2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
18 #include <linux/sched.h>
19 #include <linux/pagemap.h>
20 #include <linux/writeback.h>
21 #include <linux/blkdev.h>
22 #include <linux/sort.h>
23 #include <linux/rcupdate.h>
24 #include <linux/kthread.h>
25 #include <linux/slab.h>
26 #include <linux/ratelimit.h>
27 #include <linux/percpu_counter.h>
31 #include "print-tree.h"
35 #include "free-space-cache.h"
36 #include "free-space-tree.h"
41 #undef SCRAMBLE_DELAYED_REFS
44 * control flags for do_chunk_alloc's force field
45 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
46 * if we really need one.
48 * CHUNK_ALLOC_LIMITED means to only try and allocate one
49 * if we have very few chunks already allocated. This is
50 * used as part of the clustering code to help make sure
51 * we have a good pool of storage to cluster in, without
52 * filling the FS with empty chunks
54 * CHUNK_ALLOC_FORCE means it must try to allocate one
58 CHUNK_ALLOC_NO_FORCE = 0,
59 CHUNK_ALLOC_LIMITED = 1,
60 CHUNK_ALLOC_FORCE = 2,
63 static int update_block_group(struct btrfs_trans_handle *trans,
64 struct btrfs_root *root, u64 bytenr,
65 u64 num_bytes, int alloc);
66 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
67 struct btrfs_root *root,
68 struct btrfs_delayed_ref_node *node, u64 parent,
69 u64 root_objectid, u64 owner_objectid,
70 u64 owner_offset, int refs_to_drop,
71 struct btrfs_delayed_extent_op *extra_op);
72 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
73 struct extent_buffer *leaf,
74 struct btrfs_extent_item *ei);
75 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
76 struct btrfs_root *root,
77 u64 parent, u64 root_objectid,
78 u64 flags, u64 owner, u64 offset,
79 struct btrfs_key *ins, int ref_mod);
80 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
81 struct btrfs_root *root,
82 u64 parent, u64 root_objectid,
83 u64 flags, struct btrfs_disk_key *key,
84 int level, struct btrfs_key *ins);
85 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
86 struct btrfs_root *extent_root, u64 flags,
88 static int find_next_key(struct btrfs_path *path, int level,
89 struct btrfs_key *key);
90 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
91 int dump_block_groups);
92 static int btrfs_add_reserved_bytes(struct btrfs_block_group_cache *cache,
93 u64 ram_bytes, u64 num_bytes, int delalloc);
94 static int btrfs_free_reserved_bytes(struct btrfs_block_group_cache *cache,
95 u64 num_bytes, int delalloc);
96 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
98 int btrfs_pin_extent(struct btrfs_root *root,
99 u64 bytenr, u64 num_bytes, int reserved);
100 static int __reserve_metadata_bytes(struct btrfs_root *root,
101 struct btrfs_space_info *space_info,
103 enum btrfs_reserve_flush_enum flush);
104 static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
105 struct btrfs_space_info *space_info,
107 static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
108 struct btrfs_space_info *space_info,
112 block_group_cache_done(struct btrfs_block_group_cache *cache)
115 return cache->cached == BTRFS_CACHE_FINISHED ||
116 cache->cached == BTRFS_CACHE_ERROR;
119 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
121 return (cache->flags & bits) == bits;
124 void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
126 atomic_inc(&cache->count);
129 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
131 if (atomic_dec_and_test(&cache->count)) {
132 WARN_ON(cache->pinned > 0);
133 WARN_ON(cache->reserved > 0);
134 kfree(cache->free_space_ctl);
140 * this adds the block group to the fs_info rb tree for the block group
143 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
144 struct btrfs_block_group_cache *block_group)
147 struct rb_node *parent = NULL;
148 struct btrfs_block_group_cache *cache;
150 spin_lock(&info->block_group_cache_lock);
151 p = &info->block_group_cache_tree.rb_node;
155 cache = rb_entry(parent, struct btrfs_block_group_cache,
157 if (block_group->key.objectid < cache->key.objectid) {
159 } else if (block_group->key.objectid > cache->key.objectid) {
162 spin_unlock(&info->block_group_cache_lock);
167 rb_link_node(&block_group->cache_node, parent, p);
168 rb_insert_color(&block_group->cache_node,
169 &info->block_group_cache_tree);
171 if (info->first_logical_byte > block_group->key.objectid)
172 info->first_logical_byte = block_group->key.objectid;
174 spin_unlock(&info->block_group_cache_lock);
180 * This will return the block group at or after bytenr if contains is 0, else
181 * it will return the block group that contains the bytenr
183 static struct btrfs_block_group_cache *
184 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
187 struct btrfs_block_group_cache *cache, *ret = NULL;
191 spin_lock(&info->block_group_cache_lock);
192 n = info->block_group_cache_tree.rb_node;
195 cache = rb_entry(n, struct btrfs_block_group_cache,
197 end = cache->key.objectid + cache->key.offset - 1;
198 start = cache->key.objectid;
200 if (bytenr < start) {
201 if (!contains && (!ret || start < ret->key.objectid))
204 } else if (bytenr > start) {
205 if (contains && bytenr <= end) {
216 btrfs_get_block_group(ret);
217 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
218 info->first_logical_byte = ret->key.objectid;
220 spin_unlock(&info->block_group_cache_lock);
225 static int add_excluded_extent(struct btrfs_root *root,
226 u64 start, u64 num_bytes)
228 u64 end = start + num_bytes - 1;
229 set_extent_bits(&root->fs_info->freed_extents[0],
230 start, end, EXTENT_UPTODATE);
231 set_extent_bits(&root->fs_info->freed_extents[1],
232 start, end, EXTENT_UPTODATE);
236 static void free_excluded_extents(struct btrfs_root *root,
237 struct btrfs_block_group_cache *cache)
241 start = cache->key.objectid;
242 end = start + cache->key.offset - 1;
244 clear_extent_bits(&root->fs_info->freed_extents[0],
245 start, end, EXTENT_UPTODATE);
246 clear_extent_bits(&root->fs_info->freed_extents[1],
247 start, end, EXTENT_UPTODATE);
250 static int exclude_super_stripes(struct btrfs_root *root,
251 struct btrfs_block_group_cache *cache)
258 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
259 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
260 cache->bytes_super += stripe_len;
261 ret = add_excluded_extent(root, cache->key.objectid,
267 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
268 bytenr = btrfs_sb_offset(i);
269 ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
270 cache->key.objectid, bytenr,
271 0, &logical, &nr, &stripe_len);
278 if (logical[nr] > cache->key.objectid +
282 if (logical[nr] + stripe_len <= cache->key.objectid)
286 if (start < cache->key.objectid) {
287 start = cache->key.objectid;
288 len = (logical[nr] + stripe_len) - start;
290 len = min_t(u64, stripe_len,
291 cache->key.objectid +
292 cache->key.offset - start);
295 cache->bytes_super += len;
296 ret = add_excluded_extent(root, start, len);
308 static struct btrfs_caching_control *
309 get_caching_control(struct btrfs_block_group_cache *cache)
311 struct btrfs_caching_control *ctl;
313 spin_lock(&cache->lock);
314 if (!cache->caching_ctl) {
315 spin_unlock(&cache->lock);
319 ctl = cache->caching_ctl;
320 atomic_inc(&ctl->count);
321 spin_unlock(&cache->lock);
325 static void put_caching_control(struct btrfs_caching_control *ctl)
327 if (atomic_dec_and_test(&ctl->count))
331 #ifdef CONFIG_BTRFS_DEBUG
332 static void fragment_free_space(struct btrfs_root *root,
333 struct btrfs_block_group_cache *block_group)
335 u64 start = block_group->key.objectid;
336 u64 len = block_group->key.offset;
337 u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
338 root->nodesize : root->sectorsize;
339 u64 step = chunk << 1;
341 while (len > chunk) {
342 btrfs_remove_free_space(block_group, start, chunk);
353 * this is only called by cache_block_group, since we could have freed extents
354 * we need to check the pinned_extents for any extents that can't be used yet
355 * since their free space will be released as soon as the transaction commits.
357 u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
358 struct btrfs_fs_info *info, u64 start, u64 end)
360 u64 extent_start, extent_end, size, total_added = 0;
363 while (start < end) {
364 ret = find_first_extent_bit(info->pinned_extents, start,
365 &extent_start, &extent_end,
366 EXTENT_DIRTY | EXTENT_UPTODATE,
371 if (extent_start <= start) {
372 start = extent_end + 1;
373 } else if (extent_start > start && extent_start < end) {
374 size = extent_start - start;
376 ret = btrfs_add_free_space(block_group, start,
378 BUG_ON(ret); /* -ENOMEM or logic error */
379 start = extent_end + 1;
388 ret = btrfs_add_free_space(block_group, start, size);
389 BUG_ON(ret); /* -ENOMEM or logic error */
395 static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
397 struct btrfs_block_group_cache *block_group;
398 struct btrfs_fs_info *fs_info;
399 struct btrfs_root *extent_root;
400 struct btrfs_path *path;
401 struct extent_buffer *leaf;
402 struct btrfs_key key;
409 block_group = caching_ctl->block_group;
410 fs_info = block_group->fs_info;
411 extent_root = fs_info->extent_root;
413 path = btrfs_alloc_path();
417 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
419 #ifdef CONFIG_BTRFS_DEBUG
421 * If we're fragmenting we don't want to make anybody think we can
422 * allocate from this block group until we've had a chance to fragment
425 if (btrfs_should_fragment_free_space(extent_root, block_group))
429 * We don't want to deadlock with somebody trying to allocate a new
430 * extent for the extent root while also trying to search the extent
431 * root to add free space. So we skip locking and search the commit
432 * root, since its read-only
434 path->skip_locking = 1;
435 path->search_commit_root = 1;
436 path->reada = READA_FORWARD;
440 key.type = BTRFS_EXTENT_ITEM_KEY;
443 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
447 leaf = path->nodes[0];
448 nritems = btrfs_header_nritems(leaf);
451 if (btrfs_fs_closing(fs_info) > 1) {
456 if (path->slots[0] < nritems) {
457 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
459 ret = find_next_key(path, 0, &key);
463 if (need_resched() ||
464 rwsem_is_contended(&fs_info->commit_root_sem)) {
466 caching_ctl->progress = last;
467 btrfs_release_path(path);
468 up_read(&fs_info->commit_root_sem);
469 mutex_unlock(&caching_ctl->mutex);
471 mutex_lock(&caching_ctl->mutex);
472 down_read(&fs_info->commit_root_sem);
476 ret = btrfs_next_leaf(extent_root, path);
481 leaf = path->nodes[0];
482 nritems = btrfs_header_nritems(leaf);
486 if (key.objectid < last) {
489 key.type = BTRFS_EXTENT_ITEM_KEY;
492 caching_ctl->progress = last;
493 btrfs_release_path(path);
497 if (key.objectid < block_group->key.objectid) {
502 if (key.objectid >= block_group->key.objectid +
503 block_group->key.offset)
506 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
507 key.type == BTRFS_METADATA_ITEM_KEY) {
508 total_found += add_new_free_space(block_group,
511 if (key.type == BTRFS_METADATA_ITEM_KEY)
512 last = key.objectid +
513 fs_info->tree_root->nodesize;
515 last = key.objectid + key.offset;
517 if (total_found > CACHING_CTL_WAKE_UP) {
520 wake_up(&caching_ctl->wait);
527 total_found += add_new_free_space(block_group, fs_info, last,
528 block_group->key.objectid +
529 block_group->key.offset);
530 caching_ctl->progress = (u64)-1;
533 btrfs_free_path(path);
537 static noinline void caching_thread(struct btrfs_work *work)
539 struct btrfs_block_group_cache *block_group;
540 struct btrfs_fs_info *fs_info;
541 struct btrfs_caching_control *caching_ctl;
542 struct btrfs_root *extent_root;
545 caching_ctl = container_of(work, struct btrfs_caching_control, work);
546 block_group = caching_ctl->block_group;
547 fs_info = block_group->fs_info;
548 extent_root = fs_info->extent_root;
550 mutex_lock(&caching_ctl->mutex);
551 down_read(&fs_info->commit_root_sem);
553 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
554 ret = load_free_space_tree(caching_ctl);
556 ret = load_extent_tree_free(caching_ctl);
558 spin_lock(&block_group->lock);
559 block_group->caching_ctl = NULL;
560 block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
561 spin_unlock(&block_group->lock);
563 #ifdef CONFIG_BTRFS_DEBUG
564 if (btrfs_should_fragment_free_space(extent_root, block_group)) {
567 spin_lock(&block_group->space_info->lock);
568 spin_lock(&block_group->lock);
569 bytes_used = block_group->key.offset -
570 btrfs_block_group_used(&block_group->item);
571 block_group->space_info->bytes_used += bytes_used >> 1;
572 spin_unlock(&block_group->lock);
573 spin_unlock(&block_group->space_info->lock);
574 fragment_free_space(extent_root, block_group);
578 caching_ctl->progress = (u64)-1;
580 up_read(&fs_info->commit_root_sem);
581 free_excluded_extents(fs_info->extent_root, block_group);
582 mutex_unlock(&caching_ctl->mutex);
584 wake_up(&caching_ctl->wait);
586 put_caching_control(caching_ctl);
587 btrfs_put_block_group(block_group);
590 static int cache_block_group(struct btrfs_block_group_cache *cache,
594 struct btrfs_fs_info *fs_info = cache->fs_info;
595 struct btrfs_caching_control *caching_ctl;
598 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
602 INIT_LIST_HEAD(&caching_ctl->list);
603 mutex_init(&caching_ctl->mutex);
604 init_waitqueue_head(&caching_ctl->wait);
605 caching_ctl->block_group = cache;
606 caching_ctl->progress = cache->key.objectid;
607 atomic_set(&caching_ctl->count, 1);
608 btrfs_init_work(&caching_ctl->work, btrfs_cache_helper,
609 caching_thread, NULL, NULL);
611 spin_lock(&cache->lock);
613 * This should be a rare occasion, but this could happen I think in the
614 * case where one thread starts to load the space cache info, and then
615 * some other thread starts a transaction commit which tries to do an
616 * allocation while the other thread is still loading the space cache
617 * info. The previous loop should have kept us from choosing this block
618 * group, but if we've moved to the state where we will wait on caching
619 * block groups we need to first check if we're doing a fast load here,
620 * so we can wait for it to finish, otherwise we could end up allocating
621 * from a block group who's cache gets evicted for one reason or
624 while (cache->cached == BTRFS_CACHE_FAST) {
625 struct btrfs_caching_control *ctl;
627 ctl = cache->caching_ctl;
628 atomic_inc(&ctl->count);
629 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
630 spin_unlock(&cache->lock);
634 finish_wait(&ctl->wait, &wait);
635 put_caching_control(ctl);
636 spin_lock(&cache->lock);
639 if (cache->cached != BTRFS_CACHE_NO) {
640 spin_unlock(&cache->lock);
644 WARN_ON(cache->caching_ctl);
645 cache->caching_ctl = caching_ctl;
646 cache->cached = BTRFS_CACHE_FAST;
647 spin_unlock(&cache->lock);
649 if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) {
650 mutex_lock(&caching_ctl->mutex);
651 ret = load_free_space_cache(fs_info, cache);
653 spin_lock(&cache->lock);
655 cache->caching_ctl = NULL;
656 cache->cached = BTRFS_CACHE_FINISHED;
657 cache->last_byte_to_unpin = (u64)-1;
658 caching_ctl->progress = (u64)-1;
660 if (load_cache_only) {
661 cache->caching_ctl = NULL;
662 cache->cached = BTRFS_CACHE_NO;
664 cache->cached = BTRFS_CACHE_STARTED;
665 cache->has_caching_ctl = 1;
668 spin_unlock(&cache->lock);
669 #ifdef CONFIG_BTRFS_DEBUG
671 btrfs_should_fragment_free_space(fs_info->extent_root,
675 spin_lock(&cache->space_info->lock);
676 spin_lock(&cache->lock);
677 bytes_used = cache->key.offset -
678 btrfs_block_group_used(&cache->item);
679 cache->space_info->bytes_used += bytes_used >> 1;
680 spin_unlock(&cache->lock);
681 spin_unlock(&cache->space_info->lock);
682 fragment_free_space(fs_info->extent_root, cache);
685 mutex_unlock(&caching_ctl->mutex);
687 wake_up(&caching_ctl->wait);
689 put_caching_control(caching_ctl);
690 free_excluded_extents(fs_info->extent_root, cache);
695 * We're either using the free space tree or no caching at all.
696 * Set cached to the appropriate value and wakeup any waiters.
698 spin_lock(&cache->lock);
699 if (load_cache_only) {
700 cache->caching_ctl = NULL;
701 cache->cached = BTRFS_CACHE_NO;
703 cache->cached = BTRFS_CACHE_STARTED;
704 cache->has_caching_ctl = 1;
706 spin_unlock(&cache->lock);
707 wake_up(&caching_ctl->wait);
710 if (load_cache_only) {
711 put_caching_control(caching_ctl);
715 down_write(&fs_info->commit_root_sem);
716 atomic_inc(&caching_ctl->count);
717 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
718 up_write(&fs_info->commit_root_sem);
720 btrfs_get_block_group(cache);
722 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
728 * return the block group that starts at or after bytenr
730 static struct btrfs_block_group_cache *
731 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
733 struct btrfs_block_group_cache *cache;
735 cache = block_group_cache_tree_search(info, bytenr, 0);
741 * return the block group that contains the given bytenr
743 struct btrfs_block_group_cache *btrfs_lookup_block_group(
744 struct btrfs_fs_info *info,
747 struct btrfs_block_group_cache *cache;
749 cache = block_group_cache_tree_search(info, bytenr, 1);
754 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
757 struct list_head *head = &info->space_info;
758 struct btrfs_space_info *found;
760 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
763 list_for_each_entry_rcu(found, head, list) {
764 if (found->flags & flags) {
774 * after adding space to the filesystem, we need to clear the full flags
775 * on all the space infos.
777 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
779 struct list_head *head = &info->space_info;
780 struct btrfs_space_info *found;
783 list_for_each_entry_rcu(found, head, list)
788 /* simple helper to search for an existing data extent at a given offset */
789 int btrfs_lookup_data_extent(struct btrfs_root *root, u64 start, u64 len)
792 struct btrfs_key key;
793 struct btrfs_path *path;
795 path = btrfs_alloc_path();
799 key.objectid = start;
801 key.type = BTRFS_EXTENT_ITEM_KEY;
802 ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
804 btrfs_free_path(path);
809 * helper function to lookup reference count and flags of a tree block.
811 * the head node for delayed ref is used to store the sum of all the
812 * reference count modifications queued up in the rbtree. the head
813 * node may also store the extent flags to set. This way you can check
814 * to see what the reference count and extent flags would be if all of
815 * the delayed refs are not processed.
817 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
818 struct btrfs_root *root, u64 bytenr,
819 u64 offset, int metadata, u64 *refs, u64 *flags)
821 struct btrfs_delayed_ref_head *head;
822 struct btrfs_delayed_ref_root *delayed_refs;
823 struct btrfs_path *path;
824 struct btrfs_extent_item *ei;
825 struct extent_buffer *leaf;
826 struct btrfs_key key;
833 * If we don't have skinny metadata, don't bother doing anything
836 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) {
837 offset = root->nodesize;
841 path = btrfs_alloc_path();
846 path->skip_locking = 1;
847 path->search_commit_root = 1;
851 key.objectid = bytenr;
854 key.type = BTRFS_METADATA_ITEM_KEY;
856 key.type = BTRFS_EXTENT_ITEM_KEY;
858 ret = btrfs_search_slot(trans, root->fs_info->extent_root,
863 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
864 if (path->slots[0]) {
866 btrfs_item_key_to_cpu(path->nodes[0], &key,
868 if (key.objectid == bytenr &&
869 key.type == BTRFS_EXTENT_ITEM_KEY &&
870 key.offset == root->nodesize)
876 leaf = path->nodes[0];
877 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
878 if (item_size >= sizeof(*ei)) {
879 ei = btrfs_item_ptr(leaf, path->slots[0],
880 struct btrfs_extent_item);
881 num_refs = btrfs_extent_refs(leaf, ei);
882 extent_flags = btrfs_extent_flags(leaf, ei);
884 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
885 struct btrfs_extent_item_v0 *ei0;
886 BUG_ON(item_size != sizeof(*ei0));
887 ei0 = btrfs_item_ptr(leaf, path->slots[0],
888 struct btrfs_extent_item_v0);
889 num_refs = btrfs_extent_refs_v0(leaf, ei0);
890 /* FIXME: this isn't correct for data */
891 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
896 BUG_ON(num_refs == 0);
906 delayed_refs = &trans->transaction->delayed_refs;
907 spin_lock(&delayed_refs->lock);
908 head = btrfs_find_delayed_ref_head(trans, bytenr);
910 if (!mutex_trylock(&head->mutex)) {
911 atomic_inc(&head->node.refs);
912 spin_unlock(&delayed_refs->lock);
914 btrfs_release_path(path);
917 * Mutex was contended, block until it's released and try
920 mutex_lock(&head->mutex);
921 mutex_unlock(&head->mutex);
922 btrfs_put_delayed_ref(&head->node);
925 spin_lock(&head->lock);
926 if (head->extent_op && head->extent_op->update_flags)
927 extent_flags |= head->extent_op->flags_to_set;
929 BUG_ON(num_refs == 0);
931 num_refs += head->node.ref_mod;
932 spin_unlock(&head->lock);
933 mutex_unlock(&head->mutex);
935 spin_unlock(&delayed_refs->lock);
937 WARN_ON(num_refs == 0);
941 *flags = extent_flags;
943 btrfs_free_path(path);
948 * Back reference rules. Back refs have three main goals:
950 * 1) differentiate between all holders of references to an extent so that
951 * when a reference is dropped we can make sure it was a valid reference
952 * before freeing the extent.
954 * 2) Provide enough information to quickly find the holders of an extent
955 * if we notice a given block is corrupted or bad.
957 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
958 * maintenance. This is actually the same as #2, but with a slightly
959 * different use case.
961 * There are two kinds of back refs. The implicit back refs is optimized
962 * for pointers in non-shared tree blocks. For a given pointer in a block,
963 * back refs of this kind provide information about the block's owner tree
964 * and the pointer's key. These information allow us to find the block by
965 * b-tree searching. The full back refs is for pointers in tree blocks not
966 * referenced by their owner trees. The location of tree block is recorded
967 * in the back refs. Actually the full back refs is generic, and can be
968 * used in all cases the implicit back refs is used. The major shortcoming
969 * of the full back refs is its overhead. Every time a tree block gets
970 * COWed, we have to update back refs entry for all pointers in it.
972 * For a newly allocated tree block, we use implicit back refs for
973 * pointers in it. This means most tree related operations only involve
974 * implicit back refs. For a tree block created in old transaction, the
975 * only way to drop a reference to it is COW it. So we can detect the
976 * event that tree block loses its owner tree's reference and do the
977 * back refs conversion.
979 * When a tree block is COWed through a tree, there are four cases:
981 * The reference count of the block is one and the tree is the block's
982 * owner tree. Nothing to do in this case.
984 * The reference count of the block is one and the tree is not the
985 * block's owner tree. In this case, full back refs is used for pointers
986 * in the block. Remove these full back refs, add implicit back refs for
987 * every pointers in the new block.
989 * The reference count of the block is greater than one and the tree is
990 * the block's owner tree. In this case, implicit back refs is used for
991 * pointers in the block. Add full back refs for every pointers in the
992 * block, increase lower level extents' reference counts. The original
993 * implicit back refs are entailed to the new block.
995 * The reference count of the block is greater than one and the tree is
996 * not the block's owner tree. Add implicit back refs for every pointer in
997 * the new block, increase lower level extents' reference count.
999 * Back Reference Key composing:
1001 * The key objectid corresponds to the first byte in the extent,
1002 * The key type is used to differentiate between types of back refs.
1003 * There are different meanings of the key offset for different types
1006 * File extents can be referenced by:
1008 * - multiple snapshots, subvolumes, or different generations in one subvol
1009 * - different files inside a single subvolume
1010 * - different offsets inside a file (bookend extents in file.c)
1012 * The extent ref structure for the implicit back refs has fields for:
1014 * - Objectid of the subvolume root
1015 * - objectid of the file holding the reference
1016 * - original offset in the file
1017 * - how many bookend extents
1019 * The key offset for the implicit back refs is hash of the first
1022 * The extent ref structure for the full back refs has field for:
1024 * - number of pointers in the tree leaf
1026 * The key offset for the implicit back refs is the first byte of
1029 * When a file extent is allocated, The implicit back refs is used.
1030 * the fields are filled in:
1032 * (root_key.objectid, inode objectid, offset in file, 1)
1034 * When a file extent is removed file truncation, we find the
1035 * corresponding implicit back refs and check the following fields:
1037 * (btrfs_header_owner(leaf), inode objectid, offset in file)
1039 * Btree extents can be referenced by:
1041 * - Different subvolumes
1043 * Both the implicit back refs and the full back refs for tree blocks
1044 * only consist of key. The key offset for the implicit back refs is
1045 * objectid of block's owner tree. The key offset for the full back refs
1046 * is the first byte of parent block.
1048 * When implicit back refs is used, information about the lowest key and
1049 * level of the tree block are required. These information are stored in
1050 * tree block info structure.
1053 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1054 static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
1055 struct btrfs_root *root,
1056 struct btrfs_path *path,
1057 u64 owner, u32 extra_size)
1059 struct btrfs_extent_item *item;
1060 struct btrfs_extent_item_v0 *ei0;
1061 struct btrfs_extent_ref_v0 *ref0;
1062 struct btrfs_tree_block_info *bi;
1063 struct extent_buffer *leaf;
1064 struct btrfs_key key;
1065 struct btrfs_key found_key;
1066 u32 new_size = sizeof(*item);
1070 leaf = path->nodes[0];
1071 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
1073 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1074 ei0 = btrfs_item_ptr(leaf, path->slots[0],
1075 struct btrfs_extent_item_v0);
1076 refs = btrfs_extent_refs_v0(leaf, ei0);
1078 if (owner == (u64)-1) {
1080 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1081 ret = btrfs_next_leaf(root, path);
1084 BUG_ON(ret > 0); /* Corruption */
1085 leaf = path->nodes[0];
1087 btrfs_item_key_to_cpu(leaf, &found_key,
1089 BUG_ON(key.objectid != found_key.objectid);
1090 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
1094 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1095 struct btrfs_extent_ref_v0);
1096 owner = btrfs_ref_objectid_v0(leaf, ref0);
1100 btrfs_release_path(path);
1102 if (owner < BTRFS_FIRST_FREE_OBJECTID)
1103 new_size += sizeof(*bi);
1105 new_size -= sizeof(*ei0);
1106 ret = btrfs_search_slot(trans, root, &key, path,
1107 new_size + extra_size, 1);
1110 BUG_ON(ret); /* Corruption */
1112 btrfs_extend_item(root, path, new_size);
1114 leaf = path->nodes[0];
1115 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1116 btrfs_set_extent_refs(leaf, item, refs);
1117 /* FIXME: get real generation */
1118 btrfs_set_extent_generation(leaf, item, 0);
1119 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1120 btrfs_set_extent_flags(leaf, item,
1121 BTRFS_EXTENT_FLAG_TREE_BLOCK |
1122 BTRFS_BLOCK_FLAG_FULL_BACKREF);
1123 bi = (struct btrfs_tree_block_info *)(item + 1);
1124 /* FIXME: get first key of the block */
1125 memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
1126 btrfs_set_tree_block_level(leaf, bi, (int)owner);
1128 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1130 btrfs_mark_buffer_dirty(leaf);
1135 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1137 u32 high_crc = ~(u32)0;
1138 u32 low_crc = ~(u32)0;
1141 lenum = cpu_to_le64(root_objectid);
1142 high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
1143 lenum = cpu_to_le64(owner);
1144 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1145 lenum = cpu_to_le64(offset);
1146 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1148 return ((u64)high_crc << 31) ^ (u64)low_crc;
1151 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1152 struct btrfs_extent_data_ref *ref)
1154 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1155 btrfs_extent_data_ref_objectid(leaf, ref),
1156 btrfs_extent_data_ref_offset(leaf, ref));
1159 static int match_extent_data_ref(struct extent_buffer *leaf,
1160 struct btrfs_extent_data_ref *ref,
1161 u64 root_objectid, u64 owner, u64 offset)
1163 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1164 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1165 btrfs_extent_data_ref_offset(leaf, ref) != offset)
1170 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1171 struct btrfs_root *root,
1172 struct btrfs_path *path,
1173 u64 bytenr, u64 parent,
1175 u64 owner, u64 offset)
1177 struct btrfs_key key;
1178 struct btrfs_extent_data_ref *ref;
1179 struct extent_buffer *leaf;
1185 key.objectid = bytenr;
1187 key.type = BTRFS_SHARED_DATA_REF_KEY;
1188 key.offset = parent;
1190 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1191 key.offset = hash_extent_data_ref(root_objectid,
1196 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1205 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1206 key.type = BTRFS_EXTENT_REF_V0_KEY;
1207 btrfs_release_path(path);
1208 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1219 leaf = path->nodes[0];
1220 nritems = btrfs_header_nritems(leaf);
1222 if (path->slots[0] >= nritems) {
1223 ret = btrfs_next_leaf(root, path);
1229 leaf = path->nodes[0];
1230 nritems = btrfs_header_nritems(leaf);
1234 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1235 if (key.objectid != bytenr ||
1236 key.type != BTRFS_EXTENT_DATA_REF_KEY)
1239 ref = btrfs_item_ptr(leaf, path->slots[0],
1240 struct btrfs_extent_data_ref);
1242 if (match_extent_data_ref(leaf, ref, root_objectid,
1245 btrfs_release_path(path);
1257 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1258 struct btrfs_root *root,
1259 struct btrfs_path *path,
1260 u64 bytenr, u64 parent,
1261 u64 root_objectid, u64 owner,
1262 u64 offset, int refs_to_add)
1264 struct btrfs_key key;
1265 struct extent_buffer *leaf;
1270 key.objectid = bytenr;
1272 key.type = BTRFS_SHARED_DATA_REF_KEY;
1273 key.offset = parent;
1274 size = sizeof(struct btrfs_shared_data_ref);
1276 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1277 key.offset = hash_extent_data_ref(root_objectid,
1279 size = sizeof(struct btrfs_extent_data_ref);
1282 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1283 if (ret && ret != -EEXIST)
1286 leaf = path->nodes[0];
1288 struct btrfs_shared_data_ref *ref;
1289 ref = btrfs_item_ptr(leaf, path->slots[0],
1290 struct btrfs_shared_data_ref);
1292 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1294 num_refs = btrfs_shared_data_ref_count(leaf, ref);
1295 num_refs += refs_to_add;
1296 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1299 struct btrfs_extent_data_ref *ref;
1300 while (ret == -EEXIST) {
1301 ref = btrfs_item_ptr(leaf, path->slots[0],
1302 struct btrfs_extent_data_ref);
1303 if (match_extent_data_ref(leaf, ref, root_objectid,
1306 btrfs_release_path(path);
1308 ret = btrfs_insert_empty_item(trans, root, path, &key,
1310 if (ret && ret != -EEXIST)
1313 leaf = path->nodes[0];
1315 ref = btrfs_item_ptr(leaf, path->slots[0],
1316 struct btrfs_extent_data_ref);
1318 btrfs_set_extent_data_ref_root(leaf, ref,
1320 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1321 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1322 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1324 num_refs = btrfs_extent_data_ref_count(leaf, ref);
1325 num_refs += refs_to_add;
1326 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1329 btrfs_mark_buffer_dirty(leaf);
1332 btrfs_release_path(path);
1336 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1337 struct btrfs_root *root,
1338 struct btrfs_path *path,
1339 int refs_to_drop, int *last_ref)
1341 struct btrfs_key key;
1342 struct btrfs_extent_data_ref *ref1 = NULL;
1343 struct btrfs_shared_data_ref *ref2 = NULL;
1344 struct extent_buffer *leaf;
1348 leaf = path->nodes[0];
1349 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1351 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1352 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1353 struct btrfs_extent_data_ref);
1354 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1355 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1356 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1357 struct btrfs_shared_data_ref);
1358 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1359 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1360 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1361 struct btrfs_extent_ref_v0 *ref0;
1362 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1363 struct btrfs_extent_ref_v0);
1364 num_refs = btrfs_ref_count_v0(leaf, ref0);
1370 BUG_ON(num_refs < refs_to_drop);
1371 num_refs -= refs_to_drop;
1373 if (num_refs == 0) {
1374 ret = btrfs_del_item(trans, root, path);
1377 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1378 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1379 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1380 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1381 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1383 struct btrfs_extent_ref_v0 *ref0;
1384 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1385 struct btrfs_extent_ref_v0);
1386 btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1389 btrfs_mark_buffer_dirty(leaf);
1394 static noinline u32 extent_data_ref_count(struct btrfs_path *path,
1395 struct btrfs_extent_inline_ref *iref)
1397 struct btrfs_key key;
1398 struct extent_buffer *leaf;
1399 struct btrfs_extent_data_ref *ref1;
1400 struct btrfs_shared_data_ref *ref2;
1403 leaf = path->nodes[0];
1404 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1406 if (btrfs_extent_inline_ref_type(leaf, iref) ==
1407 BTRFS_EXTENT_DATA_REF_KEY) {
1408 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1409 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1411 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1412 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1414 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1415 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1416 struct btrfs_extent_data_ref);
1417 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1418 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1419 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1420 struct btrfs_shared_data_ref);
1421 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1422 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1423 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1424 struct btrfs_extent_ref_v0 *ref0;
1425 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1426 struct btrfs_extent_ref_v0);
1427 num_refs = btrfs_ref_count_v0(leaf, ref0);
1435 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1436 struct btrfs_root *root,
1437 struct btrfs_path *path,
1438 u64 bytenr, u64 parent,
1441 struct btrfs_key key;
1444 key.objectid = bytenr;
1446 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1447 key.offset = parent;
1449 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1450 key.offset = root_objectid;
1453 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1456 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1457 if (ret == -ENOENT && parent) {
1458 btrfs_release_path(path);
1459 key.type = BTRFS_EXTENT_REF_V0_KEY;
1460 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1468 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1469 struct btrfs_root *root,
1470 struct btrfs_path *path,
1471 u64 bytenr, u64 parent,
1474 struct btrfs_key key;
1477 key.objectid = bytenr;
1479 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1480 key.offset = parent;
1482 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1483 key.offset = root_objectid;
1486 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1487 btrfs_release_path(path);
1491 static inline int extent_ref_type(u64 parent, u64 owner)
1494 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1496 type = BTRFS_SHARED_BLOCK_REF_KEY;
1498 type = BTRFS_TREE_BLOCK_REF_KEY;
1501 type = BTRFS_SHARED_DATA_REF_KEY;
1503 type = BTRFS_EXTENT_DATA_REF_KEY;
1508 static int find_next_key(struct btrfs_path *path, int level,
1509 struct btrfs_key *key)
1512 for (; level < BTRFS_MAX_LEVEL; level++) {
1513 if (!path->nodes[level])
1515 if (path->slots[level] + 1 >=
1516 btrfs_header_nritems(path->nodes[level]))
1519 btrfs_item_key_to_cpu(path->nodes[level], key,
1520 path->slots[level] + 1);
1522 btrfs_node_key_to_cpu(path->nodes[level], key,
1523 path->slots[level] + 1);
1530 * look for inline back ref. if back ref is found, *ref_ret is set
1531 * to the address of inline back ref, and 0 is returned.
1533 * if back ref isn't found, *ref_ret is set to the address where it
1534 * should be inserted, and -ENOENT is returned.
1536 * if insert is true and there are too many inline back refs, the path
1537 * points to the extent item, and -EAGAIN is returned.
1539 * NOTE: inline back refs are ordered in the same way that back ref
1540 * items in the tree are ordered.
1542 static noinline_for_stack
1543 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1544 struct btrfs_root *root,
1545 struct btrfs_path *path,
1546 struct btrfs_extent_inline_ref **ref_ret,
1547 u64 bytenr, u64 num_bytes,
1548 u64 parent, u64 root_objectid,
1549 u64 owner, u64 offset, int insert)
1551 struct btrfs_key key;
1552 struct extent_buffer *leaf;
1553 struct btrfs_extent_item *ei;
1554 struct btrfs_extent_inline_ref *iref;
1564 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
1567 key.objectid = bytenr;
1568 key.type = BTRFS_EXTENT_ITEM_KEY;
1569 key.offset = num_bytes;
1571 want = extent_ref_type(parent, owner);
1573 extra_size = btrfs_extent_inline_ref_size(want);
1574 path->keep_locks = 1;
1579 * Owner is our parent level, so we can just add one to get the level
1580 * for the block we are interested in.
1582 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1583 key.type = BTRFS_METADATA_ITEM_KEY;
1588 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1595 * We may be a newly converted file system which still has the old fat
1596 * extent entries for metadata, so try and see if we have one of those.
1598 if (ret > 0 && skinny_metadata) {
1599 skinny_metadata = false;
1600 if (path->slots[0]) {
1602 btrfs_item_key_to_cpu(path->nodes[0], &key,
1604 if (key.objectid == bytenr &&
1605 key.type == BTRFS_EXTENT_ITEM_KEY &&
1606 key.offset == num_bytes)
1610 key.objectid = bytenr;
1611 key.type = BTRFS_EXTENT_ITEM_KEY;
1612 key.offset = num_bytes;
1613 btrfs_release_path(path);
1618 if (ret && !insert) {
1621 } else if (WARN_ON(ret)) {
1626 leaf = path->nodes[0];
1627 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1628 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1629 if (item_size < sizeof(*ei)) {
1634 ret = convert_extent_item_v0(trans, root, path, owner,
1640 leaf = path->nodes[0];
1641 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1644 BUG_ON(item_size < sizeof(*ei));
1646 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1647 flags = btrfs_extent_flags(leaf, ei);
1649 ptr = (unsigned long)(ei + 1);
1650 end = (unsigned long)ei + item_size;
1652 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
1653 ptr += sizeof(struct btrfs_tree_block_info);
1663 iref = (struct btrfs_extent_inline_ref *)ptr;
1664 type = btrfs_extent_inline_ref_type(leaf, iref);
1668 ptr += btrfs_extent_inline_ref_size(type);
1672 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1673 struct btrfs_extent_data_ref *dref;
1674 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1675 if (match_extent_data_ref(leaf, dref, root_objectid,
1680 if (hash_extent_data_ref_item(leaf, dref) <
1681 hash_extent_data_ref(root_objectid, owner, offset))
1685 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1687 if (parent == ref_offset) {
1691 if (ref_offset < parent)
1694 if (root_objectid == ref_offset) {
1698 if (ref_offset < root_objectid)
1702 ptr += btrfs_extent_inline_ref_size(type);
1704 if (err == -ENOENT && insert) {
1705 if (item_size + extra_size >=
1706 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1711 * To add new inline back ref, we have to make sure
1712 * there is no corresponding back ref item.
1713 * For simplicity, we just do not add new inline back
1714 * ref if there is any kind of item for this block
1716 if (find_next_key(path, 0, &key) == 0 &&
1717 key.objectid == bytenr &&
1718 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1723 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1726 path->keep_locks = 0;
1727 btrfs_unlock_up_safe(path, 1);
1733 * helper to add new inline back ref
1735 static noinline_for_stack
1736 void setup_inline_extent_backref(struct btrfs_root *root,
1737 struct btrfs_path *path,
1738 struct btrfs_extent_inline_ref *iref,
1739 u64 parent, u64 root_objectid,
1740 u64 owner, u64 offset, int refs_to_add,
1741 struct btrfs_delayed_extent_op *extent_op)
1743 struct extent_buffer *leaf;
1744 struct btrfs_extent_item *ei;
1747 unsigned long item_offset;
1752 leaf = path->nodes[0];
1753 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1754 item_offset = (unsigned long)iref - (unsigned long)ei;
1756 type = extent_ref_type(parent, owner);
1757 size = btrfs_extent_inline_ref_size(type);
1759 btrfs_extend_item(root, path, size);
1761 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1762 refs = btrfs_extent_refs(leaf, ei);
1763 refs += refs_to_add;
1764 btrfs_set_extent_refs(leaf, ei, refs);
1766 __run_delayed_extent_op(extent_op, leaf, ei);
1768 ptr = (unsigned long)ei + item_offset;
1769 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1770 if (ptr < end - size)
1771 memmove_extent_buffer(leaf, ptr + size, ptr,
1774 iref = (struct btrfs_extent_inline_ref *)ptr;
1775 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1776 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1777 struct btrfs_extent_data_ref *dref;
1778 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1779 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1780 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1781 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1782 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1783 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1784 struct btrfs_shared_data_ref *sref;
1785 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1786 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1787 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1788 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1789 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1791 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1793 btrfs_mark_buffer_dirty(leaf);
1796 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1797 struct btrfs_root *root,
1798 struct btrfs_path *path,
1799 struct btrfs_extent_inline_ref **ref_ret,
1800 u64 bytenr, u64 num_bytes, u64 parent,
1801 u64 root_objectid, u64 owner, u64 offset)
1805 ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
1806 bytenr, num_bytes, parent,
1807 root_objectid, owner, offset, 0);
1811 btrfs_release_path(path);
1814 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1815 ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
1818 ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
1819 root_objectid, owner, offset);
1825 * helper to update/remove inline back ref
1827 static noinline_for_stack
1828 void update_inline_extent_backref(struct btrfs_root *root,
1829 struct btrfs_path *path,
1830 struct btrfs_extent_inline_ref *iref,
1832 struct btrfs_delayed_extent_op *extent_op,
1835 struct extent_buffer *leaf;
1836 struct btrfs_extent_item *ei;
1837 struct btrfs_extent_data_ref *dref = NULL;
1838 struct btrfs_shared_data_ref *sref = NULL;
1846 leaf = path->nodes[0];
1847 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1848 refs = btrfs_extent_refs(leaf, ei);
1849 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1850 refs += refs_to_mod;
1851 btrfs_set_extent_refs(leaf, ei, refs);
1853 __run_delayed_extent_op(extent_op, leaf, ei);
1855 type = btrfs_extent_inline_ref_type(leaf, iref);
1857 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1858 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1859 refs = btrfs_extent_data_ref_count(leaf, dref);
1860 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1861 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1862 refs = btrfs_shared_data_ref_count(leaf, sref);
1865 BUG_ON(refs_to_mod != -1);
1868 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1869 refs += refs_to_mod;
1872 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1873 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1875 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1878 size = btrfs_extent_inline_ref_size(type);
1879 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1880 ptr = (unsigned long)iref;
1881 end = (unsigned long)ei + item_size;
1882 if (ptr + size < end)
1883 memmove_extent_buffer(leaf, ptr, ptr + size,
1886 btrfs_truncate_item(root, path, item_size, 1);
1888 btrfs_mark_buffer_dirty(leaf);
1891 static noinline_for_stack
1892 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1893 struct btrfs_root *root,
1894 struct btrfs_path *path,
1895 u64 bytenr, u64 num_bytes, u64 parent,
1896 u64 root_objectid, u64 owner,
1897 u64 offset, int refs_to_add,
1898 struct btrfs_delayed_extent_op *extent_op)
1900 struct btrfs_extent_inline_ref *iref;
1903 ret = lookup_inline_extent_backref(trans, root, path, &iref,
1904 bytenr, num_bytes, parent,
1905 root_objectid, owner, offset, 1);
1907 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1908 update_inline_extent_backref(root, path, iref,
1909 refs_to_add, extent_op, NULL);
1910 } else if (ret == -ENOENT) {
1911 setup_inline_extent_backref(root, path, iref, parent,
1912 root_objectid, owner, offset,
1913 refs_to_add, extent_op);
1919 static int insert_extent_backref(struct btrfs_trans_handle *trans,
1920 struct btrfs_root *root,
1921 struct btrfs_path *path,
1922 u64 bytenr, u64 parent, u64 root_objectid,
1923 u64 owner, u64 offset, int refs_to_add)
1926 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1927 BUG_ON(refs_to_add != 1);
1928 ret = insert_tree_block_ref(trans, root, path, bytenr,
1929 parent, root_objectid);
1931 ret = insert_extent_data_ref(trans, root, path, bytenr,
1932 parent, root_objectid,
1933 owner, offset, refs_to_add);
1938 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1939 struct btrfs_root *root,
1940 struct btrfs_path *path,
1941 struct btrfs_extent_inline_ref *iref,
1942 int refs_to_drop, int is_data, int *last_ref)
1946 BUG_ON(!is_data && refs_to_drop != 1);
1948 update_inline_extent_backref(root, path, iref,
1949 -refs_to_drop, NULL, last_ref);
1950 } else if (is_data) {
1951 ret = remove_extent_data_ref(trans, root, path, refs_to_drop,
1955 ret = btrfs_del_item(trans, root, path);
1960 #define in_range(b, first, len) ((b) >= (first) && (b) < (first) + (len))
1961 static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
1962 u64 *discarded_bytes)
1965 u64 bytes_left, end;
1966 u64 aligned_start = ALIGN(start, 1 << 9);
1968 if (WARN_ON(start != aligned_start)) {
1969 len -= aligned_start - start;
1970 len = round_down(len, 1 << 9);
1971 start = aligned_start;
1974 *discarded_bytes = 0;
1982 /* Skip any superblocks on this device. */
1983 for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
1984 u64 sb_start = btrfs_sb_offset(j);
1985 u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
1986 u64 size = sb_start - start;
1988 if (!in_range(sb_start, start, bytes_left) &&
1989 !in_range(sb_end, start, bytes_left) &&
1990 !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
1994 * Superblock spans beginning of range. Adjust start and
1997 if (sb_start <= start) {
1998 start += sb_end - start;
2003 bytes_left = end - start;
2008 ret = blkdev_issue_discard(bdev, start >> 9, size >> 9,
2011 *discarded_bytes += size;
2012 else if (ret != -EOPNOTSUPP)
2021 bytes_left = end - start;
2025 ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9,
2028 *discarded_bytes += bytes_left;
2033 int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
2034 u64 num_bytes, u64 *actual_bytes)
2037 u64 discarded_bytes = 0;
2038 struct btrfs_bio *bbio = NULL;
2042 * Avoid races with device replace and make sure our bbio has devices
2043 * associated to its stripes that don't go away while we are discarding.
2045 btrfs_bio_counter_inc_blocked(root->fs_info);
2046 /* Tell the block device(s) that the sectors can be discarded */
2047 ret = btrfs_map_block(root->fs_info, REQ_OP_DISCARD,
2048 bytenr, &num_bytes, &bbio, 0);
2049 /* Error condition is -ENOMEM */
2051 struct btrfs_bio_stripe *stripe = bbio->stripes;
2055 for (i = 0; i < bbio->num_stripes; i++, stripe++) {
2057 if (!stripe->dev->can_discard)
2060 ret = btrfs_issue_discard(stripe->dev->bdev,
2065 discarded_bytes += bytes;
2066 else if (ret != -EOPNOTSUPP)
2067 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
2070 * Just in case we get back EOPNOTSUPP for some reason,
2071 * just ignore the return value so we don't screw up
2072 * people calling discard_extent.
2076 btrfs_put_bbio(bbio);
2078 btrfs_bio_counter_dec(root->fs_info);
2081 *actual_bytes = discarded_bytes;
2084 if (ret == -EOPNOTSUPP)
2089 /* Can return -ENOMEM */
2090 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2091 struct btrfs_root *root,
2092 u64 bytenr, u64 num_bytes, u64 parent,
2093 u64 root_objectid, u64 owner, u64 offset)
2096 struct btrfs_fs_info *fs_info = root->fs_info;
2098 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
2099 root_objectid == BTRFS_TREE_LOG_OBJECTID);
2101 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
2102 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
2104 parent, root_objectid, (int)owner,
2105 BTRFS_ADD_DELAYED_REF, NULL);
2107 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
2108 num_bytes, parent, root_objectid,
2110 BTRFS_ADD_DELAYED_REF, NULL);
2115 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2116 struct btrfs_root *root,
2117 struct btrfs_delayed_ref_node *node,
2118 u64 parent, u64 root_objectid,
2119 u64 owner, u64 offset, int refs_to_add,
2120 struct btrfs_delayed_extent_op *extent_op)
2122 struct btrfs_fs_info *fs_info = root->fs_info;
2123 struct btrfs_path *path;
2124 struct extent_buffer *leaf;
2125 struct btrfs_extent_item *item;
2126 struct btrfs_key key;
2127 u64 bytenr = node->bytenr;
2128 u64 num_bytes = node->num_bytes;
2132 path = btrfs_alloc_path();
2136 path->reada = READA_FORWARD;
2137 path->leave_spinning = 1;
2138 /* this will setup the path even if it fails to insert the back ref */
2139 ret = insert_inline_extent_backref(trans, fs_info->extent_root, path,
2140 bytenr, num_bytes, parent,
2141 root_objectid, owner, offset,
2142 refs_to_add, extent_op);
2143 if ((ret < 0 && ret != -EAGAIN) || !ret)
2147 * Ok we had -EAGAIN which means we didn't have space to insert and
2148 * inline extent ref, so just update the reference count and add a
2151 leaf = path->nodes[0];
2152 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2153 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2154 refs = btrfs_extent_refs(leaf, item);
2155 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2157 __run_delayed_extent_op(extent_op, leaf, item);
2159 btrfs_mark_buffer_dirty(leaf);
2160 btrfs_release_path(path);
2162 path->reada = READA_FORWARD;
2163 path->leave_spinning = 1;
2164 /* now insert the actual backref */
2165 ret = insert_extent_backref(trans, root->fs_info->extent_root,
2166 path, bytenr, parent, root_objectid,
2167 owner, offset, refs_to_add);
2169 btrfs_abort_transaction(trans, ret);
2171 btrfs_free_path(path);
2175 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2176 struct btrfs_root *root,
2177 struct btrfs_delayed_ref_node *node,
2178 struct btrfs_delayed_extent_op *extent_op,
2179 int insert_reserved)
2182 struct btrfs_delayed_data_ref *ref;
2183 struct btrfs_key ins;
2188 ins.objectid = node->bytenr;
2189 ins.offset = node->num_bytes;
2190 ins.type = BTRFS_EXTENT_ITEM_KEY;
2192 ref = btrfs_delayed_node_to_data_ref(node);
2193 trace_run_delayed_data_ref(root->fs_info, node, ref, node->action);
2195 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2196 parent = ref->parent;
2197 ref_root = ref->root;
2199 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2201 flags |= extent_op->flags_to_set;
2202 ret = alloc_reserved_file_extent(trans, root,
2203 parent, ref_root, flags,
2204 ref->objectid, ref->offset,
2205 &ins, node->ref_mod);
2206 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2207 ret = __btrfs_inc_extent_ref(trans, root, node, parent,
2208 ref_root, ref->objectid,
2209 ref->offset, node->ref_mod,
2211 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2212 ret = __btrfs_free_extent(trans, root, node, parent,
2213 ref_root, ref->objectid,
2214 ref->offset, node->ref_mod,
2222 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2223 struct extent_buffer *leaf,
2224 struct btrfs_extent_item *ei)
2226 u64 flags = btrfs_extent_flags(leaf, ei);
2227 if (extent_op->update_flags) {
2228 flags |= extent_op->flags_to_set;
2229 btrfs_set_extent_flags(leaf, ei, flags);
2232 if (extent_op->update_key) {
2233 struct btrfs_tree_block_info *bi;
2234 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2235 bi = (struct btrfs_tree_block_info *)(ei + 1);
2236 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2240 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2241 struct btrfs_root *root,
2242 struct btrfs_delayed_ref_node *node,
2243 struct btrfs_delayed_extent_op *extent_op)
2245 struct btrfs_key key;
2246 struct btrfs_path *path;
2247 struct btrfs_extent_item *ei;
2248 struct extent_buffer *leaf;
2252 int metadata = !extent_op->is_data;
2257 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2260 path = btrfs_alloc_path();
2264 key.objectid = node->bytenr;
2267 key.type = BTRFS_METADATA_ITEM_KEY;
2268 key.offset = extent_op->level;
2270 key.type = BTRFS_EXTENT_ITEM_KEY;
2271 key.offset = node->num_bytes;
2275 path->reada = READA_FORWARD;
2276 path->leave_spinning = 1;
2277 ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
2285 if (path->slots[0] > 0) {
2287 btrfs_item_key_to_cpu(path->nodes[0], &key,
2289 if (key.objectid == node->bytenr &&
2290 key.type == BTRFS_EXTENT_ITEM_KEY &&
2291 key.offset == node->num_bytes)
2295 btrfs_release_path(path);
2298 key.objectid = node->bytenr;
2299 key.offset = node->num_bytes;
2300 key.type = BTRFS_EXTENT_ITEM_KEY;
2309 leaf = path->nodes[0];
2310 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2311 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2312 if (item_size < sizeof(*ei)) {
2313 ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
2319 leaf = path->nodes[0];
2320 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2323 BUG_ON(item_size < sizeof(*ei));
2324 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2325 __run_delayed_extent_op(extent_op, leaf, ei);
2327 btrfs_mark_buffer_dirty(leaf);
2329 btrfs_free_path(path);
2333 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2334 struct btrfs_root *root,
2335 struct btrfs_delayed_ref_node *node,
2336 struct btrfs_delayed_extent_op *extent_op,
2337 int insert_reserved)
2340 struct btrfs_delayed_tree_ref *ref;
2341 struct btrfs_key ins;
2344 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
2347 ref = btrfs_delayed_node_to_tree_ref(node);
2348 trace_run_delayed_tree_ref(root->fs_info, node, ref, node->action);
2350 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2351 parent = ref->parent;
2352 ref_root = ref->root;
2354 ins.objectid = node->bytenr;
2355 if (skinny_metadata) {
2356 ins.offset = ref->level;
2357 ins.type = BTRFS_METADATA_ITEM_KEY;
2359 ins.offset = node->num_bytes;
2360 ins.type = BTRFS_EXTENT_ITEM_KEY;
2363 BUG_ON(node->ref_mod != 1);
2364 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2365 BUG_ON(!extent_op || !extent_op->update_flags);
2366 ret = alloc_reserved_tree_block(trans, root,
2368 extent_op->flags_to_set,
2371 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2372 ret = __btrfs_inc_extent_ref(trans, root, node,
2376 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2377 ret = __btrfs_free_extent(trans, root, node,
2379 ref->level, 0, 1, extent_op);
2386 /* helper function to actually process a single delayed ref entry */
2387 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2388 struct btrfs_root *root,
2389 struct btrfs_delayed_ref_node *node,
2390 struct btrfs_delayed_extent_op *extent_op,
2391 int insert_reserved)
2395 if (trans->aborted) {
2396 if (insert_reserved)
2397 btrfs_pin_extent(root, node->bytenr,
2398 node->num_bytes, 1);
2402 if (btrfs_delayed_ref_is_head(node)) {
2403 struct btrfs_delayed_ref_head *head;
2405 * we've hit the end of the chain and we were supposed
2406 * to insert this extent into the tree. But, it got
2407 * deleted before we ever needed to insert it, so all
2408 * we have to do is clean up the accounting
2411 head = btrfs_delayed_node_to_head(node);
2412 trace_run_delayed_ref_head(root->fs_info, node, head,
2415 if (insert_reserved) {
2416 btrfs_pin_extent(root, node->bytenr,
2417 node->num_bytes, 1);
2418 if (head->is_data) {
2419 ret = btrfs_del_csums(trans, root,
2425 /* Also free its reserved qgroup space */
2426 btrfs_qgroup_free_delayed_ref(root->fs_info,
2427 head->qgroup_ref_root,
2428 head->qgroup_reserved);
2432 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2433 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2434 ret = run_delayed_tree_ref(trans, root, node, extent_op,
2436 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2437 node->type == BTRFS_SHARED_DATA_REF_KEY)
2438 ret = run_delayed_data_ref(trans, root, node, extent_op,
2445 static inline struct btrfs_delayed_ref_node *
2446 select_delayed_ref(struct btrfs_delayed_ref_head *head)
2448 struct btrfs_delayed_ref_node *ref;
2450 if (list_empty(&head->ref_list))
2454 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
2455 * This is to prevent a ref count from going down to zero, which deletes
2456 * the extent item from the extent tree, when there still are references
2457 * to add, which would fail because they would not find the extent item.
2459 list_for_each_entry(ref, &head->ref_list, list) {
2460 if (ref->action == BTRFS_ADD_DELAYED_REF)
2464 return list_entry(head->ref_list.next, struct btrfs_delayed_ref_node,
2469 * Returns 0 on success or if called with an already aborted transaction.
2470 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2472 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2473 struct btrfs_root *root,
2476 struct btrfs_delayed_ref_root *delayed_refs;
2477 struct btrfs_delayed_ref_node *ref;
2478 struct btrfs_delayed_ref_head *locked_ref = NULL;
2479 struct btrfs_delayed_extent_op *extent_op;
2480 struct btrfs_fs_info *fs_info = root->fs_info;
2481 ktime_t start = ktime_get();
2483 unsigned long count = 0;
2484 unsigned long actual_count = 0;
2485 int must_insert_reserved = 0;
2487 delayed_refs = &trans->transaction->delayed_refs;
2493 spin_lock(&delayed_refs->lock);
2494 locked_ref = btrfs_select_ref_head(trans);
2496 spin_unlock(&delayed_refs->lock);
2500 /* grab the lock that says we are going to process
2501 * all the refs for this head */
2502 ret = btrfs_delayed_ref_lock(trans, locked_ref);
2503 spin_unlock(&delayed_refs->lock);
2505 * we may have dropped the spin lock to get the head
2506 * mutex lock, and that might have given someone else
2507 * time to free the head. If that's true, it has been
2508 * removed from our list and we can move on.
2510 if (ret == -EAGAIN) {
2518 * We need to try and merge add/drops of the same ref since we
2519 * can run into issues with relocate dropping the implicit ref
2520 * and then it being added back again before the drop can
2521 * finish. If we merged anything we need to re-loop so we can
2523 * Or we can get node references of the same type that weren't
2524 * merged when created due to bumps in the tree mod seq, and
2525 * we need to merge them to prevent adding an inline extent
2526 * backref before dropping it (triggering a BUG_ON at
2527 * insert_inline_extent_backref()).
2529 spin_lock(&locked_ref->lock);
2530 btrfs_merge_delayed_refs(trans, fs_info, delayed_refs,
2534 * locked_ref is the head node, so we have to go one
2535 * node back for any delayed ref updates
2537 ref = select_delayed_ref(locked_ref);
2539 if (ref && ref->seq &&
2540 btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
2541 spin_unlock(&locked_ref->lock);
2542 btrfs_delayed_ref_unlock(locked_ref);
2543 spin_lock(&delayed_refs->lock);
2544 locked_ref->processing = 0;
2545 delayed_refs->num_heads_ready++;
2546 spin_unlock(&delayed_refs->lock);
2554 * record the must insert reserved flag before we
2555 * drop the spin lock.
2557 must_insert_reserved = locked_ref->must_insert_reserved;
2558 locked_ref->must_insert_reserved = 0;
2560 extent_op = locked_ref->extent_op;
2561 locked_ref->extent_op = NULL;
2566 /* All delayed refs have been processed, Go ahead
2567 * and send the head node to run_one_delayed_ref,
2568 * so that any accounting fixes can happen
2570 ref = &locked_ref->node;
2572 if (extent_op && must_insert_reserved) {
2573 btrfs_free_delayed_extent_op(extent_op);
2578 spin_unlock(&locked_ref->lock);
2579 ret = run_delayed_extent_op(trans, root,
2581 btrfs_free_delayed_extent_op(extent_op);
2585 * Need to reset must_insert_reserved if
2586 * there was an error so the abort stuff
2587 * can cleanup the reserved space
2590 if (must_insert_reserved)
2591 locked_ref->must_insert_reserved = 1;
2592 locked_ref->processing = 0;
2593 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
2594 btrfs_delayed_ref_unlock(locked_ref);
2601 * Need to drop our head ref lock and re-acquire the
2602 * delayed ref lock and then re-check to make sure
2605 spin_unlock(&locked_ref->lock);
2606 spin_lock(&delayed_refs->lock);
2607 spin_lock(&locked_ref->lock);
2608 if (!list_empty(&locked_ref->ref_list) ||
2609 locked_ref->extent_op) {
2610 spin_unlock(&locked_ref->lock);
2611 spin_unlock(&delayed_refs->lock);
2615 delayed_refs->num_heads--;
2616 rb_erase(&locked_ref->href_node,
2617 &delayed_refs->href_root);
2618 spin_unlock(&delayed_refs->lock);
2622 list_del(&ref->list);
2624 atomic_dec(&delayed_refs->num_entries);
2626 if (!btrfs_delayed_ref_is_head(ref)) {
2628 * when we play the delayed ref, also correct the
2631 switch (ref->action) {
2632 case BTRFS_ADD_DELAYED_REF:
2633 case BTRFS_ADD_DELAYED_EXTENT:
2634 locked_ref->node.ref_mod -= ref->ref_mod;
2636 case BTRFS_DROP_DELAYED_REF:
2637 locked_ref->node.ref_mod += ref->ref_mod;
2643 spin_unlock(&locked_ref->lock);
2645 ret = run_one_delayed_ref(trans, root, ref, extent_op,
2646 must_insert_reserved);
2648 btrfs_free_delayed_extent_op(extent_op);
2650 locked_ref->processing = 0;
2651 btrfs_delayed_ref_unlock(locked_ref);
2652 btrfs_put_delayed_ref(ref);
2653 btrfs_debug(fs_info, "run_one_delayed_ref returned %d", ret);
2658 * If this node is a head, that means all the refs in this head
2659 * have been dealt with, and we will pick the next head to deal
2660 * with, so we must unlock the head and drop it from the cluster
2661 * list before we release it.
2663 if (btrfs_delayed_ref_is_head(ref)) {
2664 if (locked_ref->is_data &&
2665 locked_ref->total_ref_mod < 0) {
2666 spin_lock(&delayed_refs->lock);
2667 delayed_refs->pending_csums -= ref->num_bytes;
2668 spin_unlock(&delayed_refs->lock);
2670 btrfs_delayed_ref_unlock(locked_ref);
2673 btrfs_put_delayed_ref(ref);
2679 * We don't want to include ref heads since we can have empty ref heads
2680 * and those will drastically skew our runtime down since we just do
2681 * accounting, no actual extent tree updates.
2683 if (actual_count > 0) {
2684 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2688 * We weigh the current average higher than our current runtime
2689 * to avoid large swings in the average.
2691 spin_lock(&delayed_refs->lock);
2692 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
2693 fs_info->avg_delayed_ref_runtime = avg >> 2; /* div by 4 */
2694 spin_unlock(&delayed_refs->lock);
2699 #ifdef SCRAMBLE_DELAYED_REFS
2701 * Normally delayed refs get processed in ascending bytenr order. This
2702 * correlates in most cases to the order added. To expose dependencies on this
2703 * order, we start to process the tree in the middle instead of the beginning
2705 static u64 find_middle(struct rb_root *root)
2707 struct rb_node *n = root->rb_node;
2708 struct btrfs_delayed_ref_node *entry;
2711 u64 first = 0, last = 0;
2715 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2716 first = entry->bytenr;
2720 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2721 last = entry->bytenr;
2726 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2727 WARN_ON(!entry->in_tree);
2729 middle = entry->bytenr;
2742 static inline u64 heads_to_leaves(struct btrfs_root *root, u64 heads)
2746 num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2747 sizeof(struct btrfs_extent_inline_ref));
2748 if (!btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2749 num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2752 * We don't ever fill up leaves all the way so multiply by 2 just to be
2753 * closer to what we're really going to want to use.
2755 return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(root));
2759 * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2760 * would require to store the csums for that many bytes.
2762 u64 btrfs_csum_bytes_to_leaves(struct btrfs_root *root, u64 csum_bytes)
2765 u64 num_csums_per_leaf;
2768 csum_size = BTRFS_MAX_ITEM_SIZE(root);
2769 num_csums_per_leaf = div64_u64(csum_size,
2770 (u64)btrfs_super_csum_size(root->fs_info->super_copy));
2771 num_csums = div64_u64(csum_bytes, root->sectorsize);
2772 num_csums += num_csums_per_leaf - 1;
2773 num_csums = div64_u64(num_csums, num_csums_per_leaf);
2777 int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
2778 struct btrfs_root *root)
2780 struct btrfs_block_rsv *global_rsv;
2781 u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
2782 u64 csum_bytes = trans->transaction->delayed_refs.pending_csums;
2783 u64 num_dirty_bgs = trans->transaction->num_dirty_bgs;
2784 u64 num_bytes, num_dirty_bgs_bytes;
2787 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
2788 num_heads = heads_to_leaves(root, num_heads);
2790 num_bytes += (num_heads - 1) * root->nodesize;
2792 num_bytes += btrfs_csum_bytes_to_leaves(root, csum_bytes) * root->nodesize;
2793 num_dirty_bgs_bytes = btrfs_calc_trans_metadata_size(root,
2795 global_rsv = &root->fs_info->global_block_rsv;
2798 * If we can't allocate any more chunks lets make sure we have _lots_ of
2799 * wiggle room since running delayed refs can create more delayed refs.
2801 if (global_rsv->space_info->full) {
2802 num_dirty_bgs_bytes <<= 1;
2806 spin_lock(&global_rsv->lock);
2807 if (global_rsv->reserved <= num_bytes + num_dirty_bgs_bytes)
2809 spin_unlock(&global_rsv->lock);
2813 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
2814 struct btrfs_root *root)
2816 struct btrfs_fs_info *fs_info = root->fs_info;
2818 atomic_read(&trans->transaction->delayed_refs.num_entries);
2823 avg_runtime = fs_info->avg_delayed_ref_runtime;
2824 val = num_entries * avg_runtime;
2825 if (num_entries * avg_runtime >= NSEC_PER_SEC)
2827 if (val >= NSEC_PER_SEC / 2)
2830 return btrfs_check_space_for_delayed_refs(trans, root);
2833 struct async_delayed_refs {
2834 struct btrfs_root *root;
2839 struct completion wait;
2840 struct btrfs_work work;
2843 static void delayed_ref_async_start(struct btrfs_work *work)
2845 struct async_delayed_refs *async;
2846 struct btrfs_trans_handle *trans;
2849 async = container_of(work, struct async_delayed_refs, work);
2851 /* if the commit is already started, we don't need to wait here */
2852 if (btrfs_transaction_blocked(async->root->fs_info))
2855 trans = btrfs_join_transaction(async->root);
2856 if (IS_ERR(trans)) {
2857 async->error = PTR_ERR(trans);
2862 * trans->sync means that when we call end_transaction, we won't
2863 * wait on delayed refs
2867 /* Don't bother flushing if we got into a different transaction */
2868 if (trans->transid > async->transid)
2871 ret = btrfs_run_delayed_refs(trans, async->root, async->count);
2875 ret = btrfs_end_transaction(trans, async->root);
2876 if (ret && !async->error)
2880 complete(&async->wait);
2885 int btrfs_async_run_delayed_refs(struct btrfs_root *root,
2886 unsigned long count, u64 transid, int wait)
2888 struct async_delayed_refs *async;
2891 async = kmalloc(sizeof(*async), GFP_NOFS);
2895 async->root = root->fs_info->tree_root;
2896 async->count = count;
2898 async->transid = transid;
2903 init_completion(&async->wait);
2905 btrfs_init_work(&async->work, btrfs_extent_refs_helper,
2906 delayed_ref_async_start, NULL, NULL);
2908 btrfs_queue_work(root->fs_info->extent_workers, &async->work);
2911 wait_for_completion(&async->wait);
2920 * this starts processing the delayed reference count updates and
2921 * extent insertions we have queued up so far. count can be
2922 * 0, which means to process everything in the tree at the start
2923 * of the run (but not newly added entries), or it can be some target
2924 * number you'd like to process.
2926 * Returns 0 on success or if called with an aborted transaction
2927 * Returns <0 on error and aborts the transaction
2929 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2930 struct btrfs_root *root, unsigned long count)
2932 struct rb_node *node;
2933 struct btrfs_delayed_ref_root *delayed_refs;
2934 struct btrfs_delayed_ref_head *head;
2936 int run_all = count == (unsigned long)-1;
2937 bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
2939 /* We'll clean this up in btrfs_cleanup_transaction */
2943 if (root->fs_info->creating_free_space_tree)
2946 if (root == root->fs_info->extent_root)
2947 root = root->fs_info->tree_root;
2949 delayed_refs = &trans->transaction->delayed_refs;
2951 count = atomic_read(&delayed_refs->num_entries) * 2;
2954 #ifdef SCRAMBLE_DELAYED_REFS
2955 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2957 trans->can_flush_pending_bgs = false;
2958 ret = __btrfs_run_delayed_refs(trans, root, count);
2960 btrfs_abort_transaction(trans, ret);
2965 if (!list_empty(&trans->new_bgs))
2966 btrfs_create_pending_block_groups(trans, root);
2968 spin_lock(&delayed_refs->lock);
2969 node = rb_first(&delayed_refs->href_root);
2971 spin_unlock(&delayed_refs->lock);
2974 count = (unsigned long)-1;
2977 head = rb_entry(node, struct btrfs_delayed_ref_head,
2979 if (btrfs_delayed_ref_is_head(&head->node)) {
2980 struct btrfs_delayed_ref_node *ref;
2983 atomic_inc(&ref->refs);
2985 spin_unlock(&delayed_refs->lock);
2987 * Mutex was contended, block until it's
2988 * released and try again
2990 mutex_lock(&head->mutex);
2991 mutex_unlock(&head->mutex);
2993 btrfs_put_delayed_ref(ref);
2999 node = rb_next(node);
3001 spin_unlock(&delayed_refs->lock);
3006 assert_qgroups_uptodate(trans);
3007 trans->can_flush_pending_bgs = can_flush_pending_bgs;
3011 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
3012 struct btrfs_root *root,
3013 u64 bytenr, u64 num_bytes, u64 flags,
3014 int level, int is_data)
3016 struct btrfs_delayed_extent_op *extent_op;
3019 extent_op = btrfs_alloc_delayed_extent_op();
3023 extent_op->flags_to_set = flags;
3024 extent_op->update_flags = true;
3025 extent_op->update_key = false;
3026 extent_op->is_data = is_data ? true : false;
3027 extent_op->level = level;
3029 ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr,
3030 num_bytes, extent_op);
3032 btrfs_free_delayed_extent_op(extent_op);
3036 static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
3037 struct btrfs_root *root,
3038 struct btrfs_path *path,
3039 u64 objectid, u64 offset, u64 bytenr)
3041 struct btrfs_delayed_ref_head *head;
3042 struct btrfs_delayed_ref_node *ref;
3043 struct btrfs_delayed_data_ref *data_ref;
3044 struct btrfs_delayed_ref_root *delayed_refs;
3047 delayed_refs = &trans->transaction->delayed_refs;
3048 spin_lock(&delayed_refs->lock);
3049 head = btrfs_find_delayed_ref_head(trans, bytenr);
3051 spin_unlock(&delayed_refs->lock);
3055 if (!mutex_trylock(&head->mutex)) {
3056 atomic_inc(&head->node.refs);
3057 spin_unlock(&delayed_refs->lock);
3059 btrfs_release_path(path);
3062 * Mutex was contended, block until it's released and let
3065 mutex_lock(&head->mutex);
3066 mutex_unlock(&head->mutex);
3067 btrfs_put_delayed_ref(&head->node);
3070 spin_unlock(&delayed_refs->lock);
3072 spin_lock(&head->lock);
3073 list_for_each_entry(ref, &head->ref_list, list) {
3074 /* If it's a shared ref we know a cross reference exists */
3075 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
3080 data_ref = btrfs_delayed_node_to_data_ref(ref);
3083 * If our ref doesn't match the one we're currently looking at
3084 * then we have a cross reference.
3086 if (data_ref->root != root->root_key.objectid ||
3087 data_ref->objectid != objectid ||
3088 data_ref->offset != offset) {
3093 spin_unlock(&head->lock);
3094 mutex_unlock(&head->mutex);
3098 static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
3099 struct btrfs_root *root,
3100 struct btrfs_path *path,
3101 u64 objectid, u64 offset, u64 bytenr)
3103 struct btrfs_root *extent_root = root->fs_info->extent_root;
3104 struct extent_buffer *leaf;
3105 struct btrfs_extent_data_ref *ref;
3106 struct btrfs_extent_inline_ref *iref;
3107 struct btrfs_extent_item *ei;
3108 struct btrfs_key key;
3112 key.objectid = bytenr;
3113 key.offset = (u64)-1;
3114 key.type = BTRFS_EXTENT_ITEM_KEY;
3116 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
3119 BUG_ON(ret == 0); /* Corruption */
3122 if (path->slots[0] == 0)
3126 leaf = path->nodes[0];
3127 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3129 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
3133 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3134 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3135 if (item_size < sizeof(*ei)) {
3136 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
3140 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
3142 if (item_size != sizeof(*ei) +
3143 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
3146 if (btrfs_extent_generation(leaf, ei) <=
3147 btrfs_root_last_snapshot(&root->root_item))
3150 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
3151 if (btrfs_extent_inline_ref_type(leaf, iref) !=
3152 BTRFS_EXTENT_DATA_REF_KEY)
3155 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
3156 if (btrfs_extent_refs(leaf, ei) !=
3157 btrfs_extent_data_ref_count(leaf, ref) ||
3158 btrfs_extent_data_ref_root(leaf, ref) !=
3159 root->root_key.objectid ||
3160 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
3161 btrfs_extent_data_ref_offset(leaf, ref) != offset)
3169 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
3170 struct btrfs_root *root,
3171 u64 objectid, u64 offset, u64 bytenr)
3173 struct btrfs_path *path;
3177 path = btrfs_alloc_path();
3182 ret = check_committed_ref(trans, root, path, objectid,
3184 if (ret && ret != -ENOENT)
3187 ret2 = check_delayed_ref(trans, root, path, objectid,
3189 } while (ret2 == -EAGAIN);
3191 if (ret2 && ret2 != -ENOENT) {
3196 if (ret != -ENOENT || ret2 != -ENOENT)
3199 btrfs_free_path(path);
3200 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
3205 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
3206 struct btrfs_root *root,
3207 struct extent_buffer *buf,
3208 int full_backref, int inc)
3215 struct btrfs_key key;
3216 struct btrfs_file_extent_item *fi;
3220 int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
3221 u64, u64, u64, u64, u64, u64);
3224 if (btrfs_is_testing(root->fs_info))
3227 ref_root = btrfs_header_owner(buf);
3228 nritems = btrfs_header_nritems(buf);
3229 level = btrfs_header_level(buf);
3231 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
3235 process_func = btrfs_inc_extent_ref;
3237 process_func = btrfs_free_extent;
3240 parent = buf->start;
3244 for (i = 0; i < nritems; i++) {
3246 btrfs_item_key_to_cpu(buf, &key, i);
3247 if (key.type != BTRFS_EXTENT_DATA_KEY)
3249 fi = btrfs_item_ptr(buf, i,
3250 struct btrfs_file_extent_item);
3251 if (btrfs_file_extent_type(buf, fi) ==
3252 BTRFS_FILE_EXTENT_INLINE)
3254 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3258 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3259 key.offset -= btrfs_file_extent_offset(buf, fi);
3260 ret = process_func(trans, root, bytenr, num_bytes,
3261 parent, ref_root, key.objectid,
3266 bytenr = btrfs_node_blockptr(buf, i);
3267 num_bytes = root->nodesize;
3268 ret = process_func(trans, root, bytenr, num_bytes,
3269 parent, ref_root, level - 1, 0);
3279 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3280 struct extent_buffer *buf, int full_backref)
3282 return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
3285 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3286 struct extent_buffer *buf, int full_backref)
3288 return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
3291 static int write_one_cache_group(struct btrfs_trans_handle *trans,
3292 struct btrfs_root *root,
3293 struct btrfs_path *path,
3294 struct btrfs_block_group_cache *cache)
3297 struct btrfs_root *extent_root = root->fs_info->extent_root;
3299 struct extent_buffer *leaf;
3301 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
3308 leaf = path->nodes[0];
3309 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3310 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3311 btrfs_mark_buffer_dirty(leaf);
3313 btrfs_release_path(path);
3318 static struct btrfs_block_group_cache *
3319 next_block_group(struct btrfs_root *root,
3320 struct btrfs_block_group_cache *cache)
3322 struct rb_node *node;
3324 spin_lock(&root->fs_info->block_group_cache_lock);
3326 /* If our block group was removed, we need a full search. */
3327 if (RB_EMPTY_NODE(&cache->cache_node)) {
3328 const u64 next_bytenr = cache->key.objectid + cache->key.offset;
3330 spin_unlock(&root->fs_info->block_group_cache_lock);
3331 btrfs_put_block_group(cache);
3332 cache = btrfs_lookup_first_block_group(root->fs_info,
3336 node = rb_next(&cache->cache_node);
3337 btrfs_put_block_group(cache);
3339 cache = rb_entry(node, struct btrfs_block_group_cache,
3341 btrfs_get_block_group(cache);
3344 spin_unlock(&root->fs_info->block_group_cache_lock);
3348 static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3349 struct btrfs_trans_handle *trans,
3350 struct btrfs_path *path)
3352 struct btrfs_root *root = block_group->fs_info->tree_root;
3353 struct inode *inode = NULL;
3355 int dcs = BTRFS_DC_ERROR;
3361 * If this block group is smaller than 100 megs don't bother caching the
3364 if (block_group->key.offset < (100 * SZ_1M)) {
3365 spin_lock(&block_group->lock);
3366 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3367 spin_unlock(&block_group->lock);
3374 inode = lookup_free_space_inode(root, block_group, path);
3375 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3376 ret = PTR_ERR(inode);
3377 btrfs_release_path(path);
3381 if (IS_ERR(inode)) {
3385 if (block_group->ro)
3388 ret = create_free_space_inode(root, trans, block_group, path);
3394 /* We've already setup this transaction, go ahead and exit */
3395 if (block_group->cache_generation == trans->transid &&
3396 i_size_read(inode)) {
3397 dcs = BTRFS_DC_SETUP;
3402 * We want to set the generation to 0, that way if anything goes wrong
3403 * from here on out we know not to trust this cache when we load up next
3406 BTRFS_I(inode)->generation = 0;
3407 ret = btrfs_update_inode(trans, root, inode);
3410 * So theoretically we could recover from this, simply set the
3411 * super cache generation to 0 so we know to invalidate the
3412 * cache, but then we'd have to keep track of the block groups
3413 * that fail this way so we know we _have_ to reset this cache
3414 * before the next commit or risk reading stale cache. So to
3415 * limit our exposure to horrible edge cases lets just abort the
3416 * transaction, this only happens in really bad situations
3419 btrfs_abort_transaction(trans, ret);
3424 if (i_size_read(inode) > 0) {
3425 ret = btrfs_check_trunc_cache_free_space(root,
3426 &root->fs_info->global_block_rsv);
3430 ret = btrfs_truncate_free_space_cache(root, trans, NULL, inode);
3435 spin_lock(&block_group->lock);
3436 if (block_group->cached != BTRFS_CACHE_FINISHED ||
3437 !btrfs_test_opt(root->fs_info, SPACE_CACHE)) {
3439 * don't bother trying to write stuff out _if_
3440 * a) we're not cached,
3441 * b) we're with nospace_cache mount option.
3443 dcs = BTRFS_DC_WRITTEN;
3444 spin_unlock(&block_group->lock);
3447 spin_unlock(&block_group->lock);
3450 * We hit an ENOSPC when setting up the cache in this transaction, just
3451 * skip doing the setup, we've already cleared the cache so we're safe.
3453 if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
3459 * Try to preallocate enough space based on how big the block group is.
3460 * Keep in mind this has to include any pinned space which could end up
3461 * taking up quite a bit since it's not folded into the other space
3464 num_pages = div_u64(block_group->key.offset, SZ_256M);
3469 num_pages *= PAGE_SIZE;
3471 ret = btrfs_check_data_free_space(inode, 0, num_pages);
3475 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3476 num_pages, num_pages,
3479 * Our cache requires contiguous chunks so that we don't modify a bunch
3480 * of metadata or split extents when writing the cache out, which means
3481 * we can enospc if we are heavily fragmented in addition to just normal
3482 * out of space conditions. So if we hit this just skip setting up any
3483 * other block groups for this transaction, maybe we'll unpin enough
3484 * space the next time around.
3487 dcs = BTRFS_DC_SETUP;
3488 else if (ret == -ENOSPC)
3489 set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
3494 btrfs_release_path(path);
3496 spin_lock(&block_group->lock);
3497 if (!ret && dcs == BTRFS_DC_SETUP)
3498 block_group->cache_generation = trans->transid;
3499 block_group->disk_cache_state = dcs;
3500 spin_unlock(&block_group->lock);
3505 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans,
3506 struct btrfs_root *root)
3508 struct btrfs_block_group_cache *cache, *tmp;
3509 struct btrfs_transaction *cur_trans = trans->transaction;
3510 struct btrfs_path *path;
3512 if (list_empty(&cur_trans->dirty_bgs) ||
3513 !btrfs_test_opt(root->fs_info, SPACE_CACHE))
3516 path = btrfs_alloc_path();
3520 /* Could add new block groups, use _safe just in case */
3521 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
3523 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3524 cache_save_setup(cache, trans, path);
3527 btrfs_free_path(path);
3532 * transaction commit does final block group cache writeback during a
3533 * critical section where nothing is allowed to change the FS. This is
3534 * required in order for the cache to actually match the block group,
3535 * but can introduce a lot of latency into the commit.
3537 * So, btrfs_start_dirty_block_groups is here to kick off block group
3538 * cache IO. There's a chance we'll have to redo some of it if the
3539 * block group changes again during the commit, but it greatly reduces
3540 * the commit latency by getting rid of the easy block groups while
3541 * we're still allowing others to join the commit.
3543 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans,
3544 struct btrfs_root *root)
3546 struct btrfs_block_group_cache *cache;
3547 struct btrfs_transaction *cur_trans = trans->transaction;
3550 struct btrfs_path *path = NULL;
3552 struct list_head *io = &cur_trans->io_bgs;
3553 int num_started = 0;
3556 spin_lock(&cur_trans->dirty_bgs_lock);
3557 if (list_empty(&cur_trans->dirty_bgs)) {
3558 spin_unlock(&cur_trans->dirty_bgs_lock);
3561 list_splice_init(&cur_trans->dirty_bgs, &dirty);
3562 spin_unlock(&cur_trans->dirty_bgs_lock);
3566 * make sure all the block groups on our dirty list actually
3569 btrfs_create_pending_block_groups(trans, root);
3572 path = btrfs_alloc_path();
3578 * cache_write_mutex is here only to save us from balance or automatic
3579 * removal of empty block groups deleting this block group while we are
3580 * writing out the cache
3582 mutex_lock(&trans->transaction->cache_write_mutex);
3583 while (!list_empty(&dirty)) {
3584 cache = list_first_entry(&dirty,
3585 struct btrfs_block_group_cache,
3588 * this can happen if something re-dirties a block
3589 * group that is already under IO. Just wait for it to
3590 * finish and then do it all again
3592 if (!list_empty(&cache->io_list)) {
3593 list_del_init(&cache->io_list);
3594 btrfs_wait_cache_io(root, trans, cache,
3595 &cache->io_ctl, path,
3596 cache->key.objectid);
3597 btrfs_put_block_group(cache);
3602 * btrfs_wait_cache_io uses the cache->dirty_list to decide
3603 * if it should update the cache_state. Don't delete
3604 * until after we wait.
3606 * Since we're not running in the commit critical section
3607 * we need the dirty_bgs_lock to protect from update_block_group
3609 spin_lock(&cur_trans->dirty_bgs_lock);
3610 list_del_init(&cache->dirty_list);
3611 spin_unlock(&cur_trans->dirty_bgs_lock);
3615 cache_save_setup(cache, trans, path);
3617 if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3618 cache->io_ctl.inode = NULL;
3619 ret = btrfs_write_out_cache(root, trans, cache, path);
3620 if (ret == 0 && cache->io_ctl.inode) {
3625 * the cache_write_mutex is protecting
3628 list_add_tail(&cache->io_list, io);
3631 * if we failed to write the cache, the
3632 * generation will be bad and life goes on
3638 ret = write_one_cache_group(trans, root, path, cache);
3640 * Our block group might still be attached to the list
3641 * of new block groups in the transaction handle of some
3642 * other task (struct btrfs_trans_handle->new_bgs). This
3643 * means its block group item isn't yet in the extent
3644 * tree. If this happens ignore the error, as we will
3645 * try again later in the critical section of the
3646 * transaction commit.
3648 if (ret == -ENOENT) {
3650 spin_lock(&cur_trans->dirty_bgs_lock);
3651 if (list_empty(&cache->dirty_list)) {
3652 list_add_tail(&cache->dirty_list,
3653 &cur_trans->dirty_bgs);
3654 btrfs_get_block_group(cache);
3656 spin_unlock(&cur_trans->dirty_bgs_lock);
3658 btrfs_abort_transaction(trans, ret);
3662 /* if its not on the io list, we need to put the block group */
3664 btrfs_put_block_group(cache);
3670 * Avoid blocking other tasks for too long. It might even save
3671 * us from writing caches for block groups that are going to be
3674 mutex_unlock(&trans->transaction->cache_write_mutex);
3675 mutex_lock(&trans->transaction->cache_write_mutex);
3677 mutex_unlock(&trans->transaction->cache_write_mutex);
3680 * go through delayed refs for all the stuff we've just kicked off
3681 * and then loop back (just once)
3683 ret = btrfs_run_delayed_refs(trans, root, 0);
3684 if (!ret && loops == 0) {
3686 spin_lock(&cur_trans->dirty_bgs_lock);
3687 list_splice_init(&cur_trans->dirty_bgs, &dirty);
3689 * dirty_bgs_lock protects us from concurrent block group
3690 * deletes too (not just cache_write_mutex).
3692 if (!list_empty(&dirty)) {
3693 spin_unlock(&cur_trans->dirty_bgs_lock);
3696 spin_unlock(&cur_trans->dirty_bgs_lock);
3699 btrfs_free_path(path);
3703 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3704 struct btrfs_root *root)
3706 struct btrfs_block_group_cache *cache;
3707 struct btrfs_transaction *cur_trans = trans->transaction;
3710 struct btrfs_path *path;
3711 struct list_head *io = &cur_trans->io_bgs;
3712 int num_started = 0;
3714 path = btrfs_alloc_path();
3719 * Even though we are in the critical section of the transaction commit,
3720 * we can still have concurrent tasks adding elements to this
3721 * transaction's list of dirty block groups. These tasks correspond to
3722 * endio free space workers started when writeback finishes for a
3723 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
3724 * allocate new block groups as a result of COWing nodes of the root
3725 * tree when updating the free space inode. The writeback for the space
3726 * caches is triggered by an earlier call to
3727 * btrfs_start_dirty_block_groups() and iterations of the following
3729 * Also we want to do the cache_save_setup first and then run the
3730 * delayed refs to make sure we have the best chance at doing this all
3733 spin_lock(&cur_trans->dirty_bgs_lock);
3734 while (!list_empty(&cur_trans->dirty_bgs)) {
3735 cache = list_first_entry(&cur_trans->dirty_bgs,
3736 struct btrfs_block_group_cache,
3740 * this can happen if cache_save_setup re-dirties a block
3741 * group that is already under IO. Just wait for it to
3742 * finish and then do it all again
3744 if (!list_empty(&cache->io_list)) {
3745 spin_unlock(&cur_trans->dirty_bgs_lock);
3746 list_del_init(&cache->io_list);
3747 btrfs_wait_cache_io(root, trans, cache,
3748 &cache->io_ctl, path,
3749 cache->key.objectid);
3750 btrfs_put_block_group(cache);
3751 spin_lock(&cur_trans->dirty_bgs_lock);
3755 * don't remove from the dirty list until after we've waited
3758 list_del_init(&cache->dirty_list);
3759 spin_unlock(&cur_trans->dirty_bgs_lock);
3762 cache_save_setup(cache, trans, path);
3765 ret = btrfs_run_delayed_refs(trans, root, (unsigned long) -1);
3767 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3768 cache->io_ctl.inode = NULL;
3769 ret = btrfs_write_out_cache(root, trans, cache, path);
3770 if (ret == 0 && cache->io_ctl.inode) {
3773 list_add_tail(&cache->io_list, io);
3776 * if we failed to write the cache, the
3777 * generation will be bad and life goes on
3783 ret = write_one_cache_group(trans, root, path, cache);
3785 * One of the free space endio workers might have
3786 * created a new block group while updating a free space
3787 * cache's inode (at inode.c:btrfs_finish_ordered_io())
3788 * and hasn't released its transaction handle yet, in
3789 * which case the new block group is still attached to
3790 * its transaction handle and its creation has not
3791 * finished yet (no block group item in the extent tree
3792 * yet, etc). If this is the case, wait for all free
3793 * space endio workers to finish and retry. This is a
3794 * a very rare case so no need for a more efficient and
3797 if (ret == -ENOENT) {
3798 wait_event(cur_trans->writer_wait,
3799 atomic_read(&cur_trans->num_writers) == 1);
3800 ret = write_one_cache_group(trans, root, path,
3804 btrfs_abort_transaction(trans, ret);
3807 /* if its not on the io list, we need to put the block group */
3809 btrfs_put_block_group(cache);
3810 spin_lock(&cur_trans->dirty_bgs_lock);
3812 spin_unlock(&cur_trans->dirty_bgs_lock);
3814 while (!list_empty(io)) {
3815 cache = list_first_entry(io, struct btrfs_block_group_cache,
3817 list_del_init(&cache->io_list);
3818 btrfs_wait_cache_io(root, trans, cache,
3819 &cache->io_ctl, path, cache->key.objectid);
3820 btrfs_put_block_group(cache);
3823 btrfs_free_path(path);
3827 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
3829 struct btrfs_block_group_cache *block_group;
3832 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
3833 if (!block_group || block_group->ro)
3836 btrfs_put_block_group(block_group);
3840 bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3842 struct btrfs_block_group_cache *bg;
3845 bg = btrfs_lookup_block_group(fs_info, bytenr);
3849 spin_lock(&bg->lock);
3853 atomic_inc(&bg->nocow_writers);
3854 spin_unlock(&bg->lock);
3856 /* no put on block group, done by btrfs_dec_nocow_writers */
3858 btrfs_put_block_group(bg);
3864 void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3866 struct btrfs_block_group_cache *bg;
3868 bg = btrfs_lookup_block_group(fs_info, bytenr);
3870 if (atomic_dec_and_test(&bg->nocow_writers))
3871 wake_up_atomic_t(&bg->nocow_writers);
3873 * Once for our lookup and once for the lookup done by a previous call
3874 * to btrfs_inc_nocow_writers()
3876 btrfs_put_block_group(bg);
3877 btrfs_put_block_group(bg);
3880 static int btrfs_wait_nocow_writers_atomic_t(atomic_t *a)
3886 void btrfs_wait_nocow_writers(struct btrfs_block_group_cache *bg)
3888 wait_on_atomic_t(&bg->nocow_writers,
3889 btrfs_wait_nocow_writers_atomic_t,
3890 TASK_UNINTERRUPTIBLE);
3893 static const char *alloc_name(u64 flags)
3896 case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA:
3898 case BTRFS_BLOCK_GROUP_METADATA:
3900 case BTRFS_BLOCK_GROUP_DATA:
3902 case BTRFS_BLOCK_GROUP_SYSTEM:
3906 return "invalid-combination";
3910 static int update_space_info(struct btrfs_fs_info *info, u64 flags,
3911 u64 total_bytes, u64 bytes_used,
3913 struct btrfs_space_info **space_info)
3915 struct btrfs_space_info *found;
3920 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3921 BTRFS_BLOCK_GROUP_RAID10))
3926 found = __find_space_info(info, flags);
3928 spin_lock(&found->lock);
3929 found->total_bytes += total_bytes;
3930 found->disk_total += total_bytes * factor;
3931 found->bytes_used += bytes_used;
3932 found->disk_used += bytes_used * factor;
3933 found->bytes_readonly += bytes_readonly;
3934 if (total_bytes > 0)
3936 space_info_add_new_bytes(info, found, total_bytes -
3937 bytes_used - bytes_readonly);
3938 spin_unlock(&found->lock);
3939 *space_info = found;
3942 found = kzalloc(sizeof(*found), GFP_NOFS);
3946 ret = percpu_counter_init(&found->total_bytes_pinned, 0, GFP_KERNEL);
3952 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
3953 INIT_LIST_HEAD(&found->block_groups[i]);
3954 init_rwsem(&found->groups_sem);
3955 spin_lock_init(&found->lock);
3956 found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
3957 found->total_bytes = total_bytes;
3958 found->disk_total = total_bytes * factor;
3959 found->bytes_used = bytes_used;
3960 found->disk_used = bytes_used * factor;
3961 found->bytes_pinned = 0;
3962 found->bytes_reserved = 0;
3963 found->bytes_readonly = bytes_readonly;
3964 found->bytes_may_use = 0;
3966 found->max_extent_size = 0;
3967 found->force_alloc = CHUNK_ALLOC_NO_FORCE;
3968 found->chunk_alloc = 0;
3970 init_waitqueue_head(&found->wait);
3971 INIT_LIST_HEAD(&found->ro_bgs);
3972 INIT_LIST_HEAD(&found->tickets);
3973 INIT_LIST_HEAD(&found->priority_tickets);
3975 ret = kobject_init_and_add(&found->kobj, &space_info_ktype,
3976 info->space_info_kobj, "%s",
3977 alloc_name(found->flags));
3983 *space_info = found;
3984 list_add_rcu(&found->list, &info->space_info);
3985 if (flags & BTRFS_BLOCK_GROUP_DATA)
3986 info->data_sinfo = found;
3991 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
3993 u64 extra_flags = chunk_to_extended(flags) &
3994 BTRFS_EXTENDED_PROFILE_MASK;
3996 write_seqlock(&fs_info->profiles_lock);
3997 if (flags & BTRFS_BLOCK_GROUP_DATA)
3998 fs_info->avail_data_alloc_bits |= extra_flags;
3999 if (flags & BTRFS_BLOCK_GROUP_METADATA)
4000 fs_info->avail_metadata_alloc_bits |= extra_flags;
4001 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
4002 fs_info->avail_system_alloc_bits |= extra_flags;
4003 write_sequnlock(&fs_info->profiles_lock);
4007 * returns target flags in extended format or 0 if restripe for this
4008 * chunk_type is not in progress
4010 * should be called with either volume_mutex or balance_lock held
4012 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
4014 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4020 if (flags & BTRFS_BLOCK_GROUP_DATA &&
4021 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4022 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
4023 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
4024 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4025 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
4026 } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
4027 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4028 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
4035 * @flags: available profiles in extended format (see ctree.h)
4037 * Returns reduced profile in chunk format. If profile changing is in
4038 * progress (either running or paused) picks the target profile (if it's
4039 * already available), otherwise falls back to plain reducing.
4041 static u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
4043 u64 num_devices = root->fs_info->fs_devices->rw_devices;
4049 * see if restripe for this chunk_type is in progress, if so
4050 * try to reduce to the target profile
4052 spin_lock(&root->fs_info->balance_lock);
4053 target = get_restripe_target(root->fs_info, flags);
4055 /* pick target profile only if it's already available */
4056 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
4057 spin_unlock(&root->fs_info->balance_lock);
4058 return extended_to_chunk(target);
4061 spin_unlock(&root->fs_info->balance_lock);
4063 /* First, mask out the RAID levels which aren't possible */
4064 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
4065 if (num_devices >= btrfs_raid_array[raid_type].devs_min)
4066 allowed |= btrfs_raid_group[raid_type];
4070 if (allowed & BTRFS_BLOCK_GROUP_RAID6)
4071 allowed = BTRFS_BLOCK_GROUP_RAID6;
4072 else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
4073 allowed = BTRFS_BLOCK_GROUP_RAID5;
4074 else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
4075 allowed = BTRFS_BLOCK_GROUP_RAID10;
4076 else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
4077 allowed = BTRFS_BLOCK_GROUP_RAID1;
4078 else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
4079 allowed = BTRFS_BLOCK_GROUP_RAID0;
4081 flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
4083 return extended_to_chunk(flags | allowed);
4086 static u64 get_alloc_profile(struct btrfs_root *root, u64 orig_flags)
4093 seq = read_seqbegin(&root->fs_info->profiles_lock);
4095 if (flags & BTRFS_BLOCK_GROUP_DATA)
4096 flags |= root->fs_info->avail_data_alloc_bits;
4097 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
4098 flags |= root->fs_info->avail_system_alloc_bits;
4099 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
4100 flags |= root->fs_info->avail_metadata_alloc_bits;
4101 } while (read_seqretry(&root->fs_info->profiles_lock, seq));
4103 return btrfs_reduce_alloc_profile(root, flags);
4106 u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
4112 flags = BTRFS_BLOCK_GROUP_DATA;
4113 else if (root == root->fs_info->chunk_root)
4114 flags = BTRFS_BLOCK_GROUP_SYSTEM;
4116 flags = BTRFS_BLOCK_GROUP_METADATA;
4118 ret = get_alloc_profile(root, flags);
4122 int btrfs_alloc_data_chunk_ondemand(struct inode *inode, u64 bytes)
4124 struct btrfs_space_info *data_sinfo;
4125 struct btrfs_root *root = BTRFS_I(inode)->root;
4126 struct btrfs_fs_info *fs_info = root->fs_info;
4129 int need_commit = 2;
4130 int have_pinned_space;
4132 /* make sure bytes are sectorsize aligned */
4133 bytes = ALIGN(bytes, root->sectorsize);
4135 if (btrfs_is_free_space_inode(inode)) {
4137 ASSERT(current->journal_info);
4140 data_sinfo = fs_info->data_sinfo;
4145 /* make sure we have enough space to handle the data first */
4146 spin_lock(&data_sinfo->lock);
4147 used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
4148 data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
4149 data_sinfo->bytes_may_use;
4151 if (used + bytes > data_sinfo->total_bytes) {
4152 struct btrfs_trans_handle *trans;
4155 * if we don't have enough free bytes in this space then we need
4156 * to alloc a new chunk.
4158 if (!data_sinfo->full) {
4161 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
4162 spin_unlock(&data_sinfo->lock);
4164 alloc_target = btrfs_get_alloc_profile(root, 1);
4166 * It is ugly that we don't call nolock join
4167 * transaction for the free space inode case here.
4168 * But it is safe because we only do the data space
4169 * reservation for the free space cache in the
4170 * transaction context, the common join transaction
4171 * just increase the counter of the current transaction
4172 * handler, doesn't try to acquire the trans_lock of
4175 trans = btrfs_join_transaction(root);
4177 return PTR_ERR(trans);
4179 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
4181 CHUNK_ALLOC_NO_FORCE);
4182 btrfs_end_transaction(trans, root);
4187 have_pinned_space = 1;
4193 data_sinfo = fs_info->data_sinfo;
4199 * If we don't have enough pinned space to deal with this
4200 * allocation, and no removed chunk in current transaction,
4201 * don't bother committing the transaction.
4203 have_pinned_space = percpu_counter_compare(
4204 &data_sinfo->total_bytes_pinned,
4205 used + bytes - data_sinfo->total_bytes);
4206 spin_unlock(&data_sinfo->lock);
4208 /* commit the current transaction and try again */
4211 !atomic_read(&root->fs_info->open_ioctl_trans)) {
4214 if (need_commit > 0) {
4215 btrfs_start_delalloc_roots(fs_info, 0, -1);
4216 btrfs_wait_ordered_roots(fs_info, -1, 0, (u64)-1);
4219 trans = btrfs_join_transaction(root);
4221 return PTR_ERR(trans);
4222 if (have_pinned_space >= 0 ||
4223 test_bit(BTRFS_TRANS_HAVE_FREE_BGS,
4224 &trans->transaction->flags) ||
4226 ret = btrfs_commit_transaction(trans, root);
4230 * The cleaner kthread might still be doing iput
4231 * operations. Wait for it to finish so that
4232 * more space is released.
4234 mutex_lock(&root->fs_info->cleaner_delayed_iput_mutex);
4235 mutex_unlock(&root->fs_info->cleaner_delayed_iput_mutex);
4238 btrfs_end_transaction(trans, root);
4242 trace_btrfs_space_reservation(root->fs_info,
4243 "space_info:enospc",
4244 data_sinfo->flags, bytes, 1);
4247 data_sinfo->bytes_may_use += bytes;
4248 trace_btrfs_space_reservation(root->fs_info, "space_info",
4249 data_sinfo->flags, bytes, 1);
4250 spin_unlock(&data_sinfo->lock);
4256 * New check_data_free_space() with ability for precious data reservation
4257 * Will replace old btrfs_check_data_free_space(), but for patch split,
4258 * add a new function first and then replace it.
4260 int btrfs_check_data_free_space(struct inode *inode, u64 start, u64 len)
4262 struct btrfs_root *root = BTRFS_I(inode)->root;
4265 /* align the range */
4266 len = round_up(start + len, root->sectorsize) -
4267 round_down(start, root->sectorsize);
4268 start = round_down(start, root->sectorsize);
4270 ret = btrfs_alloc_data_chunk_ondemand(inode, len);
4274 /* Use new btrfs_qgroup_reserve_data to reserve precious data space. */
4275 ret = btrfs_qgroup_reserve_data(inode, start, len);
4277 btrfs_free_reserved_data_space_noquota(inode, start, len);
4282 * Called if we need to clear a data reservation for this inode
4283 * Normally in a error case.
4285 * This one will *NOT* use accurate qgroup reserved space API, just for case
4286 * which we can't sleep and is sure it won't affect qgroup reserved space.
4287 * Like clear_bit_hook().
4289 void btrfs_free_reserved_data_space_noquota(struct inode *inode, u64 start,
4292 struct btrfs_root *root = BTRFS_I(inode)->root;
4293 struct btrfs_space_info *data_sinfo;
4295 /* Make sure the range is aligned to sectorsize */
4296 len = round_up(start + len, root->sectorsize) -
4297 round_down(start, root->sectorsize);
4298 start = round_down(start, root->sectorsize);
4300 data_sinfo = root->fs_info->data_sinfo;
4301 spin_lock(&data_sinfo->lock);
4302 if (WARN_ON(data_sinfo->bytes_may_use < len))
4303 data_sinfo->bytes_may_use = 0;
4305 data_sinfo->bytes_may_use -= len;
4306 trace_btrfs_space_reservation(root->fs_info, "space_info",
4307 data_sinfo->flags, len, 0);
4308 spin_unlock(&data_sinfo->lock);
4312 * Called if we need to clear a data reservation for this inode
4313 * Normally in a error case.
4315 * This one will handle the per-inode data rsv map for accurate reserved
4318 void btrfs_free_reserved_data_space(struct inode *inode, u64 start, u64 len)
4320 btrfs_free_reserved_data_space_noquota(inode, start, len);
4321 btrfs_qgroup_free_data(inode, start, len);
4324 static void force_metadata_allocation(struct btrfs_fs_info *info)
4326 struct list_head *head = &info->space_info;
4327 struct btrfs_space_info *found;
4330 list_for_each_entry_rcu(found, head, list) {
4331 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
4332 found->force_alloc = CHUNK_ALLOC_FORCE;
4337 static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
4339 return (global->size << 1);
4342 static int should_alloc_chunk(struct btrfs_root *root,
4343 struct btrfs_space_info *sinfo, int force)
4345 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4346 u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
4347 u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
4350 if (force == CHUNK_ALLOC_FORCE)
4354 * We need to take into account the global rsv because for all intents
4355 * and purposes it's used space. Don't worry about locking the
4356 * global_rsv, it doesn't change except when the transaction commits.
4358 if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
4359 num_allocated += calc_global_rsv_need_space(global_rsv);
4362 * in limited mode, we want to have some free space up to
4363 * about 1% of the FS size.
4365 if (force == CHUNK_ALLOC_LIMITED) {
4366 thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
4367 thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1));
4369 if (num_bytes - num_allocated < thresh)
4373 if (num_allocated + SZ_2M < div_factor(num_bytes, 8))
4378 static u64 get_profile_num_devs(struct btrfs_root *root, u64 type)
4382 if (type & (BTRFS_BLOCK_GROUP_RAID10 |
4383 BTRFS_BLOCK_GROUP_RAID0 |
4384 BTRFS_BLOCK_GROUP_RAID5 |
4385 BTRFS_BLOCK_GROUP_RAID6))
4386 num_dev = root->fs_info->fs_devices->rw_devices;
4387 else if (type & BTRFS_BLOCK_GROUP_RAID1)
4390 num_dev = 1; /* DUP or single */
4396 * If @is_allocation is true, reserve space in the system space info necessary
4397 * for allocating a chunk, otherwise if it's false, reserve space necessary for
4400 void check_system_chunk(struct btrfs_trans_handle *trans,
4401 struct btrfs_root *root,
4404 struct btrfs_space_info *info;
4411 * Needed because we can end up allocating a system chunk and for an
4412 * atomic and race free space reservation in the chunk block reserve.
4414 ASSERT(mutex_is_locked(&root->fs_info->chunk_mutex));
4416 info = __find_space_info(root->fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4417 spin_lock(&info->lock);
4418 left = info->total_bytes - info->bytes_used - info->bytes_pinned -
4419 info->bytes_reserved - info->bytes_readonly -
4420 info->bytes_may_use;
4421 spin_unlock(&info->lock);
4423 num_devs = get_profile_num_devs(root, type);
4425 /* num_devs device items to update and 1 chunk item to add or remove */
4426 thresh = btrfs_calc_trunc_metadata_size(root, num_devs) +
4427 btrfs_calc_trans_metadata_size(root, 1);
4429 if (left < thresh && btrfs_test_opt(root->fs_info, ENOSPC_DEBUG)) {
4430 btrfs_info(root->fs_info, "left=%llu, need=%llu, flags=%llu",
4431 left, thresh, type);
4432 dump_space_info(info, 0, 0);
4435 if (left < thresh) {
4438 flags = btrfs_get_alloc_profile(root->fs_info->chunk_root, 0);
4440 * Ignore failure to create system chunk. We might end up not
4441 * needing it, as we might not need to COW all nodes/leafs from
4442 * the paths we visit in the chunk tree (they were already COWed
4443 * or created in the current transaction for example).
4445 ret = btrfs_alloc_chunk(trans, root, flags);
4449 ret = btrfs_block_rsv_add(root->fs_info->chunk_root,
4450 &root->fs_info->chunk_block_rsv,
4451 thresh, BTRFS_RESERVE_NO_FLUSH);
4453 trans->chunk_bytes_reserved += thresh;
4458 * If force is CHUNK_ALLOC_FORCE:
4459 * - return 1 if it successfully allocates a chunk,
4460 * - return errors including -ENOSPC otherwise.
4461 * If force is NOT CHUNK_ALLOC_FORCE:
4462 * - return 0 if it doesn't need to allocate a new chunk,
4463 * - return 1 if it successfully allocates a chunk,
4464 * - return errors including -ENOSPC otherwise.
4466 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
4467 struct btrfs_root *extent_root, u64 flags, int force)
4469 struct btrfs_space_info *space_info;
4470 struct btrfs_fs_info *fs_info = extent_root->fs_info;
4471 int wait_for_alloc = 0;
4474 /* Don't re-enter if we're already allocating a chunk */
4475 if (trans->allocating_chunk)
4478 space_info = __find_space_info(extent_root->fs_info, flags);
4480 ret = update_space_info(extent_root->fs_info, flags,
4481 0, 0, 0, &space_info);
4482 BUG_ON(ret); /* -ENOMEM */
4484 BUG_ON(!space_info); /* Logic error */
4487 spin_lock(&space_info->lock);
4488 if (force < space_info->force_alloc)
4489 force = space_info->force_alloc;
4490 if (space_info->full) {
4491 if (should_alloc_chunk(extent_root, space_info, force))
4495 spin_unlock(&space_info->lock);
4499 if (!should_alloc_chunk(extent_root, space_info, force)) {
4500 spin_unlock(&space_info->lock);
4502 } else if (space_info->chunk_alloc) {
4505 space_info->chunk_alloc = 1;
4508 spin_unlock(&space_info->lock);
4510 mutex_lock(&fs_info->chunk_mutex);
4513 * The chunk_mutex is held throughout the entirety of a chunk
4514 * allocation, so once we've acquired the chunk_mutex we know that the
4515 * other guy is done and we need to recheck and see if we should
4518 if (wait_for_alloc) {
4519 mutex_unlock(&fs_info->chunk_mutex);
4524 trans->allocating_chunk = true;
4527 * If we have mixed data/metadata chunks we want to make sure we keep
4528 * allocating mixed chunks instead of individual chunks.
4530 if (btrfs_mixed_space_info(space_info))
4531 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
4534 * if we're doing a data chunk, go ahead and make sure that
4535 * we keep a reasonable number of metadata chunks allocated in the
4538 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
4539 fs_info->data_chunk_allocations++;
4540 if (!(fs_info->data_chunk_allocations %
4541 fs_info->metadata_ratio))
4542 force_metadata_allocation(fs_info);
4546 * Check if we have enough space in SYSTEM chunk because we may need
4547 * to update devices.
4549 check_system_chunk(trans, extent_root, flags);
4551 ret = btrfs_alloc_chunk(trans, extent_root, flags);
4552 trans->allocating_chunk = false;
4554 spin_lock(&space_info->lock);
4555 if (ret < 0 && ret != -ENOSPC)
4558 space_info->full = 1;
4562 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
4564 space_info->chunk_alloc = 0;
4565 spin_unlock(&space_info->lock);
4566 mutex_unlock(&fs_info->chunk_mutex);
4568 * When we allocate a new chunk we reserve space in the chunk block
4569 * reserve to make sure we can COW nodes/leafs in the chunk tree or
4570 * add new nodes/leafs to it if we end up needing to do it when
4571 * inserting the chunk item and updating device items as part of the
4572 * second phase of chunk allocation, performed by
4573 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a
4574 * large number of new block groups to create in our transaction
4575 * handle's new_bgs list to avoid exhausting the chunk block reserve
4576 * in extreme cases - like having a single transaction create many new
4577 * block groups when starting to write out the free space caches of all
4578 * the block groups that were made dirty during the lifetime of the
4581 if (trans->can_flush_pending_bgs &&
4582 trans->chunk_bytes_reserved >= (u64)SZ_2M) {
4583 btrfs_create_pending_block_groups(trans, extent_root);
4584 btrfs_trans_release_chunk_metadata(trans);
4589 static int can_overcommit(struct btrfs_root *root,
4590 struct btrfs_space_info *space_info, u64 bytes,
4591 enum btrfs_reserve_flush_enum flush)
4593 struct btrfs_block_rsv *global_rsv;
4599 /* Don't overcommit when in mixed mode. */
4600 if (space_info->flags & BTRFS_BLOCK_GROUP_DATA)
4603 BUG_ON(root->fs_info == NULL);
4604 global_rsv = &root->fs_info->global_block_rsv;
4605 profile = btrfs_get_alloc_profile(root, 0);
4606 used = space_info->bytes_used + space_info->bytes_reserved +
4607 space_info->bytes_pinned + space_info->bytes_readonly;
4610 * We only want to allow over committing if we have lots of actual space
4611 * free, but if we don't have enough space to handle the global reserve
4612 * space then we could end up having a real enospc problem when trying
4613 * to allocate a chunk or some other such important allocation.
4615 spin_lock(&global_rsv->lock);
4616 space_size = calc_global_rsv_need_space(global_rsv);
4617 spin_unlock(&global_rsv->lock);
4618 if (used + space_size >= space_info->total_bytes)
4621 used += space_info->bytes_may_use;
4623 spin_lock(&root->fs_info->free_chunk_lock);
4624 avail = root->fs_info->free_chunk_space;
4625 spin_unlock(&root->fs_info->free_chunk_lock);
4628 * If we have dup, raid1 or raid10 then only half of the free
4629 * space is actually useable. For raid56, the space info used
4630 * doesn't include the parity drive, so we don't have to
4633 if (profile & (BTRFS_BLOCK_GROUP_DUP |
4634 BTRFS_BLOCK_GROUP_RAID1 |
4635 BTRFS_BLOCK_GROUP_RAID10))
4639 * If we aren't flushing all things, let us overcommit up to
4640 * 1/2th of the space. If we can flush, don't let us overcommit
4641 * too much, let it overcommit up to 1/8 of the space.
4643 if (flush == BTRFS_RESERVE_FLUSH_ALL)
4648 if (used + bytes < space_info->total_bytes + avail)
4653 static void btrfs_writeback_inodes_sb_nr(struct btrfs_root *root,
4654 unsigned long nr_pages, int nr_items)
4656 struct super_block *sb = root->fs_info->sb;
4658 if (down_read_trylock(&sb->s_umount)) {
4659 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
4660 up_read(&sb->s_umount);
4663 * We needn't worry the filesystem going from r/w to r/o though
4664 * we don't acquire ->s_umount mutex, because the filesystem
4665 * should guarantee the delalloc inodes list be empty after
4666 * the filesystem is readonly(all dirty pages are written to
4669 btrfs_start_delalloc_roots(root->fs_info, 0, nr_items);
4670 if (!current->journal_info)
4671 btrfs_wait_ordered_roots(root->fs_info, nr_items,
4676 static inline int calc_reclaim_items_nr(struct btrfs_root *root, u64 to_reclaim)
4681 bytes = btrfs_calc_trans_metadata_size(root, 1);
4682 nr = (int)div64_u64(to_reclaim, bytes);
4688 #define EXTENT_SIZE_PER_ITEM SZ_256K
4691 * shrink metadata reservation for delalloc
4693 static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig,
4696 struct btrfs_block_rsv *block_rsv;
4697 struct btrfs_space_info *space_info;
4698 struct btrfs_trans_handle *trans;
4702 unsigned long nr_pages;
4705 enum btrfs_reserve_flush_enum flush;
4707 /* Calc the number of the pages we need flush for space reservation */
4708 items = calc_reclaim_items_nr(root, to_reclaim);
4709 to_reclaim = (u64)items * EXTENT_SIZE_PER_ITEM;
4711 trans = (struct btrfs_trans_handle *)current->journal_info;
4712 block_rsv = &root->fs_info->delalloc_block_rsv;
4713 space_info = block_rsv->space_info;
4715 delalloc_bytes = percpu_counter_sum_positive(
4716 &root->fs_info->delalloc_bytes);
4717 if (delalloc_bytes == 0) {
4721 btrfs_wait_ordered_roots(root->fs_info, items,
4727 while (delalloc_bytes && loops < 3) {
4728 max_reclaim = min(delalloc_bytes, to_reclaim);
4729 nr_pages = max_reclaim >> PAGE_SHIFT;
4730 btrfs_writeback_inodes_sb_nr(root, nr_pages, items);
4732 * We need to wait for the async pages to actually start before
4735 max_reclaim = atomic_read(&root->fs_info->async_delalloc_pages);
4739 if (max_reclaim <= nr_pages)
4742 max_reclaim -= nr_pages;
4744 wait_event(root->fs_info->async_submit_wait,
4745 atomic_read(&root->fs_info->async_delalloc_pages) <=
4749 flush = BTRFS_RESERVE_FLUSH_ALL;
4751 flush = BTRFS_RESERVE_NO_FLUSH;
4752 spin_lock(&space_info->lock);
4753 if (can_overcommit(root, space_info, orig, flush)) {
4754 spin_unlock(&space_info->lock);
4757 if (list_empty(&space_info->tickets) &&
4758 list_empty(&space_info->priority_tickets)) {
4759 spin_unlock(&space_info->lock);
4762 spin_unlock(&space_info->lock);
4765 if (wait_ordered && !trans) {
4766 btrfs_wait_ordered_roots(root->fs_info, items,
4769 time_left = schedule_timeout_killable(1);
4773 delalloc_bytes = percpu_counter_sum_positive(
4774 &root->fs_info->delalloc_bytes);
4779 * maybe_commit_transaction - possibly commit the transaction if its ok to
4780 * @root - the root we're allocating for
4781 * @bytes - the number of bytes we want to reserve
4782 * @force - force the commit
4784 * This will check to make sure that committing the transaction will actually
4785 * get us somewhere and then commit the transaction if it does. Otherwise it
4786 * will return -ENOSPC.
4788 static int may_commit_transaction(struct btrfs_root *root,
4789 struct btrfs_space_info *space_info,
4790 u64 bytes, int force)
4792 struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv;
4793 struct btrfs_trans_handle *trans;
4795 trans = (struct btrfs_trans_handle *)current->journal_info;
4802 /* See if there is enough pinned space to make this reservation */
4803 if (percpu_counter_compare(&space_info->total_bytes_pinned,
4808 * See if there is some space in the delayed insertion reservation for
4811 if (space_info != delayed_rsv->space_info)
4814 spin_lock(&delayed_rsv->lock);
4815 if (percpu_counter_compare(&space_info->total_bytes_pinned,
4816 bytes - delayed_rsv->size) >= 0) {
4817 spin_unlock(&delayed_rsv->lock);
4820 spin_unlock(&delayed_rsv->lock);
4823 trans = btrfs_join_transaction(root);
4827 return btrfs_commit_transaction(trans, root);
4830 struct reserve_ticket {
4833 struct list_head list;
4834 wait_queue_head_t wait;
4837 static int flush_space(struct btrfs_root *root,
4838 struct btrfs_space_info *space_info, u64 num_bytes,
4839 u64 orig_bytes, int state)
4841 struct btrfs_trans_handle *trans;
4846 case FLUSH_DELAYED_ITEMS_NR:
4847 case FLUSH_DELAYED_ITEMS:
4848 if (state == FLUSH_DELAYED_ITEMS_NR)
4849 nr = calc_reclaim_items_nr(root, num_bytes) * 2;
4853 trans = btrfs_join_transaction(root);
4854 if (IS_ERR(trans)) {
4855 ret = PTR_ERR(trans);
4858 ret = btrfs_run_delayed_items_nr(trans, root, nr);
4859 btrfs_end_transaction(trans, root);
4861 case FLUSH_DELALLOC:
4862 case FLUSH_DELALLOC_WAIT:
4863 shrink_delalloc(root, num_bytes * 2, orig_bytes,
4864 state == FLUSH_DELALLOC_WAIT);
4867 trans = btrfs_join_transaction(root);
4868 if (IS_ERR(trans)) {
4869 ret = PTR_ERR(trans);
4872 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
4873 btrfs_get_alloc_profile(root, 0),
4874 CHUNK_ALLOC_NO_FORCE);
4875 btrfs_end_transaction(trans, root);
4876 if (ret > 0 || ret == -ENOSPC)
4880 ret = may_commit_transaction(root, space_info, orig_bytes, 0);
4887 trace_btrfs_flush_space(root->fs_info, space_info->flags, num_bytes,
4888 orig_bytes, state, ret);
4893 btrfs_calc_reclaim_metadata_size(struct btrfs_root *root,
4894 struct btrfs_space_info *space_info)
4896 struct reserve_ticket *ticket;
4901 list_for_each_entry(ticket, &space_info->tickets, list)
4902 to_reclaim += ticket->bytes;
4903 list_for_each_entry(ticket, &space_info->priority_tickets, list)
4904 to_reclaim += ticket->bytes;
4908 to_reclaim = min_t(u64, num_online_cpus() * SZ_1M, SZ_16M);
4909 if (can_overcommit(root, space_info, to_reclaim,
4910 BTRFS_RESERVE_FLUSH_ALL))
4913 used = space_info->bytes_used + space_info->bytes_reserved +
4914 space_info->bytes_pinned + space_info->bytes_readonly +
4915 space_info->bytes_may_use;
4916 if (can_overcommit(root, space_info, SZ_1M, BTRFS_RESERVE_FLUSH_ALL))
4917 expected = div_factor_fine(space_info->total_bytes, 95);
4919 expected = div_factor_fine(space_info->total_bytes, 90);
4921 if (used > expected)
4922 to_reclaim = used - expected;
4925 to_reclaim = min(to_reclaim, space_info->bytes_may_use +
4926 space_info->bytes_reserved);
4930 static inline int need_do_async_reclaim(struct btrfs_space_info *space_info,
4931 struct btrfs_root *root, u64 used)
4933 u64 thresh = div_factor_fine(space_info->total_bytes, 98);
4935 /* If we're just plain full then async reclaim just slows us down. */
4936 if ((space_info->bytes_used + space_info->bytes_reserved) >= thresh)
4939 if (!btrfs_calc_reclaim_metadata_size(root, space_info))
4942 return (used >= thresh && !btrfs_fs_closing(root->fs_info) &&
4943 !test_bit(BTRFS_FS_STATE_REMOUNTING,
4944 &root->fs_info->fs_state));
4947 static void wake_all_tickets(struct list_head *head)
4949 struct reserve_ticket *ticket;
4951 while (!list_empty(head)) {
4952 ticket = list_first_entry(head, struct reserve_ticket, list);
4953 list_del_init(&ticket->list);
4954 ticket->error = -ENOSPC;
4955 wake_up(&ticket->wait);
4960 * This is for normal flushers, we can wait all goddamned day if we want to. We
4961 * will loop and continuously try to flush as long as we are making progress.
4962 * We count progress as clearing off tickets each time we have to loop.
4964 static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
4966 struct btrfs_fs_info *fs_info;
4967 struct btrfs_space_info *space_info;
4970 int commit_cycles = 0;
4971 u64 last_tickets_id;
4973 fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
4974 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4976 spin_lock(&space_info->lock);
4977 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root,
4980 space_info->flush = 0;
4981 spin_unlock(&space_info->lock);
4984 last_tickets_id = space_info->tickets_id;
4985 spin_unlock(&space_info->lock);
4987 flush_state = FLUSH_DELAYED_ITEMS_NR;
4989 struct reserve_ticket *ticket;
4992 ret = flush_space(fs_info->fs_root, space_info, to_reclaim,
4993 to_reclaim, flush_state);
4994 spin_lock(&space_info->lock);
4995 if (list_empty(&space_info->tickets)) {
4996 space_info->flush = 0;
4997 spin_unlock(&space_info->lock);
5000 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root,
5002 ticket = list_first_entry(&space_info->tickets,
5003 struct reserve_ticket, list);
5004 if (last_tickets_id == space_info->tickets_id) {
5007 last_tickets_id = space_info->tickets_id;
5008 flush_state = FLUSH_DELAYED_ITEMS_NR;
5013 if (flush_state > COMMIT_TRANS) {
5015 if (commit_cycles > 2) {
5016 wake_all_tickets(&space_info->tickets);
5017 space_info->flush = 0;
5019 flush_state = FLUSH_DELAYED_ITEMS_NR;
5022 spin_unlock(&space_info->lock);
5023 } while (flush_state <= COMMIT_TRANS);
5026 void btrfs_init_async_reclaim_work(struct work_struct *work)
5028 INIT_WORK(work, btrfs_async_reclaim_metadata_space);
5031 static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info,
5032 struct btrfs_space_info *space_info,
5033 struct reserve_ticket *ticket)
5036 int flush_state = FLUSH_DELAYED_ITEMS_NR;
5038 spin_lock(&space_info->lock);
5039 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root,
5042 spin_unlock(&space_info->lock);
5045 spin_unlock(&space_info->lock);
5048 flush_space(fs_info->fs_root, space_info, to_reclaim,
5049 to_reclaim, flush_state);
5051 spin_lock(&space_info->lock);
5052 if (ticket->bytes == 0) {
5053 spin_unlock(&space_info->lock);
5056 spin_unlock(&space_info->lock);
5059 * Priority flushers can't wait on delalloc without
5062 if (flush_state == FLUSH_DELALLOC ||
5063 flush_state == FLUSH_DELALLOC_WAIT)
5064 flush_state = ALLOC_CHUNK;
5065 } while (flush_state < COMMIT_TRANS);
5068 static int wait_reserve_ticket(struct btrfs_fs_info *fs_info,
5069 struct btrfs_space_info *space_info,
5070 struct reserve_ticket *ticket, u64 orig_bytes)
5076 spin_lock(&space_info->lock);
5077 while (ticket->bytes > 0 && ticket->error == 0) {
5078 ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE);
5083 spin_unlock(&space_info->lock);
5087 finish_wait(&ticket->wait, &wait);
5088 spin_lock(&space_info->lock);
5091 ret = ticket->error;
5092 if (!list_empty(&ticket->list))
5093 list_del_init(&ticket->list);
5094 if (ticket->bytes && ticket->bytes < orig_bytes) {
5095 u64 num_bytes = orig_bytes - ticket->bytes;
5096 space_info->bytes_may_use -= num_bytes;
5097 trace_btrfs_space_reservation(fs_info, "space_info",
5098 space_info->flags, num_bytes, 0);
5100 spin_unlock(&space_info->lock);
5106 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5107 * @root - the root we're allocating for
5108 * @space_info - the space info we want to allocate from
5109 * @orig_bytes - the number of bytes we want
5110 * @flush - whether or not we can flush to make our reservation
5112 * This will reserve orig_bytes number of bytes from the space info associated
5113 * with the block_rsv. If there is not enough space it will make an attempt to
5114 * flush out space to make room. It will do this by flushing delalloc if
5115 * possible or committing the transaction. If flush is 0 then no attempts to
5116 * regain reservations will be made and this will fail if there is not enough
5119 static int __reserve_metadata_bytes(struct btrfs_root *root,
5120 struct btrfs_space_info *space_info,
5122 enum btrfs_reserve_flush_enum flush)
5124 struct reserve_ticket ticket;
5129 ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_ALL);
5131 spin_lock(&space_info->lock);
5133 used = space_info->bytes_used + space_info->bytes_reserved +
5134 space_info->bytes_pinned + space_info->bytes_readonly +
5135 space_info->bytes_may_use;
5138 * If we have enough space then hooray, make our reservation and carry
5139 * on. If not see if we can overcommit, and if we can, hooray carry on.
5140 * If not things get more complicated.
5142 if (used + orig_bytes <= space_info->total_bytes) {
5143 space_info->bytes_may_use += orig_bytes;
5144 trace_btrfs_space_reservation(root->fs_info, "space_info",
5145 space_info->flags, orig_bytes,
5148 } else if (can_overcommit(root, space_info, orig_bytes, flush)) {
5149 space_info->bytes_may_use += orig_bytes;
5150 trace_btrfs_space_reservation(root->fs_info, "space_info",
5151 space_info->flags, orig_bytes,
5157 * If we couldn't make a reservation then setup our reservation ticket
5158 * and kick the async worker if it's not already running.
5160 * If we are a priority flusher then we just need to add our ticket to
5161 * the list and we will do our own flushing further down.
5163 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
5164 ticket.bytes = orig_bytes;
5166 init_waitqueue_head(&ticket.wait);
5167 if (flush == BTRFS_RESERVE_FLUSH_ALL) {
5168 list_add_tail(&ticket.list, &space_info->tickets);
5169 if (!space_info->flush) {
5170 space_info->flush = 1;
5171 trace_btrfs_trigger_flush(root->fs_info,
5175 queue_work(system_unbound_wq,
5176 &root->fs_info->async_reclaim_work);
5179 list_add_tail(&ticket.list,
5180 &space_info->priority_tickets);
5182 } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
5185 * We will do the space reservation dance during log replay,
5186 * which means we won't have fs_info->fs_root set, so don't do
5187 * the async reclaim as we will panic.
5189 if (!root->fs_info->log_root_recovering &&
5190 need_do_async_reclaim(space_info, root, used) &&
5191 !work_busy(&root->fs_info->async_reclaim_work)) {
5192 trace_btrfs_trigger_flush(root->fs_info,
5196 queue_work(system_unbound_wq,
5197 &root->fs_info->async_reclaim_work);
5200 spin_unlock(&space_info->lock);
5201 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
5204 if (flush == BTRFS_RESERVE_FLUSH_ALL)
5205 return wait_reserve_ticket(root->fs_info, space_info, &ticket,
5209 priority_reclaim_metadata_space(root->fs_info, space_info, &ticket);
5210 spin_lock(&space_info->lock);
5212 if (ticket.bytes < orig_bytes) {
5213 u64 num_bytes = orig_bytes - ticket.bytes;
5214 space_info->bytes_may_use -= num_bytes;
5215 trace_btrfs_space_reservation(root->fs_info,
5216 "space_info", space_info->flags,
5220 list_del_init(&ticket.list);
5223 spin_unlock(&space_info->lock);
5224 ASSERT(list_empty(&ticket.list));
5229 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5230 * @root - the root we're allocating for
5231 * @block_rsv - the block_rsv we're allocating for
5232 * @orig_bytes - the number of bytes we want
5233 * @flush - whether or not we can flush to make our reservation
5235 * This will reserve orgi_bytes number of bytes from the space info associated
5236 * with the block_rsv. If there is not enough space it will make an attempt to
5237 * flush out space to make room. It will do this by flushing delalloc if
5238 * possible or committing the transaction. If flush is 0 then no attempts to
5239 * regain reservations will be made and this will fail if there is not enough
5242 static int reserve_metadata_bytes(struct btrfs_root *root,
5243 struct btrfs_block_rsv *block_rsv,
5245 enum btrfs_reserve_flush_enum flush)
5249 ret = __reserve_metadata_bytes(root, block_rsv->space_info, orig_bytes,
5251 if (ret == -ENOSPC &&
5252 unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
5253 struct btrfs_block_rsv *global_rsv =
5254 &root->fs_info->global_block_rsv;
5256 if (block_rsv != global_rsv &&
5257 !block_rsv_use_bytes(global_rsv, orig_bytes))
5261 trace_btrfs_space_reservation(root->fs_info,
5262 "space_info:enospc",
5263 block_rsv->space_info->flags,
5268 static struct btrfs_block_rsv *get_block_rsv(
5269 const struct btrfs_trans_handle *trans,
5270 const struct btrfs_root *root)
5272 struct btrfs_block_rsv *block_rsv = NULL;
5274 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
5275 (root == root->fs_info->csum_root && trans->adding_csums) ||
5276 (root == root->fs_info->uuid_root))
5277 block_rsv = trans->block_rsv;
5280 block_rsv = root->block_rsv;
5283 block_rsv = &root->fs_info->empty_block_rsv;
5288 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
5292 spin_lock(&block_rsv->lock);
5293 if (block_rsv->reserved >= num_bytes) {
5294 block_rsv->reserved -= num_bytes;
5295 if (block_rsv->reserved < block_rsv->size)
5296 block_rsv->full = 0;
5299 spin_unlock(&block_rsv->lock);
5303 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
5304 u64 num_bytes, int update_size)
5306 spin_lock(&block_rsv->lock);
5307 block_rsv->reserved += num_bytes;
5309 block_rsv->size += num_bytes;
5310 else if (block_rsv->reserved >= block_rsv->size)
5311 block_rsv->full = 1;
5312 spin_unlock(&block_rsv->lock);
5315 int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
5316 struct btrfs_block_rsv *dest, u64 num_bytes,
5319 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5322 if (global_rsv->space_info != dest->space_info)
5325 spin_lock(&global_rsv->lock);
5326 min_bytes = div_factor(global_rsv->size, min_factor);
5327 if (global_rsv->reserved < min_bytes + num_bytes) {
5328 spin_unlock(&global_rsv->lock);
5331 global_rsv->reserved -= num_bytes;
5332 if (global_rsv->reserved < global_rsv->size)
5333 global_rsv->full = 0;
5334 spin_unlock(&global_rsv->lock);
5336 block_rsv_add_bytes(dest, num_bytes, 1);
5341 * This is for space we already have accounted in space_info->bytes_may_use, so
5342 * basically when we're returning space from block_rsv's.
5344 static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
5345 struct btrfs_space_info *space_info,
5348 struct reserve_ticket *ticket;
5349 struct list_head *head;
5351 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH;
5352 bool check_overcommit = false;
5354 spin_lock(&space_info->lock);
5355 head = &space_info->priority_tickets;
5358 * If we are over our limit then we need to check and see if we can
5359 * overcommit, and if we can't then we just need to free up our space
5360 * and not satisfy any requests.
5362 used = space_info->bytes_used + space_info->bytes_reserved +
5363 space_info->bytes_pinned + space_info->bytes_readonly +
5364 space_info->bytes_may_use;
5365 if (used - num_bytes >= space_info->total_bytes)
5366 check_overcommit = true;
5368 while (!list_empty(head) && num_bytes) {
5369 ticket = list_first_entry(head, struct reserve_ticket,
5372 * We use 0 bytes because this space is already reserved, so
5373 * adding the ticket space would be a double count.
5375 if (check_overcommit &&
5376 !can_overcommit(fs_info->extent_root, space_info, 0,
5379 if (num_bytes >= ticket->bytes) {
5380 list_del_init(&ticket->list);
5381 num_bytes -= ticket->bytes;
5383 space_info->tickets_id++;
5384 wake_up(&ticket->wait);
5386 ticket->bytes -= num_bytes;
5391 if (num_bytes && head == &space_info->priority_tickets) {
5392 head = &space_info->tickets;
5393 flush = BTRFS_RESERVE_FLUSH_ALL;
5396 space_info->bytes_may_use -= num_bytes;
5397 trace_btrfs_space_reservation(fs_info, "space_info",
5398 space_info->flags, num_bytes, 0);
5399 spin_unlock(&space_info->lock);
5403 * This is for newly allocated space that isn't accounted in
5404 * space_info->bytes_may_use yet. So if we allocate a chunk or unpin an extent
5405 * we use this helper.
5407 static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
5408 struct btrfs_space_info *space_info,
5411 struct reserve_ticket *ticket;
5412 struct list_head *head = &space_info->priority_tickets;
5415 while (!list_empty(head) && num_bytes) {
5416 ticket = list_first_entry(head, struct reserve_ticket,
5418 if (num_bytes >= ticket->bytes) {
5419 trace_btrfs_space_reservation(fs_info, "space_info",
5422 list_del_init(&ticket->list);
5423 num_bytes -= ticket->bytes;
5424 space_info->bytes_may_use += ticket->bytes;
5426 space_info->tickets_id++;
5427 wake_up(&ticket->wait);
5429 trace_btrfs_space_reservation(fs_info, "space_info",
5432 space_info->bytes_may_use += num_bytes;
5433 ticket->bytes -= num_bytes;
5438 if (num_bytes && head == &space_info->priority_tickets) {
5439 head = &space_info->tickets;
5444 static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
5445 struct btrfs_block_rsv *block_rsv,
5446 struct btrfs_block_rsv *dest, u64 num_bytes)
5448 struct btrfs_space_info *space_info = block_rsv->space_info;
5450 spin_lock(&block_rsv->lock);
5451 if (num_bytes == (u64)-1)
5452 num_bytes = block_rsv->size;
5453 block_rsv->size -= num_bytes;
5454 if (block_rsv->reserved >= block_rsv->size) {
5455 num_bytes = block_rsv->reserved - block_rsv->size;
5456 block_rsv->reserved = block_rsv->size;
5457 block_rsv->full = 1;
5461 spin_unlock(&block_rsv->lock);
5463 if (num_bytes > 0) {
5465 spin_lock(&dest->lock);
5469 bytes_to_add = dest->size - dest->reserved;
5470 bytes_to_add = min(num_bytes, bytes_to_add);
5471 dest->reserved += bytes_to_add;
5472 if (dest->reserved >= dest->size)
5474 num_bytes -= bytes_to_add;
5476 spin_unlock(&dest->lock);
5479 space_info_add_old_bytes(fs_info, space_info,
5484 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src,
5485 struct btrfs_block_rsv *dst, u64 num_bytes,
5490 ret = block_rsv_use_bytes(src, num_bytes);
5494 block_rsv_add_bytes(dst, num_bytes, update_size);
5498 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
5500 memset(rsv, 0, sizeof(*rsv));
5501 spin_lock_init(&rsv->lock);
5505 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root,
5506 unsigned short type)
5508 struct btrfs_block_rsv *block_rsv;
5509 struct btrfs_fs_info *fs_info = root->fs_info;
5511 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
5515 btrfs_init_block_rsv(block_rsv, type);
5516 block_rsv->space_info = __find_space_info(fs_info,
5517 BTRFS_BLOCK_GROUP_METADATA);
5521 void btrfs_free_block_rsv(struct btrfs_root *root,
5522 struct btrfs_block_rsv *rsv)
5526 btrfs_block_rsv_release(root, rsv, (u64)-1);
5530 void __btrfs_free_block_rsv(struct btrfs_block_rsv *rsv)
5535 int btrfs_block_rsv_add(struct btrfs_root *root,
5536 struct btrfs_block_rsv *block_rsv, u64 num_bytes,
5537 enum btrfs_reserve_flush_enum flush)
5544 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5546 block_rsv_add_bytes(block_rsv, num_bytes, 1);
5553 int btrfs_block_rsv_check(struct btrfs_root *root,
5554 struct btrfs_block_rsv *block_rsv, int min_factor)
5562 spin_lock(&block_rsv->lock);
5563 num_bytes = div_factor(block_rsv->size, min_factor);
5564 if (block_rsv->reserved >= num_bytes)
5566 spin_unlock(&block_rsv->lock);
5571 int btrfs_block_rsv_refill(struct btrfs_root *root,
5572 struct btrfs_block_rsv *block_rsv, u64 min_reserved,
5573 enum btrfs_reserve_flush_enum flush)
5581 spin_lock(&block_rsv->lock);
5582 num_bytes = min_reserved;
5583 if (block_rsv->reserved >= num_bytes)
5586 num_bytes -= block_rsv->reserved;
5587 spin_unlock(&block_rsv->lock);
5592 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5594 block_rsv_add_bytes(block_rsv, num_bytes, 0);
5601 void btrfs_block_rsv_release(struct btrfs_root *root,
5602 struct btrfs_block_rsv *block_rsv,
5605 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
5606 if (global_rsv == block_rsv ||
5607 block_rsv->space_info != global_rsv->space_info)
5609 block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv,
5613 static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
5615 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
5616 struct btrfs_space_info *sinfo = block_rsv->space_info;
5620 * The global block rsv is based on the size of the extent tree, the
5621 * checksum tree and the root tree. If the fs is empty we want to set
5622 * it to a minimal amount for safety.
5624 num_bytes = btrfs_root_used(&fs_info->extent_root->root_item) +
5625 btrfs_root_used(&fs_info->csum_root->root_item) +
5626 btrfs_root_used(&fs_info->tree_root->root_item);
5627 num_bytes = max_t(u64, num_bytes, SZ_16M);
5629 spin_lock(&sinfo->lock);
5630 spin_lock(&block_rsv->lock);
5632 block_rsv->size = min_t(u64, num_bytes, SZ_512M);
5634 if (block_rsv->reserved < block_rsv->size) {
5635 num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
5636 sinfo->bytes_reserved + sinfo->bytes_readonly +
5637 sinfo->bytes_may_use;
5638 if (sinfo->total_bytes > num_bytes) {
5639 num_bytes = sinfo->total_bytes - num_bytes;
5640 num_bytes = min(num_bytes,
5641 block_rsv->size - block_rsv->reserved);
5642 block_rsv->reserved += num_bytes;
5643 sinfo->bytes_may_use += num_bytes;
5644 trace_btrfs_space_reservation(fs_info, "space_info",
5645 sinfo->flags, num_bytes,
5648 } else if (block_rsv->reserved > block_rsv->size) {
5649 num_bytes = block_rsv->reserved - block_rsv->size;
5650 sinfo->bytes_may_use -= num_bytes;
5651 trace_btrfs_space_reservation(fs_info, "space_info",
5652 sinfo->flags, num_bytes, 0);
5653 block_rsv->reserved = block_rsv->size;
5656 if (block_rsv->reserved == block_rsv->size)
5657 block_rsv->full = 1;
5659 block_rsv->full = 0;
5661 spin_unlock(&block_rsv->lock);
5662 spin_unlock(&sinfo->lock);
5665 static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
5667 struct btrfs_space_info *space_info;
5669 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
5670 fs_info->chunk_block_rsv.space_info = space_info;
5672 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5673 fs_info->global_block_rsv.space_info = space_info;
5674 fs_info->delalloc_block_rsv.space_info = space_info;
5675 fs_info->trans_block_rsv.space_info = space_info;
5676 fs_info->empty_block_rsv.space_info = space_info;
5677 fs_info->delayed_block_rsv.space_info = space_info;
5679 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
5680 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
5681 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
5682 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
5683 if (fs_info->quota_root)
5684 fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
5685 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
5687 update_global_block_rsv(fs_info);
5690 static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
5692 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
5694 WARN_ON(fs_info->delalloc_block_rsv.size > 0);
5695 WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
5696 WARN_ON(fs_info->trans_block_rsv.size > 0);
5697 WARN_ON(fs_info->trans_block_rsv.reserved > 0);
5698 WARN_ON(fs_info->chunk_block_rsv.size > 0);
5699 WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
5700 WARN_ON(fs_info->delayed_block_rsv.size > 0);
5701 WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
5704 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
5705 struct btrfs_root *root)
5707 if (!trans->block_rsv)
5710 if (!trans->bytes_reserved)
5713 trace_btrfs_space_reservation(root->fs_info, "transaction",
5714 trans->transid, trans->bytes_reserved, 0);
5715 btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved);
5716 trans->bytes_reserved = 0;
5720 * To be called after all the new block groups attached to the transaction
5721 * handle have been created (btrfs_create_pending_block_groups()).
5723 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
5725 struct btrfs_fs_info *fs_info = trans->fs_info;
5727 if (!trans->chunk_bytes_reserved)
5730 WARN_ON_ONCE(!list_empty(&trans->new_bgs));
5732 block_rsv_release_bytes(fs_info, &fs_info->chunk_block_rsv, NULL,
5733 trans->chunk_bytes_reserved);
5734 trans->chunk_bytes_reserved = 0;
5737 /* Can only return 0 or -ENOSPC */
5738 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
5739 struct inode *inode)
5741 struct btrfs_root *root = BTRFS_I(inode)->root;
5743 * We always use trans->block_rsv here as we will have reserved space
5744 * for our orphan when starting the transaction, using get_block_rsv()
5745 * here will sometimes make us choose the wrong block rsv as we could be
5746 * doing a reloc inode for a non refcounted root.
5748 struct btrfs_block_rsv *src_rsv = trans->block_rsv;
5749 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
5752 * We need to hold space in order to delete our orphan item once we've
5753 * added it, so this takes the reservation so we can release it later
5754 * when we are truly done with the orphan item.
5756 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
5757 trace_btrfs_space_reservation(root->fs_info, "orphan",
5758 btrfs_ino(inode), num_bytes, 1);
5759 return btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, 1);
5762 void btrfs_orphan_release_metadata(struct inode *inode)
5764 struct btrfs_root *root = BTRFS_I(inode)->root;
5765 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
5766 trace_btrfs_space_reservation(root->fs_info, "orphan",
5767 btrfs_ino(inode), num_bytes, 0);
5768 btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes);
5772 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
5773 * root: the root of the parent directory
5774 * rsv: block reservation
5775 * items: the number of items that we need do reservation
5776 * qgroup_reserved: used to return the reserved size in qgroup
5778 * This function is used to reserve the space for snapshot/subvolume
5779 * creation and deletion. Those operations are different with the
5780 * common file/directory operations, they change two fs/file trees
5781 * and root tree, the number of items that the qgroup reserves is
5782 * different with the free space reservation. So we can not use
5783 * the space reservation mechanism in start_transaction().
5785 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
5786 struct btrfs_block_rsv *rsv,
5788 u64 *qgroup_reserved,
5789 bool use_global_rsv)
5793 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
5795 if (root->fs_info->quota_enabled) {
5796 /* One for parent inode, two for dir entries */
5797 num_bytes = 3 * root->nodesize;
5798 ret = btrfs_qgroup_reserve_meta(root, num_bytes);
5805 *qgroup_reserved = num_bytes;
5807 num_bytes = btrfs_calc_trans_metadata_size(root, items);
5808 rsv->space_info = __find_space_info(root->fs_info,
5809 BTRFS_BLOCK_GROUP_METADATA);
5810 ret = btrfs_block_rsv_add(root, rsv, num_bytes,
5811 BTRFS_RESERVE_FLUSH_ALL);
5813 if (ret == -ENOSPC && use_global_rsv)
5814 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes, 1);
5816 if (ret && *qgroup_reserved)
5817 btrfs_qgroup_free_meta(root, *qgroup_reserved);
5822 void btrfs_subvolume_release_metadata(struct btrfs_root *root,
5823 struct btrfs_block_rsv *rsv,
5824 u64 qgroup_reserved)
5826 btrfs_block_rsv_release(root, rsv, (u64)-1);
5830 * drop_outstanding_extent - drop an outstanding extent
5831 * @inode: the inode we're dropping the extent for
5832 * @num_bytes: the number of bytes we're releasing.
5834 * This is called when we are freeing up an outstanding extent, either called
5835 * after an error or after an extent is written. This will return the number of
5836 * reserved extents that need to be freed. This must be called with
5837 * BTRFS_I(inode)->lock held.
5839 static unsigned drop_outstanding_extent(struct inode *inode, u64 num_bytes)
5841 unsigned drop_inode_space = 0;
5842 unsigned dropped_extents = 0;
5843 unsigned num_extents = 0;
5845 num_extents = (unsigned)div64_u64(num_bytes +
5846 BTRFS_MAX_EXTENT_SIZE - 1,
5847 BTRFS_MAX_EXTENT_SIZE);
5848 ASSERT(num_extents);
5849 ASSERT(BTRFS_I(inode)->outstanding_extents >= num_extents);
5850 BTRFS_I(inode)->outstanding_extents -= num_extents;
5852 if (BTRFS_I(inode)->outstanding_extents == 0 &&
5853 test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5854 &BTRFS_I(inode)->runtime_flags))
5855 drop_inode_space = 1;
5858 * If we have more or the same amount of outstanding extents than we have
5859 * reserved then we need to leave the reserved extents count alone.
5861 if (BTRFS_I(inode)->outstanding_extents >=
5862 BTRFS_I(inode)->reserved_extents)
5863 return drop_inode_space;
5865 dropped_extents = BTRFS_I(inode)->reserved_extents -
5866 BTRFS_I(inode)->outstanding_extents;
5867 BTRFS_I(inode)->reserved_extents -= dropped_extents;
5868 return dropped_extents + drop_inode_space;
5872 * calc_csum_metadata_size - return the amount of metadata space that must be
5873 * reserved/freed for the given bytes.
5874 * @inode: the inode we're manipulating
5875 * @num_bytes: the number of bytes in question
5876 * @reserve: 1 if we are reserving space, 0 if we are freeing space
5878 * This adjusts the number of csum_bytes in the inode and then returns the
5879 * correct amount of metadata that must either be reserved or freed. We
5880 * calculate how many checksums we can fit into one leaf and then divide the
5881 * number of bytes that will need to be checksumed by this value to figure out
5882 * how many checksums will be required. If we are adding bytes then the number
5883 * may go up and we will return the number of additional bytes that must be
5884 * reserved. If it is going down we will return the number of bytes that must
5887 * This must be called with BTRFS_I(inode)->lock held.
5889 static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes,
5892 struct btrfs_root *root = BTRFS_I(inode)->root;
5893 u64 old_csums, num_csums;
5895 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM &&
5896 BTRFS_I(inode)->csum_bytes == 0)
5899 old_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes);
5901 BTRFS_I(inode)->csum_bytes += num_bytes;
5903 BTRFS_I(inode)->csum_bytes -= num_bytes;
5904 num_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes);
5906 /* No change, no need to reserve more */
5907 if (old_csums == num_csums)
5911 return btrfs_calc_trans_metadata_size(root,
5912 num_csums - old_csums);
5914 return btrfs_calc_trans_metadata_size(root, old_csums - num_csums);
5917 int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
5919 struct btrfs_root *root = BTRFS_I(inode)->root;
5920 struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv;
5923 unsigned nr_extents = 0;
5924 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
5926 bool delalloc_lock = true;
5929 bool release_extra = false;
5931 /* If we are a free space inode we need to not flush since we will be in
5932 * the middle of a transaction commit. We also don't need the delalloc
5933 * mutex since we won't race with anybody. We need this mostly to make
5934 * lockdep shut its filthy mouth.
5936 * If we have a transaction open (can happen if we call truncate_block
5937 * from truncate), then we need FLUSH_LIMIT so we don't deadlock.
5939 if (btrfs_is_free_space_inode(inode)) {
5940 flush = BTRFS_RESERVE_NO_FLUSH;
5941 delalloc_lock = false;
5942 } else if (current->journal_info) {
5943 flush = BTRFS_RESERVE_FLUSH_LIMIT;
5946 if (flush != BTRFS_RESERVE_NO_FLUSH &&
5947 btrfs_transaction_in_commit(root->fs_info))
5948 schedule_timeout(1);
5951 mutex_lock(&BTRFS_I(inode)->delalloc_mutex);
5953 num_bytes = ALIGN(num_bytes, root->sectorsize);
5955 spin_lock(&BTRFS_I(inode)->lock);
5956 nr_extents = (unsigned)div64_u64(num_bytes +
5957 BTRFS_MAX_EXTENT_SIZE - 1,
5958 BTRFS_MAX_EXTENT_SIZE);
5959 BTRFS_I(inode)->outstanding_extents += nr_extents;
5962 if (BTRFS_I(inode)->outstanding_extents >
5963 BTRFS_I(inode)->reserved_extents)
5964 nr_extents += BTRFS_I(inode)->outstanding_extents -
5965 BTRFS_I(inode)->reserved_extents;
5967 /* We always want to reserve a slot for updating the inode. */
5968 to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents + 1);
5969 to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
5970 csum_bytes = BTRFS_I(inode)->csum_bytes;
5971 spin_unlock(&BTRFS_I(inode)->lock);
5973 if (root->fs_info->quota_enabled) {
5974 ret = btrfs_qgroup_reserve_meta(root,
5975 nr_extents * root->nodesize);
5980 ret = btrfs_block_rsv_add(root, block_rsv, to_reserve, flush);
5981 if (unlikely(ret)) {
5982 btrfs_qgroup_free_meta(root, nr_extents * root->nodesize);
5986 spin_lock(&BTRFS_I(inode)->lock);
5987 if (test_and_set_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5988 &BTRFS_I(inode)->runtime_flags)) {
5989 to_reserve -= btrfs_calc_trans_metadata_size(root, 1);
5990 release_extra = true;
5992 BTRFS_I(inode)->reserved_extents += nr_extents;
5993 spin_unlock(&BTRFS_I(inode)->lock);
5996 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
5999 trace_btrfs_space_reservation(root->fs_info, "delalloc",
6000 btrfs_ino(inode), to_reserve, 1);
6002 btrfs_block_rsv_release(root, block_rsv,
6003 btrfs_calc_trans_metadata_size(root,
6008 spin_lock(&BTRFS_I(inode)->lock);
6009 dropped = drop_outstanding_extent(inode, num_bytes);
6011 * If the inodes csum_bytes is the same as the original
6012 * csum_bytes then we know we haven't raced with any free()ers
6013 * so we can just reduce our inodes csum bytes and carry on.
6015 if (BTRFS_I(inode)->csum_bytes == csum_bytes) {
6016 calc_csum_metadata_size(inode, num_bytes, 0);
6018 u64 orig_csum_bytes = BTRFS_I(inode)->csum_bytes;
6022 * This is tricky, but first we need to figure out how much we
6023 * freed from any free-ers that occurred during this
6024 * reservation, so we reset ->csum_bytes to the csum_bytes
6025 * before we dropped our lock, and then call the free for the
6026 * number of bytes that were freed while we were trying our
6029 bytes = csum_bytes - BTRFS_I(inode)->csum_bytes;
6030 BTRFS_I(inode)->csum_bytes = csum_bytes;
6031 to_free = calc_csum_metadata_size(inode, bytes, 0);
6035 * Now we need to see how much we would have freed had we not
6036 * been making this reservation and our ->csum_bytes were not
6037 * artificially inflated.
6039 BTRFS_I(inode)->csum_bytes = csum_bytes - num_bytes;
6040 bytes = csum_bytes - orig_csum_bytes;
6041 bytes = calc_csum_metadata_size(inode, bytes, 0);
6044 * Now reset ->csum_bytes to what it should be. If bytes is
6045 * more than to_free then we would have freed more space had we
6046 * not had an artificially high ->csum_bytes, so we need to free
6047 * the remainder. If bytes is the same or less then we don't
6048 * need to do anything, the other free-ers did the correct
6051 BTRFS_I(inode)->csum_bytes = orig_csum_bytes - num_bytes;
6052 if (bytes > to_free)
6053 to_free = bytes - to_free;
6057 spin_unlock(&BTRFS_I(inode)->lock);
6059 to_free += btrfs_calc_trans_metadata_size(root, dropped);
6062 btrfs_block_rsv_release(root, block_rsv, to_free);
6063 trace_btrfs_space_reservation(root->fs_info, "delalloc",
6064 btrfs_ino(inode), to_free, 0);
6067 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
6072 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
6073 * @inode: the inode to release the reservation for
6074 * @num_bytes: the number of bytes we're releasing
6076 * This will release the metadata reservation for an inode. This can be called
6077 * once we complete IO for a given set of bytes to release their metadata
6080 void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
6082 struct btrfs_root *root = BTRFS_I(inode)->root;
6086 num_bytes = ALIGN(num_bytes, root->sectorsize);
6087 spin_lock(&BTRFS_I(inode)->lock);
6088 dropped = drop_outstanding_extent(inode, num_bytes);
6091 to_free = calc_csum_metadata_size(inode, num_bytes, 0);
6092 spin_unlock(&BTRFS_I(inode)->lock);
6094 to_free += btrfs_calc_trans_metadata_size(root, dropped);
6096 if (btrfs_is_testing(root->fs_info))
6099 trace_btrfs_space_reservation(root->fs_info, "delalloc",
6100 btrfs_ino(inode), to_free, 0);
6102 btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv,
6107 * btrfs_delalloc_reserve_space - reserve data and metadata space for
6109 * @inode: inode we're writing to
6110 * @start: start range we are writing to
6111 * @len: how long the range we are writing to
6113 * TODO: This function will finally replace old btrfs_delalloc_reserve_space()
6115 * This will do the following things
6117 * o reserve space in data space info for num bytes
6118 * and reserve precious corresponding qgroup space
6119 * (Done in check_data_free_space)
6121 * o reserve space for metadata space, based on the number of outstanding
6122 * extents and how much csums will be needed
6123 * also reserve metadata space in a per root over-reserve method.
6124 * o add to the inodes->delalloc_bytes
6125 * o add it to the fs_info's delalloc inodes list.
6126 * (Above 3 all done in delalloc_reserve_metadata)
6128 * Return 0 for success
6129 * Return <0 for error(-ENOSPC or -EQUOT)
6131 int btrfs_delalloc_reserve_space(struct inode *inode, u64 start, u64 len)
6135 ret = btrfs_check_data_free_space(inode, start, len);
6138 ret = btrfs_delalloc_reserve_metadata(inode, len);
6140 btrfs_free_reserved_data_space(inode, start, len);
6145 * btrfs_delalloc_release_space - release data and metadata space for delalloc
6146 * @inode: inode we're releasing space for
6147 * @start: start position of the space already reserved
6148 * @len: the len of the space already reserved
6150 * This must be matched with a call to btrfs_delalloc_reserve_space. This is
6151 * called in the case that we don't need the metadata AND data reservations
6152 * anymore. So if there is an error or we insert an inline extent.
6154 * This function will release the metadata space that was not used and will
6155 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
6156 * list if there are no delalloc bytes left.
6157 * Also it will handle the qgroup reserved space.
6159 void btrfs_delalloc_release_space(struct inode *inode, u64 start, u64 len)
6161 btrfs_delalloc_release_metadata(inode, len);
6162 btrfs_free_reserved_data_space(inode, start, len);
6165 static int update_block_group(struct btrfs_trans_handle *trans,
6166 struct btrfs_root *root, u64 bytenr,
6167 u64 num_bytes, int alloc)
6169 struct btrfs_block_group_cache *cache = NULL;
6170 struct btrfs_fs_info *info = root->fs_info;
6171 u64 total = num_bytes;
6176 /* block accounting for super block */
6177 spin_lock(&info->delalloc_root_lock);
6178 old_val = btrfs_super_bytes_used(info->super_copy);
6180 old_val += num_bytes;
6182 old_val -= num_bytes;
6183 btrfs_set_super_bytes_used(info->super_copy, old_val);
6184 spin_unlock(&info->delalloc_root_lock);
6187 cache = btrfs_lookup_block_group(info, bytenr);
6190 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
6191 BTRFS_BLOCK_GROUP_RAID1 |
6192 BTRFS_BLOCK_GROUP_RAID10))
6197 * If this block group has free space cache written out, we
6198 * need to make sure to load it if we are removing space. This
6199 * is because we need the unpinning stage to actually add the
6200 * space back to the block group, otherwise we will leak space.
6202 if (!alloc && cache->cached == BTRFS_CACHE_NO)
6203 cache_block_group(cache, 1);
6205 byte_in_group = bytenr - cache->key.objectid;
6206 WARN_ON(byte_in_group > cache->key.offset);
6208 spin_lock(&cache->space_info->lock);
6209 spin_lock(&cache->lock);
6211 if (btrfs_test_opt(root->fs_info, SPACE_CACHE) &&
6212 cache->disk_cache_state < BTRFS_DC_CLEAR)
6213 cache->disk_cache_state = BTRFS_DC_CLEAR;
6215 old_val = btrfs_block_group_used(&cache->item);
6216 num_bytes = min(total, cache->key.offset - byte_in_group);
6218 old_val += num_bytes;
6219 btrfs_set_block_group_used(&cache->item, old_val);
6220 cache->reserved -= num_bytes;
6221 cache->space_info->bytes_reserved -= num_bytes;
6222 cache->space_info->bytes_used += num_bytes;
6223 cache->space_info->disk_used += num_bytes * factor;
6224 spin_unlock(&cache->lock);
6225 spin_unlock(&cache->space_info->lock);
6227 old_val -= num_bytes;
6228 btrfs_set_block_group_used(&cache->item, old_val);
6229 cache->pinned += num_bytes;
6230 cache->space_info->bytes_pinned += num_bytes;
6231 cache->space_info->bytes_used -= num_bytes;
6232 cache->space_info->disk_used -= num_bytes * factor;
6233 spin_unlock(&cache->lock);
6234 spin_unlock(&cache->space_info->lock);
6236 trace_btrfs_space_reservation(root->fs_info, "pinned",
6237 cache->space_info->flags,
6239 set_extent_dirty(info->pinned_extents,
6240 bytenr, bytenr + num_bytes - 1,
6241 GFP_NOFS | __GFP_NOFAIL);
6244 spin_lock(&trans->transaction->dirty_bgs_lock);
6245 if (list_empty(&cache->dirty_list)) {
6246 list_add_tail(&cache->dirty_list,
6247 &trans->transaction->dirty_bgs);
6248 trans->transaction->num_dirty_bgs++;
6249 btrfs_get_block_group(cache);
6251 spin_unlock(&trans->transaction->dirty_bgs_lock);
6254 * No longer have used bytes in this block group, queue it for
6255 * deletion. We do this after adding the block group to the
6256 * dirty list to avoid races between cleaner kthread and space
6259 if (!alloc && old_val == 0) {
6260 spin_lock(&info->unused_bgs_lock);
6261 if (list_empty(&cache->bg_list)) {
6262 btrfs_get_block_group(cache);
6263 list_add_tail(&cache->bg_list,
6266 spin_unlock(&info->unused_bgs_lock);
6269 btrfs_put_block_group(cache);
6271 bytenr += num_bytes;
6276 static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
6278 struct btrfs_block_group_cache *cache;
6281 spin_lock(&root->fs_info->block_group_cache_lock);
6282 bytenr = root->fs_info->first_logical_byte;
6283 spin_unlock(&root->fs_info->block_group_cache_lock);
6285 if (bytenr < (u64)-1)
6288 cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
6292 bytenr = cache->key.objectid;
6293 btrfs_put_block_group(cache);
6298 static int pin_down_extent(struct btrfs_root *root,
6299 struct btrfs_block_group_cache *cache,
6300 u64 bytenr, u64 num_bytes, int reserved)
6302 spin_lock(&cache->space_info->lock);
6303 spin_lock(&cache->lock);
6304 cache->pinned += num_bytes;
6305 cache->space_info->bytes_pinned += num_bytes;
6307 cache->reserved -= num_bytes;
6308 cache->space_info->bytes_reserved -= num_bytes;
6310 spin_unlock(&cache->lock);
6311 spin_unlock(&cache->space_info->lock);
6313 trace_btrfs_space_reservation(root->fs_info, "pinned",
6314 cache->space_info->flags, num_bytes, 1);
6315 set_extent_dirty(root->fs_info->pinned_extents, bytenr,
6316 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
6321 * this function must be called within transaction
6323 int btrfs_pin_extent(struct btrfs_root *root,
6324 u64 bytenr, u64 num_bytes, int reserved)
6326 struct btrfs_block_group_cache *cache;
6328 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
6329 BUG_ON(!cache); /* Logic error */
6331 pin_down_extent(root, cache, bytenr, num_bytes, reserved);
6333 btrfs_put_block_group(cache);
6338 * this function must be called within transaction
6340 int btrfs_pin_extent_for_log_replay(struct btrfs_root *root,
6341 u64 bytenr, u64 num_bytes)
6343 struct btrfs_block_group_cache *cache;
6346 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
6351 * pull in the free space cache (if any) so that our pin
6352 * removes the free space from the cache. We have load_only set
6353 * to one because the slow code to read in the free extents does check
6354 * the pinned extents.
6356 cache_block_group(cache, 1);
6358 pin_down_extent(root, cache, bytenr, num_bytes, 0);
6360 /* remove us from the free space cache (if we're there at all) */
6361 ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
6362 btrfs_put_block_group(cache);
6366 static int __exclude_logged_extent(struct btrfs_root *root, u64 start, u64 num_bytes)
6369 struct btrfs_block_group_cache *block_group;
6370 struct btrfs_caching_control *caching_ctl;
6372 block_group = btrfs_lookup_block_group(root->fs_info, start);
6376 cache_block_group(block_group, 0);
6377 caching_ctl = get_caching_control(block_group);
6381 BUG_ON(!block_group_cache_done(block_group));
6382 ret = btrfs_remove_free_space(block_group, start, num_bytes);
6384 mutex_lock(&caching_ctl->mutex);
6386 if (start >= caching_ctl->progress) {
6387 ret = add_excluded_extent(root, start, num_bytes);
6388 } else if (start + num_bytes <= caching_ctl->progress) {
6389 ret = btrfs_remove_free_space(block_group,
6392 num_bytes = caching_ctl->progress - start;
6393 ret = btrfs_remove_free_space(block_group,
6398 num_bytes = (start + num_bytes) -
6399 caching_ctl->progress;
6400 start = caching_ctl->progress;
6401 ret = add_excluded_extent(root, start, num_bytes);
6404 mutex_unlock(&caching_ctl->mutex);
6405 put_caching_control(caching_ctl);
6407 btrfs_put_block_group(block_group);
6411 int btrfs_exclude_logged_extents(struct btrfs_root *log,
6412 struct extent_buffer *eb)
6414 struct btrfs_file_extent_item *item;
6415 struct btrfs_key key;
6419 if (!btrfs_fs_incompat(log->fs_info, MIXED_GROUPS))
6422 for (i = 0; i < btrfs_header_nritems(eb); i++) {
6423 btrfs_item_key_to_cpu(eb, &key, i);
6424 if (key.type != BTRFS_EXTENT_DATA_KEY)
6426 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
6427 found_type = btrfs_file_extent_type(eb, item);
6428 if (found_type == BTRFS_FILE_EXTENT_INLINE)
6430 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
6432 key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
6433 key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
6434 __exclude_logged_extent(log, key.objectid, key.offset);
6441 btrfs_inc_block_group_reservations(struct btrfs_block_group_cache *bg)
6443 atomic_inc(&bg->reservations);
6446 void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
6449 struct btrfs_block_group_cache *bg;
6451 bg = btrfs_lookup_block_group(fs_info, start);
6453 if (atomic_dec_and_test(&bg->reservations))
6454 wake_up_atomic_t(&bg->reservations);
6455 btrfs_put_block_group(bg);
6458 static int btrfs_wait_bg_reservations_atomic_t(atomic_t *a)
6464 void btrfs_wait_block_group_reservations(struct btrfs_block_group_cache *bg)
6466 struct btrfs_space_info *space_info = bg->space_info;
6470 if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA))
6474 * Our block group is read only but before we set it to read only,
6475 * some task might have had allocated an extent from it already, but it
6476 * has not yet created a respective ordered extent (and added it to a
6477 * root's list of ordered extents).
6478 * Therefore wait for any task currently allocating extents, since the
6479 * block group's reservations counter is incremented while a read lock
6480 * on the groups' semaphore is held and decremented after releasing
6481 * the read access on that semaphore and creating the ordered extent.
6483 down_write(&space_info->groups_sem);
6484 up_write(&space_info->groups_sem);
6486 wait_on_atomic_t(&bg->reservations,
6487 btrfs_wait_bg_reservations_atomic_t,
6488 TASK_UNINTERRUPTIBLE);
6492 * btrfs_add_reserved_bytes - update the block_group and space info counters
6493 * @cache: The cache we are manipulating
6494 * @ram_bytes: The number of bytes of file content, and will be same to
6495 * @num_bytes except for the compress path.
6496 * @num_bytes: The number of bytes in question
6497 * @delalloc: The blocks are allocated for the delalloc write
6499 * This is called by the allocator when it reserves space. Metadata
6500 * reservations should be called with RESERVE_ALLOC so we do the proper
6501 * ENOSPC accounting. For data we handle the reservation through clearing the
6502 * delalloc bits in the io_tree. We have to do this since we could end up
6503 * allocating less disk space for the amount of data we have reserved in the
6504 * case of compression.
6506 * If this is a reservation and the block group has become read only we cannot
6507 * make the reservation and return -EAGAIN, otherwise this function always
6510 static int btrfs_add_reserved_bytes(struct btrfs_block_group_cache *cache,
6511 u64 ram_bytes, u64 num_bytes, int delalloc)
6513 struct btrfs_space_info *space_info = cache->space_info;
6516 spin_lock(&space_info->lock);
6517 spin_lock(&cache->lock);
6521 cache->reserved += num_bytes;
6522 space_info->bytes_reserved += num_bytes;
6524 trace_btrfs_space_reservation(cache->fs_info,
6525 "space_info", space_info->flags,
6527 space_info->bytes_may_use -= ram_bytes;
6529 cache->delalloc_bytes += num_bytes;
6531 spin_unlock(&cache->lock);
6532 spin_unlock(&space_info->lock);
6537 * btrfs_free_reserved_bytes - update the block_group and space info counters
6538 * @cache: The cache we are manipulating
6539 * @num_bytes: The number of bytes in question
6540 * @delalloc: The blocks are allocated for the delalloc write
6542 * This is called by somebody who is freeing space that was never actually used
6543 * on disk. For example if you reserve some space for a new leaf in transaction
6544 * A and before transaction A commits you free that leaf, you call this with
6545 * reserve set to 0 in order to clear the reservation.
6548 static int btrfs_free_reserved_bytes(struct btrfs_block_group_cache *cache,
6549 u64 num_bytes, int delalloc)
6551 struct btrfs_space_info *space_info = cache->space_info;
6554 spin_lock(&space_info->lock);
6555 spin_lock(&cache->lock);
6557 space_info->bytes_readonly += num_bytes;
6558 cache->reserved -= num_bytes;
6559 space_info->bytes_reserved -= num_bytes;
6562 cache->delalloc_bytes -= num_bytes;
6563 spin_unlock(&cache->lock);
6564 spin_unlock(&space_info->lock);
6567 void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
6568 struct btrfs_root *root)
6570 struct btrfs_fs_info *fs_info = root->fs_info;
6571 struct btrfs_caching_control *next;
6572 struct btrfs_caching_control *caching_ctl;
6573 struct btrfs_block_group_cache *cache;
6575 down_write(&fs_info->commit_root_sem);
6577 list_for_each_entry_safe(caching_ctl, next,
6578 &fs_info->caching_block_groups, list) {
6579 cache = caching_ctl->block_group;
6580 if (block_group_cache_done(cache)) {
6581 cache->last_byte_to_unpin = (u64)-1;
6582 list_del_init(&caching_ctl->list);
6583 put_caching_control(caching_ctl);
6585 cache->last_byte_to_unpin = caching_ctl->progress;
6589 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6590 fs_info->pinned_extents = &fs_info->freed_extents[1];
6592 fs_info->pinned_extents = &fs_info->freed_extents[0];
6594 up_write(&fs_info->commit_root_sem);
6596 update_global_block_rsv(fs_info);
6600 * Returns the free cluster for the given space info and sets empty_cluster to
6601 * what it should be based on the mount options.
6603 static struct btrfs_free_cluster *
6604 fetch_cluster_info(struct btrfs_root *root, struct btrfs_space_info *space_info,
6607 struct btrfs_free_cluster *ret = NULL;
6608 bool ssd = btrfs_test_opt(root->fs_info, SSD);
6611 if (btrfs_mixed_space_info(space_info))
6615 *empty_cluster = SZ_2M;
6616 if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
6617 ret = &root->fs_info->meta_alloc_cluster;
6619 *empty_cluster = SZ_64K;
6620 } else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) && ssd) {
6621 ret = &root->fs_info->data_alloc_cluster;
6627 static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end,
6628 const bool return_free_space)
6630 struct btrfs_fs_info *fs_info = root->fs_info;
6631 struct btrfs_block_group_cache *cache = NULL;
6632 struct btrfs_space_info *space_info;
6633 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
6634 struct btrfs_free_cluster *cluster = NULL;
6636 u64 total_unpinned = 0;
6637 u64 empty_cluster = 0;
6640 while (start <= end) {
6643 start >= cache->key.objectid + cache->key.offset) {
6645 btrfs_put_block_group(cache);
6647 cache = btrfs_lookup_block_group(fs_info, start);
6648 BUG_ON(!cache); /* Logic error */
6650 cluster = fetch_cluster_info(root,
6653 empty_cluster <<= 1;
6656 len = cache->key.objectid + cache->key.offset - start;
6657 len = min(len, end + 1 - start);
6659 if (start < cache->last_byte_to_unpin) {
6660 len = min(len, cache->last_byte_to_unpin - start);
6661 if (return_free_space)
6662 btrfs_add_free_space(cache, start, len);
6666 total_unpinned += len;
6667 space_info = cache->space_info;
6670 * If this space cluster has been marked as fragmented and we've
6671 * unpinned enough in this block group to potentially allow a
6672 * cluster to be created inside of it go ahead and clear the
6675 if (cluster && cluster->fragmented &&
6676 total_unpinned > empty_cluster) {
6677 spin_lock(&cluster->lock);
6678 cluster->fragmented = 0;
6679 spin_unlock(&cluster->lock);
6682 spin_lock(&space_info->lock);
6683 spin_lock(&cache->lock);
6684 cache->pinned -= len;
6685 space_info->bytes_pinned -= len;
6687 trace_btrfs_space_reservation(fs_info, "pinned",
6688 space_info->flags, len, 0);
6689 space_info->max_extent_size = 0;
6690 percpu_counter_add(&space_info->total_bytes_pinned, -len);
6692 space_info->bytes_readonly += len;
6695 spin_unlock(&cache->lock);
6696 if (!readonly && return_free_space &&
6697 global_rsv->space_info == space_info) {
6699 WARN_ON(!return_free_space);
6700 spin_lock(&global_rsv->lock);
6701 if (!global_rsv->full) {
6702 to_add = min(len, global_rsv->size -
6703 global_rsv->reserved);
6704 global_rsv->reserved += to_add;
6705 space_info->bytes_may_use += to_add;
6706 if (global_rsv->reserved >= global_rsv->size)
6707 global_rsv->full = 1;
6708 trace_btrfs_space_reservation(fs_info,
6714 spin_unlock(&global_rsv->lock);
6715 /* Add to any tickets we may have */
6717 space_info_add_new_bytes(fs_info, space_info,
6720 spin_unlock(&space_info->lock);
6724 btrfs_put_block_group(cache);
6728 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
6729 struct btrfs_root *root)
6731 struct btrfs_fs_info *fs_info = root->fs_info;
6732 struct btrfs_block_group_cache *block_group, *tmp;
6733 struct list_head *deleted_bgs;
6734 struct extent_io_tree *unpin;
6739 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6740 unpin = &fs_info->freed_extents[1];
6742 unpin = &fs_info->freed_extents[0];
6744 while (!trans->aborted) {
6745 mutex_lock(&fs_info->unused_bg_unpin_mutex);
6746 ret = find_first_extent_bit(unpin, 0, &start, &end,
6747 EXTENT_DIRTY, NULL);
6749 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6753 if (btrfs_test_opt(root->fs_info, DISCARD))
6754 ret = btrfs_discard_extent(root, start,
6755 end + 1 - start, NULL);
6757 clear_extent_dirty(unpin, start, end);
6758 unpin_extent_range(root, start, end, true);
6759 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6764 * Transaction is finished. We don't need the lock anymore. We
6765 * do need to clean up the block groups in case of a transaction
6768 deleted_bgs = &trans->transaction->deleted_bgs;
6769 list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
6773 if (!trans->aborted)
6774 ret = btrfs_discard_extent(root,
6775 block_group->key.objectid,
6776 block_group->key.offset,
6779 list_del_init(&block_group->bg_list);
6780 btrfs_put_block_group_trimming(block_group);
6781 btrfs_put_block_group(block_group);
6784 const char *errstr = btrfs_decode_error(ret);
6786 "Discard failed while removing blockgroup: errno=%d %s\n",
6794 static void add_pinned_bytes(struct btrfs_fs_info *fs_info, u64 num_bytes,
6795 u64 owner, u64 root_objectid)
6797 struct btrfs_space_info *space_info;
6800 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
6801 if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
6802 flags = BTRFS_BLOCK_GROUP_SYSTEM;
6804 flags = BTRFS_BLOCK_GROUP_METADATA;
6806 flags = BTRFS_BLOCK_GROUP_DATA;
6809 space_info = __find_space_info(fs_info, flags);
6810 BUG_ON(!space_info); /* Logic bug */
6811 percpu_counter_add(&space_info->total_bytes_pinned, num_bytes);
6815 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
6816 struct btrfs_root *root,
6817 struct btrfs_delayed_ref_node *node, u64 parent,
6818 u64 root_objectid, u64 owner_objectid,
6819 u64 owner_offset, int refs_to_drop,
6820 struct btrfs_delayed_extent_op *extent_op)
6822 struct btrfs_key key;
6823 struct btrfs_path *path;
6824 struct btrfs_fs_info *info = root->fs_info;
6825 struct btrfs_root *extent_root = info->extent_root;
6826 struct extent_buffer *leaf;
6827 struct btrfs_extent_item *ei;
6828 struct btrfs_extent_inline_ref *iref;
6831 int extent_slot = 0;
6832 int found_extent = 0;
6836 u64 bytenr = node->bytenr;
6837 u64 num_bytes = node->num_bytes;
6839 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
6842 path = btrfs_alloc_path();
6846 path->reada = READA_FORWARD;
6847 path->leave_spinning = 1;
6849 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
6850 BUG_ON(!is_data && refs_to_drop != 1);
6853 skinny_metadata = 0;
6855 ret = lookup_extent_backref(trans, extent_root, path, &iref,
6856 bytenr, num_bytes, parent,
6857 root_objectid, owner_objectid,
6860 extent_slot = path->slots[0];
6861 while (extent_slot >= 0) {
6862 btrfs_item_key_to_cpu(path->nodes[0], &key,
6864 if (key.objectid != bytenr)
6866 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
6867 key.offset == num_bytes) {
6871 if (key.type == BTRFS_METADATA_ITEM_KEY &&
6872 key.offset == owner_objectid) {
6876 if (path->slots[0] - extent_slot > 5)
6880 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6881 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
6882 if (found_extent && item_size < sizeof(*ei))
6885 if (!found_extent) {
6887 ret = remove_extent_backref(trans, extent_root, path,
6889 is_data, &last_ref);
6891 btrfs_abort_transaction(trans, ret);
6894 btrfs_release_path(path);
6895 path->leave_spinning = 1;
6897 key.objectid = bytenr;
6898 key.type = BTRFS_EXTENT_ITEM_KEY;
6899 key.offset = num_bytes;
6901 if (!is_data && skinny_metadata) {
6902 key.type = BTRFS_METADATA_ITEM_KEY;
6903 key.offset = owner_objectid;
6906 ret = btrfs_search_slot(trans, extent_root,
6908 if (ret > 0 && skinny_metadata && path->slots[0]) {
6910 * Couldn't find our skinny metadata item,
6911 * see if we have ye olde extent item.
6914 btrfs_item_key_to_cpu(path->nodes[0], &key,
6916 if (key.objectid == bytenr &&
6917 key.type == BTRFS_EXTENT_ITEM_KEY &&
6918 key.offset == num_bytes)
6922 if (ret > 0 && skinny_metadata) {
6923 skinny_metadata = false;
6924 key.objectid = bytenr;
6925 key.type = BTRFS_EXTENT_ITEM_KEY;
6926 key.offset = num_bytes;
6927 btrfs_release_path(path);
6928 ret = btrfs_search_slot(trans, extent_root,
6933 btrfs_err(info, "umm, got %d back from search, was looking for %llu",
6936 btrfs_print_leaf(extent_root,
6940 btrfs_abort_transaction(trans, ret);
6943 extent_slot = path->slots[0];
6945 } else if (WARN_ON(ret == -ENOENT)) {
6946 btrfs_print_leaf(extent_root, path->nodes[0]);
6948 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu",
6949 bytenr, parent, root_objectid, owner_objectid,
6951 btrfs_abort_transaction(trans, ret);
6954 btrfs_abort_transaction(trans, ret);
6958 leaf = path->nodes[0];
6959 item_size = btrfs_item_size_nr(leaf, extent_slot);
6960 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6961 if (item_size < sizeof(*ei)) {
6962 BUG_ON(found_extent || extent_slot != path->slots[0]);
6963 ret = convert_extent_item_v0(trans, extent_root, path,
6966 btrfs_abort_transaction(trans, ret);
6970 btrfs_release_path(path);
6971 path->leave_spinning = 1;
6973 key.objectid = bytenr;
6974 key.type = BTRFS_EXTENT_ITEM_KEY;
6975 key.offset = num_bytes;
6977 ret = btrfs_search_slot(trans, extent_root, &key, path,
6980 btrfs_err(info, "umm, got %d back from search, was looking for %llu",
6982 btrfs_print_leaf(extent_root, path->nodes[0]);
6985 btrfs_abort_transaction(trans, ret);
6989 extent_slot = path->slots[0];
6990 leaf = path->nodes[0];
6991 item_size = btrfs_item_size_nr(leaf, extent_slot);
6994 BUG_ON(item_size < sizeof(*ei));
6995 ei = btrfs_item_ptr(leaf, extent_slot,
6996 struct btrfs_extent_item);
6997 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
6998 key.type == BTRFS_EXTENT_ITEM_KEY) {
6999 struct btrfs_tree_block_info *bi;
7000 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
7001 bi = (struct btrfs_tree_block_info *)(ei + 1);
7002 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
7005 refs = btrfs_extent_refs(leaf, ei);
7006 if (refs < refs_to_drop) {
7007 btrfs_err(info, "trying to drop %d refs but we only have %Lu "
7008 "for bytenr %Lu", refs_to_drop, refs, bytenr);
7010 btrfs_abort_transaction(trans, ret);
7013 refs -= refs_to_drop;
7017 __run_delayed_extent_op(extent_op, leaf, ei);
7019 * In the case of inline back ref, reference count will
7020 * be updated by remove_extent_backref
7023 BUG_ON(!found_extent);
7025 btrfs_set_extent_refs(leaf, ei, refs);
7026 btrfs_mark_buffer_dirty(leaf);
7029 ret = remove_extent_backref(trans, extent_root, path,
7031 is_data, &last_ref);
7033 btrfs_abort_transaction(trans, ret);
7037 add_pinned_bytes(root->fs_info, -num_bytes, owner_objectid,
7041 BUG_ON(is_data && refs_to_drop !=
7042 extent_data_ref_count(path, iref));
7044 BUG_ON(path->slots[0] != extent_slot);
7046 BUG_ON(path->slots[0] != extent_slot + 1);
7047 path->slots[0] = extent_slot;
7053 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
7056 btrfs_abort_transaction(trans, ret);
7059 btrfs_release_path(path);
7062 ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
7064 btrfs_abort_transaction(trans, ret);
7069 ret = add_to_free_space_tree(trans, root->fs_info, bytenr,
7072 btrfs_abort_transaction(trans, ret);
7076 ret = update_block_group(trans, root, bytenr, num_bytes, 0);
7078 btrfs_abort_transaction(trans, ret);
7082 btrfs_release_path(path);
7085 btrfs_free_path(path);
7090 * when we free an block, it is possible (and likely) that we free the last
7091 * delayed ref for that extent as well. This searches the delayed ref tree for
7092 * a given extent, and if there are no other delayed refs to be processed, it
7093 * removes it from the tree.
7095 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
7096 struct btrfs_root *root, u64 bytenr)
7098 struct btrfs_delayed_ref_head *head;
7099 struct btrfs_delayed_ref_root *delayed_refs;
7102 delayed_refs = &trans->transaction->delayed_refs;
7103 spin_lock(&delayed_refs->lock);
7104 head = btrfs_find_delayed_ref_head(trans, bytenr);
7106 goto out_delayed_unlock;
7108 spin_lock(&head->lock);
7109 if (!list_empty(&head->ref_list))
7112 if (head->extent_op) {
7113 if (!head->must_insert_reserved)
7115 btrfs_free_delayed_extent_op(head->extent_op);
7116 head->extent_op = NULL;
7120 * waiting for the lock here would deadlock. If someone else has it
7121 * locked they are already in the process of dropping it anyway
7123 if (!mutex_trylock(&head->mutex))
7127 * at this point we have a head with no other entries. Go
7128 * ahead and process it.
7130 head->node.in_tree = 0;
7131 rb_erase(&head->href_node, &delayed_refs->href_root);
7133 atomic_dec(&delayed_refs->num_entries);
7136 * we don't take a ref on the node because we're removing it from the
7137 * tree, so we just steal the ref the tree was holding.
7139 delayed_refs->num_heads--;
7140 if (head->processing == 0)
7141 delayed_refs->num_heads_ready--;
7142 head->processing = 0;
7143 spin_unlock(&head->lock);
7144 spin_unlock(&delayed_refs->lock);
7146 BUG_ON(head->extent_op);
7147 if (head->must_insert_reserved)
7150 mutex_unlock(&head->mutex);
7151 btrfs_put_delayed_ref(&head->node);
7154 spin_unlock(&head->lock);
7157 spin_unlock(&delayed_refs->lock);
7161 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
7162 struct btrfs_root *root,
7163 struct extent_buffer *buf,
7164 u64 parent, int last_ref)
7169 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
7170 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
7171 buf->start, buf->len,
7172 parent, root->root_key.objectid,
7173 btrfs_header_level(buf),
7174 BTRFS_DROP_DELAYED_REF, NULL);
7175 BUG_ON(ret); /* -ENOMEM */
7181 if (btrfs_header_generation(buf) == trans->transid) {
7182 struct btrfs_block_group_cache *cache;
7184 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
7185 ret = check_ref_cleanup(trans, root, buf->start);
7190 cache = btrfs_lookup_block_group(root->fs_info, buf->start);
7192 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
7193 pin_down_extent(root, cache, buf->start, buf->len, 1);
7194 btrfs_put_block_group(cache);
7198 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
7200 btrfs_add_free_space(cache, buf->start, buf->len);
7201 btrfs_free_reserved_bytes(cache, buf->len, 0);
7202 btrfs_put_block_group(cache);
7203 trace_btrfs_reserved_extent_free(root, buf->start, buf->len);
7208 add_pinned_bytes(root->fs_info, buf->len,
7209 btrfs_header_level(buf),
7210 root->root_key.objectid);
7213 * Deleting the buffer, clear the corrupt flag since it doesn't matter
7216 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
7219 /* Can return -ENOMEM */
7220 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root,
7221 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
7222 u64 owner, u64 offset)
7225 struct btrfs_fs_info *fs_info = root->fs_info;
7227 if (btrfs_is_testing(fs_info))
7230 add_pinned_bytes(root->fs_info, num_bytes, owner, root_objectid);
7233 * tree log blocks never actually go into the extent allocation
7234 * tree, just update pinning info and exit early.
7236 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
7237 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
7238 /* unlocks the pinned mutex */
7239 btrfs_pin_extent(root, bytenr, num_bytes, 1);
7241 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
7242 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
7244 parent, root_objectid, (int)owner,
7245 BTRFS_DROP_DELAYED_REF, NULL);
7247 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
7249 parent, root_objectid, owner,
7251 BTRFS_DROP_DELAYED_REF, NULL);
7257 * when we wait for progress in the block group caching, its because
7258 * our allocation attempt failed at least once. So, we must sleep
7259 * and let some progress happen before we try again.
7261 * This function will sleep at least once waiting for new free space to
7262 * show up, and then it will check the block group free space numbers
7263 * for our min num_bytes. Another option is to have it go ahead
7264 * and look in the rbtree for a free extent of a given size, but this
7267 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
7268 * any of the information in this block group.
7270 static noinline void
7271 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
7274 struct btrfs_caching_control *caching_ctl;
7276 caching_ctl = get_caching_control(cache);
7280 wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
7281 (cache->free_space_ctl->free_space >= num_bytes));
7283 put_caching_control(caching_ctl);
7287 wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
7289 struct btrfs_caching_control *caching_ctl;
7292 caching_ctl = get_caching_control(cache);
7294 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
7296 wait_event(caching_ctl->wait, block_group_cache_done(cache));
7297 if (cache->cached == BTRFS_CACHE_ERROR)
7299 put_caching_control(caching_ctl);
7303 int __get_raid_index(u64 flags)
7305 if (flags & BTRFS_BLOCK_GROUP_RAID10)
7306 return BTRFS_RAID_RAID10;
7307 else if (flags & BTRFS_BLOCK_GROUP_RAID1)
7308 return BTRFS_RAID_RAID1;
7309 else if (flags & BTRFS_BLOCK_GROUP_DUP)
7310 return BTRFS_RAID_DUP;
7311 else if (flags & BTRFS_BLOCK_GROUP_RAID0)
7312 return BTRFS_RAID_RAID0;
7313 else if (flags & BTRFS_BLOCK_GROUP_RAID5)
7314 return BTRFS_RAID_RAID5;
7315 else if (flags & BTRFS_BLOCK_GROUP_RAID6)
7316 return BTRFS_RAID_RAID6;
7318 return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
7321 int get_block_group_index(struct btrfs_block_group_cache *cache)
7323 return __get_raid_index(cache->flags);
7326 static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = {
7327 [BTRFS_RAID_RAID10] = "raid10",
7328 [BTRFS_RAID_RAID1] = "raid1",
7329 [BTRFS_RAID_DUP] = "dup",
7330 [BTRFS_RAID_RAID0] = "raid0",
7331 [BTRFS_RAID_SINGLE] = "single",
7332 [BTRFS_RAID_RAID5] = "raid5",
7333 [BTRFS_RAID_RAID6] = "raid6",
7336 static const char *get_raid_name(enum btrfs_raid_types type)
7338 if (type >= BTRFS_NR_RAID_TYPES)
7341 return btrfs_raid_type_names[type];
7344 enum btrfs_loop_type {
7345 LOOP_CACHING_NOWAIT = 0,
7346 LOOP_CACHING_WAIT = 1,
7347 LOOP_ALLOC_CHUNK = 2,
7348 LOOP_NO_EMPTY_SIZE = 3,
7352 btrfs_lock_block_group(struct btrfs_block_group_cache *cache,
7356 down_read(&cache->data_rwsem);
7360 btrfs_grab_block_group(struct btrfs_block_group_cache *cache,
7363 btrfs_get_block_group(cache);
7365 down_read(&cache->data_rwsem);
7368 static struct btrfs_block_group_cache *
7369 btrfs_lock_cluster(struct btrfs_block_group_cache *block_group,
7370 struct btrfs_free_cluster *cluster,
7373 struct btrfs_block_group_cache *used_bg = NULL;
7375 spin_lock(&cluster->refill_lock);
7377 used_bg = cluster->block_group;
7381 if (used_bg == block_group)
7384 btrfs_get_block_group(used_bg);
7389 if (down_read_trylock(&used_bg->data_rwsem))
7392 spin_unlock(&cluster->refill_lock);
7394 down_read(&used_bg->data_rwsem);
7396 spin_lock(&cluster->refill_lock);
7397 if (used_bg == cluster->block_group)
7400 up_read(&used_bg->data_rwsem);
7401 btrfs_put_block_group(used_bg);
7406 btrfs_release_block_group(struct btrfs_block_group_cache *cache,
7410 up_read(&cache->data_rwsem);
7411 btrfs_put_block_group(cache);
7415 * walks the btree of allocated extents and find a hole of a given size.
7416 * The key ins is changed to record the hole:
7417 * ins->objectid == start position
7418 * ins->flags = BTRFS_EXTENT_ITEM_KEY
7419 * ins->offset == the size of the hole.
7420 * Any available blocks before search_start are skipped.
7422 * If there is no suitable free space, we will record the max size of
7423 * the free space extent currently.
7425 static noinline int find_free_extent(struct btrfs_root *orig_root,
7426 u64 ram_bytes, u64 num_bytes, u64 empty_size,
7427 u64 hint_byte, struct btrfs_key *ins,
7428 u64 flags, int delalloc)
7431 struct btrfs_root *root = orig_root->fs_info->extent_root;
7432 struct btrfs_free_cluster *last_ptr = NULL;
7433 struct btrfs_block_group_cache *block_group = NULL;
7434 u64 search_start = 0;
7435 u64 max_extent_size = 0;
7436 u64 empty_cluster = 0;
7437 struct btrfs_space_info *space_info;
7439 int index = __get_raid_index(flags);
7440 bool failed_cluster_refill = false;
7441 bool failed_alloc = false;
7442 bool use_cluster = true;
7443 bool have_caching_bg = false;
7444 bool orig_have_caching_bg = false;
7445 bool full_search = false;
7447 WARN_ON(num_bytes < root->sectorsize);
7448 ins->type = BTRFS_EXTENT_ITEM_KEY;
7452 trace_find_free_extent(orig_root, num_bytes, empty_size, flags);
7454 space_info = __find_space_info(root->fs_info, flags);
7456 btrfs_err(root->fs_info, "No space info for %llu", flags);
7461 * If our free space is heavily fragmented we may not be able to make
7462 * big contiguous allocations, so instead of doing the expensive search
7463 * for free space, simply return ENOSPC with our max_extent_size so we
7464 * can go ahead and search for a more manageable chunk.
7466 * If our max_extent_size is large enough for our allocation simply
7467 * disable clustering since we will likely not be able to find enough
7468 * space to create a cluster and induce latency trying.
7470 if (unlikely(space_info->max_extent_size)) {
7471 spin_lock(&space_info->lock);
7472 if (space_info->max_extent_size &&
7473 num_bytes > space_info->max_extent_size) {
7474 ins->offset = space_info->max_extent_size;
7475 spin_unlock(&space_info->lock);
7477 } else if (space_info->max_extent_size) {
7478 use_cluster = false;
7480 spin_unlock(&space_info->lock);
7483 last_ptr = fetch_cluster_info(orig_root, space_info, &empty_cluster);
7485 spin_lock(&last_ptr->lock);
7486 if (last_ptr->block_group)
7487 hint_byte = last_ptr->window_start;
7488 if (last_ptr->fragmented) {
7490 * We still set window_start so we can keep track of the
7491 * last place we found an allocation to try and save
7494 hint_byte = last_ptr->window_start;
7495 use_cluster = false;
7497 spin_unlock(&last_ptr->lock);
7500 search_start = max(search_start, first_logical_byte(root, 0));
7501 search_start = max(search_start, hint_byte);
7502 if (search_start == hint_byte) {
7503 block_group = btrfs_lookup_block_group(root->fs_info,
7506 * we don't want to use the block group if it doesn't match our
7507 * allocation bits, or if its not cached.
7509 * However if we are re-searching with an ideal block group
7510 * picked out then we don't care that the block group is cached.
7512 if (block_group && block_group_bits(block_group, flags) &&
7513 block_group->cached != BTRFS_CACHE_NO) {
7514 down_read(&space_info->groups_sem);
7515 if (list_empty(&block_group->list) ||
7518 * someone is removing this block group,
7519 * we can't jump into the have_block_group
7520 * target because our list pointers are not
7523 btrfs_put_block_group(block_group);
7524 up_read(&space_info->groups_sem);
7526 index = get_block_group_index(block_group);
7527 btrfs_lock_block_group(block_group, delalloc);
7528 goto have_block_group;
7530 } else if (block_group) {
7531 btrfs_put_block_group(block_group);
7535 have_caching_bg = false;
7536 if (index == 0 || index == __get_raid_index(flags))
7538 down_read(&space_info->groups_sem);
7539 list_for_each_entry(block_group, &space_info->block_groups[index],
7544 btrfs_grab_block_group(block_group, delalloc);
7545 search_start = block_group->key.objectid;
7548 * this can happen if we end up cycling through all the
7549 * raid types, but we want to make sure we only allocate
7550 * for the proper type.
7552 if (!block_group_bits(block_group, flags)) {
7553 u64 extra = BTRFS_BLOCK_GROUP_DUP |
7554 BTRFS_BLOCK_GROUP_RAID1 |
7555 BTRFS_BLOCK_GROUP_RAID5 |
7556 BTRFS_BLOCK_GROUP_RAID6 |
7557 BTRFS_BLOCK_GROUP_RAID10;
7560 * if they asked for extra copies and this block group
7561 * doesn't provide them, bail. This does allow us to
7562 * fill raid0 from raid1.
7564 if ((flags & extra) && !(block_group->flags & extra))
7569 cached = block_group_cache_done(block_group);
7570 if (unlikely(!cached)) {
7571 have_caching_bg = true;
7572 ret = cache_block_group(block_group, 0);
7577 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
7579 if (unlikely(block_group->ro))
7583 * Ok we want to try and use the cluster allocator, so
7586 if (last_ptr && use_cluster) {
7587 struct btrfs_block_group_cache *used_block_group;
7588 unsigned long aligned_cluster;
7590 * the refill lock keeps out other
7591 * people trying to start a new cluster
7593 used_block_group = btrfs_lock_cluster(block_group,
7596 if (!used_block_group)
7597 goto refill_cluster;
7599 if (used_block_group != block_group &&
7600 (used_block_group->ro ||
7601 !block_group_bits(used_block_group, flags)))
7602 goto release_cluster;
7604 offset = btrfs_alloc_from_cluster(used_block_group,
7607 used_block_group->key.objectid,
7610 /* we have a block, we're done */
7611 spin_unlock(&last_ptr->refill_lock);
7612 trace_btrfs_reserve_extent_cluster(root,
7614 search_start, num_bytes);
7615 if (used_block_group != block_group) {
7616 btrfs_release_block_group(block_group,
7618 block_group = used_block_group;
7623 WARN_ON(last_ptr->block_group != used_block_group);
7625 /* If we are on LOOP_NO_EMPTY_SIZE, we can't
7626 * set up a new clusters, so lets just skip it
7627 * and let the allocator find whatever block
7628 * it can find. If we reach this point, we
7629 * will have tried the cluster allocator
7630 * plenty of times and not have found
7631 * anything, so we are likely way too
7632 * fragmented for the clustering stuff to find
7635 * However, if the cluster is taken from the
7636 * current block group, release the cluster
7637 * first, so that we stand a better chance of
7638 * succeeding in the unclustered
7640 if (loop >= LOOP_NO_EMPTY_SIZE &&
7641 used_block_group != block_group) {
7642 spin_unlock(&last_ptr->refill_lock);
7643 btrfs_release_block_group(used_block_group,
7645 goto unclustered_alloc;
7649 * this cluster didn't work out, free it and
7652 btrfs_return_cluster_to_free_space(NULL, last_ptr);
7654 if (used_block_group != block_group)
7655 btrfs_release_block_group(used_block_group,
7658 if (loop >= LOOP_NO_EMPTY_SIZE) {
7659 spin_unlock(&last_ptr->refill_lock);
7660 goto unclustered_alloc;
7663 aligned_cluster = max_t(unsigned long,
7664 empty_cluster + empty_size,
7665 block_group->full_stripe_len);
7667 /* allocate a cluster in this block group */
7668 ret = btrfs_find_space_cluster(root, block_group,
7669 last_ptr, search_start,
7674 * now pull our allocation out of this
7677 offset = btrfs_alloc_from_cluster(block_group,
7683 /* we found one, proceed */
7684 spin_unlock(&last_ptr->refill_lock);
7685 trace_btrfs_reserve_extent_cluster(root,
7686 block_group, search_start,
7690 } else if (!cached && loop > LOOP_CACHING_NOWAIT
7691 && !failed_cluster_refill) {
7692 spin_unlock(&last_ptr->refill_lock);
7694 failed_cluster_refill = true;
7695 wait_block_group_cache_progress(block_group,
7696 num_bytes + empty_cluster + empty_size);
7697 goto have_block_group;
7701 * at this point we either didn't find a cluster
7702 * or we weren't able to allocate a block from our
7703 * cluster. Free the cluster we've been trying
7704 * to use, and go to the next block group
7706 btrfs_return_cluster_to_free_space(NULL, last_ptr);
7707 spin_unlock(&last_ptr->refill_lock);
7713 * We are doing an unclustered alloc, set the fragmented flag so
7714 * we don't bother trying to setup a cluster again until we get
7717 if (unlikely(last_ptr)) {
7718 spin_lock(&last_ptr->lock);
7719 last_ptr->fragmented = 1;
7720 spin_unlock(&last_ptr->lock);
7722 spin_lock(&block_group->free_space_ctl->tree_lock);
7724 block_group->free_space_ctl->free_space <
7725 num_bytes + empty_cluster + empty_size) {
7726 if (block_group->free_space_ctl->free_space >
7729 block_group->free_space_ctl->free_space;
7730 spin_unlock(&block_group->free_space_ctl->tree_lock);
7733 spin_unlock(&block_group->free_space_ctl->tree_lock);
7735 offset = btrfs_find_space_for_alloc(block_group, search_start,
7736 num_bytes, empty_size,
7739 * If we didn't find a chunk, and we haven't failed on this
7740 * block group before, and this block group is in the middle of
7741 * caching and we are ok with waiting, then go ahead and wait
7742 * for progress to be made, and set failed_alloc to true.
7744 * If failed_alloc is true then we've already waited on this
7745 * block group once and should move on to the next block group.
7747 if (!offset && !failed_alloc && !cached &&
7748 loop > LOOP_CACHING_NOWAIT) {
7749 wait_block_group_cache_progress(block_group,
7750 num_bytes + empty_size);
7751 failed_alloc = true;
7752 goto have_block_group;
7753 } else if (!offset) {
7757 search_start = ALIGN(offset, root->stripesize);
7759 /* move on to the next group */
7760 if (search_start + num_bytes >
7761 block_group->key.objectid + block_group->key.offset) {
7762 btrfs_add_free_space(block_group, offset, num_bytes);
7766 if (offset < search_start)
7767 btrfs_add_free_space(block_group, offset,
7768 search_start - offset);
7769 BUG_ON(offset > search_start);
7771 ret = btrfs_add_reserved_bytes(block_group, ram_bytes,
7772 num_bytes, delalloc);
7773 if (ret == -EAGAIN) {
7774 btrfs_add_free_space(block_group, offset, num_bytes);
7777 btrfs_inc_block_group_reservations(block_group);
7779 /* we are all good, lets return */
7780 ins->objectid = search_start;
7781 ins->offset = num_bytes;
7783 trace_btrfs_reserve_extent(orig_root, block_group,
7784 search_start, num_bytes);
7785 btrfs_release_block_group(block_group, delalloc);
7788 failed_cluster_refill = false;
7789 failed_alloc = false;
7790 BUG_ON(index != get_block_group_index(block_group));
7791 btrfs_release_block_group(block_group, delalloc);
7793 up_read(&space_info->groups_sem);
7795 if ((loop == LOOP_CACHING_NOWAIT) && have_caching_bg
7796 && !orig_have_caching_bg)
7797 orig_have_caching_bg = true;
7799 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
7802 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
7806 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
7807 * caching kthreads as we move along
7808 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
7809 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
7810 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
7813 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
7815 if (loop == LOOP_CACHING_NOWAIT) {
7817 * We want to skip the LOOP_CACHING_WAIT step if we
7818 * don't have any uncached bgs and we've already done a
7819 * full search through.
7821 if (orig_have_caching_bg || !full_search)
7822 loop = LOOP_CACHING_WAIT;
7824 loop = LOOP_ALLOC_CHUNK;
7829 if (loop == LOOP_ALLOC_CHUNK) {
7830 struct btrfs_trans_handle *trans;
7833 trans = current->journal_info;
7837 trans = btrfs_join_transaction(root);
7839 if (IS_ERR(trans)) {
7840 ret = PTR_ERR(trans);
7844 ret = do_chunk_alloc(trans, root, flags,
7848 * If we can't allocate a new chunk we've already looped
7849 * through at least once, move on to the NO_EMPTY_SIZE
7853 loop = LOOP_NO_EMPTY_SIZE;
7856 * Do not bail out on ENOSPC since we
7857 * can do more things.
7859 if (ret < 0 && ret != -ENOSPC)
7860 btrfs_abort_transaction(trans, ret);
7864 btrfs_end_transaction(trans, root);
7869 if (loop == LOOP_NO_EMPTY_SIZE) {
7871 * Don't loop again if we already have no empty_size and
7874 if (empty_size == 0 &&
7875 empty_cluster == 0) {
7884 } else if (!ins->objectid) {
7886 } else if (ins->objectid) {
7887 if (!use_cluster && last_ptr) {
7888 spin_lock(&last_ptr->lock);
7889 last_ptr->window_start = ins->objectid;
7890 spin_unlock(&last_ptr->lock);
7895 if (ret == -ENOSPC) {
7896 spin_lock(&space_info->lock);
7897 space_info->max_extent_size = max_extent_size;
7898 spin_unlock(&space_info->lock);
7899 ins->offset = max_extent_size;
7904 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
7905 int dump_block_groups)
7907 struct btrfs_block_group_cache *cache;
7910 spin_lock(&info->lock);
7911 printk(KERN_INFO "BTRFS: space_info %llu has %llu free, is %sfull\n",
7913 info->total_bytes - info->bytes_used - info->bytes_pinned -
7914 info->bytes_reserved - info->bytes_readonly -
7915 info->bytes_may_use, (info->full) ? "" : "not ");
7916 printk(KERN_INFO "BTRFS: space_info total=%llu, used=%llu, pinned=%llu, "
7917 "reserved=%llu, may_use=%llu, readonly=%llu\n",
7918 info->total_bytes, info->bytes_used, info->bytes_pinned,
7919 info->bytes_reserved, info->bytes_may_use,
7920 info->bytes_readonly);
7921 spin_unlock(&info->lock);
7923 if (!dump_block_groups)
7926 down_read(&info->groups_sem);
7928 list_for_each_entry(cache, &info->block_groups[index], list) {
7929 spin_lock(&cache->lock);
7930 printk(KERN_INFO "BTRFS: "
7931 "block group %llu has %llu bytes, "
7932 "%llu used %llu pinned %llu reserved %s\n",
7933 cache->key.objectid, cache->key.offset,
7934 btrfs_block_group_used(&cache->item), cache->pinned,
7935 cache->reserved, cache->ro ? "[readonly]" : "");
7936 btrfs_dump_free_space(cache, bytes);
7937 spin_unlock(&cache->lock);
7939 if (++index < BTRFS_NR_RAID_TYPES)
7941 up_read(&info->groups_sem);
7944 int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes,
7945 u64 num_bytes, u64 min_alloc_size,
7946 u64 empty_size, u64 hint_byte,
7947 struct btrfs_key *ins, int is_data, int delalloc)
7949 bool final_tried = num_bytes == min_alloc_size;
7953 flags = btrfs_get_alloc_profile(root, is_data);
7955 WARN_ON(num_bytes < root->sectorsize);
7956 ret = find_free_extent(root, ram_bytes, num_bytes, empty_size,
7957 hint_byte, ins, flags, delalloc);
7958 if (!ret && !is_data) {
7959 btrfs_dec_block_group_reservations(root->fs_info,
7961 } else if (ret == -ENOSPC) {
7962 if (!final_tried && ins->offset) {
7963 num_bytes = min(num_bytes >> 1, ins->offset);
7964 num_bytes = round_down(num_bytes, root->sectorsize);
7965 num_bytes = max(num_bytes, min_alloc_size);
7966 ram_bytes = num_bytes;
7967 if (num_bytes == min_alloc_size)
7970 } else if (btrfs_test_opt(root->fs_info, ENOSPC_DEBUG)) {
7971 struct btrfs_space_info *sinfo;
7973 sinfo = __find_space_info(root->fs_info, flags);
7974 btrfs_err(root->fs_info, "allocation failed flags %llu, wanted %llu",
7977 dump_space_info(sinfo, num_bytes, 1);
7984 static int __btrfs_free_reserved_extent(struct btrfs_root *root,
7986 int pin, int delalloc)
7988 struct btrfs_block_group_cache *cache;
7991 cache = btrfs_lookup_block_group(root->fs_info, start);
7993 btrfs_err(root->fs_info, "Unable to find block group for %llu",
7999 pin_down_extent(root, cache, start, len, 1);
8001 if (btrfs_test_opt(root->fs_info, DISCARD))
8002 ret = btrfs_discard_extent(root, start, len, NULL);
8003 btrfs_add_free_space(cache, start, len);
8004 btrfs_free_reserved_bytes(cache, len, delalloc);
8005 trace_btrfs_reserved_extent_free(root, start, len);
8008 btrfs_put_block_group(cache);
8012 int btrfs_free_reserved_extent(struct btrfs_root *root,
8013 u64 start, u64 len, int delalloc)
8015 return __btrfs_free_reserved_extent(root, start, len, 0, delalloc);
8018 int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root,
8021 return __btrfs_free_reserved_extent(root, start, len, 1, 0);
8024 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
8025 struct btrfs_root *root,
8026 u64 parent, u64 root_objectid,
8027 u64 flags, u64 owner, u64 offset,
8028 struct btrfs_key *ins, int ref_mod)
8031 struct btrfs_fs_info *fs_info = root->fs_info;
8032 struct btrfs_extent_item *extent_item;
8033 struct btrfs_extent_inline_ref *iref;
8034 struct btrfs_path *path;
8035 struct extent_buffer *leaf;
8040 type = BTRFS_SHARED_DATA_REF_KEY;
8042 type = BTRFS_EXTENT_DATA_REF_KEY;
8044 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
8046 path = btrfs_alloc_path();
8050 path->leave_spinning = 1;
8051 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
8054 btrfs_free_path(path);
8058 leaf = path->nodes[0];
8059 extent_item = btrfs_item_ptr(leaf, path->slots[0],
8060 struct btrfs_extent_item);
8061 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
8062 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
8063 btrfs_set_extent_flags(leaf, extent_item,
8064 flags | BTRFS_EXTENT_FLAG_DATA);
8066 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
8067 btrfs_set_extent_inline_ref_type(leaf, iref, type);
8069 struct btrfs_shared_data_ref *ref;
8070 ref = (struct btrfs_shared_data_ref *)(iref + 1);
8071 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
8072 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
8074 struct btrfs_extent_data_ref *ref;
8075 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
8076 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
8077 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
8078 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
8079 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
8082 btrfs_mark_buffer_dirty(path->nodes[0]);
8083 btrfs_free_path(path);
8085 ret = remove_from_free_space_tree(trans, fs_info, ins->objectid,
8090 ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
8091 if (ret) { /* -ENOENT, logic error */
8092 btrfs_err(fs_info, "update block group failed for %llu %llu",
8093 ins->objectid, ins->offset);
8096 trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset);
8100 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
8101 struct btrfs_root *root,
8102 u64 parent, u64 root_objectid,
8103 u64 flags, struct btrfs_disk_key *key,
8104 int level, struct btrfs_key *ins)
8107 struct btrfs_fs_info *fs_info = root->fs_info;
8108 struct btrfs_extent_item *extent_item;
8109 struct btrfs_tree_block_info *block_info;
8110 struct btrfs_extent_inline_ref *iref;
8111 struct btrfs_path *path;
8112 struct extent_buffer *leaf;
8113 u32 size = sizeof(*extent_item) + sizeof(*iref);
8114 u64 num_bytes = ins->offset;
8115 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
8118 if (!skinny_metadata)
8119 size += sizeof(*block_info);
8121 path = btrfs_alloc_path();
8123 btrfs_free_and_pin_reserved_extent(root, ins->objectid,
8128 path->leave_spinning = 1;
8129 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
8132 btrfs_free_path(path);
8133 btrfs_free_and_pin_reserved_extent(root, ins->objectid,
8138 leaf = path->nodes[0];
8139 extent_item = btrfs_item_ptr(leaf, path->slots[0],
8140 struct btrfs_extent_item);
8141 btrfs_set_extent_refs(leaf, extent_item, 1);
8142 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
8143 btrfs_set_extent_flags(leaf, extent_item,
8144 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
8146 if (skinny_metadata) {
8147 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
8148 num_bytes = root->nodesize;
8150 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
8151 btrfs_set_tree_block_key(leaf, block_info, key);
8152 btrfs_set_tree_block_level(leaf, block_info, level);
8153 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
8157 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
8158 btrfs_set_extent_inline_ref_type(leaf, iref,
8159 BTRFS_SHARED_BLOCK_REF_KEY);
8160 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
8162 btrfs_set_extent_inline_ref_type(leaf, iref,
8163 BTRFS_TREE_BLOCK_REF_KEY);
8164 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
8167 btrfs_mark_buffer_dirty(leaf);
8168 btrfs_free_path(path);
8170 ret = remove_from_free_space_tree(trans, fs_info, ins->objectid,
8175 ret = update_block_group(trans, root, ins->objectid, root->nodesize,
8177 if (ret) { /* -ENOENT, logic error */
8178 btrfs_err(fs_info, "update block group failed for %llu %llu",
8179 ins->objectid, ins->offset);
8183 trace_btrfs_reserved_extent_alloc(root, ins->objectid, root->nodesize);
8187 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
8188 struct btrfs_root *root,
8189 u64 root_objectid, u64 owner,
8190 u64 offset, u64 ram_bytes,
8191 struct btrfs_key *ins)
8195 BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
8197 ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid,
8199 root_objectid, owner, offset,
8200 ram_bytes, BTRFS_ADD_DELAYED_EXTENT,
8206 * this is used by the tree logging recovery code. It records that
8207 * an extent has been allocated and makes sure to clear the free
8208 * space cache bits as well
8210 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
8211 struct btrfs_root *root,
8212 u64 root_objectid, u64 owner, u64 offset,
8213 struct btrfs_key *ins)
8216 struct btrfs_block_group_cache *block_group;
8217 struct btrfs_space_info *space_info;
8220 * Mixed block groups will exclude before processing the log so we only
8221 * need to do the exclude dance if this fs isn't mixed.
8223 if (!btrfs_fs_incompat(root->fs_info, MIXED_GROUPS)) {
8224 ret = __exclude_logged_extent(root, ins->objectid, ins->offset);
8229 block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
8233 space_info = block_group->space_info;
8234 spin_lock(&space_info->lock);
8235 spin_lock(&block_group->lock);
8236 space_info->bytes_reserved += ins->offset;
8237 block_group->reserved += ins->offset;
8238 spin_unlock(&block_group->lock);
8239 spin_unlock(&space_info->lock);
8241 ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
8242 0, owner, offset, ins, 1);
8243 btrfs_put_block_group(block_group);
8247 static struct extent_buffer *
8248 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
8249 u64 bytenr, int level)
8251 struct extent_buffer *buf;
8253 buf = btrfs_find_create_tree_block(root, bytenr);
8257 btrfs_set_header_generation(buf, trans->transid);
8258 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
8259 btrfs_tree_lock(buf);
8260 clean_tree_block(trans, root->fs_info, buf);
8261 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
8263 btrfs_set_lock_blocking(buf);
8264 set_extent_buffer_uptodate(buf);
8266 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
8267 buf->log_index = root->log_transid % 2;
8269 * we allow two log transactions at a time, use different
8270 * EXENT bit to differentiate dirty pages.
8272 if (buf->log_index == 0)
8273 set_extent_dirty(&root->dirty_log_pages, buf->start,
8274 buf->start + buf->len - 1, GFP_NOFS);
8276 set_extent_new(&root->dirty_log_pages, buf->start,
8277 buf->start + buf->len - 1);
8279 buf->log_index = -1;
8280 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
8281 buf->start + buf->len - 1, GFP_NOFS);
8283 trans->dirty = true;
8284 /* this returns a buffer locked for blocking */
8288 static struct btrfs_block_rsv *
8289 use_block_rsv(struct btrfs_trans_handle *trans,
8290 struct btrfs_root *root, u32 blocksize)
8292 struct btrfs_block_rsv *block_rsv;
8293 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
8295 bool global_updated = false;
8297 block_rsv = get_block_rsv(trans, root);
8299 if (unlikely(block_rsv->size == 0))
8302 ret = block_rsv_use_bytes(block_rsv, blocksize);
8306 if (block_rsv->failfast)
8307 return ERR_PTR(ret);
8309 if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
8310 global_updated = true;
8311 update_global_block_rsv(root->fs_info);
8315 if (btrfs_test_opt(root->fs_info, ENOSPC_DEBUG)) {
8316 static DEFINE_RATELIMIT_STATE(_rs,
8317 DEFAULT_RATELIMIT_INTERVAL * 10,
8318 /*DEFAULT_RATELIMIT_BURST*/ 1);
8319 if (__ratelimit(&_rs))
8321 "BTRFS: block rsv returned %d\n", ret);
8324 ret = reserve_metadata_bytes(root, block_rsv, blocksize,
8325 BTRFS_RESERVE_NO_FLUSH);
8329 * If we couldn't reserve metadata bytes try and use some from
8330 * the global reserve if its space type is the same as the global
8333 if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
8334 block_rsv->space_info == global_rsv->space_info) {
8335 ret = block_rsv_use_bytes(global_rsv, blocksize);
8339 return ERR_PTR(ret);
8342 static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
8343 struct btrfs_block_rsv *block_rsv, u32 blocksize)
8345 block_rsv_add_bytes(block_rsv, blocksize, 0);
8346 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
8350 * finds a free extent and does all the dirty work required for allocation
8351 * returns the tree buffer or an ERR_PTR on error.
8353 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
8354 struct btrfs_root *root,
8355 u64 parent, u64 root_objectid,
8356 struct btrfs_disk_key *key, int level,
8357 u64 hint, u64 empty_size)
8359 struct btrfs_key ins;
8360 struct btrfs_block_rsv *block_rsv;
8361 struct extent_buffer *buf;
8362 struct btrfs_delayed_extent_op *extent_op;
8365 u32 blocksize = root->nodesize;
8366 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
8369 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
8370 if (btrfs_is_testing(root->fs_info)) {
8371 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
8374 root->alloc_bytenr += blocksize;
8379 block_rsv = use_block_rsv(trans, root, blocksize);
8380 if (IS_ERR(block_rsv))
8381 return ERR_CAST(block_rsv);
8383 ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize,
8384 empty_size, hint, &ins, 0, 0);
8388 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level);
8391 goto out_free_reserved;
8394 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
8396 parent = ins.objectid;
8397 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
8401 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
8402 extent_op = btrfs_alloc_delayed_extent_op();
8408 memcpy(&extent_op->key, key, sizeof(extent_op->key));
8410 memset(&extent_op->key, 0, sizeof(extent_op->key));
8411 extent_op->flags_to_set = flags;
8412 extent_op->update_key = skinny_metadata ? false : true;
8413 extent_op->update_flags = true;
8414 extent_op->is_data = false;
8415 extent_op->level = level;
8417 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
8418 ins.objectid, ins.offset,
8419 parent, root_objectid, level,
8420 BTRFS_ADD_DELAYED_EXTENT,
8423 goto out_free_delayed;
8428 btrfs_free_delayed_extent_op(extent_op);
8430 free_extent_buffer(buf);
8432 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 0);
8434 unuse_block_rsv(root->fs_info, block_rsv, blocksize);
8435 return ERR_PTR(ret);
8438 struct walk_control {
8439 u64 refs[BTRFS_MAX_LEVEL];
8440 u64 flags[BTRFS_MAX_LEVEL];
8441 struct btrfs_key update_progress;
8452 #define DROP_REFERENCE 1
8453 #define UPDATE_BACKREF 2
8455 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
8456 struct btrfs_root *root,
8457 struct walk_control *wc,
8458 struct btrfs_path *path)
8466 struct btrfs_key key;
8467 struct extent_buffer *eb;
8472 if (path->slots[wc->level] < wc->reada_slot) {
8473 wc->reada_count = wc->reada_count * 2 / 3;
8474 wc->reada_count = max(wc->reada_count, 2);
8476 wc->reada_count = wc->reada_count * 3 / 2;
8477 wc->reada_count = min_t(int, wc->reada_count,
8478 BTRFS_NODEPTRS_PER_BLOCK(root));
8481 eb = path->nodes[wc->level];
8482 nritems = btrfs_header_nritems(eb);
8483 blocksize = root->nodesize;
8485 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
8486 if (nread >= wc->reada_count)
8490 bytenr = btrfs_node_blockptr(eb, slot);
8491 generation = btrfs_node_ptr_generation(eb, slot);
8493 if (slot == path->slots[wc->level])
8496 if (wc->stage == UPDATE_BACKREF &&
8497 generation <= root->root_key.offset)
8500 /* We don't lock the tree block, it's OK to be racy here */
8501 ret = btrfs_lookup_extent_info(trans, root, bytenr,
8502 wc->level - 1, 1, &refs,
8504 /* We don't care about errors in readahead. */
8509 if (wc->stage == DROP_REFERENCE) {
8513 if (wc->level == 1 &&
8514 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8516 if (!wc->update_ref ||
8517 generation <= root->root_key.offset)
8519 btrfs_node_key_to_cpu(eb, &key, slot);
8520 ret = btrfs_comp_cpu_keys(&key,
8521 &wc->update_progress);
8525 if (wc->level == 1 &&
8526 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8530 readahead_tree_block(root, bytenr);
8533 wc->reada_slot = slot;
8536 static int account_leaf_items(struct btrfs_trans_handle *trans,
8537 struct btrfs_root *root,
8538 struct extent_buffer *eb)
8540 int nr = btrfs_header_nritems(eb);
8541 int i, extent_type, ret;
8542 struct btrfs_key key;
8543 struct btrfs_file_extent_item *fi;
8544 u64 bytenr, num_bytes;
8546 /* We can be called directly from walk_up_proc() */
8547 if (!root->fs_info->quota_enabled)
8550 for (i = 0; i < nr; i++) {
8551 btrfs_item_key_to_cpu(eb, &key, i);
8553 if (key.type != BTRFS_EXTENT_DATA_KEY)
8556 fi = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
8557 /* filter out non qgroup-accountable extents */
8558 extent_type = btrfs_file_extent_type(eb, fi);
8560 if (extent_type == BTRFS_FILE_EXTENT_INLINE)
8563 bytenr = btrfs_file_extent_disk_bytenr(eb, fi);
8567 num_bytes = btrfs_file_extent_disk_num_bytes(eb, fi);
8569 ret = btrfs_qgroup_insert_dirty_extent(trans, root->fs_info,
8570 bytenr, num_bytes, GFP_NOFS);
8578 * Walk up the tree from the bottom, freeing leaves and any interior
8579 * nodes which have had all slots visited. If a node (leaf or
8580 * interior) is freed, the node above it will have it's slot
8581 * incremented. The root node will never be freed.
8583 * At the end of this function, we should have a path which has all
8584 * slots incremented to the next position for a search. If we need to
8585 * read a new node it will be NULL and the node above it will have the
8586 * correct slot selected for a later read.
8588 * If we increment the root nodes slot counter past the number of
8589 * elements, 1 is returned to signal completion of the search.
8591 static int adjust_slots_upwards(struct btrfs_root *root,
8592 struct btrfs_path *path, int root_level)
8596 struct extent_buffer *eb;
8598 if (root_level == 0)
8601 while (level <= root_level) {
8602 eb = path->nodes[level];
8603 nr = btrfs_header_nritems(eb);
8604 path->slots[level]++;
8605 slot = path->slots[level];
8606 if (slot >= nr || level == 0) {
8608 * Don't free the root - we will detect this
8609 * condition after our loop and return a
8610 * positive value for caller to stop walking the tree.
8612 if (level != root_level) {
8613 btrfs_tree_unlock_rw(eb, path->locks[level]);
8614 path->locks[level] = 0;
8616 free_extent_buffer(eb);
8617 path->nodes[level] = NULL;
8618 path->slots[level] = 0;
8622 * We have a valid slot to walk back down
8623 * from. Stop here so caller can process these
8632 eb = path->nodes[root_level];
8633 if (path->slots[root_level] >= btrfs_header_nritems(eb))
8640 * root_eb is the subtree root and is locked before this function is called.
8642 static int account_shared_subtree(struct btrfs_trans_handle *trans,
8643 struct btrfs_root *root,
8644 struct extent_buffer *root_eb,
8650 struct extent_buffer *eb = root_eb;
8651 struct btrfs_path *path = NULL;
8653 BUG_ON(root_level < 0 || root_level > BTRFS_MAX_LEVEL);
8654 BUG_ON(root_eb == NULL);
8656 if (!root->fs_info->quota_enabled)
8659 if (!extent_buffer_uptodate(root_eb)) {
8660 ret = btrfs_read_buffer(root_eb, root_gen);
8665 if (root_level == 0) {
8666 ret = account_leaf_items(trans, root, root_eb);
8670 path = btrfs_alloc_path();
8675 * Walk down the tree. Missing extent blocks are filled in as
8676 * we go. Metadata is accounted every time we read a new
8679 * When we reach a leaf, we account for file extent items in it,
8680 * walk back up the tree (adjusting slot pointers as we go)
8681 * and restart the search process.
8683 extent_buffer_get(root_eb); /* For path */
8684 path->nodes[root_level] = root_eb;
8685 path->slots[root_level] = 0;
8686 path->locks[root_level] = 0; /* so release_path doesn't try to unlock */
8689 while (level >= 0) {
8690 if (path->nodes[level] == NULL) {
8695 /* We need to get child blockptr/gen from
8696 * parent before we can read it. */
8697 eb = path->nodes[level + 1];
8698 parent_slot = path->slots[level + 1];
8699 child_bytenr = btrfs_node_blockptr(eb, parent_slot);
8700 child_gen = btrfs_node_ptr_generation(eb, parent_slot);
8702 eb = read_tree_block(root, child_bytenr, child_gen);
8706 } else if (!extent_buffer_uptodate(eb)) {
8707 free_extent_buffer(eb);
8712 path->nodes[level] = eb;
8713 path->slots[level] = 0;
8715 btrfs_tree_read_lock(eb);
8716 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
8717 path->locks[level] = BTRFS_READ_LOCK_BLOCKING;
8719 ret = btrfs_qgroup_insert_dirty_extent(trans,
8720 root->fs_info, child_bytenr,
8721 root->nodesize, GFP_NOFS);
8727 ret = account_leaf_items(trans, root, path->nodes[level]);
8731 /* Nonzero return here means we completed our search */
8732 ret = adjust_slots_upwards(root, path, root_level);
8736 /* Restart search with new slots */
8745 btrfs_free_path(path);
8751 * helper to process tree block while walking down the tree.
8753 * when wc->stage == UPDATE_BACKREF, this function updates
8754 * back refs for pointers in the block.
8756 * NOTE: return value 1 means we should stop walking down.
8758 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
8759 struct btrfs_root *root,
8760 struct btrfs_path *path,
8761 struct walk_control *wc, int lookup_info)
8763 int level = wc->level;
8764 struct extent_buffer *eb = path->nodes[level];
8765 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
8768 if (wc->stage == UPDATE_BACKREF &&
8769 btrfs_header_owner(eb) != root->root_key.objectid)
8773 * when reference count of tree block is 1, it won't increase
8774 * again. once full backref flag is set, we never clear it.
8777 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
8778 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
8779 BUG_ON(!path->locks[level]);
8780 ret = btrfs_lookup_extent_info(trans, root,
8781 eb->start, level, 1,
8784 BUG_ON(ret == -ENOMEM);
8787 BUG_ON(wc->refs[level] == 0);
8790 if (wc->stage == DROP_REFERENCE) {
8791 if (wc->refs[level] > 1)
8794 if (path->locks[level] && !wc->keep_locks) {
8795 btrfs_tree_unlock_rw(eb, path->locks[level]);
8796 path->locks[level] = 0;
8801 /* wc->stage == UPDATE_BACKREF */
8802 if (!(wc->flags[level] & flag)) {
8803 BUG_ON(!path->locks[level]);
8804 ret = btrfs_inc_ref(trans, root, eb, 1);
8805 BUG_ON(ret); /* -ENOMEM */
8806 ret = btrfs_dec_ref(trans, root, eb, 0);
8807 BUG_ON(ret); /* -ENOMEM */
8808 ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
8810 btrfs_header_level(eb), 0);
8811 BUG_ON(ret); /* -ENOMEM */
8812 wc->flags[level] |= flag;
8816 * the block is shared by multiple trees, so it's not good to
8817 * keep the tree lock
8819 if (path->locks[level] && level > 0) {
8820 btrfs_tree_unlock_rw(eb, path->locks[level]);
8821 path->locks[level] = 0;
8827 * helper to process tree block pointer.
8829 * when wc->stage == DROP_REFERENCE, this function checks
8830 * reference count of the block pointed to. if the block
8831 * is shared and we need update back refs for the subtree
8832 * rooted at the block, this function changes wc->stage to
8833 * UPDATE_BACKREF. if the block is shared and there is no
8834 * need to update back, this function drops the reference
8837 * NOTE: return value 1 means we should stop walking down.
8839 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
8840 struct btrfs_root *root,
8841 struct btrfs_path *path,
8842 struct walk_control *wc, int *lookup_info)
8848 struct btrfs_key key;
8849 struct extent_buffer *next;
8850 int level = wc->level;
8853 bool need_account = false;
8855 generation = btrfs_node_ptr_generation(path->nodes[level],
8856 path->slots[level]);
8858 * if the lower level block was created before the snapshot
8859 * was created, we know there is no need to update back refs
8862 if (wc->stage == UPDATE_BACKREF &&
8863 generation <= root->root_key.offset) {
8868 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
8869 blocksize = root->nodesize;
8871 next = btrfs_find_tree_block(root->fs_info, bytenr);
8873 next = btrfs_find_create_tree_block(root, bytenr);
8875 return PTR_ERR(next);
8877 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
8881 btrfs_tree_lock(next);
8882 btrfs_set_lock_blocking(next);
8884 ret = btrfs_lookup_extent_info(trans, root, bytenr, level - 1, 1,
8885 &wc->refs[level - 1],
8886 &wc->flags[level - 1]);
8888 btrfs_tree_unlock(next);
8892 if (unlikely(wc->refs[level - 1] == 0)) {
8893 btrfs_err(root->fs_info, "Missing references.");
8898 if (wc->stage == DROP_REFERENCE) {
8899 if (wc->refs[level - 1] > 1) {
8900 need_account = true;
8902 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8905 if (!wc->update_ref ||
8906 generation <= root->root_key.offset)
8909 btrfs_node_key_to_cpu(path->nodes[level], &key,
8910 path->slots[level]);
8911 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
8915 wc->stage = UPDATE_BACKREF;
8916 wc->shared_level = level - 1;
8920 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8924 if (!btrfs_buffer_uptodate(next, generation, 0)) {
8925 btrfs_tree_unlock(next);
8926 free_extent_buffer(next);
8932 if (reada && level == 1)
8933 reada_walk_down(trans, root, wc, path);
8934 next = read_tree_block(root, bytenr, generation);
8936 return PTR_ERR(next);
8937 } else if (!extent_buffer_uptodate(next)) {
8938 free_extent_buffer(next);
8941 btrfs_tree_lock(next);
8942 btrfs_set_lock_blocking(next);
8946 BUG_ON(level != btrfs_header_level(next));
8947 path->nodes[level] = next;
8948 path->slots[level] = 0;
8949 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8955 wc->refs[level - 1] = 0;
8956 wc->flags[level - 1] = 0;
8957 if (wc->stage == DROP_REFERENCE) {
8958 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
8959 parent = path->nodes[level]->start;
8961 BUG_ON(root->root_key.objectid !=
8962 btrfs_header_owner(path->nodes[level]));
8967 ret = account_shared_subtree(trans, root, next,
8968 generation, level - 1);
8970 btrfs_err_rl(root->fs_info,
8972 "%d accounting shared subtree. Quota "
8973 "is out of sync, rescan required.",
8977 ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
8978 root->root_key.objectid, level - 1, 0);
8979 BUG_ON(ret); /* -ENOMEM */
8981 btrfs_tree_unlock(next);
8982 free_extent_buffer(next);
8988 * helper to process tree block while walking up the tree.
8990 * when wc->stage == DROP_REFERENCE, this function drops
8991 * reference count on the block.
8993 * when wc->stage == UPDATE_BACKREF, this function changes
8994 * wc->stage back to DROP_REFERENCE if we changed wc->stage
8995 * to UPDATE_BACKREF previously while processing the block.
8997 * NOTE: return value 1 means we should stop walking up.
8999 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
9000 struct btrfs_root *root,
9001 struct btrfs_path *path,
9002 struct walk_control *wc)
9005 int level = wc->level;
9006 struct extent_buffer *eb = path->nodes[level];
9009 if (wc->stage == UPDATE_BACKREF) {
9010 BUG_ON(wc->shared_level < level);
9011 if (level < wc->shared_level)
9014 ret = find_next_key(path, level + 1, &wc->update_progress);
9018 wc->stage = DROP_REFERENCE;
9019 wc->shared_level = -1;
9020 path->slots[level] = 0;
9023 * check reference count again if the block isn't locked.
9024 * we should start walking down the tree again if reference
9027 if (!path->locks[level]) {
9029 btrfs_tree_lock(eb);
9030 btrfs_set_lock_blocking(eb);
9031 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9033 ret = btrfs_lookup_extent_info(trans, root,
9034 eb->start, level, 1,
9038 btrfs_tree_unlock_rw(eb, path->locks[level]);
9039 path->locks[level] = 0;
9042 BUG_ON(wc->refs[level] == 0);
9043 if (wc->refs[level] == 1) {
9044 btrfs_tree_unlock_rw(eb, path->locks[level]);
9045 path->locks[level] = 0;
9051 /* wc->stage == DROP_REFERENCE */
9052 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
9054 if (wc->refs[level] == 1) {
9056 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
9057 ret = btrfs_dec_ref(trans, root, eb, 1);
9059 ret = btrfs_dec_ref(trans, root, eb, 0);
9060 BUG_ON(ret); /* -ENOMEM */
9061 ret = account_leaf_items(trans, root, eb);
9063 btrfs_err_rl(root->fs_info,
9065 "%d accounting leaf items. Quota "
9066 "is out of sync, rescan required.",
9070 /* make block locked assertion in clean_tree_block happy */
9071 if (!path->locks[level] &&
9072 btrfs_header_generation(eb) == trans->transid) {
9073 btrfs_tree_lock(eb);
9074 btrfs_set_lock_blocking(eb);
9075 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9077 clean_tree_block(trans, root->fs_info, eb);
9080 if (eb == root->node) {
9081 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
9084 BUG_ON(root->root_key.objectid !=
9085 btrfs_header_owner(eb));
9087 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
9088 parent = path->nodes[level + 1]->start;
9090 BUG_ON(root->root_key.objectid !=
9091 btrfs_header_owner(path->nodes[level + 1]));
9094 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
9096 wc->refs[level] = 0;
9097 wc->flags[level] = 0;
9101 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
9102 struct btrfs_root *root,
9103 struct btrfs_path *path,
9104 struct walk_control *wc)
9106 int level = wc->level;
9107 int lookup_info = 1;
9110 while (level >= 0) {
9111 ret = walk_down_proc(trans, root, path, wc, lookup_info);
9118 if (path->slots[level] >=
9119 btrfs_header_nritems(path->nodes[level]))
9122 ret = do_walk_down(trans, root, path, wc, &lookup_info);
9124 path->slots[level]++;
9133 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
9134 struct btrfs_root *root,
9135 struct btrfs_path *path,
9136 struct walk_control *wc, int max_level)
9138 int level = wc->level;
9141 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
9142 while (level < max_level && path->nodes[level]) {
9144 if (path->slots[level] + 1 <
9145 btrfs_header_nritems(path->nodes[level])) {
9146 path->slots[level]++;
9149 ret = walk_up_proc(trans, root, path, wc);
9153 if (path->locks[level]) {
9154 btrfs_tree_unlock_rw(path->nodes[level],
9155 path->locks[level]);
9156 path->locks[level] = 0;
9158 free_extent_buffer(path->nodes[level]);
9159 path->nodes[level] = NULL;
9167 * drop a subvolume tree.
9169 * this function traverses the tree freeing any blocks that only
9170 * referenced by the tree.
9172 * when a shared tree block is found. this function decreases its
9173 * reference count by one. if update_ref is true, this function
9174 * also make sure backrefs for the shared block and all lower level
9175 * blocks are properly updated.
9177 * If called with for_reloc == 0, may exit early with -EAGAIN
9179 int btrfs_drop_snapshot(struct btrfs_root *root,
9180 struct btrfs_block_rsv *block_rsv, int update_ref,
9183 struct btrfs_path *path;
9184 struct btrfs_trans_handle *trans;
9185 struct btrfs_root *tree_root = root->fs_info->tree_root;
9186 struct btrfs_root_item *root_item = &root->root_item;
9187 struct walk_control *wc;
9188 struct btrfs_key key;
9192 bool root_dropped = false;
9194 btrfs_debug(root->fs_info, "Drop subvolume %llu", root->objectid);
9196 path = btrfs_alloc_path();
9202 wc = kzalloc(sizeof(*wc), GFP_NOFS);
9204 btrfs_free_path(path);
9209 trans = btrfs_start_transaction(tree_root, 0);
9210 if (IS_ERR(trans)) {
9211 err = PTR_ERR(trans);
9216 trans->block_rsv = block_rsv;
9218 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
9219 level = btrfs_header_level(root->node);
9220 path->nodes[level] = btrfs_lock_root_node(root);
9221 btrfs_set_lock_blocking(path->nodes[level]);
9222 path->slots[level] = 0;
9223 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9224 memset(&wc->update_progress, 0,
9225 sizeof(wc->update_progress));
9227 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
9228 memcpy(&wc->update_progress, &key,
9229 sizeof(wc->update_progress));
9231 level = root_item->drop_level;
9233 path->lowest_level = level;
9234 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
9235 path->lowest_level = 0;
9243 * unlock our path, this is safe because only this
9244 * function is allowed to delete this snapshot
9246 btrfs_unlock_up_safe(path, 0);
9248 level = btrfs_header_level(root->node);
9250 btrfs_tree_lock(path->nodes[level]);
9251 btrfs_set_lock_blocking(path->nodes[level]);
9252 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9254 ret = btrfs_lookup_extent_info(trans, root,
9255 path->nodes[level]->start,
9256 level, 1, &wc->refs[level],
9262 BUG_ON(wc->refs[level] == 0);
9264 if (level == root_item->drop_level)
9267 btrfs_tree_unlock(path->nodes[level]);
9268 path->locks[level] = 0;
9269 WARN_ON(wc->refs[level] != 1);
9275 wc->shared_level = -1;
9276 wc->stage = DROP_REFERENCE;
9277 wc->update_ref = update_ref;
9279 wc->for_reloc = for_reloc;
9280 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
9284 ret = walk_down_tree(trans, root, path, wc);
9290 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
9297 BUG_ON(wc->stage != DROP_REFERENCE);
9301 if (wc->stage == DROP_REFERENCE) {
9303 btrfs_node_key(path->nodes[level],
9304 &root_item->drop_progress,
9305 path->slots[level]);
9306 root_item->drop_level = level;
9309 BUG_ON(wc->level == 0);
9310 if (btrfs_should_end_transaction(trans, tree_root) ||
9311 (!for_reloc && btrfs_need_cleaner_sleep(root))) {
9312 ret = btrfs_update_root(trans, tree_root,
9316 btrfs_abort_transaction(trans, ret);
9321 btrfs_end_transaction_throttle(trans, tree_root);
9322 if (!for_reloc && btrfs_need_cleaner_sleep(root)) {
9323 pr_debug("BTRFS: drop snapshot early exit\n");
9328 trans = btrfs_start_transaction(tree_root, 0);
9329 if (IS_ERR(trans)) {
9330 err = PTR_ERR(trans);
9334 trans->block_rsv = block_rsv;
9337 btrfs_release_path(path);
9341 ret = btrfs_del_root(trans, tree_root, &root->root_key);
9343 btrfs_abort_transaction(trans, ret);
9347 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
9348 ret = btrfs_find_root(tree_root, &root->root_key, path,
9351 btrfs_abort_transaction(trans, ret);
9354 } else if (ret > 0) {
9355 /* if we fail to delete the orphan item this time
9356 * around, it'll get picked up the next time.
9358 * The most common failure here is just -ENOENT.
9360 btrfs_del_orphan_item(trans, tree_root,
9361 root->root_key.objectid);
9365 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) {
9366 btrfs_add_dropped_root(trans, root);
9368 free_extent_buffer(root->node);
9369 free_extent_buffer(root->commit_root);
9370 btrfs_put_fs_root(root);
9372 root_dropped = true;
9374 btrfs_end_transaction_throttle(trans, tree_root);
9377 btrfs_free_path(path);
9380 * So if we need to stop dropping the snapshot for whatever reason we
9381 * need to make sure to add it back to the dead root list so that we
9382 * keep trying to do the work later. This also cleans up roots if we
9383 * don't have it in the radix (like when we recover after a power fail
9384 * or unmount) so we don't leak memory.
9386 if (!for_reloc && root_dropped == false)
9387 btrfs_add_dead_root(root);
9388 if (err && err != -EAGAIN)
9389 btrfs_handle_fs_error(root->fs_info, err, NULL);
9394 * drop subtree rooted at tree block 'node'.
9396 * NOTE: this function will unlock and release tree block 'node'
9397 * only used by relocation code
9399 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
9400 struct btrfs_root *root,
9401 struct extent_buffer *node,
9402 struct extent_buffer *parent)
9404 struct btrfs_path *path;
9405 struct walk_control *wc;
9411 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
9413 path = btrfs_alloc_path();
9417 wc = kzalloc(sizeof(*wc), GFP_NOFS);
9419 btrfs_free_path(path);
9423 btrfs_assert_tree_locked(parent);
9424 parent_level = btrfs_header_level(parent);
9425 extent_buffer_get(parent);
9426 path->nodes[parent_level] = parent;
9427 path->slots[parent_level] = btrfs_header_nritems(parent);
9429 btrfs_assert_tree_locked(node);
9430 level = btrfs_header_level(node);
9431 path->nodes[level] = node;
9432 path->slots[level] = 0;
9433 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9435 wc->refs[parent_level] = 1;
9436 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
9438 wc->shared_level = -1;
9439 wc->stage = DROP_REFERENCE;
9443 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
9446 wret = walk_down_tree(trans, root, path, wc);
9452 wret = walk_up_tree(trans, root, path, wc, parent_level);
9460 btrfs_free_path(path);
9464 static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
9470 * if restripe for this chunk_type is on pick target profile and
9471 * return, otherwise do the usual balance
9473 stripped = get_restripe_target(root->fs_info, flags);
9475 return extended_to_chunk(stripped);
9477 num_devices = root->fs_info->fs_devices->rw_devices;
9479 stripped = BTRFS_BLOCK_GROUP_RAID0 |
9480 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
9481 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
9483 if (num_devices == 1) {
9484 stripped |= BTRFS_BLOCK_GROUP_DUP;
9485 stripped = flags & ~stripped;
9487 /* turn raid0 into single device chunks */
9488 if (flags & BTRFS_BLOCK_GROUP_RAID0)
9491 /* turn mirroring into duplication */
9492 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
9493 BTRFS_BLOCK_GROUP_RAID10))
9494 return stripped | BTRFS_BLOCK_GROUP_DUP;
9496 /* they already had raid on here, just return */
9497 if (flags & stripped)
9500 stripped |= BTRFS_BLOCK_GROUP_DUP;
9501 stripped = flags & ~stripped;
9503 /* switch duplicated blocks with raid1 */
9504 if (flags & BTRFS_BLOCK_GROUP_DUP)
9505 return stripped | BTRFS_BLOCK_GROUP_RAID1;
9507 /* this is drive concat, leave it alone */
9513 static int inc_block_group_ro(struct btrfs_block_group_cache *cache, int force)
9515 struct btrfs_space_info *sinfo = cache->space_info;
9517 u64 min_allocable_bytes;
9521 * We need some metadata space and system metadata space for
9522 * allocating chunks in some corner cases until we force to set
9523 * it to be readonly.
9526 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
9528 min_allocable_bytes = SZ_1M;
9530 min_allocable_bytes = 0;
9532 spin_lock(&sinfo->lock);
9533 spin_lock(&cache->lock);
9541 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
9542 cache->bytes_super - btrfs_block_group_used(&cache->item);
9544 if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
9545 sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes +
9546 min_allocable_bytes <= sinfo->total_bytes) {
9547 sinfo->bytes_readonly += num_bytes;
9549 list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
9553 spin_unlock(&cache->lock);
9554 spin_unlock(&sinfo->lock);
9558 int btrfs_inc_block_group_ro(struct btrfs_root *root,
9559 struct btrfs_block_group_cache *cache)
9562 struct btrfs_trans_handle *trans;
9567 trans = btrfs_join_transaction(root);
9569 return PTR_ERR(trans);
9572 * we're not allowed to set block groups readonly after the dirty
9573 * block groups cache has started writing. If it already started,
9574 * back off and let this transaction commit
9576 mutex_lock(&root->fs_info->ro_block_group_mutex);
9577 if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
9578 u64 transid = trans->transid;
9580 mutex_unlock(&root->fs_info->ro_block_group_mutex);
9581 btrfs_end_transaction(trans, root);
9583 ret = btrfs_wait_for_commit(root, transid);
9590 * if we are changing raid levels, try to allocate a corresponding
9591 * block group with the new raid level.
9593 alloc_flags = update_block_group_flags(root, cache->flags);
9594 if (alloc_flags != cache->flags) {
9595 ret = do_chunk_alloc(trans, root, alloc_flags,
9598 * ENOSPC is allowed here, we may have enough space
9599 * already allocated at the new raid level to
9608 ret = inc_block_group_ro(cache, 0);
9611 alloc_flags = get_alloc_profile(root, cache->space_info->flags);
9612 ret = do_chunk_alloc(trans, root, alloc_flags,
9616 ret = inc_block_group_ro(cache, 0);
9618 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
9619 alloc_flags = update_block_group_flags(root, cache->flags);
9620 lock_chunks(root->fs_info->chunk_root);
9621 check_system_chunk(trans, root, alloc_flags);
9622 unlock_chunks(root->fs_info->chunk_root);
9624 mutex_unlock(&root->fs_info->ro_block_group_mutex);
9626 btrfs_end_transaction(trans, root);
9630 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
9631 struct btrfs_root *root, u64 type)
9633 u64 alloc_flags = get_alloc_profile(root, type);
9634 return do_chunk_alloc(trans, root, alloc_flags,
9639 * helper to account the unused space of all the readonly block group in the
9640 * space_info. takes mirrors into account.
9642 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
9644 struct btrfs_block_group_cache *block_group;
9648 /* It's df, we don't care if it's racy */
9649 if (list_empty(&sinfo->ro_bgs))
9652 spin_lock(&sinfo->lock);
9653 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
9654 spin_lock(&block_group->lock);
9656 if (!block_group->ro) {
9657 spin_unlock(&block_group->lock);
9661 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
9662 BTRFS_BLOCK_GROUP_RAID10 |
9663 BTRFS_BLOCK_GROUP_DUP))
9668 free_bytes += (block_group->key.offset -
9669 btrfs_block_group_used(&block_group->item)) *
9672 spin_unlock(&block_group->lock);
9674 spin_unlock(&sinfo->lock);
9679 void btrfs_dec_block_group_ro(struct btrfs_root *root,
9680 struct btrfs_block_group_cache *cache)
9682 struct btrfs_space_info *sinfo = cache->space_info;
9687 spin_lock(&sinfo->lock);
9688 spin_lock(&cache->lock);
9690 num_bytes = cache->key.offset - cache->reserved -
9691 cache->pinned - cache->bytes_super -
9692 btrfs_block_group_used(&cache->item);
9693 sinfo->bytes_readonly -= num_bytes;
9694 list_del_init(&cache->ro_list);
9696 spin_unlock(&cache->lock);
9697 spin_unlock(&sinfo->lock);
9701 * checks to see if its even possible to relocate this block group.
9703 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
9704 * ok to go ahead and try.
9706 int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
9708 struct btrfs_block_group_cache *block_group;
9709 struct btrfs_space_info *space_info;
9710 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
9711 struct btrfs_device *device;
9712 struct btrfs_trans_handle *trans;
9722 debug = btrfs_test_opt(root->fs_info, ENOSPC_DEBUG);
9724 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
9726 /* odd, couldn't find the block group, leave it alone */
9729 btrfs_warn(root->fs_info,
9730 "can't find block group for bytenr %llu",
9735 min_free = btrfs_block_group_used(&block_group->item);
9737 /* no bytes used, we're good */
9741 space_info = block_group->space_info;
9742 spin_lock(&space_info->lock);
9744 full = space_info->full;
9747 * if this is the last block group we have in this space, we can't
9748 * relocate it unless we're able to allocate a new chunk below.
9750 * Otherwise, we need to make sure we have room in the space to handle
9751 * all of the extents from this block group. If we can, we're good
9753 if ((space_info->total_bytes != block_group->key.offset) &&
9754 (space_info->bytes_used + space_info->bytes_reserved +
9755 space_info->bytes_pinned + space_info->bytes_readonly +
9756 min_free < space_info->total_bytes)) {
9757 spin_unlock(&space_info->lock);
9760 spin_unlock(&space_info->lock);
9763 * ok we don't have enough space, but maybe we have free space on our
9764 * devices to allocate new chunks for relocation, so loop through our
9765 * alloc devices and guess if we have enough space. if this block
9766 * group is going to be restriped, run checks against the target
9767 * profile instead of the current one.
9779 target = get_restripe_target(root->fs_info, block_group->flags);
9781 index = __get_raid_index(extended_to_chunk(target));
9784 * this is just a balance, so if we were marked as full
9785 * we know there is no space for a new chunk
9789 btrfs_warn(root->fs_info,
9790 "no space to alloc new chunk for block group %llu",
9791 block_group->key.objectid);
9795 index = get_block_group_index(block_group);
9798 if (index == BTRFS_RAID_RAID10) {
9802 } else if (index == BTRFS_RAID_RAID1) {
9804 } else if (index == BTRFS_RAID_DUP) {
9807 } else if (index == BTRFS_RAID_RAID0) {
9808 dev_min = fs_devices->rw_devices;
9809 min_free = div64_u64(min_free, dev_min);
9812 /* We need to do this so that we can look at pending chunks */
9813 trans = btrfs_join_transaction(root);
9814 if (IS_ERR(trans)) {
9815 ret = PTR_ERR(trans);
9819 mutex_lock(&root->fs_info->chunk_mutex);
9820 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
9824 * check to make sure we can actually find a chunk with enough
9825 * space to fit our block group in.
9827 if (device->total_bytes > device->bytes_used + min_free &&
9828 !device->is_tgtdev_for_dev_replace) {
9829 ret = find_free_dev_extent(trans, device, min_free,
9834 if (dev_nr >= dev_min)
9840 if (debug && ret == -1)
9841 btrfs_warn(root->fs_info,
9842 "no space to allocate a new chunk for block group %llu",
9843 block_group->key.objectid);
9844 mutex_unlock(&root->fs_info->chunk_mutex);
9845 btrfs_end_transaction(trans, root);
9847 btrfs_put_block_group(block_group);
9851 static int find_first_block_group(struct btrfs_root *root,
9852 struct btrfs_path *path, struct btrfs_key *key)
9855 struct btrfs_key found_key;
9856 struct extent_buffer *leaf;
9859 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
9864 slot = path->slots[0];
9865 leaf = path->nodes[0];
9866 if (slot >= btrfs_header_nritems(leaf)) {
9867 ret = btrfs_next_leaf(root, path);
9874 btrfs_item_key_to_cpu(leaf, &found_key, slot);
9876 if (found_key.objectid >= key->objectid &&
9877 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
9878 struct extent_map_tree *em_tree;
9879 struct extent_map *em;
9881 em_tree = &root->fs_info->mapping_tree.map_tree;
9882 read_lock(&em_tree->lock);
9883 em = lookup_extent_mapping(em_tree, found_key.objectid,
9885 read_unlock(&em_tree->lock);
9887 btrfs_err(root->fs_info,
9888 "logical %llu len %llu found bg but no related chunk",
9889 found_key.objectid, found_key.offset);
9894 free_extent_map(em);
9903 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
9905 struct btrfs_block_group_cache *block_group;
9909 struct inode *inode;
9911 block_group = btrfs_lookup_first_block_group(info, last);
9912 while (block_group) {
9913 spin_lock(&block_group->lock);
9914 if (block_group->iref)
9916 spin_unlock(&block_group->lock);
9917 block_group = next_block_group(info->tree_root,
9927 inode = block_group->inode;
9928 block_group->iref = 0;
9929 block_group->inode = NULL;
9930 spin_unlock(&block_group->lock);
9931 ASSERT(block_group->io_ctl.inode == NULL);
9933 last = block_group->key.objectid + block_group->key.offset;
9934 btrfs_put_block_group(block_group);
9938 int btrfs_free_block_groups(struct btrfs_fs_info *info)
9940 struct btrfs_block_group_cache *block_group;
9941 struct btrfs_space_info *space_info;
9942 struct btrfs_caching_control *caching_ctl;
9945 down_write(&info->commit_root_sem);
9946 while (!list_empty(&info->caching_block_groups)) {
9947 caching_ctl = list_entry(info->caching_block_groups.next,
9948 struct btrfs_caching_control, list);
9949 list_del(&caching_ctl->list);
9950 put_caching_control(caching_ctl);
9952 up_write(&info->commit_root_sem);
9954 spin_lock(&info->unused_bgs_lock);
9955 while (!list_empty(&info->unused_bgs)) {
9956 block_group = list_first_entry(&info->unused_bgs,
9957 struct btrfs_block_group_cache,
9959 list_del_init(&block_group->bg_list);
9960 btrfs_put_block_group(block_group);
9962 spin_unlock(&info->unused_bgs_lock);
9964 spin_lock(&info->block_group_cache_lock);
9965 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
9966 block_group = rb_entry(n, struct btrfs_block_group_cache,
9968 rb_erase(&block_group->cache_node,
9969 &info->block_group_cache_tree);
9970 RB_CLEAR_NODE(&block_group->cache_node);
9971 spin_unlock(&info->block_group_cache_lock);
9973 down_write(&block_group->space_info->groups_sem);
9974 list_del(&block_group->list);
9975 up_write(&block_group->space_info->groups_sem);
9977 if (block_group->cached == BTRFS_CACHE_STARTED)
9978 wait_block_group_cache_done(block_group);
9981 * We haven't cached this block group, which means we could
9982 * possibly have excluded extents on this block group.
9984 if (block_group->cached == BTRFS_CACHE_NO ||
9985 block_group->cached == BTRFS_CACHE_ERROR)
9986 free_excluded_extents(info->extent_root, block_group);
9988 btrfs_remove_free_space_cache(block_group);
9989 ASSERT(list_empty(&block_group->dirty_list));
9990 ASSERT(list_empty(&block_group->io_list));
9991 ASSERT(list_empty(&block_group->bg_list));
9992 ASSERT(atomic_read(&block_group->count) == 1);
9993 btrfs_put_block_group(block_group);
9995 spin_lock(&info->block_group_cache_lock);
9997 spin_unlock(&info->block_group_cache_lock);
9999 /* now that all the block groups are freed, go through and
10000 * free all the space_info structs. This is only called during
10001 * the final stages of unmount, and so we know nobody is
10002 * using them. We call synchronize_rcu() once before we start,
10003 * just to be on the safe side.
10007 release_global_block_rsv(info);
10009 while (!list_empty(&info->space_info)) {
10012 space_info = list_entry(info->space_info.next,
10013 struct btrfs_space_info,
10017 * Do not hide this behind enospc_debug, this is actually
10018 * important and indicates a real bug if this happens.
10020 if (WARN_ON(space_info->bytes_pinned > 0 ||
10021 space_info->bytes_reserved > 0 ||
10022 space_info->bytes_may_use > 0))
10023 dump_space_info(space_info, 0, 0);
10024 list_del(&space_info->list);
10025 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
10026 struct kobject *kobj;
10027 kobj = space_info->block_group_kobjs[i];
10028 space_info->block_group_kobjs[i] = NULL;
10034 kobject_del(&space_info->kobj);
10035 kobject_put(&space_info->kobj);
10040 static void __link_block_group(struct btrfs_space_info *space_info,
10041 struct btrfs_block_group_cache *cache)
10043 int index = get_block_group_index(cache);
10044 bool first = false;
10046 down_write(&space_info->groups_sem);
10047 if (list_empty(&space_info->block_groups[index]))
10049 list_add_tail(&cache->list, &space_info->block_groups[index]);
10050 up_write(&space_info->groups_sem);
10053 struct raid_kobject *rkobj;
10056 rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS);
10059 rkobj->raid_type = index;
10060 kobject_init(&rkobj->kobj, &btrfs_raid_ktype);
10061 ret = kobject_add(&rkobj->kobj, &space_info->kobj,
10062 "%s", get_raid_name(index));
10064 kobject_put(&rkobj->kobj);
10067 space_info->block_group_kobjs[index] = &rkobj->kobj;
10072 pr_warn("BTRFS: failed to add kobject for block cache. ignoring.\n");
10075 static struct btrfs_block_group_cache *
10076 btrfs_create_block_group_cache(struct btrfs_root *root, u64 start, u64 size)
10078 struct btrfs_block_group_cache *cache;
10080 cache = kzalloc(sizeof(*cache), GFP_NOFS);
10084 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
10086 if (!cache->free_space_ctl) {
10091 cache->key.objectid = start;
10092 cache->key.offset = size;
10093 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
10095 cache->sectorsize = root->sectorsize;
10096 cache->fs_info = root->fs_info;
10097 cache->full_stripe_len = btrfs_full_stripe_len(root,
10098 &root->fs_info->mapping_tree,
10100 set_free_space_tree_thresholds(cache);
10102 atomic_set(&cache->count, 1);
10103 spin_lock_init(&cache->lock);
10104 init_rwsem(&cache->data_rwsem);
10105 INIT_LIST_HEAD(&cache->list);
10106 INIT_LIST_HEAD(&cache->cluster_list);
10107 INIT_LIST_HEAD(&cache->bg_list);
10108 INIT_LIST_HEAD(&cache->ro_list);
10109 INIT_LIST_HEAD(&cache->dirty_list);
10110 INIT_LIST_HEAD(&cache->io_list);
10111 btrfs_init_free_space_ctl(cache);
10112 atomic_set(&cache->trimming, 0);
10113 mutex_init(&cache->free_space_lock);
10118 int btrfs_read_block_groups(struct btrfs_root *root)
10120 struct btrfs_path *path;
10122 struct btrfs_block_group_cache *cache;
10123 struct btrfs_fs_info *info = root->fs_info;
10124 struct btrfs_space_info *space_info;
10125 struct btrfs_key key;
10126 struct btrfs_key found_key;
10127 struct extent_buffer *leaf;
10128 int need_clear = 0;
10131 root = info->extent_root;
10134 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
10135 path = btrfs_alloc_path();
10138 path->reada = READA_FORWARD;
10140 cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
10141 if (btrfs_test_opt(root->fs_info, SPACE_CACHE) &&
10142 btrfs_super_generation(root->fs_info->super_copy) != cache_gen)
10144 if (btrfs_test_opt(root->fs_info, CLEAR_CACHE))
10148 ret = find_first_block_group(root, path, &key);
10154 leaf = path->nodes[0];
10155 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
10157 cache = btrfs_create_block_group_cache(root, found_key.objectid,
10166 * When we mount with old space cache, we need to
10167 * set BTRFS_DC_CLEAR and set dirty flag.
10169 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
10170 * truncate the old free space cache inode and
10172 * b) Setting 'dirty flag' makes sure that we flush
10173 * the new space cache info onto disk.
10175 if (btrfs_test_opt(root->fs_info, SPACE_CACHE))
10176 cache->disk_cache_state = BTRFS_DC_CLEAR;
10179 read_extent_buffer(leaf, &cache->item,
10180 btrfs_item_ptr_offset(leaf, path->slots[0]),
10181 sizeof(cache->item));
10182 cache->flags = btrfs_block_group_flags(&cache->item);
10184 key.objectid = found_key.objectid + found_key.offset;
10185 btrfs_release_path(path);
10188 * We need to exclude the super stripes now so that the space
10189 * info has super bytes accounted for, otherwise we'll think
10190 * we have more space than we actually do.
10192 ret = exclude_super_stripes(root, cache);
10195 * We may have excluded something, so call this just in
10198 free_excluded_extents(root, cache);
10199 btrfs_put_block_group(cache);
10204 * check for two cases, either we are full, and therefore
10205 * don't need to bother with the caching work since we won't
10206 * find any space, or we are empty, and we can just add all
10207 * the space in and be done with it. This saves us _alot_ of
10208 * time, particularly in the full case.
10210 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
10211 cache->last_byte_to_unpin = (u64)-1;
10212 cache->cached = BTRFS_CACHE_FINISHED;
10213 free_excluded_extents(root, cache);
10214 } else if (btrfs_block_group_used(&cache->item) == 0) {
10215 cache->last_byte_to_unpin = (u64)-1;
10216 cache->cached = BTRFS_CACHE_FINISHED;
10217 add_new_free_space(cache, root->fs_info,
10218 found_key.objectid,
10219 found_key.objectid +
10221 free_excluded_extents(root, cache);
10224 ret = btrfs_add_block_group_cache(root->fs_info, cache);
10226 btrfs_remove_free_space_cache(cache);
10227 btrfs_put_block_group(cache);
10231 trace_btrfs_add_block_group(root->fs_info, cache, 0);
10232 ret = update_space_info(info, cache->flags, found_key.offset,
10233 btrfs_block_group_used(&cache->item),
10234 cache->bytes_super, &space_info);
10236 btrfs_remove_free_space_cache(cache);
10237 spin_lock(&info->block_group_cache_lock);
10238 rb_erase(&cache->cache_node,
10239 &info->block_group_cache_tree);
10240 RB_CLEAR_NODE(&cache->cache_node);
10241 spin_unlock(&info->block_group_cache_lock);
10242 btrfs_put_block_group(cache);
10246 cache->space_info = space_info;
10248 __link_block_group(space_info, cache);
10250 set_avail_alloc_bits(root->fs_info, cache->flags);
10251 if (btrfs_chunk_readonly(root, cache->key.objectid)) {
10252 inc_block_group_ro(cache, 1);
10253 } else if (btrfs_block_group_used(&cache->item) == 0) {
10254 spin_lock(&info->unused_bgs_lock);
10255 /* Should always be true but just in case. */
10256 if (list_empty(&cache->bg_list)) {
10257 btrfs_get_block_group(cache);
10258 list_add_tail(&cache->bg_list,
10259 &info->unused_bgs);
10261 spin_unlock(&info->unused_bgs_lock);
10265 list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) {
10266 if (!(get_alloc_profile(root, space_info->flags) &
10267 (BTRFS_BLOCK_GROUP_RAID10 |
10268 BTRFS_BLOCK_GROUP_RAID1 |
10269 BTRFS_BLOCK_GROUP_RAID5 |
10270 BTRFS_BLOCK_GROUP_RAID6 |
10271 BTRFS_BLOCK_GROUP_DUP)))
10274 * avoid allocating from un-mirrored block group if there are
10275 * mirrored block groups.
10277 list_for_each_entry(cache,
10278 &space_info->block_groups[BTRFS_RAID_RAID0],
10280 inc_block_group_ro(cache, 1);
10281 list_for_each_entry(cache,
10282 &space_info->block_groups[BTRFS_RAID_SINGLE],
10284 inc_block_group_ro(cache, 1);
10287 init_global_block_rsv(info);
10290 btrfs_free_path(path);
10294 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
10295 struct btrfs_root *root)
10297 struct btrfs_block_group_cache *block_group, *tmp;
10298 struct btrfs_root *extent_root = root->fs_info->extent_root;
10299 struct btrfs_block_group_item item;
10300 struct btrfs_key key;
10302 bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
10304 trans->can_flush_pending_bgs = false;
10305 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
10309 spin_lock(&block_group->lock);
10310 memcpy(&item, &block_group->item, sizeof(item));
10311 memcpy(&key, &block_group->key, sizeof(key));
10312 spin_unlock(&block_group->lock);
10314 ret = btrfs_insert_item(trans, extent_root, &key, &item,
10317 btrfs_abort_transaction(trans, ret);
10318 ret = btrfs_finish_chunk_alloc(trans, extent_root,
10319 key.objectid, key.offset);
10321 btrfs_abort_transaction(trans, ret);
10322 add_block_group_free_space(trans, root->fs_info, block_group);
10323 /* already aborted the transaction if it failed. */
10325 list_del_init(&block_group->bg_list);
10327 trans->can_flush_pending_bgs = can_flush_pending_bgs;
10330 int btrfs_make_block_group(struct btrfs_trans_handle *trans,
10331 struct btrfs_root *root, u64 bytes_used,
10332 u64 type, u64 chunk_objectid, u64 chunk_offset,
10336 struct btrfs_root *extent_root;
10337 struct btrfs_block_group_cache *cache;
10338 extent_root = root->fs_info->extent_root;
10340 btrfs_set_log_full_commit(root->fs_info, trans);
10342 cache = btrfs_create_block_group_cache(root, chunk_offset, size);
10346 btrfs_set_block_group_used(&cache->item, bytes_used);
10347 btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
10348 btrfs_set_block_group_flags(&cache->item, type);
10350 cache->flags = type;
10351 cache->last_byte_to_unpin = (u64)-1;
10352 cache->cached = BTRFS_CACHE_FINISHED;
10353 cache->needs_free_space = 1;
10354 ret = exclude_super_stripes(root, cache);
10357 * We may have excluded something, so call this just in
10360 free_excluded_extents(root, cache);
10361 btrfs_put_block_group(cache);
10365 add_new_free_space(cache, root->fs_info, chunk_offset,
10366 chunk_offset + size);
10368 free_excluded_extents(root, cache);
10370 #ifdef CONFIG_BTRFS_DEBUG
10371 if (btrfs_should_fragment_free_space(root, cache)) {
10372 u64 new_bytes_used = size - bytes_used;
10374 bytes_used += new_bytes_used >> 1;
10375 fragment_free_space(root, cache);
10379 * Call to ensure the corresponding space_info object is created and
10380 * assigned to our block group, but don't update its counters just yet.
10381 * We want our bg to be added to the rbtree with its ->space_info set.
10383 ret = update_space_info(root->fs_info, cache->flags, 0, 0, 0,
10384 &cache->space_info);
10386 btrfs_remove_free_space_cache(cache);
10387 btrfs_put_block_group(cache);
10391 ret = btrfs_add_block_group_cache(root->fs_info, cache);
10393 btrfs_remove_free_space_cache(cache);
10394 btrfs_put_block_group(cache);
10399 * Now that our block group has its ->space_info set and is inserted in
10400 * the rbtree, update the space info's counters.
10402 trace_btrfs_add_block_group(root->fs_info, cache, 1);
10403 ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
10404 cache->bytes_super, &cache->space_info);
10406 btrfs_remove_free_space_cache(cache);
10407 spin_lock(&root->fs_info->block_group_cache_lock);
10408 rb_erase(&cache->cache_node,
10409 &root->fs_info->block_group_cache_tree);
10410 RB_CLEAR_NODE(&cache->cache_node);
10411 spin_unlock(&root->fs_info->block_group_cache_lock);
10412 btrfs_put_block_group(cache);
10415 update_global_block_rsv(root->fs_info);
10417 __link_block_group(cache->space_info, cache);
10419 list_add_tail(&cache->bg_list, &trans->new_bgs);
10421 set_avail_alloc_bits(extent_root->fs_info, type);
10425 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
10427 u64 extra_flags = chunk_to_extended(flags) &
10428 BTRFS_EXTENDED_PROFILE_MASK;
10430 write_seqlock(&fs_info->profiles_lock);
10431 if (flags & BTRFS_BLOCK_GROUP_DATA)
10432 fs_info->avail_data_alloc_bits &= ~extra_flags;
10433 if (flags & BTRFS_BLOCK_GROUP_METADATA)
10434 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
10435 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
10436 fs_info->avail_system_alloc_bits &= ~extra_flags;
10437 write_sequnlock(&fs_info->profiles_lock);
10440 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
10441 struct btrfs_root *root, u64 group_start,
10442 struct extent_map *em)
10444 struct btrfs_path *path;
10445 struct btrfs_block_group_cache *block_group;
10446 struct btrfs_free_cluster *cluster;
10447 struct btrfs_root *tree_root = root->fs_info->tree_root;
10448 struct btrfs_key key;
10449 struct inode *inode;
10450 struct kobject *kobj = NULL;
10454 struct btrfs_caching_control *caching_ctl = NULL;
10457 root = root->fs_info->extent_root;
10459 block_group = btrfs_lookup_block_group(root->fs_info, group_start);
10460 BUG_ON(!block_group);
10461 BUG_ON(!block_group->ro);
10464 * Free the reserved super bytes from this block group before
10467 free_excluded_extents(root, block_group);
10469 memcpy(&key, &block_group->key, sizeof(key));
10470 index = get_block_group_index(block_group);
10471 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
10472 BTRFS_BLOCK_GROUP_RAID1 |
10473 BTRFS_BLOCK_GROUP_RAID10))
10478 /* make sure this block group isn't part of an allocation cluster */
10479 cluster = &root->fs_info->data_alloc_cluster;
10480 spin_lock(&cluster->refill_lock);
10481 btrfs_return_cluster_to_free_space(block_group, cluster);
10482 spin_unlock(&cluster->refill_lock);
10485 * make sure this block group isn't part of a metadata
10486 * allocation cluster
10488 cluster = &root->fs_info->meta_alloc_cluster;
10489 spin_lock(&cluster->refill_lock);
10490 btrfs_return_cluster_to_free_space(block_group, cluster);
10491 spin_unlock(&cluster->refill_lock);
10493 path = btrfs_alloc_path();
10500 * get the inode first so any iput calls done for the io_list
10501 * aren't the final iput (no unlinks allowed now)
10503 inode = lookup_free_space_inode(tree_root, block_group, path);
10505 mutex_lock(&trans->transaction->cache_write_mutex);
10507 * make sure our free spache cache IO is done before remove the
10510 spin_lock(&trans->transaction->dirty_bgs_lock);
10511 if (!list_empty(&block_group->io_list)) {
10512 list_del_init(&block_group->io_list);
10514 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
10516 spin_unlock(&trans->transaction->dirty_bgs_lock);
10517 btrfs_wait_cache_io(root, trans, block_group,
10518 &block_group->io_ctl, path,
10519 block_group->key.objectid);
10520 btrfs_put_block_group(block_group);
10521 spin_lock(&trans->transaction->dirty_bgs_lock);
10524 if (!list_empty(&block_group->dirty_list)) {
10525 list_del_init(&block_group->dirty_list);
10526 btrfs_put_block_group(block_group);
10528 spin_unlock(&trans->transaction->dirty_bgs_lock);
10529 mutex_unlock(&trans->transaction->cache_write_mutex);
10531 if (!IS_ERR(inode)) {
10532 ret = btrfs_orphan_add(trans, inode);
10534 btrfs_add_delayed_iput(inode);
10537 clear_nlink(inode);
10538 /* One for the block groups ref */
10539 spin_lock(&block_group->lock);
10540 if (block_group->iref) {
10541 block_group->iref = 0;
10542 block_group->inode = NULL;
10543 spin_unlock(&block_group->lock);
10546 spin_unlock(&block_group->lock);
10548 /* One for our lookup ref */
10549 btrfs_add_delayed_iput(inode);
10552 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
10553 key.offset = block_group->key.objectid;
10556 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
10560 btrfs_release_path(path);
10562 ret = btrfs_del_item(trans, tree_root, path);
10565 btrfs_release_path(path);
10568 spin_lock(&root->fs_info->block_group_cache_lock);
10569 rb_erase(&block_group->cache_node,
10570 &root->fs_info->block_group_cache_tree);
10571 RB_CLEAR_NODE(&block_group->cache_node);
10573 if (root->fs_info->first_logical_byte == block_group->key.objectid)
10574 root->fs_info->first_logical_byte = (u64)-1;
10575 spin_unlock(&root->fs_info->block_group_cache_lock);
10577 down_write(&block_group->space_info->groups_sem);
10579 * we must use list_del_init so people can check to see if they
10580 * are still on the list after taking the semaphore
10582 list_del_init(&block_group->list);
10583 if (list_empty(&block_group->space_info->block_groups[index])) {
10584 kobj = block_group->space_info->block_group_kobjs[index];
10585 block_group->space_info->block_group_kobjs[index] = NULL;
10586 clear_avail_alloc_bits(root->fs_info, block_group->flags);
10588 up_write(&block_group->space_info->groups_sem);
10594 if (block_group->has_caching_ctl)
10595 caching_ctl = get_caching_control(block_group);
10596 if (block_group->cached == BTRFS_CACHE_STARTED)
10597 wait_block_group_cache_done(block_group);
10598 if (block_group->has_caching_ctl) {
10599 down_write(&root->fs_info->commit_root_sem);
10600 if (!caching_ctl) {
10601 struct btrfs_caching_control *ctl;
10603 list_for_each_entry(ctl,
10604 &root->fs_info->caching_block_groups, list)
10605 if (ctl->block_group == block_group) {
10607 atomic_inc(&caching_ctl->count);
10612 list_del_init(&caching_ctl->list);
10613 up_write(&root->fs_info->commit_root_sem);
10615 /* Once for the caching bgs list and once for us. */
10616 put_caching_control(caching_ctl);
10617 put_caching_control(caching_ctl);
10621 spin_lock(&trans->transaction->dirty_bgs_lock);
10622 if (!list_empty(&block_group->dirty_list)) {
10625 if (!list_empty(&block_group->io_list)) {
10628 spin_unlock(&trans->transaction->dirty_bgs_lock);
10629 btrfs_remove_free_space_cache(block_group);
10631 spin_lock(&block_group->space_info->lock);
10632 list_del_init(&block_group->ro_list);
10634 if (btrfs_test_opt(root->fs_info, ENOSPC_DEBUG)) {
10635 WARN_ON(block_group->space_info->total_bytes
10636 < block_group->key.offset);
10637 WARN_ON(block_group->space_info->bytes_readonly
10638 < block_group->key.offset);
10639 WARN_ON(block_group->space_info->disk_total
10640 < block_group->key.offset * factor);
10642 block_group->space_info->total_bytes -= block_group->key.offset;
10643 block_group->space_info->bytes_readonly -= block_group->key.offset;
10644 block_group->space_info->disk_total -= block_group->key.offset * factor;
10646 spin_unlock(&block_group->space_info->lock);
10648 memcpy(&key, &block_group->key, sizeof(key));
10651 if (!list_empty(&em->list)) {
10652 /* We're in the transaction->pending_chunks list. */
10653 free_extent_map(em);
10655 spin_lock(&block_group->lock);
10656 block_group->removed = 1;
10658 * At this point trimming can't start on this block group, because we
10659 * removed the block group from the tree fs_info->block_group_cache_tree
10660 * so no one can't find it anymore and even if someone already got this
10661 * block group before we removed it from the rbtree, they have already
10662 * incremented block_group->trimming - if they didn't, they won't find
10663 * any free space entries because we already removed them all when we
10664 * called btrfs_remove_free_space_cache().
10666 * And we must not remove the extent map from the fs_info->mapping_tree
10667 * to prevent the same logical address range and physical device space
10668 * ranges from being reused for a new block group. This is because our
10669 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
10670 * completely transactionless, so while it is trimming a range the
10671 * currently running transaction might finish and a new one start,
10672 * allowing for new block groups to be created that can reuse the same
10673 * physical device locations unless we take this special care.
10675 * There may also be an implicit trim operation if the file system
10676 * is mounted with -odiscard. The same protections must remain
10677 * in place until the extents have been discarded completely when
10678 * the transaction commit has completed.
10680 remove_em = (atomic_read(&block_group->trimming) == 0);
10682 * Make sure a trimmer task always sees the em in the pinned_chunks list
10683 * if it sees block_group->removed == 1 (needs to lock block_group->lock
10684 * before checking block_group->removed).
10688 * Our em might be in trans->transaction->pending_chunks which
10689 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks),
10690 * and so is the fs_info->pinned_chunks list.
10692 * So at this point we must be holding the chunk_mutex to avoid
10693 * any races with chunk allocation (more specifically at
10694 * volumes.c:contains_pending_extent()), to ensure it always
10695 * sees the em, either in the pending_chunks list or in the
10696 * pinned_chunks list.
10698 list_move_tail(&em->list, &root->fs_info->pinned_chunks);
10700 spin_unlock(&block_group->lock);
10703 struct extent_map_tree *em_tree;
10705 em_tree = &root->fs_info->mapping_tree.map_tree;
10706 write_lock(&em_tree->lock);
10708 * The em might be in the pending_chunks list, so make sure the
10709 * chunk mutex is locked, since remove_extent_mapping() will
10710 * delete us from that list.
10712 remove_extent_mapping(em_tree, em);
10713 write_unlock(&em_tree->lock);
10714 /* once for the tree */
10715 free_extent_map(em);
10718 unlock_chunks(root);
10720 ret = remove_block_group_free_space(trans, root->fs_info, block_group);
10724 btrfs_put_block_group(block_group);
10725 btrfs_put_block_group(block_group);
10727 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
10733 ret = btrfs_del_item(trans, root, path);
10735 btrfs_free_path(path);
10739 struct btrfs_trans_handle *
10740 btrfs_start_trans_remove_block_group(struct btrfs_fs_info *fs_info,
10741 const u64 chunk_offset)
10743 struct extent_map_tree *em_tree = &fs_info->mapping_tree.map_tree;
10744 struct extent_map *em;
10745 struct map_lookup *map;
10746 unsigned int num_items;
10748 read_lock(&em_tree->lock);
10749 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
10750 read_unlock(&em_tree->lock);
10751 ASSERT(em && em->start == chunk_offset);
10754 * We need to reserve 3 + N units from the metadata space info in order
10755 * to remove a block group (done at btrfs_remove_chunk() and at
10756 * btrfs_remove_block_group()), which are used for:
10758 * 1 unit for adding the free space inode's orphan (located in the tree
10760 * 1 unit for deleting the block group item (located in the extent
10762 * 1 unit for deleting the free space item (located in tree of tree
10764 * N units for deleting N device extent items corresponding to each
10765 * stripe (located in the device tree).
10767 * In order to remove a block group we also need to reserve units in the
10768 * system space info in order to update the chunk tree (update one or
10769 * more device items and remove one chunk item), but this is done at
10770 * btrfs_remove_chunk() through a call to check_system_chunk().
10772 map = em->map_lookup;
10773 num_items = 3 + map->num_stripes;
10774 free_extent_map(em);
10776 return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root,
10781 * Process the unused_bgs list and remove any that don't have any allocated
10782 * space inside of them.
10784 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
10786 struct btrfs_block_group_cache *block_group;
10787 struct btrfs_space_info *space_info;
10788 struct btrfs_root *root = fs_info->extent_root;
10789 struct btrfs_trans_handle *trans;
10792 if (!fs_info->open)
10795 spin_lock(&fs_info->unused_bgs_lock);
10796 while (!list_empty(&fs_info->unused_bgs)) {
10800 block_group = list_first_entry(&fs_info->unused_bgs,
10801 struct btrfs_block_group_cache,
10803 list_del_init(&block_group->bg_list);
10805 space_info = block_group->space_info;
10807 if (ret || btrfs_mixed_space_info(space_info)) {
10808 btrfs_put_block_group(block_group);
10811 spin_unlock(&fs_info->unused_bgs_lock);
10813 mutex_lock(&fs_info->delete_unused_bgs_mutex);
10815 /* Don't want to race with allocators so take the groups_sem */
10816 down_write(&space_info->groups_sem);
10817 spin_lock(&block_group->lock);
10818 if (block_group->reserved ||
10819 btrfs_block_group_used(&block_group->item) ||
10821 list_is_singular(&block_group->list)) {
10823 * We want to bail if we made new allocations or have
10824 * outstanding allocations in this block group. We do
10825 * the ro check in case balance is currently acting on
10826 * this block group.
10828 spin_unlock(&block_group->lock);
10829 up_write(&space_info->groups_sem);
10832 spin_unlock(&block_group->lock);
10834 /* We don't want to force the issue, only flip if it's ok. */
10835 ret = inc_block_group_ro(block_group, 0);
10836 up_write(&space_info->groups_sem);
10843 * Want to do this before we do anything else so we can recover
10844 * properly if we fail to join the transaction.
10846 trans = btrfs_start_trans_remove_block_group(fs_info,
10847 block_group->key.objectid);
10848 if (IS_ERR(trans)) {
10849 btrfs_dec_block_group_ro(root, block_group);
10850 ret = PTR_ERR(trans);
10855 * We could have pending pinned extents for this block group,
10856 * just delete them, we don't care about them anymore.
10858 start = block_group->key.objectid;
10859 end = start + block_group->key.offset - 1;
10861 * Hold the unused_bg_unpin_mutex lock to avoid racing with
10862 * btrfs_finish_extent_commit(). If we are at transaction N,
10863 * another task might be running finish_extent_commit() for the
10864 * previous transaction N - 1, and have seen a range belonging
10865 * to the block group in freed_extents[] before we were able to
10866 * clear the whole block group range from freed_extents[]. This
10867 * means that task can lookup for the block group after we
10868 * unpinned it from freed_extents[] and removed it, leading to
10869 * a BUG_ON() at btrfs_unpin_extent_range().
10871 mutex_lock(&fs_info->unused_bg_unpin_mutex);
10872 ret = clear_extent_bits(&fs_info->freed_extents[0], start, end,
10875 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10876 btrfs_dec_block_group_ro(root, block_group);
10879 ret = clear_extent_bits(&fs_info->freed_extents[1], start, end,
10882 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10883 btrfs_dec_block_group_ro(root, block_group);
10886 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10888 /* Reset pinned so btrfs_put_block_group doesn't complain */
10889 spin_lock(&space_info->lock);
10890 spin_lock(&block_group->lock);
10892 space_info->bytes_pinned -= block_group->pinned;
10893 space_info->bytes_readonly += block_group->pinned;
10894 percpu_counter_add(&space_info->total_bytes_pinned,
10895 -block_group->pinned);
10896 block_group->pinned = 0;
10898 spin_unlock(&block_group->lock);
10899 spin_unlock(&space_info->lock);
10901 /* DISCARD can flip during remount */
10902 trimming = btrfs_test_opt(root->fs_info, DISCARD);
10904 /* Implicit trim during transaction commit. */
10906 btrfs_get_block_group_trimming(block_group);
10909 * Btrfs_remove_chunk will abort the transaction if things go
10912 ret = btrfs_remove_chunk(trans, root,
10913 block_group->key.objectid);
10917 btrfs_put_block_group_trimming(block_group);
10922 * If we're not mounted with -odiscard, we can just forget
10923 * about this block group. Otherwise we'll need to wait
10924 * until transaction commit to do the actual discard.
10927 spin_lock(&fs_info->unused_bgs_lock);
10929 * A concurrent scrub might have added us to the list
10930 * fs_info->unused_bgs, so use a list_move operation
10931 * to add the block group to the deleted_bgs list.
10933 list_move(&block_group->bg_list,
10934 &trans->transaction->deleted_bgs);
10935 spin_unlock(&fs_info->unused_bgs_lock);
10936 btrfs_get_block_group(block_group);
10939 btrfs_end_transaction(trans, root);
10941 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
10942 btrfs_put_block_group(block_group);
10943 spin_lock(&fs_info->unused_bgs_lock);
10945 spin_unlock(&fs_info->unused_bgs_lock);
10948 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
10950 struct btrfs_space_info *space_info;
10951 struct btrfs_super_block *disk_super;
10957 disk_super = fs_info->super_copy;
10958 if (!btrfs_super_root(disk_super))
10961 features = btrfs_super_incompat_flags(disk_super);
10962 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
10965 flags = BTRFS_BLOCK_GROUP_SYSTEM;
10966 ret = update_space_info(fs_info, flags, 0, 0, 0, &space_info);
10971 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
10972 ret = update_space_info(fs_info, flags, 0, 0, 0, &space_info);
10974 flags = BTRFS_BLOCK_GROUP_METADATA;
10975 ret = update_space_info(fs_info, flags, 0, 0, 0, &space_info);
10979 flags = BTRFS_BLOCK_GROUP_DATA;
10980 ret = update_space_info(fs_info, flags, 0, 0, 0, &space_info);
10986 int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
10988 return unpin_extent_range(root, start, end, false);
10992 * It used to be that old block groups would be left around forever.
10993 * Iterating over them would be enough to trim unused space. Since we
10994 * now automatically remove them, we also need to iterate over unallocated
10997 * We don't want a transaction for this since the discard may take a
10998 * substantial amount of time. We don't require that a transaction be
10999 * running, but we do need to take a running transaction into account
11000 * to ensure that we're not discarding chunks that were released in
11001 * the current transaction.
11003 * Holding the chunks lock will prevent other threads from allocating
11004 * or releasing chunks, but it won't prevent a running transaction
11005 * from committing and releasing the memory that the pending chunks
11006 * list head uses. For that, we need to take a reference to the
11009 static int btrfs_trim_free_extents(struct btrfs_device *device,
11010 u64 minlen, u64 *trimmed)
11012 u64 start = 0, len = 0;
11017 /* Not writeable = nothing to do. */
11018 if (!device->writeable)
11021 /* No free space = nothing to do. */
11022 if (device->total_bytes <= device->bytes_used)
11028 struct btrfs_fs_info *fs_info = device->dev_root->fs_info;
11029 struct btrfs_transaction *trans;
11032 ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
11036 down_read(&fs_info->commit_root_sem);
11038 spin_lock(&fs_info->trans_lock);
11039 trans = fs_info->running_transaction;
11041 atomic_inc(&trans->use_count);
11042 spin_unlock(&fs_info->trans_lock);
11044 ret = find_free_dev_extent_start(trans, device, minlen, start,
11047 btrfs_put_transaction(trans);
11050 up_read(&fs_info->commit_root_sem);
11051 mutex_unlock(&fs_info->chunk_mutex);
11052 if (ret == -ENOSPC)
11057 ret = btrfs_issue_discard(device->bdev, start, len, &bytes);
11058 up_read(&fs_info->commit_root_sem);
11059 mutex_unlock(&fs_info->chunk_mutex);
11067 if (fatal_signal_pending(current)) {
11068 ret = -ERESTARTSYS;
11078 int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range)
11080 struct btrfs_fs_info *fs_info = root->fs_info;
11081 struct btrfs_block_group_cache *cache = NULL;
11082 struct btrfs_device *device;
11083 struct list_head *devices;
11088 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
11092 * try to trim all FS space, our block group may start from non-zero.
11094 if (range->len == total_bytes)
11095 cache = btrfs_lookup_first_block_group(fs_info, range->start);
11097 cache = btrfs_lookup_block_group(fs_info, range->start);
11100 if (cache->key.objectid >= (range->start + range->len)) {
11101 btrfs_put_block_group(cache);
11105 start = max(range->start, cache->key.objectid);
11106 end = min(range->start + range->len,
11107 cache->key.objectid + cache->key.offset);
11109 if (end - start >= range->minlen) {
11110 if (!block_group_cache_done(cache)) {
11111 ret = cache_block_group(cache, 0);
11113 btrfs_put_block_group(cache);
11116 ret = wait_block_group_cache_done(cache);
11118 btrfs_put_block_group(cache);
11122 ret = btrfs_trim_block_group(cache,
11128 trimmed += group_trimmed;
11130 btrfs_put_block_group(cache);
11135 cache = next_block_group(fs_info->tree_root, cache);
11138 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
11139 devices = &root->fs_info->fs_devices->alloc_list;
11140 list_for_each_entry(device, devices, dev_alloc_list) {
11141 ret = btrfs_trim_free_extents(device, range->minlen,
11146 trimmed += group_trimmed;
11148 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
11150 range->len = trimmed;
11155 * btrfs_{start,end}_write_no_snapshoting() are similar to
11156 * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
11157 * data into the page cache through nocow before the subvolume is snapshoted,
11158 * but flush the data into disk after the snapshot creation, or to prevent
11159 * operations while snapshoting is ongoing and that cause the snapshot to be
11160 * inconsistent (writes followed by expanding truncates for example).
11162 void btrfs_end_write_no_snapshoting(struct btrfs_root *root)
11164 percpu_counter_dec(&root->subv_writers->counter);
11166 * Make sure counter is updated before we wake up waiters.
11169 if (waitqueue_active(&root->subv_writers->wait))
11170 wake_up(&root->subv_writers->wait);
11173 int btrfs_start_write_no_snapshoting(struct btrfs_root *root)
11175 if (atomic_read(&root->will_be_snapshoted))
11178 percpu_counter_inc(&root->subv_writers->counter);
11180 * Make sure counter is updated before we check for snapshot creation.
11183 if (atomic_read(&root->will_be_snapshoted)) {
11184 btrfs_end_write_no_snapshoting(root);
11190 static int wait_snapshoting_atomic_t(atomic_t *a)
11196 void btrfs_wait_for_snapshot_creation(struct btrfs_root *root)
11201 ret = btrfs_start_write_no_snapshoting(root);
11204 wait_on_atomic_t(&root->will_be_snapshoted,
11205 wait_snapshoting_atomic_t,
11206 TASK_UNINTERRUPTIBLE);