sem);
5373 index = get_block_group_index(block_group);
5374 goto have_block_group;
5376 } else if (block_group) {
5377 btrfs_put_block_group(block_group);
5381 have_caching_bg = false;
5382 down_read(&space_info->groups_sem);
5383 list_for_each_entry(block_group, &space_info->block_groups[index],
5388 used_block_group = block_group;
5389 btrfs_get_block_group(block_group);
5390 search_start = block_group->key.objectid;
5393 * this can happen if we end up cycling through all the
5394 * raid types, but we want to make sure we only allocate
5395 * for the proper type.
5397 if (!block_group_bits(block_group, data)) {
5398 u64 extra = BTRFS_BLOCK_GROUP_DUP |
5399 BTRFS_BLOCK_GROUP_RAID1 |
5400 BTRFS_BLOCK_GROUP_RAID10;
5403 * if they asked for extra copies and this block group
5404 * doesn't provide them, bail. This does allow us to
5405 * fill raid0 from raid1.
5407 if ((data & extra) && !(block_group->flags & extra))
5412 cached = block_group_cache_done(block_group);
5413 if (unlikely(!cached)) {
5416 found_uncached_bg = true;
5417 ret = cache_block_group(block_group, trans,
5419 if (block_group->cached == BTRFS_CACHE_FINISHED)
5422 free_percent = btrfs_block_group_used(&block_group->item);
5423 free_percent *= 100;
5424 free_percent = div64_u64(free_percent,
5425 block_group->key.offset);
5426 free_percent = 100 - free_percent;
5427 if (free_percent > ideal_cache_percent &&
5428 likely(!block_group->ro)) {
5429 ideal_cache_offset = block_group->key.objectid;
5430 ideal_cache_percent = free_percent;
5434 * The caching workers are limited to 2 threads, so we
5435 * can queue as much work as we care to.
5437 if (loop > LOOP_FIND_IDEAL) {
5438 ret = cache_block_group(block_group, trans,
5444 * If loop is set for cached only, try the next block
5447 if (loop == LOOP_FIND_IDEAL)
5452 if (unlikely(block_group->ro))
5456 * Ok we want to try and use the cluster allocator, so
5461 * the refill lock keeps out other
5462 * people trying to start a new cluster
5464 spin_lock(&last_ptr->refill_lock);
5465 used_block_group = last_ptr->block_group;
5466 if (used_block_group != block_group &&
5467 (!used_block_group ||
5468 used_block_group->ro ||
5469 !block_group_bits(used_block_group, data))) {
5470 used_block_group = block_group;
5471 goto refill_cluster;
5474 if (used_block_group != block_group)
5475 btrfs_get_block_group(used_block_group);
5477 offset = btrfs_alloc_from_cluster(used_block_group,
5478 last_ptr, num_bytes, used_block_group->key.objectid);
5480 /* we have a block, we're done */
5481 spin_unlock(&last_ptr->refill_lock);
5482 trace_btrfs_reserve_extent_cluster(root,
5483 block_group, search_start, num_bytes);
5487 WARN_ON(last_ptr->block_group != used_block_group);
5488 if (used_block_group != block_group) {
5489 btrfs_put_block_group(used_block_group);
5490 used_block_group = block_group;
5493 BUG_ON(used_block_group != block_group);
5494 /* If we are on LOOP_NO_EMPTY_SIZE, we can't
5495 * set up a new clusters, so lets just skip it
5496 * and let the allocator find whatever block
5497 * it can find. If we reach this point, we
5498 * will have tried the cluster allocator
5499 * plenty of times and not have found
5500 * anything, so we are likely way too
5501 * fragmented for the clustering stuff to find
5504 * However, if the cluster is taken from the
5505 * current block group, release the cluster
5506 * first, so that we stand a better chance of
5507 * succeeding in the unclustered
5509 if (loop >= LOOP_NO_EMPTY_SIZE &&
5510 last_ptr->block_group != block_group) {
5511 spin_unlock(&last_ptr->refill_lock);
5512 goto unclustered_alloc;
5516 * this cluster didn't work out, free it and
5519 btrfs_return_cluster_to_free_space(NULL, last_ptr);
5521 if (loop >= LOOP_NO_EMPTY_SIZE) {
5522 spin_unlock(&last_ptr->refill_lock);
5523 goto unclustered_alloc;
5526 /* allocate a cluster in this block group */
5527 ret = btrfs_find_space_cluster(trans, root,
5528 block_group, last_ptr,
5529 search_start, num_bytes,
5530 empty_cluster + empty_size);
5533 * now pull our allocation out of this
5536 offset = btrfs_alloc_from_cluster(block_group,
5537 last_ptr, num_bytes,
5540 /* we found one, proceed */
5541 spin_unlock(&last_ptr->refill_lock);
5542 trace_btrfs_reserve_extent_cluster(root,
5543 block_group, search_start,
5547 } else if (!cached && loop > LOOP_CACHING_NOWAIT
5548 && !failed_cluster_refill) {
5549 spin_unlock(&last_ptr->refill_lock);
5551 failed_cluster_refill = true;
5552 wait_block_group_cache_progress(block_group,
5553 num_bytes + empty_cluster + empty_size);
5554 goto have_block_group;
5558 * at this point we either didn't find a cluster
5559 * or we weren't able to allocate a block from our
5560 * cluster. Free the cluster we've been trying
5561 * to use, and go to the next block group
5563 btrfs_return_cluster_to_free_space(NULL, last_ptr);
5564 spin_unlock(&last_ptr->refill_lock);
5569 spin_lock(&block_group->free_space_ctl->tree_lock);
5571 block_group->free_space_ctl->free_space <
5572 num_bytes + empty_cluster + empty_size) {
5573 spin_unlock(&block_group->free_space_ctl->tree_lock);
5576 spin_unlock(&block_group->free_space_ctl->tree_lock);
5578 offset = btrfs_find_space_for_alloc(block_group, search_start,
5579 num_bytes, empty_size);
5581 * If we didn't find a chunk, and we haven't failed on this
5582 * block group before, and this block group is in the middle of
5583 * caching and we are ok with waiting, then go ahead and wait
5584 * for progress to be made, and set failed_alloc to true.
5586 * If failed_alloc is true then we've already waited on this
5587 * block group once and should move on to the next block group.
5589 if (!offset && !failed_alloc && !cached &&
5590 loop > LOOP_CACHING_NOWAIT) {
5591 wait_block_group_cache_progress(block_group,
5592 num_bytes + empty_size);
5593 failed_alloc = true;
5594 goto have_block_group;
5595 } else if (!offset) {
5597 have_caching_bg = true;
5601 search_start = stripe_align(root, offset);
5602 /* move on to the next group */
5603 if (search_start + num_bytes >= search_end) {
5604 btrfs_add_free_space(used_block_group, offset, num_bytes);
5608 /* move on to the next group */
5609 if (search_start + num_bytes >
5610 used_block_group->key.objectid + used_block_group->key.offset) {
5611 btrfs_add_free_space(used_block_group, offset, num_bytes);
5615 if (offset < search_start)
5616 btrfs_add_free_space(used_block_group, offset,
5617 search_start - offset);
5618 BUG_ON(offset > search_start);
5620 ret = btrfs_update_reserved_bytes(used_block_group, num_bytes,
5622 if (ret == -EAGAIN) {
5623 btrfs_add_free_space(used_block_group, offset, num_bytes);
5627 /* we are all good, lets return */
5628 ins->objectid = search_start;
5629 ins->offset = num_bytes;
5631 trace_btrfs_reserve_extent(orig_root, block_group,
5632 search_start, num_bytes);
5633 if (offset < search_start)
5634 btrfs_add_free_space(used_block_group, offset,
5635 search_start - offset);
5636 BUG_ON(offset > search_start);
5637 if (used_block_group != block_group)
5638 btrfs_put_block_group(used_block_group);
5639 btrfs_put_block_group(block_group);
5642 failed_cluster_refill = false;
5643 failed_alloc = false;
5644 BUG_ON(index != get_block_group_index(block_group));
5645 if (used_block_group != block_group)
5646 btrfs_put_block_group(used_block_group);
5647 btrfs_put_block_group(block_group);
5649 up_read(&space_info->groups_sem);
5651 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
5654 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
5657 /* LOOP_FIND_IDEAL, only search caching/cached bg's, and don't wait for
5658 * for them to make caching progress. Also
5659 * determine the best possible bg to cache
5660 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
5661 * caching kthreads as we move along
5662 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
5663 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
5664 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
5667 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
5669 if (loop == LOOP_FIND_IDEAL && found_uncached_bg) {
5670 found_uncached_bg = false;
5672 if (!ideal_cache_percent)
5676 * 1 of the following 2 things have happened so far
5678 * 1) We found an ideal block group for caching that
5679 * is mostly full and will cache quickly, so we might
5680 * as well wait for it.
5682 * 2) We searched for cached only and we didn't find
5683 * anything, and we didn't start any caching kthreads
5684 * either, so chances are we will loop through and
5685 * start a couple caching kthreads, and then come back
5686 * around and just wait for them. This will be slower
5687 * because we will have 2 caching kthreads reading at
5688 * the same time when we could have just started one
5689 * and waited for it to get far enough to give us an
5690 * allocation, so go ahead and go to the wait caching
5693 loop = LOOP_CACHING_WAIT;
5694 search_start = ideal_cache_offset;
5695 ideal_cache_percent = 0;
5697 } else if (loop == LOOP_FIND_IDEAL) {
5699 * Didn't find a uncached bg, wait on anything we find
5702 loop = LOOP_CACHING_WAIT;
5708 if (loop == LOOP_ALLOC_CHUNK) {
5709 if (allowed_chunk_alloc) {
5710 ret = do_chunk_alloc(trans, root, num_bytes +
5711 2 * 1024 * 1024, data,
5712 CHUNK_ALLOC_LIMITED);
5713 allowed_chunk_alloc = 0;
5715 done_chunk_alloc = 1;
5716 } else if (!done_chunk_alloc &&
5717 space_info->force_alloc ==
5718 CHUNK_ALLOC_NO_FORCE) {
5719 space_info->force_alloc = CHUNK_ALLOC_LIMITED;
5723 * We didn't allocate a chunk, go ahead and drop the
5724 * empty size and loop again.
5726 if (!done_chunk_alloc)
5727 loop = LOOP_NO_EMPTY_SIZE;
5730 if (loop == LOOP_NO_EMPTY_SIZE) {
5736 } else if (!ins->objectid) {
5738 } else if (ins->objectid) {
5745 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
5746 int dump_block_groups)
5748 struct btrfs_block_group_cache *cache;
5751 spin_lock(&info->lock);
5752 printk(KERN_INFO "space_info %llu has %llu free, is %sfull\n",
5753 (unsigned long long)info->flags,
5754 (unsigned long long)(info->total_bytes - info->bytes_used -
5755 info->bytes_pinned - info->bytes_reserved -
5756 info->bytes_readonly),
5757 (info->full) ? "" : "not ");
5758 printk(KERN_INFO "space_info total=%llu, used=%llu, pinned=%llu, "
5759 "reserved=%llu, may_use=%llu, readonly=%llu\n",
5760 (unsigned long long)info->total_bytes,
5761 (unsigned long long)info->bytes_used,
5762 (unsigned long long)info->bytes_pinned,
5763 (unsigned long long)info->bytes_reserved,
5764 (unsigned long long)info->bytes_may_use,
5765 (unsigned long long)info->bytes_readonly);
5766 spin_unlock(&info->lock);
5768 if (!dump_block_groups)
5771 down_read(&info->groups_sem);
5773 list_for_each_entry(cache, &info->block_groups[index], list) {
5774 spin_lock(&cache->lock);
5775 printk(KERN_INFO "block group %llu has %llu bytes, %llu used "
5776 "%llu pinned %llu reserved\n",
5777 (unsigned long long)cache->key.objectid,
5778 (unsigned long long)cache->key.offset,
5779 (unsigned long long)btrfs_block_group_used(&cache->item),
5780 (unsigned long long)cache->pinned,
5781 (unsigned long long)cache->reserved);
5782 btrfs_dump_free_space(cache, bytes);
5783 spin_unlock(&cache->lock);
5785 if (++index < BTRFS_NR_RAID_TYPES)
5787 up_read(&info->groups_sem);
5790 int btrfs_reserve_extent(struct btrfs_trans_handle *trans,
5791 struct btrfs_root *root,
5792 u64 num_bytes, u64 min_alloc_size,
5793 u64 empty_size, u64 hint_byte,
5794 u64 search_end, struct btrfs_key *ins,
5798 u64 search_start = 0;
5800 data = btrfs_get_alloc_profile(root, data);
5803 * the only place that sets empty_size is btrfs_realloc_node, which
5804 * is not called recursively on allocations
5806 if (empty_size || root->ref_cows)
5807 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
5808 num_bytes + 2 * 1024 * 1024, data,
5809 CHUNK_ALLOC_NO_FORCE);
5811 WARN_ON(num_bytes < root->sectorsize);
5812 ret = find_free_extent(trans, root, num_bytes, empty_size,
5813 search_start, search_end, hint_byte,
5816 if (ret == -ENOSPC && num_bytes > min_alloc_size) {
5817 num_bytes = num_bytes >> 1;
5818 num_bytes = num_bytes & ~(root->sectorsize - 1);
5819 num_bytes = max(num_bytes, min_alloc_size);
5820 do_chunk_alloc(trans, root->fs_info->extent_root,
5821 num_bytes, data, CHUNK_ALLOC_FORCE);
5824 if (ret == -ENOSPC && btrfs_test_opt(root, ENOSPC_DEBUG)) {
5825 struct btrfs_space_info *sinfo;
5827 sinfo = __find_space_info(root->fs_info, data);
5828 printk(KERN_ERR "btrfs allocation failed flags %llu, "
5829 "wanted %llu\n", (unsigned long long)data,
5830 (unsigned long long)num_bytes);
5831 dump_space_info(sinfo, num_bytes, 1);
5834 trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset);
5839 static int __btrfs_free_reserved_extent(struct btrfs_root *root,
5840 u64 start, u64 len, int pin)
5842 struct btrfs_block_group_cache *cache;
5845 cache = btrfs_lookup_block_group(root->fs_info, start);
5847 printk(KERN_ERR "Unable to find block group for %llu\n",
5848 (unsigned long long)start);
5852 if (btrfs_test_opt(root, DISCARD))
5853 ret = btrfs_discard_extent(root, start, len, NULL);
5856 pin_down_extent(root, cache, start, len, 1);
5858 btrfs_add_free_space(cache, start, len);
5859 btrfs_update_reserved_bytes(cache, len, RESERVE_FREE);
5861 btrfs_put_block_group(cache);
5863 trace_btrfs_reserved_extent_free(root, start, len);
5868 int btrfs_free_reserved_extent(struct btrfs_root *root,
5871 return __btrfs_free_reserved_extent(root, start, len, 0);
5874 int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root,
5877 return __btrfs_free_reserved_extent(root, start, len, 1);
5880 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
5881 struct btrfs_root *root,
5882 u64 parent, u64 root_objectid,
5883 u64 flags, u64 owner, u64 offset,
5884 struct btrfs_key *ins, int ref_mod)
5887 struct btrfs_fs_info *fs_info = root->fs_info;
5888 struct btrfs_extent_item *extent_item;
5889 struct btrfs_extent_inline_ref *iref;
5890 struct btrfs_path *path;
5891 struct extent_buffer *leaf;
5896 type = BTRFS_SHARED_DATA_REF_KEY;
5898 type = BTRFS_EXTENT_DATA_REF_KEY;
5900 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
5902 path = btrfs_alloc_path();
5906 path->leave_spinning = 1;
5907 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
5911 leaf = path->nodes[0];
5912 extent_item = btrfs_item_ptr(leaf, path->slots[0],
5913 struct btrfs_extent_item);
5914 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
5915 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
5916 btrfs_set_extent_flags(leaf, extent_item,
5917 flags | BTRFS_EXTENT_FLAG_DATA);
5919 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
5920 btrfs_set_extent_inline_ref_type(leaf, iref, type);
5922 struct btrfs_shared_data_ref *ref;
5923 ref = (struct btrfs_shared_data_ref *)(iref + 1);
5924 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
5925 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
5927 struct btrfs_extent_data_ref *ref;
5928 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
5929 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
5930 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
5931 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
5932 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
5935 btrfs_mark_buffer_dirty(path->nodes[0]);
5936 btrfs_free_path(path);
5938 ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
5940 printk(KERN_ERR "btrfs update block group failed for %llu "
5941 "%llu\n", (unsigned long long)ins->objectid,
5942 (unsigned long long)ins->offset);
5948 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
5949 struct btrfs_root *root,
5950 u64 parent, u64 root_objectid,
5951 u64 flags, struct btrfs_disk_key *key,
5952 int level, struct btrfs_key *ins)
5955 struct btrfs_fs_info *fs_info = root->fs_info;
5956 struct btrfs_extent_item *extent_item;
5957 struct btrfs_tree_block_info *block_info;
5958 struct btrfs_extent_inline_ref *iref;
5959 struct btrfs_path *path;
5960 struct extent_buffer *leaf;
5961 u32 size = sizeof(*extent_item) + sizeof(*block_info) + sizeof(*iref);
5963 path = btrfs_alloc_path();
5967 path->leave_spinning = 1;
5968 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
5972 leaf = path->nodes[0];
5973 extent_item = btrfs_item_ptr(leaf, path->slots[0],
5974 struct btrfs_extent_item);
5975 btrfs_set_extent_refs(leaf, extent_item, 1);
5976 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
5977 btrfs_set_extent_flags(leaf, extent_item,
5978 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
5979 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
5981 btrfs_set_tree_block_key(leaf, block_info, key);
5982 btrfs_set_tree_block_level(leaf, block_info, level);
5984 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
5986 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
5987 btrfs_set_extent_inline_ref_type(leaf, iref,
5988 BTRFS_SHARED_BLOCK_REF_KEY);
5989 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
5991 btrfs_set_extent_inline_ref_type(leaf, iref,
5992 BTRFS_TREE_BLOCK_REF_KEY);
5993 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
5996 btrfs_mark_buffer_dirty(leaf);
5997 btrfs_free_path(path);
5999 ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
6001 printk(KERN_ERR "btrfs update block group failed for %llu "
6002 "%llu\n", (unsigned long long)ins->objectid,
6003 (unsigned long long)ins->offset);
6009 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
6010 struct btrfs_root *root,
6011 u64 root_objectid, u64 owner,
6012 u64 offset, struct btrfs_key *ins)
6016 BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
6018 ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid,
6020 root_objectid, owner, offset,
6021 BTRFS_ADD_DELAYED_EXTENT, NULL, 0);
6026 * this is used by the tree logging recovery code. It records that
6027 * an extent has been allocated and makes sure to clear the free
6028 * space cache bits as well
6030 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
6031 struct btrfs_root *root,
6032 u64 root_objectid, u64 owner, u64 offset,
6033 struct btrfs_key *ins)
6036 struct btrfs_block_group_cache *block_group;
6037 struct btrfs_caching_control *caching_ctl;
6038 u64 start = ins->objectid;
6039 u64 num_bytes = ins->offset;
6041 block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
6042 cache_block_group(block_group, trans, NULL, 0);
6043 caching_ctl = get_caching_control(block_group);
6046 BUG_ON(!block_group_cache_done(block_group));
6047 ret = btrfs_remove_free_space(block_group, start, num_bytes);
6050 mutex_lock(&caching_ctl->mutex);
6052 if (start >= caching_ctl->progress) {
6053 ret = add_excluded_extent(root, start, num_bytes);
6055 } else if (start + num_bytes <= caching_ctl->progress) {
6056 ret = btrfs_remove_free_space(block_group,
6060 num_bytes = caching_ctl->progress - start;
6061 ret = btrfs_remove_free_space(block_group,
6065 start = caching_ctl->progress;
6066 num_bytes = ins->objectid + ins->offset -
6067 caching_ctl->progress;
6068 ret = add_excluded_extent(root, start, num_bytes);
6072 mutex_unlock(&caching_ctl->mutex);
6073 put_caching_control(caching_ctl);
6076 ret = btrfs_update_reserved_bytes(block_group, ins->offset,
6077 RESERVE_ALLOC_NO_ACCOUNT);
6079 btrfs_put_block_group(block_group);
6080 ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
6081 0, owner, offset, ins, 1);
6085 struct extent_buffer *btrfs_init_new_buffer(struct btrfs_trans_handle *trans,
6086 struct btrfs_root *root,
6087 u64 bytenr, u32 blocksize,
6090 struct extent_buffer *buf;
6092 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
6094 return ERR_PTR(-ENOMEM);
6095 btrfs_set_header_generation(buf, trans->transid);
6096 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
6097 btrfs_tree_lock(buf);
6098 clean_tree_block(trans, root, buf);
6100 btrfs_set_lock_blocking(buf);
6101 btrfs_set_buffer_uptodate(buf);
6103 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
6105 * we allow two log transactions at a time, use different
6106 * EXENT bit to differentiate dirty pages.
6108 if (root->log_transid % 2 == 0)
6109 set_extent_dirty(&root->dirty_log_pages, buf->start,
6110 buf->start + buf->len - 1, GFP_NOFS);
6112 set_extent_new(&root->dirty_log_pages, buf->start,
6113 buf->start + buf->len - 1, GFP_NOFS);
6115 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
6116 buf->start + buf->len - 1, GFP_NOFS);
6118 trans->blocks_used++;
6119 /* this returns a buffer locked for blocking */
6123 static struct btrfs_block_rsv *
6124 use_block_rsv(struct btrfs_trans_handle *trans,
6125 struct btrfs_root *root, u32 blocksize)
6127 struct btrfs_block_rsv *block_rsv;
6128 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
6131 block_rsv = get_block_rsv(trans, root);
6133 if (block_rsv->size == 0) {
6134 ret = reserve_metadata_bytes(root, block_rsv, blocksize, 0);
6136 * If we couldn't reserve metadata bytes try and use some from
6137 * the global reserve.
6139 if (ret && block_rsv != global_rsv) {
6140 ret = block_rsv_use_bytes(global_rsv, blocksize);
6143 return ERR_PTR(ret);
6145 return ERR_PTR(ret);
6150 ret = block_rsv_use_bytes(block_rsv, blocksize);
6154 static DEFINE_RATELIMIT_STATE(_rs,
6155 DEFAULT_RATELIMIT_INTERVAL,
6156 /*DEFAULT_RATELIMIT_BURST*/ 2);
6157 if (__ratelimit(&_rs)) {
6158 printk(KERN_DEBUG "btrfs: block rsv returned %d\n", ret);
6161 ret = reserve_metadata_bytes(root, block_rsv, blocksize, 0);
6164 } else if (ret && block_rsv != global_rsv) {
6165 ret = block_rsv_use_bytes(global_rsv, blocksize);
6171 return ERR_PTR(-ENOSPC);
6174 static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
6175 struct btrfs_block_rsv *block_rsv, u32 blocksize)
6177 block_rsv_add_bytes(block_rsv, blocksize, 0);
6178 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
6182 * finds a free extent and does all the dirty work required for allocation
6183 * returns the key for the extent through ins, and a tree buffer for
6184 * the first block of the extent through buf.
6186 * returns the tree buffer or NULL.
6188 struct extent_buffer *btrfs_alloc_free_block(struct btrfs_trans_handle *trans,
6189 struct btrfs_root *root, u32 blocksize,
6190 u64 parent, u64 root_objectid,
6191 struct btrfs_disk_key *key, int level,
6192 u64 hint, u64 empty_size, int for_cow)
6194 struct btrfs_key ins;
6195 struct btrfs_block_rsv *block_rsv;
6196 struct extent_buffer *buf;
6201 block_rsv = use_block_rsv(trans, root, blocksize);
6202 if (IS_ERR(block_rsv))
6203 return ERR_CAST(block_rsv);
6205 ret = btrfs_reserve_extent(trans, root, blocksize, blocksize,
6206 empty_size, hint, (u64)-1, &ins, 0);
6208 unuse_block_rsv(root->fs_info, block_rsv, blocksize);
6209 return ERR_PTR(ret);
6212 buf = btrfs_init_new_buffer(trans, root, ins.objectid,
6214 BUG_ON(IS_ERR(buf));
6216 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
6218 parent = ins.objectid;
6219 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
6223 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
6224 struct btrfs_delayed_extent_op *extent_op;
6225 extent_op = kmalloc(sizeof(*extent_op), GFP_NOFS);
6228 memcpy(&extent_op->key, key, sizeof(extent_op->key));
6230 memset(&extent_op->key, 0, sizeof(extent_op->key));
6231 extent_op->flags_to_set = flags;
6232 extent_op->update_key = 1;
6233 extent_op->update_flags = 1;
6234 extent_op->is_data = 0;
6236 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
6238 ins.offset, parent, root_objectid,
6239 level, BTRFS_ADD_DELAYED_EXTENT,
6240 extent_op, for_cow);
6246 struct walk_control {
6247 u64 refs[BTRFS_MAX_LEVEL];
6248 u64 flags[BTRFS_MAX_LEVEL];
6249 struct btrfs_key update_progress;
6260 #define DROP_REFERENCE 1
6261 #define UPDATE_BACKREF 2
6263 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
6264 struct btrfs_root *root,
6265 struct walk_control *wc,
6266 struct btrfs_path *path)
6274 struct btrfs_key key;
6275 struct extent_buffer *eb;
6280 if (path->slots[wc->level] < wc->reada_slot) {
6281 wc->reada_count = wc->reada_count * 2 / 3;
6282 wc->reada_count = max(wc->reada_count, 2);
6284 wc->reada_count = wc->reada_count * 3 / 2;
6285 wc->reada_count = min_t(int, wc->reada_count,
6286 BTRFS_NODEPTRS_PER_BLOCK(root));
6289 eb = path->nodes[wc->level];
6290 nritems = btrfs_header_nritems(eb);
6291 blocksize = btrfs_level_size(root, wc->level - 1);
6293 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
6294 if (nread >= wc->reada_count)
6298 bytenr = btrfs_node_blockptr(eb, slot);
6299 generation = btrfs_node_ptr_generation(eb, slot);
6301 if (slot == path->slots[wc->level])
6304 if (wc->stage == UPDATE_BACKREF &&
6305 generation <= root->root_key.offset)
6308 /* We don't lock the tree block, it's OK to be racy here */
6309 ret = btrfs_lookup_extent_info(trans, root, bytenr, blocksize,
6314 if (wc->stage == DROP_REFERENCE) {
6318 if (wc->level == 1 &&
6319 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
6321 if (!wc->update_ref ||
6322 generation <= root->root_key.offset)
6324 btrfs_node_key_to_cpu(eb, &key, slot);
6325 ret = btrfs_comp_cpu_keys(&key,
6326 &wc->update_progress);
6330 if (wc->level == 1 &&
6331 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
6335 ret = readahead_tree_block(root, bytenr, blocksize,
6341 wc->reada_slot = slot;
6345 * hepler to process tree block while walking down the tree.
6347 * when wc->stage == UPDATE_BACKREF, this function updates
6348 * back refs for pointers in the block.
6350 * NOTE: return value 1 means we should stop walking down.
6352 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
6353 struct btrfs_root *root,
6354 struct btrfs_path *path,
6355 struct walk_control *wc, int lookup_info)
6357 int level = wc->level;
6358 struct extent_buffer *eb = path->nodes[level];
6359 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
6362 if (wc->stage == UPDATE_BACKREF &&
6363 btrfs_header_owner(eb) != root->root_key.objectid)
6367 * when reference count of tree block is 1, it won't increase
6368 * again. once full backref flag is set, we never clear it.
6371 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
6372 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
6373 BUG_ON(!path->locks[level]);
6374 ret = btrfs_lookup_extent_info(trans, root,
6379 BUG_ON(wc->refs[level] == 0);
6382 if (wc->stage == DROP_REFERENCE) {
6383 if (wc->refs[level] > 1)
6386 if (path->locks[level] && !wc->keep_locks) {
6387 btrfs_tree_unlock_rw(eb, path->locks[level]);
6388 path->locks[level] = 0;
6393 /* wc->stage == UPDATE_BACKREF */
6394 if (!(wc->flags[level] & flag)) {
6395 BUG_ON(!path->locks[level]);
6396 ret = btrfs_inc_ref(trans, root, eb, 1, wc->for_reloc);
6398 ret = btrfs_dec_ref(trans, root, eb, 0, wc->for_reloc);
6400 ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
6403 wc->flags[level] |= flag;
6407 * the block is shared by multiple trees, so it's not good to
6408 * keep the tree lock
6410 if (path->locks[level] && level > 0) {
6411 btrfs_tree_unlock_rw(eb, path->locks[level]);
6412 path->locks[level] = 0;
6418 * hepler to process tree block pointer.
6420 * when wc->stage == DROP_REFERENCE, this function checks
6421 * reference count of the block pointed to. if the block
6422 * is shared and we need update back refs for the subtree
6423 * rooted at the block, this function changes wc->stage to
6424 * UPDATE_BACKREF. if the block is shared and there is no
6425 * need to update back, this function drops the reference
6428 * NOTE: return value 1 means we should stop walking down.
6430 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
6431 struct btrfs_root *root,
6432 struct btrfs_path *path,
6433 struct walk_control *wc, int *lookup_info)
6439 struct btrfs_key key;
6440 struct extent_buffer *next;
6441 int level = wc->level;
6445 generation = btrfs_node_ptr_generation(path->nodes[level],
6446 path->slots[level]);
6448 * if the lower level block was created before the snapshot
6449 * was created, we know there is no need to update back refs
6452 if (wc->stage == UPDATE_BACKREF &&
6453 generation <= root->root_key.offset) {
6458 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
6459 blocksize = btrfs_level_size(root, level - 1);
6461 next = btrfs_find_tree_block(root, bytenr, blocksize);
6463 next = btrfs_find_create_tree_block(root, bytenr, blocksize);
6468 btrfs_tree_lock(next);
6469 btrfs_set_lock_blocking(next);
6471 ret = btrfs_lookup_extent_info(trans, root, bytenr, blocksize,
6472 &wc->refs[level - 1],
6473 &wc->flags[level - 1]);
6475 BUG_ON(wc->refs[level - 1] == 0);
6478 if (wc->stage == DROP_REFERENCE) {
6479 if (wc->refs[level - 1] > 1) {
6481 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
6484 if (!wc->update_ref ||
6485 generation <= root->root_key.offset)
6488 btrfs_node_key_to_cpu(path->nodes[level], &key,
6489 path->slots[level]);
6490 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
6494 wc->stage = UPDATE_BACKREF;
6495 wc->shared_level = level - 1;
6499 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
6503 if (!btrfs_buffer_uptodate(next, generation)) {
6504 btrfs_tree_unlock(next);
6505 free_extent_buffer(next);
6511 if (reada && level == 1)
6512 reada_walk_down(trans, root, wc, path);
6513 next = read_tree_block(root, bytenr, blocksize, generation);
6516 btrfs_tree_lock(next);
6517 btrfs_set_lock_blocking(next);
6521 BUG_ON(level != btrfs_header_level(next));
6522 path->nodes[level] = next;
6523 path->slots[level] = 0;
6524 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
6530 wc->refs[level - 1] = 0;
6531 wc->flags[level - 1] = 0;
6532 if (wc->stage == DROP_REFERENCE) {
6533 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
6534 parent = path->nodes[level]->start;
6536 BUG_ON(root->root_key.objectid !=
6537 btrfs_header_owner(path->nodes[level]));
6541 ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
6542 root->root_key.objectid, level - 1, 0, 0);
6545 btrfs_tree_unlock(next);
6546 free_extent_buffer(next);
6552 * hepler to process tree block while walking up the tree.
6554 * when wc->stage == DROP_REFERENCE, this function drops
6555 * reference count on the block.
6557 * when wc->stage == UPDATE_BACKREF, this function changes
6558 * wc->stage back to DROP_REFERENCE if we changed wc->stage
6559 * to UPDATE_BACKREF previously while processing the block.
6561 * NOTE: return value 1 means we should stop walking up.
6563 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
6564 struct btrfs_root *root,
6565 struct btrfs_path *path,
6566 struct walk_control *wc)
6569 int level = wc->level;
6570 struct extent_buffer *eb = path->nodes[level];
6573 if (wc->stage == UPDATE_BACKREF) {
6574 BUG_ON(wc->shared_level < level);
6575 if (level < wc->shared_level)
6578 ret = find_next_key(path, level + 1, &wc->update_progress);
6582 wc->stage = DROP_REFERENCE;
6583 wc->shared_level = -1;
6584 path->slots[level] = 0;
6587 * check reference count again if the block isn't locked.
6588 * we should start walking down the tree again if reference
6591 if (!path->locks[level]) {
6593 btrfs_tree_lock(eb);
6594 btrfs_set_lock_blocking(eb);
6595 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
6597 ret = btrfs_lookup_extent_info(trans, root,
6602 BUG_ON(wc->refs[level] == 0);
6603 if (wc->refs[level] == 1) {
6604 btrfs_tree_unlock_rw(eb, path->locks[level]);
6610 /* wc->stage == DROP_REFERENCE */
6611 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
6613 if (wc->refs[level] == 1) {
6615 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
6616 ret = btrfs_dec_ref(trans, root, eb, 1,
6619 ret = btrfs_dec_ref(trans, root, eb, 0,
6623 /* make block locked assertion in clean_tree_block happy */
6624 if (!path->locks[level] &&
6625 btrfs_header_generation(eb) == trans->transid) {
6626 btrfs_tree_lock(eb);
6627 btrfs_set_lock_blocking(eb);
6628 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
6630 clean_tree_block(trans, root, eb);
6633 if (eb == root->node) {
6634 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
6637 BUG_ON(root->root_key.objectid !=
6638 btrfs_header_owner(eb));
6640 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
6641 parent = path->nodes[level + 1]->start;
6643 BUG_ON(root->root_key.objectid !=
6644 btrfs_header_owner(path->nodes[level + 1]));
6647 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1, 0);
6649 wc->refs[level] = 0;
6650 wc->flags[level] = 0;
6654 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
6655 struct btrfs_root *root,
6656 struct btrfs_path *path,
6657 struct walk_control *wc)
6659 int level = wc->level;
6660 int lookup_info = 1;
6663 while (level >= 0) {
6664 ret = walk_down_proc(trans, root, path, wc, lookup_info);
6671 if (path->slots[level] >=
6672 btrfs_header_nritems(path->nodes[level]))
6675 ret = do_walk_down(trans, root, path, wc, &lookup_info);
6677 path->slots[level]++;
6686 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
6687 struct btrfs_root *root,
6688 struct btrfs_path *path,
6689 struct walk_control *wc, int max_level)
6691 int level = wc->level;
6694 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
6695 while (level < max_level && path->nodes[level]) {
6697 if (path->slots[level] + 1 <
6698 btrfs_header_nritems(path->nodes[level])) {
6699 path->slots[level]++;
6702 ret = walk_up_proc(trans, root, path, wc);
6706 if (path->locks[level]) {
6707 btrfs_tree_unlock_rw(path->nodes[level],
6708 path->locks[level]);
6709 path->locks[level] = 0;
6711 free_extent_buffer(path->nodes[level]);
6712 path->nodes[level] = NULL;
6720 * drop a subvolume tree.
6722 * this function traverses the tree freeing any blocks that only
6723 * referenced by the tree.
6725 * when a shared tree block is found. this function decreases its
6726 * reference count by one. if update_ref is true, this function
6727 * also make sure backrefs for the shared block and all lower level
6728 * blocks are properly updated.
6730 void btrfs_drop_snapshot(struct btrfs_root *root,
6731 struct btrfs_block_rsv *block_rsv, int update_ref,
6734 struct btrfs_path *path;
6735 struct btrfs_trans_handle *trans;
6736 struct btrfs_root *tree_root = root->fs_info->tree_root;
6737 struct btrfs_root_item *root_item = &root->root_item;
6738 struct walk_control *wc;
6739 struct btrfs_key key;
6744 path = btrfs_alloc_path();
6750 wc = kzalloc(sizeof(*wc), GFP_NOFS);
6752 btrfs_free_path(path);
6757 trans = btrfs_start_transaction(tree_root, 0);
6758 BUG_ON(IS_ERR(trans));
6761 trans->block_rsv = block_rsv;
6763 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
6764 level = btrfs_header_level(root->node);
6765 path->nodes[level] = btrfs_lock_root_node(root);
6766 btrfs_set_lock_blocking(path->nodes[level]);
6767 path->slots[level] = 0;
6768 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
6769 memset(&wc->update_progress, 0,
6770 sizeof(wc->update_progress));
6772 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
6773 memcpy(&wc->update_progress, &key,
6774 sizeof(wc->update_progress));
6776 level = root_item->drop_level;
6778 path->lowest_level = level;
6779 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6780 path->lowest_level = 0;
6788 * unlock our path, this is safe because only this
6789 * function is allowed to delete this snapshot
6791 btrfs_unlock_up_safe(path, 0);
6793 level = btrfs_header_level(root->node);
6795 btrfs_tree_lock(path->nodes[level]);
6796 btrfs_set_lock_blocking(path->nodes[level]);
6798 ret = btrfs_lookup_extent_info(trans, root,
6799 path->nodes[level]->start,
6800 path->nodes[level]->len,
6804 BUG_ON(wc->refs[level] == 0);
6806 if (level == root_item->drop_level)
6809 btrfs_tree_unlock(path->nodes[level]);
6810 WARN_ON(wc->refs[level] != 1);
6816 wc->shared_level = -1;
6817 wc->stage = DROP_REFERENCE;
6818 wc->update_ref = update_ref;
6820 wc->for_reloc = for_reloc;
6821 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
6824 ret = walk_down_tree(trans, root, path, wc);
6830 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
6837 BUG_ON(wc->stage != DROP_REFERENCE);
6841 if (wc->stage == DROP_REFERENCE) {
6843 btrfs_node_key(path->nodes[level],
6844 &root_item->drop_progress,
6845 path->slots[level]);
6846 root_item->drop_level = level;
6849 BUG_ON(wc->level == 0);
6850 if (btrfs_should_end_transaction(trans, tree_root)) {
6851 ret = btrfs_update_root(trans, tree_root,
6856 btrfs_end_transaction_throttle(trans, tree_root);
6857 trans = btrfs_start_transaction(tree_root, 0);
6858 BUG_ON(IS_ERR(trans));
6860 trans->block_rsv = block_rsv;
6863 btrfs_release_path(path);
6866 ret = btrfs_del_root(trans, tree_root, &root->root_key);
6869 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
6870 ret = btrfs_find_last_root(tree_root, root->root_key.objectid,
6874 /* if we fail to delete the orphan item this time
6875 * around, it'll get picked up the next time.
6877 * The most common failure here is just -ENOENT.
6879 btrfs_del_orphan_item(trans, tree_root,
6880 root->root_key.objectid);
6884 if (root->in_radix) {
6885 btrfs_free_fs_root(tree_root->fs_info, root);
6887 free_extent_buffer(root->node);
6888 free_extent_buffer(root->commit_root);
6892 btrfs_end_transaction_throttle(trans, tree_root);
6894 btrfs_free_path(path);
6897 btrfs_std_error(root->fs_info, err);
6902 * drop subtree rooted at tree block 'node'.
6904 * NOTE: this function will unlock and release tree block 'node'
6905 * only used by relocation code
6907 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
6908 struct btrfs_root *root,
6909 struct extent_buffer *node,
6910 struct extent_buffer *parent)
6912 struct btrfs_path *path;
6913 struct walk_control *wc;
6919 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
6921 path = btrfs_alloc_path();
6925 wc = kzalloc(sizeof(*wc), GFP_NOFS);
6927 btrfs_free_path(path);
6931 btrfs_assert_tree_locked(parent);
6932 parent_level = btrfs_header_level(parent);
6933 extent_buffer_get(parent);
6934 path->nodes[parent_level] = parent;
6935 path->slots[parent_level] = btrfs_header_nritems(parent);
6937 btrfs_assert_tree_locked(node);
6938 level = btrfs_header_level(node);
6939 path->nodes[level] = node;
6940 path->slots[level] = 0;
6941 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
6943 wc->refs[parent_level] = 1;
6944 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
6946 wc->shared_level = -1;
6947 wc->stage = DROP_REFERENCE;
6951 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
6954 wret = walk_down_tree(trans, root, path, wc);
6960 wret = walk_up_tree(trans, root, path, wc, parent_level);
6968 btrfs_free_path(path);
6972 static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
6975 u64 stripped = BTRFS_BLOCK_GROUP_RAID0 |
6976 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
6978 if (root->fs_info->balance_ctl) {
6979 struct btrfs_balance_control *bctl = root->fs_info->balance_ctl;
6982 /* pick restriper's target profile and return */
6983 if (flags & BTRFS_BLOCK_GROUP_DATA &&
6984 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
6985 tgt = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
6986 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
6987 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
6988 tgt = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
6989 } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
6990 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
6991 tgt = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
6995 /* extended -> chunk profile */
6996 tgt &= ~BTRFS_AVAIL_ALLOC_BIT_SINGLE;
7002 * we add in the count of missing devices because we want
7003 * to make sure that any RAID levels on a degraded FS
7004 * continue to be honored.
7006 num_devices = root->fs_info->fs_devices->rw_devices +
7007 root->fs_info->fs_devices->missing_devices;
7009 if (num_devices == 1) {
7010 stripped |= BTRFS_BLOCK_GROUP_DUP;
7011 stripped = flags & ~stripped;
7013 /* turn raid0 into single device chunks */
7014 if (flags & BTRFS_BLOCK_GROUP_RAID0)
7017 /* turn mirroring into duplication */
7018 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
7019 BTRFS_BLOCK_GROUP_RAID10))
7020 return stripped | BTRFS_BLOCK_GROUP_DUP;
7023 /* they already had raid on here, just return */
7024 if (flags & stripped)
7027 stripped |= BTRFS_BLOCK_GROUP_DUP;
7028 stripped = flags & ~stripped;
7030 /* switch duplicated blocks with raid1 */
7031 if (flags & BTRFS_BLOCK_GROUP_DUP)
7032 return stripped | BTRFS_BLOCK_GROUP_RAID1;
7034 /* turn single device chunks into raid0 */
7035 return stripped | BTRFS_BLOCK_GROUP_RAID0;
7040 static int set_block_group_ro(struct btrfs_block_group_cache *cache, int force)
7042 struct btrfs_space_info *sinfo = cache->space_info;
7044 u64 min_allocable_bytes;
7049 * We need some metadata space and system metadata space for
7050 * allocating chunks in some corner cases until we force to set
7051 * it to be readonly.
7054 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
7056 min_allocable_bytes = 1 * 1024 * 1024;
7058 min_allocable_bytes = 0;
7060 spin_lock(&sinfo->lock);
7061 spin_lock(&cache->lock);
7068 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
7069 cache->bytes_super - btrfs_block_group_used(&cache->item);
7071 if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
7072 sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes +
7073 min_allocable_bytes <= sinfo->total_bytes) {
7074 sinfo->bytes_readonly += num_bytes;
7079 spin_unlock(&cache->lock);
7080 spin_unlock(&sinfo->lock);
7084 int btrfs_set_block_group_ro(struct btrfs_root *root,
7085 struct btrfs_block_group_cache *cache)
7088 struct btrfs_trans_handle *trans;
7094 trans = btrfs_join_transaction(root);
7095 BUG_ON(IS_ERR(trans));
7097 alloc_flags = update_block_group_flags(root, cache->flags);
7098 if (alloc_flags != cache->flags)
7099 do_chunk_alloc(trans, root, 2 * 1024 * 1024, alloc_flags,
7102 ret = set_block_group_ro(cache, 0);
7105 alloc_flags = get_alloc_profile(root, cache->space_info->flags);
7106 ret = do_chunk_alloc(trans, root, 2 * 1024 * 1024, alloc_flags,
7110 ret = set_block_group_ro(cache, 0);
7112 btrfs_end_transaction(trans, root);
7116 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
7117 struct btrfs_root *root, u64 type)
7119 u64 alloc_flags = get_alloc_profile(root, type);
7120 return do_chunk_alloc(trans, root, 2 * 1024 * 1024, alloc_flags,
7125 * helper to account the unused space of all the readonly block group in the
7126 * list. takes mirrors into account.
7128 static u64 __btrfs_get_ro_block_group_free_space(struct list_head *groups_list)
7130 struct btrfs_block_group_cache *block_group;
7134 list_for_each_entry(block_group, groups_list, list) {
7135 spin_lock(&block_group->lock);
7137 if (!block_group->ro) {
7138 spin_unlock(&block_group->lock);
7142 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
7143 BTRFS_BLOCK_GROUP_RAID10 |
7144 BTRFS_BLOCK_GROUP_DUP))
7149 free_bytes += (block_group->key.offset -
7150 btrfs_block_group_used(&block_group->item)) *
7153 spin_unlock(&block_group->lock);
7160 * helper to account the unused space of all the readonly block group in the
7161 * space_info. takes mirrors into account.
7163 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
7168 spin_lock(&sinfo->lock);
7170 for(i = 0; i < BTRFS_NR_RAID_TYPES; i++)
7171 if (!list_empty(&sinfo->block_groups[i]))
7172 free_bytes += __btrfs_get_ro_block_group_free_space(
7173 &sinfo->block_groups[i]);
7175 spin_unlock(&sinfo->lock);
7180 int btrfs_set_block_group_rw(struct btrfs_root *root,
7181 struct btrfs_block_group_cache *cache)
7183 struct btrfs_space_info *sinfo = cache->space_info;
7188 spin_lock(&sinfo->lock);
7189 spin_lock(&cache->lock);
7190 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
7191 cache->bytes_super - btrfs_block_group_used(&cache->item);
7192 sinfo->bytes_readonly -= num_bytes;
7194 spin_unlock(&cache->lock);
7195 spin_unlock(&sinfo->lock);
7200 * checks to see if its even possible to relocate this block group.
7202 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
7203 * ok to go ahead and try.
7205 int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
7207 struct btrfs_block_group_cache *block_group;
7208 struct btrfs_space_info *space_info;
7209 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
7210 struct btrfs_device *device;
7218 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
7220 /* odd, couldn't find the block group, leave it alone */
7224 min_free = btrfs_block_group_used(&block_group->item);
7226 /* no bytes used, we're good */
7230 space_info = block_group->space_info;
7231 spin_lock(&space_info->lock);
7233 full = space_info->full;
7236 * if this is the last block group we have in this space, we can't
7237 * relocate it unless we're able to allocate a new chunk below.
7239 * Otherwise, we need to make sure we have room in the space to handle
7240 * all of the extents from this block group. If we can, we're good
7242 if ((space_info->total_bytes != block_group->key.offset) &&
7243 (space_info->bytes_used + space_info->bytes_reserved +
7244 space_info->bytes_pinned + space_info->bytes_readonly +
7245 min_free < space_info->total_bytes)) {
7246 spin_unlock(&space_info->lock);
7249 spin_unlock(&space_info->lock);
7252 * ok we don't have enough space, but maybe we have free space on our
7253 * devices to allocate new chunks for relocation, so loop through our
7254 * alloc devices and guess if we have enough space. However, if we
7255 * were marked as full, then we know there aren't enough chunks, and we
7270 index = get_block_group_index(block_group);
7275 } else if (index == 1) {
7277 } else if (index == 2) {
7280 } else if (index == 3) {
7281 dev_min = fs_devices->rw_devices;
7282 do_div(min_free, dev_min);
7285 mutex_lock(&root->fs_info->chunk_mutex);
7286 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
7290 * check to make sure we can actually find a chunk with enough
7291 * space to fit our block group in.
7293 if (device->total_bytes > device->bytes_used + min_free) {
7294 ret = find_free_dev_extent(device, min_free,
7299 if (dev_nr >= dev_min)
7305 mutex_unlock(&root->fs_info->chunk_mutex);
7307 btrfs_put_block_group(block_group);
7311 static int find_first_block_group(struct btrfs_root *root,
7312 struct btrfs_path *path, struct btrfs_key *key)
7315 struct btrfs_key found_key;
7316 struct extent_buffer *leaf;
7319 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
7324 slot = path->slots[0];
7325 leaf = path->nodes[0];
7326 if (slot >= btrfs_header_nritems(leaf)) {
7327 ret = btrfs_next_leaf(root, path);
7334 btrfs_item_key_to_cpu(leaf, &found_key, slot);
7336 if (found_key.objectid >= key->objectid &&
7337 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
7347 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
7349 struct btrfs_block_group_cache *block_group;
7353 struct inode *inode;
7355 block_group = btrfs_lookup_first_block_group(info, last);
7356 while (block_group) {
7357 spin_lock(&block_group->lock);
7358 if (block_group->iref)
7360 spin_unlock(&block_group->lock);
7361 block_group = next_block_group(info->tree_root,
7371 inode = block_group->inode;
7372 block_group->iref = 0;
7373 block_group->inode = NULL;
7374 spin_unlock(&block_group->lock);
7376 last = block_group->key.objectid + block_group->key.offset;
7377 btrfs_put_block_group(block_group);
7381 int btrfs_free_block_groups(struct btrfs_fs_info *info)
7383 struct btrfs_block_group_cache *block_group;
7384 struct btrfs_space_info *space_info;
7385 struct btrfs_caching_control *caching_ctl;
7388 down_write(&info->extent_commit_sem);
7389 while (!list_empty(&info->caching_block_groups)) {
7390 caching_ctl = list_entry(info->caching_block_groups.next,
7391 struct btrfs_caching_control, list);
7392 list_del(&caching_ctl->list);
7393 put_caching_control(caching_ctl);
7395 up_write(&info->extent_commit_sem);
7397 spin_lock(&info->block_group_cache_lock);
7398 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
7399 block_group = rb_entry(n, struct btrfs_block_group_cache,
7401 rb_erase(&block_group->cache_node,
7402 &info->block_group_cache_tree);
7403 spin_unlock(&info->block_group_cache_lock);
7405 down_write(&block_group->space_info->groups_sem);
7406 list_del(&block_group->list);
7407 up_write(&block_group->space_info->groups_sem);
7409 if (block_group->cached == BTRFS_CACHE_STARTED)
7410 wait_block_group_cache_done(block_group);
7413 * We haven't cached this block group, which means we could
7414 * possibly have excluded extents on this block group.
7416 if (block_group->cached == BTRFS_CACHE_NO)
7417 free_excluded_extents(info->extent_root, block_group);
7419 btrfs_remove_free_space_cache(block_group);
7420 btrfs_put_block_group(block_group);
7422 spin_lock(&info->block_group_cache_lock);
7424 spin_unlock(&info->block_group_cache_lock);
7426 /* now that all the block groups are freed, go through and
7427 * free all the space_info structs. This is only called during
7428 * the final stages of unmount, and so we know nobody is
7429 * using them. We call synchronize_rcu() once before we start,
7430 * just to be on the safe side.
7434 release_global_block_rsv(info);
7436 while(!list_empty(&info->space_info)) {
7437 space_info = list_entry(info->space_info.next,
7438 struct btrfs_space_info,
7440 if (space_info->bytes_pinned > 0 ||
7441 space_info->bytes_reserved > 0 ||
7442 space_info->bytes_may_use > 0) {
7444 dump_space_info(space_info, 0, 0);
7446 list_del(&space_info->list);
7452 static void __link_block_group(struct btrfs_space_info *space_info,
7453 struct btrfs_block_group_cache *cache)
7455 int index = get_block_group_index(cache);
7457 down_write(&space_info->groups_sem);
7458 list_add_tail(&cache->list, &space_info->block_groups[index]);
7459 up_write(&space_info->groups_sem);
7462 int btrfs_read_block_groups(struct btrfs_root *root)
7464 struct btrfs_path *path;
7466 struct btrfs_block_group_cache *cache;
7467 struct btrfs_fs_info *info = root->fs_info;
7468 struct btrfs_space_info *space_info;
7469 struct btrfs_key key;
7470 struct btrfs_key found_key;
7471 struct extent_buffer *leaf;
7475 root = info->extent_root;
7478 btrfs_set_key_type(&key, BTRFS_BLOCK_GROUP_ITEM_KEY);
7479 path = btrfs_alloc_path();
7484 cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
7485 if (btrfs_test_opt(root, SPACE_CACHE) &&
7486 btrfs_super_generation(root->fs_info->super_copy) != cache_gen)
7488 if (btrfs_test_opt(root, CLEAR_CACHE))
7492 ret = find_first_block_group(root, path, &key);
7497 leaf = path->nodes[0];
7498 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
7499 cache = kzalloc(sizeof(*cache), GFP_NOFS);
7504 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
7506 if (!cache->free_space_ctl) {
7512 atomic_set(&cache->count, 1);
7513 spin_lock_init(&cache->lock);
7514 cache->fs_info = info;
7515 INIT_LIST_HEAD(&cache->list);
7516 INIT_LIST_HEAD(&cache->cluster_list);
7519 cache->disk_cache_state = BTRFS_DC_CLEAR;
7521 read_extent_buffer(leaf, &cache->item,
7522 btrfs_item_ptr_offset(leaf, path->slots[0]),
7523 sizeof(cache->item));
7524 memcpy(&cache->key, &found_key, sizeof(found_key));
7526 key.objectid = found_key.objectid + found_key.offset;
7527 btrfs_release_path(path);
7528 cache->flags = btrfs_block_group_flags(&cache->item);
7529 cache->sectorsize = root->sectorsize;
7531 btrfs_init_free_space_ctl(cache);
7534 * We need to exclude the super stripes now so that the space
7535 * info has super bytes accounted for, otherwise we'll think
7536 * we have more space than we actually do.
7538 exclude_super_stripes(root, cache);
7541 * check for two cases, either we are full, and therefore
7542 * don't need to bother with the caching work since we won't
7543 * find any space, or we are empty, and we can just add all
7544 * the space in and be done with it. This saves us _alot_ of
7545 * time, particularly in the full case.
7547 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
7548 cache->last_byte_to_unpin = (u64)-1;
7549 cache->cached = BTRFS_CACHE_FINISHED;
7550 free_excluded_extents(root, cache);
7551 } else if (btrfs_block_group_used(&cache->item) == 0) {
7552 cache->last_byte_to_unpin = (u64)-1;
7553 cache->cached = BTRFS_CACHE_FINISHED;
7554 add_new_free_space(cache, root->fs_info,
7556 found_key.objectid +
7558 free_excluded_extents(root, cache);
7561 ret = update_space_info(info, cache->flags, found_key.offset,
7562 btrfs_block_group_used(&cache->item),
7565 cache->space_info = space_info;
7566 spin_lock(&cache->space_info->lock);
7567 cache->space_info->bytes_readonly += cache->bytes_super;
7568 spin_unlock(&cache->space_info->lock);
7570 __link_block_group(space_info, cache);
7572 ret = btrfs_add_block_group_cache(root->fs_info, cache);
7575 set_avail_alloc_bits(root->fs_info, cache->flags);
7576 if (btrfs_chunk_readonly(root, cache->key.objectid))
7577 set_block_group_ro(cache, 1);
7580 list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) {
7581 if (!(get_alloc_profile(root, space_info->flags) &
7582 (BTRFS_BLOCK_GROUP_RAID10 |
7583 BTRFS_BLOCK_GROUP_RAID1 |
7584 BTRFS_BLOCK_GROUP_DUP)))
7587 * avoid allocating from un-mirrored block group if there are
7588 * mirrored block groups.
7590 list_for_each_entry(cache, &space_info->block_groups[3], list)
7591 set_block_group_ro(cache, 1);
7592 list_for_each_entry(cache, &space_info->block_groups[4], list)
7593 set_block_group_ro(cache, 1);
7596 init_global_block_rsv(info);
7599 btrfs_free_path(path);
7603 int btrfs_make_block_group(struct btrfs_trans_handle *trans,
7604 struct btrfs_root *root, u64 bytes_used,
7605 u64 type, u64 chunk_objectid, u64 chunk_offset,
7609 struct btrfs_root *extent_root;
7610 struct btrfs_block_group_cache *cache;
7612 extent_root = root->fs_info->extent_root;
7614 root->fs_info->last_trans_log_full_commit = trans->transid;
7616 cache = kzalloc(sizeof(*cache), GFP_NOFS);
7619 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
7621 if (!cache->free_space_ctl) {
7626 cache->key.objectid = chunk_offset;
7627 cache->key.offset = size;
7628 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
7629 cache->sectorsize = root->sectorsize;
7630 cache->fs_info = root->fs_info;
7632 atomic_set(&cache->count, 1);
7633 spin_lock_init(&cache->lock);
7634 INIT_LIST_HEAD(&cache->list);
7635 INIT_LIST_HEAD(&cache->cluster_list);
7637 btrfs_init_free_space_ctl(cache);
7639 btrfs_set_block_group_used(&cache->item, bytes_used);
7640 btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
7641 cache->flags = type;
7642 btrfs_set_block_group_flags(&cache->item, type);
7644 cache->last_byte_to_unpin = (u64)-1;
7645 cache->cached = BTRFS_CACHE_FINISHED;
7646 exclude_super_stripes(root, cache);
7648 add_new_free_space(cache, root->fs_info, chunk_offset,
7649 chunk_offset + size);
7651 free_excluded_extents(root, cache);
7653 ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
7654 &cache->space_info);
7656 update_global_block_rsv(root->fs_info);
7658 spin_lock(&cache->space_info->lock);
7659 cache->space_info->bytes_readonly += cache->bytes_super;
7660 spin_unlock(&cache->space_info->lock);
7662 __link_block_group(cache->space_info, cache);
7664 ret = btrfs_add_block_group_cache(root->fs_info, cache);
7667 ret = btrfs_insert_item(trans, extent_root, &cache->key, &cache->item,
7668 sizeof(cache->item));
7671 set_avail_alloc_bits(extent_root->fs_info, type);
7676 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
7678 u64 extra_flags = flags & BTRFS_BLOCK_GROUP_PROFILE_MASK;
7680 /* chunk -> extended profile */
7681 if (extra_flags == 0)
7682 extra_flags = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
7684 if (flags & BTRFS_BLOCK_GROUP_DATA)
7685 fs_info->avail_data_alloc_bits &= ~extra_flags;
7686 if (flags & BTRFS_BLOCK_GROUP_METADATA)
7687 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
7688 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
7689 fs_info->avail_system_alloc_bits &= ~extra_flags;
7692 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
7693 struct btrfs_root *root, u64 group_start)
7695 struct btrfs_path *path;
7696 struct btrfs_block_group_cache *block_group;
7697 struct btrfs_free_cluster *cluster;
7698 struct btrfs_root *tree_root = root->fs_info->tree_root;
7699 struct btrfs_key key;
7700 struct inode *inode;
7705 root = root->fs_info->extent_root;
7707 block_group = btrfs_lookup_block_group(root->fs_info, group_start);
7708 BUG_ON(!block_group);
7709 BUG_ON(!block_group->ro);
7712 * Free the reserved super bytes from this block group before
7715 free_excluded_extents(root, block_group);
7717 memcpy(&key, &block_group->key, sizeof(key));
7718 index = get_block_group_index(block_group);
7719 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
7720 BTRFS_BLOCK_GROUP_RAID1 |
7721 BTRFS_BLOCK_GROUP_RAID10))
7726 /* make sure this block group isn't part of an allocation cluster */
7727 cluster = &root->fs_info->data_alloc_cluster;
7728 spin_lock(&cluster->refill_lock);
7729 btrfs_return_cluster_to_free_space(block_group, cluster);
7730 spin_unlock(&cluster->refill_lock);
7733 * make sure this block group isn't part of a metadata
7734 * allocation cluster
7736 cluster = &root->fs_info->meta_alloc_cluster;
7737 spin_lock(&cluster->refill_lock);
7738 btrfs_return_cluster_to_free_space(block_group, cluster);
7739 spin_unlock(&cluster->refill_lock);
7741 path = btrfs_alloc_path();
7747 inode = lookup_free_space_inode(tree_root, block_group, path);
7748 if (!IS_ERR(inode)) {
7749 ret = btrfs_orphan_add(trans, inode);
7752 /* One for the block groups ref */
7753 spin_lock(&block_group->lock);
7754 if (block_group->iref) {
7755 block_group->iref = 0;
7756 block_group->inode = NULL;
7757 spin_unlock(&block_group->lock);
7760 spin_unlock(&block_group->lock);
7762 /* One for our lookup ref */
7763 btrfs_add_delayed_iput(inode);
7766 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
7767 key.offset = block_group->key.objectid;
7770 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
7774 btrfs_release_path(path);
7776 ret = btrfs_del_item(trans, tree_root, path);
7779 btrfs_release_path(path);
7782 spin_lock(&root->fs_info->block_group_cache_lock);
7783 rb_erase(&block_group->cache_node,
7784 &root->fs_info->block_group_cache_tree);
7785 spin_unlock(&root->fs_info->block_group_cache_lock);
7787 down_write(&block_group->space_info->groups_sem);
7789 * we must use list_del_init so people can check to see if they
7790 * are still on the list after taking the semaphore
7792 list_del_init(&block_group->list);
7793 if (list_empty(&block_group->space_info->block_groups[index]))
7794 clear_avail_alloc_bits(root->fs_info, block_group->flags);
7795 up_write(&block_group->space_info->groups_sem);
7797 if (block_group->cached == BTRFS_CACHE_STARTED)
7798 wait_block_group_cache_done(block_group);
7800 btrfs_remove_free_space_cache(block_group);
7802 spin_lock(&block_group->space_info->lock);
7803 block_group->space_info->total_bytes -= block_group->key.offset;
7804 block_group->space_info->bytes_readonly -= block_group->key.offset;
7805 block_group->space_info->disk_total -= block_group->key.offset * factor;
7806 spin_unlock(&block_group->space_info->lock);
7808 memcpy(&key, &block_group->key, sizeof(key));
7810 btrfs_clear_space_info_full(root->fs_info);
7812 btrfs_put_block_group(block_group);
7813 btrfs_put_block_group(block_group);
7815 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
7821 ret = btrfs_del_item(trans, root, path);
7823 btrfs_free_path(path);
7827 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
7829 struct btrfs_space_info *space_info;
7830 struct btrfs_super_block *disk_super;
7836 disk_super = fs_info->super_copy;
7837 if (!btrfs_super_root(disk_super))
7840 features = btrfs_super_incompat_flags(disk_super);
7841 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
7844 flags = BTRFS_BLOCK_GROUP_SYSTEM;
7845 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
7850 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
7851 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
7853 flags = BTRFS_BLOCK_GROUP_METADATA;
7854 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
7858 flags = BTRFS_BLOCK_GROUP_DATA;
7859 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
7865 int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
7867 return unpin_extent_range(root, start, end);
7870 int btrfs_error_discard_extent(struct btrfs_root *root, u64 bytenr,
7871 u64 num_bytes, u64 *actual_bytes)
7873 return btrfs_discard_extent(root, bytenr, num_bytes, actual_bytes);
7876 int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range)
7878 struct btrfs_fs_info *fs_info = root->fs_info;
7879 struct btrfs_block_group_cache *cache = NULL;
7886 cache = btrfs_lookup_block_group(fs_info, range->start);
7889 if (cache->key.objectid >= (range->start + range->len)) {
7890 btrfs_put_block_group(cache);
7894 start = max(range->start, cache->key.objectid);
7895 end = min(range->start + range->len,
7896 cache->key.objectid + cache->key.offset);
7898 if (end - start >= range->minlen) {
7899 if (!block_group_cache_done(cache)) {
7900 ret = cache_block_group(cache, NULL, root, 0);
7902 wait_block_group_cache_done(cache);
7904 ret = btrfs_trim_block_group(cache,
7910 trimmed += group_trimmed;
7912 btrfs_put_block_group(cache);
7917 cache = next_block_group(fs_info->tree_root, cache);
7920 range->len = trimmed;