]> git.karo-electronics.de Git - karo-tx-linux.git/blob - fs/btrfs/extent_io.c
btrfs: btrfs_create_repair_bio never fails, skip error handling
[karo-tx-linux.git] / fs / btrfs / extent_io.c
1 #include <linux/bitops.h>
2 #include <linux/slab.h>
3 #include <linux/bio.h>
4 #include <linux/mm.h>
5 #include <linux/pagemap.h>
6 #include <linux/page-flags.h>
7 #include <linux/spinlock.h>
8 #include <linux/blkdev.h>
9 #include <linux/swap.h>
10 #include <linux/writeback.h>
11 #include <linux/pagevec.h>
12 #include <linux/prefetch.h>
13 #include <linux/cleancache.h>
14 #include "extent_io.h"
15 #include "extent_map.h"
16 #include "ctree.h"
17 #include "btrfs_inode.h"
18 #include "volumes.h"
19 #include "check-integrity.h"
20 #include "locking.h"
21 #include "rcu-string.h"
22 #include "backref.h"
23 #include "transaction.h"
24
25 static struct kmem_cache *extent_state_cache;
26 static struct kmem_cache *extent_buffer_cache;
27 static struct bio_set *btrfs_bioset;
28
29 static inline bool extent_state_in_tree(const struct extent_state *state)
30 {
31         return !RB_EMPTY_NODE(&state->rb_node);
32 }
33
34 #ifdef CONFIG_BTRFS_DEBUG
35 static LIST_HEAD(buffers);
36 static LIST_HEAD(states);
37
38 static DEFINE_SPINLOCK(leak_lock);
39
40 static inline
41 void btrfs_leak_debug_add(struct list_head *new, struct list_head *head)
42 {
43         unsigned long flags;
44
45         spin_lock_irqsave(&leak_lock, flags);
46         list_add(new, head);
47         spin_unlock_irqrestore(&leak_lock, flags);
48 }
49
50 static inline
51 void btrfs_leak_debug_del(struct list_head *entry)
52 {
53         unsigned long flags;
54
55         spin_lock_irqsave(&leak_lock, flags);
56         list_del(entry);
57         spin_unlock_irqrestore(&leak_lock, flags);
58 }
59
60 static inline
61 void btrfs_leak_debug_check(void)
62 {
63         struct extent_state *state;
64         struct extent_buffer *eb;
65
66         while (!list_empty(&states)) {
67                 state = list_entry(states.next, struct extent_state, leak_list);
68                 pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
69                        state->start, state->end, state->state,
70                        extent_state_in_tree(state),
71                        refcount_read(&state->refs));
72                 list_del(&state->leak_list);
73                 kmem_cache_free(extent_state_cache, state);
74         }
75
76         while (!list_empty(&buffers)) {
77                 eb = list_entry(buffers.next, struct extent_buffer, leak_list);
78                 pr_err("BTRFS: buffer leak start %llu len %lu refs %d\n",
79                        eb->start, eb->len, atomic_read(&eb->refs));
80                 list_del(&eb->leak_list);
81                 kmem_cache_free(extent_buffer_cache, eb);
82         }
83 }
84
85 #define btrfs_debug_check_extent_io_range(tree, start, end)             \
86         __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
87 static inline void __btrfs_debug_check_extent_io_range(const char *caller,
88                 struct extent_io_tree *tree, u64 start, u64 end)
89 {
90         if (tree->ops && tree->ops->check_extent_io_range)
91                 tree->ops->check_extent_io_range(tree->private_data, caller,
92                                                  start, end);
93 }
94 #else
95 #define btrfs_leak_debug_add(new, head) do {} while (0)
96 #define btrfs_leak_debug_del(entry)     do {} while (0)
97 #define btrfs_leak_debug_check()        do {} while (0)
98 #define btrfs_debug_check_extent_io_range(c, s, e)      do {} while (0)
99 #endif
100
101 #define BUFFER_LRU_MAX 64
102
103 struct tree_entry {
104         u64 start;
105         u64 end;
106         struct rb_node rb_node;
107 };
108
109 struct extent_page_data {
110         struct bio *bio;
111         struct extent_io_tree *tree;
112         get_extent_t *get_extent;
113         unsigned long bio_flags;
114
115         /* tells writepage not to lock the state bits for this range
116          * it still does the unlocking
117          */
118         unsigned int extent_locked:1;
119
120         /* tells the submit_bio code to use REQ_SYNC */
121         unsigned int sync_io:1;
122 };
123
124 static void add_extent_changeset(struct extent_state *state, unsigned bits,
125                                  struct extent_changeset *changeset,
126                                  int set)
127 {
128         int ret;
129
130         if (!changeset)
131                 return;
132         if (set && (state->state & bits) == bits)
133                 return;
134         if (!set && (state->state & bits) == 0)
135                 return;
136         changeset->bytes_changed += state->end - state->start + 1;
137         ret = ulist_add(&changeset->range_changed, state->start, state->end,
138                         GFP_ATOMIC);
139         /* ENOMEM */
140         BUG_ON(ret < 0);
141 }
142
143 static noinline void flush_write_bio(void *data);
144 static inline struct btrfs_fs_info *
145 tree_fs_info(struct extent_io_tree *tree)
146 {
147         if (tree->ops)
148                 return tree->ops->tree_fs_info(tree->private_data);
149         return NULL;
150 }
151
152 int __init extent_io_init(void)
153 {
154         extent_state_cache = kmem_cache_create("btrfs_extent_state",
155                         sizeof(struct extent_state), 0,
156                         SLAB_MEM_SPREAD, NULL);
157         if (!extent_state_cache)
158                 return -ENOMEM;
159
160         extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
161                         sizeof(struct extent_buffer), 0,
162                         SLAB_MEM_SPREAD, NULL);
163         if (!extent_buffer_cache)
164                 goto free_state_cache;
165
166         btrfs_bioset = bioset_create(BIO_POOL_SIZE,
167                                      offsetof(struct btrfs_io_bio, bio));
168         if (!btrfs_bioset)
169                 goto free_buffer_cache;
170
171         if (bioset_integrity_create(btrfs_bioset, BIO_POOL_SIZE))
172                 goto free_bioset;
173
174         return 0;
175
176 free_bioset:
177         bioset_free(btrfs_bioset);
178         btrfs_bioset = NULL;
179
180 free_buffer_cache:
181         kmem_cache_destroy(extent_buffer_cache);
182         extent_buffer_cache = NULL;
183
184 free_state_cache:
185         kmem_cache_destroy(extent_state_cache);
186         extent_state_cache = NULL;
187         return -ENOMEM;
188 }
189
190 void extent_io_exit(void)
191 {
192         btrfs_leak_debug_check();
193
194         /*
195          * Make sure all delayed rcu free are flushed before we
196          * destroy caches.
197          */
198         rcu_barrier();
199         kmem_cache_destroy(extent_state_cache);
200         kmem_cache_destroy(extent_buffer_cache);
201         if (btrfs_bioset)
202                 bioset_free(btrfs_bioset);
203 }
204
205 void extent_io_tree_init(struct extent_io_tree *tree,
206                          void *private_data)
207 {
208         tree->state = RB_ROOT;
209         tree->ops = NULL;
210         tree->dirty_bytes = 0;
211         spin_lock_init(&tree->lock);
212         tree->private_data = private_data;
213 }
214
215 static struct extent_state *alloc_extent_state(gfp_t mask)
216 {
217         struct extent_state *state;
218
219         /*
220          * The given mask might be not appropriate for the slab allocator,
221          * drop the unsupported bits
222          */
223         mask &= ~(__GFP_DMA32|__GFP_HIGHMEM);
224         state = kmem_cache_alloc(extent_state_cache, mask);
225         if (!state)
226                 return state;
227         state->state = 0;
228         state->failrec = NULL;
229         RB_CLEAR_NODE(&state->rb_node);
230         btrfs_leak_debug_add(&state->leak_list, &states);
231         refcount_set(&state->refs, 1);
232         init_waitqueue_head(&state->wq);
233         trace_alloc_extent_state(state, mask, _RET_IP_);
234         return state;
235 }
236
237 void free_extent_state(struct extent_state *state)
238 {
239         if (!state)
240                 return;
241         if (refcount_dec_and_test(&state->refs)) {
242                 WARN_ON(extent_state_in_tree(state));
243                 btrfs_leak_debug_del(&state->leak_list);
244                 trace_free_extent_state(state, _RET_IP_);
245                 kmem_cache_free(extent_state_cache, state);
246         }
247 }
248
249 static struct rb_node *tree_insert(struct rb_root *root,
250                                    struct rb_node *search_start,
251                                    u64 offset,
252                                    struct rb_node *node,
253                                    struct rb_node ***p_in,
254                                    struct rb_node **parent_in)
255 {
256         struct rb_node **p;
257         struct rb_node *parent = NULL;
258         struct tree_entry *entry;
259
260         if (p_in && parent_in) {
261                 p = *p_in;
262                 parent = *parent_in;
263                 goto do_insert;
264         }
265
266         p = search_start ? &search_start : &root->rb_node;
267         while (*p) {
268                 parent = *p;
269                 entry = rb_entry(parent, struct tree_entry, rb_node);
270
271                 if (offset < entry->start)
272                         p = &(*p)->rb_left;
273                 else if (offset > entry->end)
274                         p = &(*p)->rb_right;
275                 else
276                         return parent;
277         }
278
279 do_insert:
280         rb_link_node(node, parent, p);
281         rb_insert_color(node, root);
282         return NULL;
283 }
284
285 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
286                                       struct rb_node **prev_ret,
287                                       struct rb_node **next_ret,
288                                       struct rb_node ***p_ret,
289                                       struct rb_node **parent_ret)
290 {
291         struct rb_root *root = &tree->state;
292         struct rb_node **n = &root->rb_node;
293         struct rb_node *prev = NULL;
294         struct rb_node *orig_prev = NULL;
295         struct tree_entry *entry;
296         struct tree_entry *prev_entry = NULL;
297
298         while (*n) {
299                 prev = *n;
300                 entry = rb_entry(prev, struct tree_entry, rb_node);
301                 prev_entry = entry;
302
303                 if (offset < entry->start)
304                         n = &(*n)->rb_left;
305                 else if (offset > entry->end)
306                         n = &(*n)->rb_right;
307                 else
308                         return *n;
309         }
310
311         if (p_ret)
312                 *p_ret = n;
313         if (parent_ret)
314                 *parent_ret = prev;
315
316         if (prev_ret) {
317                 orig_prev = prev;
318                 while (prev && offset > prev_entry->end) {
319                         prev = rb_next(prev);
320                         prev_entry = rb_entry(prev, struct tree_entry, rb_node);
321                 }
322                 *prev_ret = prev;
323                 prev = orig_prev;
324         }
325
326         if (next_ret) {
327                 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
328                 while (prev && offset < prev_entry->start) {
329                         prev = rb_prev(prev);
330                         prev_entry = rb_entry(prev, struct tree_entry, rb_node);
331                 }
332                 *next_ret = prev;
333         }
334         return NULL;
335 }
336
337 static inline struct rb_node *
338 tree_search_for_insert(struct extent_io_tree *tree,
339                        u64 offset,
340                        struct rb_node ***p_ret,
341                        struct rb_node **parent_ret)
342 {
343         struct rb_node *prev = NULL;
344         struct rb_node *ret;
345
346         ret = __etree_search(tree, offset, &prev, NULL, p_ret, parent_ret);
347         if (!ret)
348                 return prev;
349         return ret;
350 }
351
352 static inline struct rb_node *tree_search(struct extent_io_tree *tree,
353                                           u64 offset)
354 {
355         return tree_search_for_insert(tree, offset, NULL, NULL);
356 }
357
358 static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
359                      struct extent_state *other)
360 {
361         if (tree->ops && tree->ops->merge_extent_hook)
362                 tree->ops->merge_extent_hook(tree->private_data, new, other);
363 }
364
365 /*
366  * utility function to look for merge candidates inside a given range.
367  * Any extents with matching state are merged together into a single
368  * extent in the tree.  Extents with EXTENT_IO in their state field
369  * are not merged because the end_io handlers need to be able to do
370  * operations on them without sleeping (or doing allocations/splits).
371  *
372  * This should be called with the tree lock held.
373  */
374 static void merge_state(struct extent_io_tree *tree,
375                         struct extent_state *state)
376 {
377         struct extent_state *other;
378         struct rb_node *other_node;
379
380         if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
381                 return;
382
383         other_node = rb_prev(&state->rb_node);
384         if (other_node) {
385                 other = rb_entry(other_node, struct extent_state, rb_node);
386                 if (other->end == state->start - 1 &&
387                     other->state == state->state) {
388                         merge_cb(tree, state, other);
389                         state->start = other->start;
390                         rb_erase(&other->rb_node, &tree->state);
391                         RB_CLEAR_NODE(&other->rb_node);
392                         free_extent_state(other);
393                 }
394         }
395         other_node = rb_next(&state->rb_node);
396         if (other_node) {
397                 other = rb_entry(other_node, struct extent_state, rb_node);
398                 if (other->start == state->end + 1 &&
399                     other->state == state->state) {
400                         merge_cb(tree, state, other);
401                         state->end = other->end;
402                         rb_erase(&other->rb_node, &tree->state);
403                         RB_CLEAR_NODE(&other->rb_node);
404                         free_extent_state(other);
405                 }
406         }
407 }
408
409 static void set_state_cb(struct extent_io_tree *tree,
410                          struct extent_state *state, unsigned *bits)
411 {
412         if (tree->ops && tree->ops->set_bit_hook)
413                 tree->ops->set_bit_hook(tree->private_data, state, bits);
414 }
415
416 static void clear_state_cb(struct extent_io_tree *tree,
417                            struct extent_state *state, unsigned *bits)
418 {
419         if (tree->ops && tree->ops->clear_bit_hook)
420                 tree->ops->clear_bit_hook(tree->private_data, state, bits);
421 }
422
423 static void set_state_bits(struct extent_io_tree *tree,
424                            struct extent_state *state, unsigned *bits,
425                            struct extent_changeset *changeset);
426
427 /*
428  * insert an extent_state struct into the tree.  'bits' are set on the
429  * struct before it is inserted.
430  *
431  * This may return -EEXIST if the extent is already there, in which case the
432  * state struct is freed.
433  *
434  * The tree lock is not taken internally.  This is a utility function and
435  * probably isn't what you want to call (see set/clear_extent_bit).
436  */
437 static int insert_state(struct extent_io_tree *tree,
438                         struct extent_state *state, u64 start, u64 end,
439                         struct rb_node ***p,
440                         struct rb_node **parent,
441                         unsigned *bits, struct extent_changeset *changeset)
442 {
443         struct rb_node *node;
444
445         if (end < start)
446                 WARN(1, KERN_ERR "BTRFS: end < start %llu %llu\n",
447                        end, start);
448         state->start = start;
449         state->end = end;
450
451         set_state_bits(tree, state, bits, changeset);
452
453         node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
454         if (node) {
455                 struct extent_state *found;
456                 found = rb_entry(node, struct extent_state, rb_node);
457                 pr_err("BTRFS: found node %llu %llu on insert of %llu %llu\n",
458                        found->start, found->end, start, end);
459                 return -EEXIST;
460         }
461         merge_state(tree, state);
462         return 0;
463 }
464
465 static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
466                      u64 split)
467 {
468         if (tree->ops && tree->ops->split_extent_hook)
469                 tree->ops->split_extent_hook(tree->private_data, orig, split);
470 }
471
472 /*
473  * split a given extent state struct in two, inserting the preallocated
474  * struct 'prealloc' as the newly created second half.  'split' indicates an
475  * offset inside 'orig' where it should be split.
476  *
477  * Before calling,
478  * the tree has 'orig' at [orig->start, orig->end].  After calling, there
479  * are two extent state structs in the tree:
480  * prealloc: [orig->start, split - 1]
481  * orig: [ split, orig->end ]
482  *
483  * The tree locks are not taken by this function. They need to be held
484  * by the caller.
485  */
486 static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
487                        struct extent_state *prealloc, u64 split)
488 {
489         struct rb_node *node;
490
491         split_cb(tree, orig, split);
492
493         prealloc->start = orig->start;
494         prealloc->end = split - 1;
495         prealloc->state = orig->state;
496         orig->start = split;
497
498         node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
499                            &prealloc->rb_node, NULL, NULL);
500         if (node) {
501                 free_extent_state(prealloc);
502                 return -EEXIST;
503         }
504         return 0;
505 }
506
507 static struct extent_state *next_state(struct extent_state *state)
508 {
509         struct rb_node *next = rb_next(&state->rb_node);
510         if (next)
511                 return rb_entry(next, struct extent_state, rb_node);
512         else
513                 return NULL;
514 }
515
516 /*
517  * utility function to clear some bits in an extent state struct.
518  * it will optionally wake up any one waiting on this state (wake == 1).
519  *
520  * If no bits are set on the state struct after clearing things, the
521  * struct is freed and removed from the tree
522  */
523 static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
524                                             struct extent_state *state,
525                                             unsigned *bits, int wake,
526                                             struct extent_changeset *changeset)
527 {
528         struct extent_state *next;
529         unsigned bits_to_clear = *bits & ~EXTENT_CTLBITS;
530
531         if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
532                 u64 range = state->end - state->start + 1;
533                 WARN_ON(range > tree->dirty_bytes);
534                 tree->dirty_bytes -= range;
535         }
536         clear_state_cb(tree, state, bits);
537         add_extent_changeset(state, bits_to_clear, changeset, 0);
538         state->state &= ~bits_to_clear;
539         if (wake)
540                 wake_up(&state->wq);
541         if (state->state == 0) {
542                 next = next_state(state);
543                 if (extent_state_in_tree(state)) {
544                         rb_erase(&state->rb_node, &tree->state);
545                         RB_CLEAR_NODE(&state->rb_node);
546                         free_extent_state(state);
547                 } else {
548                         WARN_ON(1);
549                 }
550         } else {
551                 merge_state(tree, state);
552                 next = next_state(state);
553         }
554         return next;
555 }
556
557 static struct extent_state *
558 alloc_extent_state_atomic(struct extent_state *prealloc)
559 {
560         if (!prealloc)
561                 prealloc = alloc_extent_state(GFP_ATOMIC);
562
563         return prealloc;
564 }
565
566 static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
567 {
568         btrfs_panic(tree_fs_info(tree), err,
569                     "Locking error: Extent tree was modified by another thread while locked.");
570 }
571
572 /*
573  * clear some bits on a range in the tree.  This may require splitting
574  * or inserting elements in the tree, so the gfp mask is used to
575  * indicate which allocations or sleeping are allowed.
576  *
577  * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
578  * the given range from the tree regardless of state (ie for truncate).
579  *
580  * the range [start, end] is inclusive.
581  *
582  * This takes the tree lock, and returns 0 on success and < 0 on error.
583  */
584 static int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
585                               unsigned bits, int wake, int delete,
586                               struct extent_state **cached_state,
587                               gfp_t mask, struct extent_changeset *changeset)
588 {
589         struct extent_state *state;
590         struct extent_state *cached;
591         struct extent_state *prealloc = NULL;
592         struct rb_node *node;
593         u64 last_end;
594         int err;
595         int clear = 0;
596
597         btrfs_debug_check_extent_io_range(tree, start, end);
598
599         if (bits & EXTENT_DELALLOC)
600                 bits |= EXTENT_NORESERVE;
601
602         if (delete)
603                 bits |= ~EXTENT_CTLBITS;
604         bits |= EXTENT_FIRST_DELALLOC;
605
606         if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
607                 clear = 1;
608 again:
609         if (!prealloc && gfpflags_allow_blocking(mask)) {
610                 /*
611                  * Don't care for allocation failure here because we might end
612                  * up not needing the pre-allocated extent state at all, which
613                  * is the case if we only have in the tree extent states that
614                  * cover our input range and don't cover too any other range.
615                  * If we end up needing a new extent state we allocate it later.
616                  */
617                 prealloc = alloc_extent_state(mask);
618         }
619
620         spin_lock(&tree->lock);
621         if (cached_state) {
622                 cached = *cached_state;
623
624                 if (clear) {
625                         *cached_state = NULL;
626                         cached_state = NULL;
627                 }
628
629                 if (cached && extent_state_in_tree(cached) &&
630                     cached->start <= start && cached->end > start) {
631                         if (clear)
632                                 refcount_dec(&cached->refs);
633                         state = cached;
634                         goto hit_next;
635                 }
636                 if (clear)
637                         free_extent_state(cached);
638         }
639         /*
640          * this search will find the extents that end after
641          * our range starts
642          */
643         node = tree_search(tree, start);
644         if (!node)
645                 goto out;
646         state = rb_entry(node, struct extent_state, rb_node);
647 hit_next:
648         if (state->start > end)
649                 goto out;
650         WARN_ON(state->end < start);
651         last_end = state->end;
652
653         /* the state doesn't have the wanted bits, go ahead */
654         if (!(state->state & bits)) {
655                 state = next_state(state);
656                 goto next;
657         }
658
659         /*
660          *     | ---- desired range ---- |
661          *  | state | or
662          *  | ------------- state -------------- |
663          *
664          * We need to split the extent we found, and may flip
665          * bits on second half.
666          *
667          * If the extent we found extends past our range, we
668          * just split and search again.  It'll get split again
669          * the next time though.
670          *
671          * If the extent we found is inside our range, we clear
672          * the desired bit on it.
673          */
674
675         if (state->start < start) {
676                 prealloc = alloc_extent_state_atomic(prealloc);
677                 BUG_ON(!prealloc);
678                 err = split_state(tree, state, prealloc, start);
679                 if (err)
680                         extent_io_tree_panic(tree, err);
681
682                 prealloc = NULL;
683                 if (err)
684                         goto out;
685                 if (state->end <= end) {
686                         state = clear_state_bit(tree, state, &bits, wake,
687                                                 changeset);
688                         goto next;
689                 }
690                 goto search_again;
691         }
692         /*
693          * | ---- desired range ---- |
694          *                        | state |
695          * We need to split the extent, and clear the bit
696          * on the first half
697          */
698         if (state->start <= end && state->end > end) {
699                 prealloc = alloc_extent_state_atomic(prealloc);
700                 BUG_ON(!prealloc);
701                 err = split_state(tree, state, prealloc, end + 1);
702                 if (err)
703                         extent_io_tree_panic(tree, err);
704
705                 if (wake)
706                         wake_up(&state->wq);
707
708                 clear_state_bit(tree, prealloc, &bits, wake, changeset);
709
710                 prealloc = NULL;
711                 goto out;
712         }
713
714         state = clear_state_bit(tree, state, &bits, wake, changeset);
715 next:
716         if (last_end == (u64)-1)
717                 goto out;
718         start = last_end + 1;
719         if (start <= end && state && !need_resched())
720                 goto hit_next;
721
722 search_again:
723         if (start > end)
724                 goto out;
725         spin_unlock(&tree->lock);
726         if (gfpflags_allow_blocking(mask))
727                 cond_resched();
728         goto again;
729
730 out:
731         spin_unlock(&tree->lock);
732         if (prealloc)
733                 free_extent_state(prealloc);
734
735         return 0;
736
737 }
738
739 static void wait_on_state(struct extent_io_tree *tree,
740                           struct extent_state *state)
741                 __releases(tree->lock)
742                 __acquires(tree->lock)
743 {
744         DEFINE_WAIT(wait);
745         prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
746         spin_unlock(&tree->lock);
747         schedule();
748         spin_lock(&tree->lock);
749         finish_wait(&state->wq, &wait);
750 }
751
752 /*
753  * waits for one or more bits to clear on a range in the state tree.
754  * The range [start, end] is inclusive.
755  * The tree lock is taken by this function
756  */
757 static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
758                             unsigned long bits)
759 {
760         struct extent_state *state;
761         struct rb_node *node;
762
763         btrfs_debug_check_extent_io_range(tree, start, end);
764
765         spin_lock(&tree->lock);
766 again:
767         while (1) {
768                 /*
769                  * this search will find all the extents that end after
770                  * our range starts
771                  */
772                 node = tree_search(tree, start);
773 process_node:
774                 if (!node)
775                         break;
776
777                 state = rb_entry(node, struct extent_state, rb_node);
778
779                 if (state->start > end)
780                         goto out;
781
782                 if (state->state & bits) {
783                         start = state->start;
784                         refcount_inc(&state->refs);
785                         wait_on_state(tree, state);
786                         free_extent_state(state);
787                         goto again;
788                 }
789                 start = state->end + 1;
790
791                 if (start > end)
792                         break;
793
794                 if (!cond_resched_lock(&tree->lock)) {
795                         node = rb_next(node);
796                         goto process_node;
797                 }
798         }
799 out:
800         spin_unlock(&tree->lock);
801 }
802
803 static void set_state_bits(struct extent_io_tree *tree,
804                            struct extent_state *state,
805                            unsigned *bits, struct extent_changeset *changeset)
806 {
807         unsigned bits_to_set = *bits & ~EXTENT_CTLBITS;
808
809         set_state_cb(tree, state, bits);
810         if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
811                 u64 range = state->end - state->start + 1;
812                 tree->dirty_bytes += range;
813         }
814         add_extent_changeset(state, bits_to_set, changeset, 1);
815         state->state |= bits_to_set;
816 }
817
818 static void cache_state_if_flags(struct extent_state *state,
819                                  struct extent_state **cached_ptr,
820                                  unsigned flags)
821 {
822         if (cached_ptr && !(*cached_ptr)) {
823                 if (!flags || (state->state & flags)) {
824                         *cached_ptr = state;
825                         refcount_inc(&state->refs);
826                 }
827         }
828 }
829
830 static void cache_state(struct extent_state *state,
831                         struct extent_state **cached_ptr)
832 {
833         return cache_state_if_flags(state, cached_ptr,
834                                     EXTENT_IOBITS | EXTENT_BOUNDARY);
835 }
836
837 /*
838  * set some bits on a range in the tree.  This may require allocations or
839  * sleeping, so the gfp mask is used to indicate what is allowed.
840  *
841  * If any of the exclusive bits are set, this will fail with -EEXIST if some
842  * part of the range already has the desired bits set.  The start of the
843  * existing range is returned in failed_start in this case.
844  *
845  * [start, end] is inclusive This takes the tree lock.
846  */
847
848 static int __must_check
849 __set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
850                  unsigned bits, unsigned exclusive_bits,
851                  u64 *failed_start, struct extent_state **cached_state,
852                  gfp_t mask, struct extent_changeset *changeset)
853 {
854         struct extent_state *state;
855         struct extent_state *prealloc = NULL;
856         struct rb_node *node;
857         struct rb_node **p;
858         struct rb_node *parent;
859         int err = 0;
860         u64 last_start;
861         u64 last_end;
862
863         btrfs_debug_check_extent_io_range(tree, start, end);
864
865         bits |= EXTENT_FIRST_DELALLOC;
866 again:
867         if (!prealloc && gfpflags_allow_blocking(mask)) {
868                 /*
869                  * Don't care for allocation failure here because we might end
870                  * up not needing the pre-allocated extent state at all, which
871                  * is the case if we only have in the tree extent states that
872                  * cover our input range and don't cover too any other range.
873                  * If we end up needing a new extent state we allocate it later.
874                  */
875                 prealloc = alloc_extent_state(mask);
876         }
877
878         spin_lock(&tree->lock);
879         if (cached_state && *cached_state) {
880                 state = *cached_state;
881                 if (state->start <= start && state->end > start &&
882                     extent_state_in_tree(state)) {
883                         node = &state->rb_node;
884                         goto hit_next;
885                 }
886         }
887         /*
888          * this search will find all the extents that end after
889          * our range starts.
890          */
891         node = tree_search_for_insert(tree, start, &p, &parent);
892         if (!node) {
893                 prealloc = alloc_extent_state_atomic(prealloc);
894                 BUG_ON(!prealloc);
895                 err = insert_state(tree, prealloc, start, end,
896                                    &p, &parent, &bits, changeset);
897                 if (err)
898                         extent_io_tree_panic(tree, err);
899
900                 cache_state(prealloc, cached_state);
901                 prealloc = NULL;
902                 goto out;
903         }
904         state = rb_entry(node, struct extent_state, rb_node);
905 hit_next:
906         last_start = state->start;
907         last_end = state->end;
908
909         /*
910          * | ---- desired range ---- |
911          * | state |
912          *
913          * Just lock what we found and keep going
914          */
915         if (state->start == start && state->end <= end) {
916                 if (state->state & exclusive_bits) {
917                         *failed_start = state->start;
918                         err = -EEXIST;
919                         goto out;
920                 }
921
922                 set_state_bits(tree, state, &bits, changeset);
923                 cache_state(state, cached_state);
924                 merge_state(tree, state);
925                 if (last_end == (u64)-1)
926                         goto out;
927                 start = last_end + 1;
928                 state = next_state(state);
929                 if (start < end && state && state->start == start &&
930                     !need_resched())
931                         goto hit_next;
932                 goto search_again;
933         }
934
935         /*
936          *     | ---- desired range ---- |
937          * | state |
938          *   or
939          * | ------------- state -------------- |
940          *
941          * We need to split the extent we found, and may flip bits on
942          * second half.
943          *
944          * If the extent we found extends past our
945          * range, we just split and search again.  It'll get split
946          * again the next time though.
947          *
948          * If the extent we found is inside our range, we set the
949          * desired bit on it.
950          */
951         if (state->start < start) {
952                 if (state->state & exclusive_bits) {
953                         *failed_start = start;
954                         err = -EEXIST;
955                         goto out;
956                 }
957
958                 prealloc = alloc_extent_state_atomic(prealloc);
959                 BUG_ON(!prealloc);
960                 err = split_state(tree, state, prealloc, start);
961                 if (err)
962                         extent_io_tree_panic(tree, err);
963
964                 prealloc = NULL;
965                 if (err)
966                         goto out;
967                 if (state->end <= end) {
968                         set_state_bits(tree, state, &bits, changeset);
969                         cache_state(state, cached_state);
970                         merge_state(tree, state);
971                         if (last_end == (u64)-1)
972                                 goto out;
973                         start = last_end + 1;
974                         state = next_state(state);
975                         if (start < end && state && state->start == start &&
976                             !need_resched())
977                                 goto hit_next;
978                 }
979                 goto search_again;
980         }
981         /*
982          * | ---- desired range ---- |
983          *     | state | or               | state |
984          *
985          * There's a hole, we need to insert something in it and
986          * ignore the extent we found.
987          */
988         if (state->start > start) {
989                 u64 this_end;
990                 if (end < last_start)
991                         this_end = end;
992                 else
993                         this_end = last_start - 1;
994
995                 prealloc = alloc_extent_state_atomic(prealloc);
996                 BUG_ON(!prealloc);
997
998                 /*
999                  * Avoid to free 'prealloc' if it can be merged with
1000                  * the later extent.
1001                  */
1002                 err = insert_state(tree, prealloc, start, this_end,
1003                                    NULL, NULL, &bits, changeset);
1004                 if (err)
1005                         extent_io_tree_panic(tree, err);
1006
1007                 cache_state(prealloc, cached_state);
1008                 prealloc = NULL;
1009                 start = this_end + 1;
1010                 goto search_again;
1011         }
1012         /*
1013          * | ---- desired range ---- |
1014          *                        | state |
1015          * We need to split the extent, and set the bit
1016          * on the first half
1017          */
1018         if (state->start <= end && state->end > end) {
1019                 if (state->state & exclusive_bits) {
1020                         *failed_start = start;
1021                         err = -EEXIST;
1022                         goto out;
1023                 }
1024
1025                 prealloc = alloc_extent_state_atomic(prealloc);
1026                 BUG_ON(!prealloc);
1027                 err = split_state(tree, state, prealloc, end + 1);
1028                 if (err)
1029                         extent_io_tree_panic(tree, err);
1030
1031                 set_state_bits(tree, prealloc, &bits, changeset);
1032                 cache_state(prealloc, cached_state);
1033                 merge_state(tree, prealloc);
1034                 prealloc = NULL;
1035                 goto out;
1036         }
1037
1038 search_again:
1039         if (start > end)
1040                 goto out;
1041         spin_unlock(&tree->lock);
1042         if (gfpflags_allow_blocking(mask))
1043                 cond_resched();
1044         goto again;
1045
1046 out:
1047         spin_unlock(&tree->lock);
1048         if (prealloc)
1049                 free_extent_state(prealloc);
1050
1051         return err;
1052
1053 }
1054
1055 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1056                    unsigned bits, u64 * failed_start,
1057                    struct extent_state **cached_state, gfp_t mask)
1058 {
1059         return __set_extent_bit(tree, start, end, bits, 0, failed_start,
1060                                 cached_state, mask, NULL);
1061 }
1062
1063
1064 /**
1065  * convert_extent_bit - convert all bits in a given range from one bit to
1066  *                      another
1067  * @tree:       the io tree to search
1068  * @start:      the start offset in bytes
1069  * @end:        the end offset in bytes (inclusive)
1070  * @bits:       the bits to set in this range
1071  * @clear_bits: the bits to clear in this range
1072  * @cached_state:       state that we're going to cache
1073  *
1074  * This will go through and set bits for the given range.  If any states exist
1075  * already in this range they are set with the given bit and cleared of the
1076  * clear_bits.  This is only meant to be used by things that are mergeable, ie
1077  * converting from say DELALLOC to DIRTY.  This is not meant to be used with
1078  * boundary bits like LOCK.
1079  *
1080  * All allocations are done with GFP_NOFS.
1081  */
1082 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1083                        unsigned bits, unsigned clear_bits,
1084                        struct extent_state **cached_state)
1085 {
1086         struct extent_state *state;
1087         struct extent_state *prealloc = NULL;
1088         struct rb_node *node;
1089         struct rb_node **p;
1090         struct rb_node *parent;
1091         int err = 0;
1092         u64 last_start;
1093         u64 last_end;
1094         bool first_iteration = true;
1095
1096         btrfs_debug_check_extent_io_range(tree, start, end);
1097
1098 again:
1099         if (!prealloc) {
1100                 /*
1101                  * Best effort, don't worry if extent state allocation fails
1102                  * here for the first iteration. We might have a cached state
1103                  * that matches exactly the target range, in which case no
1104                  * extent state allocations are needed. We'll only know this
1105                  * after locking the tree.
1106                  */
1107                 prealloc = alloc_extent_state(GFP_NOFS);
1108                 if (!prealloc && !first_iteration)
1109                         return -ENOMEM;
1110         }
1111
1112         spin_lock(&tree->lock);
1113         if (cached_state && *cached_state) {
1114                 state = *cached_state;
1115                 if (state->start <= start && state->end > start &&
1116                     extent_state_in_tree(state)) {
1117                         node = &state->rb_node;
1118                         goto hit_next;
1119                 }
1120         }
1121
1122         /*
1123          * this search will find all the extents that end after
1124          * our range starts.
1125          */
1126         node = tree_search_for_insert(tree, start, &p, &parent);
1127         if (!node) {
1128                 prealloc = alloc_extent_state_atomic(prealloc);
1129                 if (!prealloc) {
1130                         err = -ENOMEM;
1131                         goto out;
1132                 }
1133                 err = insert_state(tree, prealloc, start, end,
1134                                    &p, &parent, &bits, NULL);
1135                 if (err)
1136                         extent_io_tree_panic(tree, err);
1137                 cache_state(prealloc, cached_state);
1138                 prealloc = NULL;
1139                 goto out;
1140         }
1141         state = rb_entry(node, struct extent_state, rb_node);
1142 hit_next:
1143         last_start = state->start;
1144         last_end = state->end;
1145
1146         /*
1147          * | ---- desired range ---- |
1148          * | state |
1149          *
1150          * Just lock what we found and keep going
1151          */
1152         if (state->start == start && state->end <= end) {
1153                 set_state_bits(tree, state, &bits, NULL);
1154                 cache_state(state, cached_state);
1155                 state = clear_state_bit(tree, state, &clear_bits, 0, NULL);
1156                 if (last_end == (u64)-1)
1157                         goto out;
1158                 start = last_end + 1;
1159                 if (start < end && state && state->start == start &&
1160                     !need_resched())
1161                         goto hit_next;
1162                 goto search_again;
1163         }
1164
1165         /*
1166          *     | ---- desired range ---- |
1167          * | state |
1168          *   or
1169          * | ------------- state -------------- |
1170          *
1171          * We need to split the extent we found, and may flip bits on
1172          * second half.
1173          *
1174          * If the extent we found extends past our
1175          * range, we just split and search again.  It'll get split
1176          * again the next time though.
1177          *
1178          * If the extent we found is inside our range, we set the
1179          * desired bit on it.
1180          */
1181         if (state->start < start) {
1182                 prealloc = alloc_extent_state_atomic(prealloc);
1183                 if (!prealloc) {
1184                         err = -ENOMEM;
1185                         goto out;
1186                 }
1187                 err = split_state(tree, state, prealloc, start);
1188                 if (err)
1189                         extent_io_tree_panic(tree, err);
1190                 prealloc = NULL;
1191                 if (err)
1192                         goto out;
1193                 if (state->end <= end) {
1194                         set_state_bits(tree, state, &bits, NULL);
1195                         cache_state(state, cached_state);
1196                         state = clear_state_bit(tree, state, &clear_bits, 0,
1197                                                 NULL);
1198                         if (last_end == (u64)-1)
1199                                 goto out;
1200                         start = last_end + 1;
1201                         if (start < end && state && state->start == start &&
1202                             !need_resched())
1203                                 goto hit_next;
1204                 }
1205                 goto search_again;
1206         }
1207         /*
1208          * | ---- desired range ---- |
1209          *     | state | or               | state |
1210          *
1211          * There's a hole, we need to insert something in it and
1212          * ignore the extent we found.
1213          */
1214         if (state->start > start) {
1215                 u64 this_end;
1216                 if (end < last_start)
1217                         this_end = end;
1218                 else
1219                         this_end = last_start - 1;
1220
1221                 prealloc = alloc_extent_state_atomic(prealloc);
1222                 if (!prealloc) {
1223                         err = -ENOMEM;
1224                         goto out;
1225                 }
1226
1227                 /*
1228                  * Avoid to free 'prealloc' if it can be merged with
1229                  * the later extent.
1230                  */
1231                 err = insert_state(tree, prealloc, start, this_end,
1232                                    NULL, NULL, &bits, NULL);
1233                 if (err)
1234                         extent_io_tree_panic(tree, err);
1235                 cache_state(prealloc, cached_state);
1236                 prealloc = NULL;
1237                 start = this_end + 1;
1238                 goto search_again;
1239         }
1240         /*
1241          * | ---- desired range ---- |
1242          *                        | state |
1243          * We need to split the extent, and set the bit
1244          * on the first half
1245          */
1246         if (state->start <= end && state->end > end) {
1247                 prealloc = alloc_extent_state_atomic(prealloc);
1248                 if (!prealloc) {
1249                         err = -ENOMEM;
1250                         goto out;
1251                 }
1252
1253                 err = split_state(tree, state, prealloc, end + 1);
1254                 if (err)
1255                         extent_io_tree_panic(tree, err);
1256
1257                 set_state_bits(tree, prealloc, &bits, NULL);
1258                 cache_state(prealloc, cached_state);
1259                 clear_state_bit(tree, prealloc, &clear_bits, 0, NULL);
1260                 prealloc = NULL;
1261                 goto out;
1262         }
1263
1264 search_again:
1265         if (start > end)
1266                 goto out;
1267         spin_unlock(&tree->lock);
1268         cond_resched();
1269         first_iteration = false;
1270         goto again;
1271
1272 out:
1273         spin_unlock(&tree->lock);
1274         if (prealloc)
1275                 free_extent_state(prealloc);
1276
1277         return err;
1278 }
1279
1280 /* wrappers around set/clear extent bit */
1281 int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1282                            unsigned bits, struct extent_changeset *changeset)
1283 {
1284         /*
1285          * We don't support EXTENT_LOCKED yet, as current changeset will
1286          * record any bits changed, so for EXTENT_LOCKED case, it will
1287          * either fail with -EEXIST or changeset will record the whole
1288          * range.
1289          */
1290         BUG_ON(bits & EXTENT_LOCKED);
1291
1292         return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS,
1293                                 changeset);
1294 }
1295
1296 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1297                      unsigned bits, int wake, int delete,
1298                      struct extent_state **cached, gfp_t mask)
1299 {
1300         return __clear_extent_bit(tree, start, end, bits, wake, delete,
1301                                   cached, mask, NULL);
1302 }
1303
1304 int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1305                 unsigned bits, struct extent_changeset *changeset)
1306 {
1307         /*
1308          * Don't support EXTENT_LOCKED case, same reason as
1309          * set_record_extent_bits().
1310          */
1311         BUG_ON(bits & EXTENT_LOCKED);
1312
1313         return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS,
1314                                   changeset);
1315 }
1316
1317 /*
1318  * either insert or lock state struct between start and end use mask to tell
1319  * us if waiting is desired.
1320  */
1321 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1322                      struct extent_state **cached_state)
1323 {
1324         int err;
1325         u64 failed_start;
1326
1327         while (1) {
1328                 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED,
1329                                        EXTENT_LOCKED, &failed_start,
1330                                        cached_state, GFP_NOFS, NULL);
1331                 if (err == -EEXIST) {
1332                         wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1333                         start = failed_start;
1334                 } else
1335                         break;
1336                 WARN_ON(start > end);
1337         }
1338         return err;
1339 }
1340
1341 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1342 {
1343         int err;
1344         u64 failed_start;
1345
1346         err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1347                                &failed_start, NULL, GFP_NOFS, NULL);
1348         if (err == -EEXIST) {
1349                 if (failed_start > start)
1350                         clear_extent_bit(tree, start, failed_start - 1,
1351                                          EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS);
1352                 return 0;
1353         }
1354         return 1;
1355 }
1356
1357 void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1358 {
1359         unsigned long index = start >> PAGE_SHIFT;
1360         unsigned long end_index = end >> PAGE_SHIFT;
1361         struct page *page;
1362
1363         while (index <= end_index) {
1364                 page = find_get_page(inode->i_mapping, index);
1365                 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1366                 clear_page_dirty_for_io(page);
1367                 put_page(page);
1368                 index++;
1369         }
1370 }
1371
1372 void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1373 {
1374         unsigned long index = start >> PAGE_SHIFT;
1375         unsigned long end_index = end >> PAGE_SHIFT;
1376         struct page *page;
1377
1378         while (index <= end_index) {
1379                 page = find_get_page(inode->i_mapping, index);
1380                 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1381                 __set_page_dirty_nobuffers(page);
1382                 account_page_redirty(page);
1383                 put_page(page);
1384                 index++;
1385         }
1386 }
1387
1388 /*
1389  * helper function to set both pages and extents in the tree writeback
1390  */
1391 static void set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
1392 {
1393         tree->ops->set_range_writeback(tree->private_data, start, end);
1394 }
1395
1396 /* find the first state struct with 'bits' set after 'start', and
1397  * return it.  tree->lock must be held.  NULL will returned if
1398  * nothing was found after 'start'
1399  */
1400 static struct extent_state *
1401 find_first_extent_bit_state(struct extent_io_tree *tree,
1402                             u64 start, unsigned bits)
1403 {
1404         struct rb_node *node;
1405         struct extent_state *state;
1406
1407         /*
1408          * this search will find all the extents that end after
1409          * our range starts.
1410          */
1411         node = tree_search(tree, start);
1412         if (!node)
1413                 goto out;
1414
1415         while (1) {
1416                 state = rb_entry(node, struct extent_state, rb_node);
1417                 if (state->end >= start && (state->state & bits))
1418                         return state;
1419
1420                 node = rb_next(node);
1421                 if (!node)
1422                         break;
1423         }
1424 out:
1425         return NULL;
1426 }
1427
1428 /*
1429  * find the first offset in the io tree with 'bits' set. zero is
1430  * returned if we find something, and *start_ret and *end_ret are
1431  * set to reflect the state struct that was found.
1432  *
1433  * If nothing was found, 1 is returned. If found something, return 0.
1434  */
1435 int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1436                           u64 *start_ret, u64 *end_ret, unsigned bits,
1437                           struct extent_state **cached_state)
1438 {
1439         struct extent_state *state;
1440         struct rb_node *n;
1441         int ret = 1;
1442
1443         spin_lock(&tree->lock);
1444         if (cached_state && *cached_state) {
1445                 state = *cached_state;
1446                 if (state->end == start - 1 && extent_state_in_tree(state)) {
1447                         n = rb_next(&state->rb_node);
1448                         while (n) {
1449                                 state = rb_entry(n, struct extent_state,
1450                                                  rb_node);
1451                                 if (state->state & bits)
1452                                         goto got_it;
1453                                 n = rb_next(n);
1454                         }
1455                         free_extent_state(*cached_state);
1456                         *cached_state = NULL;
1457                         goto out;
1458                 }
1459                 free_extent_state(*cached_state);
1460                 *cached_state = NULL;
1461         }
1462
1463         state = find_first_extent_bit_state(tree, start, bits);
1464 got_it:
1465         if (state) {
1466                 cache_state_if_flags(state, cached_state, 0);
1467                 *start_ret = state->start;
1468                 *end_ret = state->end;
1469                 ret = 0;
1470         }
1471 out:
1472         spin_unlock(&tree->lock);
1473         return ret;
1474 }
1475
1476 /*
1477  * find a contiguous range of bytes in the file marked as delalloc, not
1478  * more than 'max_bytes'.  start and end are used to return the range,
1479  *
1480  * 1 is returned if we find something, 0 if nothing was in the tree
1481  */
1482 static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
1483                                         u64 *start, u64 *end, u64 max_bytes,
1484                                         struct extent_state **cached_state)
1485 {
1486         struct rb_node *node;
1487         struct extent_state *state;
1488         u64 cur_start = *start;
1489         u64 found = 0;
1490         u64 total_bytes = 0;
1491
1492         spin_lock(&tree->lock);
1493
1494         /*
1495          * this search will find all the extents that end after
1496          * our range starts.
1497          */
1498         node = tree_search(tree, cur_start);
1499         if (!node) {
1500                 if (!found)
1501                         *end = (u64)-1;
1502                 goto out;
1503         }
1504
1505         while (1) {
1506                 state = rb_entry(node, struct extent_state, rb_node);
1507                 if (found && (state->start != cur_start ||
1508                               (state->state & EXTENT_BOUNDARY))) {
1509                         goto out;
1510                 }
1511                 if (!(state->state & EXTENT_DELALLOC)) {
1512                         if (!found)
1513                                 *end = state->end;
1514                         goto out;
1515                 }
1516                 if (!found) {
1517                         *start = state->start;
1518                         *cached_state = state;
1519                         refcount_inc(&state->refs);
1520                 }
1521                 found++;
1522                 *end = state->end;
1523                 cur_start = state->end + 1;
1524                 node = rb_next(node);
1525                 total_bytes += state->end - state->start + 1;
1526                 if (total_bytes >= max_bytes)
1527                         break;
1528                 if (!node)
1529                         break;
1530         }
1531 out:
1532         spin_unlock(&tree->lock);
1533         return found;
1534 }
1535
1536 static int __process_pages_contig(struct address_space *mapping,
1537                                   struct page *locked_page,
1538                                   pgoff_t start_index, pgoff_t end_index,
1539                                   unsigned long page_ops, pgoff_t *index_ret);
1540
1541 static noinline void __unlock_for_delalloc(struct inode *inode,
1542                                            struct page *locked_page,
1543                                            u64 start, u64 end)
1544 {
1545         unsigned long index = start >> PAGE_SHIFT;
1546         unsigned long end_index = end >> PAGE_SHIFT;
1547
1548         ASSERT(locked_page);
1549         if (index == locked_page->index && end_index == index)
1550                 return;
1551
1552         __process_pages_contig(inode->i_mapping, locked_page, index, end_index,
1553                                PAGE_UNLOCK, NULL);
1554 }
1555
1556 static noinline int lock_delalloc_pages(struct inode *inode,
1557                                         struct page *locked_page,
1558                                         u64 delalloc_start,
1559                                         u64 delalloc_end)
1560 {
1561         unsigned long index = delalloc_start >> PAGE_SHIFT;
1562         unsigned long index_ret = index;
1563         unsigned long end_index = delalloc_end >> PAGE_SHIFT;
1564         int ret;
1565
1566         ASSERT(locked_page);
1567         if (index == locked_page->index && index == end_index)
1568                 return 0;
1569
1570         ret = __process_pages_contig(inode->i_mapping, locked_page, index,
1571                                      end_index, PAGE_LOCK, &index_ret);
1572         if (ret == -EAGAIN)
1573                 __unlock_for_delalloc(inode, locked_page, delalloc_start,
1574                                       (u64)index_ret << PAGE_SHIFT);
1575         return ret;
1576 }
1577
1578 /*
1579  * find a contiguous range of bytes in the file marked as delalloc, not
1580  * more than 'max_bytes'.  start and end are used to return the range,
1581  *
1582  * 1 is returned if we find something, 0 if nothing was in the tree
1583  */
1584 STATIC u64 find_lock_delalloc_range(struct inode *inode,
1585                                     struct extent_io_tree *tree,
1586                                     struct page *locked_page, u64 *start,
1587                                     u64 *end, u64 max_bytes)
1588 {
1589         u64 delalloc_start;
1590         u64 delalloc_end;
1591         u64 found;
1592         struct extent_state *cached_state = NULL;
1593         int ret;
1594         int loops = 0;
1595
1596 again:
1597         /* step one, find a bunch of delalloc bytes starting at start */
1598         delalloc_start = *start;
1599         delalloc_end = 0;
1600         found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1601                                     max_bytes, &cached_state);
1602         if (!found || delalloc_end <= *start) {
1603                 *start = delalloc_start;
1604                 *end = delalloc_end;
1605                 free_extent_state(cached_state);
1606                 return 0;
1607         }
1608
1609         /*
1610          * start comes from the offset of locked_page.  We have to lock
1611          * pages in order, so we can't process delalloc bytes before
1612          * locked_page
1613          */
1614         if (delalloc_start < *start)
1615                 delalloc_start = *start;
1616
1617         /*
1618          * make sure to limit the number of pages we try to lock down
1619          */
1620         if (delalloc_end + 1 - delalloc_start > max_bytes)
1621                 delalloc_end = delalloc_start + max_bytes - 1;
1622
1623         /* step two, lock all the pages after the page that has start */
1624         ret = lock_delalloc_pages(inode, locked_page,
1625                                   delalloc_start, delalloc_end);
1626         if (ret == -EAGAIN) {
1627                 /* some of the pages are gone, lets avoid looping by
1628                  * shortening the size of the delalloc range we're searching
1629                  */
1630                 free_extent_state(cached_state);
1631                 cached_state = NULL;
1632                 if (!loops) {
1633                         max_bytes = PAGE_SIZE;
1634                         loops = 1;
1635                         goto again;
1636                 } else {
1637                         found = 0;
1638                         goto out_failed;
1639                 }
1640         }
1641         BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */
1642
1643         /* step three, lock the state bits for the whole range */
1644         lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state);
1645
1646         /* then test to make sure it is all still delalloc */
1647         ret = test_range_bit(tree, delalloc_start, delalloc_end,
1648                              EXTENT_DELALLOC, 1, cached_state);
1649         if (!ret) {
1650                 unlock_extent_cached(tree, delalloc_start, delalloc_end,
1651                                      &cached_state, GFP_NOFS);
1652                 __unlock_for_delalloc(inode, locked_page,
1653                               delalloc_start, delalloc_end);
1654                 cond_resched();
1655                 goto again;
1656         }
1657         free_extent_state(cached_state);
1658         *start = delalloc_start;
1659         *end = delalloc_end;
1660 out_failed:
1661         return found;
1662 }
1663
1664 static int __process_pages_contig(struct address_space *mapping,
1665                                   struct page *locked_page,
1666                                   pgoff_t start_index, pgoff_t end_index,
1667                                   unsigned long page_ops, pgoff_t *index_ret)
1668 {
1669         unsigned long nr_pages = end_index - start_index + 1;
1670         unsigned long pages_locked = 0;
1671         pgoff_t index = start_index;
1672         struct page *pages[16];
1673         unsigned ret;
1674         int err = 0;
1675         int i;
1676
1677         if (page_ops & PAGE_LOCK) {
1678                 ASSERT(page_ops == PAGE_LOCK);
1679                 ASSERT(index_ret && *index_ret == start_index);
1680         }
1681
1682         if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
1683                 mapping_set_error(mapping, -EIO);
1684
1685         while (nr_pages > 0) {
1686                 ret = find_get_pages_contig(mapping, index,
1687                                      min_t(unsigned long,
1688                                      nr_pages, ARRAY_SIZE(pages)), pages);
1689                 if (ret == 0) {
1690                         /*
1691                          * Only if we're going to lock these pages,
1692                          * can we find nothing at @index.
1693                          */
1694                         ASSERT(page_ops & PAGE_LOCK);
1695                         err = -EAGAIN;
1696                         goto out;
1697                 }
1698
1699                 for (i = 0; i < ret; i++) {
1700                         if (page_ops & PAGE_SET_PRIVATE2)
1701                                 SetPagePrivate2(pages[i]);
1702
1703                         if (pages[i] == locked_page) {
1704                                 put_page(pages[i]);
1705                                 pages_locked++;
1706                                 continue;
1707                         }
1708                         if (page_ops & PAGE_CLEAR_DIRTY)
1709                                 clear_page_dirty_for_io(pages[i]);
1710                         if (page_ops & PAGE_SET_WRITEBACK)
1711                                 set_page_writeback(pages[i]);
1712                         if (page_ops & PAGE_SET_ERROR)
1713                                 SetPageError(pages[i]);
1714                         if (page_ops & PAGE_END_WRITEBACK)
1715                                 end_page_writeback(pages[i]);
1716                         if (page_ops & PAGE_UNLOCK)
1717                                 unlock_page(pages[i]);
1718                         if (page_ops & PAGE_LOCK) {
1719                                 lock_page(pages[i]);
1720                                 if (!PageDirty(pages[i]) ||
1721                                     pages[i]->mapping != mapping) {
1722                                         unlock_page(pages[i]);
1723                                         put_page(pages[i]);
1724                                         err = -EAGAIN;
1725                                         goto out;
1726                                 }
1727                         }
1728                         put_page(pages[i]);
1729                         pages_locked++;
1730                 }
1731                 nr_pages -= ret;
1732                 index += ret;
1733                 cond_resched();
1734         }
1735 out:
1736         if (err && index_ret)
1737                 *index_ret = start_index + pages_locked - 1;
1738         return err;
1739 }
1740
1741 void extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end,
1742                                  u64 delalloc_end, struct page *locked_page,
1743                                  unsigned clear_bits,
1744                                  unsigned long page_ops)
1745 {
1746         clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, clear_bits, 1, 0,
1747                          NULL, GFP_NOFS);
1748
1749         __process_pages_contig(inode->i_mapping, locked_page,
1750                                start >> PAGE_SHIFT, end >> PAGE_SHIFT,
1751                                page_ops, NULL);
1752 }
1753
1754 /*
1755  * count the number of bytes in the tree that have a given bit(s)
1756  * set.  This can be fairly slow, except for EXTENT_DIRTY which is
1757  * cached.  The total number found is returned.
1758  */
1759 u64 count_range_bits(struct extent_io_tree *tree,
1760                      u64 *start, u64 search_end, u64 max_bytes,
1761                      unsigned bits, int contig)
1762 {
1763         struct rb_node *node;
1764         struct extent_state *state;
1765         u64 cur_start = *start;
1766         u64 total_bytes = 0;
1767         u64 last = 0;
1768         int found = 0;
1769
1770         if (WARN_ON(search_end <= cur_start))
1771                 return 0;
1772
1773         spin_lock(&tree->lock);
1774         if (cur_start == 0 && bits == EXTENT_DIRTY) {
1775                 total_bytes = tree->dirty_bytes;
1776                 goto out;
1777         }
1778         /*
1779          * this search will find all the extents that end after
1780          * our range starts.
1781          */
1782         node = tree_search(tree, cur_start);
1783         if (!node)
1784                 goto out;
1785
1786         while (1) {
1787                 state = rb_entry(node, struct extent_state, rb_node);
1788                 if (state->start > search_end)
1789                         break;
1790                 if (contig && found && state->start > last + 1)
1791                         break;
1792                 if (state->end >= cur_start && (state->state & bits) == bits) {
1793                         total_bytes += min(search_end, state->end) + 1 -
1794                                        max(cur_start, state->start);
1795                         if (total_bytes >= max_bytes)
1796                                 break;
1797                         if (!found) {
1798                                 *start = max(cur_start, state->start);
1799                                 found = 1;
1800                         }
1801                         last = state->end;
1802                 } else if (contig && found) {
1803                         break;
1804                 }
1805                 node = rb_next(node);
1806                 if (!node)
1807                         break;
1808         }
1809 out:
1810         spin_unlock(&tree->lock);
1811         return total_bytes;
1812 }
1813
1814 /*
1815  * set the private field for a given byte offset in the tree.  If there isn't
1816  * an extent_state there already, this does nothing.
1817  */
1818 static noinline int set_state_failrec(struct extent_io_tree *tree, u64 start,
1819                 struct io_failure_record *failrec)
1820 {
1821         struct rb_node *node;
1822         struct extent_state *state;
1823         int ret = 0;
1824
1825         spin_lock(&tree->lock);
1826         /*
1827          * this search will find all the extents that end after
1828          * our range starts.
1829          */
1830         node = tree_search(tree, start);
1831         if (!node) {
1832                 ret = -ENOENT;
1833                 goto out;
1834         }
1835         state = rb_entry(node, struct extent_state, rb_node);
1836         if (state->start != start) {
1837                 ret = -ENOENT;
1838                 goto out;
1839         }
1840         state->failrec = failrec;
1841 out:
1842         spin_unlock(&tree->lock);
1843         return ret;
1844 }
1845
1846 static noinline int get_state_failrec(struct extent_io_tree *tree, u64 start,
1847                 struct io_failure_record **failrec)
1848 {
1849         struct rb_node *node;
1850         struct extent_state *state;
1851         int ret = 0;
1852
1853         spin_lock(&tree->lock);
1854         /*
1855          * this search will find all the extents that end after
1856          * our range starts.
1857          */
1858         node = tree_search(tree, start);
1859         if (!node) {
1860                 ret = -ENOENT;
1861                 goto out;
1862         }
1863         state = rb_entry(node, struct extent_state, rb_node);
1864         if (state->start != start) {
1865                 ret = -ENOENT;
1866                 goto out;
1867         }
1868         *failrec = state->failrec;
1869 out:
1870         spin_unlock(&tree->lock);
1871         return ret;
1872 }
1873
1874 /*
1875  * searches a range in the state tree for a given mask.
1876  * If 'filled' == 1, this returns 1 only if every extent in the tree
1877  * has the bits set.  Otherwise, 1 is returned if any bit in the
1878  * range is found set.
1879  */
1880 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
1881                    unsigned bits, int filled, struct extent_state *cached)
1882 {
1883         struct extent_state *state = NULL;
1884         struct rb_node *node;
1885         int bitset = 0;
1886
1887         spin_lock(&tree->lock);
1888         if (cached && extent_state_in_tree(cached) && cached->start <= start &&
1889             cached->end > start)
1890                 node = &cached->rb_node;
1891         else
1892                 node = tree_search(tree, start);
1893         while (node && start <= end) {
1894                 state = rb_entry(node, struct extent_state, rb_node);
1895
1896                 if (filled && state->start > start) {
1897                         bitset = 0;
1898                         break;
1899                 }
1900
1901                 if (state->start > end)
1902                         break;
1903
1904                 if (state->state & bits) {
1905                         bitset = 1;
1906                         if (!filled)
1907                                 break;
1908                 } else if (filled) {
1909                         bitset = 0;
1910                         break;
1911                 }
1912
1913                 if (state->end == (u64)-1)
1914                         break;
1915
1916                 start = state->end + 1;
1917                 if (start > end)
1918                         break;
1919                 node = rb_next(node);
1920                 if (!node) {
1921                         if (filled)
1922                                 bitset = 0;
1923                         break;
1924                 }
1925         }
1926         spin_unlock(&tree->lock);
1927         return bitset;
1928 }
1929
1930 /*
1931  * helper function to set a given page up to date if all the
1932  * extents in the tree for that page are up to date
1933  */
1934 static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
1935 {
1936         u64 start = page_offset(page);
1937         u64 end = start + PAGE_SIZE - 1;
1938         if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
1939                 SetPageUptodate(page);
1940 }
1941
1942 int free_io_failure(struct extent_io_tree *failure_tree,
1943                     struct extent_io_tree *io_tree,
1944                     struct io_failure_record *rec)
1945 {
1946         int ret;
1947         int err = 0;
1948
1949         set_state_failrec(failure_tree, rec->start, NULL);
1950         ret = clear_extent_bits(failure_tree, rec->start,
1951                                 rec->start + rec->len - 1,
1952                                 EXTENT_LOCKED | EXTENT_DIRTY);
1953         if (ret)
1954                 err = ret;
1955
1956         ret = clear_extent_bits(io_tree, rec->start,
1957                                 rec->start + rec->len - 1,
1958                                 EXTENT_DAMAGED);
1959         if (ret && !err)
1960                 err = ret;
1961
1962         kfree(rec);
1963         return err;
1964 }
1965
1966 /*
1967  * this bypasses the standard btrfs submit functions deliberately, as
1968  * the standard behavior is to write all copies in a raid setup. here we only
1969  * want to write the one bad copy. so we do the mapping for ourselves and issue
1970  * submit_bio directly.
1971  * to avoid any synchronization issues, wait for the data after writing, which
1972  * actually prevents the read that triggered the error from finishing.
1973  * currently, there can be no more than two copies of every data bit. thus,
1974  * exactly one rewrite is required.
1975  */
1976 int repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start,
1977                       u64 length, u64 logical, struct page *page,
1978                       unsigned int pg_offset, int mirror_num)
1979 {
1980         struct bio *bio;
1981         struct btrfs_device *dev;
1982         u64 map_length = 0;
1983         u64 sector;
1984         struct btrfs_bio *bbio = NULL;
1985         int ret;
1986
1987         ASSERT(!(fs_info->sb->s_flags & MS_RDONLY));
1988         BUG_ON(!mirror_num);
1989
1990         bio = btrfs_io_bio_alloc(1);
1991         bio->bi_iter.bi_size = 0;
1992         map_length = length;
1993
1994         /*
1995          * Avoid races with device replace and make sure our bbio has devices
1996          * associated to its stripes that don't go away while we are doing the
1997          * read repair operation.
1998          */
1999         btrfs_bio_counter_inc_blocked(fs_info);
2000         if (btrfs_is_parity_mirror(fs_info, logical, length, mirror_num)) {
2001                 /*
2002                  * Note that we don't use BTRFS_MAP_WRITE because it's supposed
2003                  * to update all raid stripes, but here we just want to correct
2004                  * bad stripe, thus BTRFS_MAP_READ is abused to only get the bad
2005                  * stripe's dev and sector.
2006                  */
2007                 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical,
2008                                       &map_length, &bbio, 0);
2009                 if (ret) {
2010                         btrfs_bio_counter_dec(fs_info);
2011                         bio_put(bio);
2012                         return -EIO;
2013                 }
2014                 ASSERT(bbio->mirror_num == 1);
2015         } else {
2016                 ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical,
2017                                       &map_length, &bbio, mirror_num);
2018                 if (ret) {
2019                         btrfs_bio_counter_dec(fs_info);
2020                         bio_put(bio);
2021                         return -EIO;
2022                 }
2023                 BUG_ON(mirror_num != bbio->mirror_num);
2024         }
2025
2026         sector = bbio->stripes[bbio->mirror_num - 1].physical >> 9;
2027         bio->bi_iter.bi_sector = sector;
2028         dev = bbio->stripes[bbio->mirror_num - 1].dev;
2029         btrfs_put_bbio(bbio);
2030         if (!dev || !dev->bdev || !dev->writeable) {
2031                 btrfs_bio_counter_dec(fs_info);
2032                 bio_put(bio);
2033                 return -EIO;
2034         }
2035         bio->bi_bdev = dev->bdev;
2036         bio->bi_opf = REQ_OP_WRITE | REQ_SYNC;
2037         bio_add_page(bio, page, length, pg_offset);
2038
2039         if (btrfsic_submit_bio_wait(bio)) {
2040                 /* try to remap that extent elsewhere? */
2041                 btrfs_bio_counter_dec(fs_info);
2042                 bio_put(bio);
2043                 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
2044                 return -EIO;
2045         }
2046
2047         btrfs_info_rl_in_rcu(fs_info,
2048                 "read error corrected: ino %llu off %llu (dev %s sector %llu)",
2049                                   ino, start,
2050                                   rcu_str_deref(dev->name), sector);
2051         btrfs_bio_counter_dec(fs_info);
2052         bio_put(bio);
2053         return 0;
2054 }
2055
2056 int repair_eb_io_failure(struct btrfs_fs_info *fs_info,
2057                          struct extent_buffer *eb, int mirror_num)
2058 {
2059         u64 start = eb->start;
2060         unsigned long i, num_pages = num_extent_pages(eb->start, eb->len);
2061         int ret = 0;
2062
2063         if (fs_info->sb->s_flags & MS_RDONLY)
2064                 return -EROFS;
2065
2066         for (i = 0; i < num_pages; i++) {
2067                 struct page *p = eb->pages[i];
2068
2069                 ret = repair_io_failure(fs_info, 0, start, PAGE_SIZE, start, p,
2070                                         start - page_offset(p), mirror_num);
2071                 if (ret)
2072                         break;
2073                 start += PAGE_SIZE;
2074         }
2075
2076         return ret;
2077 }
2078
2079 /*
2080  * each time an IO finishes, we do a fast check in the IO failure tree
2081  * to see if we need to process or clean up an io_failure_record
2082  */
2083 int clean_io_failure(struct btrfs_fs_info *fs_info,
2084                      struct extent_io_tree *failure_tree,
2085                      struct extent_io_tree *io_tree, u64 start,
2086                      struct page *page, u64 ino, unsigned int pg_offset)
2087 {
2088         u64 private;
2089         struct io_failure_record *failrec;
2090         struct extent_state *state;
2091         int num_copies;
2092         int ret;
2093
2094         private = 0;
2095         ret = count_range_bits(failure_tree, &private, (u64)-1, 1,
2096                                EXTENT_DIRTY, 0);
2097         if (!ret)
2098                 return 0;
2099
2100         ret = get_state_failrec(failure_tree, start, &failrec);
2101         if (ret)
2102                 return 0;
2103
2104         BUG_ON(!failrec->this_mirror);
2105
2106         if (failrec->in_validation) {
2107                 /* there was no real error, just free the record */
2108                 btrfs_debug(fs_info,
2109                         "clean_io_failure: freeing dummy error at %llu",
2110                         failrec->start);
2111                 goto out;
2112         }
2113         if (fs_info->sb->s_flags & MS_RDONLY)
2114                 goto out;
2115
2116         spin_lock(&io_tree->lock);
2117         state = find_first_extent_bit_state(io_tree,
2118                                             failrec->start,
2119                                             EXTENT_LOCKED);
2120         spin_unlock(&io_tree->lock);
2121
2122         if (state && state->start <= failrec->start &&
2123             state->end >= failrec->start + failrec->len - 1) {
2124                 num_copies = btrfs_num_copies(fs_info, failrec->logical,
2125                                               failrec->len);
2126                 if (num_copies > 1)  {
2127                         repair_io_failure(fs_info, ino, start, failrec->len,
2128                                           failrec->logical, page, pg_offset,
2129                                           failrec->failed_mirror);
2130                 }
2131         }
2132
2133 out:
2134         free_io_failure(failure_tree, io_tree, failrec);
2135
2136         return 0;
2137 }
2138
2139 /*
2140  * Can be called when
2141  * - hold extent lock
2142  * - under ordered extent
2143  * - the inode is freeing
2144  */
2145 void btrfs_free_io_failure_record(struct btrfs_inode *inode, u64 start, u64 end)
2146 {
2147         struct extent_io_tree *failure_tree = &inode->io_failure_tree;
2148         struct io_failure_record *failrec;
2149         struct extent_state *state, *next;
2150
2151         if (RB_EMPTY_ROOT(&failure_tree->state))
2152                 return;
2153
2154         spin_lock(&failure_tree->lock);
2155         state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
2156         while (state) {
2157                 if (state->start > end)
2158                         break;
2159
2160                 ASSERT(state->end <= end);
2161
2162                 next = next_state(state);
2163
2164                 failrec = state->failrec;
2165                 free_extent_state(state);
2166                 kfree(failrec);
2167
2168                 state = next;
2169         }
2170         spin_unlock(&failure_tree->lock);
2171 }
2172
2173 int btrfs_get_io_failure_record(struct inode *inode, u64 start, u64 end,
2174                 struct io_failure_record **failrec_ret)
2175 {
2176         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2177         struct io_failure_record *failrec;
2178         struct extent_map *em;
2179         struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2180         struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2181         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2182         int ret;
2183         u64 logical;
2184
2185         ret = get_state_failrec(failure_tree, start, &failrec);
2186         if (ret) {
2187                 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2188                 if (!failrec)
2189                         return -ENOMEM;
2190
2191                 failrec->start = start;
2192                 failrec->len = end - start + 1;
2193                 failrec->this_mirror = 0;
2194                 failrec->bio_flags = 0;
2195                 failrec->in_validation = 0;
2196
2197                 read_lock(&em_tree->lock);
2198                 em = lookup_extent_mapping(em_tree, start, failrec->len);
2199                 if (!em) {
2200                         read_unlock(&em_tree->lock);
2201                         kfree(failrec);
2202                         return -EIO;
2203                 }
2204
2205                 if (em->start > start || em->start + em->len <= start) {
2206                         free_extent_map(em);
2207                         em = NULL;
2208                 }
2209                 read_unlock(&em_tree->lock);
2210                 if (!em) {
2211                         kfree(failrec);
2212                         return -EIO;
2213                 }
2214
2215                 logical = start - em->start;
2216                 logical = em->block_start + logical;
2217                 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2218                         logical = em->block_start;
2219                         failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2220                         extent_set_compress_type(&failrec->bio_flags,
2221                                                  em->compress_type);
2222                 }
2223
2224                 btrfs_debug(fs_info,
2225                         "Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu",
2226                         logical, start, failrec->len);
2227
2228                 failrec->logical = logical;
2229                 free_extent_map(em);
2230
2231                 /* set the bits in the private failure tree */
2232                 ret = set_extent_bits(failure_tree, start, end,
2233                                         EXTENT_LOCKED | EXTENT_DIRTY);
2234                 if (ret >= 0)
2235                         ret = set_state_failrec(failure_tree, start, failrec);
2236                 /* set the bits in the inode's tree */
2237                 if (ret >= 0)
2238                         ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED);
2239                 if (ret < 0) {
2240                         kfree(failrec);
2241                         return ret;
2242                 }
2243         } else {
2244                 btrfs_debug(fs_info,
2245                         "Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d",
2246                         failrec->logical, failrec->start, failrec->len,
2247                         failrec->in_validation);
2248                 /*
2249                  * when data can be on disk more than twice, add to failrec here
2250                  * (e.g. with a list for failed_mirror) to make
2251                  * clean_io_failure() clean all those errors at once.
2252                  */
2253         }
2254
2255         *failrec_ret = failrec;
2256
2257         return 0;
2258 }
2259
2260 int btrfs_check_repairable(struct inode *inode, struct bio *failed_bio,
2261                            struct io_failure_record *failrec, int failed_mirror)
2262 {
2263         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2264         int num_copies;
2265
2266         num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
2267         if (num_copies == 1) {
2268                 /*
2269                  * we only have a single copy of the data, so don't bother with
2270                  * all the retry and error correction code that follows. no
2271                  * matter what the error is, it is very likely to persist.
2272                  */
2273                 btrfs_debug(fs_info,
2274                         "Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
2275                         num_copies, failrec->this_mirror, failed_mirror);
2276                 return 0;
2277         }
2278
2279         /*
2280          * there are two premises:
2281          *      a) deliver good data to the caller
2282          *      b) correct the bad sectors on disk
2283          */
2284         if (failed_bio->bi_vcnt > 1) {
2285                 /*
2286                  * to fulfill b), we need to know the exact failing sectors, as
2287                  * we don't want to rewrite any more than the failed ones. thus,
2288                  * we need separate read requests for the failed bio
2289                  *
2290                  * if the following BUG_ON triggers, our validation request got
2291                  * merged. we need separate requests for our algorithm to work.
2292                  */
2293                 BUG_ON(failrec->in_validation);
2294                 failrec->in_validation = 1;
2295                 failrec->this_mirror = failed_mirror;
2296         } else {
2297                 /*
2298                  * we're ready to fulfill a) and b) alongside. get a good copy
2299                  * of the failed sector and if we succeed, we have setup
2300                  * everything for repair_io_failure to do the rest for us.
2301                  */
2302                 if (failrec->in_validation) {
2303                         BUG_ON(failrec->this_mirror != failed_mirror);
2304                         failrec->in_validation = 0;
2305                         failrec->this_mirror = 0;
2306                 }
2307                 failrec->failed_mirror = failed_mirror;
2308                 failrec->this_mirror++;
2309                 if (failrec->this_mirror == failed_mirror)
2310                         failrec->this_mirror++;
2311         }
2312
2313         if (failrec->this_mirror > num_copies) {
2314                 btrfs_debug(fs_info,
2315                         "Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
2316                         num_copies, failrec->this_mirror, failed_mirror);
2317                 return 0;
2318         }
2319
2320         return 1;
2321 }
2322
2323
2324 struct bio *btrfs_create_repair_bio(struct inode *inode, struct bio *failed_bio,
2325                                     struct io_failure_record *failrec,
2326                                     struct page *page, int pg_offset, int icsum,
2327                                     bio_end_io_t *endio_func, void *data)
2328 {
2329         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2330         struct bio *bio;
2331         struct btrfs_io_bio *btrfs_failed_bio;
2332         struct btrfs_io_bio *btrfs_bio;
2333
2334         bio = btrfs_io_bio_alloc(1);
2335         bio->bi_end_io = endio_func;
2336         bio->bi_iter.bi_sector = failrec->logical >> 9;
2337         bio->bi_bdev = fs_info->fs_devices->latest_bdev;
2338         bio->bi_iter.bi_size = 0;
2339         bio->bi_private = data;
2340
2341         btrfs_failed_bio = btrfs_io_bio(failed_bio);
2342         if (btrfs_failed_bio->csum) {
2343                 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2344
2345                 btrfs_bio = btrfs_io_bio(bio);
2346                 btrfs_bio->csum = btrfs_bio->csum_inline;
2347                 icsum *= csum_size;
2348                 memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + icsum,
2349                        csum_size);
2350         }
2351
2352         bio_add_page(bio, page, failrec->len, pg_offset);
2353
2354         return bio;
2355 }
2356
2357 /*
2358  * this is a generic handler for readpage errors (default
2359  * readpage_io_failed_hook). if other copies exist, read those and write back
2360  * good data to the failed position. does not investigate in remapping the
2361  * failed extent elsewhere, hoping the device will be smart enough to do this as
2362  * needed
2363  */
2364
2365 static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset,
2366                               struct page *page, u64 start, u64 end,
2367                               int failed_mirror)
2368 {
2369         struct io_failure_record *failrec;
2370         struct inode *inode = page->mapping->host;
2371         struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2372         struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2373         struct bio *bio;
2374         int read_mode = 0;
2375         int ret;
2376
2377         BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
2378
2379         ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
2380         if (ret)
2381                 return ret;
2382
2383         ret = btrfs_check_repairable(inode, failed_bio, failrec, failed_mirror);
2384         if (!ret) {
2385                 free_io_failure(failure_tree, tree, failrec);
2386                 return -EIO;
2387         }
2388
2389         if (failed_bio->bi_vcnt > 1)
2390                 read_mode |= REQ_FAILFAST_DEV;
2391
2392         phy_offset >>= inode->i_sb->s_blocksize_bits;
2393         bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
2394                                       start - page_offset(page),
2395                                       (int)phy_offset, failed_bio->bi_end_io,
2396                                       NULL);
2397         bio_set_op_attrs(bio, REQ_OP_READ, read_mode);
2398
2399         btrfs_debug(btrfs_sb(inode->i_sb),
2400                 "Repair Read Error: submitting new read[%#x] to this_mirror=%d, in_validation=%d",
2401                 read_mode, failrec->this_mirror, failrec->in_validation);
2402
2403         ret = tree->ops->submit_bio_hook(tree->private_data, bio, failrec->this_mirror,
2404                                          failrec->bio_flags, 0);
2405         if (ret) {
2406                 free_io_failure(failure_tree, tree, failrec);
2407                 bio_put(bio);
2408         }
2409
2410         return ret;
2411 }
2412
2413 /* lots and lots of room for performance fixes in the end_bio funcs */
2414
2415 void end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2416 {
2417         int uptodate = (err == 0);
2418         struct extent_io_tree *tree;
2419         int ret = 0;
2420
2421         tree = &BTRFS_I(page->mapping->host)->io_tree;
2422
2423         if (tree->ops && tree->ops->writepage_end_io_hook)
2424                 tree->ops->writepage_end_io_hook(page, start, end, NULL,
2425                                 uptodate);
2426
2427         if (!uptodate) {
2428                 ClearPageUptodate(page);
2429                 SetPageError(page);
2430                 ret = err < 0 ? err : -EIO;
2431                 mapping_set_error(page->mapping, ret);
2432         }
2433 }
2434
2435 /*
2436  * after a writepage IO is done, we need to:
2437  * clear the uptodate bits on error
2438  * clear the writeback bits in the extent tree for this IO
2439  * end_page_writeback if the page has no more pending IO
2440  *
2441  * Scheduling is not allowed, so the extent state tree is expected
2442  * to have one and only one object corresponding to this IO.
2443  */
2444 static void end_bio_extent_writepage(struct bio *bio)
2445 {
2446         struct bio_vec *bvec;
2447         u64 start;
2448         u64 end;
2449         int i;
2450
2451         ASSERT(!bio_flagged(bio, BIO_CLONED));
2452         bio_for_each_segment_all(bvec, bio, i) {
2453                 struct page *page = bvec->bv_page;
2454                 struct inode *inode = page->mapping->host;
2455                 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2456
2457                 /* We always issue full-page reads, but if some block
2458                  * in a page fails to read, blk_update_request() will
2459                  * advance bv_offset and adjust bv_len to compensate.
2460                  * Print a warning for nonzero offsets, and an error
2461                  * if they don't add up to a full page.  */
2462                 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2463                         if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2464                                 btrfs_err(fs_info,
2465                                    "partial page write in btrfs with offset %u and length %u",
2466                                         bvec->bv_offset, bvec->bv_len);
2467                         else
2468                                 btrfs_info(fs_info,
2469                                    "incomplete page write in btrfs with offset %u and length %u",
2470                                         bvec->bv_offset, bvec->bv_len);
2471                 }
2472
2473                 start = page_offset(page);
2474                 end = start + bvec->bv_offset + bvec->bv_len - 1;
2475
2476                 end_extent_writepage(page, bio->bi_error, start, end);
2477                 end_page_writeback(page);
2478         }
2479
2480         bio_put(bio);
2481 }
2482
2483 static void
2484 endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
2485                               int uptodate)
2486 {
2487         struct extent_state *cached = NULL;
2488         u64 end = start + len - 1;
2489
2490         if (uptodate && tree->track_uptodate)
2491                 set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
2492         unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC);
2493 }
2494
2495 /*
2496  * after a readpage IO is done, we need to:
2497  * clear the uptodate bits on error
2498  * set the uptodate bits if things worked
2499  * set the page up to date if all extents in the tree are uptodate
2500  * clear the lock bit in the extent tree
2501  * unlock the page if there are no other extents locked for it
2502  *
2503  * Scheduling is not allowed, so the extent state tree is expected
2504  * to have one and only one object corresponding to this IO.
2505  */
2506 static void end_bio_extent_readpage(struct bio *bio)
2507 {
2508         struct bio_vec *bvec;
2509         int uptodate = !bio->bi_error;
2510         struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
2511         struct extent_io_tree *tree, *failure_tree;
2512         u64 offset = 0;
2513         u64 start;
2514         u64 end;
2515         u64 len;
2516         u64 extent_start = 0;
2517         u64 extent_len = 0;
2518         int mirror;
2519         int ret;
2520         int i;
2521
2522         ASSERT(!bio_flagged(bio, BIO_CLONED));
2523         bio_for_each_segment_all(bvec, bio, i) {
2524                 struct page *page = bvec->bv_page;
2525                 struct inode *inode = page->mapping->host;
2526                 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2527
2528                 btrfs_debug(fs_info,
2529                         "end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u",
2530                         (u64)bio->bi_iter.bi_sector, bio->bi_error,
2531                         io_bio->mirror_num);
2532                 tree = &BTRFS_I(inode)->io_tree;
2533                 failure_tree = &BTRFS_I(inode)->io_failure_tree;
2534
2535                 /* We always issue full-page reads, but if some block
2536                  * in a page fails to read, blk_update_request() will
2537                  * advance bv_offset and adjust bv_len to compensate.
2538                  * Print a warning for nonzero offsets, and an error
2539                  * if they don't add up to a full page.  */
2540                 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2541                         if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2542                                 btrfs_err(fs_info,
2543                                         "partial page read in btrfs with offset %u and length %u",
2544                                         bvec->bv_offset, bvec->bv_len);
2545                         else
2546                                 btrfs_info(fs_info,
2547                                         "incomplete page read in btrfs with offset %u and length %u",
2548                                         bvec->bv_offset, bvec->bv_len);
2549                 }
2550
2551                 start = page_offset(page);
2552                 end = start + bvec->bv_offset + bvec->bv_len - 1;
2553                 len = bvec->bv_len;
2554
2555                 mirror = io_bio->mirror_num;
2556                 if (likely(uptodate && tree->ops)) {
2557                         ret = tree->ops->readpage_end_io_hook(io_bio, offset,
2558                                                               page, start, end,
2559                                                               mirror);
2560                         if (ret)
2561                                 uptodate = 0;
2562                         else
2563                                 clean_io_failure(BTRFS_I(inode)->root->fs_info,
2564                                                  failure_tree, tree, start,
2565                                                  page,
2566                                                  btrfs_ino(BTRFS_I(inode)), 0);
2567                 }
2568
2569                 if (likely(uptodate))
2570                         goto readpage_ok;
2571
2572                 if (tree->ops) {
2573                         ret = tree->ops->readpage_io_failed_hook(page, mirror);
2574                         if (ret == -EAGAIN) {
2575                                 /*
2576                                  * Data inode's readpage_io_failed_hook() always
2577                                  * returns -EAGAIN.
2578                                  *
2579                                  * The generic bio_readpage_error handles errors
2580                                  * the following way: If possible, new read
2581                                  * requests are created and submitted and will
2582                                  * end up in end_bio_extent_readpage as well (if
2583                                  * we're lucky, not in the !uptodate case). In
2584                                  * that case it returns 0 and we just go on with
2585                                  * the next page in our bio. If it can't handle
2586                                  * the error it will return -EIO and we remain
2587                                  * responsible for that page.
2588                                  */
2589                                 ret = bio_readpage_error(bio, offset, page,
2590                                                          start, end, mirror);
2591                                 if (ret == 0) {
2592                                         uptodate = !bio->bi_error;
2593                                         offset += len;
2594                                         continue;
2595                                 }
2596                         }
2597
2598                         /*
2599                          * metadata's readpage_io_failed_hook() always returns
2600                          * -EIO and fixes nothing.  -EIO is also returned if
2601                          * data inode error could not be fixed.
2602                          */
2603                         ASSERT(ret == -EIO);
2604                 }
2605 readpage_ok:
2606                 if (likely(uptodate)) {
2607                         loff_t i_size = i_size_read(inode);
2608                         pgoff_t end_index = i_size >> PAGE_SHIFT;
2609                         unsigned off;
2610
2611                         /* Zero out the end if this page straddles i_size */
2612                         off = i_size & (PAGE_SIZE-1);
2613                         if (page->index == end_index && off)
2614                                 zero_user_segment(page, off, PAGE_SIZE);
2615                         SetPageUptodate(page);
2616                 } else {
2617                         ClearPageUptodate(page);
2618                         SetPageError(page);
2619                 }
2620                 unlock_page(page);
2621                 offset += len;
2622
2623                 if (unlikely(!uptodate)) {
2624                         if (extent_len) {
2625                                 endio_readpage_release_extent(tree,
2626                                                               extent_start,
2627                                                               extent_len, 1);
2628                                 extent_start = 0;
2629                                 extent_len = 0;
2630                         }
2631                         endio_readpage_release_extent(tree, start,
2632                                                       end - start + 1, 0);
2633                 } else if (!extent_len) {
2634                         extent_start = start;
2635                         extent_len = end + 1 - start;
2636                 } else if (extent_start + extent_len == start) {
2637                         extent_len += end + 1 - start;
2638                 } else {
2639                         endio_readpage_release_extent(tree, extent_start,
2640                                                       extent_len, uptodate);
2641                         extent_start = start;
2642                         extent_len = end + 1 - start;
2643                 }
2644         }
2645
2646         if (extent_len)
2647                 endio_readpage_release_extent(tree, extent_start, extent_len,
2648                                               uptodate);
2649         if (io_bio->end_io)
2650                 io_bio->end_io(io_bio, bio->bi_error);
2651         bio_put(bio);
2652 }
2653
2654 /*
2655  * Initialize the members up to but not including 'bio'. Use after allocating a
2656  * new bio by bio_alloc_bioset as it does not initialize the bytes outside of
2657  * 'bio' because use of __GFP_ZERO is not supported.
2658  */
2659 static inline void btrfs_io_bio_init(struct btrfs_io_bio *btrfs_bio)
2660 {
2661         memset(btrfs_bio, 0, offsetof(struct btrfs_io_bio, bio));
2662 }
2663
2664 /*
2665  * The following helpers allocate a bio. As it's backed by a bioset, it'll
2666  * never fail.  We're returning a bio right now but you can call btrfs_io_bio
2667  * for the appropriate container_of magic
2668  */
2669 struct bio *btrfs_bio_alloc(struct block_device *bdev, u64 first_byte)
2670 {
2671         struct bio *bio;
2672
2673         bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, btrfs_bioset);
2674         bio->bi_bdev = bdev;
2675         bio->bi_iter.bi_sector = first_byte >> 9;
2676         btrfs_io_bio_init(btrfs_io_bio(bio));
2677         return bio;
2678 }
2679
2680 struct bio *btrfs_bio_clone(struct bio *bio)
2681 {
2682         struct btrfs_io_bio *btrfs_bio;
2683         struct bio *new;
2684
2685         /* Bio allocation backed by a bioset does not fail */
2686         new = bio_clone_fast(bio, GFP_NOFS, btrfs_bioset);
2687         btrfs_bio = btrfs_io_bio(new);
2688         btrfs_io_bio_init(btrfs_bio);
2689         btrfs_bio->iter = bio->bi_iter;
2690         return new;
2691 }
2692
2693 struct bio *btrfs_io_bio_alloc(unsigned int nr_iovecs)
2694 {
2695         struct bio *bio;
2696
2697         /* Bio allocation backed by a bioset does not fail */
2698         bio = bio_alloc_bioset(GFP_NOFS, nr_iovecs, btrfs_bioset);
2699         btrfs_io_bio_init(btrfs_io_bio(bio));
2700         return bio;
2701 }
2702
2703 struct bio *btrfs_bio_clone_partial(struct bio *orig, int offset, int size)
2704 {
2705         struct bio *bio;
2706         struct btrfs_io_bio *btrfs_bio;
2707
2708         /* this will never fail when it's backed by a bioset */
2709         bio = bio_clone_fast(orig, GFP_NOFS, btrfs_bioset);
2710         ASSERT(bio);
2711
2712         btrfs_bio = btrfs_io_bio(bio);
2713         btrfs_io_bio_init(btrfs_bio);
2714
2715         bio_trim(bio, offset >> 9, size >> 9);
2716         btrfs_bio->iter = bio->bi_iter;
2717         return bio;
2718 }
2719
2720 static int __must_check submit_one_bio(struct bio *bio, int mirror_num,
2721                                        unsigned long bio_flags)
2722 {
2723         int ret = 0;
2724         struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2725         struct page *page = bvec->bv_page;
2726         struct extent_io_tree *tree = bio->bi_private;
2727         u64 start;
2728
2729         start = page_offset(page) + bvec->bv_offset;
2730
2731         bio->bi_private = NULL;
2732         bio_get(bio);
2733
2734         if (tree->ops)
2735                 ret = tree->ops->submit_bio_hook(tree->private_data, bio,
2736                                            mirror_num, bio_flags, start);
2737         else
2738                 btrfsic_submit_bio(bio);
2739
2740         bio_put(bio);
2741         return ret;
2742 }
2743
2744 static int merge_bio(struct extent_io_tree *tree, struct page *page,
2745                      unsigned long offset, size_t size, struct bio *bio,
2746                      unsigned long bio_flags)
2747 {
2748         int ret = 0;
2749         if (tree->ops)
2750                 ret = tree->ops->merge_bio_hook(page, offset, size, bio,
2751                                                 bio_flags);
2752         return ret;
2753
2754 }
2755
2756 static int submit_extent_page(int op, int op_flags, struct extent_io_tree *tree,
2757                               struct writeback_control *wbc,
2758                               struct page *page, sector_t sector,
2759                               size_t size, unsigned long offset,
2760                               struct block_device *bdev,
2761                               struct bio **bio_ret,
2762                               bio_end_io_t end_io_func,
2763                               int mirror_num,
2764                               unsigned long prev_bio_flags,
2765                               unsigned long bio_flags,
2766                               bool force_bio_submit)
2767 {
2768         int ret = 0;
2769         struct bio *bio;
2770         int contig = 0;
2771         int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
2772         size_t page_size = min_t(size_t, size, PAGE_SIZE);
2773
2774         if (bio_ret && *bio_ret) {
2775                 bio = *bio_ret;
2776                 if (old_compressed)
2777                         contig = bio->bi_iter.bi_sector == sector;
2778                 else
2779                         contig = bio_end_sector(bio) == sector;
2780
2781                 if (prev_bio_flags != bio_flags || !contig ||
2782                     force_bio_submit ||
2783                     merge_bio(tree, page, offset, page_size, bio, bio_flags) ||
2784                     bio_add_page(bio, page, page_size, offset) < page_size) {
2785                         ret = submit_one_bio(bio, mirror_num, prev_bio_flags);
2786                         if (ret < 0) {
2787                                 *bio_ret = NULL;
2788                                 return ret;
2789                         }
2790                         bio = NULL;
2791                 } else {
2792                         if (wbc)
2793                                 wbc_account_io(wbc, page, page_size);
2794                         return 0;
2795                 }
2796         }
2797
2798         bio = btrfs_bio_alloc(bdev, sector << 9);
2799         bio_add_page(bio, page, page_size, offset);
2800         bio->bi_end_io = end_io_func;
2801         bio->bi_private = tree;
2802         bio_set_op_attrs(bio, op, op_flags);
2803         if (wbc) {
2804                 wbc_init_bio(wbc, bio);
2805                 wbc_account_io(wbc, page, page_size);
2806         }
2807
2808         if (bio_ret)
2809                 *bio_ret = bio;
2810         else
2811                 ret = submit_one_bio(bio, mirror_num, bio_flags);
2812
2813         return ret;
2814 }
2815
2816 static void attach_extent_buffer_page(struct extent_buffer *eb,
2817                                       struct page *page)
2818 {
2819         if (!PagePrivate(page)) {
2820                 SetPagePrivate(page);
2821                 get_page(page);
2822                 set_page_private(page, (unsigned long)eb);
2823         } else {
2824                 WARN_ON(page->private != (unsigned long)eb);
2825         }
2826 }
2827
2828 void set_page_extent_mapped(struct page *page)
2829 {
2830         if (!PagePrivate(page)) {
2831                 SetPagePrivate(page);
2832                 get_page(page);
2833                 set_page_private(page, EXTENT_PAGE_PRIVATE);
2834         }
2835 }
2836
2837 static struct extent_map *
2838 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
2839                  u64 start, u64 len, get_extent_t *get_extent,
2840                  struct extent_map **em_cached)
2841 {
2842         struct extent_map *em;
2843
2844         if (em_cached && *em_cached) {
2845                 em = *em_cached;
2846                 if (extent_map_in_tree(em) && start >= em->start &&
2847                     start < extent_map_end(em)) {
2848                         refcount_inc(&em->refs);
2849                         return em;
2850                 }
2851
2852                 free_extent_map(em);
2853                 *em_cached = NULL;
2854         }
2855
2856         em = get_extent(BTRFS_I(inode), page, pg_offset, start, len, 0);
2857         if (em_cached && !IS_ERR_OR_NULL(em)) {
2858                 BUG_ON(*em_cached);
2859                 refcount_inc(&em->refs);
2860                 *em_cached = em;
2861         }
2862         return em;
2863 }
2864 /*
2865  * basic readpage implementation.  Locked extent state structs are inserted
2866  * into the tree that are removed when the IO is done (by the end_io
2867  * handlers)
2868  * XXX JDM: This needs looking at to ensure proper page locking
2869  * return 0 on success, otherwise return error
2870  */
2871 static int __do_readpage(struct extent_io_tree *tree,
2872                          struct page *page,
2873                          get_extent_t *get_extent,
2874                          struct extent_map **em_cached,
2875                          struct bio **bio, int mirror_num,
2876                          unsigned long *bio_flags, int read_flags,
2877                          u64 *prev_em_start)
2878 {
2879         struct inode *inode = page->mapping->host;
2880         u64 start = page_offset(page);
2881         u64 page_end = start + PAGE_SIZE - 1;
2882         u64 end;
2883         u64 cur = start;
2884         u64 extent_offset;
2885         u64 last_byte = i_size_read(inode);
2886         u64 block_start;
2887         u64 cur_end;
2888         sector_t sector;
2889         struct extent_map *em;
2890         struct block_device *bdev;
2891         int ret = 0;
2892         int nr = 0;
2893         size_t pg_offset = 0;
2894         size_t iosize;
2895         size_t disk_io_size;
2896         size_t blocksize = inode->i_sb->s_blocksize;
2897         unsigned long this_bio_flag = 0;
2898
2899         set_page_extent_mapped(page);
2900
2901         end = page_end;
2902         if (!PageUptodate(page)) {
2903                 if (cleancache_get_page(page) == 0) {
2904                         BUG_ON(blocksize != PAGE_SIZE);
2905                         unlock_extent(tree, start, end);
2906                         goto out;
2907                 }
2908         }
2909
2910         if (page->index == last_byte >> PAGE_SHIFT) {
2911                 char *userpage;
2912                 size_t zero_offset = last_byte & (PAGE_SIZE - 1);
2913
2914                 if (zero_offset) {
2915                         iosize = PAGE_SIZE - zero_offset;
2916                         userpage = kmap_atomic(page);
2917                         memset(userpage + zero_offset, 0, iosize);
2918                         flush_dcache_page(page);
2919                         kunmap_atomic(userpage);
2920                 }
2921         }
2922         while (cur <= end) {
2923                 bool force_bio_submit = false;
2924
2925                 if (cur >= last_byte) {
2926                         char *userpage;
2927                         struct extent_state *cached = NULL;
2928
2929                         iosize = PAGE_SIZE - pg_offset;
2930                         userpage = kmap_atomic(page);
2931                         memset(userpage + pg_offset, 0, iosize);
2932                         flush_dcache_page(page);
2933                         kunmap_atomic(userpage);
2934                         set_extent_uptodate(tree, cur, cur + iosize - 1,
2935                                             &cached, GFP_NOFS);
2936                         unlock_extent_cached(tree, cur,
2937                                              cur + iosize - 1,
2938                                              &cached, GFP_NOFS);
2939                         break;
2940                 }
2941                 em = __get_extent_map(inode, page, pg_offset, cur,
2942                                       end - cur + 1, get_extent, em_cached);
2943                 if (IS_ERR_OR_NULL(em)) {
2944                         SetPageError(page);
2945                         unlock_extent(tree, cur, end);
2946                         break;
2947                 }
2948                 extent_offset = cur - em->start;
2949                 BUG_ON(extent_map_end(em) <= cur);
2950                 BUG_ON(end < cur);
2951
2952                 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2953                         this_bio_flag |= EXTENT_BIO_COMPRESSED;
2954                         extent_set_compress_type(&this_bio_flag,
2955                                                  em->compress_type);
2956                 }
2957
2958                 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2959                 cur_end = min(extent_map_end(em) - 1, end);
2960                 iosize = ALIGN(iosize, blocksize);
2961                 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2962                         disk_io_size = em->block_len;
2963                         sector = em->block_start >> 9;
2964                 } else {
2965                         sector = (em->block_start + extent_offset) >> 9;
2966                         disk_io_size = iosize;
2967                 }
2968                 bdev = em->bdev;
2969                 block_start = em->block_start;
2970                 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2971                         block_start = EXTENT_MAP_HOLE;
2972
2973                 /*
2974                  * If we have a file range that points to a compressed extent
2975                  * and it's followed by a consecutive file range that points to
2976                  * to the same compressed extent (possibly with a different
2977                  * offset and/or length, so it either points to the whole extent
2978                  * or only part of it), we must make sure we do not submit a
2979                  * single bio to populate the pages for the 2 ranges because
2980                  * this makes the compressed extent read zero out the pages
2981                  * belonging to the 2nd range. Imagine the following scenario:
2982                  *
2983                  *  File layout
2984                  *  [0 - 8K]                     [8K - 24K]
2985                  *    |                               |
2986                  *    |                               |
2987                  * points to extent X,         points to extent X,
2988                  * offset 4K, length of 8K     offset 0, length 16K
2989                  *
2990                  * [extent X, compressed length = 4K uncompressed length = 16K]
2991                  *
2992                  * If the bio to read the compressed extent covers both ranges,
2993                  * it will decompress extent X into the pages belonging to the
2994                  * first range and then it will stop, zeroing out the remaining
2995                  * pages that belong to the other range that points to extent X.
2996                  * So here we make sure we submit 2 bios, one for the first
2997                  * range and another one for the third range. Both will target
2998                  * the same physical extent from disk, but we can't currently
2999                  * make the compressed bio endio callback populate the pages
3000                  * for both ranges because each compressed bio is tightly
3001                  * coupled with a single extent map, and each range can have
3002                  * an extent map with a different offset value relative to the
3003                  * uncompressed data of our extent and different lengths. This
3004                  * is a corner case so we prioritize correctness over
3005                  * non-optimal behavior (submitting 2 bios for the same extent).
3006                  */
3007                 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
3008                     prev_em_start && *prev_em_start != (u64)-1 &&
3009                     *prev_em_start != em->orig_start)
3010                         force_bio_submit = true;
3011
3012                 if (prev_em_start)
3013                         *prev_em_start = em->orig_start;
3014
3015                 free_extent_map(em);
3016                 em = NULL;
3017
3018                 /* we've found a hole, just zero and go on */
3019                 if (block_start == EXTENT_MAP_HOLE) {
3020                         char *userpage;
3021                         struct extent_state *cached = NULL;
3022
3023                         userpage = kmap_atomic(page);
3024                         memset(userpage + pg_offset, 0, iosize);
3025                         flush_dcache_page(page);
3026                         kunmap_atomic(userpage);
3027
3028                         set_extent_uptodate(tree, cur, cur + iosize - 1,
3029                                             &cached, GFP_NOFS);
3030                         unlock_extent_cached(tree, cur,
3031                                              cur + iosize - 1,
3032                                              &cached, GFP_NOFS);
3033                         cur = cur + iosize;
3034                         pg_offset += iosize;
3035                         continue;
3036                 }
3037                 /* the get_extent function already copied into the page */
3038                 if (test_range_bit(tree, cur, cur_end,
3039                                    EXTENT_UPTODATE, 1, NULL)) {
3040                         check_page_uptodate(tree, page);
3041                         unlock_extent(tree, cur, cur + iosize - 1);
3042                         cur = cur + iosize;
3043                         pg_offset += iosize;
3044                         continue;
3045                 }
3046                 /* we have an inline extent but it didn't get marked up
3047                  * to date.  Error out
3048                  */
3049                 if (block_start == EXTENT_MAP_INLINE) {
3050                         SetPageError(page);
3051                         unlock_extent(tree, cur, cur + iosize - 1);
3052                         cur = cur + iosize;
3053                         pg_offset += iosize;
3054                         continue;
3055                 }
3056
3057                 ret = submit_extent_page(REQ_OP_READ, read_flags, tree, NULL,
3058                                          page, sector, disk_io_size, pg_offset,
3059                                          bdev, bio,
3060                                          end_bio_extent_readpage, mirror_num,
3061                                          *bio_flags,
3062                                          this_bio_flag,
3063                                          force_bio_submit);
3064                 if (!ret) {
3065                         nr++;
3066                         *bio_flags = this_bio_flag;
3067                 } else {
3068                         SetPageError(page);
3069                         unlock_extent(tree, cur, cur + iosize - 1);
3070                         goto out;
3071                 }
3072                 cur = cur + iosize;
3073                 pg_offset += iosize;
3074         }
3075 out:
3076         if (!nr) {
3077                 if (!PageError(page))
3078                         SetPageUptodate(page);
3079                 unlock_page(page);
3080         }
3081         return ret;
3082 }
3083
3084 static inline void __do_contiguous_readpages(struct extent_io_tree *tree,
3085                                              struct page *pages[], int nr_pages,
3086                                              u64 start, u64 end,
3087                                              get_extent_t *get_extent,
3088                                              struct extent_map **em_cached,
3089                                              struct bio **bio, int mirror_num,
3090                                              unsigned long *bio_flags,
3091                                              u64 *prev_em_start)
3092 {
3093         struct inode *inode;
3094         struct btrfs_ordered_extent *ordered;
3095         int index;
3096
3097         inode = pages[0]->mapping->host;
3098         while (1) {
3099                 lock_extent(tree, start, end);
3100                 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
3101                                                      end - start + 1);
3102                 if (!ordered)
3103                         break;
3104                 unlock_extent(tree, start, end);
3105                 btrfs_start_ordered_extent(inode, ordered, 1);
3106                 btrfs_put_ordered_extent(ordered);
3107         }
3108
3109         for (index = 0; index < nr_pages; index++) {
3110                 __do_readpage(tree, pages[index], get_extent, em_cached, bio,
3111                               mirror_num, bio_flags, 0, prev_em_start);
3112                 put_page(pages[index]);
3113         }
3114 }
3115
3116 static void __extent_readpages(struct extent_io_tree *tree,
3117                                struct page *pages[],
3118                                int nr_pages, get_extent_t *get_extent,
3119                                struct extent_map **em_cached,
3120                                struct bio **bio, int mirror_num,
3121                                unsigned long *bio_flags,
3122                                u64 *prev_em_start)
3123 {
3124         u64 start = 0;
3125         u64 end = 0;
3126         u64 page_start;
3127         int index;
3128         int first_index = 0;
3129
3130         for (index = 0; index < nr_pages; index++) {
3131                 page_start = page_offset(pages[index]);
3132                 if (!end) {
3133                         start = page_start;
3134                         end = start + PAGE_SIZE - 1;
3135                         first_index = index;
3136                 } else if (end + 1 == page_start) {
3137                         end += PAGE_SIZE;
3138                 } else {
3139                         __do_contiguous_readpages(tree, &pages[first_index],
3140                                                   index - first_index, start,
3141                                                   end, get_extent, em_cached,
3142                                                   bio, mirror_num, bio_flags,
3143                                                   prev_em_start);
3144                         start = page_start;
3145                         end = start + PAGE_SIZE - 1;
3146                         first_index = index;
3147                 }
3148         }
3149
3150         if (end)
3151                 __do_contiguous_readpages(tree, &pages[first_index],
3152                                           index - first_index, start,
3153                                           end, get_extent, em_cached, bio,
3154                                           mirror_num, bio_flags,
3155                                           prev_em_start);
3156 }
3157
3158 static int __extent_read_full_page(struct extent_io_tree *tree,
3159                                    struct page *page,
3160                                    get_extent_t *get_extent,
3161                                    struct bio **bio, int mirror_num,
3162                                    unsigned long *bio_flags, int read_flags)
3163 {
3164         struct inode *inode = page->mapping->host;
3165         struct btrfs_ordered_extent *ordered;
3166         u64 start = page_offset(page);
3167         u64 end = start + PAGE_SIZE - 1;
3168         int ret;
3169
3170         while (1) {
3171                 lock_extent(tree, start, end);
3172                 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
3173                                                 PAGE_SIZE);
3174                 if (!ordered)
3175                         break;
3176                 unlock_extent(tree, start, end);
3177                 btrfs_start_ordered_extent(inode, ordered, 1);
3178                 btrfs_put_ordered_extent(ordered);
3179         }
3180
3181         ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num,
3182                             bio_flags, read_flags, NULL);
3183         return ret;
3184 }
3185
3186 int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
3187                             get_extent_t *get_extent, int mirror_num)
3188 {
3189         struct bio *bio = NULL;
3190         unsigned long bio_flags = 0;
3191         int ret;
3192
3193         ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
3194                                       &bio_flags, 0);
3195         if (bio)
3196                 ret = submit_one_bio(bio, mirror_num, bio_flags);
3197         return ret;
3198 }
3199
3200 static void update_nr_written(struct writeback_control *wbc,
3201                               unsigned long nr_written)
3202 {
3203         wbc->nr_to_write -= nr_written;
3204 }
3205
3206 /*
3207  * helper for __extent_writepage, doing all of the delayed allocation setup.
3208  *
3209  * This returns 1 if our fill_delalloc function did all the work required
3210  * to write the page (copy into inline extent).  In this case the IO has
3211  * been started and the page is already unlocked.
3212  *
3213  * This returns 0 if all went well (page still locked)
3214  * This returns < 0 if there were errors (page still locked)
3215  */
3216 static noinline_for_stack int writepage_delalloc(struct inode *inode,
3217                               struct page *page, struct writeback_control *wbc,
3218                               struct extent_page_data *epd,
3219                               u64 delalloc_start,
3220                               unsigned long *nr_written)
3221 {
3222         struct extent_io_tree *tree = epd->tree;
3223         u64 page_end = delalloc_start + PAGE_SIZE - 1;
3224         u64 nr_delalloc;
3225         u64 delalloc_to_write = 0;
3226         u64 delalloc_end = 0;
3227         int ret;
3228         int page_started = 0;
3229
3230         if (epd->extent_locked || !tree->ops || !tree->ops->fill_delalloc)
3231                 return 0;
3232
3233         while (delalloc_end < page_end) {
3234                 nr_delalloc = find_lock_delalloc_range(inode, tree,
3235                                                page,
3236                                                &delalloc_start,
3237                                                &delalloc_end,
3238                                                BTRFS_MAX_EXTENT_SIZE);
3239                 if (nr_delalloc == 0) {
3240                         delalloc_start = delalloc_end + 1;
3241                         continue;
3242                 }
3243                 ret = tree->ops->fill_delalloc(inode, page,
3244                                                delalloc_start,
3245                                                delalloc_end,
3246                                                &page_started,
3247                                                nr_written);
3248                 /* File system has been set read-only */
3249                 if (ret) {
3250                         SetPageError(page);
3251                         /* fill_delalloc should be return < 0 for error
3252                          * but just in case, we use > 0 here meaning the
3253                          * IO is started, so we don't want to return > 0
3254                          * unless things are going well.
3255                          */
3256                         ret = ret < 0 ? ret : -EIO;
3257                         goto done;
3258                 }
3259                 /*
3260                  * delalloc_end is already one less than the total length, so
3261                  * we don't subtract one from PAGE_SIZE
3262                  */
3263                 delalloc_to_write += (delalloc_end - delalloc_start +
3264                                       PAGE_SIZE) >> PAGE_SHIFT;
3265                 delalloc_start = delalloc_end + 1;
3266         }
3267         if (wbc->nr_to_write < delalloc_to_write) {
3268                 int thresh = 8192;
3269
3270                 if (delalloc_to_write < thresh * 2)
3271                         thresh = delalloc_to_write;
3272                 wbc->nr_to_write = min_t(u64, delalloc_to_write,
3273                                          thresh);
3274         }
3275
3276         /* did the fill delalloc function already unlock and start
3277          * the IO?
3278          */
3279         if (page_started) {
3280                 /*
3281                  * we've unlocked the page, so we can't update
3282                  * the mapping's writeback index, just update
3283                  * nr_to_write.
3284                  */
3285                 wbc->nr_to_write -= *nr_written;
3286                 return 1;
3287         }
3288
3289         ret = 0;
3290
3291 done:
3292         return ret;
3293 }
3294
3295 /*
3296  * helper for __extent_writepage.  This calls the writepage start hooks,
3297  * and does the loop to map the page into extents and bios.
3298  *
3299  * We return 1 if the IO is started and the page is unlocked,
3300  * 0 if all went well (page still locked)
3301  * < 0 if there were errors (page still locked)
3302  */
3303 static noinline_for_stack int __extent_writepage_io(struct inode *inode,
3304                                  struct page *page,
3305                                  struct writeback_control *wbc,
3306                                  struct extent_page_data *epd,
3307                                  loff_t i_size,
3308                                  unsigned long nr_written,
3309                                  int write_flags, int *nr_ret)
3310 {
3311         struct extent_io_tree *tree = epd->tree;
3312         u64 start = page_offset(page);
3313         u64 page_end = start + PAGE_SIZE - 1;
3314         u64 end;
3315         u64 cur = start;
3316         u64 extent_offset;
3317         u64 block_start;
3318         u64 iosize;
3319         sector_t sector;
3320         struct extent_map *em;
3321         struct block_device *bdev;
3322         size_t pg_offset = 0;
3323         size_t blocksize;
3324         int ret = 0;
3325         int nr = 0;
3326         bool compressed;
3327
3328         if (tree->ops && tree->ops->writepage_start_hook) {
3329                 ret = tree->ops->writepage_start_hook(page, start,
3330                                                       page_end);
3331                 if (ret) {
3332                         /* Fixup worker will requeue */
3333                         if (ret == -EBUSY)
3334                                 wbc->pages_skipped++;
3335                         else
3336                                 redirty_page_for_writepage(wbc, page);
3337
3338                         update_nr_written(wbc, nr_written);
3339                         unlock_page(page);
3340                         return 1;
3341                 }
3342         }
3343
3344         /*
3345          * we don't want to touch the inode after unlocking the page,
3346          * so we update the mapping writeback index now
3347          */
3348         update_nr_written(wbc, nr_written + 1);
3349
3350         end = page_end;
3351         if (i_size <= start) {
3352                 if (tree->ops && tree->ops->writepage_end_io_hook)
3353                         tree->ops->writepage_end_io_hook(page, start,
3354                                                          page_end, NULL, 1);
3355                 goto done;
3356         }
3357
3358         blocksize = inode->i_sb->s_blocksize;
3359
3360         while (cur <= end) {
3361                 u64 em_end;
3362
3363                 if (cur >= i_size) {
3364                         if (tree->ops && tree->ops->writepage_end_io_hook)
3365                                 tree->ops->writepage_end_io_hook(page, cur,
3366                                                          page_end, NULL, 1);
3367                         break;
3368                 }
3369                 em = epd->get_extent(BTRFS_I(inode), page, pg_offset, cur,
3370                                      end - cur + 1, 1);
3371                 if (IS_ERR_OR_NULL(em)) {
3372                         SetPageError(page);
3373                         ret = PTR_ERR_OR_ZERO(em);
3374                         break;
3375                 }
3376
3377                 extent_offset = cur - em->start;
3378                 em_end = extent_map_end(em);
3379                 BUG_ON(em_end <= cur);
3380                 BUG_ON(end < cur);
3381                 iosize = min(em_end - cur, end - cur + 1);
3382                 iosize = ALIGN(iosize, blocksize);
3383                 sector = (em->block_start + extent_offset) >> 9;
3384                 bdev = em->bdev;
3385                 block_start = em->block_start;
3386                 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3387                 free_extent_map(em);
3388                 em = NULL;
3389
3390                 /*
3391                  * compressed and inline extents are written through other
3392                  * paths in the FS
3393                  */
3394                 if (compressed || block_start == EXTENT_MAP_HOLE ||
3395                     block_start == EXTENT_MAP_INLINE) {
3396                         /*
3397                          * end_io notification does not happen here for
3398                          * compressed extents
3399                          */
3400                         if (!compressed && tree->ops &&
3401                             tree->ops->writepage_end_io_hook)
3402                                 tree->ops->writepage_end_io_hook(page, cur,
3403                                                          cur + iosize - 1,
3404                                                          NULL, 1);
3405                         else if (compressed) {
3406                                 /* we don't want to end_page_writeback on
3407                                  * a compressed extent.  this happens
3408                                  * elsewhere
3409                                  */
3410                                 nr++;
3411                         }
3412
3413                         cur += iosize;
3414                         pg_offset += iosize;
3415                         continue;
3416                 }
3417
3418                 set_range_writeback(tree, cur, cur + iosize - 1);
3419                 if (!PageWriteback(page)) {
3420                         btrfs_err(BTRFS_I(inode)->root->fs_info,
3421                                    "page %lu not writeback, cur %llu end %llu",
3422                                page->index, cur, end);
3423                 }
3424
3425                 ret = submit_extent_page(REQ_OP_WRITE, write_flags, tree, wbc,
3426                                          page, sector, iosize, pg_offset,
3427                                          bdev, &epd->bio,
3428                                          end_bio_extent_writepage,
3429                                          0, 0, 0, false);
3430                 if (ret) {
3431                         SetPageError(page);
3432                         if (PageWriteback(page))
3433                                 end_page_writeback(page);
3434                 }
3435
3436                 cur = cur + iosize;
3437                 pg_offset += iosize;
3438                 nr++;
3439         }
3440 done:
3441         *nr_ret = nr;
3442         return ret;
3443 }
3444
3445 /*
3446  * the writepage semantics are similar to regular writepage.  extent
3447  * records are inserted to lock ranges in the tree, and as dirty areas
3448  * are found, they are marked writeback.  Then the lock bits are removed
3449  * and the end_io handler clears the writeback ranges
3450  */
3451 static int __extent_writepage(struct page *page, struct writeback_control *wbc,
3452                               void *data)
3453 {
3454         struct inode *inode = page->mapping->host;
3455         struct extent_page_data *epd = data;
3456         u64 start = page_offset(page);
3457         u64 page_end = start + PAGE_SIZE - 1;
3458         int ret;
3459         int nr = 0;
3460         size_t pg_offset = 0;
3461         loff_t i_size = i_size_read(inode);
3462         unsigned long end_index = i_size >> PAGE_SHIFT;
3463         int write_flags = 0;
3464         unsigned long nr_written = 0;
3465
3466         if (wbc->sync_mode == WB_SYNC_ALL)
3467                 write_flags = REQ_SYNC;
3468
3469         trace___extent_writepage(page, inode, wbc);
3470
3471         WARN_ON(!PageLocked(page));
3472
3473         ClearPageError(page);
3474
3475         pg_offset = i_size & (PAGE_SIZE - 1);
3476         if (page->index > end_index ||
3477            (page->index == end_index && !pg_offset)) {
3478                 page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
3479                 unlock_page(page);
3480                 return 0;
3481         }
3482
3483         if (page->index == end_index) {
3484                 char *userpage;
3485
3486                 userpage = kmap_atomic(page);
3487                 memset(userpage + pg_offset, 0,
3488                        PAGE_SIZE - pg_offset);
3489                 kunmap_atomic(userpage);
3490                 flush_dcache_page(page);
3491         }
3492
3493         pg_offset = 0;
3494
3495         set_page_extent_mapped(page);
3496
3497         ret = writepage_delalloc(inode, page, wbc, epd, start, &nr_written);
3498         if (ret == 1)
3499                 goto done_unlocked;
3500         if (ret)
3501                 goto done;
3502
3503         ret = __extent_writepage_io(inode, page, wbc, epd,
3504                                     i_size, nr_written, write_flags, &nr);
3505         if (ret == 1)
3506                 goto done_unlocked;
3507
3508 done:
3509         if (nr == 0) {
3510                 /* make sure the mapping tag for page dirty gets cleared */
3511                 set_page_writeback(page);
3512                 end_page_writeback(page);
3513         }
3514         if (PageError(page)) {
3515                 ret = ret < 0 ? ret : -EIO;
3516                 end_extent_writepage(page, ret, start, page_end);
3517         }
3518         unlock_page(page);
3519         return ret;
3520
3521 done_unlocked:
3522         return 0;
3523 }
3524
3525 void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
3526 {
3527         wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
3528                        TASK_UNINTERRUPTIBLE);
3529 }
3530
3531 static noinline_for_stack int
3532 lock_extent_buffer_for_io(struct extent_buffer *eb,
3533                           struct btrfs_fs_info *fs_info,
3534                           struct extent_page_data *epd)
3535 {
3536         unsigned long i, num_pages;
3537         int flush = 0;
3538         int ret = 0;
3539
3540         if (!btrfs_try_tree_write_lock(eb)) {
3541                 flush = 1;
3542                 flush_write_bio(epd);
3543                 btrfs_tree_lock(eb);
3544         }
3545
3546         if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3547                 btrfs_tree_unlock(eb);
3548                 if (!epd->sync_io)
3549                         return 0;
3550                 if (!flush) {
3551                         flush_write_bio(epd);
3552                         flush = 1;
3553                 }
3554                 while (1) {
3555                         wait_on_extent_buffer_writeback(eb);
3556                         btrfs_tree_lock(eb);
3557                         if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3558                                 break;
3559                         btrfs_tree_unlock(eb);
3560                 }
3561         }
3562
3563         /*
3564          * We need to do this to prevent races in people who check if the eb is
3565          * under IO since we can end up having no IO bits set for a short period
3566          * of time.
3567          */
3568         spin_lock(&eb->refs_lock);
3569         if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3570                 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3571                 spin_unlock(&eb->refs_lock);
3572                 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3573                 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
3574                                      -eb->len,
3575                                      fs_info->dirty_metadata_batch);
3576                 ret = 1;
3577         } else {
3578                 spin_unlock(&eb->refs_lock);
3579         }
3580
3581         btrfs_tree_unlock(eb);
3582
3583         if (!ret)
3584                 return ret;
3585
3586         num_pages = num_extent_pages(eb->start, eb->len);
3587         for (i = 0; i < num_pages; i++) {
3588                 struct page *p = eb->pages[i];
3589
3590                 if (!trylock_page(p)) {
3591                         if (!flush) {
3592                                 flush_write_bio(epd);
3593                                 flush = 1;
3594                         }
3595                         lock_page(p);
3596                 }
3597         }
3598
3599         return ret;
3600 }
3601
3602 static void end_extent_buffer_writeback(struct extent_buffer *eb)
3603 {
3604         clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3605         smp_mb__after_atomic();
3606         wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3607 }
3608
3609 static void set_btree_ioerr(struct page *page)
3610 {
3611         struct extent_buffer *eb = (struct extent_buffer *)page->private;
3612
3613         SetPageError(page);
3614         if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
3615                 return;
3616
3617         /*
3618          * If writeback for a btree extent that doesn't belong to a log tree
3619          * failed, increment the counter transaction->eb_write_errors.
3620          * We do this because while the transaction is running and before it's
3621          * committing (when we call filemap_fdata[write|wait]_range against
3622          * the btree inode), we might have
3623          * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
3624          * returns an error or an error happens during writeback, when we're
3625          * committing the transaction we wouldn't know about it, since the pages
3626          * can be no longer dirty nor marked anymore for writeback (if a
3627          * subsequent modification to the extent buffer didn't happen before the
3628          * transaction commit), which makes filemap_fdata[write|wait]_range not
3629          * able to find the pages tagged with SetPageError at transaction
3630          * commit time. So if this happens we must abort the transaction,
3631          * otherwise we commit a super block with btree roots that point to
3632          * btree nodes/leafs whose content on disk is invalid - either garbage
3633          * or the content of some node/leaf from a past generation that got
3634          * cowed or deleted and is no longer valid.
3635          *
3636          * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
3637          * not be enough - we need to distinguish between log tree extents vs
3638          * non-log tree extents, and the next filemap_fdatawait_range() call
3639          * will catch and clear such errors in the mapping - and that call might
3640          * be from a log sync and not from a transaction commit. Also, checking
3641          * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
3642          * not done and would not be reliable - the eb might have been released
3643          * from memory and reading it back again means that flag would not be
3644          * set (since it's a runtime flag, not persisted on disk).
3645          *
3646          * Using the flags below in the btree inode also makes us achieve the
3647          * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
3648          * writeback for all dirty pages and before filemap_fdatawait_range()
3649          * is called, the writeback for all dirty pages had already finished
3650          * with errors - because we were not using AS_EIO/AS_ENOSPC,
3651          * filemap_fdatawait_range() would return success, as it could not know
3652          * that writeback errors happened (the pages were no longer tagged for
3653          * writeback).
3654          */
3655         switch (eb->log_index) {
3656         case -1:
3657                 set_bit(BTRFS_FS_BTREE_ERR, &eb->fs_info->flags);
3658                 break;
3659         case 0:
3660                 set_bit(BTRFS_FS_LOG1_ERR, &eb->fs_info->flags);
3661                 break;
3662         case 1:
3663                 set_bit(BTRFS_FS_LOG2_ERR, &eb->fs_info->flags);
3664                 break;
3665         default:
3666                 BUG(); /* unexpected, logic error */
3667         }
3668 }
3669
3670 static void end_bio_extent_buffer_writepage(struct bio *bio)
3671 {
3672         struct bio_vec *bvec;
3673         struct extent_buffer *eb;
3674         int i, done;
3675
3676         ASSERT(!bio_flagged(bio, BIO_CLONED));
3677         bio_for_each_segment_all(bvec, bio, i) {
3678                 struct page *page = bvec->bv_page;
3679
3680                 eb = (struct extent_buffer *)page->private;
3681                 BUG_ON(!eb);
3682                 done = atomic_dec_and_test(&eb->io_pages);
3683
3684                 if (bio->bi_error ||
3685                     test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
3686                         ClearPageUptodate(page);
3687                         set_btree_ioerr(page);
3688                 }
3689
3690                 end_page_writeback(page);
3691
3692                 if (!done)
3693                         continue;
3694
3695                 end_extent_buffer_writeback(eb);
3696         }
3697
3698         bio_put(bio);
3699 }
3700
3701 static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
3702                         struct btrfs_fs_info *fs_info,
3703                         struct writeback_control *wbc,
3704                         struct extent_page_data *epd)
3705 {
3706         struct block_device *bdev = fs_info->fs_devices->latest_bdev;
3707         struct extent_io_tree *tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
3708         u64 offset = eb->start;
3709         u32 nritems;
3710         unsigned long i, num_pages;
3711         unsigned long bio_flags = 0;
3712         unsigned long start, end;
3713         int write_flags = (epd->sync_io ? REQ_SYNC : 0) | REQ_META;
3714         int ret = 0;
3715
3716         clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
3717         num_pages = num_extent_pages(eb->start, eb->len);
3718         atomic_set(&eb->io_pages, num_pages);
3719         if (btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID)
3720                 bio_flags = EXTENT_BIO_TREE_LOG;
3721
3722         /* set btree blocks beyond nritems with 0 to avoid stale content. */
3723         nritems = btrfs_header_nritems(eb);
3724         if (btrfs_header_level(eb) > 0) {
3725                 end = btrfs_node_key_ptr_offset(nritems);
3726
3727                 memzero_extent_buffer(eb, end, eb->len - end);
3728         } else {
3729                 /*
3730                  * leaf:
3731                  * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
3732                  */
3733                 start = btrfs_item_nr_offset(nritems);
3734                 end = BTRFS_LEAF_DATA_OFFSET + leaf_data_end(fs_info, eb);
3735                 memzero_extent_buffer(eb, start, end - start);
3736         }
3737
3738         for (i = 0; i < num_pages; i++) {
3739                 struct page *p = eb->pages[i];
3740
3741                 clear_page_dirty_for_io(p);
3742                 set_page_writeback(p);
3743                 ret = submit_extent_page(REQ_OP_WRITE, write_flags, tree, wbc,
3744                                          p, offset >> 9, PAGE_SIZE, 0, bdev,
3745                                          &epd->bio,
3746                                          end_bio_extent_buffer_writepage,
3747                                          0, epd->bio_flags, bio_flags, false);
3748                 epd->bio_flags = bio_flags;
3749                 if (ret) {
3750                         set_btree_ioerr(p);
3751                         if (PageWriteback(p))
3752                                 end_page_writeback(p);
3753                         if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3754                                 end_extent_buffer_writeback(eb);
3755                         ret = -EIO;
3756                         break;
3757                 }
3758                 offset += PAGE_SIZE;
3759                 update_nr_written(wbc, 1);
3760                 unlock_page(p);
3761         }
3762
3763         if (unlikely(ret)) {
3764                 for (; i < num_pages; i++) {
3765                         struct page *p = eb->pages[i];
3766                         clear_page_dirty_for_io(p);
3767                         unlock_page(p);
3768                 }
3769         }
3770
3771         return ret;
3772 }
3773
3774 int btree_write_cache_pages(struct address_space *mapping,
3775                                    struct writeback_control *wbc)
3776 {
3777         struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3778         struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3779         struct extent_buffer *eb, *prev_eb = NULL;
3780         struct extent_page_data epd = {
3781                 .bio = NULL,
3782                 .tree = tree,
3783                 .extent_locked = 0,
3784                 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3785                 .bio_flags = 0,
3786         };
3787         int ret = 0;
3788         int done = 0;
3789         int nr_to_write_done = 0;
3790         struct pagevec pvec;
3791         int nr_pages;
3792         pgoff_t index;
3793         pgoff_t end;            /* Inclusive */
3794         int scanned = 0;
3795         int tag;
3796
3797         pagevec_init(&pvec, 0);
3798         if (wbc->range_cyclic) {
3799                 index = mapping->writeback_index; /* Start from prev offset */
3800                 end = -1;
3801         } else {
3802                 index = wbc->range_start >> PAGE_SHIFT;
3803                 end = wbc->range_end >> PAGE_SHIFT;
3804                 scanned = 1;
3805         }
3806         if (wbc->sync_mode == WB_SYNC_ALL)
3807                 tag = PAGECACHE_TAG_TOWRITE;
3808         else
3809                 tag = PAGECACHE_TAG_DIRTY;
3810 retry:
3811         if (wbc->sync_mode == WB_SYNC_ALL)
3812                 tag_pages_for_writeback(mapping, index, end);
3813         while (!done && !nr_to_write_done && (index <= end) &&
3814                (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3815                         min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3816                 unsigned i;
3817
3818                 scanned = 1;
3819                 for (i = 0; i < nr_pages; i++) {
3820                         struct page *page = pvec.pages[i];
3821
3822                         if (!PagePrivate(page))
3823                                 continue;
3824
3825                         if (!wbc->range_cyclic && page->index > end) {
3826                                 done = 1;
3827                                 break;
3828                         }
3829
3830                         spin_lock(&mapping->private_lock);
3831                         if (!PagePrivate(page)) {
3832                                 spin_unlock(&mapping->private_lock);
3833                                 continue;
3834                         }
3835
3836                         eb = (struct extent_buffer *)page->private;
3837
3838                         /*
3839                          * Shouldn't happen and normally this would be a BUG_ON
3840                          * but no sense in crashing the users box for something
3841                          * we can survive anyway.
3842                          */
3843                         if (WARN_ON(!eb)) {
3844                                 spin_unlock(&mapping->private_lock);
3845                                 continue;
3846                         }
3847
3848                         if (eb == prev_eb) {
3849                                 spin_unlock(&mapping->private_lock);
3850                                 continue;
3851                         }
3852
3853                         ret = atomic_inc_not_zero(&eb->refs);
3854                         spin_unlock(&mapping->private_lock);
3855                         if (!ret)
3856                                 continue;
3857
3858                         prev_eb = eb;
3859                         ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
3860                         if (!ret) {
3861                                 free_extent_buffer(eb);
3862                                 continue;
3863                         }
3864
3865                         ret = write_one_eb(eb, fs_info, wbc, &epd);
3866                         if (ret) {
3867                                 done = 1;
3868                                 free_extent_buffer(eb);
3869                                 break;
3870                         }
3871                         free_extent_buffer(eb);
3872
3873                         /*
3874                          * the filesystem may choose to bump up nr_to_write.
3875                          * We have to make sure to honor the new nr_to_write
3876                          * at any time
3877                          */
3878                         nr_to_write_done = wbc->nr_to_write <= 0;
3879                 }
3880                 pagevec_release(&pvec);
3881                 cond_resched();
3882         }
3883         if (!scanned && !done) {
3884                 /*
3885                  * We hit the last page and there is more work to be done: wrap
3886                  * back to the start of the file
3887                  */
3888                 scanned = 1;
3889                 index = 0;
3890                 goto retry;
3891         }
3892         flush_write_bio(&epd);
3893         return ret;
3894 }
3895
3896 /**
3897  * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
3898  * @mapping: address space structure to write
3899  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
3900  * @writepage: function called for each page
3901  * @data: data passed to writepage function
3902  *
3903  * If a page is already under I/O, write_cache_pages() skips it, even
3904  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
3905  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
3906  * and msync() need to guarantee that all the data which was dirty at the time
3907  * the call was made get new I/O started against them.  If wbc->sync_mode is
3908  * WB_SYNC_ALL then we were called for data integrity and we must wait for
3909  * existing IO to complete.
3910  */
3911 static int extent_write_cache_pages(struct address_space *mapping,
3912                              struct writeback_control *wbc,
3913                              writepage_t writepage, void *data,
3914                              void (*flush_fn)(void *))
3915 {
3916         struct inode *inode = mapping->host;
3917         int ret = 0;
3918         int done = 0;
3919         int nr_to_write_done = 0;
3920         struct pagevec pvec;
3921         int nr_pages;
3922         pgoff_t index;
3923         pgoff_t end;            /* Inclusive */
3924         pgoff_t done_index;
3925         int range_whole = 0;
3926         int scanned = 0;
3927         int tag;
3928
3929         /*
3930          * We have to hold onto the inode so that ordered extents can do their
3931          * work when the IO finishes.  The alternative to this is failing to add
3932          * an ordered extent if the igrab() fails there and that is a huge pain
3933          * to deal with, so instead just hold onto the inode throughout the
3934          * writepages operation.  If it fails here we are freeing up the inode
3935          * anyway and we'd rather not waste our time writing out stuff that is
3936          * going to be truncated anyway.
3937          */
3938         if (!igrab(inode))
3939                 return 0;
3940
3941         pagevec_init(&pvec, 0);
3942         if (wbc->range_cyclic) {
3943                 index = mapping->writeback_index; /* Start from prev offset */
3944                 end = -1;
3945         } else {
3946                 index = wbc->range_start >> PAGE_SHIFT;
3947                 end = wbc->range_end >> PAGE_SHIFT;
3948                 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
3949                         range_whole = 1;
3950                 scanned = 1;
3951         }
3952         if (wbc->sync_mode == WB_SYNC_ALL)
3953                 tag = PAGECACHE_TAG_TOWRITE;
3954         else
3955                 tag = PAGECACHE_TAG_DIRTY;
3956 retry:
3957         if (wbc->sync_mode == WB_SYNC_ALL)
3958                 tag_pages_for_writeback(mapping, index, end);
3959         done_index = index;
3960         while (!done && !nr_to_write_done && (index <= end) &&
3961                (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3962                         min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3963                 unsigned i;
3964
3965                 scanned = 1;
3966                 for (i = 0; i < nr_pages; i++) {
3967                         struct page *page = pvec.pages[i];
3968
3969                         done_index = page->index;
3970                         /*
3971                          * At this point we hold neither mapping->tree_lock nor
3972                          * lock on the page itself: the page may be truncated or
3973                          * invalidated (changing page->mapping to NULL), or even
3974                          * swizzled back from swapper_space to tmpfs file
3975                          * mapping
3976                          */
3977                         if (!trylock_page(page)) {
3978                                 flush_fn(data);
3979                                 lock_page(page);
3980                         }
3981
3982                         if (unlikely(page->mapping != mapping)) {
3983                                 unlock_page(page);
3984                                 continue;
3985                         }
3986
3987                         if (!wbc->range_cyclic && page->index > end) {
3988                                 done = 1;
3989                                 unlock_page(page);
3990                                 continue;
3991                         }
3992
3993                         if (wbc->sync_mode != WB_SYNC_NONE) {
3994                                 if (PageWriteback(page))
3995                                         flush_fn(data);
3996                                 wait_on_page_writeback(page);
3997                         }
3998
3999                         if (PageWriteback(page) ||
4000                             !clear_page_dirty_for_io(page)) {
4001                                 unlock_page(page);
4002                                 continue;
4003                         }
4004
4005                         ret = (*writepage)(page, wbc, data);
4006
4007                         if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
4008                                 unlock_page(page);
4009                                 ret = 0;
4010                         }
4011                         if (ret < 0) {
4012                                 /*
4013                                  * done_index is set past this page,
4014                                  * so media errors will not choke
4015                                  * background writeout for the entire
4016                                  * file. This has consequences for
4017                                  * range_cyclic semantics (ie. it may
4018                                  * not be suitable for data integrity
4019                                  * writeout).
4020                                  */
4021                                 done_index = page->index + 1;
4022                                 done = 1;
4023                                 break;
4024                         }
4025
4026                         /*
4027                          * the filesystem may choose to bump up nr_to_write.
4028                          * We have to make sure to honor the new nr_to_write
4029                          * at any time
4030                          */
4031                         nr_to_write_done = wbc->nr_to_write <= 0;
4032                 }
4033                 pagevec_release(&pvec);
4034                 cond_resched();
4035         }
4036         if (!scanned && !done) {
4037                 /*
4038                  * We hit the last page and there is more work to be done: wrap
4039                  * back to the start of the file
4040                  */
4041                 scanned = 1;
4042                 index = 0;
4043                 goto retry;
4044         }
4045
4046         if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
4047                 mapping->writeback_index = done_index;
4048
4049         btrfs_add_delayed_iput(inode);
4050         return ret;
4051 }
4052
4053 static void flush_epd_write_bio(struct extent_page_data *epd)
4054 {
4055         if (epd->bio) {
4056                 int ret;
4057
4058                 bio_set_op_attrs(epd->bio, REQ_OP_WRITE,
4059                                  epd->sync_io ? REQ_SYNC : 0);
4060
4061                 ret = submit_one_bio(epd->bio, 0, epd->bio_flags);
4062                 BUG_ON(ret < 0); /* -ENOMEM */
4063                 epd->bio = NULL;
4064         }
4065 }
4066
4067 static noinline void flush_write_bio(void *data)
4068 {
4069         struct extent_page_data *epd = data;
4070         flush_epd_write_bio(epd);
4071 }
4072
4073 int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
4074                           get_extent_t *get_extent,
4075                           struct writeback_control *wbc)
4076 {
4077         int ret;
4078         struct extent_page_data epd = {
4079                 .bio = NULL,
4080                 .tree = tree,
4081                 .get_extent = get_extent,
4082                 .extent_locked = 0,
4083                 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
4084                 .bio_flags = 0,
4085         };
4086
4087         ret = __extent_writepage(page, wbc, &epd);
4088
4089         flush_epd_write_bio(&epd);
4090         return ret;
4091 }
4092
4093 int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
4094                               u64 start, u64 end, get_extent_t *get_extent,
4095                               int mode)
4096 {
4097         int ret = 0;
4098         struct address_space *mapping = inode->i_mapping;
4099         struct page *page;
4100         unsigned long nr_pages = (end - start + PAGE_SIZE) >>
4101                 PAGE_SHIFT;
4102
4103         struct extent_page_data epd = {
4104                 .bio = NULL,
4105                 .tree = tree,
4106                 .get_extent = get_extent,
4107                 .extent_locked = 1,
4108                 .sync_io = mode == WB_SYNC_ALL,
4109                 .bio_flags = 0,
4110         };
4111         struct writeback_control wbc_writepages = {
4112                 .sync_mode      = mode,
4113                 .nr_to_write    = nr_pages * 2,
4114                 .range_start    = start,
4115                 .range_end      = end + 1,
4116         };
4117
4118         while (start <= end) {
4119                 page = find_get_page(mapping, start >> PAGE_SHIFT);
4120                 if (clear_page_dirty_for_io(page))
4121                         ret = __extent_writepage(page, &wbc_writepages, &epd);
4122                 else {
4123                         if (tree->ops && tree->ops->writepage_end_io_hook)
4124                                 tree->ops->writepage_end_io_hook(page, start,
4125                                                  start + PAGE_SIZE - 1,
4126                                                  NULL, 1);
4127                         unlock_page(page);
4128                 }
4129                 put_page(page);
4130                 start += PAGE_SIZE;
4131         }
4132
4133         flush_epd_write_bio(&epd);
4134         return ret;
4135 }
4136
4137 int extent_writepages(struct extent_io_tree *tree,
4138                       struct address_space *mapping,
4139                       get_extent_t *get_extent,
4140                       struct writeback_control *wbc)
4141 {
4142         int ret = 0;
4143         struct extent_page_data epd = {
4144                 .bio = NULL,
4145                 .tree = tree,
4146                 .get_extent = get_extent,
4147                 .extent_locked = 0,
4148                 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
4149                 .bio_flags = 0,
4150         };
4151
4152         ret = extent_write_cache_pages(mapping, wbc, __extent_writepage, &epd,
4153                                        flush_write_bio);
4154         flush_epd_write_bio(&epd);
4155         return ret;
4156 }
4157
4158 int extent_readpages(struct extent_io_tree *tree,
4159                      struct address_space *mapping,
4160                      struct list_head *pages, unsigned nr_pages,
4161                      get_extent_t get_extent)
4162 {
4163         struct bio *bio = NULL;
4164         unsigned page_idx;
4165         unsigned long bio_flags = 0;
4166         struct page *pagepool[16];
4167         struct page *page;
4168         struct extent_map *em_cached = NULL;
4169         int nr = 0;
4170         u64 prev_em_start = (u64)-1;
4171
4172         for (page_idx = 0; page_idx < nr_pages; page_idx++) {
4173                 page = list_entry(pages->prev, struct page, lru);
4174
4175                 prefetchw(&page->flags);
4176                 list_del(&page->lru);
4177                 if (add_to_page_cache_lru(page, mapping,
4178                                         page->index,
4179                                         readahead_gfp_mask(mapping))) {
4180                         put_page(page);
4181                         continue;
4182                 }
4183
4184                 pagepool[nr++] = page;
4185                 if (nr < ARRAY_SIZE(pagepool))
4186                         continue;
4187                 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
4188                                    &bio, 0, &bio_flags, &prev_em_start);
4189                 nr = 0;
4190         }
4191         if (nr)
4192                 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
4193                                    &bio, 0, &bio_flags, &prev_em_start);
4194
4195         if (em_cached)
4196                 free_extent_map(em_cached);
4197
4198         BUG_ON(!list_empty(pages));
4199         if (bio)
4200                 return submit_one_bio(bio, 0, bio_flags);
4201         return 0;
4202 }
4203
4204 /*
4205  * basic invalidatepage code, this waits on any locked or writeback
4206  * ranges corresponding to the page, and then deletes any extent state
4207  * records from the tree
4208  */
4209 int extent_invalidatepage(struct extent_io_tree *tree,
4210                           struct page *page, unsigned long offset)
4211 {
4212         struct extent_state *cached_state = NULL;
4213         u64 start = page_offset(page);
4214         u64 end = start + PAGE_SIZE - 1;
4215         size_t blocksize = page->mapping->host->i_sb->s_blocksize;
4216
4217         start += ALIGN(offset, blocksize);
4218         if (start > end)
4219                 return 0;
4220
4221         lock_extent_bits(tree, start, end, &cached_state);
4222         wait_on_page_writeback(page);
4223         clear_extent_bit(tree, start, end,
4224                          EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
4225                          EXTENT_DO_ACCOUNTING,
4226                          1, 1, &cached_state, GFP_NOFS);
4227         return 0;
4228 }
4229
4230 /*
4231  * a helper for releasepage, this tests for areas of the page that
4232  * are locked or under IO and drops the related state bits if it is safe
4233  * to drop the page.
4234  */
4235 static int try_release_extent_state(struct extent_map_tree *map,
4236                                     struct extent_io_tree *tree,
4237                                     struct page *page, gfp_t mask)
4238 {
4239         u64 start = page_offset(page);
4240         u64 end = start + PAGE_SIZE - 1;
4241         int ret = 1;
4242
4243         if (test_range_bit(tree, start, end,
4244                            EXTENT_IOBITS, 0, NULL))
4245                 ret = 0;
4246         else {
4247                 /*
4248                  * at this point we can safely clear everything except the
4249                  * locked bit and the nodatasum bit
4250                  */
4251                 ret = clear_extent_bit(tree, start, end,
4252                                  ~(EXTENT_LOCKED | EXTENT_NODATASUM),
4253                                  0, 0, NULL, mask);
4254
4255                 /* if clear_extent_bit failed for enomem reasons,
4256                  * we can't allow the release to continue.
4257                  */
4258                 if (ret < 0)
4259                         ret = 0;
4260                 else
4261                         ret = 1;
4262         }
4263         return ret;
4264 }
4265
4266 /*
4267  * a helper for releasepage.  As long as there are no locked extents
4268  * in the range corresponding to the page, both state records and extent
4269  * map records are removed
4270  */
4271 int try_release_extent_mapping(struct extent_map_tree *map,
4272                                struct extent_io_tree *tree, struct page *page,
4273                                gfp_t mask)
4274 {
4275         struct extent_map *em;
4276         u64 start = page_offset(page);
4277         u64 end = start + PAGE_SIZE - 1;
4278
4279         if (gfpflags_allow_blocking(mask) &&
4280             page->mapping->host->i_size > SZ_16M) {
4281                 u64 len;
4282                 while (start <= end) {
4283                         len = end - start + 1;
4284                         write_lock(&map->lock);
4285                         em = lookup_extent_mapping(map, start, len);
4286                         if (!em) {
4287                                 write_unlock(&map->lock);
4288                                 break;
4289                         }
4290                         if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
4291                             em->start != start) {
4292                                 write_unlock(&map->lock);
4293                                 free_extent_map(em);
4294                                 break;
4295                         }
4296                         if (!test_range_bit(tree, em->start,
4297                                             extent_map_end(em) - 1,
4298                                             EXTENT_LOCKED | EXTENT_WRITEBACK,
4299                                             0, NULL)) {
4300                                 remove_extent_mapping(map, em);
4301                                 /* once for the rb tree */
4302                                 free_extent_map(em);
4303                         }
4304                         start = extent_map_end(em);
4305                         write_unlock(&map->lock);
4306
4307                         /* once for us */
4308                         free_extent_map(em);
4309                 }
4310         }
4311         return try_release_extent_state(map, tree, page, mask);
4312 }
4313
4314 /*
4315  * helper function for fiemap, which doesn't want to see any holes.
4316  * This maps until we find something past 'last'
4317  */
4318 static struct extent_map *get_extent_skip_holes(struct inode *inode,
4319                                                 u64 offset,
4320                                                 u64 last,
4321                                                 get_extent_t *get_extent)
4322 {
4323         u64 sectorsize = btrfs_inode_sectorsize(inode);
4324         struct extent_map *em;
4325         u64 len;
4326
4327         if (offset >= last)
4328                 return NULL;
4329
4330         while (1) {
4331                 len = last - offset;
4332                 if (len == 0)
4333                         break;
4334                 len = ALIGN(len, sectorsize);
4335                 em = get_extent(BTRFS_I(inode), NULL, 0, offset, len, 0);
4336                 if (IS_ERR_OR_NULL(em))
4337                         return em;
4338
4339                 /* if this isn't a hole return it */
4340                 if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) &&
4341                     em->block_start != EXTENT_MAP_HOLE) {
4342                         return em;
4343                 }
4344
4345                 /* this is a hole, advance to the next extent */
4346                 offset = extent_map_end(em);
4347                 free_extent_map(em);
4348                 if (offset >= last)
4349                         break;
4350         }
4351         return NULL;
4352 }
4353
4354 /*
4355  * To cache previous fiemap extent
4356  *
4357  * Will be used for merging fiemap extent
4358  */
4359 struct fiemap_cache {
4360         u64 offset;
4361         u64 phys;
4362         u64 len;
4363         u32 flags;
4364         bool cached;
4365 };
4366
4367 /*
4368  * Helper to submit fiemap extent.
4369  *
4370  * Will try to merge current fiemap extent specified by @offset, @phys,
4371  * @len and @flags with cached one.
4372  * And only when we fails to merge, cached one will be submitted as
4373  * fiemap extent.
4374  *
4375  * Return value is the same as fiemap_fill_next_extent().
4376  */
4377 static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo,
4378                                 struct fiemap_cache *cache,
4379                                 u64 offset, u64 phys, u64 len, u32 flags)
4380 {
4381         int ret = 0;
4382
4383         if (!cache->cached)
4384                 goto assign;
4385
4386         /*
4387          * Sanity check, extent_fiemap() should have ensured that new
4388          * fiemap extent won't overlap with cahced one.
4389          * Not recoverable.
4390          *
4391          * NOTE: Physical address can overlap, due to compression
4392          */
4393         if (cache->offset + cache->len > offset) {
4394                 WARN_ON(1);
4395                 return -EINVAL;
4396         }
4397
4398         /*
4399          * Only merges fiemap extents if
4400          * 1) Their logical addresses are continuous
4401          *
4402          * 2) Their physical addresses are continuous
4403          *    So truly compressed (physical size smaller than logical size)
4404          *    extents won't get merged with each other
4405          *
4406          * 3) Share same flags except FIEMAP_EXTENT_LAST
4407          *    So regular extent won't get merged with prealloc extent
4408          */
4409         if (cache->offset + cache->len  == offset &&
4410             cache->phys + cache->len == phys  &&
4411             (cache->flags & ~FIEMAP_EXTENT_LAST) ==
4412                         (flags & ~FIEMAP_EXTENT_LAST)) {
4413                 cache->len += len;
4414                 cache->flags |= flags;
4415                 goto try_submit_last;
4416         }
4417
4418         /* Not mergeable, need to submit cached one */
4419         ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
4420                                       cache->len, cache->flags);
4421         cache->cached = false;
4422         if (ret)
4423                 return ret;
4424 assign:
4425         cache->cached = true;
4426         cache->offset = offset;
4427         cache->phys = phys;
4428         cache->len = len;
4429         cache->flags = flags;
4430 try_submit_last:
4431         if (cache->flags & FIEMAP_EXTENT_LAST) {
4432                 ret = fiemap_fill_next_extent(fieinfo, cache->offset,
4433                                 cache->phys, cache->len, cache->flags);
4434                 cache->cached = false;
4435         }
4436         return ret;
4437 }
4438
4439 /*
4440  * Emit last fiemap cache
4441  *
4442  * The last fiemap cache may still be cached in the following case:
4443  * 0                  4k                    8k
4444  * |<- Fiemap range ->|
4445  * |<------------  First extent ----------->|
4446  *
4447  * In this case, the first extent range will be cached but not emitted.
4448  * So we must emit it before ending extent_fiemap().
4449  */
4450 static int emit_last_fiemap_cache(struct btrfs_fs_info *fs_info,
4451                                   struct fiemap_extent_info *fieinfo,
4452                                   struct fiemap_cache *cache)
4453 {
4454         int ret;
4455
4456         if (!cache->cached)
4457                 return 0;
4458
4459         ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
4460                                       cache->len, cache->flags);
4461         cache->cached = false;
4462         if (ret > 0)
4463                 ret = 0;
4464         return ret;
4465 }
4466
4467 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4468                 __u64 start, __u64 len, get_extent_t *get_extent)
4469 {
4470         int ret = 0;
4471         u64 off = start;
4472         u64 max = start + len;
4473         u32 flags = 0;
4474         u32 found_type;
4475         u64 last;
4476         u64 last_for_get_extent = 0;
4477         u64 disko = 0;
4478         u64 isize = i_size_read(inode);
4479         struct btrfs_key found_key;
4480         struct extent_map *em = NULL;
4481         struct extent_state *cached_state = NULL;
4482         struct btrfs_path *path;
4483         struct btrfs_root *root = BTRFS_I(inode)->root;
4484         struct fiemap_cache cache = { 0 };
4485         int end = 0;
4486         u64 em_start = 0;
4487         u64 em_len = 0;
4488         u64 em_end = 0;
4489
4490         if (len == 0)
4491                 return -EINVAL;
4492
4493         path = btrfs_alloc_path();
4494         if (!path)
4495                 return -ENOMEM;
4496         path->leave_spinning = 1;
4497
4498         start = round_down(start, btrfs_inode_sectorsize(inode));
4499         len = round_up(max, btrfs_inode_sectorsize(inode)) - start;
4500
4501         /*
4502          * lookup the last file extent.  We're not using i_size here
4503          * because there might be preallocation past i_size
4504          */
4505         ret = btrfs_lookup_file_extent(NULL, root, path,
4506                         btrfs_ino(BTRFS_I(inode)), -1, 0);
4507         if (ret < 0) {
4508                 btrfs_free_path(path);
4509                 return ret;
4510         } else {
4511                 WARN_ON(!ret);
4512                 if (ret == 1)
4513                         ret = 0;
4514         }
4515
4516         path->slots[0]--;
4517         btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
4518         found_type = found_key.type;
4519
4520         /* No extents, but there might be delalloc bits */
4521         if (found_key.objectid != btrfs_ino(BTRFS_I(inode)) ||
4522             found_type != BTRFS_EXTENT_DATA_KEY) {
4523                 /* have to trust i_size as the end */
4524                 last = (u64)-1;
4525                 last_for_get_extent = isize;
4526         } else {
4527                 /*
4528                  * remember the start of the last extent.  There are a
4529                  * bunch of different factors that go into the length of the
4530                  * extent, so its much less complex to remember where it started
4531                  */
4532                 last = found_key.offset;
4533                 last_for_get_extent = last + 1;
4534         }
4535         btrfs_release_path(path);
4536
4537         /*
4538          * we might have some extents allocated but more delalloc past those
4539          * extents.  so, we trust isize unless the start of the last extent is
4540          * beyond isize
4541          */
4542         if (last < isize) {
4543                 last = (u64)-1;
4544                 last_for_get_extent = isize;
4545         }
4546
4547         lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4548                          &cached_state);
4549
4550         em = get_extent_skip_holes(inode, start, last_for_get_extent,
4551                                    get_extent);
4552         if (!em)
4553                 goto out;
4554         if (IS_ERR(em)) {
4555                 ret = PTR_ERR(em);
4556                 goto out;
4557         }
4558
4559         while (!end) {
4560                 u64 offset_in_extent = 0;
4561
4562                 /* break if the extent we found is outside the range */
4563                 if (em->start >= max || extent_map_end(em) < off)
4564                         break;
4565
4566                 /*
4567                  * get_extent may return an extent that starts before our
4568                  * requested range.  We have to make sure the ranges
4569                  * we return to fiemap always move forward and don't
4570                  * overlap, so adjust the offsets here
4571                  */
4572                 em_start = max(em->start, off);
4573
4574                 /*
4575                  * record the offset from the start of the extent
4576                  * for adjusting the disk offset below.  Only do this if the
4577                  * extent isn't compressed since our in ram offset may be past
4578                  * what we have actually allocated on disk.
4579                  */
4580                 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4581                         offset_in_extent = em_start - em->start;
4582                 em_end = extent_map_end(em);
4583                 em_len = em_end - em_start;
4584                 disko = 0;
4585                 flags = 0;
4586
4587                 /*
4588                  * bump off for our next call to get_extent
4589                  */
4590                 off = extent_map_end(em);
4591                 if (off >= max)
4592                         end = 1;
4593
4594                 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
4595                         end = 1;
4596                         flags |= FIEMAP_EXTENT_LAST;
4597                 } else if (em->block_start == EXTENT_MAP_INLINE) {
4598                         flags |= (FIEMAP_EXTENT_DATA_INLINE |
4599                                   FIEMAP_EXTENT_NOT_ALIGNED);
4600                 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
4601                         flags |= (FIEMAP_EXTENT_DELALLOC |
4602                                   FIEMAP_EXTENT_UNKNOWN);
4603                 } else if (fieinfo->fi_extents_max) {
4604                         struct btrfs_trans_handle *trans;
4605
4606                         u64 bytenr = em->block_start -
4607                                 (em->start - em->orig_start);
4608
4609                         disko = em->block_start + offset_in_extent;
4610
4611                         /*
4612                          * We need a trans handle to get delayed refs
4613                          */
4614                         trans = btrfs_join_transaction(root);
4615                         /*
4616                          * It's OK if we can't start a trans we can still check
4617                          * from commit_root
4618                          */
4619                         if (IS_ERR(trans))
4620                                 trans = NULL;
4621
4622                         /*
4623                          * As btrfs supports shared space, this information
4624                          * can be exported to userspace tools via
4625                          * flag FIEMAP_EXTENT_SHARED.  If fi_extents_max == 0
4626                          * then we're just getting a count and we can skip the
4627                          * lookup stuff.
4628                          */
4629                         ret = btrfs_check_shared(trans, root->fs_info,
4630                                         root->objectid,
4631                                         btrfs_ino(BTRFS_I(inode)), bytenr);
4632                         if (trans)
4633                                 btrfs_end_transaction(trans);
4634                         if (ret < 0)
4635                                 goto out_free;
4636                         if (ret)
4637                                 flags |= FIEMAP_EXTENT_SHARED;
4638                         ret = 0;
4639                 }
4640                 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4641                         flags |= FIEMAP_EXTENT_ENCODED;
4642                 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4643                         flags |= FIEMAP_EXTENT_UNWRITTEN;
4644
4645                 free_extent_map(em);
4646                 em = NULL;
4647                 if ((em_start >= last) || em_len == (u64)-1 ||
4648                    (last == (u64)-1 && isize <= em_end)) {
4649                         flags |= FIEMAP_EXTENT_LAST;
4650                         end = 1;
4651                 }
4652
4653                 /* now scan forward to see if this is really the last extent. */
4654                 em = get_extent_skip_holes(inode, off, last_for_get_extent,
4655                                            get_extent);
4656                 if (IS_ERR(em)) {
4657                         ret = PTR_ERR(em);
4658                         goto out;
4659                 }
4660                 if (!em) {
4661                         flags |= FIEMAP_EXTENT_LAST;
4662                         end = 1;
4663                 }
4664                 ret = emit_fiemap_extent(fieinfo, &cache, em_start, disko,
4665                                            em_len, flags);
4666                 if (ret) {
4667                         if (ret == 1)
4668                                 ret = 0;
4669                         goto out_free;
4670                 }
4671         }
4672 out_free:
4673         if (!ret)
4674                 ret = emit_last_fiemap_cache(root->fs_info, fieinfo, &cache);
4675         free_extent_map(em);
4676 out:
4677         btrfs_free_path(path);
4678         unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4679                              &cached_state, GFP_NOFS);
4680         return ret;
4681 }
4682
4683 static void __free_extent_buffer(struct extent_buffer *eb)
4684 {
4685         btrfs_leak_debug_del(&eb->leak_list);
4686         kmem_cache_free(extent_buffer_cache, eb);
4687 }
4688
4689 int extent_buffer_under_io(struct extent_buffer *eb)
4690 {
4691         return (atomic_read(&eb->io_pages) ||
4692                 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4693                 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4694 }
4695
4696 /*
4697  * Helper for releasing extent buffer page.
4698  */
4699 static void btrfs_release_extent_buffer_page(struct extent_buffer *eb)
4700 {
4701         unsigned long index;
4702         struct page *page;
4703         int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4704
4705         BUG_ON(extent_buffer_under_io(eb));
4706
4707         index = num_extent_pages(eb->start, eb->len);
4708         if (index == 0)
4709                 return;
4710
4711         do {
4712                 index--;
4713                 page = eb->pages[index];
4714                 if (!page)
4715                         continue;
4716                 if (mapped)
4717                         spin_lock(&page->mapping->private_lock);
4718                 /*
4719                  * We do this since we'll remove the pages after we've
4720                  * removed the eb from the radix tree, so we could race
4721                  * and have this page now attached to the new eb.  So
4722                  * only clear page_private if it's still connected to
4723                  * this eb.
4724                  */
4725                 if (PagePrivate(page) &&
4726                     page->private == (unsigned long)eb) {
4727                         BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4728                         BUG_ON(PageDirty(page));
4729                         BUG_ON(PageWriteback(page));
4730                         /*
4731                          * We need to make sure we haven't be attached
4732                          * to a new eb.
4733                          */
4734                         ClearPagePrivate(page);
4735                         set_page_private(page, 0);
4736                         /* One for the page private */
4737                         put_page(page);
4738                 }
4739
4740                 if (mapped)
4741                         spin_unlock(&page->mapping->private_lock);
4742
4743                 /* One for when we allocated the page */
4744                 put_page(page);
4745         } while (index != 0);
4746 }
4747
4748 /*
4749  * Helper for releasing the extent buffer.
4750  */
4751 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4752 {
4753         btrfs_release_extent_buffer_page(eb);
4754         __free_extent_buffer(eb);
4755 }
4756
4757 static struct extent_buffer *
4758 __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
4759                       unsigned long len)
4760 {
4761         struct extent_buffer *eb = NULL;
4762
4763         eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
4764         eb->start = start;
4765         eb->len = len;
4766         eb->fs_info = fs_info;
4767         eb->bflags = 0;
4768         rwlock_init(&eb->lock);
4769         atomic_set(&eb->write_locks, 0);
4770         atomic_set(&eb->read_locks, 0);
4771         atomic_set(&eb->blocking_readers, 0);
4772         atomic_set(&eb->blocking_writers, 0);
4773         atomic_set(&eb->spinning_readers, 0);
4774         atomic_set(&eb->spinning_writers, 0);
4775         eb->lock_nested = 0;
4776         init_waitqueue_head(&eb->write_lock_wq);
4777         init_waitqueue_head(&eb->read_lock_wq);
4778
4779         btrfs_leak_debug_add(&eb->leak_list, &buffers);
4780
4781         spin_lock_init(&eb->refs_lock);
4782         atomic_set(&eb->refs, 1);
4783         atomic_set(&eb->io_pages, 0);
4784
4785         /*
4786          * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4787          */
4788         BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4789                 > MAX_INLINE_EXTENT_BUFFER_SIZE);
4790         BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
4791
4792         return eb;
4793 }
4794
4795 struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4796 {
4797         unsigned long i;
4798         struct page *p;
4799         struct extent_buffer *new;
4800         unsigned long num_pages = num_extent_pages(src->start, src->len);
4801
4802         new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
4803         if (new == NULL)
4804                 return NULL;
4805
4806         for (i = 0; i < num_pages; i++) {
4807                 p = alloc_page(GFP_NOFS);
4808                 if (!p) {
4809                         btrfs_release_extent_buffer(new);
4810                         return NULL;
4811                 }
4812                 attach_extent_buffer_page(new, p);
4813                 WARN_ON(PageDirty(p));
4814                 SetPageUptodate(p);
4815                 new->pages[i] = p;
4816                 copy_page(page_address(p), page_address(src->pages[i]));
4817         }
4818
4819         set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
4820         set_bit(EXTENT_BUFFER_DUMMY, &new->bflags);
4821
4822         return new;
4823 }
4824
4825 struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4826                                                   u64 start, unsigned long len)
4827 {
4828         struct extent_buffer *eb;
4829         unsigned long num_pages;
4830         unsigned long i;
4831
4832         num_pages = num_extent_pages(start, len);
4833
4834         eb = __alloc_extent_buffer(fs_info, start, len);
4835         if (!eb)
4836                 return NULL;
4837
4838         for (i = 0; i < num_pages; i++) {
4839                 eb->pages[i] = alloc_page(GFP_NOFS);
4840                 if (!eb->pages[i])
4841                         goto err;
4842         }
4843         set_extent_buffer_uptodate(eb);
4844         btrfs_set_header_nritems(eb, 0);
4845         set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4846
4847         return eb;
4848 err:
4849         for (; i > 0; i--)
4850                 __free_page(eb->pages[i - 1]);
4851         __free_extent_buffer(eb);
4852         return NULL;
4853 }
4854
4855 struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4856                                                 u64 start)
4857 {
4858         return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize);
4859 }
4860
4861 static void check_buffer_tree_ref(struct extent_buffer *eb)
4862 {
4863         int refs;
4864         /* the ref bit is tricky.  We have to make sure it is set
4865          * if we have the buffer dirty.   Otherwise the
4866          * code to free a buffer can end up dropping a dirty
4867          * page
4868          *
4869          * Once the ref bit is set, it won't go away while the
4870          * buffer is dirty or in writeback, and it also won't
4871          * go away while we have the reference count on the
4872          * eb bumped.
4873          *
4874          * We can't just set the ref bit without bumping the
4875          * ref on the eb because free_extent_buffer might
4876          * see the ref bit and try to clear it.  If this happens
4877          * free_extent_buffer might end up dropping our original
4878          * ref by mistake and freeing the page before we are able
4879          * to add one more ref.
4880          *
4881          * So bump the ref count first, then set the bit.  If someone
4882          * beat us to it, drop the ref we added.
4883          */
4884         refs = atomic_read(&eb->refs);
4885         if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4886                 return;
4887
4888         spin_lock(&eb->refs_lock);
4889         if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4890                 atomic_inc(&eb->refs);
4891         spin_unlock(&eb->refs_lock);
4892 }
4893
4894 static void mark_extent_buffer_accessed(struct extent_buffer *eb,
4895                 struct page *accessed)
4896 {
4897         unsigned long num_pages, i;
4898
4899         check_buffer_tree_ref(eb);
4900
4901         num_pages = num_extent_pages(eb->start, eb->len);
4902         for (i = 0; i < num_pages; i++) {
4903                 struct page *p = eb->pages[i];
4904
4905                 if (p != accessed)
4906                         mark_page_accessed(p);
4907         }
4908 }
4909
4910 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
4911                                          u64 start)
4912 {
4913         struct extent_buffer *eb;
4914
4915         rcu_read_lock();
4916         eb = radix_tree_lookup(&fs_info->buffer_radix,
4917                                start >> PAGE_SHIFT);
4918         if (eb && atomic_inc_not_zero(&eb->refs)) {
4919                 rcu_read_unlock();
4920                 /*
4921                  * Lock our eb's refs_lock to avoid races with
4922                  * free_extent_buffer. When we get our eb it might be flagged
4923                  * with EXTENT_BUFFER_STALE and another task running
4924                  * free_extent_buffer might have seen that flag set,
4925                  * eb->refs == 2, that the buffer isn't under IO (dirty and
4926                  * writeback flags not set) and it's still in the tree (flag
4927                  * EXTENT_BUFFER_TREE_REF set), therefore being in the process
4928                  * of decrementing the extent buffer's reference count twice.
4929                  * So here we could race and increment the eb's reference count,
4930                  * clear its stale flag, mark it as dirty and drop our reference
4931                  * before the other task finishes executing free_extent_buffer,
4932                  * which would later result in an attempt to free an extent
4933                  * buffer that is dirty.
4934                  */
4935                 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
4936                         spin_lock(&eb->refs_lock);
4937                         spin_unlock(&eb->refs_lock);
4938                 }
4939                 mark_extent_buffer_accessed(eb, NULL);
4940                 return eb;
4941         }
4942         rcu_read_unlock();
4943
4944         return NULL;
4945 }
4946
4947 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4948 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
4949                                         u64 start)
4950 {
4951         struct extent_buffer *eb, *exists = NULL;
4952         int ret;
4953
4954         eb = find_extent_buffer(fs_info, start);
4955         if (eb)
4956                 return eb;
4957         eb = alloc_dummy_extent_buffer(fs_info, start);
4958         if (!eb)
4959                 return NULL;
4960         eb->fs_info = fs_info;
4961 again:
4962         ret = radix_tree_preload(GFP_NOFS);
4963         if (ret)
4964                 goto free_eb;
4965         spin_lock(&fs_info->buffer_lock);
4966         ret = radix_tree_insert(&fs_info->buffer_radix,
4967                                 start >> PAGE_SHIFT, eb);
4968         spin_unlock(&fs_info->buffer_lock);
4969         radix_tree_preload_end();
4970         if (ret == -EEXIST) {
4971                 exists = find_extent_buffer(fs_info, start);
4972                 if (exists)
4973                         goto free_eb;
4974                 else
4975                         goto again;
4976         }
4977         check_buffer_tree_ref(eb);
4978         set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
4979
4980         /*
4981          * We will free dummy extent buffer's if they come into
4982          * free_extent_buffer with a ref count of 2, but if we are using this we
4983          * want the buffers to stay in memory until we're done with them, so
4984          * bump the ref count again.
4985          */
4986         atomic_inc(&eb->refs);
4987         return eb;
4988 free_eb:
4989         btrfs_release_extent_buffer(eb);
4990         return exists;
4991 }
4992 #endif
4993
4994 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
4995                                           u64 start)
4996 {
4997         unsigned long len = fs_info->nodesize;
4998         unsigned long num_pages = num_extent_pages(start, len);
4999         unsigned long i;
5000         unsigned long index = start >> PAGE_SHIFT;
5001         struct extent_buffer *eb;
5002         struct extent_buffer *exists = NULL;
5003         struct page *p;
5004         struct address_space *mapping = fs_info->btree_inode->i_mapping;
5005         int uptodate = 1;
5006         int ret;
5007
5008         if (!IS_ALIGNED(start, fs_info->sectorsize)) {
5009                 btrfs_err(fs_info, "bad tree block start %llu", start);
5010                 return ERR_PTR(-EINVAL);
5011         }
5012
5013         eb = find_extent_buffer(fs_info, start);
5014         if (eb)
5015                 return eb;
5016
5017         eb = __alloc_extent_buffer(fs_info, start, len);
5018         if (!eb)
5019                 return ERR_PTR(-ENOMEM);
5020
5021         for (i = 0; i < num_pages; i++, index++) {
5022                 p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
5023                 if (!p) {
5024                         exists = ERR_PTR(-ENOMEM);
5025                         goto free_eb;
5026                 }
5027
5028                 spin_lock(&mapping->private_lock);
5029                 if (PagePrivate(p)) {
5030                         /*
5031                          * We could have already allocated an eb for this page
5032                          * and attached one so lets see if we can get a ref on
5033                          * the existing eb, and if we can we know it's good and
5034                          * we can just return that one, else we know we can just
5035                          * overwrite page->private.
5036                          */
5037                         exists = (struct extent_buffer *)p->private;
5038                         if (atomic_inc_not_zero(&exists->refs)) {
5039                                 spin_unlock(&mapping->private_lock);
5040                                 unlock_page(p);
5041                                 put_page(p);
5042                                 mark_extent_buffer_accessed(exists, p);
5043                                 goto free_eb;
5044                         }
5045                         exists = NULL;
5046
5047                         /*
5048                          * Do this so attach doesn't complain and we need to
5049                          * drop the ref the old guy had.
5050                          */
5051                         ClearPagePrivate(p);
5052                         WARN_ON(PageDirty(p));
5053                         put_page(p);
5054                 }
5055                 attach_extent_buffer_page(eb, p);
5056                 spin_unlock(&mapping->private_lock);
5057                 WARN_ON(PageDirty(p));
5058                 eb->pages[i] = p;
5059                 if (!PageUptodate(p))
5060                         uptodate = 0;
5061
5062                 /*
5063                  * see below about how we avoid a nasty race with release page
5064                  * and why we unlock later
5065                  */
5066         }
5067         if (uptodate)
5068                 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5069 again:
5070         ret = radix_tree_preload(GFP_NOFS);
5071         if (ret) {
5072                 exists = ERR_PTR(ret);
5073                 goto free_eb;
5074         }
5075
5076         spin_lock(&fs_info->buffer_lock);
5077         ret = radix_tree_insert(&fs_info->buffer_radix,
5078                                 start >> PAGE_SHIFT, eb);
5079         spin_unlock(&fs_info->buffer_lock);
5080         radix_tree_preload_end();
5081         if (ret == -EEXIST) {
5082                 exists = find_extent_buffer(fs_info, start);
5083                 if (exists)
5084                         goto free_eb;
5085                 else
5086                         goto again;
5087         }
5088         /* add one reference for the tree */
5089         check_buffer_tree_ref(eb);
5090         set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
5091
5092         /*
5093          * there is a race where release page may have
5094          * tried to find this extent buffer in the radix
5095          * but failed.  It will tell the VM it is safe to
5096          * reclaim the, and it will clear the page private bit.
5097          * We must make sure to set the page private bit properly
5098          * after the extent buffer is in the radix tree so
5099          * it doesn't get lost
5100          */
5101         SetPageChecked(eb->pages[0]);
5102         for (i = 1; i < num_pages; i++) {
5103                 p = eb->pages[i];
5104                 ClearPageChecked(p);
5105                 unlock_page(p);
5106         }
5107         unlock_page(eb->pages[0]);
5108         return eb;
5109
5110 free_eb:
5111         WARN_ON(!atomic_dec_and_test(&eb->refs));
5112         for (i = 0; i < num_pages; i++) {
5113                 if (eb->pages[i])
5114                         unlock_page(eb->pages[i]);
5115         }
5116
5117         btrfs_release_extent_buffer(eb);
5118         return exists;
5119 }
5120
5121 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
5122 {
5123         struct extent_buffer *eb =
5124                         container_of(head, struct extent_buffer, rcu_head);
5125
5126         __free_extent_buffer(eb);
5127 }
5128
5129 /* Expects to have eb->eb_lock already held */
5130 static int release_extent_buffer(struct extent_buffer *eb)
5131 {
5132         WARN_ON(atomic_read(&eb->refs) == 0);
5133         if (atomic_dec_and_test(&eb->refs)) {
5134                 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
5135                         struct btrfs_fs_info *fs_info = eb->fs_info;
5136
5137                         spin_unlock(&eb->refs_lock);
5138
5139                         spin_lock(&fs_info->buffer_lock);
5140                         radix_tree_delete(&fs_info->buffer_radix,
5141                                           eb->start >> PAGE_SHIFT);
5142                         spin_unlock(&fs_info->buffer_lock);
5143                 } else {
5144                         spin_unlock(&eb->refs_lock);
5145                 }
5146
5147                 /* Should be safe to release our pages at this point */
5148                 btrfs_release_extent_buffer_page(eb);
5149 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5150                 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))) {
5151                         __free_extent_buffer(eb);
5152                         return 1;
5153                 }
5154 #endif
5155                 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
5156                 return 1;
5157         }
5158         spin_unlock(&eb->refs_lock);
5159
5160         return 0;
5161 }
5162
5163 void free_extent_buffer(struct extent_buffer *eb)
5164 {
5165         int refs;
5166         int old;
5167         if (!eb)
5168                 return;
5169
5170         while (1) {
5171                 refs = atomic_read(&eb->refs);
5172                 if (refs <= 3)
5173                         break;
5174                 old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
5175                 if (old == refs)
5176                         return;
5177         }
5178
5179         spin_lock(&eb->refs_lock);
5180         if (atomic_read(&eb->refs) == 2 &&
5181             test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))
5182                 atomic_dec(&eb->refs);
5183
5184         if (atomic_read(&eb->refs) == 2 &&
5185             test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
5186             !extent_buffer_under_io(eb) &&
5187             test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5188                 atomic_dec(&eb->refs);
5189
5190         /*
5191          * I know this is terrible, but it's temporary until we stop tracking
5192          * the uptodate bits and such for the extent buffers.
5193          */
5194         release_extent_buffer(eb);
5195 }
5196
5197 void free_extent_buffer_stale(struct extent_buffer *eb)
5198 {
5199         if (!eb)
5200                 return;
5201
5202         spin_lock(&eb->refs_lock);
5203         set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
5204
5205         if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
5206             test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5207                 atomic_dec(&eb->refs);
5208         release_extent_buffer(eb);
5209 }
5210
5211 void clear_extent_buffer_dirty(struct extent_buffer *eb)
5212 {
5213         unsigned long i;
5214         unsigned long num_pages;
5215         struct page *page;
5216
5217         num_pages = num_extent_pages(eb->start, eb->len);
5218
5219         for (i = 0; i < num_pages; i++) {
5220                 page = eb->pages[i];
5221                 if (!PageDirty(page))
5222                         continue;
5223
5224                 lock_page(page);
5225                 WARN_ON(!PagePrivate(page));
5226
5227                 clear_page_dirty_for_io(page);
5228                 spin_lock_irq(&page->mapping->tree_lock);
5229                 if (!PageDirty(page)) {
5230                         radix_tree_tag_clear(&page->mapping->page_tree,
5231                                                 page_index(page),
5232                                                 PAGECACHE_TAG_DIRTY);
5233                 }
5234                 spin_unlock_irq(&page->mapping->tree_lock);
5235                 ClearPageError(page);
5236                 unlock_page(page);
5237         }
5238         WARN_ON(atomic_read(&eb->refs) == 0);
5239 }
5240
5241 int set_extent_buffer_dirty(struct extent_buffer *eb)
5242 {
5243         unsigned long i;
5244         unsigned long num_pages;
5245         int was_dirty = 0;
5246
5247         check_buffer_tree_ref(eb);
5248
5249         was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
5250
5251         num_pages = num_extent_pages(eb->start, eb->len);
5252         WARN_ON(atomic_read(&eb->refs) == 0);
5253         WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
5254
5255         for (i = 0; i < num_pages; i++)
5256                 set_page_dirty(eb->pages[i]);
5257         return was_dirty;
5258 }
5259
5260 void clear_extent_buffer_uptodate(struct extent_buffer *eb)
5261 {
5262         unsigned long i;
5263         struct page *page;
5264         unsigned long num_pages;
5265
5266         clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5267         num_pages = num_extent_pages(eb->start, eb->len);
5268         for (i = 0; i < num_pages; i++) {
5269                 page = eb->pages[i];
5270                 if (page)
5271                         ClearPageUptodate(page);
5272         }
5273 }
5274
5275 void set_extent_buffer_uptodate(struct extent_buffer *eb)
5276 {
5277         unsigned long i;
5278         struct page *page;
5279         unsigned long num_pages;
5280
5281         set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5282         num_pages = num_extent_pages(eb->start, eb->len);
5283         for (i = 0; i < num_pages; i++) {
5284                 page = eb->pages[i];
5285                 SetPageUptodate(page);
5286         }
5287 }
5288
5289 int extent_buffer_uptodate(struct extent_buffer *eb)
5290 {
5291         return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5292 }
5293
5294 int read_extent_buffer_pages(struct extent_io_tree *tree,
5295                              struct extent_buffer *eb, int wait,
5296                              get_extent_t *get_extent, int mirror_num)
5297 {
5298         unsigned long i;
5299         struct page *page;
5300         int err;
5301         int ret = 0;
5302         int locked_pages = 0;
5303         int all_uptodate = 1;
5304         unsigned long num_pages;
5305         unsigned long num_reads = 0;
5306         struct bio *bio = NULL;
5307         unsigned long bio_flags = 0;
5308
5309         if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
5310                 return 0;
5311
5312         num_pages = num_extent_pages(eb->start, eb->len);
5313         for (i = 0; i < num_pages; i++) {
5314                 page = eb->pages[i];
5315                 if (wait == WAIT_NONE) {
5316                         if (!trylock_page(page))
5317                                 goto unlock_exit;
5318                 } else {
5319                         lock_page(page);
5320                 }
5321                 locked_pages++;
5322         }
5323         /*
5324          * We need to firstly lock all pages to make sure that
5325          * the uptodate bit of our pages won't be affected by
5326          * clear_extent_buffer_uptodate().
5327          */
5328         for (i = 0; i < num_pages; i++) {
5329                 page = eb->pages[i];
5330                 if (!PageUptodate(page)) {
5331                         num_reads++;
5332                         all_uptodate = 0;
5333                 }
5334         }
5335
5336         if (all_uptodate) {
5337                 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5338                 goto unlock_exit;
5339         }
5340
5341         clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5342         eb->read_mirror = 0;
5343         atomic_set(&eb->io_pages, num_reads);
5344         for (i = 0; i < num_pages; i++) {
5345                 page = eb->pages[i];
5346
5347                 if (!PageUptodate(page)) {
5348                         if (ret) {
5349                                 atomic_dec(&eb->io_pages);
5350                                 unlock_page(page);
5351                                 continue;
5352                         }
5353
5354                         ClearPageError(page);
5355                         err = __extent_read_full_page(tree, page,
5356                                                       get_extent, &bio,
5357                                                       mirror_num, &bio_flags,
5358                                                       REQ_META);
5359                         if (err) {
5360                                 ret = err;
5361                                 /*
5362                                  * We use &bio in above __extent_read_full_page,
5363                                  * so we ensure that if it returns error, the
5364                                  * current page fails to add itself to bio and
5365                                  * it's been unlocked.
5366                                  *
5367                                  * We must dec io_pages by ourselves.
5368                                  */
5369                                 atomic_dec(&eb->io_pages);
5370                         }
5371                 } else {
5372                         unlock_page(page);
5373                 }
5374         }
5375
5376         if (bio) {
5377                 err = submit_one_bio(bio, mirror_num, bio_flags);
5378                 if (err)
5379                         return err;
5380         }
5381
5382         if (ret || wait != WAIT_COMPLETE)
5383                 return ret;
5384
5385         for (i = 0; i < num_pages; i++) {
5386                 page = eb->pages[i];
5387                 wait_on_page_locked(page);
5388                 if (!PageUptodate(page))
5389                         ret = -EIO;
5390         }
5391
5392         return ret;
5393
5394 unlock_exit:
5395         while (locked_pages > 0) {
5396                 locked_pages--;
5397                 page = eb->pages[locked_pages];
5398                 unlock_page(page);
5399         }
5400         return ret;
5401 }
5402
5403 void read_extent_buffer(struct extent_buffer *eb, void *dstv,
5404                         unsigned long start,
5405                         unsigned long len)
5406 {
5407         size_t cur;
5408         size_t offset;
5409         struct page *page;
5410         char *kaddr;
5411         char *dst = (char *)dstv;
5412         size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5413         unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5414
5415         WARN_ON(start > eb->len);
5416         WARN_ON(start + len > eb->start + eb->len);
5417
5418         offset = (start_offset + start) & (PAGE_SIZE - 1);
5419
5420         while (len > 0) {
5421                 page = eb->pages[i];
5422
5423                 cur = min(len, (PAGE_SIZE - offset));
5424                 kaddr = page_address(page);
5425                 memcpy(dst, kaddr + offset, cur);
5426
5427                 dst += cur;
5428                 len -= cur;
5429                 offset = 0;
5430                 i++;
5431         }
5432 }
5433
5434 int read_extent_buffer_to_user(struct extent_buffer *eb, void __user *dstv,
5435                         unsigned long start,
5436                         unsigned long len)
5437 {
5438         size_t cur;
5439         size_t offset;
5440         struct page *page;
5441         char *kaddr;
5442         char __user *dst = (char __user *)dstv;
5443         size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5444         unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5445         int ret = 0;
5446
5447         WARN_ON(start > eb->len);
5448         WARN_ON(start + len > eb->start + eb->len);
5449
5450         offset = (start_offset + start) & (PAGE_SIZE - 1);
5451
5452         while (len > 0) {
5453                 page = eb->pages[i];
5454
5455                 cur = min(len, (PAGE_SIZE - offset));
5456                 kaddr = page_address(page);
5457                 if (copy_to_user(dst, kaddr + offset, cur)) {
5458                         ret = -EFAULT;
5459                         break;
5460                 }
5461
5462                 dst += cur;
5463                 len -= cur;
5464                 offset = 0;
5465                 i++;
5466         }
5467
5468         return ret;
5469 }
5470
5471 /*
5472  * return 0 if the item is found within a page.
5473  * return 1 if the item spans two pages.
5474  * return -EINVAL otherwise.
5475  */
5476 int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
5477                                unsigned long min_len, char **map,
5478                                unsigned long *map_start,
5479                                unsigned long *map_len)
5480 {
5481         size_t offset = start & (PAGE_SIZE - 1);
5482         char *kaddr;
5483         struct page *p;
5484         size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5485         unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5486         unsigned long end_i = (start_offset + start + min_len - 1) >>
5487                 PAGE_SHIFT;
5488
5489         if (i != end_i)
5490                 return 1;
5491
5492         if (i == 0) {
5493                 offset = start_offset;
5494                 *map_start = 0;
5495         } else {
5496                 offset = 0;
5497                 *map_start = ((u64)i << PAGE_SHIFT) - start_offset;
5498         }
5499
5500         if (start + min_len > eb->len) {
5501                 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n",
5502                        eb->start, eb->len, start, min_len);
5503                 return -EINVAL;
5504         }
5505
5506         p = eb->pages[i];
5507         kaddr = page_address(p);
5508         *map = kaddr + offset;
5509         *map_len = PAGE_SIZE - offset;
5510         return 0;
5511 }
5512
5513 int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
5514                           unsigned long start,
5515                           unsigned long len)
5516 {
5517         size_t cur;
5518         size_t offset;
5519         struct page *page;
5520         char *kaddr;
5521         char *ptr = (char *)ptrv;
5522         size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5523         unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5524         int ret = 0;
5525
5526         WARN_ON(start > eb->len);
5527         WARN_ON(start + len > eb->start + eb->len);
5528
5529         offset = (start_offset + start) & (PAGE_SIZE - 1);
5530
5531         while (len > 0) {
5532                 page = eb->pages[i];
5533
5534                 cur = min(len, (PAGE_SIZE - offset));
5535
5536                 kaddr = page_address(page);
5537                 ret = memcmp(ptr, kaddr + offset, cur);
5538                 if (ret)
5539                         break;
5540
5541                 ptr += cur;
5542                 len -= cur;
5543                 offset = 0;
5544                 i++;
5545         }
5546         return ret;
5547 }
5548
5549 void write_extent_buffer_chunk_tree_uuid(struct extent_buffer *eb,
5550                 const void *srcv)
5551 {
5552         char *kaddr;
5553
5554         WARN_ON(!PageUptodate(eb->pages[0]));
5555         kaddr = page_address(eb->pages[0]);
5556         memcpy(kaddr + offsetof(struct btrfs_header, chunk_tree_uuid), srcv,
5557                         BTRFS_FSID_SIZE);
5558 }
5559
5560 void write_extent_buffer_fsid(struct extent_buffer *eb, const void *srcv)
5561 {
5562         char *kaddr;
5563
5564         WARN_ON(!PageUptodate(eb->pages[0]));
5565         kaddr = page_address(eb->pages[0]);
5566         memcpy(kaddr + offsetof(struct btrfs_header, fsid), srcv,
5567                         BTRFS_FSID_SIZE);
5568 }
5569
5570 void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
5571                          unsigned long start, unsigned long len)
5572 {
5573         size_t cur;
5574         size_t offset;
5575         struct page *page;
5576         char *kaddr;
5577         char *src = (char *)srcv;
5578         size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5579         unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5580
5581         WARN_ON(start > eb->len);
5582         WARN_ON(start + len > eb->start + eb->len);
5583
5584         offset = (start_offset + start) & (PAGE_SIZE - 1);
5585
5586         while (len > 0) {
5587                 page = eb->pages[i];
5588                 WARN_ON(!PageUptodate(page));
5589
5590                 cur = min(len, PAGE_SIZE - offset);
5591                 kaddr = page_address(page);
5592                 memcpy(kaddr + offset, src, cur);
5593
5594                 src += cur;
5595                 len -= cur;
5596                 offset = 0;
5597                 i++;
5598         }
5599 }
5600
5601 void memzero_extent_buffer(struct extent_buffer *eb, unsigned long start,
5602                 unsigned long len)
5603 {
5604         size_t cur;
5605         size_t offset;
5606         struct page *page;
5607         char *kaddr;
5608         size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5609         unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5610
5611         WARN_ON(start > eb->len);
5612         WARN_ON(start + len > eb->start + eb->len);
5613
5614         offset = (start_offset + start) & (PAGE_SIZE - 1);
5615
5616         while (len > 0) {
5617                 page = eb->pages[i];
5618                 WARN_ON(!PageUptodate(page));
5619
5620                 cur = min(len, PAGE_SIZE - offset);
5621                 kaddr = page_address(page);
5622                 memset(kaddr + offset, 0, cur);
5623
5624                 len -= cur;
5625                 offset = 0;
5626                 i++;
5627         }
5628 }
5629
5630 void copy_extent_buffer_full(struct extent_buffer *dst,
5631                              struct extent_buffer *src)
5632 {
5633         int i;
5634         unsigned num_pages;
5635
5636         ASSERT(dst->len == src->len);
5637
5638         num_pages = num_extent_pages(dst->start, dst->len);
5639         for (i = 0; i < num_pages; i++)
5640                 copy_page(page_address(dst->pages[i]),
5641                                 page_address(src->pages[i]));
5642 }
5643
5644 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
5645                         unsigned long dst_offset, unsigned long src_offset,
5646                         unsigned long len)
5647 {
5648         u64 dst_len = dst->len;
5649         size_t cur;
5650         size_t offset;
5651         struct page *page;
5652         char *kaddr;
5653         size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
5654         unsigned long i = (start_offset + dst_offset) >> PAGE_SHIFT;
5655
5656         WARN_ON(src->len != dst_len);
5657
5658         offset = (start_offset + dst_offset) &
5659                 (PAGE_SIZE - 1);
5660
5661         while (len > 0) {
5662                 page = dst->pages[i];
5663                 WARN_ON(!PageUptodate(page));
5664
5665                 cur = min(len, (unsigned long)(PAGE_SIZE - offset));
5666
5667                 kaddr = page_address(page);
5668                 read_extent_buffer(src, kaddr + offset, src_offset, cur);
5669
5670                 src_offset += cur;
5671                 len -= cur;
5672                 offset = 0;
5673                 i++;
5674         }
5675 }
5676
5677 void le_bitmap_set(u8 *map, unsigned int start, int len)
5678 {
5679         u8 *p = map + BIT_BYTE(start);
5680         const unsigned int size = start + len;
5681         int bits_to_set = BITS_PER_BYTE - (start % BITS_PER_BYTE);
5682         u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(start);
5683
5684         while (len - bits_to_set >= 0) {
5685                 *p |= mask_to_set;
5686                 len -= bits_to_set;
5687                 bits_to_set = BITS_PER_BYTE;
5688                 mask_to_set = ~0;
5689                 p++;
5690         }
5691         if (len) {
5692                 mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
5693                 *p |= mask_to_set;
5694         }
5695 }
5696
5697 void le_bitmap_clear(u8 *map, unsigned int start, int len)
5698 {
5699         u8 *p = map + BIT_BYTE(start);
5700         const unsigned int size = start + len;
5701         int bits_to_clear = BITS_PER_BYTE - (start % BITS_PER_BYTE);
5702         u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(start);
5703
5704         while (len - bits_to_clear >= 0) {
5705                 *p &= ~mask_to_clear;
5706                 len -= bits_to_clear;
5707                 bits_to_clear = BITS_PER_BYTE;
5708                 mask_to_clear = ~0;
5709                 p++;
5710         }
5711         if (len) {
5712                 mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
5713                 *p &= ~mask_to_clear;
5714         }
5715 }
5716
5717 /*
5718  * eb_bitmap_offset() - calculate the page and offset of the byte containing the
5719  * given bit number
5720  * @eb: the extent buffer
5721  * @start: offset of the bitmap item in the extent buffer
5722  * @nr: bit number
5723  * @page_index: return index of the page in the extent buffer that contains the
5724  * given bit number
5725  * @page_offset: return offset into the page given by page_index
5726  *
5727  * This helper hides the ugliness of finding the byte in an extent buffer which
5728  * contains a given bit.
5729  */
5730 static inline void eb_bitmap_offset(struct extent_buffer *eb,
5731                                     unsigned long start, unsigned long nr,
5732                                     unsigned long *page_index,
5733                                     size_t *page_offset)
5734 {
5735         size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5736         size_t byte_offset = BIT_BYTE(nr);
5737         size_t offset;
5738
5739         /*
5740          * The byte we want is the offset of the extent buffer + the offset of
5741          * the bitmap item in the extent buffer + the offset of the byte in the
5742          * bitmap item.
5743          */
5744         offset = start_offset + start + byte_offset;
5745
5746         *page_index = offset >> PAGE_SHIFT;
5747         *page_offset = offset & (PAGE_SIZE - 1);
5748 }
5749
5750 /**
5751  * extent_buffer_test_bit - determine whether a bit in a bitmap item is set
5752  * @eb: the extent buffer
5753  * @start: offset of the bitmap item in the extent buffer
5754  * @nr: bit number to test
5755  */
5756 int extent_buffer_test_bit(struct extent_buffer *eb, unsigned long start,
5757                            unsigned long nr)
5758 {
5759         u8 *kaddr;
5760         struct page *page;
5761         unsigned long i;
5762         size_t offset;
5763
5764         eb_bitmap_offset(eb, start, nr, &i, &offset);
5765         page = eb->pages[i];
5766         WARN_ON(!PageUptodate(page));
5767         kaddr = page_address(page);
5768         return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
5769 }
5770
5771 /**
5772  * extent_buffer_bitmap_set - set an area of a bitmap
5773  * @eb: the extent buffer
5774  * @start: offset of the bitmap item in the extent buffer
5775  * @pos: bit number of the first bit
5776  * @len: number of bits to set
5777  */
5778 void extent_buffer_bitmap_set(struct extent_buffer *eb, unsigned long start,
5779                               unsigned long pos, unsigned long len)
5780 {
5781         u8 *kaddr;
5782         struct page *page;
5783         unsigned long i;
5784         size_t offset;
5785         const unsigned int size = pos + len;
5786         int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5787         u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos);
5788
5789         eb_bitmap_offset(eb, start, pos, &i, &offset);
5790         page = eb->pages[i];
5791         WARN_ON(!PageUptodate(page));
5792         kaddr = page_address(page);
5793
5794         while (len >= bits_to_set) {
5795                 kaddr[offset] |= mask_to_set;
5796                 len -= bits_to_set;
5797                 bits_to_set = BITS_PER_BYTE;
5798                 mask_to_set = ~0;
5799                 if (++offset >= PAGE_SIZE && len > 0) {
5800                         offset = 0;
5801                         page = eb->pages[++i];
5802                         WARN_ON(!PageUptodate(page));
5803                         kaddr = page_address(page);
5804                 }
5805         }
5806         if (len) {
5807                 mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
5808                 kaddr[offset] |= mask_to_set;
5809         }
5810 }
5811
5812
5813 /**
5814  * extent_buffer_bitmap_clear - clear an area of a bitmap
5815  * @eb: the extent buffer
5816  * @start: offset of the bitmap item in the extent buffer
5817  * @pos: bit number of the first bit
5818  * @len: number of bits to clear
5819  */
5820 void extent_buffer_bitmap_clear(struct extent_buffer *eb, unsigned long start,
5821                                 unsigned long pos, unsigned long len)
5822 {
5823         u8 *kaddr;
5824         struct page *page;
5825         unsigned long i;
5826         size_t offset;
5827         const unsigned int size = pos + len;
5828         int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5829         u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos);
5830
5831         eb_bitmap_offset(eb, start, pos, &i, &offset);
5832         page = eb->pages[i];
5833         WARN_ON(!PageUptodate(page));
5834         kaddr = page_address(page);
5835
5836         while (len >= bits_to_clear) {
5837                 kaddr[offset] &= ~mask_to_clear;
5838                 len -= bits_to_clear;
5839                 bits_to_clear = BITS_PER_BYTE;
5840                 mask_to_clear = ~0;
5841                 if (++offset >= PAGE_SIZE && len > 0) {
5842                         offset = 0;
5843                         page = eb->pages[++i];
5844                         WARN_ON(!PageUptodate(page));
5845                         kaddr = page_address(page);
5846                 }
5847         }
5848         if (len) {
5849                 mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
5850                 kaddr[offset] &= ~mask_to_clear;
5851         }
5852 }
5853
5854 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
5855 {
5856         unsigned long distance = (src > dst) ? src - dst : dst - src;
5857         return distance < len;
5858 }
5859
5860 static void copy_pages(struct page *dst_page, struct page *src_page,
5861                        unsigned long dst_off, unsigned long src_off,
5862                        unsigned long len)
5863 {
5864         char *dst_kaddr = page_address(dst_page);
5865         char *src_kaddr;
5866         int must_memmove = 0;
5867
5868         if (dst_page != src_page) {
5869                 src_kaddr = page_address(src_page);
5870         } else {
5871                 src_kaddr = dst_kaddr;
5872                 if (areas_overlap(src_off, dst_off, len))
5873                         must_memmove = 1;
5874         }
5875
5876         if (must_memmove)
5877                 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
5878         else
5879                 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
5880 }
5881
5882 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5883                            unsigned long src_offset, unsigned long len)
5884 {
5885         struct btrfs_fs_info *fs_info = dst->fs_info;
5886         size_t cur;
5887         size_t dst_off_in_page;
5888         size_t src_off_in_page;
5889         size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
5890         unsigned long dst_i;
5891         unsigned long src_i;
5892
5893         if (src_offset + len > dst->len) {
5894                 btrfs_err(fs_info,
5895                         "memmove bogus src_offset %lu move len %lu dst len %lu",
5896                          src_offset, len, dst->len);
5897                 BUG_ON(1);
5898         }
5899         if (dst_offset + len > dst->len) {
5900                 btrfs_err(fs_info,
5901                         "memmove bogus dst_offset %lu move len %lu dst len %lu",
5902                          dst_offset, len, dst->len);
5903                 BUG_ON(1);
5904         }
5905
5906         while (len > 0) {
5907                 dst_off_in_page = (start_offset + dst_offset) &
5908                         (PAGE_SIZE - 1);
5909                 src_off_in_page = (start_offset + src_offset) &
5910                         (PAGE_SIZE - 1);
5911
5912                 dst_i = (start_offset + dst_offset) >> PAGE_SHIFT;
5913                 src_i = (start_offset + src_offset) >> PAGE_SHIFT;
5914
5915                 cur = min(len, (unsigned long)(PAGE_SIZE -
5916                                                src_off_in_page));
5917                 cur = min_t(unsigned long, cur,
5918                         (unsigned long)(PAGE_SIZE - dst_off_in_page));
5919
5920                 copy_pages(dst->pages[dst_i], dst->pages[src_i],
5921                            dst_off_in_page, src_off_in_page, cur);
5922
5923                 src_offset += cur;
5924                 dst_offset += cur;
5925                 len -= cur;
5926         }
5927 }
5928
5929 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5930                            unsigned long src_offset, unsigned long len)
5931 {
5932         struct btrfs_fs_info *fs_info = dst->fs_info;
5933         size_t cur;
5934         size_t dst_off_in_page;
5935         size_t src_off_in_page;
5936         unsigned long dst_end = dst_offset + len - 1;
5937         unsigned long src_end = src_offset + len - 1;
5938         size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
5939         unsigned long dst_i;
5940         unsigned long src_i;
5941
5942         if (src_offset + len > dst->len) {
5943                 btrfs_err(fs_info,
5944                           "memmove bogus src_offset %lu move len %lu len %lu",
5945                           src_offset, len, dst->len);
5946                 BUG_ON(1);
5947         }
5948         if (dst_offset + len > dst->len) {
5949                 btrfs_err(fs_info,
5950                           "memmove bogus dst_offset %lu move len %lu len %lu",
5951                           dst_offset, len, dst->len);
5952                 BUG_ON(1);
5953         }
5954         if (dst_offset < src_offset) {
5955                 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
5956                 return;
5957         }
5958         while (len > 0) {
5959                 dst_i = (start_offset + dst_end) >> PAGE_SHIFT;
5960                 src_i = (start_offset + src_end) >> PAGE_SHIFT;
5961
5962                 dst_off_in_page = (start_offset + dst_end) &
5963                         (PAGE_SIZE - 1);
5964                 src_off_in_page = (start_offset + src_end) &
5965                         (PAGE_SIZE - 1);
5966
5967                 cur = min_t(unsigned long, len, src_off_in_page + 1);
5968                 cur = min(cur, dst_off_in_page + 1);
5969                 copy_pages(dst->pages[dst_i], dst->pages[src_i],
5970                            dst_off_in_page - cur + 1,
5971                            src_off_in_page - cur + 1, cur);
5972
5973                 dst_end -= cur;
5974                 src_end -= cur;
5975                 len -= cur;
5976         }
5977 }
5978
5979 int try_release_extent_buffer(struct page *page)
5980 {
5981         struct extent_buffer *eb;
5982
5983         /*
5984          * We need to make sure nobody is attaching this page to an eb right
5985          * now.
5986          */
5987         spin_lock(&page->mapping->private_lock);
5988         if (!PagePrivate(page)) {
5989                 spin_unlock(&page->mapping->private_lock);
5990                 return 1;
5991         }
5992
5993         eb = (struct extent_buffer *)page->private;
5994         BUG_ON(!eb);
5995
5996         /*
5997          * This is a little awful but should be ok, we need to make sure that
5998          * the eb doesn't disappear out from under us while we're looking at
5999          * this page.
6000          */
6001         spin_lock(&eb->refs_lock);
6002         if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
6003                 spin_unlock(&eb->refs_lock);
6004                 spin_unlock(&page->mapping->private_lock);
6005                 return 0;
6006         }
6007         spin_unlock(&page->mapping->private_lock);
6008
6009         /*
6010          * If tree ref isn't set then we know the ref on this eb is a real ref,
6011          * so just return, this page will likely be freed soon anyway.
6012          */
6013         if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
6014                 spin_unlock(&eb->refs_lock);
6015                 return 0;
6016         }
6017
6018         return release_extent_buffer(eb);
6019 }