]> git.karo-electronics.de Git - karo-tx-linux.git/blob - fs/btrfs/extent_io.c
Merge branches 'acpica' and 'acpi-scan'
[karo-tx-linux.git] / fs / btrfs / extent_io.c
1 #include <linux/bitops.h>
2 #include <linux/slab.h>
3 #include <linux/bio.h>
4 #include <linux/mm.h>
5 #include <linux/pagemap.h>
6 #include <linux/page-flags.h>
7 #include <linux/spinlock.h>
8 #include <linux/blkdev.h>
9 #include <linux/swap.h>
10 #include <linux/writeback.h>
11 #include <linux/pagevec.h>
12 #include <linux/prefetch.h>
13 #include <linux/cleancache.h>
14 #include "extent_io.h"
15 #include "extent_map.h"
16 #include "ctree.h"
17 #include "btrfs_inode.h"
18 #include "volumes.h"
19 #include "check-integrity.h"
20 #include "locking.h"
21 #include "rcu-string.h"
22 #include "backref.h"
23 #include "transaction.h"
24
25 static struct kmem_cache *extent_state_cache;
26 static struct kmem_cache *extent_buffer_cache;
27 static struct bio_set *btrfs_bioset;
28
29 static inline bool extent_state_in_tree(const struct extent_state *state)
30 {
31         return !RB_EMPTY_NODE(&state->rb_node);
32 }
33
34 #ifdef CONFIG_BTRFS_DEBUG
35 static LIST_HEAD(buffers);
36 static LIST_HEAD(states);
37
38 static DEFINE_SPINLOCK(leak_lock);
39
40 static inline
41 void btrfs_leak_debug_add(struct list_head *new, struct list_head *head)
42 {
43         unsigned long flags;
44
45         spin_lock_irqsave(&leak_lock, flags);
46         list_add(new, head);
47         spin_unlock_irqrestore(&leak_lock, flags);
48 }
49
50 static inline
51 void btrfs_leak_debug_del(struct list_head *entry)
52 {
53         unsigned long flags;
54
55         spin_lock_irqsave(&leak_lock, flags);
56         list_del(entry);
57         spin_unlock_irqrestore(&leak_lock, flags);
58 }
59
60 static inline
61 void btrfs_leak_debug_check(void)
62 {
63         struct extent_state *state;
64         struct extent_buffer *eb;
65
66         while (!list_empty(&states)) {
67                 state = list_entry(states.next, struct extent_state, leak_list);
68                 pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
69                        state->start, state->end, state->state,
70                        extent_state_in_tree(state),
71                        atomic_read(&state->refs));
72                 list_del(&state->leak_list);
73                 kmem_cache_free(extent_state_cache, state);
74         }
75
76         while (!list_empty(&buffers)) {
77                 eb = list_entry(buffers.next, struct extent_buffer, leak_list);
78                 pr_err("BTRFS: buffer leak start %llu len %lu refs %d\n",
79                        eb->start, eb->len, atomic_read(&eb->refs));
80                 list_del(&eb->leak_list);
81                 kmem_cache_free(extent_buffer_cache, eb);
82         }
83 }
84
85 #define btrfs_debug_check_extent_io_range(tree, start, end)             \
86         __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
87 static inline void __btrfs_debug_check_extent_io_range(const char *caller,
88                 struct extent_io_tree *tree, u64 start, u64 end)
89 {
90         struct inode *inode;
91         u64 isize;
92
93         if (!tree->mapping)
94                 return;
95
96         inode = tree->mapping->host;
97         isize = i_size_read(inode);
98         if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
99                 btrfs_debug_rl(BTRFS_I(inode)->root->fs_info,
100                     "%s: ino %llu isize %llu odd range [%llu,%llu]",
101                                 caller, btrfs_ino(inode), isize, start, end);
102         }
103 }
104 #else
105 #define btrfs_leak_debug_add(new, head) do {} while (0)
106 #define btrfs_leak_debug_del(entry)     do {} while (0)
107 #define btrfs_leak_debug_check()        do {} while (0)
108 #define btrfs_debug_check_extent_io_range(c, s, e)      do {} while (0)
109 #endif
110
111 #define BUFFER_LRU_MAX 64
112
113 struct tree_entry {
114         u64 start;
115         u64 end;
116         struct rb_node rb_node;
117 };
118
119 struct extent_page_data {
120         struct bio *bio;
121         struct extent_io_tree *tree;
122         get_extent_t *get_extent;
123         unsigned long bio_flags;
124
125         /* tells writepage not to lock the state bits for this range
126          * it still does the unlocking
127          */
128         unsigned int extent_locked:1;
129
130         /* tells the submit_bio code to use REQ_SYNC */
131         unsigned int sync_io:1;
132 };
133
134 static void add_extent_changeset(struct extent_state *state, unsigned bits,
135                                  struct extent_changeset *changeset,
136                                  int set)
137 {
138         int ret;
139
140         if (!changeset)
141                 return;
142         if (set && (state->state & bits) == bits)
143                 return;
144         if (!set && (state->state & bits) == 0)
145                 return;
146         changeset->bytes_changed += state->end - state->start + 1;
147         ret = ulist_add(changeset->range_changed, state->start, state->end,
148                         GFP_ATOMIC);
149         /* ENOMEM */
150         BUG_ON(ret < 0);
151 }
152
153 static noinline void flush_write_bio(void *data);
154 static inline struct btrfs_fs_info *
155 tree_fs_info(struct extent_io_tree *tree)
156 {
157         if (!tree->mapping)
158                 return NULL;
159         return btrfs_sb(tree->mapping->host->i_sb);
160 }
161
162 int __init extent_io_init(void)
163 {
164         extent_state_cache = kmem_cache_create("btrfs_extent_state",
165                         sizeof(struct extent_state), 0,
166                         SLAB_MEM_SPREAD, NULL);
167         if (!extent_state_cache)
168                 return -ENOMEM;
169
170         extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
171                         sizeof(struct extent_buffer), 0,
172                         SLAB_MEM_SPREAD, NULL);
173         if (!extent_buffer_cache)
174                 goto free_state_cache;
175
176         btrfs_bioset = bioset_create(BIO_POOL_SIZE,
177                                      offsetof(struct btrfs_io_bio, bio));
178         if (!btrfs_bioset)
179                 goto free_buffer_cache;
180
181         if (bioset_integrity_create(btrfs_bioset, BIO_POOL_SIZE))
182                 goto free_bioset;
183
184         return 0;
185
186 free_bioset:
187         bioset_free(btrfs_bioset);
188         btrfs_bioset = NULL;
189
190 free_buffer_cache:
191         kmem_cache_destroy(extent_buffer_cache);
192         extent_buffer_cache = NULL;
193
194 free_state_cache:
195         kmem_cache_destroy(extent_state_cache);
196         extent_state_cache = NULL;
197         return -ENOMEM;
198 }
199
200 void extent_io_exit(void)
201 {
202         btrfs_leak_debug_check();
203
204         /*
205          * Make sure all delayed rcu free are flushed before we
206          * destroy caches.
207          */
208         rcu_barrier();
209         kmem_cache_destroy(extent_state_cache);
210         kmem_cache_destroy(extent_buffer_cache);
211         if (btrfs_bioset)
212                 bioset_free(btrfs_bioset);
213 }
214
215 void extent_io_tree_init(struct extent_io_tree *tree,
216                          struct address_space *mapping)
217 {
218         tree->state = RB_ROOT;
219         tree->ops = NULL;
220         tree->dirty_bytes = 0;
221         spin_lock_init(&tree->lock);
222         tree->mapping = mapping;
223 }
224
225 static struct extent_state *alloc_extent_state(gfp_t mask)
226 {
227         struct extent_state *state;
228
229         state = kmem_cache_alloc(extent_state_cache, mask);
230         if (!state)
231                 return state;
232         state->state = 0;
233         state->failrec = NULL;
234         RB_CLEAR_NODE(&state->rb_node);
235         btrfs_leak_debug_add(&state->leak_list, &states);
236         atomic_set(&state->refs, 1);
237         init_waitqueue_head(&state->wq);
238         trace_alloc_extent_state(state, mask, _RET_IP_);
239         return state;
240 }
241
242 void free_extent_state(struct extent_state *state)
243 {
244         if (!state)
245                 return;
246         if (atomic_dec_and_test(&state->refs)) {
247                 WARN_ON(extent_state_in_tree(state));
248                 btrfs_leak_debug_del(&state->leak_list);
249                 trace_free_extent_state(state, _RET_IP_);
250                 kmem_cache_free(extent_state_cache, state);
251         }
252 }
253
254 static struct rb_node *tree_insert(struct rb_root *root,
255                                    struct rb_node *search_start,
256                                    u64 offset,
257                                    struct rb_node *node,
258                                    struct rb_node ***p_in,
259                                    struct rb_node **parent_in)
260 {
261         struct rb_node **p;
262         struct rb_node *parent = NULL;
263         struct tree_entry *entry;
264
265         if (p_in && parent_in) {
266                 p = *p_in;
267                 parent = *parent_in;
268                 goto do_insert;
269         }
270
271         p = search_start ? &search_start : &root->rb_node;
272         while (*p) {
273                 parent = *p;
274                 entry = rb_entry(parent, struct tree_entry, rb_node);
275
276                 if (offset < entry->start)
277                         p = &(*p)->rb_left;
278                 else if (offset > entry->end)
279                         p = &(*p)->rb_right;
280                 else
281                         return parent;
282         }
283
284 do_insert:
285         rb_link_node(node, parent, p);
286         rb_insert_color(node, root);
287         return NULL;
288 }
289
290 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
291                                       struct rb_node **prev_ret,
292                                       struct rb_node **next_ret,
293                                       struct rb_node ***p_ret,
294                                       struct rb_node **parent_ret)
295 {
296         struct rb_root *root = &tree->state;
297         struct rb_node **n = &root->rb_node;
298         struct rb_node *prev = NULL;
299         struct rb_node *orig_prev = NULL;
300         struct tree_entry *entry;
301         struct tree_entry *prev_entry = NULL;
302
303         while (*n) {
304                 prev = *n;
305                 entry = rb_entry(prev, struct tree_entry, rb_node);
306                 prev_entry = entry;
307
308                 if (offset < entry->start)
309                         n = &(*n)->rb_left;
310                 else if (offset > entry->end)
311                         n = &(*n)->rb_right;
312                 else
313                         return *n;
314         }
315
316         if (p_ret)
317                 *p_ret = n;
318         if (parent_ret)
319                 *parent_ret = prev;
320
321         if (prev_ret) {
322                 orig_prev = prev;
323                 while (prev && offset > prev_entry->end) {
324                         prev = rb_next(prev);
325                         prev_entry = rb_entry(prev, struct tree_entry, rb_node);
326                 }
327                 *prev_ret = prev;
328                 prev = orig_prev;
329         }
330
331         if (next_ret) {
332                 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
333                 while (prev && offset < prev_entry->start) {
334                         prev = rb_prev(prev);
335                         prev_entry = rb_entry(prev, struct tree_entry, rb_node);
336                 }
337                 *next_ret = prev;
338         }
339         return NULL;
340 }
341
342 static inline struct rb_node *
343 tree_search_for_insert(struct extent_io_tree *tree,
344                        u64 offset,
345                        struct rb_node ***p_ret,
346                        struct rb_node **parent_ret)
347 {
348         struct rb_node *prev = NULL;
349         struct rb_node *ret;
350
351         ret = __etree_search(tree, offset, &prev, NULL, p_ret, parent_ret);
352         if (!ret)
353                 return prev;
354         return ret;
355 }
356
357 static inline struct rb_node *tree_search(struct extent_io_tree *tree,
358                                           u64 offset)
359 {
360         return tree_search_for_insert(tree, offset, NULL, NULL);
361 }
362
363 static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
364                      struct extent_state *other)
365 {
366         if (tree->ops && tree->ops->merge_extent_hook)
367                 tree->ops->merge_extent_hook(tree->mapping->host, new,
368                                              other);
369 }
370
371 /*
372  * utility function to look for merge candidates inside a given range.
373  * Any extents with matching state are merged together into a single
374  * extent in the tree.  Extents with EXTENT_IO in their state field
375  * are not merged because the end_io handlers need to be able to do
376  * operations on them without sleeping (or doing allocations/splits).
377  *
378  * This should be called with the tree lock held.
379  */
380 static void merge_state(struct extent_io_tree *tree,
381                         struct extent_state *state)
382 {
383         struct extent_state *other;
384         struct rb_node *other_node;
385
386         if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
387                 return;
388
389         other_node = rb_prev(&state->rb_node);
390         if (other_node) {
391                 other = rb_entry(other_node, struct extent_state, rb_node);
392                 if (other->end == state->start - 1 &&
393                     other->state == state->state) {
394                         merge_cb(tree, state, other);
395                         state->start = other->start;
396                         rb_erase(&other->rb_node, &tree->state);
397                         RB_CLEAR_NODE(&other->rb_node);
398                         free_extent_state(other);
399                 }
400         }
401         other_node = rb_next(&state->rb_node);
402         if (other_node) {
403                 other = rb_entry(other_node, struct extent_state, rb_node);
404                 if (other->start == state->end + 1 &&
405                     other->state == state->state) {
406                         merge_cb(tree, state, other);
407                         state->end = other->end;
408                         rb_erase(&other->rb_node, &tree->state);
409                         RB_CLEAR_NODE(&other->rb_node);
410                         free_extent_state(other);
411                 }
412         }
413 }
414
415 static void set_state_cb(struct extent_io_tree *tree,
416                          struct extent_state *state, unsigned *bits)
417 {
418         if (tree->ops && tree->ops->set_bit_hook)
419                 tree->ops->set_bit_hook(tree->mapping->host, state, bits);
420 }
421
422 static void clear_state_cb(struct extent_io_tree *tree,
423                            struct extent_state *state, unsigned *bits)
424 {
425         if (tree->ops && tree->ops->clear_bit_hook)
426                 tree->ops->clear_bit_hook(tree->mapping->host, state, bits);
427 }
428
429 static void set_state_bits(struct extent_io_tree *tree,
430                            struct extent_state *state, unsigned *bits,
431                            struct extent_changeset *changeset);
432
433 /*
434  * insert an extent_state struct into the tree.  'bits' are set on the
435  * struct before it is inserted.
436  *
437  * This may return -EEXIST if the extent is already there, in which case the
438  * state struct is freed.
439  *
440  * The tree lock is not taken internally.  This is a utility function and
441  * probably isn't what you want to call (see set/clear_extent_bit).
442  */
443 static int insert_state(struct extent_io_tree *tree,
444                         struct extent_state *state, u64 start, u64 end,
445                         struct rb_node ***p,
446                         struct rb_node **parent,
447                         unsigned *bits, struct extent_changeset *changeset)
448 {
449         struct rb_node *node;
450
451         if (end < start)
452                 WARN(1, KERN_ERR "BTRFS: end < start %llu %llu\n",
453                        end, start);
454         state->start = start;
455         state->end = end;
456
457         set_state_bits(tree, state, bits, changeset);
458
459         node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
460         if (node) {
461                 struct extent_state *found;
462                 found = rb_entry(node, struct extent_state, rb_node);
463                 pr_err("BTRFS: found node %llu %llu on insert of %llu %llu\n",
464                        found->start, found->end, start, end);
465                 return -EEXIST;
466         }
467         merge_state(tree, state);
468         return 0;
469 }
470
471 static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
472                      u64 split)
473 {
474         if (tree->ops && tree->ops->split_extent_hook)
475                 tree->ops->split_extent_hook(tree->mapping->host, orig, split);
476 }
477
478 /*
479  * split a given extent state struct in two, inserting the preallocated
480  * struct 'prealloc' as the newly created second half.  'split' indicates an
481  * offset inside 'orig' where it should be split.
482  *
483  * Before calling,
484  * the tree has 'orig' at [orig->start, orig->end].  After calling, there
485  * are two extent state structs in the tree:
486  * prealloc: [orig->start, split - 1]
487  * orig: [ split, orig->end ]
488  *
489  * The tree locks are not taken by this function. They need to be held
490  * by the caller.
491  */
492 static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
493                        struct extent_state *prealloc, u64 split)
494 {
495         struct rb_node *node;
496
497         split_cb(tree, orig, split);
498
499         prealloc->start = orig->start;
500         prealloc->end = split - 1;
501         prealloc->state = orig->state;
502         orig->start = split;
503
504         node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
505                            &prealloc->rb_node, NULL, NULL);
506         if (node) {
507                 free_extent_state(prealloc);
508                 return -EEXIST;
509         }
510         return 0;
511 }
512
513 static struct extent_state *next_state(struct extent_state *state)
514 {
515         struct rb_node *next = rb_next(&state->rb_node);
516         if (next)
517                 return rb_entry(next, struct extent_state, rb_node);
518         else
519                 return NULL;
520 }
521
522 /*
523  * utility function to clear some bits in an extent state struct.
524  * it will optionally wake up any one waiting on this state (wake == 1).
525  *
526  * If no bits are set on the state struct after clearing things, the
527  * struct is freed and removed from the tree
528  */
529 static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
530                                             struct extent_state *state,
531                                             unsigned *bits, int wake,
532                                             struct extent_changeset *changeset)
533 {
534         struct extent_state *next;
535         unsigned bits_to_clear = *bits & ~EXTENT_CTLBITS;
536
537         if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
538                 u64 range = state->end - state->start + 1;
539                 WARN_ON(range > tree->dirty_bytes);
540                 tree->dirty_bytes -= range;
541         }
542         clear_state_cb(tree, state, bits);
543         add_extent_changeset(state, bits_to_clear, changeset, 0);
544         state->state &= ~bits_to_clear;
545         if (wake)
546                 wake_up(&state->wq);
547         if (state->state == 0) {
548                 next = next_state(state);
549                 if (extent_state_in_tree(state)) {
550                         rb_erase(&state->rb_node, &tree->state);
551                         RB_CLEAR_NODE(&state->rb_node);
552                         free_extent_state(state);
553                 } else {
554                         WARN_ON(1);
555                 }
556         } else {
557                 merge_state(tree, state);
558                 next = next_state(state);
559         }
560         return next;
561 }
562
563 static struct extent_state *
564 alloc_extent_state_atomic(struct extent_state *prealloc)
565 {
566         if (!prealloc)
567                 prealloc = alloc_extent_state(GFP_ATOMIC);
568
569         return prealloc;
570 }
571
572 static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
573 {
574         btrfs_panic(tree_fs_info(tree), err,
575                     "Locking error: Extent tree was modified by another thread while locked.");
576 }
577
578 /*
579  * clear some bits on a range in the tree.  This may require splitting
580  * or inserting elements in the tree, so the gfp mask is used to
581  * indicate which allocations or sleeping are allowed.
582  *
583  * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
584  * the given range from the tree regardless of state (ie for truncate).
585  *
586  * the range [start, end] is inclusive.
587  *
588  * This takes the tree lock, and returns 0 on success and < 0 on error.
589  */
590 static int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
591                               unsigned bits, int wake, int delete,
592                               struct extent_state **cached_state,
593                               gfp_t mask, struct extent_changeset *changeset)
594 {
595         struct extent_state *state;
596         struct extent_state *cached;
597         struct extent_state *prealloc = NULL;
598         struct rb_node *node;
599         u64 last_end;
600         int err;
601         int clear = 0;
602
603         btrfs_debug_check_extent_io_range(tree, start, end);
604
605         if (bits & EXTENT_DELALLOC)
606                 bits |= EXTENT_NORESERVE;
607
608         if (delete)
609                 bits |= ~EXTENT_CTLBITS;
610         bits |= EXTENT_FIRST_DELALLOC;
611
612         if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
613                 clear = 1;
614 again:
615         if (!prealloc && gfpflags_allow_blocking(mask)) {
616                 /*
617                  * Don't care for allocation failure here because we might end
618                  * up not needing the pre-allocated extent state at all, which
619                  * is the case if we only have in the tree extent states that
620                  * cover our input range and don't cover too any other range.
621                  * If we end up needing a new extent state we allocate it later.
622                  */
623                 prealloc = alloc_extent_state(mask);
624         }
625
626         spin_lock(&tree->lock);
627         if (cached_state) {
628                 cached = *cached_state;
629
630                 if (clear) {
631                         *cached_state = NULL;
632                         cached_state = NULL;
633                 }
634
635                 if (cached && extent_state_in_tree(cached) &&
636                     cached->start <= start && cached->end > start) {
637                         if (clear)
638                                 atomic_dec(&cached->refs);
639                         state = cached;
640                         goto hit_next;
641                 }
642                 if (clear)
643                         free_extent_state(cached);
644         }
645         /*
646          * this search will find the extents that end after
647          * our range starts
648          */
649         node = tree_search(tree, start);
650         if (!node)
651                 goto out;
652         state = rb_entry(node, struct extent_state, rb_node);
653 hit_next:
654         if (state->start > end)
655                 goto out;
656         WARN_ON(state->end < start);
657         last_end = state->end;
658
659         /* the state doesn't have the wanted bits, go ahead */
660         if (!(state->state & bits)) {
661                 state = next_state(state);
662                 goto next;
663         }
664
665         /*
666          *     | ---- desired range ---- |
667          *  | state | or
668          *  | ------------- state -------------- |
669          *
670          * We need to split the extent we found, and may flip
671          * bits on second half.
672          *
673          * If the extent we found extends past our range, we
674          * just split and search again.  It'll get split again
675          * the next time though.
676          *
677          * If the extent we found is inside our range, we clear
678          * the desired bit on it.
679          */
680
681         if (state->start < start) {
682                 prealloc = alloc_extent_state_atomic(prealloc);
683                 BUG_ON(!prealloc);
684                 err = split_state(tree, state, prealloc, start);
685                 if (err)
686                         extent_io_tree_panic(tree, err);
687
688                 prealloc = NULL;
689                 if (err)
690                         goto out;
691                 if (state->end <= end) {
692                         state = clear_state_bit(tree, state, &bits, wake,
693                                                 changeset);
694                         goto next;
695                 }
696                 goto search_again;
697         }
698         /*
699          * | ---- desired range ---- |
700          *                        | state |
701          * We need to split the extent, and clear the bit
702          * on the first half
703          */
704         if (state->start <= end && state->end > end) {
705                 prealloc = alloc_extent_state_atomic(prealloc);
706                 BUG_ON(!prealloc);
707                 err = split_state(tree, state, prealloc, end + 1);
708                 if (err)
709                         extent_io_tree_panic(tree, err);
710
711                 if (wake)
712                         wake_up(&state->wq);
713
714                 clear_state_bit(tree, prealloc, &bits, wake, changeset);
715
716                 prealloc = NULL;
717                 goto out;
718         }
719
720         state = clear_state_bit(tree, state, &bits, wake, changeset);
721 next:
722         if (last_end == (u64)-1)
723                 goto out;
724         start = last_end + 1;
725         if (start <= end && state && !need_resched())
726                 goto hit_next;
727
728 search_again:
729         if (start > end)
730                 goto out;
731         spin_unlock(&tree->lock);
732         if (gfpflags_allow_blocking(mask))
733                 cond_resched();
734         goto again;
735
736 out:
737         spin_unlock(&tree->lock);
738         if (prealloc)
739                 free_extent_state(prealloc);
740
741         return 0;
742
743 }
744
745 static void wait_on_state(struct extent_io_tree *tree,
746                           struct extent_state *state)
747                 __releases(tree->lock)
748                 __acquires(tree->lock)
749 {
750         DEFINE_WAIT(wait);
751         prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
752         spin_unlock(&tree->lock);
753         schedule();
754         spin_lock(&tree->lock);
755         finish_wait(&state->wq, &wait);
756 }
757
758 /*
759  * waits for one or more bits to clear on a range in the state tree.
760  * The range [start, end] is inclusive.
761  * The tree lock is taken by this function
762  */
763 static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
764                             unsigned long bits)
765 {
766         struct extent_state *state;
767         struct rb_node *node;
768
769         btrfs_debug_check_extent_io_range(tree, start, end);
770
771         spin_lock(&tree->lock);
772 again:
773         while (1) {
774                 /*
775                  * this search will find all the extents that end after
776                  * our range starts
777                  */
778                 node = tree_search(tree, start);
779 process_node:
780                 if (!node)
781                         break;
782
783                 state = rb_entry(node, struct extent_state, rb_node);
784
785                 if (state->start > end)
786                         goto out;
787
788                 if (state->state & bits) {
789                         start = state->start;
790                         atomic_inc(&state->refs);
791                         wait_on_state(tree, state);
792                         free_extent_state(state);
793                         goto again;
794                 }
795                 start = state->end + 1;
796
797                 if (start > end)
798                         break;
799
800                 if (!cond_resched_lock(&tree->lock)) {
801                         node = rb_next(node);
802                         goto process_node;
803                 }
804         }
805 out:
806         spin_unlock(&tree->lock);
807 }
808
809 static void set_state_bits(struct extent_io_tree *tree,
810                            struct extent_state *state,
811                            unsigned *bits, struct extent_changeset *changeset)
812 {
813         unsigned bits_to_set = *bits & ~EXTENT_CTLBITS;
814
815         set_state_cb(tree, state, bits);
816         if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
817                 u64 range = state->end - state->start + 1;
818                 tree->dirty_bytes += range;
819         }
820         add_extent_changeset(state, bits_to_set, changeset, 1);
821         state->state |= bits_to_set;
822 }
823
824 static void cache_state_if_flags(struct extent_state *state,
825                                  struct extent_state **cached_ptr,
826                                  unsigned flags)
827 {
828         if (cached_ptr && !(*cached_ptr)) {
829                 if (!flags || (state->state & flags)) {
830                         *cached_ptr = state;
831                         atomic_inc(&state->refs);
832                 }
833         }
834 }
835
836 static void cache_state(struct extent_state *state,
837                         struct extent_state **cached_ptr)
838 {
839         return cache_state_if_flags(state, cached_ptr,
840                                     EXTENT_IOBITS | EXTENT_BOUNDARY);
841 }
842
843 /*
844  * set some bits on a range in the tree.  This may require allocations or
845  * sleeping, so the gfp mask is used to indicate what is allowed.
846  *
847  * If any of the exclusive bits are set, this will fail with -EEXIST if some
848  * part of the range already has the desired bits set.  The start of the
849  * existing range is returned in failed_start in this case.
850  *
851  * [start, end] is inclusive This takes the tree lock.
852  */
853
854 static int __must_check
855 __set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
856                  unsigned bits, unsigned exclusive_bits,
857                  u64 *failed_start, struct extent_state **cached_state,
858                  gfp_t mask, struct extent_changeset *changeset)
859 {
860         struct extent_state *state;
861         struct extent_state *prealloc = NULL;
862         struct rb_node *node;
863         struct rb_node **p;
864         struct rb_node *parent;
865         int err = 0;
866         u64 last_start;
867         u64 last_end;
868
869         btrfs_debug_check_extent_io_range(tree, start, end);
870
871         bits |= EXTENT_FIRST_DELALLOC;
872 again:
873         if (!prealloc && gfpflags_allow_blocking(mask)) {
874                 /*
875                  * Don't care for allocation failure here because we might end
876                  * up not needing the pre-allocated extent state at all, which
877                  * is the case if we only have in the tree extent states that
878                  * cover our input range and don't cover too any other range.
879                  * If we end up needing a new extent state we allocate it later.
880                  */
881                 prealloc = alloc_extent_state(mask);
882         }
883
884         spin_lock(&tree->lock);
885         if (cached_state && *cached_state) {
886                 state = *cached_state;
887                 if (state->start <= start && state->end > start &&
888                     extent_state_in_tree(state)) {
889                         node = &state->rb_node;
890                         goto hit_next;
891                 }
892         }
893         /*
894          * this search will find all the extents that end after
895          * our range starts.
896          */
897         node = tree_search_for_insert(tree, start, &p, &parent);
898         if (!node) {
899                 prealloc = alloc_extent_state_atomic(prealloc);
900                 BUG_ON(!prealloc);
901                 err = insert_state(tree, prealloc, start, end,
902                                    &p, &parent, &bits, changeset);
903                 if (err)
904                         extent_io_tree_panic(tree, err);
905
906                 cache_state(prealloc, cached_state);
907                 prealloc = NULL;
908                 goto out;
909         }
910         state = rb_entry(node, struct extent_state, rb_node);
911 hit_next:
912         last_start = state->start;
913         last_end = state->end;
914
915         /*
916          * | ---- desired range ---- |
917          * | state |
918          *
919          * Just lock what we found and keep going
920          */
921         if (state->start == start && state->end <= end) {
922                 if (state->state & exclusive_bits) {
923                         *failed_start = state->start;
924                         err = -EEXIST;
925                         goto out;
926                 }
927
928                 set_state_bits(tree, state, &bits, changeset);
929                 cache_state(state, cached_state);
930                 merge_state(tree, state);
931                 if (last_end == (u64)-1)
932                         goto out;
933                 start = last_end + 1;
934                 state = next_state(state);
935                 if (start < end && state && state->start == start &&
936                     !need_resched())
937                         goto hit_next;
938                 goto search_again;
939         }
940
941         /*
942          *     | ---- desired range ---- |
943          * | state |
944          *   or
945          * | ------------- state -------------- |
946          *
947          * We need to split the extent we found, and may flip bits on
948          * second half.
949          *
950          * If the extent we found extends past our
951          * range, we just split and search again.  It'll get split
952          * again the next time though.
953          *
954          * If the extent we found is inside our range, we set the
955          * desired bit on it.
956          */
957         if (state->start < start) {
958                 if (state->state & exclusive_bits) {
959                         *failed_start = start;
960                         err = -EEXIST;
961                         goto out;
962                 }
963
964                 prealloc = alloc_extent_state_atomic(prealloc);
965                 BUG_ON(!prealloc);
966                 err = split_state(tree, state, prealloc, start);
967                 if (err)
968                         extent_io_tree_panic(tree, err);
969
970                 prealloc = NULL;
971                 if (err)
972                         goto out;
973                 if (state->end <= end) {
974                         set_state_bits(tree, state, &bits, changeset);
975                         cache_state(state, cached_state);
976                         merge_state(tree, state);
977                         if (last_end == (u64)-1)
978                                 goto out;
979                         start = last_end + 1;
980                         state = next_state(state);
981                         if (start < end && state && state->start == start &&
982                             !need_resched())
983                                 goto hit_next;
984                 }
985                 goto search_again;
986         }
987         /*
988          * | ---- desired range ---- |
989          *     | state | or               | state |
990          *
991          * There's a hole, we need to insert something in it and
992          * ignore the extent we found.
993          */
994         if (state->start > start) {
995                 u64 this_end;
996                 if (end < last_start)
997                         this_end = end;
998                 else
999                         this_end = last_start - 1;
1000
1001                 prealloc = alloc_extent_state_atomic(prealloc);
1002                 BUG_ON(!prealloc);
1003
1004                 /*
1005                  * Avoid to free 'prealloc' if it can be merged with
1006                  * the later extent.
1007                  */
1008                 err = insert_state(tree, prealloc, start, this_end,
1009                                    NULL, NULL, &bits, changeset);
1010                 if (err)
1011                         extent_io_tree_panic(tree, err);
1012
1013                 cache_state(prealloc, cached_state);
1014                 prealloc = NULL;
1015                 start = this_end + 1;
1016                 goto search_again;
1017         }
1018         /*
1019          * | ---- desired range ---- |
1020          *                        | state |
1021          * We need to split the extent, and set the bit
1022          * on the first half
1023          */
1024         if (state->start <= end && state->end > end) {
1025                 if (state->state & exclusive_bits) {
1026                         *failed_start = start;
1027                         err = -EEXIST;
1028                         goto out;
1029                 }
1030
1031                 prealloc = alloc_extent_state_atomic(prealloc);
1032                 BUG_ON(!prealloc);
1033                 err = split_state(tree, state, prealloc, end + 1);
1034                 if (err)
1035                         extent_io_tree_panic(tree, err);
1036
1037                 set_state_bits(tree, prealloc, &bits, changeset);
1038                 cache_state(prealloc, cached_state);
1039                 merge_state(tree, prealloc);
1040                 prealloc = NULL;
1041                 goto out;
1042         }
1043
1044 search_again:
1045         if (start > end)
1046                 goto out;
1047         spin_unlock(&tree->lock);
1048         if (gfpflags_allow_blocking(mask))
1049                 cond_resched();
1050         goto again;
1051
1052 out:
1053         spin_unlock(&tree->lock);
1054         if (prealloc)
1055                 free_extent_state(prealloc);
1056
1057         return err;
1058
1059 }
1060
1061 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1062                    unsigned bits, u64 * failed_start,
1063                    struct extent_state **cached_state, gfp_t mask)
1064 {
1065         return __set_extent_bit(tree, start, end, bits, 0, failed_start,
1066                                 cached_state, mask, NULL);
1067 }
1068
1069
1070 /**
1071  * convert_extent_bit - convert all bits in a given range from one bit to
1072  *                      another
1073  * @tree:       the io tree to search
1074  * @start:      the start offset in bytes
1075  * @end:        the end offset in bytes (inclusive)
1076  * @bits:       the bits to set in this range
1077  * @clear_bits: the bits to clear in this range
1078  * @cached_state:       state that we're going to cache
1079  *
1080  * This will go through and set bits for the given range.  If any states exist
1081  * already in this range they are set with the given bit and cleared of the
1082  * clear_bits.  This is only meant to be used by things that are mergeable, ie
1083  * converting from say DELALLOC to DIRTY.  This is not meant to be used with
1084  * boundary bits like LOCK.
1085  *
1086  * All allocations are done with GFP_NOFS.
1087  */
1088 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1089                        unsigned bits, unsigned clear_bits,
1090                        struct extent_state **cached_state)
1091 {
1092         struct extent_state *state;
1093         struct extent_state *prealloc = NULL;
1094         struct rb_node *node;
1095         struct rb_node **p;
1096         struct rb_node *parent;
1097         int err = 0;
1098         u64 last_start;
1099         u64 last_end;
1100         bool first_iteration = true;
1101
1102         btrfs_debug_check_extent_io_range(tree, start, end);
1103
1104 again:
1105         if (!prealloc) {
1106                 /*
1107                  * Best effort, don't worry if extent state allocation fails
1108                  * here for the first iteration. We might have a cached state
1109                  * that matches exactly the target range, in which case no
1110                  * extent state allocations are needed. We'll only know this
1111                  * after locking the tree.
1112                  */
1113                 prealloc = alloc_extent_state(GFP_NOFS);
1114                 if (!prealloc && !first_iteration)
1115                         return -ENOMEM;
1116         }
1117
1118         spin_lock(&tree->lock);
1119         if (cached_state && *cached_state) {
1120                 state = *cached_state;
1121                 if (state->start <= start && state->end > start &&
1122                     extent_state_in_tree(state)) {
1123                         node = &state->rb_node;
1124                         goto hit_next;
1125                 }
1126         }
1127
1128         /*
1129          * this search will find all the extents that end after
1130          * our range starts.
1131          */
1132         node = tree_search_for_insert(tree, start, &p, &parent);
1133         if (!node) {
1134                 prealloc = alloc_extent_state_atomic(prealloc);
1135                 if (!prealloc) {
1136                         err = -ENOMEM;
1137                         goto out;
1138                 }
1139                 err = insert_state(tree, prealloc, start, end,
1140                                    &p, &parent, &bits, NULL);
1141                 if (err)
1142                         extent_io_tree_panic(tree, err);
1143                 cache_state(prealloc, cached_state);
1144                 prealloc = NULL;
1145                 goto out;
1146         }
1147         state = rb_entry(node, struct extent_state, rb_node);
1148 hit_next:
1149         last_start = state->start;
1150         last_end = state->end;
1151
1152         /*
1153          * | ---- desired range ---- |
1154          * | state |
1155          *
1156          * Just lock what we found and keep going
1157          */
1158         if (state->start == start && state->end <= end) {
1159                 set_state_bits(tree, state, &bits, NULL);
1160                 cache_state(state, cached_state);
1161                 state = clear_state_bit(tree, state, &clear_bits, 0, NULL);
1162                 if (last_end == (u64)-1)
1163                         goto out;
1164                 start = last_end + 1;
1165                 if (start < end && state && state->start == start &&
1166                     !need_resched())
1167                         goto hit_next;
1168                 goto search_again;
1169         }
1170
1171         /*
1172          *     | ---- desired range ---- |
1173          * | state |
1174          *   or
1175          * | ------------- state -------------- |
1176          *
1177          * We need to split the extent we found, and may flip bits on
1178          * second half.
1179          *
1180          * If the extent we found extends past our
1181          * range, we just split and search again.  It'll get split
1182          * again the next time though.
1183          *
1184          * If the extent we found is inside our range, we set the
1185          * desired bit on it.
1186          */
1187         if (state->start < start) {
1188                 prealloc = alloc_extent_state_atomic(prealloc);
1189                 if (!prealloc) {
1190                         err = -ENOMEM;
1191                         goto out;
1192                 }
1193                 err = split_state(tree, state, prealloc, start);
1194                 if (err)
1195                         extent_io_tree_panic(tree, err);
1196                 prealloc = NULL;
1197                 if (err)
1198                         goto out;
1199                 if (state->end <= end) {
1200                         set_state_bits(tree, state, &bits, NULL);
1201                         cache_state(state, cached_state);
1202                         state = clear_state_bit(tree, state, &clear_bits, 0,
1203                                                 NULL);
1204                         if (last_end == (u64)-1)
1205                                 goto out;
1206                         start = last_end + 1;
1207                         if (start < end && state && state->start == start &&
1208                             !need_resched())
1209                                 goto hit_next;
1210                 }
1211                 goto search_again;
1212         }
1213         /*
1214          * | ---- desired range ---- |
1215          *     | state | or               | state |
1216          *
1217          * There's a hole, we need to insert something in it and
1218          * ignore the extent we found.
1219          */
1220         if (state->start > start) {
1221                 u64 this_end;
1222                 if (end < last_start)
1223                         this_end = end;
1224                 else
1225                         this_end = last_start - 1;
1226
1227                 prealloc = alloc_extent_state_atomic(prealloc);
1228                 if (!prealloc) {
1229                         err = -ENOMEM;
1230                         goto out;
1231                 }
1232
1233                 /*
1234                  * Avoid to free 'prealloc' if it can be merged with
1235                  * the later extent.
1236                  */
1237                 err = insert_state(tree, prealloc, start, this_end,
1238                                    NULL, NULL, &bits, NULL);
1239                 if (err)
1240                         extent_io_tree_panic(tree, err);
1241                 cache_state(prealloc, cached_state);
1242                 prealloc = NULL;
1243                 start = this_end + 1;
1244                 goto search_again;
1245         }
1246         /*
1247          * | ---- desired range ---- |
1248          *                        | state |
1249          * We need to split the extent, and set the bit
1250          * on the first half
1251          */
1252         if (state->start <= end && state->end > end) {
1253                 prealloc = alloc_extent_state_atomic(prealloc);
1254                 if (!prealloc) {
1255                         err = -ENOMEM;
1256                         goto out;
1257                 }
1258
1259                 err = split_state(tree, state, prealloc, end + 1);
1260                 if (err)
1261                         extent_io_tree_panic(tree, err);
1262
1263                 set_state_bits(tree, prealloc, &bits, NULL);
1264                 cache_state(prealloc, cached_state);
1265                 clear_state_bit(tree, prealloc, &clear_bits, 0, NULL);
1266                 prealloc = NULL;
1267                 goto out;
1268         }
1269
1270 search_again:
1271         if (start > end)
1272                 goto out;
1273         spin_unlock(&tree->lock);
1274         cond_resched();
1275         first_iteration = false;
1276         goto again;
1277
1278 out:
1279         spin_unlock(&tree->lock);
1280         if (prealloc)
1281                 free_extent_state(prealloc);
1282
1283         return err;
1284 }
1285
1286 /* wrappers around set/clear extent bit */
1287 int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1288                            unsigned bits, struct extent_changeset *changeset)
1289 {
1290         /*
1291          * We don't support EXTENT_LOCKED yet, as current changeset will
1292          * record any bits changed, so for EXTENT_LOCKED case, it will
1293          * either fail with -EEXIST or changeset will record the whole
1294          * range.
1295          */
1296         BUG_ON(bits & EXTENT_LOCKED);
1297
1298         return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS,
1299                                 changeset);
1300 }
1301
1302 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1303                      unsigned bits, int wake, int delete,
1304                      struct extent_state **cached, gfp_t mask)
1305 {
1306         return __clear_extent_bit(tree, start, end, bits, wake, delete,
1307                                   cached, mask, NULL);
1308 }
1309
1310 int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1311                 unsigned bits, struct extent_changeset *changeset)
1312 {
1313         /*
1314          * Don't support EXTENT_LOCKED case, same reason as
1315          * set_record_extent_bits().
1316          */
1317         BUG_ON(bits & EXTENT_LOCKED);
1318
1319         return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS,
1320                                   changeset);
1321 }
1322
1323 /*
1324  * either insert or lock state struct between start and end use mask to tell
1325  * us if waiting is desired.
1326  */
1327 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1328                      struct extent_state **cached_state)
1329 {
1330         int err;
1331         u64 failed_start;
1332
1333         while (1) {
1334                 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED,
1335                                        EXTENT_LOCKED, &failed_start,
1336                                        cached_state, GFP_NOFS, NULL);
1337                 if (err == -EEXIST) {
1338                         wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1339                         start = failed_start;
1340                 } else
1341                         break;
1342                 WARN_ON(start > end);
1343         }
1344         return err;
1345 }
1346
1347 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1348 {
1349         int err;
1350         u64 failed_start;
1351
1352         err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1353                                &failed_start, NULL, GFP_NOFS, NULL);
1354         if (err == -EEXIST) {
1355                 if (failed_start > start)
1356                         clear_extent_bit(tree, start, failed_start - 1,
1357                                          EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS);
1358                 return 0;
1359         }
1360         return 1;
1361 }
1362
1363 void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1364 {
1365         unsigned long index = start >> PAGE_SHIFT;
1366         unsigned long end_index = end >> PAGE_SHIFT;
1367         struct page *page;
1368
1369         while (index <= end_index) {
1370                 page = find_get_page(inode->i_mapping, index);
1371                 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1372                 clear_page_dirty_for_io(page);
1373                 put_page(page);
1374                 index++;
1375         }
1376 }
1377
1378 void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1379 {
1380         unsigned long index = start >> PAGE_SHIFT;
1381         unsigned long end_index = end >> PAGE_SHIFT;
1382         struct page *page;
1383
1384         while (index <= end_index) {
1385                 page = find_get_page(inode->i_mapping, index);
1386                 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1387                 __set_page_dirty_nobuffers(page);
1388                 account_page_redirty(page);
1389                 put_page(page);
1390                 index++;
1391         }
1392 }
1393
1394 /*
1395  * helper function to set both pages and extents in the tree writeback
1396  */
1397 static void set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
1398 {
1399         unsigned long index = start >> PAGE_SHIFT;
1400         unsigned long end_index = end >> PAGE_SHIFT;
1401         struct page *page;
1402
1403         while (index <= end_index) {
1404                 page = find_get_page(tree->mapping, index);
1405                 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1406                 set_page_writeback(page);
1407                 put_page(page);
1408                 index++;
1409         }
1410 }
1411
1412 /* find the first state struct with 'bits' set after 'start', and
1413  * return it.  tree->lock must be held.  NULL will returned if
1414  * nothing was found after 'start'
1415  */
1416 static struct extent_state *
1417 find_first_extent_bit_state(struct extent_io_tree *tree,
1418                             u64 start, unsigned bits)
1419 {
1420         struct rb_node *node;
1421         struct extent_state *state;
1422
1423         /*
1424          * this search will find all the extents that end after
1425          * our range starts.
1426          */
1427         node = tree_search(tree, start);
1428         if (!node)
1429                 goto out;
1430
1431         while (1) {
1432                 state = rb_entry(node, struct extent_state, rb_node);
1433                 if (state->end >= start && (state->state & bits))
1434                         return state;
1435
1436                 node = rb_next(node);
1437                 if (!node)
1438                         break;
1439         }
1440 out:
1441         return NULL;
1442 }
1443
1444 /*
1445  * find the first offset in the io tree with 'bits' set. zero is
1446  * returned if we find something, and *start_ret and *end_ret are
1447  * set to reflect the state struct that was found.
1448  *
1449  * If nothing was found, 1 is returned. If found something, return 0.
1450  */
1451 int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1452                           u64 *start_ret, u64 *end_ret, unsigned bits,
1453                           struct extent_state **cached_state)
1454 {
1455         struct extent_state *state;
1456         struct rb_node *n;
1457         int ret = 1;
1458
1459         spin_lock(&tree->lock);
1460         if (cached_state && *cached_state) {
1461                 state = *cached_state;
1462                 if (state->end == start - 1 && extent_state_in_tree(state)) {
1463                         n = rb_next(&state->rb_node);
1464                         while (n) {
1465                                 state = rb_entry(n, struct extent_state,
1466                                                  rb_node);
1467                                 if (state->state & bits)
1468                                         goto got_it;
1469                                 n = rb_next(n);
1470                         }
1471                         free_extent_state(*cached_state);
1472                         *cached_state = NULL;
1473                         goto out;
1474                 }
1475                 free_extent_state(*cached_state);
1476                 *cached_state = NULL;
1477         }
1478
1479         state = find_first_extent_bit_state(tree, start, bits);
1480 got_it:
1481         if (state) {
1482                 cache_state_if_flags(state, cached_state, 0);
1483                 *start_ret = state->start;
1484                 *end_ret = state->end;
1485                 ret = 0;
1486         }
1487 out:
1488         spin_unlock(&tree->lock);
1489         return ret;
1490 }
1491
1492 /*
1493  * find a contiguous range of bytes in the file marked as delalloc, not
1494  * more than 'max_bytes'.  start and end are used to return the range,
1495  *
1496  * 1 is returned if we find something, 0 if nothing was in the tree
1497  */
1498 static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
1499                                         u64 *start, u64 *end, u64 max_bytes,
1500                                         struct extent_state **cached_state)
1501 {
1502         struct rb_node *node;
1503         struct extent_state *state;
1504         u64 cur_start = *start;
1505         u64 found = 0;
1506         u64 total_bytes = 0;
1507
1508         spin_lock(&tree->lock);
1509
1510         /*
1511          * this search will find all the extents that end after
1512          * our range starts.
1513          */
1514         node = tree_search(tree, cur_start);
1515         if (!node) {
1516                 if (!found)
1517                         *end = (u64)-1;
1518                 goto out;
1519         }
1520
1521         while (1) {
1522                 state = rb_entry(node, struct extent_state, rb_node);
1523                 if (found && (state->start != cur_start ||
1524                               (state->state & EXTENT_BOUNDARY))) {
1525                         goto out;
1526                 }
1527                 if (!(state->state & EXTENT_DELALLOC)) {
1528                         if (!found)
1529                                 *end = state->end;
1530                         goto out;
1531                 }
1532                 if (!found) {
1533                         *start = state->start;
1534                         *cached_state = state;
1535                         atomic_inc(&state->refs);
1536                 }
1537                 found++;
1538                 *end = state->end;
1539                 cur_start = state->end + 1;
1540                 node = rb_next(node);
1541                 total_bytes += state->end - state->start + 1;
1542                 if (total_bytes >= max_bytes)
1543                         break;
1544                 if (!node)
1545                         break;
1546         }
1547 out:
1548         spin_unlock(&tree->lock);
1549         return found;
1550 }
1551
1552 static noinline void __unlock_for_delalloc(struct inode *inode,
1553                                            struct page *locked_page,
1554                                            u64 start, u64 end)
1555 {
1556         int ret;
1557         struct page *pages[16];
1558         unsigned long index = start >> PAGE_SHIFT;
1559         unsigned long end_index = end >> PAGE_SHIFT;
1560         unsigned long nr_pages = end_index - index + 1;
1561         int i;
1562
1563         if (index == locked_page->index && end_index == index)
1564                 return;
1565
1566         while (nr_pages > 0) {
1567                 ret = find_get_pages_contig(inode->i_mapping, index,
1568                                      min_t(unsigned long, nr_pages,
1569                                      ARRAY_SIZE(pages)), pages);
1570                 for (i = 0; i < ret; i++) {
1571                         if (pages[i] != locked_page)
1572                                 unlock_page(pages[i]);
1573                         put_page(pages[i]);
1574                 }
1575                 nr_pages -= ret;
1576                 index += ret;
1577                 cond_resched();
1578         }
1579 }
1580
1581 static noinline int lock_delalloc_pages(struct inode *inode,
1582                                         struct page *locked_page,
1583                                         u64 delalloc_start,
1584                                         u64 delalloc_end)
1585 {
1586         unsigned long index = delalloc_start >> PAGE_SHIFT;
1587         unsigned long start_index = index;
1588         unsigned long end_index = delalloc_end >> PAGE_SHIFT;
1589         unsigned long pages_locked = 0;
1590         struct page *pages[16];
1591         unsigned long nrpages;
1592         int ret;
1593         int i;
1594
1595         /* the caller is responsible for locking the start index */
1596         if (index == locked_page->index && index == end_index)
1597                 return 0;
1598
1599         /* skip the page at the start index */
1600         nrpages = end_index - index + 1;
1601         while (nrpages > 0) {
1602                 ret = find_get_pages_contig(inode->i_mapping, index,
1603                                      min_t(unsigned long,
1604                                      nrpages, ARRAY_SIZE(pages)), pages);
1605                 if (ret == 0) {
1606                         ret = -EAGAIN;
1607                         goto done;
1608                 }
1609                 /* now we have an array of pages, lock them all */
1610                 for (i = 0; i < ret; i++) {
1611                         /*
1612                          * the caller is taking responsibility for
1613                          * locked_page
1614                          */
1615                         if (pages[i] != locked_page) {
1616                                 lock_page(pages[i]);
1617                                 if (!PageDirty(pages[i]) ||
1618                                     pages[i]->mapping != inode->i_mapping) {
1619                                         ret = -EAGAIN;
1620                                         unlock_page(pages[i]);
1621                                         put_page(pages[i]);
1622                                         goto done;
1623                                 }
1624                         }
1625                         put_page(pages[i]);
1626                         pages_locked++;
1627                 }
1628                 nrpages -= ret;
1629                 index += ret;
1630                 cond_resched();
1631         }
1632         ret = 0;
1633 done:
1634         if (ret && pages_locked) {
1635                 __unlock_for_delalloc(inode, locked_page,
1636                               delalloc_start,
1637                               ((u64)(start_index + pages_locked - 1)) <<
1638                               PAGE_SHIFT);
1639         }
1640         return ret;
1641 }
1642
1643 /*
1644  * find a contiguous range of bytes in the file marked as delalloc, not
1645  * more than 'max_bytes'.  start and end are used to return the range,
1646  *
1647  * 1 is returned if we find something, 0 if nothing was in the tree
1648  */
1649 STATIC u64 find_lock_delalloc_range(struct inode *inode,
1650                                     struct extent_io_tree *tree,
1651                                     struct page *locked_page, u64 *start,
1652                                     u64 *end, u64 max_bytes)
1653 {
1654         u64 delalloc_start;
1655         u64 delalloc_end;
1656         u64 found;
1657         struct extent_state *cached_state = NULL;
1658         int ret;
1659         int loops = 0;
1660
1661 again:
1662         /* step one, find a bunch of delalloc bytes starting at start */
1663         delalloc_start = *start;
1664         delalloc_end = 0;
1665         found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1666                                     max_bytes, &cached_state);
1667         if (!found || delalloc_end <= *start) {
1668                 *start = delalloc_start;
1669                 *end = delalloc_end;
1670                 free_extent_state(cached_state);
1671                 return 0;
1672         }
1673
1674         /*
1675          * start comes from the offset of locked_page.  We have to lock
1676          * pages in order, so we can't process delalloc bytes before
1677          * locked_page
1678          */
1679         if (delalloc_start < *start)
1680                 delalloc_start = *start;
1681
1682         /*
1683          * make sure to limit the number of pages we try to lock down
1684          */
1685         if (delalloc_end + 1 - delalloc_start > max_bytes)
1686                 delalloc_end = delalloc_start + max_bytes - 1;
1687
1688         /* step two, lock all the pages after the page that has start */
1689         ret = lock_delalloc_pages(inode, locked_page,
1690                                   delalloc_start, delalloc_end);
1691         if (ret == -EAGAIN) {
1692                 /* some of the pages are gone, lets avoid looping by
1693                  * shortening the size of the delalloc range we're searching
1694                  */
1695                 free_extent_state(cached_state);
1696                 cached_state = NULL;
1697                 if (!loops) {
1698                         max_bytes = PAGE_SIZE;
1699                         loops = 1;
1700                         goto again;
1701                 } else {
1702                         found = 0;
1703                         goto out_failed;
1704                 }
1705         }
1706         BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */
1707
1708         /* step three, lock the state bits for the whole range */
1709         lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state);
1710
1711         /* then test to make sure it is all still delalloc */
1712         ret = test_range_bit(tree, delalloc_start, delalloc_end,
1713                              EXTENT_DELALLOC, 1, cached_state);
1714         if (!ret) {
1715                 unlock_extent_cached(tree, delalloc_start, delalloc_end,
1716                                      &cached_state, GFP_NOFS);
1717                 __unlock_for_delalloc(inode, locked_page,
1718                               delalloc_start, delalloc_end);
1719                 cond_resched();
1720                 goto again;
1721         }
1722         free_extent_state(cached_state);
1723         *start = delalloc_start;
1724         *end = delalloc_end;
1725 out_failed:
1726         return found;
1727 }
1728
1729 void extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end,
1730                                  u64 delalloc_end, struct page *locked_page,
1731                                  unsigned clear_bits,
1732                                  unsigned long page_ops)
1733 {
1734         struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
1735         int ret;
1736         struct page *pages[16];
1737         unsigned long index = start >> PAGE_SHIFT;
1738         unsigned long end_index = end >> PAGE_SHIFT;
1739         unsigned long nr_pages = end_index - index + 1;
1740         int i;
1741
1742         clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS);
1743         if (page_ops == 0)
1744                 return;
1745
1746         if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
1747                 mapping_set_error(inode->i_mapping, -EIO);
1748
1749         while (nr_pages > 0) {
1750                 ret = find_get_pages_contig(inode->i_mapping, index,
1751                                      min_t(unsigned long,
1752                                      nr_pages, ARRAY_SIZE(pages)), pages);
1753                 for (i = 0; i < ret; i++) {
1754
1755                         if (page_ops & PAGE_SET_PRIVATE2)
1756                                 SetPagePrivate2(pages[i]);
1757
1758                         if (pages[i] == locked_page) {
1759                                 put_page(pages[i]);
1760                                 continue;
1761                         }
1762                         if (page_ops & PAGE_CLEAR_DIRTY)
1763                                 clear_page_dirty_for_io(pages[i]);
1764                         if (page_ops & PAGE_SET_WRITEBACK)
1765                                 set_page_writeback(pages[i]);
1766                         if (page_ops & PAGE_SET_ERROR)
1767                                 SetPageError(pages[i]);
1768                         if (page_ops & PAGE_END_WRITEBACK)
1769                                 end_page_writeback(pages[i]);
1770                         if (page_ops & PAGE_UNLOCK)
1771                                 unlock_page(pages[i]);
1772                         put_page(pages[i]);
1773                 }
1774                 nr_pages -= ret;
1775                 index += ret;
1776                 cond_resched();
1777         }
1778 }
1779
1780 /*
1781  * count the number of bytes in the tree that have a given bit(s)
1782  * set.  This can be fairly slow, except for EXTENT_DIRTY which is
1783  * cached.  The total number found is returned.
1784  */
1785 u64 count_range_bits(struct extent_io_tree *tree,
1786                      u64 *start, u64 search_end, u64 max_bytes,
1787                      unsigned bits, int contig)
1788 {
1789         struct rb_node *node;
1790         struct extent_state *state;
1791         u64 cur_start = *start;
1792         u64 total_bytes = 0;
1793         u64 last = 0;
1794         int found = 0;
1795
1796         if (WARN_ON(search_end <= cur_start))
1797                 return 0;
1798
1799         spin_lock(&tree->lock);
1800         if (cur_start == 0 && bits == EXTENT_DIRTY) {
1801                 total_bytes = tree->dirty_bytes;
1802                 goto out;
1803         }
1804         /*
1805          * this search will find all the extents that end after
1806          * our range starts.
1807          */
1808         node = tree_search(tree, cur_start);
1809         if (!node)
1810                 goto out;
1811
1812         while (1) {
1813                 state = rb_entry(node, struct extent_state, rb_node);
1814                 if (state->start > search_end)
1815                         break;
1816                 if (contig && found && state->start > last + 1)
1817                         break;
1818                 if (state->end >= cur_start && (state->state & bits) == bits) {
1819                         total_bytes += min(search_end, state->end) + 1 -
1820                                        max(cur_start, state->start);
1821                         if (total_bytes >= max_bytes)
1822                                 break;
1823                         if (!found) {
1824                                 *start = max(cur_start, state->start);
1825                                 found = 1;
1826                         }
1827                         last = state->end;
1828                 } else if (contig && found) {
1829                         break;
1830                 }
1831                 node = rb_next(node);
1832                 if (!node)
1833                         break;
1834         }
1835 out:
1836         spin_unlock(&tree->lock);
1837         return total_bytes;
1838 }
1839
1840 /*
1841  * set the private field for a given byte offset in the tree.  If there isn't
1842  * an extent_state there already, this does nothing.
1843  */
1844 static noinline int set_state_failrec(struct extent_io_tree *tree, u64 start,
1845                 struct io_failure_record *failrec)
1846 {
1847         struct rb_node *node;
1848         struct extent_state *state;
1849         int ret = 0;
1850
1851         spin_lock(&tree->lock);
1852         /*
1853          * this search will find all the extents that end after
1854          * our range starts.
1855          */
1856         node = tree_search(tree, start);
1857         if (!node) {
1858                 ret = -ENOENT;
1859                 goto out;
1860         }
1861         state = rb_entry(node, struct extent_state, rb_node);
1862         if (state->start != start) {
1863                 ret = -ENOENT;
1864                 goto out;
1865         }
1866         state->failrec = failrec;
1867 out:
1868         spin_unlock(&tree->lock);
1869         return ret;
1870 }
1871
1872 static noinline int get_state_failrec(struct extent_io_tree *tree, u64 start,
1873                 struct io_failure_record **failrec)
1874 {
1875         struct rb_node *node;
1876         struct extent_state *state;
1877         int ret = 0;
1878
1879         spin_lock(&tree->lock);
1880         /*
1881          * this search will find all the extents that end after
1882          * our range starts.
1883          */
1884         node = tree_search(tree, start);
1885         if (!node) {
1886                 ret = -ENOENT;
1887                 goto out;
1888         }
1889         state = rb_entry(node, struct extent_state, rb_node);
1890         if (state->start != start) {
1891                 ret = -ENOENT;
1892                 goto out;
1893         }
1894         *failrec = state->failrec;
1895 out:
1896         spin_unlock(&tree->lock);
1897         return ret;
1898 }
1899
1900 /*
1901  * searches a range in the state tree for a given mask.
1902  * If 'filled' == 1, this returns 1 only if every extent in the tree
1903  * has the bits set.  Otherwise, 1 is returned if any bit in the
1904  * range is found set.
1905  */
1906 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
1907                    unsigned bits, int filled, struct extent_state *cached)
1908 {
1909         struct extent_state *state = NULL;
1910         struct rb_node *node;
1911         int bitset = 0;
1912
1913         spin_lock(&tree->lock);
1914         if (cached && extent_state_in_tree(cached) && cached->start <= start &&
1915             cached->end > start)
1916                 node = &cached->rb_node;
1917         else
1918                 node = tree_search(tree, start);
1919         while (node && start <= end) {
1920                 state = rb_entry(node, struct extent_state, rb_node);
1921
1922                 if (filled && state->start > start) {
1923                         bitset = 0;
1924                         break;
1925                 }
1926
1927                 if (state->start > end)
1928                         break;
1929
1930                 if (state->state & bits) {
1931                         bitset = 1;
1932                         if (!filled)
1933                                 break;
1934                 } else if (filled) {
1935                         bitset = 0;
1936                         break;
1937                 }
1938
1939                 if (state->end == (u64)-1)
1940                         break;
1941
1942                 start = state->end + 1;
1943                 if (start > end)
1944                         break;
1945                 node = rb_next(node);
1946                 if (!node) {
1947                         if (filled)
1948                                 bitset = 0;
1949                         break;
1950                 }
1951         }
1952         spin_unlock(&tree->lock);
1953         return bitset;
1954 }
1955
1956 /*
1957  * helper function to set a given page up to date if all the
1958  * extents in the tree for that page are up to date
1959  */
1960 static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
1961 {
1962         u64 start = page_offset(page);
1963         u64 end = start + PAGE_SIZE - 1;
1964         if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
1965                 SetPageUptodate(page);
1966 }
1967
1968 int free_io_failure(struct inode *inode, struct io_failure_record *rec)
1969 {
1970         int ret;
1971         int err = 0;
1972         struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1973
1974         set_state_failrec(failure_tree, rec->start, NULL);
1975         ret = clear_extent_bits(failure_tree, rec->start,
1976                                 rec->start + rec->len - 1,
1977                                 EXTENT_LOCKED | EXTENT_DIRTY);
1978         if (ret)
1979                 err = ret;
1980
1981         ret = clear_extent_bits(&BTRFS_I(inode)->io_tree, rec->start,
1982                                 rec->start + rec->len - 1,
1983                                 EXTENT_DAMAGED);
1984         if (ret && !err)
1985                 err = ret;
1986
1987         kfree(rec);
1988         return err;
1989 }
1990
1991 /*
1992  * this bypasses the standard btrfs submit functions deliberately, as
1993  * the standard behavior is to write all copies in a raid setup. here we only
1994  * want to write the one bad copy. so we do the mapping for ourselves and issue
1995  * submit_bio directly.
1996  * to avoid any synchronization issues, wait for the data after writing, which
1997  * actually prevents the read that triggered the error from finishing.
1998  * currently, there can be no more than two copies of every data bit. thus,
1999  * exactly one rewrite is required.
2000  */
2001 int repair_io_failure(struct inode *inode, u64 start, u64 length, u64 logical,
2002                       struct page *page, unsigned int pg_offset, int mirror_num)
2003 {
2004         struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2005         struct bio *bio;
2006         struct btrfs_device *dev;
2007         u64 map_length = 0;
2008         u64 sector;
2009         struct btrfs_bio *bbio = NULL;
2010         struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
2011         int ret;
2012
2013         ASSERT(!(fs_info->sb->s_flags & MS_RDONLY));
2014         BUG_ON(!mirror_num);
2015
2016         /* we can't repair anything in raid56 yet */
2017         if (btrfs_is_parity_mirror(map_tree, logical, length, mirror_num))
2018                 return 0;
2019
2020         bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
2021         if (!bio)
2022                 return -EIO;
2023         bio->bi_iter.bi_size = 0;
2024         map_length = length;
2025
2026         /*
2027          * Avoid races with device replace and make sure our bbio has devices
2028          * associated to its stripes that don't go away while we are doing the
2029          * read repair operation.
2030          */
2031         btrfs_bio_counter_inc_blocked(fs_info);
2032         ret = btrfs_map_block(fs_info, WRITE, logical,
2033                               &map_length, &bbio, mirror_num);
2034         if (ret) {
2035                 btrfs_bio_counter_dec(fs_info);
2036                 bio_put(bio);
2037                 return -EIO;
2038         }
2039         BUG_ON(mirror_num != bbio->mirror_num);
2040         sector = bbio->stripes[mirror_num-1].physical >> 9;
2041         bio->bi_iter.bi_sector = sector;
2042         dev = bbio->stripes[mirror_num-1].dev;
2043         btrfs_put_bbio(bbio);
2044         if (!dev || !dev->bdev || !dev->writeable) {
2045                 btrfs_bio_counter_dec(fs_info);
2046                 bio_put(bio);
2047                 return -EIO;
2048         }
2049         bio->bi_bdev = dev->bdev;
2050         bio->bi_opf = REQ_OP_WRITE | REQ_SYNC;
2051         bio_add_page(bio, page, length, pg_offset);
2052
2053         if (btrfsic_submit_bio_wait(bio)) {
2054                 /* try to remap that extent elsewhere? */
2055                 btrfs_bio_counter_dec(fs_info);
2056                 bio_put(bio);
2057                 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
2058                 return -EIO;
2059         }
2060
2061         btrfs_info_rl_in_rcu(fs_info,
2062                 "read error corrected: ino %llu off %llu (dev %s sector %llu)",
2063                                   btrfs_ino(inode), start,
2064                                   rcu_str_deref(dev->name), sector);
2065         btrfs_bio_counter_dec(fs_info);
2066         bio_put(bio);
2067         return 0;
2068 }
2069
2070 int repair_eb_io_failure(struct btrfs_root *root, struct extent_buffer *eb,
2071                          int mirror_num)
2072 {
2073         u64 start = eb->start;
2074         unsigned long i, num_pages = num_extent_pages(eb->start, eb->len);
2075         int ret = 0;
2076
2077         if (root->fs_info->sb->s_flags & MS_RDONLY)
2078                 return -EROFS;
2079
2080         for (i = 0; i < num_pages; i++) {
2081                 struct page *p = eb->pages[i];
2082
2083                 ret = repair_io_failure(root->fs_info->btree_inode, start,
2084                                         PAGE_SIZE, start, p,
2085                                         start - page_offset(p), mirror_num);
2086                 if (ret)
2087                         break;
2088                 start += PAGE_SIZE;
2089         }
2090
2091         return ret;
2092 }
2093
2094 /*
2095  * each time an IO finishes, we do a fast check in the IO failure tree
2096  * to see if we need to process or clean up an io_failure_record
2097  */
2098 int clean_io_failure(struct inode *inode, u64 start, struct page *page,
2099                      unsigned int pg_offset)
2100 {
2101         u64 private;
2102         struct io_failure_record *failrec;
2103         struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2104         struct extent_state *state;
2105         int num_copies;
2106         int ret;
2107
2108         private = 0;
2109         ret = count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
2110                                 (u64)-1, 1, EXTENT_DIRTY, 0);
2111         if (!ret)
2112                 return 0;
2113
2114         ret = get_state_failrec(&BTRFS_I(inode)->io_failure_tree, start,
2115                         &failrec);
2116         if (ret)
2117                 return 0;
2118
2119         BUG_ON(!failrec->this_mirror);
2120
2121         if (failrec->in_validation) {
2122                 /* there was no real error, just free the record */
2123                 btrfs_debug(fs_info,
2124                         "clean_io_failure: freeing dummy error at %llu",
2125                         failrec->start);
2126                 goto out;
2127         }
2128         if (fs_info->sb->s_flags & MS_RDONLY)
2129                 goto out;
2130
2131         spin_lock(&BTRFS_I(inode)->io_tree.lock);
2132         state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
2133                                             failrec->start,
2134                                             EXTENT_LOCKED);
2135         spin_unlock(&BTRFS_I(inode)->io_tree.lock);
2136
2137         if (state && state->start <= failrec->start &&
2138             state->end >= failrec->start + failrec->len - 1) {
2139                 num_copies = btrfs_num_copies(fs_info, failrec->logical,
2140                                               failrec->len);
2141                 if (num_copies > 1)  {
2142                         repair_io_failure(inode, start, failrec->len,
2143                                           failrec->logical, page,
2144                                           pg_offset, failrec->failed_mirror);
2145                 }
2146         }
2147
2148 out:
2149         free_io_failure(inode, failrec);
2150
2151         return 0;
2152 }
2153
2154 /*
2155  * Can be called when
2156  * - hold extent lock
2157  * - under ordered extent
2158  * - the inode is freeing
2159  */
2160 void btrfs_free_io_failure_record(struct inode *inode, u64 start, u64 end)
2161 {
2162         struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2163         struct io_failure_record *failrec;
2164         struct extent_state *state, *next;
2165
2166         if (RB_EMPTY_ROOT(&failure_tree->state))
2167                 return;
2168
2169         spin_lock(&failure_tree->lock);
2170         state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
2171         while (state) {
2172                 if (state->start > end)
2173                         break;
2174
2175                 ASSERT(state->end <= end);
2176
2177                 next = next_state(state);
2178
2179                 failrec = state->failrec;
2180                 free_extent_state(state);
2181                 kfree(failrec);
2182
2183                 state = next;
2184         }
2185         spin_unlock(&failure_tree->lock);
2186 }
2187
2188 int btrfs_get_io_failure_record(struct inode *inode, u64 start, u64 end,
2189                 struct io_failure_record **failrec_ret)
2190 {
2191         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2192         struct io_failure_record *failrec;
2193         struct extent_map *em;
2194         struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2195         struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2196         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2197         int ret;
2198         u64 logical;
2199
2200         ret = get_state_failrec(failure_tree, start, &failrec);
2201         if (ret) {
2202                 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2203                 if (!failrec)
2204                         return -ENOMEM;
2205
2206                 failrec->start = start;
2207                 failrec->len = end - start + 1;
2208                 failrec->this_mirror = 0;
2209                 failrec->bio_flags = 0;
2210                 failrec->in_validation = 0;
2211
2212                 read_lock(&em_tree->lock);
2213                 em = lookup_extent_mapping(em_tree, start, failrec->len);
2214                 if (!em) {
2215                         read_unlock(&em_tree->lock);
2216                         kfree(failrec);
2217                         return -EIO;
2218                 }
2219
2220                 if (em->start > start || em->start + em->len <= start) {
2221                         free_extent_map(em);
2222                         em = NULL;
2223                 }
2224                 read_unlock(&em_tree->lock);
2225                 if (!em) {
2226                         kfree(failrec);
2227                         return -EIO;
2228                 }
2229
2230                 logical = start - em->start;
2231                 logical = em->block_start + logical;
2232                 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2233                         logical = em->block_start;
2234                         failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2235                         extent_set_compress_type(&failrec->bio_flags,
2236                                                  em->compress_type);
2237                 }
2238
2239                 btrfs_debug(fs_info,
2240                         "Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu",
2241                         logical, start, failrec->len);
2242
2243                 failrec->logical = logical;
2244                 free_extent_map(em);
2245
2246                 /* set the bits in the private failure tree */
2247                 ret = set_extent_bits(failure_tree, start, end,
2248                                         EXTENT_LOCKED | EXTENT_DIRTY);
2249                 if (ret >= 0)
2250                         ret = set_state_failrec(failure_tree, start, failrec);
2251                 /* set the bits in the inode's tree */
2252                 if (ret >= 0)
2253                         ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED);
2254                 if (ret < 0) {
2255                         kfree(failrec);
2256                         return ret;
2257                 }
2258         } else {
2259                 btrfs_debug(fs_info,
2260                         "Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d",
2261                         failrec->logical, failrec->start, failrec->len,
2262                         failrec->in_validation);
2263                 /*
2264                  * when data can be on disk more than twice, add to failrec here
2265                  * (e.g. with a list for failed_mirror) to make
2266                  * clean_io_failure() clean all those errors at once.
2267                  */
2268         }
2269
2270         *failrec_ret = failrec;
2271
2272         return 0;
2273 }
2274
2275 int btrfs_check_repairable(struct inode *inode, struct bio *failed_bio,
2276                            struct io_failure_record *failrec, int failed_mirror)
2277 {
2278         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2279         int num_copies;
2280
2281         num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
2282         if (num_copies == 1) {
2283                 /*
2284                  * we only have a single copy of the data, so don't bother with
2285                  * all the retry and error correction code that follows. no
2286                  * matter what the error is, it is very likely to persist.
2287                  */
2288                 btrfs_debug(fs_info,
2289                         "Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
2290                         num_copies, failrec->this_mirror, failed_mirror);
2291                 return 0;
2292         }
2293
2294         /*
2295          * there are two premises:
2296          *      a) deliver good data to the caller
2297          *      b) correct the bad sectors on disk
2298          */
2299         if (failed_bio->bi_vcnt > 1) {
2300                 /*
2301                  * to fulfill b), we need to know the exact failing sectors, as
2302                  * we don't want to rewrite any more than the failed ones. thus,
2303                  * we need separate read requests for the failed bio
2304                  *
2305                  * if the following BUG_ON triggers, our validation request got
2306                  * merged. we need separate requests for our algorithm to work.
2307                  */
2308                 BUG_ON(failrec->in_validation);
2309                 failrec->in_validation = 1;
2310                 failrec->this_mirror = failed_mirror;
2311         } else {
2312                 /*
2313                  * we're ready to fulfill a) and b) alongside. get a good copy
2314                  * of the failed sector and if we succeed, we have setup
2315                  * everything for repair_io_failure to do the rest for us.
2316                  */
2317                 if (failrec->in_validation) {
2318                         BUG_ON(failrec->this_mirror != failed_mirror);
2319                         failrec->in_validation = 0;
2320                         failrec->this_mirror = 0;
2321                 }
2322                 failrec->failed_mirror = failed_mirror;
2323                 failrec->this_mirror++;
2324                 if (failrec->this_mirror == failed_mirror)
2325                         failrec->this_mirror++;
2326         }
2327
2328         if (failrec->this_mirror > num_copies) {
2329                 btrfs_debug(fs_info,
2330                         "Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
2331                         num_copies, failrec->this_mirror, failed_mirror);
2332                 return 0;
2333         }
2334
2335         return 1;
2336 }
2337
2338
2339 struct bio *btrfs_create_repair_bio(struct inode *inode, struct bio *failed_bio,
2340                                     struct io_failure_record *failrec,
2341                                     struct page *page, int pg_offset, int icsum,
2342                                     bio_end_io_t *endio_func, void *data)
2343 {
2344         struct bio *bio;
2345         struct btrfs_io_bio *btrfs_failed_bio;
2346         struct btrfs_io_bio *btrfs_bio;
2347
2348         bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
2349         if (!bio)
2350                 return NULL;
2351
2352         bio->bi_end_io = endio_func;
2353         bio->bi_iter.bi_sector = failrec->logical >> 9;
2354         bio->bi_bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
2355         bio->bi_iter.bi_size = 0;
2356         bio->bi_private = data;
2357
2358         btrfs_failed_bio = btrfs_io_bio(failed_bio);
2359         if (btrfs_failed_bio->csum) {
2360                 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2361                 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2362
2363                 btrfs_bio = btrfs_io_bio(bio);
2364                 btrfs_bio->csum = btrfs_bio->csum_inline;
2365                 icsum *= csum_size;
2366                 memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + icsum,
2367                        csum_size);
2368         }
2369
2370         bio_add_page(bio, page, failrec->len, pg_offset);
2371
2372         return bio;
2373 }
2374
2375 /*
2376  * this is a generic handler for readpage errors (default
2377  * readpage_io_failed_hook). if other copies exist, read those and write back
2378  * good data to the failed position. does not investigate in remapping the
2379  * failed extent elsewhere, hoping the device will be smart enough to do this as
2380  * needed
2381  */
2382
2383 static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset,
2384                               struct page *page, u64 start, u64 end,
2385                               int failed_mirror)
2386 {
2387         struct io_failure_record *failrec;
2388         struct inode *inode = page->mapping->host;
2389         struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2390         struct bio *bio;
2391         int read_mode = 0;
2392         int ret;
2393
2394         BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
2395
2396         ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
2397         if (ret)
2398                 return ret;
2399
2400         ret = btrfs_check_repairable(inode, failed_bio, failrec, failed_mirror);
2401         if (!ret) {
2402                 free_io_failure(inode, failrec);
2403                 return -EIO;
2404         }
2405
2406         if (failed_bio->bi_vcnt > 1)
2407                 read_mode |= REQ_FAILFAST_DEV;
2408
2409         phy_offset >>= inode->i_sb->s_blocksize_bits;
2410         bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
2411                                       start - page_offset(page),
2412                                       (int)phy_offset, failed_bio->bi_end_io,
2413                                       NULL);
2414         if (!bio) {
2415                 free_io_failure(inode, failrec);
2416                 return -EIO;
2417         }
2418         bio_set_op_attrs(bio, REQ_OP_READ, read_mode);
2419
2420         btrfs_debug(btrfs_sb(inode->i_sb),
2421                 "Repair Read Error: submitting new read[%#x] to this_mirror=%d, in_validation=%d",
2422                 read_mode, failrec->this_mirror, failrec->in_validation);
2423
2424         ret = tree->ops->submit_bio_hook(inode, bio, failrec->this_mirror,
2425                                          failrec->bio_flags, 0);
2426         if (ret) {
2427                 free_io_failure(inode, failrec);
2428                 bio_put(bio);
2429         }
2430
2431         return ret;
2432 }
2433
2434 /* lots and lots of room for performance fixes in the end_bio funcs */
2435
2436 void end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2437 {
2438         int uptodate = (err == 0);
2439         struct extent_io_tree *tree;
2440         int ret = 0;
2441
2442         tree = &BTRFS_I(page->mapping->host)->io_tree;
2443
2444         if (tree->ops && tree->ops->writepage_end_io_hook) {
2445                 ret = tree->ops->writepage_end_io_hook(page, start,
2446                                                end, NULL, uptodate);
2447                 if (ret)
2448                         uptodate = 0;
2449         }
2450
2451         if (!uptodate) {
2452                 ClearPageUptodate(page);
2453                 SetPageError(page);
2454                 ret = ret < 0 ? ret : -EIO;
2455                 mapping_set_error(page->mapping, ret);
2456         }
2457 }
2458
2459 /*
2460  * after a writepage IO is done, we need to:
2461  * clear the uptodate bits on error
2462  * clear the writeback bits in the extent tree for this IO
2463  * end_page_writeback if the page has no more pending IO
2464  *
2465  * Scheduling is not allowed, so the extent state tree is expected
2466  * to have one and only one object corresponding to this IO.
2467  */
2468 static void end_bio_extent_writepage(struct bio *bio)
2469 {
2470         struct bio_vec *bvec;
2471         u64 start;
2472         u64 end;
2473         int i;
2474
2475         bio_for_each_segment_all(bvec, bio, i) {
2476                 struct page *page = bvec->bv_page;
2477
2478                 /* We always issue full-page reads, but if some block
2479                  * in a page fails to read, blk_update_request() will
2480                  * advance bv_offset and adjust bv_len to compensate.
2481                  * Print a warning for nonzero offsets, and an error
2482                  * if they don't add up to a full page.  */
2483                 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2484                         if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2485                                 btrfs_err(BTRFS_I(page->mapping->host)->root->fs_info,
2486                                    "partial page write in btrfs with offset %u and length %u",
2487                                         bvec->bv_offset, bvec->bv_len);
2488                         else
2489                                 btrfs_info(BTRFS_I(page->mapping->host)->root->fs_info,
2490                                    "incomplete page write in btrfs with offset %u and length %u",
2491                                         bvec->bv_offset, bvec->bv_len);
2492                 }
2493
2494                 start = page_offset(page);
2495                 end = start + bvec->bv_offset + bvec->bv_len - 1;
2496
2497                 end_extent_writepage(page, bio->bi_error, start, end);
2498                 end_page_writeback(page);
2499         }
2500
2501         bio_put(bio);
2502 }
2503
2504 static void
2505 endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
2506                               int uptodate)
2507 {
2508         struct extent_state *cached = NULL;
2509         u64 end = start + len - 1;
2510
2511         if (uptodate && tree->track_uptodate)
2512                 set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
2513         unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC);
2514 }
2515
2516 /*
2517  * after a readpage IO is done, we need to:
2518  * clear the uptodate bits on error
2519  * set the uptodate bits if things worked
2520  * set the page up to date if all extents in the tree are uptodate
2521  * clear the lock bit in the extent tree
2522  * unlock the page if there are no other extents locked for it
2523  *
2524  * Scheduling is not allowed, so the extent state tree is expected
2525  * to have one and only one object corresponding to this IO.
2526  */
2527 static void end_bio_extent_readpage(struct bio *bio)
2528 {
2529         struct bio_vec *bvec;
2530         int uptodate = !bio->bi_error;
2531         struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
2532         struct extent_io_tree *tree;
2533         u64 offset = 0;
2534         u64 start;
2535         u64 end;
2536         u64 len;
2537         u64 extent_start = 0;
2538         u64 extent_len = 0;
2539         int mirror;
2540         int ret;
2541         int i;
2542
2543         bio_for_each_segment_all(bvec, bio, i) {
2544                 struct page *page = bvec->bv_page;
2545                 struct inode *inode = page->mapping->host;
2546                 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2547
2548                 btrfs_debug(fs_info,
2549                         "end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u",
2550                         (u64)bio->bi_iter.bi_sector, bio->bi_error,
2551                         io_bio->mirror_num);
2552                 tree = &BTRFS_I(inode)->io_tree;
2553
2554                 /* We always issue full-page reads, but if some block
2555                  * in a page fails to read, blk_update_request() will
2556                  * advance bv_offset and adjust bv_len to compensate.
2557                  * Print a warning for nonzero offsets, and an error
2558                  * if they don't add up to a full page.  */
2559                 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2560                         if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2561                                 btrfs_err(fs_info,
2562                                         "partial page read in btrfs with offset %u and length %u",
2563                                         bvec->bv_offset, bvec->bv_len);
2564                         else
2565                                 btrfs_info(fs_info,
2566                                         "incomplete page read in btrfs with offset %u and length %u",
2567                                         bvec->bv_offset, bvec->bv_len);
2568                 }
2569
2570                 start = page_offset(page);
2571                 end = start + bvec->bv_offset + bvec->bv_len - 1;
2572                 len = bvec->bv_len;
2573
2574                 mirror = io_bio->mirror_num;
2575                 if (likely(uptodate && tree->ops &&
2576                            tree->ops->readpage_end_io_hook)) {
2577                         ret = tree->ops->readpage_end_io_hook(io_bio, offset,
2578                                                               page, start, end,
2579                                                               mirror);
2580                         if (ret)
2581                                 uptodate = 0;
2582                         else
2583                                 clean_io_failure(inode, start, page, 0);
2584                 }
2585
2586                 if (likely(uptodate))
2587                         goto readpage_ok;
2588
2589                 if (tree->ops && tree->ops->readpage_io_failed_hook) {
2590                         ret = tree->ops->readpage_io_failed_hook(page, mirror);
2591                         if (!ret && !bio->bi_error)
2592                                 uptodate = 1;
2593                 } else {
2594                         /*
2595                          * The generic bio_readpage_error handles errors the
2596                          * following way: If possible, new read requests are
2597                          * created and submitted and will end up in
2598                          * end_bio_extent_readpage as well (if we're lucky, not
2599                          * in the !uptodate case). In that case it returns 0 and
2600                          * we just go on with the next page in our bio. If it
2601                          * can't handle the error it will return -EIO and we
2602                          * remain responsible for that page.
2603                          */
2604                         ret = bio_readpage_error(bio, offset, page, start, end,
2605                                                  mirror);
2606                         if (ret == 0) {
2607                                 uptodate = !bio->bi_error;
2608                                 offset += len;
2609                                 continue;
2610                         }
2611                 }
2612 readpage_ok:
2613                 if (likely(uptodate)) {
2614                         loff_t i_size = i_size_read(inode);
2615                         pgoff_t end_index = i_size >> PAGE_SHIFT;
2616                         unsigned off;
2617
2618                         /* Zero out the end if this page straddles i_size */
2619                         off = i_size & (PAGE_SIZE-1);
2620                         if (page->index == end_index && off)
2621                                 zero_user_segment(page, off, PAGE_SIZE);
2622                         SetPageUptodate(page);
2623                 } else {
2624                         ClearPageUptodate(page);
2625                         SetPageError(page);
2626                 }
2627                 unlock_page(page);
2628                 offset += len;
2629
2630                 if (unlikely(!uptodate)) {
2631                         if (extent_len) {
2632                                 endio_readpage_release_extent(tree,
2633                                                               extent_start,
2634                                                               extent_len, 1);
2635                                 extent_start = 0;
2636                                 extent_len = 0;
2637                         }
2638                         endio_readpage_release_extent(tree, start,
2639                                                       end - start + 1, 0);
2640                 } else if (!extent_len) {
2641                         extent_start = start;
2642                         extent_len = end + 1 - start;
2643                 } else if (extent_start + extent_len == start) {
2644                         extent_len += end + 1 - start;
2645                 } else {
2646                         endio_readpage_release_extent(tree, extent_start,
2647                                                       extent_len, uptodate);
2648                         extent_start = start;
2649                         extent_len = end + 1 - start;
2650                 }
2651         }
2652
2653         if (extent_len)
2654                 endio_readpage_release_extent(tree, extent_start, extent_len,
2655                                               uptodate);
2656         if (io_bio->end_io)
2657                 io_bio->end_io(io_bio, bio->bi_error);
2658         bio_put(bio);
2659 }
2660
2661 /*
2662  * this allocates from the btrfs_bioset.  We're returning a bio right now
2663  * but you can call btrfs_io_bio for the appropriate container_of magic
2664  */
2665 struct bio *
2666 btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
2667                 gfp_t gfp_flags)
2668 {
2669         struct btrfs_io_bio *btrfs_bio;
2670         struct bio *bio;
2671
2672         bio = bio_alloc_bioset(gfp_flags, nr_vecs, btrfs_bioset);
2673
2674         if (bio == NULL && (current->flags & PF_MEMALLOC)) {
2675                 while (!bio && (nr_vecs /= 2)) {
2676                         bio = bio_alloc_bioset(gfp_flags,
2677                                                nr_vecs, btrfs_bioset);
2678                 }
2679         }
2680
2681         if (bio) {
2682                 bio->bi_bdev = bdev;
2683                 bio->bi_iter.bi_sector = first_sector;
2684                 btrfs_bio = btrfs_io_bio(bio);
2685                 btrfs_bio->csum = NULL;
2686                 btrfs_bio->csum_allocated = NULL;
2687                 btrfs_bio->end_io = NULL;
2688         }
2689         return bio;
2690 }
2691
2692 struct bio *btrfs_bio_clone(struct bio *bio, gfp_t gfp_mask)
2693 {
2694         struct btrfs_io_bio *btrfs_bio;
2695         struct bio *new;
2696
2697         new = bio_clone_bioset(bio, gfp_mask, btrfs_bioset);
2698         if (new) {
2699                 btrfs_bio = btrfs_io_bio(new);
2700                 btrfs_bio->csum = NULL;
2701                 btrfs_bio->csum_allocated = NULL;
2702                 btrfs_bio->end_io = NULL;
2703         }
2704         return new;
2705 }
2706
2707 /* this also allocates from the btrfs_bioset */
2708 struct bio *btrfs_io_bio_alloc(gfp_t gfp_mask, unsigned int nr_iovecs)
2709 {
2710         struct btrfs_io_bio *btrfs_bio;
2711         struct bio *bio;
2712
2713         bio = bio_alloc_bioset(gfp_mask, nr_iovecs, btrfs_bioset);
2714         if (bio) {
2715                 btrfs_bio = btrfs_io_bio(bio);
2716                 btrfs_bio->csum = NULL;
2717                 btrfs_bio->csum_allocated = NULL;
2718                 btrfs_bio->end_io = NULL;
2719         }
2720         return bio;
2721 }
2722
2723
2724 static int __must_check submit_one_bio(struct bio *bio, int mirror_num,
2725                                        unsigned long bio_flags)
2726 {
2727         int ret = 0;
2728         struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2729         struct page *page = bvec->bv_page;
2730         struct extent_io_tree *tree = bio->bi_private;
2731         u64 start;
2732
2733         start = page_offset(page) + bvec->bv_offset;
2734
2735         bio->bi_private = NULL;
2736         bio_get(bio);
2737
2738         if (tree->ops && tree->ops->submit_bio_hook)
2739                 ret = tree->ops->submit_bio_hook(page->mapping->host, bio,
2740                                            mirror_num, bio_flags, start);
2741         else
2742                 btrfsic_submit_bio(bio);
2743
2744         bio_put(bio);
2745         return ret;
2746 }
2747
2748 static int merge_bio(struct extent_io_tree *tree, struct page *page,
2749                      unsigned long offset, size_t size, struct bio *bio,
2750                      unsigned long bio_flags)
2751 {
2752         int ret = 0;
2753         if (tree->ops && tree->ops->merge_bio_hook)
2754                 ret = tree->ops->merge_bio_hook(page, offset, size, bio,
2755                                                 bio_flags);
2756         return ret;
2757
2758 }
2759
2760 static int submit_extent_page(int op, int op_flags, struct extent_io_tree *tree,
2761                               struct writeback_control *wbc,
2762                               struct page *page, sector_t sector,
2763                               size_t size, unsigned long offset,
2764                               struct block_device *bdev,
2765                               struct bio **bio_ret,
2766                               unsigned long max_pages,
2767                               bio_end_io_t end_io_func,
2768                               int mirror_num,
2769                               unsigned long prev_bio_flags,
2770                               unsigned long bio_flags,
2771                               bool force_bio_submit)
2772 {
2773         int ret = 0;
2774         struct bio *bio;
2775         int contig = 0;
2776         int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
2777         size_t page_size = min_t(size_t, size, PAGE_SIZE);
2778
2779         if (bio_ret && *bio_ret) {
2780                 bio = *bio_ret;
2781                 if (old_compressed)
2782                         contig = bio->bi_iter.bi_sector == sector;
2783                 else
2784                         contig = bio_end_sector(bio) == sector;
2785
2786                 if (prev_bio_flags != bio_flags || !contig ||
2787                     force_bio_submit ||
2788                     merge_bio(tree, page, offset, page_size, bio, bio_flags) ||
2789                     bio_add_page(bio, page, page_size, offset) < page_size) {
2790                         ret = submit_one_bio(bio, mirror_num, prev_bio_flags);
2791                         if (ret < 0) {
2792                                 *bio_ret = NULL;
2793                                 return ret;
2794                         }
2795                         bio = NULL;
2796                 } else {
2797                         if (wbc)
2798                                 wbc_account_io(wbc, page, page_size);
2799                         return 0;
2800                 }
2801         }
2802
2803         bio = btrfs_bio_alloc(bdev, sector, BIO_MAX_PAGES,
2804                         GFP_NOFS | __GFP_HIGH);
2805         if (!bio)
2806                 return -ENOMEM;
2807
2808         bio_add_page(bio, page, page_size, offset);
2809         bio->bi_end_io = end_io_func;
2810         bio->bi_private = tree;
2811         bio_set_op_attrs(bio, op, op_flags);
2812         if (wbc) {
2813                 wbc_init_bio(wbc, bio);
2814                 wbc_account_io(wbc, page, page_size);
2815         }
2816
2817         if (bio_ret)
2818                 *bio_ret = bio;
2819         else
2820                 ret = submit_one_bio(bio, mirror_num, bio_flags);
2821
2822         return ret;
2823 }
2824
2825 static void attach_extent_buffer_page(struct extent_buffer *eb,
2826                                       struct page *page)
2827 {
2828         if (!PagePrivate(page)) {
2829                 SetPagePrivate(page);
2830                 get_page(page);
2831                 set_page_private(page, (unsigned long)eb);
2832         } else {
2833                 WARN_ON(page->private != (unsigned long)eb);
2834         }
2835 }
2836
2837 void set_page_extent_mapped(struct page *page)
2838 {
2839         if (!PagePrivate(page)) {
2840                 SetPagePrivate(page);
2841                 get_page(page);
2842                 set_page_private(page, EXTENT_PAGE_PRIVATE);
2843         }
2844 }
2845
2846 static struct extent_map *
2847 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
2848                  u64 start, u64 len, get_extent_t *get_extent,
2849                  struct extent_map **em_cached)
2850 {
2851         struct extent_map *em;
2852
2853         if (em_cached && *em_cached) {
2854                 em = *em_cached;
2855                 if (extent_map_in_tree(em) && start >= em->start &&
2856                     start < extent_map_end(em)) {
2857                         atomic_inc(&em->refs);
2858                         return em;
2859                 }
2860
2861                 free_extent_map(em);
2862                 *em_cached = NULL;
2863         }
2864
2865         em = get_extent(inode, page, pg_offset, start, len, 0);
2866         if (em_cached && !IS_ERR_OR_NULL(em)) {
2867                 BUG_ON(*em_cached);
2868                 atomic_inc(&em->refs);
2869                 *em_cached = em;
2870         }
2871         return em;
2872 }
2873 /*
2874  * basic readpage implementation.  Locked extent state structs are inserted
2875  * into the tree that are removed when the IO is done (by the end_io
2876  * handlers)
2877  * XXX JDM: This needs looking at to ensure proper page locking
2878  * return 0 on success, otherwise return error
2879  */
2880 static int __do_readpage(struct extent_io_tree *tree,
2881                          struct page *page,
2882                          get_extent_t *get_extent,
2883                          struct extent_map **em_cached,
2884                          struct bio **bio, int mirror_num,
2885                          unsigned long *bio_flags, int read_flags,
2886                          u64 *prev_em_start)
2887 {
2888         struct inode *inode = page->mapping->host;
2889         u64 start = page_offset(page);
2890         u64 page_end = start + PAGE_SIZE - 1;
2891         u64 end;
2892         u64 cur = start;
2893         u64 extent_offset;
2894         u64 last_byte = i_size_read(inode);
2895         u64 block_start;
2896         u64 cur_end;
2897         sector_t sector;
2898         struct extent_map *em;
2899         struct block_device *bdev;
2900         int ret = 0;
2901         int nr = 0;
2902         size_t pg_offset = 0;
2903         size_t iosize;
2904         size_t disk_io_size;
2905         size_t blocksize = inode->i_sb->s_blocksize;
2906         unsigned long this_bio_flag = 0;
2907
2908         set_page_extent_mapped(page);
2909
2910         end = page_end;
2911         if (!PageUptodate(page)) {
2912                 if (cleancache_get_page(page) == 0) {
2913                         BUG_ON(blocksize != PAGE_SIZE);
2914                         unlock_extent(tree, start, end);
2915                         goto out;
2916                 }
2917         }
2918
2919         if (page->index == last_byte >> PAGE_SHIFT) {
2920                 char *userpage;
2921                 size_t zero_offset = last_byte & (PAGE_SIZE - 1);
2922
2923                 if (zero_offset) {
2924                         iosize = PAGE_SIZE - zero_offset;
2925                         userpage = kmap_atomic(page);
2926                         memset(userpage + zero_offset, 0, iosize);
2927                         flush_dcache_page(page);
2928                         kunmap_atomic(userpage);
2929                 }
2930         }
2931         while (cur <= end) {
2932                 unsigned long pnr = (last_byte >> PAGE_SHIFT) + 1;
2933                 bool force_bio_submit = false;
2934
2935                 if (cur >= last_byte) {
2936                         char *userpage;
2937                         struct extent_state *cached = NULL;
2938
2939                         iosize = PAGE_SIZE - pg_offset;
2940                         userpage = kmap_atomic(page);
2941                         memset(userpage + pg_offset, 0, iosize);
2942                         flush_dcache_page(page);
2943                         kunmap_atomic(userpage);
2944                         set_extent_uptodate(tree, cur, cur + iosize - 1,
2945                                             &cached, GFP_NOFS);
2946                         unlock_extent_cached(tree, cur,
2947                                              cur + iosize - 1,
2948                                              &cached, GFP_NOFS);
2949                         break;
2950                 }
2951                 em = __get_extent_map(inode, page, pg_offset, cur,
2952                                       end - cur + 1, get_extent, em_cached);
2953                 if (IS_ERR_OR_NULL(em)) {
2954                         SetPageError(page);
2955                         unlock_extent(tree, cur, end);
2956                         break;
2957                 }
2958                 extent_offset = cur - em->start;
2959                 BUG_ON(extent_map_end(em) <= cur);
2960                 BUG_ON(end < cur);
2961
2962                 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2963                         this_bio_flag |= EXTENT_BIO_COMPRESSED;
2964                         extent_set_compress_type(&this_bio_flag,
2965                                                  em->compress_type);
2966                 }
2967
2968                 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2969                 cur_end = min(extent_map_end(em) - 1, end);
2970                 iosize = ALIGN(iosize, blocksize);
2971                 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2972                         disk_io_size = em->block_len;
2973                         sector = em->block_start >> 9;
2974                 } else {
2975                         sector = (em->block_start + extent_offset) >> 9;
2976                         disk_io_size = iosize;
2977                 }
2978                 bdev = em->bdev;
2979                 block_start = em->block_start;
2980                 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2981                         block_start = EXTENT_MAP_HOLE;
2982
2983                 /*
2984                  * If we have a file range that points to a compressed extent
2985                  * and it's followed by a consecutive file range that points to
2986                  * to the same compressed extent (possibly with a different
2987                  * offset and/or length, so it either points to the whole extent
2988                  * or only part of it), we must make sure we do not submit a
2989                  * single bio to populate the pages for the 2 ranges because
2990                  * this makes the compressed extent read zero out the pages
2991                  * belonging to the 2nd range. Imagine the following scenario:
2992                  *
2993                  *  File layout
2994                  *  [0 - 8K]                     [8K - 24K]
2995                  *    |                               |
2996                  *    |                               |
2997                  * points to extent X,         points to extent X,
2998                  * offset 4K, length of 8K     offset 0, length 16K
2999                  *
3000                  * [extent X, compressed length = 4K uncompressed length = 16K]
3001                  *
3002                  * If the bio to read the compressed extent covers both ranges,
3003                  * it will decompress extent X into the pages belonging to the
3004                  * first range and then it will stop, zeroing out the remaining
3005                  * pages that belong to the other range that points to extent X.
3006                  * So here we make sure we submit 2 bios, one for the first
3007                  * range and another one for the third range. Both will target
3008                  * the same physical extent from disk, but we can't currently
3009                  * make the compressed bio endio callback populate the pages
3010                  * for both ranges because each compressed bio is tightly
3011                  * coupled with a single extent map, and each range can have
3012                  * an extent map with a different offset value relative to the
3013                  * uncompressed data of our extent and different lengths. This
3014                  * is a corner case so we prioritize correctness over
3015                  * non-optimal behavior (submitting 2 bios for the same extent).
3016                  */
3017                 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
3018                     prev_em_start && *prev_em_start != (u64)-1 &&
3019                     *prev_em_start != em->orig_start)
3020                         force_bio_submit = true;
3021
3022                 if (prev_em_start)
3023                         *prev_em_start = em->orig_start;
3024
3025                 free_extent_map(em);
3026                 em = NULL;
3027
3028                 /* we've found a hole, just zero and go on */
3029                 if (block_start == EXTENT_MAP_HOLE) {
3030                         char *userpage;
3031                         struct extent_state *cached = NULL;
3032
3033                         userpage = kmap_atomic(page);
3034                         memset(userpage + pg_offset, 0, iosize);
3035                         flush_dcache_page(page);
3036                         kunmap_atomic(userpage);
3037
3038                         set_extent_uptodate(tree, cur, cur + iosize - 1,
3039                                             &cached, GFP_NOFS);
3040                         unlock_extent_cached(tree, cur,
3041                                              cur + iosize - 1,
3042                                              &cached, GFP_NOFS);
3043                         cur = cur + iosize;
3044                         pg_offset += iosize;
3045                         continue;
3046                 }
3047                 /* the get_extent function already copied into the page */
3048                 if (test_range_bit(tree, cur, cur_end,
3049                                    EXTENT_UPTODATE, 1, NULL)) {
3050                         check_page_uptodate(tree, page);
3051                         unlock_extent(tree, cur, cur + iosize - 1);
3052                         cur = cur + iosize;
3053                         pg_offset += iosize;
3054                         continue;
3055                 }
3056                 /* we have an inline extent but it didn't get marked up
3057                  * to date.  Error out
3058                  */
3059                 if (block_start == EXTENT_MAP_INLINE) {
3060                         SetPageError(page);
3061                         unlock_extent(tree, cur, cur + iosize - 1);
3062                         cur = cur + iosize;
3063                         pg_offset += iosize;
3064                         continue;
3065                 }
3066
3067                 pnr -= page->index;
3068                 ret = submit_extent_page(REQ_OP_READ, read_flags, tree, NULL,
3069                                          page, sector, disk_io_size, pg_offset,
3070                                          bdev, bio, pnr,
3071                                          end_bio_extent_readpage, mirror_num,
3072                                          *bio_flags,
3073                                          this_bio_flag,
3074                                          force_bio_submit);
3075                 if (!ret) {
3076                         nr++;
3077                         *bio_flags = this_bio_flag;
3078                 } else {
3079                         SetPageError(page);
3080                         unlock_extent(tree, cur, cur + iosize - 1);
3081                         goto out;
3082                 }
3083                 cur = cur + iosize;
3084                 pg_offset += iosize;
3085         }
3086 out:
3087         if (!nr) {
3088                 if (!PageError(page))
3089                         SetPageUptodate(page);
3090                 unlock_page(page);
3091         }
3092         return ret;
3093 }
3094
3095 static inline void __do_contiguous_readpages(struct extent_io_tree *tree,
3096                                              struct page *pages[], int nr_pages,
3097                                              u64 start, u64 end,
3098                                              get_extent_t *get_extent,
3099                                              struct extent_map **em_cached,
3100                                              struct bio **bio, int mirror_num,
3101                                              unsigned long *bio_flags,
3102                                              u64 *prev_em_start)
3103 {
3104         struct inode *inode;
3105         struct btrfs_ordered_extent *ordered;
3106         int index;
3107
3108         inode = pages[0]->mapping->host;
3109         while (1) {
3110                 lock_extent(tree, start, end);
3111                 ordered = btrfs_lookup_ordered_range(inode, start,
3112                                                      end - start + 1);
3113                 if (!ordered)
3114                         break;
3115                 unlock_extent(tree, start, end);
3116                 btrfs_start_ordered_extent(inode, ordered, 1);
3117                 btrfs_put_ordered_extent(ordered);
3118         }
3119
3120         for (index = 0; index < nr_pages; index++) {
3121                 __do_readpage(tree, pages[index], get_extent, em_cached, bio,
3122                               mirror_num, bio_flags, 0, prev_em_start);
3123                 put_page(pages[index]);
3124         }
3125 }
3126
3127 static void __extent_readpages(struct extent_io_tree *tree,
3128                                struct page *pages[],
3129                                int nr_pages, get_extent_t *get_extent,
3130                                struct extent_map **em_cached,
3131                                struct bio **bio, int mirror_num,
3132                                unsigned long *bio_flags,
3133                                u64 *prev_em_start)
3134 {
3135         u64 start = 0;
3136         u64 end = 0;
3137         u64 page_start;
3138         int index;
3139         int first_index = 0;
3140
3141         for (index = 0; index < nr_pages; index++) {
3142                 page_start = page_offset(pages[index]);
3143                 if (!end) {
3144                         start = page_start;
3145                         end = start + PAGE_SIZE - 1;
3146                         first_index = index;
3147                 } else if (end + 1 == page_start) {
3148                         end += PAGE_SIZE;
3149                 } else {
3150                         __do_contiguous_readpages(tree, &pages[first_index],
3151                                                   index - first_index, start,
3152                                                   end, get_extent, em_cached,
3153                                                   bio, mirror_num, bio_flags,
3154                                                   prev_em_start);
3155                         start = page_start;
3156                         end = start + PAGE_SIZE - 1;
3157                         first_index = index;
3158                 }
3159         }
3160
3161         if (end)
3162                 __do_contiguous_readpages(tree, &pages[first_index],
3163                                           index - first_index, start,
3164                                           end, get_extent, em_cached, bio,
3165                                           mirror_num, bio_flags,
3166                                           prev_em_start);
3167 }
3168
3169 static int __extent_read_full_page(struct extent_io_tree *tree,
3170                                    struct page *page,
3171                                    get_extent_t *get_extent,
3172                                    struct bio **bio, int mirror_num,
3173                                    unsigned long *bio_flags, int read_flags)
3174 {
3175         struct inode *inode = page->mapping->host;
3176         struct btrfs_ordered_extent *ordered;
3177         u64 start = page_offset(page);
3178         u64 end = start + PAGE_SIZE - 1;
3179         int ret;
3180
3181         while (1) {
3182                 lock_extent(tree, start, end);
3183                 ordered = btrfs_lookup_ordered_range(inode, start,
3184                                                 PAGE_SIZE);
3185                 if (!ordered)
3186                         break;
3187                 unlock_extent(tree, start, end);
3188                 btrfs_start_ordered_extent(inode, ordered, 1);
3189                 btrfs_put_ordered_extent(ordered);
3190         }
3191
3192         ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num,
3193                             bio_flags, read_flags, NULL);
3194         return ret;
3195 }
3196
3197 int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
3198                             get_extent_t *get_extent, int mirror_num)
3199 {
3200         struct bio *bio = NULL;
3201         unsigned long bio_flags = 0;
3202         int ret;
3203
3204         ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
3205                                       &bio_flags, 0);
3206         if (bio)
3207                 ret = submit_one_bio(bio, mirror_num, bio_flags);
3208         return ret;
3209 }
3210
3211 static void update_nr_written(struct page *page, struct writeback_control *wbc,
3212                               unsigned long nr_written)
3213 {
3214         wbc->nr_to_write -= nr_written;
3215 }
3216
3217 /*
3218  * helper for __extent_writepage, doing all of the delayed allocation setup.
3219  *
3220  * This returns 1 if our fill_delalloc function did all the work required
3221  * to write the page (copy into inline extent).  In this case the IO has
3222  * been started and the page is already unlocked.
3223  *
3224  * This returns 0 if all went well (page still locked)
3225  * This returns < 0 if there were errors (page still locked)
3226  */
3227 static noinline_for_stack int writepage_delalloc(struct inode *inode,
3228                               struct page *page, struct writeback_control *wbc,
3229                               struct extent_page_data *epd,
3230                               u64 delalloc_start,
3231                               unsigned long *nr_written)
3232 {
3233         struct extent_io_tree *tree = epd->tree;
3234         u64 page_end = delalloc_start + PAGE_SIZE - 1;
3235         u64 nr_delalloc;
3236         u64 delalloc_to_write = 0;
3237         u64 delalloc_end = 0;
3238         int ret;
3239         int page_started = 0;
3240
3241         if (epd->extent_locked || !tree->ops || !tree->ops->fill_delalloc)
3242                 return 0;
3243
3244         while (delalloc_end < page_end) {
3245                 nr_delalloc = find_lock_delalloc_range(inode, tree,
3246                                                page,
3247                                                &delalloc_start,
3248                                                &delalloc_end,
3249                                                BTRFS_MAX_EXTENT_SIZE);
3250                 if (nr_delalloc == 0) {
3251                         delalloc_start = delalloc_end + 1;
3252                         continue;
3253                 }
3254                 ret = tree->ops->fill_delalloc(inode, page,
3255                                                delalloc_start,
3256                                                delalloc_end,
3257                                                &page_started,
3258                                                nr_written);
3259                 /* File system has been set read-only */
3260                 if (ret) {
3261                         SetPageError(page);
3262                         /* fill_delalloc should be return < 0 for error
3263                          * but just in case, we use > 0 here meaning the
3264                          * IO is started, so we don't want to return > 0
3265                          * unless things are going well.
3266                          */
3267                         ret = ret < 0 ? ret : -EIO;
3268                         goto done;
3269                 }
3270                 /*
3271                  * delalloc_end is already one less than the total length, so
3272                  * we don't subtract one from PAGE_SIZE
3273                  */
3274                 delalloc_to_write += (delalloc_end - delalloc_start +
3275                                       PAGE_SIZE) >> PAGE_SHIFT;
3276                 delalloc_start = delalloc_end + 1;
3277         }
3278         if (wbc->nr_to_write < delalloc_to_write) {
3279                 int thresh = 8192;
3280
3281                 if (delalloc_to_write < thresh * 2)
3282                         thresh = delalloc_to_write;
3283                 wbc->nr_to_write = min_t(u64, delalloc_to_write,
3284                                          thresh);
3285         }
3286
3287         /* did the fill delalloc function already unlock and start
3288          * the IO?
3289          */
3290         if (page_started) {
3291                 /*
3292                  * we've unlocked the page, so we can't update
3293                  * the mapping's writeback index, just update
3294                  * nr_to_write.
3295                  */
3296                 wbc->nr_to_write -= *nr_written;
3297                 return 1;
3298         }
3299
3300         ret = 0;
3301
3302 done:
3303         return ret;
3304 }
3305
3306 /*
3307  * helper for __extent_writepage.  This calls the writepage start hooks,
3308  * and does the loop to map the page into extents and bios.
3309  *
3310  * We return 1 if the IO is started and the page is unlocked,
3311  * 0 if all went well (page still locked)
3312  * < 0 if there were errors (page still locked)
3313  */
3314 static noinline_for_stack int __extent_writepage_io(struct inode *inode,
3315                                  struct page *page,
3316                                  struct writeback_control *wbc,
3317                                  struct extent_page_data *epd,
3318                                  loff_t i_size,
3319                                  unsigned long nr_written,
3320                                  int write_flags, int *nr_ret)
3321 {
3322         struct extent_io_tree *tree = epd->tree;
3323         u64 start = page_offset(page);
3324         u64 page_end = start + PAGE_SIZE - 1;
3325         u64 end;
3326         u64 cur = start;
3327         u64 extent_offset;
3328         u64 block_start;
3329         u64 iosize;
3330         sector_t sector;
3331         struct extent_state *cached_state = NULL;
3332         struct extent_map *em;
3333         struct block_device *bdev;
3334         size_t pg_offset = 0;
3335         size_t blocksize;
3336         int ret = 0;
3337         int nr = 0;
3338         bool compressed;
3339
3340         if (tree->ops && tree->ops->writepage_start_hook) {
3341                 ret = tree->ops->writepage_start_hook(page, start,
3342                                                       page_end);
3343                 if (ret) {
3344                         /* Fixup worker will requeue */
3345                         if (ret == -EBUSY)
3346                                 wbc->pages_skipped++;
3347                         else
3348                                 redirty_page_for_writepage(wbc, page);
3349
3350                         update_nr_written(page, wbc, nr_written);
3351                         unlock_page(page);
3352                         ret = 1;
3353                         goto done_unlocked;
3354                 }
3355         }
3356
3357         /*
3358          * we don't want to touch the inode after unlocking the page,
3359          * so we update the mapping writeback index now
3360          */
3361         update_nr_written(page, wbc, nr_written + 1);
3362
3363         end = page_end;
3364         if (i_size <= start) {
3365                 if (tree->ops && tree->ops->writepage_end_io_hook)
3366                         tree->ops->writepage_end_io_hook(page, start,
3367                                                          page_end, NULL, 1);
3368                 goto done;
3369         }
3370
3371         blocksize = inode->i_sb->s_blocksize;
3372
3373         while (cur <= end) {
3374                 u64 em_end;
3375                 unsigned long max_nr;
3376
3377                 if (cur >= i_size) {
3378                         if (tree->ops && tree->ops->writepage_end_io_hook)
3379                                 tree->ops->writepage_end_io_hook(page, cur,
3380                                                          page_end, NULL, 1);
3381                         break;
3382                 }
3383                 em = epd->get_extent(inode, page, pg_offset, cur,
3384                                      end - cur + 1, 1);
3385                 if (IS_ERR_OR_NULL(em)) {
3386                         SetPageError(page);
3387                         ret = PTR_ERR_OR_ZERO(em);
3388                         break;
3389                 }
3390
3391                 extent_offset = cur - em->start;
3392                 em_end = extent_map_end(em);
3393                 BUG_ON(em_end <= cur);
3394                 BUG_ON(end < cur);
3395                 iosize = min(em_end - cur, end - cur + 1);
3396                 iosize = ALIGN(iosize, blocksize);
3397                 sector = (em->block_start + extent_offset) >> 9;
3398                 bdev = em->bdev;
3399                 block_start = em->block_start;
3400                 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3401                 free_extent_map(em);
3402                 em = NULL;
3403
3404                 /*
3405                  * compressed and inline extents are written through other
3406                  * paths in the FS
3407                  */
3408                 if (compressed || block_start == EXTENT_MAP_HOLE ||
3409                     block_start == EXTENT_MAP_INLINE) {
3410                         /*
3411                          * end_io notification does not happen here for
3412                          * compressed extents
3413                          */
3414                         if (!compressed && tree->ops &&
3415                             tree->ops->writepage_end_io_hook)
3416                                 tree->ops->writepage_end_io_hook(page, cur,
3417                                                          cur + iosize - 1,
3418                                                          NULL, 1);
3419                         else if (compressed) {
3420                                 /* we don't want to end_page_writeback on
3421                                  * a compressed extent.  this happens
3422                                  * elsewhere
3423                                  */
3424                                 nr++;
3425                         }
3426
3427                         cur += iosize;
3428                         pg_offset += iosize;
3429                         continue;
3430                 }
3431
3432                 max_nr = (i_size >> PAGE_SHIFT) + 1;
3433
3434                 set_range_writeback(tree, cur, cur + iosize - 1);
3435                 if (!PageWriteback(page)) {
3436                         btrfs_err(BTRFS_I(inode)->root->fs_info,
3437                                    "page %lu not writeback, cur %llu end %llu",
3438                                page->index, cur, end);
3439                 }
3440
3441                 ret = submit_extent_page(REQ_OP_WRITE, write_flags, tree, wbc,
3442                                          page, sector, iosize, pg_offset,
3443                                          bdev, &epd->bio, max_nr,
3444                                          end_bio_extent_writepage,
3445                                          0, 0, 0, false);
3446                 if (ret)
3447                         SetPageError(page);
3448
3449                 cur = cur + iosize;
3450                 pg_offset += iosize;
3451                 nr++;
3452         }
3453 done:
3454         *nr_ret = nr;
3455
3456 done_unlocked:
3457
3458         /* drop our reference on any cached states */
3459         free_extent_state(cached_state);
3460         return ret;
3461 }
3462
3463 /*
3464  * the writepage semantics are similar to regular writepage.  extent
3465  * records are inserted to lock ranges in the tree, and as dirty areas
3466  * are found, they are marked writeback.  Then the lock bits are removed
3467  * and the end_io handler clears the writeback ranges
3468  */
3469 static int __extent_writepage(struct page *page, struct writeback_control *wbc,
3470                               void *data)
3471 {
3472         struct inode *inode = page->mapping->host;
3473         struct extent_page_data *epd = data;
3474         u64 start = page_offset(page);
3475         u64 page_end = start + PAGE_SIZE - 1;
3476         int ret;
3477         int nr = 0;
3478         size_t pg_offset = 0;
3479         loff_t i_size = i_size_read(inode);
3480         unsigned long end_index = i_size >> PAGE_SHIFT;
3481         int write_flags = 0;
3482         unsigned long nr_written = 0;
3483
3484         if (wbc->sync_mode == WB_SYNC_ALL)
3485                 write_flags = REQ_SYNC;
3486
3487         trace___extent_writepage(page, inode, wbc);
3488
3489         WARN_ON(!PageLocked(page));
3490
3491         ClearPageError(page);
3492
3493         pg_offset = i_size & (PAGE_SIZE - 1);
3494         if (page->index > end_index ||
3495            (page->index == end_index && !pg_offset)) {
3496                 page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
3497                 unlock_page(page);
3498                 return 0;
3499         }
3500
3501         if (page->index == end_index) {
3502                 char *userpage;
3503
3504                 userpage = kmap_atomic(page);
3505                 memset(userpage + pg_offset, 0,
3506                        PAGE_SIZE - pg_offset);
3507                 kunmap_atomic(userpage);
3508                 flush_dcache_page(page);
3509         }
3510
3511         pg_offset = 0;
3512
3513         set_page_extent_mapped(page);
3514
3515         ret = writepage_delalloc(inode, page, wbc, epd, start, &nr_written);
3516         if (ret == 1)
3517                 goto done_unlocked;
3518         if (ret)
3519                 goto done;
3520
3521         ret = __extent_writepage_io(inode, page, wbc, epd,
3522                                     i_size, nr_written, write_flags, &nr);
3523         if (ret == 1)
3524                 goto done_unlocked;
3525
3526 done:
3527         if (nr == 0) {
3528                 /* make sure the mapping tag for page dirty gets cleared */
3529                 set_page_writeback(page);
3530                 end_page_writeback(page);
3531         }
3532         if (PageError(page)) {
3533                 ret = ret < 0 ? ret : -EIO;
3534                 end_extent_writepage(page, ret, start, page_end);
3535         }
3536         unlock_page(page);
3537         return ret;
3538
3539 done_unlocked:
3540         return 0;
3541 }
3542
3543 void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
3544 {
3545         wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
3546                        TASK_UNINTERRUPTIBLE);
3547 }
3548
3549 static noinline_for_stack int
3550 lock_extent_buffer_for_io(struct extent_buffer *eb,
3551                           struct btrfs_fs_info *fs_info,
3552                           struct extent_page_data *epd)
3553 {
3554         unsigned long i, num_pages;
3555         int flush = 0;
3556         int ret = 0;
3557
3558         if (!btrfs_try_tree_write_lock(eb)) {
3559                 flush = 1;
3560                 flush_write_bio(epd);
3561                 btrfs_tree_lock(eb);
3562         }
3563
3564         if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3565                 btrfs_tree_unlock(eb);
3566                 if (!epd->sync_io)
3567                         return 0;
3568                 if (!flush) {
3569                         flush_write_bio(epd);
3570                         flush = 1;
3571                 }
3572                 while (1) {
3573                         wait_on_extent_buffer_writeback(eb);
3574                         btrfs_tree_lock(eb);
3575                         if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3576                                 break;
3577                         btrfs_tree_unlock(eb);
3578                 }
3579         }
3580
3581         /*
3582          * We need to do this to prevent races in people who check if the eb is
3583          * under IO since we can end up having no IO bits set for a short period
3584          * of time.
3585          */
3586         spin_lock(&eb->refs_lock);
3587         if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3588                 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3589                 spin_unlock(&eb->refs_lock);
3590                 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3591                 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
3592                                      -eb->len,
3593                                      fs_info->dirty_metadata_batch);
3594                 ret = 1;
3595         } else {
3596                 spin_unlock(&eb->refs_lock);
3597         }
3598
3599         btrfs_tree_unlock(eb);
3600
3601         if (!ret)
3602                 return ret;
3603
3604         num_pages = num_extent_pages(eb->start, eb->len);
3605         for (i = 0; i < num_pages; i++) {
3606                 struct page *p = eb->pages[i];
3607
3608                 if (!trylock_page(p)) {
3609                         if (!flush) {
3610                                 flush_write_bio(epd);
3611                                 flush = 1;
3612                         }
3613                         lock_page(p);
3614                 }
3615         }
3616
3617         return ret;
3618 }
3619
3620 static void end_extent_buffer_writeback(struct extent_buffer *eb)
3621 {
3622         clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3623         smp_mb__after_atomic();
3624         wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3625 }
3626
3627 static void set_btree_ioerr(struct page *page)
3628 {
3629         struct extent_buffer *eb = (struct extent_buffer *)page->private;
3630
3631         SetPageError(page);
3632         if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
3633                 return;
3634
3635         /*
3636          * If writeback for a btree extent that doesn't belong to a log tree
3637          * failed, increment the counter transaction->eb_write_errors.
3638          * We do this because while the transaction is running and before it's
3639          * committing (when we call filemap_fdata[write|wait]_range against
3640          * the btree inode), we might have
3641          * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
3642          * returns an error or an error happens during writeback, when we're
3643          * committing the transaction we wouldn't know about it, since the pages
3644          * can be no longer dirty nor marked anymore for writeback (if a
3645          * subsequent modification to the extent buffer didn't happen before the
3646          * transaction commit), which makes filemap_fdata[write|wait]_range not
3647          * able to find the pages tagged with SetPageError at transaction
3648          * commit time. So if this happens we must abort the transaction,
3649          * otherwise we commit a super block with btree roots that point to
3650          * btree nodes/leafs whose content on disk is invalid - either garbage
3651          * or the content of some node/leaf from a past generation that got
3652          * cowed or deleted and is no longer valid.
3653          *
3654          * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
3655          * not be enough - we need to distinguish between log tree extents vs
3656          * non-log tree extents, and the next filemap_fdatawait_range() call
3657          * will catch and clear such errors in the mapping - and that call might
3658          * be from a log sync and not from a transaction commit. Also, checking
3659          * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
3660          * not done and would not be reliable - the eb might have been released
3661          * from memory and reading it back again means that flag would not be
3662          * set (since it's a runtime flag, not persisted on disk).
3663          *
3664          * Using the flags below in the btree inode also makes us achieve the
3665          * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
3666          * writeback for all dirty pages and before filemap_fdatawait_range()
3667          * is called, the writeback for all dirty pages had already finished
3668          * with errors - because we were not using AS_EIO/AS_ENOSPC,
3669          * filemap_fdatawait_range() would return success, as it could not know
3670          * that writeback errors happened (the pages were no longer tagged for
3671          * writeback).
3672          */
3673         switch (eb->log_index) {
3674         case -1:
3675                 set_bit(BTRFS_FS_BTREE_ERR, &eb->fs_info->flags);
3676                 break;
3677         case 0:
3678                 set_bit(BTRFS_FS_LOG1_ERR, &eb->fs_info->flags);
3679                 break;
3680         case 1:
3681                 set_bit(BTRFS_FS_LOG2_ERR, &eb->fs_info->flags);
3682                 break;
3683         default:
3684                 BUG(); /* unexpected, logic error */
3685         }
3686 }
3687
3688 static void end_bio_extent_buffer_writepage(struct bio *bio)
3689 {
3690         struct bio_vec *bvec;
3691         struct extent_buffer *eb;
3692         int i, done;
3693
3694         bio_for_each_segment_all(bvec, bio, i) {
3695                 struct page *page = bvec->bv_page;
3696
3697                 eb = (struct extent_buffer *)page->private;
3698                 BUG_ON(!eb);
3699                 done = atomic_dec_and_test(&eb->io_pages);
3700
3701                 if (bio->bi_error ||
3702                     test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
3703                         ClearPageUptodate(page);
3704                         set_btree_ioerr(page);
3705                 }
3706
3707                 end_page_writeback(page);
3708
3709                 if (!done)
3710                         continue;
3711
3712                 end_extent_buffer_writeback(eb);
3713         }
3714
3715         bio_put(bio);
3716 }
3717
3718 static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
3719                         struct btrfs_fs_info *fs_info,
3720                         struct writeback_control *wbc,
3721                         struct extent_page_data *epd)
3722 {
3723         struct block_device *bdev = fs_info->fs_devices->latest_bdev;
3724         struct extent_io_tree *tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
3725         u64 offset = eb->start;
3726         u32 nritems;
3727         unsigned long i, num_pages;
3728         unsigned long bio_flags = 0;
3729         unsigned long start, end;
3730         int write_flags = (epd->sync_io ? REQ_SYNC : 0) | REQ_META;
3731         int ret = 0;
3732
3733         clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
3734         num_pages = num_extent_pages(eb->start, eb->len);
3735         atomic_set(&eb->io_pages, num_pages);
3736         if (btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID)
3737                 bio_flags = EXTENT_BIO_TREE_LOG;
3738
3739         /* set btree blocks beyond nritems with 0 to avoid stale content. */
3740         nritems = btrfs_header_nritems(eb);
3741         if (btrfs_header_level(eb) > 0) {
3742                 end = btrfs_node_key_ptr_offset(nritems);
3743
3744                 memset_extent_buffer(eb, 0, end, eb->len - end);
3745         } else {
3746                 /*
3747                  * leaf:
3748                  * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
3749                  */
3750                 start = btrfs_item_nr_offset(nritems);
3751                 end = btrfs_leaf_data(eb) +
3752                       leaf_data_end(fs_info->tree_root, eb);
3753                 memset_extent_buffer(eb, 0, start, end - start);
3754         }
3755
3756         for (i = 0; i < num_pages; i++) {
3757                 struct page *p = eb->pages[i];
3758
3759                 clear_page_dirty_for_io(p);
3760                 set_page_writeback(p);
3761                 ret = submit_extent_page(REQ_OP_WRITE, write_flags, tree, wbc,
3762                                          p, offset >> 9, PAGE_SIZE, 0, bdev,
3763                                          &epd->bio, -1,
3764                                          end_bio_extent_buffer_writepage,
3765                                          0, epd->bio_flags, bio_flags, false);
3766                 epd->bio_flags = bio_flags;
3767                 if (ret) {
3768                         set_btree_ioerr(p);
3769                         end_page_writeback(p);
3770                         if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3771                                 end_extent_buffer_writeback(eb);
3772                         ret = -EIO;
3773                         break;
3774                 }
3775                 offset += PAGE_SIZE;
3776                 update_nr_written(p, wbc, 1);
3777                 unlock_page(p);
3778         }
3779
3780         if (unlikely(ret)) {
3781                 for (; i < num_pages; i++) {
3782                         struct page *p = eb->pages[i];
3783                         clear_page_dirty_for_io(p);
3784                         unlock_page(p);
3785                 }
3786         }
3787
3788         return ret;
3789 }
3790
3791 int btree_write_cache_pages(struct address_space *mapping,
3792                                    struct writeback_control *wbc)
3793 {
3794         struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3795         struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3796         struct extent_buffer *eb, *prev_eb = NULL;
3797         struct extent_page_data epd = {
3798                 .bio = NULL,
3799                 .tree = tree,
3800                 .extent_locked = 0,
3801                 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3802                 .bio_flags = 0,
3803         };
3804         int ret = 0;
3805         int done = 0;
3806         int nr_to_write_done = 0;
3807         struct pagevec pvec;
3808         int nr_pages;
3809         pgoff_t index;
3810         pgoff_t end;            /* Inclusive */
3811         int scanned = 0;
3812         int tag;
3813
3814         pagevec_init(&pvec, 0);
3815         if (wbc->range_cyclic) {
3816                 index = mapping->writeback_index; /* Start from prev offset */
3817                 end = -1;
3818         } else {
3819                 index = wbc->range_start >> PAGE_SHIFT;
3820                 end = wbc->range_end >> PAGE_SHIFT;
3821                 scanned = 1;
3822         }
3823         if (wbc->sync_mode == WB_SYNC_ALL)
3824                 tag = PAGECACHE_TAG_TOWRITE;
3825         else
3826                 tag = PAGECACHE_TAG_DIRTY;
3827 retry:
3828         if (wbc->sync_mode == WB_SYNC_ALL)
3829                 tag_pages_for_writeback(mapping, index, end);
3830         while (!done && !nr_to_write_done && (index <= end) &&
3831                (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3832                         min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3833                 unsigned i;
3834
3835                 scanned = 1;
3836                 for (i = 0; i < nr_pages; i++) {
3837                         struct page *page = pvec.pages[i];
3838
3839                         if (!PagePrivate(page))
3840                                 continue;
3841
3842                         if (!wbc->range_cyclic && page->index > end) {
3843                                 done = 1;
3844                                 break;
3845                         }
3846
3847                         spin_lock(&mapping->private_lock);
3848                         if (!PagePrivate(page)) {
3849                                 spin_unlock(&mapping->private_lock);
3850                                 continue;
3851                         }
3852
3853                         eb = (struct extent_buffer *)page->private;
3854
3855                         /*
3856                          * Shouldn't happen and normally this would be a BUG_ON
3857                          * but no sense in crashing the users box for something
3858                          * we can survive anyway.
3859                          */
3860                         if (WARN_ON(!eb)) {
3861                                 spin_unlock(&mapping->private_lock);
3862                                 continue;
3863                         }
3864
3865                         if (eb == prev_eb) {
3866                                 spin_unlock(&mapping->private_lock);
3867                                 continue;
3868                         }
3869
3870                         ret = atomic_inc_not_zero(&eb->refs);
3871                         spin_unlock(&mapping->private_lock);
3872                         if (!ret)
3873                                 continue;
3874
3875                         prev_eb = eb;
3876                         ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
3877                         if (!ret) {
3878                                 free_extent_buffer(eb);
3879                                 continue;
3880                         }
3881
3882                         ret = write_one_eb(eb, fs_info, wbc, &epd);
3883                         if (ret) {
3884                                 done = 1;
3885                                 free_extent_buffer(eb);
3886                                 break;
3887                         }
3888                         free_extent_buffer(eb);
3889
3890                         /*
3891                          * the filesystem may choose to bump up nr_to_write.
3892                          * We have to make sure to honor the new nr_to_write
3893                          * at any time
3894                          */
3895                         nr_to_write_done = wbc->nr_to_write <= 0;
3896                 }
3897                 pagevec_release(&pvec);
3898                 cond_resched();
3899         }
3900         if (!scanned && !done) {
3901                 /*
3902                  * We hit the last page and there is more work to be done: wrap
3903                  * back to the start of the file
3904                  */
3905                 scanned = 1;
3906                 index = 0;
3907                 goto retry;
3908         }
3909         flush_write_bio(&epd);
3910         return ret;
3911 }
3912
3913 /**
3914  * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
3915  * @mapping: address space structure to write
3916  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
3917  * @writepage: function called for each page
3918  * @data: data passed to writepage function
3919  *
3920  * If a page is already under I/O, write_cache_pages() skips it, even
3921  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
3922  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
3923  * and msync() need to guarantee that all the data which was dirty at the time
3924  * the call was made get new I/O started against them.  If wbc->sync_mode is
3925  * WB_SYNC_ALL then we were called for data integrity and we must wait for
3926  * existing IO to complete.
3927  */
3928 static int extent_write_cache_pages(struct extent_io_tree *tree,
3929                              struct address_space *mapping,
3930                              struct writeback_control *wbc,
3931                              writepage_t writepage, void *data,
3932                              void (*flush_fn)(void *))
3933 {
3934         struct inode *inode = mapping->host;
3935         int ret = 0;
3936         int done = 0;
3937         int nr_to_write_done = 0;
3938         struct pagevec pvec;
3939         int nr_pages;
3940         pgoff_t index;
3941         pgoff_t end;            /* Inclusive */
3942         pgoff_t done_index;
3943         int range_whole = 0;
3944         int scanned = 0;
3945         int tag;
3946
3947         /*
3948          * We have to hold onto the inode so that ordered extents can do their
3949          * work when the IO finishes.  The alternative to this is failing to add
3950          * an ordered extent if the igrab() fails there and that is a huge pain
3951          * to deal with, so instead just hold onto the inode throughout the
3952          * writepages operation.  If it fails here we are freeing up the inode
3953          * anyway and we'd rather not waste our time writing out stuff that is
3954          * going to be truncated anyway.
3955          */
3956         if (!igrab(inode))
3957                 return 0;
3958
3959         pagevec_init(&pvec, 0);
3960         if (wbc->range_cyclic) {
3961                 index = mapping->writeback_index; /* Start from prev offset */
3962                 end = -1;
3963         } else {
3964                 index = wbc->range_start >> PAGE_SHIFT;
3965                 end = wbc->range_end >> PAGE_SHIFT;
3966                 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
3967                         range_whole = 1;
3968                 scanned = 1;
3969         }
3970         if (wbc->sync_mode == WB_SYNC_ALL)
3971                 tag = PAGECACHE_TAG_TOWRITE;
3972         else
3973                 tag = PAGECACHE_TAG_DIRTY;
3974 retry:
3975         if (wbc->sync_mode == WB_SYNC_ALL)
3976                 tag_pages_for_writeback(mapping, index, end);
3977         done_index = index;
3978         while (!done && !nr_to_write_done && (index <= end) &&
3979                (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3980                         min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3981                 unsigned i;
3982
3983                 scanned = 1;
3984                 for (i = 0; i < nr_pages; i++) {
3985                         struct page *page = pvec.pages[i];
3986
3987                         done_index = page->index;
3988                         /*
3989                          * At this point we hold neither mapping->tree_lock nor
3990                          * lock on the page itself: the page may be truncated or
3991                          * invalidated (changing page->mapping to NULL), or even
3992                          * swizzled back from swapper_space to tmpfs file
3993                          * mapping
3994                          */
3995                         if (!trylock_page(page)) {
3996                                 flush_fn(data);
3997                                 lock_page(page);
3998                         }
3999
4000                         if (unlikely(page->mapping != mapping)) {
4001                                 unlock_page(page);
4002                                 continue;
4003                         }
4004
4005                         if (!wbc->range_cyclic && page->index > end) {
4006                                 done = 1;
4007                                 unlock_page(page);
4008                                 continue;
4009                         }
4010
4011                         if (wbc->sync_mode != WB_SYNC_NONE) {
4012                                 if (PageWriteback(page))
4013                                         flush_fn(data);
4014                                 wait_on_page_writeback(page);
4015                         }
4016
4017                         if (PageWriteback(page) ||
4018                             !clear_page_dirty_for_io(page)) {
4019                                 unlock_page(page);
4020                                 continue;
4021                         }
4022
4023                         ret = (*writepage)(page, wbc, data);
4024
4025                         if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
4026                                 unlock_page(page);
4027                                 ret = 0;
4028                         }
4029                         if (ret < 0) {
4030                                 /*
4031                                  * done_index is set past this page,
4032                                  * so media errors will not choke
4033                                  * background writeout for the entire
4034                                  * file. This has consequences for
4035                                  * range_cyclic semantics (ie. it may
4036                                  * not be suitable for data integrity
4037                                  * writeout).
4038                                  */
4039                                 done_index = page->index + 1;
4040                                 done = 1;
4041                                 break;
4042                         }
4043
4044                         /*
4045                          * the filesystem may choose to bump up nr_to_write.
4046                          * We have to make sure to honor the new nr_to_write
4047                          * at any time
4048                          */
4049                         nr_to_write_done = wbc->nr_to_write <= 0;
4050                 }
4051                 pagevec_release(&pvec);
4052                 cond_resched();
4053         }
4054         if (!scanned && !done) {
4055                 /*
4056                  * We hit the last page and there is more work to be done: wrap
4057                  * back to the start of the file
4058                  */
4059                 scanned = 1;
4060                 index = 0;
4061                 goto retry;
4062         }
4063
4064         if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
4065                 mapping->writeback_index = done_index;
4066
4067         btrfs_add_delayed_iput(inode);
4068         return ret;
4069 }
4070
4071 static void flush_epd_write_bio(struct extent_page_data *epd)
4072 {
4073         if (epd->bio) {
4074                 int ret;
4075
4076                 bio_set_op_attrs(epd->bio, REQ_OP_WRITE,
4077                                  epd->sync_io ? REQ_SYNC : 0);
4078
4079                 ret = submit_one_bio(epd->bio, 0, epd->bio_flags);
4080                 BUG_ON(ret < 0); /* -ENOMEM */
4081                 epd->bio = NULL;
4082         }
4083 }
4084
4085 static noinline void flush_write_bio(void *data)
4086 {
4087         struct extent_page_data *epd = data;
4088         flush_epd_write_bio(epd);
4089 }
4090
4091 int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
4092                           get_extent_t *get_extent,
4093                           struct writeback_control *wbc)
4094 {
4095         int ret;
4096         struct extent_page_data epd = {
4097                 .bio = NULL,
4098                 .tree = tree,
4099                 .get_extent = get_extent,
4100                 .extent_locked = 0,
4101                 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
4102                 .bio_flags = 0,
4103         };
4104
4105         ret = __extent_writepage(page, wbc, &epd);
4106
4107         flush_epd_write_bio(&epd);
4108         return ret;
4109 }
4110
4111 int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
4112                               u64 start, u64 end, get_extent_t *get_extent,
4113                               int mode)
4114 {
4115         int ret = 0;
4116         struct address_space *mapping = inode->i_mapping;
4117         struct page *page;
4118         unsigned long nr_pages = (end - start + PAGE_SIZE) >>
4119                 PAGE_SHIFT;
4120
4121         struct extent_page_data epd = {
4122                 .bio = NULL,
4123                 .tree = tree,
4124                 .get_extent = get_extent,
4125                 .extent_locked = 1,
4126                 .sync_io = mode == WB_SYNC_ALL,
4127                 .bio_flags = 0,
4128         };
4129         struct writeback_control wbc_writepages = {
4130                 .sync_mode      = mode,
4131                 .nr_to_write    = nr_pages * 2,
4132                 .range_start    = start,
4133                 .range_end      = end + 1,
4134         };
4135
4136         while (start <= end) {
4137                 page = find_get_page(mapping, start >> PAGE_SHIFT);
4138                 if (clear_page_dirty_for_io(page))
4139                         ret = __extent_writepage(page, &wbc_writepages, &epd);
4140                 else {
4141                         if (tree->ops && tree->ops->writepage_end_io_hook)
4142                                 tree->ops->writepage_end_io_hook(page, start,
4143                                                  start + PAGE_SIZE - 1,
4144                                                  NULL, 1);
4145                         unlock_page(page);
4146                 }
4147                 put_page(page);
4148                 start += PAGE_SIZE;
4149         }
4150
4151         flush_epd_write_bio(&epd);
4152         return ret;
4153 }
4154
4155 int extent_writepages(struct extent_io_tree *tree,
4156                       struct address_space *mapping,
4157                       get_extent_t *get_extent,
4158                       struct writeback_control *wbc)
4159 {
4160         int ret = 0;
4161         struct extent_page_data epd = {
4162                 .bio = NULL,
4163                 .tree = tree,
4164                 .get_extent = get_extent,
4165                 .extent_locked = 0,
4166                 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
4167                 .bio_flags = 0,
4168         };
4169
4170         ret = extent_write_cache_pages(tree, mapping, wbc,
4171                                        __extent_writepage, &epd,
4172                                        flush_write_bio);
4173         flush_epd_write_bio(&epd);
4174         return ret;
4175 }
4176
4177 int extent_readpages(struct extent_io_tree *tree,
4178                      struct address_space *mapping,
4179                      struct list_head *pages, unsigned nr_pages,
4180                      get_extent_t get_extent)
4181 {
4182         struct bio *bio = NULL;
4183         unsigned page_idx;
4184         unsigned long bio_flags = 0;
4185         struct page *pagepool[16];
4186         struct page *page;
4187         struct extent_map *em_cached = NULL;
4188         int nr = 0;
4189         u64 prev_em_start = (u64)-1;
4190
4191         for (page_idx = 0; page_idx < nr_pages; page_idx++) {
4192                 page = list_entry(pages->prev, struct page, lru);
4193
4194                 prefetchw(&page->flags);
4195                 list_del(&page->lru);
4196                 if (add_to_page_cache_lru(page, mapping,
4197                                         page->index,
4198                                         readahead_gfp_mask(mapping))) {
4199                         put_page(page);
4200                         continue;
4201                 }
4202
4203                 pagepool[nr++] = page;
4204                 if (nr < ARRAY_SIZE(pagepool))
4205                         continue;
4206                 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
4207                                    &bio, 0, &bio_flags, &prev_em_start);
4208                 nr = 0;
4209         }
4210         if (nr)
4211                 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
4212                                    &bio, 0, &bio_flags, &prev_em_start);
4213
4214         if (em_cached)
4215                 free_extent_map(em_cached);
4216
4217         BUG_ON(!list_empty(pages));
4218         if (bio)
4219                 return submit_one_bio(bio, 0, bio_flags);
4220         return 0;
4221 }
4222
4223 /*
4224  * basic invalidatepage code, this waits on any locked or writeback
4225  * ranges corresponding to the page, and then deletes any extent state
4226  * records from the tree
4227  */
4228 int extent_invalidatepage(struct extent_io_tree *tree,
4229                           struct page *page, unsigned long offset)
4230 {
4231         struct extent_state *cached_state = NULL;
4232         u64 start = page_offset(page);
4233         u64 end = start + PAGE_SIZE - 1;
4234         size_t blocksize = page->mapping->host->i_sb->s_blocksize;
4235
4236         start += ALIGN(offset, blocksize);
4237         if (start > end)
4238                 return 0;
4239
4240         lock_extent_bits(tree, start, end, &cached_state);
4241         wait_on_page_writeback(page);
4242         clear_extent_bit(tree, start, end,
4243                          EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
4244                          EXTENT_DO_ACCOUNTING,
4245                          1, 1, &cached_state, GFP_NOFS);
4246         return 0;
4247 }
4248
4249 /*
4250  * a helper for releasepage, this tests for areas of the page that
4251  * are locked or under IO and drops the related state bits if it is safe
4252  * to drop the page.
4253  */
4254 static int try_release_extent_state(struct extent_map_tree *map,
4255                                     struct extent_io_tree *tree,
4256                                     struct page *page, gfp_t mask)
4257 {
4258         u64 start = page_offset(page);
4259         u64 end = start + PAGE_SIZE - 1;
4260         int ret = 1;
4261
4262         if (test_range_bit(tree, start, end,
4263                            EXTENT_IOBITS, 0, NULL))
4264                 ret = 0;
4265         else {
4266                 if ((mask & GFP_NOFS) == GFP_NOFS)
4267                         mask = GFP_NOFS;
4268                 /*
4269                  * at this point we can safely clear everything except the
4270                  * locked bit and the nodatasum bit
4271                  */
4272                 ret = clear_extent_bit(tree, start, end,
4273                                  ~(EXTENT_LOCKED | EXTENT_NODATASUM),
4274                                  0, 0, NULL, mask);
4275
4276                 /* if clear_extent_bit failed for enomem reasons,
4277                  * we can't allow the release to continue.
4278                  */
4279                 if (ret < 0)
4280                         ret = 0;
4281                 else
4282                         ret = 1;
4283         }
4284         return ret;
4285 }
4286
4287 /*
4288  * a helper for releasepage.  As long as there are no locked extents
4289  * in the range corresponding to the page, both state records and extent
4290  * map records are removed
4291  */
4292 int try_release_extent_mapping(struct extent_map_tree *map,
4293                                struct extent_io_tree *tree, struct page *page,
4294                                gfp_t mask)
4295 {
4296         struct extent_map *em;
4297         u64 start = page_offset(page);
4298         u64 end = start + PAGE_SIZE - 1;
4299
4300         if (gfpflags_allow_blocking(mask) &&
4301             page->mapping->host->i_size > SZ_16M) {
4302                 u64 len;
4303                 while (start <= end) {
4304                         len = end - start + 1;
4305                         write_lock(&map->lock);
4306                         em = lookup_extent_mapping(map, start, len);
4307                         if (!em) {
4308                                 write_unlock(&map->lock);
4309                                 break;
4310                         }
4311                         if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
4312                             em->start != start) {
4313                                 write_unlock(&map->lock);
4314                                 free_extent_map(em);
4315                                 break;
4316                         }
4317                         if (!test_range_bit(tree, em->start,
4318                                             extent_map_end(em) - 1,
4319                                             EXTENT_LOCKED | EXTENT_WRITEBACK,
4320                                             0, NULL)) {
4321                                 remove_extent_mapping(map, em);
4322                                 /* once for the rb tree */
4323                                 free_extent_map(em);
4324                         }
4325                         start = extent_map_end(em);
4326                         write_unlock(&map->lock);
4327
4328                         /* once for us */
4329                         free_extent_map(em);
4330                 }
4331         }
4332         return try_release_extent_state(map, tree, page, mask);
4333 }
4334
4335 /*
4336  * helper function for fiemap, which doesn't want to see any holes.
4337  * This maps until we find something past 'last'
4338  */
4339 static struct extent_map *get_extent_skip_holes(struct inode *inode,
4340                                                 u64 offset,
4341                                                 u64 last,
4342                                                 get_extent_t *get_extent)
4343 {
4344         u64 sectorsize = BTRFS_I(inode)->root->sectorsize;
4345         struct extent_map *em;
4346         u64 len;
4347
4348         if (offset >= last)
4349                 return NULL;
4350
4351         while (1) {
4352                 len = last - offset;
4353                 if (len == 0)
4354                         break;
4355                 len = ALIGN(len, sectorsize);
4356                 em = get_extent(inode, NULL, 0, offset, len, 0);
4357                 if (IS_ERR_OR_NULL(em))
4358                         return em;
4359
4360                 /* if this isn't a hole return it */
4361                 if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) &&
4362                     em->block_start != EXTENT_MAP_HOLE) {
4363                         return em;
4364                 }
4365
4366                 /* this is a hole, advance to the next extent */
4367                 offset = extent_map_end(em);
4368                 free_extent_map(em);
4369                 if (offset >= last)
4370                         break;
4371         }
4372         return NULL;
4373 }
4374
4375 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4376                 __u64 start, __u64 len, get_extent_t *get_extent)
4377 {
4378         int ret = 0;
4379         u64 off = start;
4380         u64 max = start + len;
4381         u32 flags = 0;
4382         u32 found_type;
4383         u64 last;
4384         u64 last_for_get_extent = 0;
4385         u64 disko = 0;
4386         u64 isize = i_size_read(inode);
4387         struct btrfs_key found_key;
4388         struct extent_map *em = NULL;
4389         struct extent_state *cached_state = NULL;
4390         struct btrfs_path *path;
4391         struct btrfs_root *root = BTRFS_I(inode)->root;
4392         int end = 0;
4393         u64 em_start = 0;
4394         u64 em_len = 0;
4395         u64 em_end = 0;
4396
4397         if (len == 0)
4398                 return -EINVAL;
4399
4400         path = btrfs_alloc_path();
4401         if (!path)
4402                 return -ENOMEM;
4403         path->leave_spinning = 1;
4404
4405         start = round_down(start, BTRFS_I(inode)->root->sectorsize);
4406         len = round_up(max, BTRFS_I(inode)->root->sectorsize) - start;
4407
4408         /*
4409          * lookup the last file extent.  We're not using i_size here
4410          * because there might be preallocation past i_size
4411          */
4412         ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), -1,
4413                                        0);
4414         if (ret < 0) {
4415                 btrfs_free_path(path);
4416                 return ret;
4417         } else {
4418                 WARN_ON(!ret);
4419                 if (ret == 1)
4420                         ret = 0;
4421         }
4422
4423         path->slots[0]--;
4424         btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
4425         found_type = found_key.type;
4426
4427         /* No extents, but there might be delalloc bits */
4428         if (found_key.objectid != btrfs_ino(inode) ||
4429             found_type != BTRFS_EXTENT_DATA_KEY) {
4430                 /* have to trust i_size as the end */
4431                 last = (u64)-1;
4432                 last_for_get_extent = isize;
4433         } else {
4434                 /*
4435                  * remember the start of the last extent.  There are a
4436                  * bunch of different factors that go into the length of the
4437                  * extent, so its much less complex to remember where it started
4438                  */
4439                 last = found_key.offset;
4440                 last_for_get_extent = last + 1;
4441         }
4442         btrfs_release_path(path);
4443
4444         /*
4445          * we might have some extents allocated but more delalloc past those
4446          * extents.  so, we trust isize unless the start of the last extent is
4447          * beyond isize
4448          */
4449         if (last < isize) {
4450                 last = (u64)-1;
4451                 last_for_get_extent = isize;
4452         }
4453
4454         lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4455                          &cached_state);
4456
4457         em = get_extent_skip_holes(inode, start, last_for_get_extent,
4458                                    get_extent);
4459         if (!em)
4460                 goto out;
4461         if (IS_ERR(em)) {
4462                 ret = PTR_ERR(em);
4463                 goto out;
4464         }
4465
4466         while (!end) {
4467                 u64 offset_in_extent = 0;
4468
4469                 /* break if the extent we found is outside the range */
4470                 if (em->start >= max || extent_map_end(em) < off)
4471                         break;
4472
4473                 /*
4474                  * get_extent may return an extent that starts before our
4475                  * requested range.  We have to make sure the ranges
4476                  * we return to fiemap always move forward and don't
4477                  * overlap, so adjust the offsets here
4478                  */
4479                 em_start = max(em->start, off);
4480
4481                 /*
4482                  * record the offset from the start of the extent
4483                  * for adjusting the disk offset below.  Only do this if the
4484                  * extent isn't compressed since our in ram offset may be past
4485                  * what we have actually allocated on disk.
4486                  */
4487                 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4488                         offset_in_extent = em_start - em->start;
4489                 em_end = extent_map_end(em);
4490                 em_len = em_end - em_start;
4491                 disko = 0;
4492                 flags = 0;
4493
4494                 /*
4495                  * bump off for our next call to get_extent
4496                  */
4497                 off = extent_map_end(em);
4498                 if (off >= max)
4499                         end = 1;
4500
4501                 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
4502                         end = 1;
4503                         flags |= FIEMAP_EXTENT_LAST;
4504                 } else if (em->block_start == EXTENT_MAP_INLINE) {
4505                         flags |= (FIEMAP_EXTENT_DATA_INLINE |
4506                                   FIEMAP_EXTENT_NOT_ALIGNED);
4507                 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
4508                         flags |= (FIEMAP_EXTENT_DELALLOC |
4509                                   FIEMAP_EXTENT_UNKNOWN);
4510                 } else if (fieinfo->fi_extents_max) {
4511                         struct btrfs_trans_handle *trans;
4512
4513                         u64 bytenr = em->block_start -
4514                                 (em->start - em->orig_start);
4515
4516                         disko = em->block_start + offset_in_extent;
4517
4518                         /*
4519                          * We need a trans handle to get delayed refs
4520                          */
4521                         trans = btrfs_join_transaction(root);
4522                         /*
4523                          * It's OK if we can't start a trans we can still check
4524                          * from commit_root
4525                          */
4526                         if (IS_ERR(trans))
4527                                 trans = NULL;
4528
4529                         /*
4530                          * As btrfs supports shared space, this information
4531                          * can be exported to userspace tools via
4532                          * flag FIEMAP_EXTENT_SHARED.  If fi_extents_max == 0
4533                          * then we're just getting a count and we can skip the
4534                          * lookup stuff.
4535                          */
4536                         ret = btrfs_check_shared(trans, root->fs_info,
4537                                                  root->objectid,
4538                                                  btrfs_ino(inode), bytenr);
4539                         if (trans)
4540                                 btrfs_end_transaction(trans, root);
4541                         if (ret < 0)
4542                                 goto out_free;
4543                         if (ret)
4544                                 flags |= FIEMAP_EXTENT_SHARED;
4545                         ret = 0;
4546                 }
4547                 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4548                         flags |= FIEMAP_EXTENT_ENCODED;
4549                 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4550                         flags |= FIEMAP_EXTENT_UNWRITTEN;
4551
4552                 free_extent_map(em);
4553                 em = NULL;
4554                 if ((em_start >= last) || em_len == (u64)-1 ||
4555                    (last == (u64)-1 && isize <= em_end)) {
4556                         flags |= FIEMAP_EXTENT_LAST;
4557                         end = 1;
4558                 }
4559
4560                 /* now scan forward to see if this is really the last extent. */
4561                 em = get_extent_skip_holes(inode, off, last_for_get_extent,
4562                                            get_extent);
4563                 if (IS_ERR(em)) {
4564                         ret = PTR_ERR(em);
4565                         goto out;
4566                 }
4567                 if (!em) {
4568                         flags |= FIEMAP_EXTENT_LAST;
4569                         end = 1;
4570                 }
4571                 ret = fiemap_fill_next_extent(fieinfo, em_start, disko,
4572                                               em_len, flags);
4573                 if (ret) {
4574                         if (ret == 1)
4575                                 ret = 0;
4576                         goto out_free;
4577                 }
4578         }
4579 out_free:
4580         free_extent_map(em);
4581 out:
4582         btrfs_free_path(path);
4583         unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4584                              &cached_state, GFP_NOFS);
4585         return ret;
4586 }
4587
4588 static void __free_extent_buffer(struct extent_buffer *eb)
4589 {
4590         btrfs_leak_debug_del(&eb->leak_list);
4591         kmem_cache_free(extent_buffer_cache, eb);
4592 }
4593
4594 int extent_buffer_under_io(struct extent_buffer *eb)
4595 {
4596         return (atomic_read(&eb->io_pages) ||
4597                 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4598                 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4599 }
4600
4601 /*
4602  * Helper for releasing extent buffer page.
4603  */
4604 static void btrfs_release_extent_buffer_page(struct extent_buffer *eb)
4605 {
4606         unsigned long index;
4607         struct page *page;
4608         int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4609
4610         BUG_ON(extent_buffer_under_io(eb));
4611
4612         index = num_extent_pages(eb->start, eb->len);
4613         if (index == 0)
4614                 return;
4615
4616         do {
4617                 index--;
4618                 page = eb->pages[index];
4619                 if (!page)
4620                         continue;
4621                 if (mapped)
4622                         spin_lock(&page->mapping->private_lock);
4623                 /*
4624                  * We do this since we'll remove the pages after we've
4625                  * removed the eb from the radix tree, so we could race
4626                  * and have this page now attached to the new eb.  So
4627                  * only clear page_private if it's still connected to
4628                  * this eb.
4629                  */
4630                 if (PagePrivate(page) &&
4631                     page->private == (unsigned long)eb) {
4632                         BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4633                         BUG_ON(PageDirty(page));
4634                         BUG_ON(PageWriteback(page));
4635                         /*
4636                          * We need to make sure we haven't be attached
4637                          * to a new eb.
4638                          */
4639                         ClearPagePrivate(page);
4640                         set_page_private(page, 0);
4641                         /* One for the page private */
4642                         put_page(page);
4643                 }
4644
4645                 if (mapped)
4646                         spin_unlock(&page->mapping->private_lock);
4647
4648                 /* One for when we allocated the page */
4649                 put_page(page);
4650         } while (index != 0);
4651 }
4652
4653 /*
4654  * Helper for releasing the extent buffer.
4655  */
4656 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4657 {
4658         btrfs_release_extent_buffer_page(eb);
4659         __free_extent_buffer(eb);
4660 }
4661
4662 static struct extent_buffer *
4663 __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
4664                       unsigned long len)
4665 {
4666         struct extent_buffer *eb = NULL;
4667
4668         eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
4669         eb->start = start;
4670         eb->len = len;
4671         eb->fs_info = fs_info;
4672         eb->bflags = 0;
4673         rwlock_init(&eb->lock);
4674         atomic_set(&eb->write_locks, 0);
4675         atomic_set(&eb->read_locks, 0);
4676         atomic_set(&eb->blocking_readers, 0);
4677         atomic_set(&eb->blocking_writers, 0);
4678         atomic_set(&eb->spinning_readers, 0);
4679         atomic_set(&eb->spinning_writers, 0);
4680         eb->lock_nested = 0;
4681         init_waitqueue_head(&eb->write_lock_wq);
4682         init_waitqueue_head(&eb->read_lock_wq);
4683
4684         btrfs_leak_debug_add(&eb->leak_list, &buffers);
4685
4686         spin_lock_init(&eb->refs_lock);
4687         atomic_set(&eb->refs, 1);
4688         atomic_set(&eb->io_pages, 0);
4689
4690         /*
4691          * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4692          */
4693         BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4694                 > MAX_INLINE_EXTENT_BUFFER_SIZE);
4695         BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
4696
4697         return eb;
4698 }
4699
4700 struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4701 {
4702         unsigned long i;
4703         struct page *p;
4704         struct extent_buffer *new;
4705         unsigned long num_pages = num_extent_pages(src->start, src->len);
4706
4707         new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
4708         if (new == NULL)
4709                 return NULL;
4710
4711         for (i = 0; i < num_pages; i++) {
4712                 p = alloc_page(GFP_NOFS);
4713                 if (!p) {
4714                         btrfs_release_extent_buffer(new);
4715                         return NULL;
4716                 }
4717                 attach_extent_buffer_page(new, p);
4718                 WARN_ON(PageDirty(p));
4719                 SetPageUptodate(p);
4720                 new->pages[i] = p;
4721         }
4722
4723         copy_extent_buffer(new, src, 0, 0, src->len);
4724         set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
4725         set_bit(EXTENT_BUFFER_DUMMY, &new->bflags);
4726
4727         return new;
4728 }
4729
4730 struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4731                                                   u64 start, unsigned long len)
4732 {
4733         struct extent_buffer *eb;
4734         unsigned long num_pages;
4735         unsigned long i;
4736
4737         num_pages = num_extent_pages(start, len);
4738
4739         eb = __alloc_extent_buffer(fs_info, start, len);
4740         if (!eb)
4741                 return NULL;
4742
4743         for (i = 0; i < num_pages; i++) {
4744                 eb->pages[i] = alloc_page(GFP_NOFS);
4745                 if (!eb->pages[i])
4746                         goto err;
4747         }
4748         set_extent_buffer_uptodate(eb);
4749         btrfs_set_header_nritems(eb, 0);
4750         set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4751
4752         return eb;
4753 err:
4754         for (; i > 0; i--)
4755                 __free_page(eb->pages[i - 1]);
4756         __free_extent_buffer(eb);
4757         return NULL;
4758 }
4759
4760 struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4761                                                 u64 start, u32 nodesize)
4762 {
4763         unsigned long len;
4764
4765         if (!fs_info) {
4766                 /*
4767                  * Called only from tests that don't always have a fs_info
4768                  * available
4769                  */
4770                 len = nodesize;
4771         } else {
4772                 len = fs_info->tree_root->nodesize;
4773         }
4774
4775         return __alloc_dummy_extent_buffer(fs_info, start, len);
4776 }
4777
4778 static void check_buffer_tree_ref(struct extent_buffer *eb)
4779 {
4780         int refs;
4781         /* the ref bit is tricky.  We have to make sure it is set
4782          * if we have the buffer dirty.   Otherwise the
4783          * code to free a buffer can end up dropping a dirty
4784          * page
4785          *
4786          * Once the ref bit is set, it won't go away while the
4787          * buffer is dirty or in writeback, and it also won't
4788          * go away while we have the reference count on the
4789          * eb bumped.
4790          *
4791          * We can't just set the ref bit without bumping the
4792          * ref on the eb because free_extent_buffer might
4793          * see the ref bit and try to clear it.  If this happens
4794          * free_extent_buffer might end up dropping our original
4795          * ref by mistake and freeing the page before we are able
4796          * to add one more ref.
4797          *
4798          * So bump the ref count first, then set the bit.  If someone
4799          * beat us to it, drop the ref we added.
4800          */
4801         refs = atomic_read(&eb->refs);
4802         if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4803                 return;
4804
4805         spin_lock(&eb->refs_lock);
4806         if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4807                 atomic_inc(&eb->refs);
4808         spin_unlock(&eb->refs_lock);
4809 }
4810
4811 static void mark_extent_buffer_accessed(struct extent_buffer *eb,
4812                 struct page *accessed)
4813 {
4814         unsigned long num_pages, i;
4815
4816         check_buffer_tree_ref(eb);
4817
4818         num_pages = num_extent_pages(eb->start, eb->len);
4819         for (i = 0; i < num_pages; i++) {
4820                 struct page *p = eb->pages[i];
4821
4822                 if (p != accessed)
4823                         mark_page_accessed(p);
4824         }
4825 }
4826
4827 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
4828                                          u64 start)
4829 {
4830         struct extent_buffer *eb;
4831
4832         rcu_read_lock();
4833         eb = radix_tree_lookup(&fs_info->buffer_radix,
4834                                start >> PAGE_SHIFT);
4835         if (eb && atomic_inc_not_zero(&eb->refs)) {
4836                 rcu_read_unlock();
4837                 /*
4838                  * Lock our eb's refs_lock to avoid races with
4839                  * free_extent_buffer. When we get our eb it might be flagged
4840                  * with EXTENT_BUFFER_STALE and another task running
4841                  * free_extent_buffer might have seen that flag set,
4842                  * eb->refs == 2, that the buffer isn't under IO (dirty and
4843                  * writeback flags not set) and it's still in the tree (flag
4844                  * EXTENT_BUFFER_TREE_REF set), therefore being in the process
4845                  * of decrementing the extent buffer's reference count twice.
4846                  * So here we could race and increment the eb's reference count,
4847                  * clear its stale flag, mark it as dirty and drop our reference
4848                  * before the other task finishes executing free_extent_buffer,
4849                  * which would later result in an attempt to free an extent
4850                  * buffer that is dirty.
4851                  */
4852                 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
4853                         spin_lock(&eb->refs_lock);
4854                         spin_unlock(&eb->refs_lock);
4855                 }
4856                 mark_extent_buffer_accessed(eb, NULL);
4857                 return eb;
4858         }
4859         rcu_read_unlock();
4860
4861         return NULL;
4862 }
4863
4864 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4865 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
4866                                         u64 start, u32 nodesize)
4867 {
4868         struct extent_buffer *eb, *exists = NULL;
4869         int ret;
4870
4871         eb = find_extent_buffer(fs_info, start);
4872         if (eb)
4873                 return eb;
4874         eb = alloc_dummy_extent_buffer(fs_info, start, nodesize);
4875         if (!eb)
4876                 return NULL;
4877         eb->fs_info = fs_info;
4878 again:
4879         ret = radix_tree_preload(GFP_NOFS);
4880         if (ret)
4881                 goto free_eb;
4882         spin_lock(&fs_info->buffer_lock);
4883         ret = radix_tree_insert(&fs_info->buffer_radix,
4884                                 start >> PAGE_SHIFT, eb);
4885         spin_unlock(&fs_info->buffer_lock);
4886         radix_tree_preload_end();
4887         if (ret == -EEXIST) {
4888                 exists = find_extent_buffer(fs_info, start);
4889                 if (exists)
4890                         goto free_eb;
4891                 else
4892                         goto again;
4893         }
4894         check_buffer_tree_ref(eb);
4895         set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
4896
4897         /*
4898          * We will free dummy extent buffer's if they come into
4899          * free_extent_buffer with a ref count of 2, but if we are using this we
4900          * want the buffers to stay in memory until we're done with them, so
4901          * bump the ref count again.
4902          */
4903         atomic_inc(&eb->refs);
4904         return eb;
4905 free_eb:
4906         btrfs_release_extent_buffer(eb);
4907         return exists;
4908 }
4909 #endif
4910
4911 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
4912                                           u64 start)
4913 {
4914         unsigned long len = fs_info->tree_root->nodesize;
4915         unsigned long num_pages = num_extent_pages(start, len);
4916         unsigned long i;
4917         unsigned long index = start >> PAGE_SHIFT;
4918         struct extent_buffer *eb;
4919         struct extent_buffer *exists = NULL;
4920         struct page *p;
4921         struct address_space *mapping = fs_info->btree_inode->i_mapping;
4922         int uptodate = 1;
4923         int ret;
4924
4925         if (!IS_ALIGNED(start, fs_info->tree_root->sectorsize)) {
4926                 btrfs_err(fs_info, "bad tree block start %llu", start);
4927                 return ERR_PTR(-EINVAL);
4928         }
4929
4930         eb = find_extent_buffer(fs_info, start);
4931         if (eb)
4932                 return eb;
4933
4934         eb = __alloc_extent_buffer(fs_info, start, len);
4935         if (!eb)
4936                 return ERR_PTR(-ENOMEM);
4937
4938         for (i = 0; i < num_pages; i++, index++) {
4939                 p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
4940                 if (!p) {
4941                         exists = ERR_PTR(-ENOMEM);
4942                         goto free_eb;
4943                 }
4944
4945                 spin_lock(&mapping->private_lock);
4946                 if (PagePrivate(p)) {
4947                         /*
4948                          * We could have already allocated an eb for this page
4949                          * and attached one so lets see if we can get a ref on
4950                          * the existing eb, and if we can we know it's good and
4951                          * we can just return that one, else we know we can just
4952                          * overwrite page->private.
4953                          */
4954                         exists = (struct extent_buffer *)p->private;
4955                         if (atomic_inc_not_zero(&exists->refs)) {
4956                                 spin_unlock(&mapping->private_lock);
4957                                 unlock_page(p);
4958                                 put_page(p);
4959                                 mark_extent_buffer_accessed(exists, p);
4960                                 goto free_eb;
4961                         }
4962                         exists = NULL;
4963
4964                         /*
4965                          * Do this so attach doesn't complain and we need to
4966                          * drop the ref the old guy had.
4967                          */
4968                         ClearPagePrivate(p);
4969                         WARN_ON(PageDirty(p));
4970                         put_page(p);
4971                 }
4972                 attach_extent_buffer_page(eb, p);
4973                 spin_unlock(&mapping->private_lock);
4974                 WARN_ON(PageDirty(p));
4975                 eb->pages[i] = p;
4976                 if (!PageUptodate(p))
4977                         uptodate = 0;
4978
4979                 /*
4980                  * see below about how we avoid a nasty race with release page
4981                  * and why we unlock later
4982                  */
4983         }
4984         if (uptodate)
4985                 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4986 again:
4987         ret = radix_tree_preload(GFP_NOFS);
4988         if (ret) {
4989                 exists = ERR_PTR(ret);
4990                 goto free_eb;
4991         }
4992
4993         spin_lock(&fs_info->buffer_lock);
4994         ret = radix_tree_insert(&fs_info->buffer_radix,
4995                                 start >> PAGE_SHIFT, eb);
4996         spin_unlock(&fs_info->buffer_lock);
4997         radix_tree_preload_end();
4998         if (ret == -EEXIST) {
4999                 exists = find_extent_buffer(fs_info, start);
5000                 if (exists)
5001                         goto free_eb;
5002                 else
5003                         goto again;
5004         }
5005         /* add one reference for the tree */
5006         check_buffer_tree_ref(eb);
5007         set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
5008
5009         /*
5010          * there is a race where release page may have
5011          * tried to find this extent buffer in the radix
5012          * but failed.  It will tell the VM it is safe to
5013          * reclaim the, and it will clear the page private bit.
5014          * We must make sure to set the page private bit properly
5015          * after the extent buffer is in the radix tree so
5016          * it doesn't get lost
5017          */
5018         SetPageChecked(eb->pages[0]);
5019         for (i = 1; i < num_pages; i++) {
5020                 p = eb->pages[i];
5021                 ClearPageChecked(p);
5022                 unlock_page(p);
5023         }
5024         unlock_page(eb->pages[0]);
5025         return eb;
5026
5027 free_eb:
5028         WARN_ON(!atomic_dec_and_test(&eb->refs));
5029         for (i = 0; i < num_pages; i++) {
5030                 if (eb->pages[i])
5031                         unlock_page(eb->pages[i]);
5032         }
5033
5034         btrfs_release_extent_buffer(eb);
5035         return exists;
5036 }
5037
5038 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
5039 {
5040         struct extent_buffer *eb =
5041                         container_of(head, struct extent_buffer, rcu_head);
5042
5043         __free_extent_buffer(eb);
5044 }
5045
5046 /* Expects to have eb->eb_lock already held */
5047 static int release_extent_buffer(struct extent_buffer *eb)
5048 {
5049         WARN_ON(atomic_read(&eb->refs) == 0);
5050         if (atomic_dec_and_test(&eb->refs)) {
5051                 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
5052                         struct btrfs_fs_info *fs_info = eb->fs_info;
5053
5054                         spin_unlock(&eb->refs_lock);
5055
5056                         spin_lock(&fs_info->buffer_lock);
5057                         radix_tree_delete(&fs_info->buffer_radix,
5058                                           eb->start >> PAGE_SHIFT);
5059                         spin_unlock(&fs_info->buffer_lock);
5060                 } else {
5061                         spin_unlock(&eb->refs_lock);
5062                 }
5063
5064                 /* Should be safe to release our pages at this point */
5065                 btrfs_release_extent_buffer_page(eb);
5066 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5067                 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))) {
5068                         __free_extent_buffer(eb);
5069                         return 1;
5070                 }
5071 #endif
5072                 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
5073                 return 1;
5074         }
5075         spin_unlock(&eb->refs_lock);
5076
5077         return 0;
5078 }
5079
5080 void free_extent_buffer(struct extent_buffer *eb)
5081 {
5082         int refs;
5083         int old;
5084         if (!eb)
5085                 return;
5086
5087         while (1) {
5088                 refs = atomic_read(&eb->refs);
5089                 if (refs <= 3)
5090                         break;
5091                 old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
5092                 if (old == refs)
5093                         return;
5094         }
5095
5096         spin_lock(&eb->refs_lock);
5097         if (atomic_read(&eb->refs) == 2 &&
5098             test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))
5099                 atomic_dec(&eb->refs);
5100
5101         if (atomic_read(&eb->refs) == 2 &&
5102             test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
5103             !extent_buffer_under_io(eb) &&
5104             test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5105                 atomic_dec(&eb->refs);
5106
5107         /*
5108          * I know this is terrible, but it's temporary until we stop tracking
5109          * the uptodate bits and such for the extent buffers.
5110          */
5111         release_extent_buffer(eb);
5112 }
5113
5114 void free_extent_buffer_stale(struct extent_buffer *eb)
5115 {
5116         if (!eb)
5117                 return;
5118
5119         spin_lock(&eb->refs_lock);
5120         set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
5121
5122         if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
5123             test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5124                 atomic_dec(&eb->refs);
5125         release_extent_buffer(eb);
5126 }
5127
5128 void clear_extent_buffer_dirty(struct extent_buffer *eb)
5129 {
5130         unsigned long i;
5131         unsigned long num_pages;
5132         struct page *page;
5133
5134         num_pages = num_extent_pages(eb->start, eb->len);
5135
5136         for (i = 0; i < num_pages; i++) {
5137                 page = eb->pages[i];
5138                 if (!PageDirty(page))
5139                         continue;
5140
5141                 lock_page(page);
5142                 WARN_ON(!PagePrivate(page));
5143
5144                 clear_page_dirty_for_io(page);
5145                 spin_lock_irq(&page->mapping->tree_lock);
5146                 if (!PageDirty(page)) {
5147                         radix_tree_tag_clear(&page->mapping->page_tree,
5148                                                 page_index(page),
5149                                                 PAGECACHE_TAG_DIRTY);
5150                 }
5151                 spin_unlock_irq(&page->mapping->tree_lock);
5152                 ClearPageError(page);
5153                 unlock_page(page);
5154         }
5155         WARN_ON(atomic_read(&eb->refs) == 0);
5156 }
5157
5158 int set_extent_buffer_dirty(struct extent_buffer *eb)
5159 {
5160         unsigned long i;
5161         unsigned long num_pages;
5162         int was_dirty = 0;
5163
5164         check_buffer_tree_ref(eb);
5165
5166         was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
5167
5168         num_pages = num_extent_pages(eb->start, eb->len);
5169         WARN_ON(atomic_read(&eb->refs) == 0);
5170         WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
5171
5172         for (i = 0; i < num_pages; i++)
5173                 set_page_dirty(eb->pages[i]);
5174         return was_dirty;
5175 }
5176
5177 void clear_extent_buffer_uptodate(struct extent_buffer *eb)
5178 {
5179         unsigned long i;
5180         struct page *page;
5181         unsigned long num_pages;
5182
5183         clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5184         num_pages = num_extent_pages(eb->start, eb->len);
5185         for (i = 0; i < num_pages; i++) {
5186                 page = eb->pages[i];
5187                 if (page)
5188                         ClearPageUptodate(page);
5189         }
5190 }
5191
5192 void set_extent_buffer_uptodate(struct extent_buffer *eb)
5193 {
5194         unsigned long i;
5195         struct page *page;
5196         unsigned long num_pages;
5197
5198         set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5199         num_pages = num_extent_pages(eb->start, eb->len);
5200         for (i = 0; i < num_pages; i++) {
5201                 page = eb->pages[i];
5202                 SetPageUptodate(page);
5203         }
5204 }
5205
5206 int extent_buffer_uptodate(struct extent_buffer *eb)
5207 {
5208         return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5209 }
5210
5211 int read_extent_buffer_pages(struct extent_io_tree *tree,
5212                              struct extent_buffer *eb, int wait,
5213                              get_extent_t *get_extent, int mirror_num)
5214 {
5215         unsigned long i;
5216         struct page *page;
5217         int err;
5218         int ret = 0;
5219         int locked_pages = 0;
5220         int all_uptodate = 1;
5221         unsigned long num_pages;
5222         unsigned long num_reads = 0;
5223         struct bio *bio = NULL;
5224         unsigned long bio_flags = 0;
5225
5226         if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
5227                 return 0;
5228
5229         num_pages = num_extent_pages(eb->start, eb->len);
5230         for (i = 0; i < num_pages; i++) {
5231                 page = eb->pages[i];
5232                 if (wait == WAIT_NONE) {
5233                         if (!trylock_page(page))
5234                                 goto unlock_exit;
5235                 } else {
5236                         lock_page(page);
5237                 }
5238                 locked_pages++;
5239         }
5240         /*
5241          * We need to firstly lock all pages to make sure that
5242          * the uptodate bit of our pages won't be affected by
5243          * clear_extent_buffer_uptodate().
5244          */
5245         for (i = 0; i < num_pages; i++) {
5246                 page = eb->pages[i];
5247                 if (!PageUptodate(page)) {
5248                         num_reads++;
5249                         all_uptodate = 0;
5250                 }
5251         }
5252
5253         if (all_uptodate) {
5254                 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5255                 goto unlock_exit;
5256         }
5257
5258         clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5259         eb->read_mirror = 0;
5260         atomic_set(&eb->io_pages, num_reads);
5261         for (i = 0; i < num_pages; i++) {
5262                 page = eb->pages[i];
5263
5264                 if (!PageUptodate(page)) {
5265                         if (ret) {
5266                                 atomic_dec(&eb->io_pages);
5267                                 unlock_page(page);
5268                                 continue;
5269                         }
5270
5271                         ClearPageError(page);
5272                         err = __extent_read_full_page(tree, page,
5273                                                       get_extent, &bio,
5274                                                       mirror_num, &bio_flags,
5275                                                       REQ_META);
5276                         if (err) {
5277                                 ret = err;
5278                                 /*
5279                                  * We use &bio in above __extent_read_full_page,
5280                                  * so we ensure that if it returns error, the
5281                                  * current page fails to add itself to bio and
5282                                  * it's been unlocked.
5283                                  *
5284                                  * We must dec io_pages by ourselves.
5285                                  */
5286                                 atomic_dec(&eb->io_pages);
5287                         }
5288                 } else {
5289                         unlock_page(page);
5290                 }
5291         }
5292
5293         if (bio) {
5294                 err = submit_one_bio(bio, mirror_num, bio_flags);
5295                 if (err)
5296                         return err;
5297         }
5298
5299         if (ret || wait != WAIT_COMPLETE)
5300                 return ret;
5301
5302         for (i = 0; i < num_pages; i++) {
5303                 page = eb->pages[i];
5304                 wait_on_page_locked(page);
5305                 if (!PageUptodate(page))
5306                         ret = -EIO;
5307         }
5308
5309         return ret;
5310
5311 unlock_exit:
5312         while (locked_pages > 0) {
5313                 locked_pages--;
5314                 page = eb->pages[locked_pages];
5315                 unlock_page(page);
5316         }
5317         return ret;
5318 }
5319
5320 void read_extent_buffer(struct extent_buffer *eb, void *dstv,
5321                         unsigned long start,
5322                         unsigned long len)
5323 {
5324         size_t cur;
5325         size_t offset;
5326         struct page *page;
5327         char *kaddr;
5328         char *dst = (char *)dstv;
5329         size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5330         unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5331
5332         WARN_ON(start > eb->len);
5333         WARN_ON(start + len > eb->start + eb->len);
5334
5335         offset = (start_offset + start) & (PAGE_SIZE - 1);
5336
5337         while (len > 0) {
5338                 page = eb->pages[i];
5339
5340                 cur = min(len, (PAGE_SIZE - offset));
5341                 kaddr = page_address(page);
5342                 memcpy(dst, kaddr + offset, cur);
5343
5344                 dst += cur;
5345                 len -= cur;
5346                 offset = 0;
5347                 i++;
5348         }
5349 }
5350
5351 int read_extent_buffer_to_user(struct extent_buffer *eb, void __user *dstv,
5352                         unsigned long start,
5353                         unsigned long len)
5354 {
5355         size_t cur;
5356         size_t offset;
5357         struct page *page;
5358         char *kaddr;
5359         char __user *dst = (char __user *)dstv;
5360         size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5361         unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5362         int ret = 0;
5363
5364         WARN_ON(start > eb->len);
5365         WARN_ON(start + len > eb->start + eb->len);
5366
5367         offset = (start_offset + start) & (PAGE_SIZE - 1);
5368
5369         while (len > 0) {
5370                 page = eb->pages[i];
5371
5372                 cur = min(len, (PAGE_SIZE - offset));
5373                 kaddr = page_address(page);
5374                 if (copy_to_user(dst, kaddr + offset, cur)) {
5375                         ret = -EFAULT;
5376                         break;
5377                 }
5378
5379                 dst += cur;
5380                 len -= cur;
5381                 offset = 0;
5382                 i++;
5383         }
5384
5385         return ret;
5386 }
5387
5388 /*
5389  * return 0 if the item is found within a page.
5390  * return 1 if the item spans two pages.
5391  * return -EINVAL otherwise.
5392  */
5393 int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
5394                                unsigned long min_len, char **map,
5395                                unsigned long *map_start,
5396                                unsigned long *map_len)
5397 {
5398         size_t offset = start & (PAGE_SIZE - 1);
5399         char *kaddr;
5400         struct page *p;
5401         size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5402         unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5403         unsigned long end_i = (start_offset + start + min_len - 1) >>
5404                 PAGE_SHIFT;
5405
5406         if (i != end_i)
5407                 return 1;
5408
5409         if (i == 0) {
5410                 offset = start_offset;
5411                 *map_start = 0;
5412         } else {
5413                 offset = 0;
5414                 *map_start = ((u64)i << PAGE_SHIFT) - start_offset;
5415         }
5416
5417         if (start + min_len > eb->len) {
5418                 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n",
5419                        eb->start, eb->len, start, min_len);
5420                 return -EINVAL;
5421         }
5422
5423         p = eb->pages[i];
5424         kaddr = page_address(p);
5425         *map = kaddr + offset;
5426         *map_len = PAGE_SIZE - offset;
5427         return 0;
5428 }
5429
5430 int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
5431                           unsigned long start,
5432                           unsigned long len)
5433 {
5434         size_t cur;
5435         size_t offset;
5436         struct page *page;
5437         char *kaddr;
5438         char *ptr = (char *)ptrv;
5439         size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5440         unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5441         int ret = 0;
5442
5443         WARN_ON(start > eb->len);
5444         WARN_ON(start + len > eb->start + eb->len);
5445
5446         offset = (start_offset + start) & (PAGE_SIZE - 1);
5447
5448         while (len > 0) {
5449                 page = eb->pages[i];
5450
5451                 cur = min(len, (PAGE_SIZE - offset));
5452
5453                 kaddr = page_address(page);
5454                 ret = memcmp(ptr, kaddr + offset, cur);
5455                 if (ret)
5456                         break;
5457
5458                 ptr += cur;
5459                 len -= cur;
5460                 offset = 0;
5461                 i++;
5462         }
5463         return ret;
5464 }
5465
5466 void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
5467                          unsigned long start, unsigned long len)
5468 {
5469         size_t cur;
5470         size_t offset;
5471         struct page *page;
5472         char *kaddr;
5473         char *src = (char *)srcv;
5474         size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5475         unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5476
5477         WARN_ON(start > eb->len);
5478         WARN_ON(start + len > eb->start + eb->len);
5479
5480         offset = (start_offset + start) & (PAGE_SIZE - 1);
5481
5482         while (len > 0) {
5483                 page = eb->pages[i];
5484                 WARN_ON(!PageUptodate(page));
5485
5486                 cur = min(len, PAGE_SIZE - offset);
5487                 kaddr = page_address(page);
5488                 memcpy(kaddr + offset, src, cur);
5489
5490                 src += cur;
5491                 len -= cur;
5492                 offset = 0;
5493                 i++;
5494         }
5495 }
5496
5497 void memset_extent_buffer(struct extent_buffer *eb, char c,
5498                           unsigned long start, unsigned long len)
5499 {
5500         size_t cur;
5501         size_t offset;
5502         struct page *page;
5503         char *kaddr;
5504         size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5505         unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5506
5507         WARN_ON(start > eb->len);
5508         WARN_ON(start + len > eb->start + eb->len);
5509
5510         offset = (start_offset + start) & (PAGE_SIZE - 1);
5511
5512         while (len > 0) {
5513                 page = eb->pages[i];
5514                 WARN_ON(!PageUptodate(page));
5515
5516                 cur = min(len, PAGE_SIZE - offset);
5517                 kaddr = page_address(page);
5518                 memset(kaddr + offset, c, cur);
5519
5520                 len -= cur;
5521                 offset = 0;
5522                 i++;
5523         }
5524 }
5525
5526 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
5527                         unsigned long dst_offset, unsigned long src_offset,
5528                         unsigned long len)
5529 {
5530         u64 dst_len = dst->len;
5531         size_t cur;
5532         size_t offset;
5533         struct page *page;
5534         char *kaddr;
5535         size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
5536         unsigned long i = (start_offset + dst_offset) >> PAGE_SHIFT;
5537
5538         WARN_ON(src->len != dst_len);
5539
5540         offset = (start_offset + dst_offset) &
5541                 (PAGE_SIZE - 1);
5542
5543         while (len > 0) {
5544                 page = dst->pages[i];
5545                 WARN_ON(!PageUptodate(page));
5546
5547                 cur = min(len, (unsigned long)(PAGE_SIZE - offset));
5548
5549                 kaddr = page_address(page);
5550                 read_extent_buffer(src, kaddr + offset, src_offset, cur);
5551
5552                 src_offset += cur;
5553                 len -= cur;
5554                 offset = 0;
5555                 i++;
5556         }
5557 }
5558
5559 void le_bitmap_set(u8 *map, unsigned int start, int len)
5560 {
5561         u8 *p = map + BIT_BYTE(start);
5562         const unsigned int size = start + len;
5563         int bits_to_set = BITS_PER_BYTE - (start % BITS_PER_BYTE);
5564         u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(start);
5565
5566         while (len - bits_to_set >= 0) {
5567                 *p |= mask_to_set;
5568                 len -= bits_to_set;
5569                 bits_to_set = BITS_PER_BYTE;
5570                 mask_to_set = ~0;
5571                 p++;
5572         }
5573         if (len) {
5574                 mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
5575                 *p |= mask_to_set;
5576         }
5577 }
5578
5579 void le_bitmap_clear(u8 *map, unsigned int start, int len)
5580 {
5581         u8 *p = map + BIT_BYTE(start);
5582         const unsigned int size = start + len;
5583         int bits_to_clear = BITS_PER_BYTE - (start % BITS_PER_BYTE);
5584         u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(start);
5585
5586         while (len - bits_to_clear >= 0) {
5587                 *p &= ~mask_to_clear;
5588                 len -= bits_to_clear;
5589                 bits_to_clear = BITS_PER_BYTE;
5590                 mask_to_clear = ~0;
5591                 p++;
5592         }
5593         if (len) {
5594                 mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
5595                 *p &= ~mask_to_clear;
5596         }
5597 }
5598
5599 /*
5600  * eb_bitmap_offset() - calculate the page and offset of the byte containing the
5601  * given bit number
5602  * @eb: the extent buffer
5603  * @start: offset of the bitmap item in the extent buffer
5604  * @nr: bit number
5605  * @page_index: return index of the page in the extent buffer that contains the
5606  * given bit number
5607  * @page_offset: return offset into the page given by page_index
5608  *
5609  * This helper hides the ugliness of finding the byte in an extent buffer which
5610  * contains a given bit.
5611  */
5612 static inline void eb_bitmap_offset(struct extent_buffer *eb,
5613                                     unsigned long start, unsigned long nr,
5614                                     unsigned long *page_index,
5615                                     size_t *page_offset)
5616 {
5617         size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5618         size_t byte_offset = BIT_BYTE(nr);
5619         size_t offset;
5620
5621         /*
5622          * The byte we want is the offset of the extent buffer + the offset of
5623          * the bitmap item in the extent buffer + the offset of the byte in the
5624          * bitmap item.
5625          */
5626         offset = start_offset + start + byte_offset;
5627
5628         *page_index = offset >> PAGE_SHIFT;
5629         *page_offset = offset & (PAGE_SIZE - 1);
5630 }
5631
5632 /**
5633  * extent_buffer_test_bit - determine whether a bit in a bitmap item is set
5634  * @eb: the extent buffer
5635  * @start: offset of the bitmap item in the extent buffer
5636  * @nr: bit number to test
5637  */
5638 int extent_buffer_test_bit(struct extent_buffer *eb, unsigned long start,
5639                            unsigned long nr)
5640 {
5641         u8 *kaddr;
5642         struct page *page;
5643         unsigned long i;
5644         size_t offset;
5645
5646         eb_bitmap_offset(eb, start, nr, &i, &offset);
5647         page = eb->pages[i];
5648         WARN_ON(!PageUptodate(page));
5649         kaddr = page_address(page);
5650         return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
5651 }
5652
5653 /**
5654  * extent_buffer_bitmap_set - set an area of a bitmap
5655  * @eb: the extent buffer
5656  * @start: offset of the bitmap item in the extent buffer
5657  * @pos: bit number of the first bit
5658  * @len: number of bits to set
5659  */
5660 void extent_buffer_bitmap_set(struct extent_buffer *eb, unsigned long start,
5661                               unsigned long pos, unsigned long len)
5662 {
5663         u8 *kaddr;
5664         struct page *page;
5665         unsigned long i;
5666         size_t offset;
5667         const unsigned int size = pos + len;
5668         int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5669         u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos);
5670
5671         eb_bitmap_offset(eb, start, pos, &i, &offset);
5672         page = eb->pages[i];
5673         WARN_ON(!PageUptodate(page));
5674         kaddr = page_address(page);
5675
5676         while (len >= bits_to_set) {
5677                 kaddr[offset] |= mask_to_set;
5678                 len -= bits_to_set;
5679                 bits_to_set = BITS_PER_BYTE;
5680                 mask_to_set = ~0;
5681                 if (++offset >= PAGE_SIZE && len > 0) {
5682                         offset = 0;
5683                         page = eb->pages[++i];
5684                         WARN_ON(!PageUptodate(page));
5685                         kaddr = page_address(page);
5686                 }
5687         }
5688         if (len) {
5689                 mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
5690                 kaddr[offset] |= mask_to_set;
5691         }
5692 }
5693
5694
5695 /**
5696  * extent_buffer_bitmap_clear - clear an area of a bitmap
5697  * @eb: the extent buffer
5698  * @start: offset of the bitmap item in the extent buffer
5699  * @pos: bit number of the first bit
5700  * @len: number of bits to clear
5701  */
5702 void extent_buffer_bitmap_clear(struct extent_buffer *eb, unsigned long start,
5703                                 unsigned long pos, unsigned long len)
5704 {
5705         u8 *kaddr;
5706         struct page *page;
5707         unsigned long i;
5708         size_t offset;
5709         const unsigned int size = pos + len;
5710         int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5711         u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos);
5712
5713         eb_bitmap_offset(eb, start, pos, &i, &offset);
5714         page = eb->pages[i];
5715         WARN_ON(!PageUptodate(page));
5716         kaddr = page_address(page);
5717
5718         while (len >= bits_to_clear) {
5719                 kaddr[offset] &= ~mask_to_clear;
5720                 len -= bits_to_clear;
5721                 bits_to_clear = BITS_PER_BYTE;
5722                 mask_to_clear = ~0;
5723                 if (++offset >= PAGE_SIZE && len > 0) {
5724                         offset = 0;
5725                         page = eb->pages[++i];
5726                         WARN_ON(!PageUptodate(page));
5727                         kaddr = page_address(page);
5728                 }
5729         }
5730         if (len) {
5731                 mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
5732                 kaddr[offset] &= ~mask_to_clear;
5733         }
5734 }
5735
5736 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
5737 {
5738         unsigned long distance = (src > dst) ? src - dst : dst - src;
5739         return distance < len;
5740 }
5741
5742 static void copy_pages(struct page *dst_page, struct page *src_page,
5743                        unsigned long dst_off, unsigned long src_off,
5744                        unsigned long len)
5745 {
5746         char *dst_kaddr = page_address(dst_page);
5747         char *src_kaddr;
5748         int must_memmove = 0;
5749
5750         if (dst_page != src_page) {
5751                 src_kaddr = page_address(src_page);
5752         } else {
5753                 src_kaddr = dst_kaddr;
5754                 if (areas_overlap(src_off, dst_off, len))
5755                         must_memmove = 1;
5756         }
5757
5758         if (must_memmove)
5759                 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
5760         else
5761                 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
5762 }
5763
5764 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5765                            unsigned long src_offset, unsigned long len)
5766 {
5767         size_t cur;
5768         size_t dst_off_in_page;
5769         size_t src_off_in_page;
5770         size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
5771         unsigned long dst_i;
5772         unsigned long src_i;
5773
5774         if (src_offset + len > dst->len) {
5775                 btrfs_err(dst->fs_info,
5776                         "memmove bogus src_offset %lu move len %lu dst len %lu",
5777                          src_offset, len, dst->len);
5778                 BUG_ON(1);
5779         }
5780         if (dst_offset + len > dst->len) {
5781                 btrfs_err(dst->fs_info,
5782                         "memmove bogus dst_offset %lu move len %lu dst len %lu",
5783                          dst_offset, len, dst->len);
5784                 BUG_ON(1);
5785         }
5786
5787         while (len > 0) {
5788                 dst_off_in_page = (start_offset + dst_offset) &
5789                         (PAGE_SIZE - 1);
5790                 src_off_in_page = (start_offset + src_offset) &
5791                         (PAGE_SIZE - 1);
5792
5793                 dst_i = (start_offset + dst_offset) >> PAGE_SHIFT;
5794                 src_i = (start_offset + src_offset) >> PAGE_SHIFT;
5795
5796                 cur = min(len, (unsigned long)(PAGE_SIZE -
5797                                                src_off_in_page));
5798                 cur = min_t(unsigned long, cur,
5799                         (unsigned long)(PAGE_SIZE - dst_off_in_page));
5800
5801                 copy_pages(dst->pages[dst_i], dst->pages[src_i],
5802                            dst_off_in_page, src_off_in_page, cur);
5803
5804                 src_offset += cur;
5805                 dst_offset += cur;
5806                 len -= cur;
5807         }
5808 }
5809
5810 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5811                            unsigned long src_offset, unsigned long len)
5812 {
5813         size_t cur;
5814         size_t dst_off_in_page;
5815         size_t src_off_in_page;
5816         unsigned long dst_end = dst_offset + len - 1;
5817         unsigned long src_end = src_offset + len - 1;
5818         size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
5819         unsigned long dst_i;
5820         unsigned long src_i;
5821
5822         if (src_offset + len > dst->len) {
5823                 btrfs_err(dst->fs_info,
5824                           "memmove bogus src_offset %lu move len %lu len %lu",
5825                           src_offset, len, dst->len);
5826                 BUG_ON(1);
5827         }
5828         if (dst_offset + len > dst->len) {
5829                 btrfs_err(dst->fs_info,
5830                           "memmove bogus dst_offset %lu move len %lu len %lu",
5831                           dst_offset, len, dst->len);
5832                 BUG_ON(1);
5833         }
5834         if (dst_offset < src_offset) {
5835                 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
5836                 return;
5837         }
5838         while (len > 0) {
5839                 dst_i = (start_offset + dst_end) >> PAGE_SHIFT;
5840                 src_i = (start_offset + src_end) >> PAGE_SHIFT;
5841
5842                 dst_off_in_page = (start_offset + dst_end) &
5843                         (PAGE_SIZE - 1);
5844                 src_off_in_page = (start_offset + src_end) &
5845                         (PAGE_SIZE - 1);
5846
5847                 cur = min_t(unsigned long, len, src_off_in_page + 1);
5848                 cur = min(cur, dst_off_in_page + 1);
5849                 copy_pages(dst->pages[dst_i], dst->pages[src_i],
5850                            dst_off_in_page - cur + 1,
5851                            src_off_in_page - cur + 1, cur);
5852
5853                 dst_end -= cur;
5854                 src_end -= cur;
5855                 len -= cur;
5856         }
5857 }
5858
5859 int try_release_extent_buffer(struct page *page)
5860 {
5861         struct extent_buffer *eb;
5862
5863         /*
5864          * We need to make sure nobody is attaching this page to an eb right
5865          * now.
5866          */
5867         spin_lock(&page->mapping->private_lock);
5868         if (!PagePrivate(page)) {
5869                 spin_unlock(&page->mapping->private_lock);
5870                 return 1;
5871         }
5872
5873         eb = (struct extent_buffer *)page->private;
5874         BUG_ON(!eb);
5875
5876         /*
5877          * This is a little awful but should be ok, we need to make sure that
5878          * the eb doesn't disappear out from under us while we're looking at
5879          * this page.
5880          */
5881         spin_lock(&eb->refs_lock);
5882         if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
5883                 spin_unlock(&eb->refs_lock);
5884                 spin_unlock(&page->mapping->private_lock);
5885                 return 0;
5886         }
5887         spin_unlock(&page->mapping->private_lock);
5888
5889         /*
5890          * If tree ref isn't set then we know the ref on this eb is a real ref,
5891          * so just return, this page will likely be freed soon anyway.
5892          */
5893         if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
5894                 spin_unlock(&eb->refs_lock);
5895                 return 0;
5896         }
5897
5898         return release_extent_buffer(eb);
5899 }