]> git.karo-electronics.de Git - karo-tx-linux.git/blob - fs/btrfs/file.c
Merge branch 'akpm-current/current'
[karo-tx-linux.git] / fs / btrfs / file.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/fs.h>
20 #include <linux/pagemap.h>
21 #include <linux/highmem.h>
22 #include <linux/time.h>
23 #include <linux/init.h>
24 #include <linux/string.h>
25 #include <linux/backing-dev.h>
26 #include <linux/mpage.h>
27 #include <linux/aio.h>
28 #include <linux/falloc.h>
29 #include <linux/swap.h>
30 #include <linux/writeback.h>
31 #include <linux/statfs.h>
32 #include <linux/compat.h>
33 #include <linux/slab.h>
34 #include <linux/btrfs.h>
35 #include "ctree.h"
36 #include "disk-io.h"
37 #include "transaction.h"
38 #include "btrfs_inode.h"
39 #include "print-tree.h"
40 #include "tree-log.h"
41 #include "locking.h"
42 #include "volumes.h"
43
44 static struct kmem_cache *btrfs_inode_defrag_cachep;
45 /*
46  * when auto defrag is enabled we
47  * queue up these defrag structs to remember which
48  * inodes need defragging passes
49  */
50 struct inode_defrag {
51         struct rb_node rb_node;
52         /* objectid */
53         u64 ino;
54         /*
55          * transid where the defrag was added, we search for
56          * extents newer than this
57          */
58         u64 transid;
59
60         /* root objectid */
61         u64 root;
62
63         /* last offset we were able to defrag */
64         u64 last_offset;
65
66         /* if we've wrapped around back to zero once already */
67         int cycled;
68 };
69
70 static int __compare_inode_defrag(struct inode_defrag *defrag1,
71                                   struct inode_defrag *defrag2)
72 {
73         if (defrag1->root > defrag2->root)
74                 return 1;
75         else if (defrag1->root < defrag2->root)
76                 return -1;
77         else if (defrag1->ino > defrag2->ino)
78                 return 1;
79         else if (defrag1->ino < defrag2->ino)
80                 return -1;
81         else
82                 return 0;
83 }
84
85 /* pop a record for an inode into the defrag tree.  The lock
86  * must be held already
87  *
88  * If you're inserting a record for an older transid than an
89  * existing record, the transid already in the tree is lowered
90  *
91  * If an existing record is found the defrag item you
92  * pass in is freed
93  */
94 static int __btrfs_add_inode_defrag(struct inode *inode,
95                                     struct inode_defrag *defrag)
96 {
97         struct btrfs_root *root = BTRFS_I(inode)->root;
98         struct inode_defrag *entry;
99         struct rb_node **p;
100         struct rb_node *parent = NULL;
101         int ret;
102
103         p = &root->fs_info->defrag_inodes.rb_node;
104         while (*p) {
105                 parent = *p;
106                 entry = rb_entry(parent, struct inode_defrag, rb_node);
107
108                 ret = __compare_inode_defrag(defrag, entry);
109                 if (ret < 0)
110                         p = &parent->rb_left;
111                 else if (ret > 0)
112                         p = &parent->rb_right;
113                 else {
114                         /* if we're reinserting an entry for
115                          * an old defrag run, make sure to
116                          * lower the transid of our existing record
117                          */
118                         if (defrag->transid < entry->transid)
119                                 entry->transid = defrag->transid;
120                         if (defrag->last_offset > entry->last_offset)
121                                 entry->last_offset = defrag->last_offset;
122                         return -EEXIST;
123                 }
124         }
125         set_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
126         rb_link_node(&defrag->rb_node, parent, p);
127         rb_insert_color(&defrag->rb_node, &root->fs_info->defrag_inodes);
128         return 0;
129 }
130
131 static inline int __need_auto_defrag(struct btrfs_root *root)
132 {
133         if (!btrfs_test_opt(root, AUTO_DEFRAG))
134                 return 0;
135
136         if (btrfs_fs_closing(root->fs_info))
137                 return 0;
138
139         return 1;
140 }
141
142 /*
143  * insert a defrag record for this inode if auto defrag is
144  * enabled
145  */
146 int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
147                            struct inode *inode)
148 {
149         struct btrfs_root *root = BTRFS_I(inode)->root;
150         struct inode_defrag *defrag;
151         u64 transid;
152         int ret;
153
154         if (!__need_auto_defrag(root))
155                 return 0;
156
157         if (test_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags))
158                 return 0;
159
160         if (trans)
161                 transid = trans->transid;
162         else
163                 transid = BTRFS_I(inode)->root->last_trans;
164
165         defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS);
166         if (!defrag)
167                 return -ENOMEM;
168
169         defrag->ino = btrfs_ino(inode);
170         defrag->transid = transid;
171         defrag->root = root->root_key.objectid;
172
173         spin_lock(&root->fs_info->defrag_inodes_lock);
174         if (!test_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags)) {
175                 /*
176                  * If we set IN_DEFRAG flag and evict the inode from memory,
177                  * and then re-read this inode, this new inode doesn't have
178                  * IN_DEFRAG flag. At the case, we may find the existed defrag.
179                  */
180                 ret = __btrfs_add_inode_defrag(inode, defrag);
181                 if (ret)
182                         kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
183         } else {
184                 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
185         }
186         spin_unlock(&root->fs_info->defrag_inodes_lock);
187         return 0;
188 }
189
190 /*
191  * Requeue the defrag object. If there is a defrag object that points to
192  * the same inode in the tree, we will merge them together (by
193  * __btrfs_add_inode_defrag()) and free the one that we want to requeue.
194  */
195 static void btrfs_requeue_inode_defrag(struct inode *inode,
196                                        struct inode_defrag *defrag)
197 {
198         struct btrfs_root *root = BTRFS_I(inode)->root;
199         int ret;
200
201         if (!__need_auto_defrag(root))
202                 goto out;
203
204         /*
205          * Here we don't check the IN_DEFRAG flag, because we need merge
206          * them together.
207          */
208         spin_lock(&root->fs_info->defrag_inodes_lock);
209         ret = __btrfs_add_inode_defrag(inode, defrag);
210         spin_unlock(&root->fs_info->defrag_inodes_lock);
211         if (ret)
212                 goto out;
213         return;
214 out:
215         kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
216 }
217
218 /*
219  * pick the defragable inode that we want, if it doesn't exist, we will get
220  * the next one.
221  */
222 static struct inode_defrag *
223 btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino)
224 {
225         struct inode_defrag *entry = NULL;
226         struct inode_defrag tmp;
227         struct rb_node *p;
228         struct rb_node *parent = NULL;
229         int ret;
230
231         tmp.ino = ino;
232         tmp.root = root;
233
234         spin_lock(&fs_info->defrag_inodes_lock);
235         p = fs_info->defrag_inodes.rb_node;
236         while (p) {
237                 parent = p;
238                 entry = rb_entry(parent, struct inode_defrag, rb_node);
239
240                 ret = __compare_inode_defrag(&tmp, entry);
241                 if (ret < 0)
242                         p = parent->rb_left;
243                 else if (ret > 0)
244                         p = parent->rb_right;
245                 else
246                         goto out;
247         }
248
249         if (parent && __compare_inode_defrag(&tmp, entry) > 0) {
250                 parent = rb_next(parent);
251                 if (parent)
252                         entry = rb_entry(parent, struct inode_defrag, rb_node);
253                 else
254                         entry = NULL;
255         }
256 out:
257         if (entry)
258                 rb_erase(parent, &fs_info->defrag_inodes);
259         spin_unlock(&fs_info->defrag_inodes_lock);
260         return entry;
261 }
262
263 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info)
264 {
265         struct inode_defrag *defrag;
266         struct rb_node *node;
267
268         spin_lock(&fs_info->defrag_inodes_lock);
269         node = rb_first(&fs_info->defrag_inodes);
270         while (node) {
271                 rb_erase(node, &fs_info->defrag_inodes);
272                 defrag = rb_entry(node, struct inode_defrag, rb_node);
273                 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
274
275                 if (need_resched()) {
276                         spin_unlock(&fs_info->defrag_inodes_lock);
277                         cond_resched();
278                         spin_lock(&fs_info->defrag_inodes_lock);
279                 }
280
281                 node = rb_first(&fs_info->defrag_inodes);
282         }
283         spin_unlock(&fs_info->defrag_inodes_lock);
284 }
285
286 #define BTRFS_DEFRAG_BATCH      1024
287
288 static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info,
289                                     struct inode_defrag *defrag)
290 {
291         struct btrfs_root *inode_root;
292         struct inode *inode;
293         struct btrfs_key key;
294         struct btrfs_ioctl_defrag_range_args range;
295         int num_defrag;
296         int index;
297         int ret;
298
299         /* get the inode */
300         key.objectid = defrag->root;
301         btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
302         key.offset = (u64)-1;
303
304         index = srcu_read_lock(&fs_info->subvol_srcu);
305
306         inode_root = btrfs_read_fs_root_no_name(fs_info, &key);
307         if (IS_ERR(inode_root)) {
308                 ret = PTR_ERR(inode_root);
309                 goto cleanup;
310         }
311
312         key.objectid = defrag->ino;
313         btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
314         key.offset = 0;
315         inode = btrfs_iget(fs_info->sb, &key, inode_root, NULL);
316         if (IS_ERR(inode)) {
317                 ret = PTR_ERR(inode);
318                 goto cleanup;
319         }
320         srcu_read_unlock(&fs_info->subvol_srcu, index);
321
322         /* do a chunk of defrag */
323         clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
324         memset(&range, 0, sizeof(range));
325         range.len = (u64)-1;
326         range.start = defrag->last_offset;
327
328         sb_start_write(fs_info->sb);
329         num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid,
330                                        BTRFS_DEFRAG_BATCH);
331         sb_end_write(fs_info->sb);
332         /*
333          * if we filled the whole defrag batch, there
334          * must be more work to do.  Queue this defrag
335          * again
336          */
337         if (num_defrag == BTRFS_DEFRAG_BATCH) {
338                 defrag->last_offset = range.start;
339                 btrfs_requeue_inode_defrag(inode, defrag);
340         } else if (defrag->last_offset && !defrag->cycled) {
341                 /*
342                  * we didn't fill our defrag batch, but
343                  * we didn't start at zero.  Make sure we loop
344                  * around to the start of the file.
345                  */
346                 defrag->last_offset = 0;
347                 defrag->cycled = 1;
348                 btrfs_requeue_inode_defrag(inode, defrag);
349         } else {
350                 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
351         }
352
353         iput(inode);
354         return 0;
355 cleanup:
356         srcu_read_unlock(&fs_info->subvol_srcu, index);
357         kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
358         return ret;
359 }
360
361 /*
362  * run through the list of inodes in the FS that need
363  * defragging
364  */
365 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info)
366 {
367         struct inode_defrag *defrag;
368         u64 first_ino = 0;
369         u64 root_objectid = 0;
370
371         atomic_inc(&fs_info->defrag_running);
372         while (1) {
373                 /* Pause the auto defragger. */
374                 if (test_bit(BTRFS_FS_STATE_REMOUNTING,
375                              &fs_info->fs_state))
376                         break;
377
378                 if (!__need_auto_defrag(fs_info->tree_root))
379                         break;
380
381                 /* find an inode to defrag */
382                 defrag = btrfs_pick_defrag_inode(fs_info, root_objectid,
383                                                  first_ino);
384                 if (!defrag) {
385                         if (root_objectid || first_ino) {
386                                 root_objectid = 0;
387                                 first_ino = 0;
388                                 continue;
389                         } else {
390                                 break;
391                         }
392                 }
393
394                 first_ino = defrag->ino + 1;
395                 root_objectid = defrag->root;
396
397                 __btrfs_run_defrag_inode(fs_info, defrag);
398         }
399         atomic_dec(&fs_info->defrag_running);
400
401         /*
402          * during unmount, we use the transaction_wait queue to
403          * wait for the defragger to stop
404          */
405         wake_up(&fs_info->transaction_wait);
406         return 0;
407 }
408
409 /* simple helper to fault in pages and copy.  This should go away
410  * and be replaced with calls into generic code.
411  */
412 static noinline int btrfs_copy_from_user(loff_t pos, int num_pages,
413                                          size_t write_bytes,
414                                          struct page **prepared_pages,
415                                          struct iov_iter *i)
416 {
417         size_t copied = 0;
418         size_t total_copied = 0;
419         int pg = 0;
420         int offset = pos & (PAGE_CACHE_SIZE - 1);
421
422         while (write_bytes > 0) {
423                 size_t count = min_t(size_t,
424                                      PAGE_CACHE_SIZE - offset, write_bytes);
425                 struct page *page = prepared_pages[pg];
426                 /*
427                  * Copy data from userspace to the current page
428                  */
429                 copied = iov_iter_copy_from_user_atomic(page, i, offset, count);
430
431                 /* Flush processor's dcache for this page */
432                 flush_dcache_page(page);
433
434                 /*
435                  * if we get a partial write, we can end up with
436                  * partially up to date pages.  These add
437                  * a lot of complexity, so make sure they don't
438                  * happen by forcing this copy to be retried.
439                  *
440                  * The rest of the btrfs_file_write code will fall
441                  * back to page at a time copies after we return 0.
442                  */
443                 if (!PageUptodate(page) && copied < count)
444                         copied = 0;
445
446                 iov_iter_advance(i, copied);
447                 write_bytes -= copied;
448                 total_copied += copied;
449
450                 /* Return to btrfs_file_write_iter to fault page */
451                 if (unlikely(copied == 0))
452                         break;
453
454                 if (unlikely(copied < PAGE_CACHE_SIZE - offset)) {
455                         offset += copied;
456                 } else {
457                         pg++;
458                         offset = 0;
459                 }
460         }
461         return total_copied;
462 }
463
464 /*
465  * unlocks pages after btrfs_file_write is done with them
466  */
467 static void btrfs_drop_pages(struct page **pages, size_t num_pages)
468 {
469         size_t i;
470         for (i = 0; i < num_pages; i++) {
471                 /* page checked is some magic around finding pages that
472                  * have been modified without going through btrfs_set_page_dirty
473                  * clear it here. There should be no need to mark the pages
474                  * accessed as prepare_pages should have marked them accessed
475                  * in prepare_pages via find_or_create_page()
476                  */
477                 ClearPageChecked(pages[i]);
478                 unlock_page(pages[i]);
479                 page_cache_release(pages[i]);
480         }
481 }
482
483 /*
484  * after copy_from_user, pages need to be dirtied and we need to make
485  * sure holes are created between the current EOF and the start of
486  * any next extents (if required).
487  *
488  * this also makes the decision about creating an inline extent vs
489  * doing real data extents, marking pages dirty and delalloc as required.
490  */
491 int btrfs_dirty_pages(struct btrfs_root *root, struct inode *inode,
492                              struct page **pages, size_t num_pages,
493                              loff_t pos, size_t write_bytes,
494                              struct extent_state **cached)
495 {
496         int err = 0;
497         int i;
498         u64 num_bytes;
499         u64 start_pos;
500         u64 end_of_last_block;
501         u64 end_pos = pos + write_bytes;
502         loff_t isize = i_size_read(inode);
503
504         start_pos = pos & ~((u64)root->sectorsize - 1);
505         num_bytes = ALIGN(write_bytes + pos - start_pos, root->sectorsize);
506
507         end_of_last_block = start_pos + num_bytes - 1;
508         err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
509                                         cached);
510         if (err)
511                 return err;
512
513         for (i = 0; i < num_pages; i++) {
514                 struct page *p = pages[i];
515                 SetPageUptodate(p);
516                 ClearPageChecked(p);
517                 set_page_dirty(p);
518         }
519
520         /*
521          * we've only changed i_size in ram, and we haven't updated
522          * the disk i_size.  There is no need to log the inode
523          * at this time.
524          */
525         if (end_pos > isize)
526                 i_size_write(inode, end_pos);
527         return 0;
528 }
529
530 /*
531  * this drops all the extents in the cache that intersect the range
532  * [start, end].  Existing extents are split as required.
533  */
534 void btrfs_drop_extent_cache(struct inode *inode, u64 start, u64 end,
535                              int skip_pinned)
536 {
537         struct extent_map *em;
538         struct extent_map *split = NULL;
539         struct extent_map *split2 = NULL;
540         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
541         u64 len = end - start + 1;
542         u64 gen;
543         int ret;
544         int testend = 1;
545         unsigned long flags;
546         int compressed = 0;
547         bool modified;
548
549         WARN_ON(end < start);
550         if (end == (u64)-1) {
551                 len = (u64)-1;
552                 testend = 0;
553         }
554         while (1) {
555                 int no_splits = 0;
556
557                 modified = false;
558                 if (!split)
559                         split = alloc_extent_map();
560                 if (!split2)
561                         split2 = alloc_extent_map();
562                 if (!split || !split2)
563                         no_splits = 1;
564
565                 write_lock(&em_tree->lock);
566                 em = lookup_extent_mapping(em_tree, start, len);
567                 if (!em) {
568                         write_unlock(&em_tree->lock);
569                         break;
570                 }
571                 flags = em->flags;
572                 gen = em->generation;
573                 if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) {
574                         if (testend && em->start + em->len >= start + len) {
575                                 free_extent_map(em);
576                                 write_unlock(&em_tree->lock);
577                                 break;
578                         }
579                         start = em->start + em->len;
580                         if (testend)
581                                 len = start + len - (em->start + em->len);
582                         free_extent_map(em);
583                         write_unlock(&em_tree->lock);
584                         continue;
585                 }
586                 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
587                 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
588                 clear_bit(EXTENT_FLAG_LOGGING, &flags);
589                 modified = !list_empty(&em->list);
590                 if (no_splits)
591                         goto next;
592
593                 if (em->start < start) {
594                         split->start = em->start;
595                         split->len = start - em->start;
596
597                         if (em->block_start < EXTENT_MAP_LAST_BYTE) {
598                                 split->orig_start = em->orig_start;
599                                 split->block_start = em->block_start;
600
601                                 if (compressed)
602                                         split->block_len = em->block_len;
603                                 else
604                                         split->block_len = split->len;
605                                 split->orig_block_len = max(split->block_len,
606                                                 em->orig_block_len);
607                                 split->ram_bytes = em->ram_bytes;
608                         } else {
609                                 split->orig_start = split->start;
610                                 split->block_len = 0;
611                                 split->block_start = em->block_start;
612                                 split->orig_block_len = 0;
613                                 split->ram_bytes = split->len;
614                         }
615
616                         split->generation = gen;
617                         split->bdev = em->bdev;
618                         split->flags = flags;
619                         split->compress_type = em->compress_type;
620                         replace_extent_mapping(em_tree, em, split, modified);
621                         free_extent_map(split);
622                         split = split2;
623                         split2 = NULL;
624                 }
625                 if (testend && em->start + em->len > start + len) {
626                         u64 diff = start + len - em->start;
627
628                         split->start = start + len;
629                         split->len = em->start + em->len - (start + len);
630                         split->bdev = em->bdev;
631                         split->flags = flags;
632                         split->compress_type = em->compress_type;
633                         split->generation = gen;
634
635                         if (em->block_start < EXTENT_MAP_LAST_BYTE) {
636                                 split->orig_block_len = max(em->block_len,
637                                                     em->orig_block_len);
638
639                                 split->ram_bytes = em->ram_bytes;
640                                 if (compressed) {
641                                         split->block_len = em->block_len;
642                                         split->block_start = em->block_start;
643                                         split->orig_start = em->orig_start;
644                                 } else {
645                                         split->block_len = split->len;
646                                         split->block_start = em->block_start
647                                                 + diff;
648                                         split->orig_start = em->orig_start;
649                                 }
650                         } else {
651                                 split->ram_bytes = split->len;
652                                 split->orig_start = split->start;
653                                 split->block_len = 0;
654                                 split->block_start = em->block_start;
655                                 split->orig_block_len = 0;
656                         }
657
658                         if (extent_map_in_tree(em)) {
659                                 replace_extent_mapping(em_tree, em, split,
660                                                        modified);
661                         } else {
662                                 ret = add_extent_mapping(em_tree, split,
663                                                          modified);
664                                 ASSERT(ret == 0); /* Logic error */
665                         }
666                         free_extent_map(split);
667                         split = NULL;
668                 }
669 next:
670                 if (extent_map_in_tree(em))
671                         remove_extent_mapping(em_tree, em);
672                 write_unlock(&em_tree->lock);
673
674                 /* once for us */
675                 free_extent_map(em);
676                 /* once for the tree*/
677                 free_extent_map(em);
678         }
679         if (split)
680                 free_extent_map(split);
681         if (split2)
682                 free_extent_map(split2);
683 }
684
685 /*
686  * this is very complex, but the basic idea is to drop all extents
687  * in the range start - end.  hint_block is filled in with a block number
688  * that would be a good hint to the block allocator for this file.
689  *
690  * If an extent intersects the range but is not entirely inside the range
691  * it is either truncated or split.  Anything entirely inside the range
692  * is deleted from the tree.
693  */
694 int __btrfs_drop_extents(struct btrfs_trans_handle *trans,
695                          struct btrfs_root *root, struct inode *inode,
696                          struct btrfs_path *path, u64 start, u64 end,
697                          u64 *drop_end, int drop_cache,
698                          int replace_extent,
699                          u32 extent_item_size,
700                          int *key_inserted)
701 {
702         struct extent_buffer *leaf;
703         struct btrfs_file_extent_item *fi;
704         struct btrfs_key key;
705         struct btrfs_key new_key;
706         u64 ino = btrfs_ino(inode);
707         u64 search_start = start;
708         u64 disk_bytenr = 0;
709         u64 num_bytes = 0;
710         u64 extent_offset = 0;
711         u64 extent_end = 0;
712         int del_nr = 0;
713         int del_slot = 0;
714         int extent_type;
715         int recow;
716         int ret;
717         int modify_tree = -1;
718         int update_refs = (root->ref_cows || root == root->fs_info->tree_root);
719         int found = 0;
720         int leafs_visited = 0;
721
722         if (drop_cache)
723                 btrfs_drop_extent_cache(inode, start, end - 1, 0);
724
725         if (start >= BTRFS_I(inode)->disk_i_size && !replace_extent)
726                 modify_tree = 0;
727
728         while (1) {
729                 recow = 0;
730                 ret = btrfs_lookup_file_extent(trans, root, path, ino,
731                                                search_start, modify_tree);
732                 if (ret < 0)
733                         break;
734                 if (ret > 0 && path->slots[0] > 0 && search_start == start) {
735                         leaf = path->nodes[0];
736                         btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
737                         if (key.objectid == ino &&
738                             key.type == BTRFS_EXTENT_DATA_KEY)
739                                 path->slots[0]--;
740                 }
741                 ret = 0;
742                 leafs_visited++;
743 next_slot:
744                 leaf = path->nodes[0];
745                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
746                         BUG_ON(del_nr > 0);
747                         ret = btrfs_next_leaf(root, path);
748                         if (ret < 0)
749                                 break;
750                         if (ret > 0) {
751                                 ret = 0;
752                                 break;
753                         }
754                         leafs_visited++;
755                         leaf = path->nodes[0];
756                         recow = 1;
757                 }
758
759                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
760                 if (key.objectid > ino ||
761                     key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= end)
762                         break;
763
764                 fi = btrfs_item_ptr(leaf, path->slots[0],
765                                     struct btrfs_file_extent_item);
766                 extent_type = btrfs_file_extent_type(leaf, fi);
767
768                 if (extent_type == BTRFS_FILE_EXTENT_REG ||
769                     extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
770                         disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
771                         num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
772                         extent_offset = btrfs_file_extent_offset(leaf, fi);
773                         extent_end = key.offset +
774                                 btrfs_file_extent_num_bytes(leaf, fi);
775                 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
776                         extent_end = key.offset +
777                                 btrfs_file_extent_inline_len(leaf,
778                                                      path->slots[0], fi);
779                 } else {
780                         WARN_ON(1);
781                         extent_end = search_start;
782                 }
783
784                 if (extent_end <= search_start) {
785                         path->slots[0]++;
786                         goto next_slot;
787                 }
788
789                 found = 1;
790                 search_start = max(key.offset, start);
791                 if (recow || !modify_tree) {
792                         modify_tree = -1;
793                         btrfs_release_path(path);
794                         continue;
795                 }
796
797                 /*
798                  *     | - range to drop - |
799                  *  | -------- extent -------- |
800                  */
801                 if (start > key.offset && end < extent_end) {
802                         BUG_ON(del_nr > 0);
803                         if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
804                                 ret = -EOPNOTSUPP;
805                                 break;
806                         }
807
808                         memcpy(&new_key, &key, sizeof(new_key));
809                         new_key.offset = start;
810                         ret = btrfs_duplicate_item(trans, root, path,
811                                                    &new_key);
812                         if (ret == -EAGAIN) {
813                                 btrfs_release_path(path);
814                                 continue;
815                         }
816                         if (ret < 0)
817                                 break;
818
819                         leaf = path->nodes[0];
820                         fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
821                                             struct btrfs_file_extent_item);
822                         btrfs_set_file_extent_num_bytes(leaf, fi,
823                                                         start - key.offset);
824
825                         fi = btrfs_item_ptr(leaf, path->slots[0],
826                                             struct btrfs_file_extent_item);
827
828                         extent_offset += start - key.offset;
829                         btrfs_set_file_extent_offset(leaf, fi, extent_offset);
830                         btrfs_set_file_extent_num_bytes(leaf, fi,
831                                                         extent_end - start);
832                         btrfs_mark_buffer_dirty(leaf);
833
834                         if (update_refs && disk_bytenr > 0) {
835                                 ret = btrfs_inc_extent_ref(trans, root,
836                                                 disk_bytenr, num_bytes, 0,
837                                                 root->root_key.objectid,
838                                                 new_key.objectid,
839                                                 start - extent_offset, 0);
840                                 BUG_ON(ret); /* -ENOMEM */
841                         }
842                         key.offset = start;
843                 }
844                 /*
845                  *  | ---- range to drop ----- |
846                  *      | -------- extent -------- |
847                  */
848                 if (start <= key.offset && end < extent_end) {
849                         if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
850                                 ret = -EOPNOTSUPP;
851                                 break;
852                         }
853
854                         memcpy(&new_key, &key, sizeof(new_key));
855                         new_key.offset = end;
856                         btrfs_set_item_key_safe(root, path, &new_key);
857
858                         extent_offset += end - key.offset;
859                         btrfs_set_file_extent_offset(leaf, fi, extent_offset);
860                         btrfs_set_file_extent_num_bytes(leaf, fi,
861                                                         extent_end - end);
862                         btrfs_mark_buffer_dirty(leaf);
863                         if (update_refs && disk_bytenr > 0)
864                                 inode_sub_bytes(inode, end - key.offset);
865                         break;
866                 }
867
868                 search_start = extent_end;
869                 /*
870                  *       | ---- range to drop ----- |
871                  *  | -------- extent -------- |
872                  */
873                 if (start > key.offset && end >= extent_end) {
874                         BUG_ON(del_nr > 0);
875                         if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
876                                 ret = -EOPNOTSUPP;
877                                 break;
878                         }
879
880                         btrfs_set_file_extent_num_bytes(leaf, fi,
881                                                         start - key.offset);
882                         btrfs_mark_buffer_dirty(leaf);
883                         if (update_refs && disk_bytenr > 0)
884                                 inode_sub_bytes(inode, extent_end - start);
885                         if (end == extent_end)
886                                 break;
887
888                         path->slots[0]++;
889                         goto next_slot;
890                 }
891
892                 /*
893                  *  | ---- range to drop ----- |
894                  *    | ------ extent ------ |
895                  */
896                 if (start <= key.offset && end >= extent_end) {
897                         if (del_nr == 0) {
898                                 del_slot = path->slots[0];
899                                 del_nr = 1;
900                         } else {
901                                 BUG_ON(del_slot + del_nr != path->slots[0]);
902                                 del_nr++;
903                         }
904
905                         if (update_refs &&
906                             extent_type == BTRFS_FILE_EXTENT_INLINE) {
907                                 inode_sub_bytes(inode,
908                                                 extent_end - key.offset);
909                                 extent_end = ALIGN(extent_end,
910                                                    root->sectorsize);
911                         } else if (update_refs && disk_bytenr > 0) {
912                                 ret = btrfs_free_extent(trans, root,
913                                                 disk_bytenr, num_bytes, 0,
914                                                 root->root_key.objectid,
915                                                 key.objectid, key.offset -
916                                                 extent_offset, 0);
917                                 BUG_ON(ret); /* -ENOMEM */
918                                 inode_sub_bytes(inode,
919                                                 extent_end - key.offset);
920                         }
921
922                         if (end == extent_end)
923                                 break;
924
925                         if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
926                                 path->slots[0]++;
927                                 goto next_slot;
928                         }
929
930                         ret = btrfs_del_items(trans, root, path, del_slot,
931                                               del_nr);
932                         if (ret) {
933                                 btrfs_abort_transaction(trans, root, ret);
934                                 break;
935                         }
936
937                         del_nr = 0;
938                         del_slot = 0;
939
940                         btrfs_release_path(path);
941                         continue;
942                 }
943
944                 BUG_ON(1);
945         }
946
947         if (!ret && del_nr > 0) {
948                 /*
949                  * Set path->slots[0] to first slot, so that after the delete
950                  * if items are move off from our leaf to its immediate left or
951                  * right neighbor leafs, we end up with a correct and adjusted
952                  * path->slots[0] for our insertion (if replace_extent != 0).
953                  */
954                 path->slots[0] = del_slot;
955                 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
956                 if (ret)
957                         btrfs_abort_transaction(trans, root, ret);
958         }
959
960         leaf = path->nodes[0];
961         /*
962          * If btrfs_del_items() was called, it might have deleted a leaf, in
963          * which case it unlocked our path, so check path->locks[0] matches a
964          * write lock.
965          */
966         if (!ret && replace_extent && leafs_visited == 1 &&
967             (path->locks[0] == BTRFS_WRITE_LOCK_BLOCKING ||
968              path->locks[0] == BTRFS_WRITE_LOCK) &&
969             btrfs_leaf_free_space(root, leaf) >=
970             sizeof(struct btrfs_item) + extent_item_size) {
971
972                 key.objectid = ino;
973                 key.type = BTRFS_EXTENT_DATA_KEY;
974                 key.offset = start;
975                 if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) {
976                         struct btrfs_key slot_key;
977
978                         btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]);
979                         if (btrfs_comp_cpu_keys(&key, &slot_key) > 0)
980                                 path->slots[0]++;
981                 }
982                 setup_items_for_insert(root, path, &key,
983                                        &extent_item_size,
984                                        extent_item_size,
985                                        sizeof(struct btrfs_item) +
986                                        extent_item_size, 1);
987                 *key_inserted = 1;
988         }
989
990         if (!replace_extent || !(*key_inserted))
991                 btrfs_release_path(path);
992         if (drop_end)
993                 *drop_end = found ? min(end, extent_end) : end;
994         return ret;
995 }
996
997 int btrfs_drop_extents(struct btrfs_trans_handle *trans,
998                        struct btrfs_root *root, struct inode *inode, u64 start,
999                        u64 end, int drop_cache)
1000 {
1001         struct btrfs_path *path;
1002         int ret;
1003
1004         path = btrfs_alloc_path();
1005         if (!path)
1006                 return -ENOMEM;
1007         ret = __btrfs_drop_extents(trans, root, inode, path, start, end, NULL,
1008                                    drop_cache, 0, 0, NULL);
1009         btrfs_free_path(path);
1010         return ret;
1011 }
1012
1013 static int extent_mergeable(struct extent_buffer *leaf, int slot,
1014                             u64 objectid, u64 bytenr, u64 orig_offset,
1015                             u64 *start, u64 *end)
1016 {
1017         struct btrfs_file_extent_item *fi;
1018         struct btrfs_key key;
1019         u64 extent_end;
1020
1021         if (slot < 0 || slot >= btrfs_header_nritems(leaf))
1022                 return 0;
1023
1024         btrfs_item_key_to_cpu(leaf, &key, slot);
1025         if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
1026                 return 0;
1027
1028         fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
1029         if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
1030             btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
1031             btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
1032             btrfs_file_extent_compression(leaf, fi) ||
1033             btrfs_file_extent_encryption(leaf, fi) ||
1034             btrfs_file_extent_other_encoding(leaf, fi))
1035                 return 0;
1036
1037         extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1038         if ((*start && *start != key.offset) || (*end && *end != extent_end))
1039                 return 0;
1040
1041         *start = key.offset;
1042         *end = extent_end;
1043         return 1;
1044 }
1045
1046 /*
1047  * Mark extent in the range start - end as written.
1048  *
1049  * This changes extent type from 'pre-allocated' to 'regular'. If only
1050  * part of extent is marked as written, the extent will be split into
1051  * two or three.
1052  */
1053 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
1054                               struct inode *inode, u64 start, u64 end)
1055 {
1056         struct btrfs_root *root = BTRFS_I(inode)->root;
1057         struct extent_buffer *leaf;
1058         struct btrfs_path *path;
1059         struct btrfs_file_extent_item *fi;
1060         struct btrfs_key key;
1061         struct btrfs_key new_key;
1062         u64 bytenr;
1063         u64 num_bytes;
1064         u64 extent_end;
1065         u64 orig_offset;
1066         u64 other_start;
1067         u64 other_end;
1068         u64 split;
1069         int del_nr = 0;
1070         int del_slot = 0;
1071         int recow;
1072         int ret;
1073         u64 ino = btrfs_ino(inode);
1074
1075         path = btrfs_alloc_path();
1076         if (!path)
1077                 return -ENOMEM;
1078 again:
1079         recow = 0;
1080         split = start;
1081         key.objectid = ino;
1082         key.type = BTRFS_EXTENT_DATA_KEY;
1083         key.offset = split;
1084
1085         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1086         if (ret < 0)
1087                 goto out;
1088         if (ret > 0 && path->slots[0] > 0)
1089                 path->slots[0]--;
1090
1091         leaf = path->nodes[0];
1092         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1093         BUG_ON(key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY);
1094         fi = btrfs_item_ptr(leaf, path->slots[0],
1095                             struct btrfs_file_extent_item);
1096         BUG_ON(btrfs_file_extent_type(leaf, fi) !=
1097                BTRFS_FILE_EXTENT_PREALLOC);
1098         extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1099         BUG_ON(key.offset > start || extent_end < end);
1100
1101         bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1102         num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1103         orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
1104         memcpy(&new_key, &key, sizeof(new_key));
1105
1106         if (start == key.offset && end < extent_end) {
1107                 other_start = 0;
1108                 other_end = start;
1109                 if (extent_mergeable(leaf, path->slots[0] - 1,
1110                                      ino, bytenr, orig_offset,
1111                                      &other_start, &other_end)) {
1112                         new_key.offset = end;
1113                         btrfs_set_item_key_safe(root, path, &new_key);
1114                         fi = btrfs_item_ptr(leaf, path->slots[0],
1115                                             struct btrfs_file_extent_item);
1116                         btrfs_set_file_extent_generation(leaf, fi,
1117                                                          trans->transid);
1118                         btrfs_set_file_extent_num_bytes(leaf, fi,
1119                                                         extent_end - end);
1120                         btrfs_set_file_extent_offset(leaf, fi,
1121                                                      end - orig_offset);
1122                         fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1123                                             struct btrfs_file_extent_item);
1124                         btrfs_set_file_extent_generation(leaf, fi,
1125                                                          trans->transid);
1126                         btrfs_set_file_extent_num_bytes(leaf, fi,
1127                                                         end - other_start);
1128                         btrfs_mark_buffer_dirty(leaf);
1129                         goto out;
1130                 }
1131         }
1132
1133         if (start > key.offset && end == extent_end) {
1134                 other_start = end;
1135                 other_end = 0;
1136                 if (extent_mergeable(leaf, path->slots[0] + 1,
1137                                      ino, bytenr, orig_offset,
1138                                      &other_start, &other_end)) {
1139                         fi = btrfs_item_ptr(leaf, path->slots[0],
1140                                             struct btrfs_file_extent_item);
1141                         btrfs_set_file_extent_num_bytes(leaf, fi,
1142                                                         start - key.offset);
1143                         btrfs_set_file_extent_generation(leaf, fi,
1144                                                          trans->transid);
1145                         path->slots[0]++;
1146                         new_key.offset = start;
1147                         btrfs_set_item_key_safe(root, path, &new_key);
1148
1149                         fi = btrfs_item_ptr(leaf, path->slots[0],
1150                                             struct btrfs_file_extent_item);
1151                         btrfs_set_file_extent_generation(leaf, fi,
1152                                                          trans->transid);
1153                         btrfs_set_file_extent_num_bytes(leaf, fi,
1154                                                         other_end - start);
1155                         btrfs_set_file_extent_offset(leaf, fi,
1156                                                      start - orig_offset);
1157                         btrfs_mark_buffer_dirty(leaf);
1158                         goto out;
1159                 }
1160         }
1161
1162         while (start > key.offset || end < extent_end) {
1163                 if (key.offset == start)
1164                         split = end;
1165
1166                 new_key.offset = split;
1167                 ret = btrfs_duplicate_item(trans, root, path, &new_key);
1168                 if (ret == -EAGAIN) {
1169                         btrfs_release_path(path);
1170                         goto again;
1171                 }
1172                 if (ret < 0) {
1173                         btrfs_abort_transaction(trans, root, ret);
1174                         goto out;
1175                 }
1176
1177                 leaf = path->nodes[0];
1178                 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1179                                     struct btrfs_file_extent_item);
1180                 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1181                 btrfs_set_file_extent_num_bytes(leaf, fi,
1182                                                 split - key.offset);
1183
1184                 fi = btrfs_item_ptr(leaf, path->slots[0],
1185                                     struct btrfs_file_extent_item);
1186
1187                 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1188                 btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
1189                 btrfs_set_file_extent_num_bytes(leaf, fi,
1190                                                 extent_end - split);
1191                 btrfs_mark_buffer_dirty(leaf);
1192
1193                 ret = btrfs_inc_extent_ref(trans, root, bytenr, num_bytes, 0,
1194                                            root->root_key.objectid,
1195                                            ino, orig_offset, 0);
1196                 BUG_ON(ret); /* -ENOMEM */
1197
1198                 if (split == start) {
1199                         key.offset = start;
1200                 } else {
1201                         BUG_ON(start != key.offset);
1202                         path->slots[0]--;
1203                         extent_end = end;
1204                 }
1205                 recow = 1;
1206         }
1207
1208         other_start = end;
1209         other_end = 0;
1210         if (extent_mergeable(leaf, path->slots[0] + 1,
1211                              ino, bytenr, orig_offset,
1212                              &other_start, &other_end)) {
1213                 if (recow) {
1214                         btrfs_release_path(path);
1215                         goto again;
1216                 }
1217                 extent_end = other_end;
1218                 del_slot = path->slots[0] + 1;
1219                 del_nr++;
1220                 ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1221                                         0, root->root_key.objectid,
1222                                         ino, orig_offset, 0);
1223                 BUG_ON(ret); /* -ENOMEM */
1224         }
1225         other_start = 0;
1226         other_end = start;
1227         if (extent_mergeable(leaf, path->slots[0] - 1,
1228                              ino, bytenr, orig_offset,
1229                              &other_start, &other_end)) {
1230                 if (recow) {
1231                         btrfs_release_path(path);
1232                         goto again;
1233                 }
1234                 key.offset = other_start;
1235                 del_slot = path->slots[0];
1236                 del_nr++;
1237                 ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1238                                         0, root->root_key.objectid,
1239                                         ino, orig_offset, 0);
1240                 BUG_ON(ret); /* -ENOMEM */
1241         }
1242         if (del_nr == 0) {
1243                 fi = btrfs_item_ptr(leaf, path->slots[0],
1244                            struct btrfs_file_extent_item);
1245                 btrfs_set_file_extent_type(leaf, fi,
1246                                            BTRFS_FILE_EXTENT_REG);
1247                 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1248                 btrfs_mark_buffer_dirty(leaf);
1249         } else {
1250                 fi = btrfs_item_ptr(leaf, del_slot - 1,
1251                            struct btrfs_file_extent_item);
1252                 btrfs_set_file_extent_type(leaf, fi,
1253                                            BTRFS_FILE_EXTENT_REG);
1254                 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1255                 btrfs_set_file_extent_num_bytes(leaf, fi,
1256                                                 extent_end - key.offset);
1257                 btrfs_mark_buffer_dirty(leaf);
1258
1259                 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
1260                 if (ret < 0) {
1261                         btrfs_abort_transaction(trans, root, ret);
1262                         goto out;
1263                 }
1264         }
1265 out:
1266         btrfs_free_path(path);
1267         return 0;
1268 }
1269
1270 /*
1271  * on error we return an unlocked page and the error value
1272  * on success we return a locked page and 0
1273  */
1274 static int prepare_uptodate_page(struct page *page, u64 pos,
1275                                  bool force_uptodate)
1276 {
1277         int ret = 0;
1278
1279         if (((pos & (PAGE_CACHE_SIZE - 1)) || force_uptodate) &&
1280             !PageUptodate(page)) {
1281                 ret = btrfs_readpage(NULL, page);
1282                 if (ret)
1283                         return ret;
1284                 lock_page(page);
1285                 if (!PageUptodate(page)) {
1286                         unlock_page(page);
1287                         return -EIO;
1288                 }
1289         }
1290         return 0;
1291 }
1292
1293 /*
1294  * this just gets pages into the page cache and locks them down.
1295  */
1296 static noinline int prepare_pages(struct inode *inode, struct page **pages,
1297                                   size_t num_pages, loff_t pos,
1298                                   size_t write_bytes, bool force_uptodate)
1299 {
1300         int i;
1301         unsigned long index = pos >> PAGE_CACHE_SHIFT;
1302         gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1303         int err = 0;
1304         int faili;
1305
1306         for (i = 0; i < num_pages; i++) {
1307                 pages[i] = find_or_create_page(inode->i_mapping, index + i,
1308                                                mask | __GFP_WRITE);
1309                 if (!pages[i]) {
1310                         faili = i - 1;
1311                         err = -ENOMEM;
1312                         goto fail;
1313                 }
1314
1315                 if (i == 0)
1316                         err = prepare_uptodate_page(pages[i], pos,
1317                                                     force_uptodate);
1318                 if (i == num_pages - 1)
1319                         err = prepare_uptodate_page(pages[i],
1320                                                     pos + write_bytes, false);
1321                 if (err) {
1322                         page_cache_release(pages[i]);
1323                         faili = i - 1;
1324                         goto fail;
1325                 }
1326                 wait_on_page_writeback(pages[i]);
1327         }
1328
1329         return 0;
1330 fail:
1331         while (faili >= 0) {
1332                 unlock_page(pages[faili]);
1333                 page_cache_release(pages[faili]);
1334                 faili--;
1335         }
1336         return err;
1337
1338 }
1339
1340 /*
1341  * This function locks the extent and properly waits for data=ordered extents
1342  * to finish before allowing the pages to be modified if need.
1343  *
1344  * The return value:
1345  * 1 - the extent is locked
1346  * 0 - the extent is not locked, and everything is OK
1347  * -EAGAIN - need re-prepare the pages
1348  * the other < 0 number - Something wrong happens
1349  */
1350 static noinline int
1351 lock_and_cleanup_extent_if_need(struct inode *inode, struct page **pages,
1352                                 size_t num_pages, loff_t pos,
1353                                 u64 *lockstart, u64 *lockend,
1354                                 struct extent_state **cached_state)
1355 {
1356         u64 start_pos;
1357         u64 last_pos;
1358         int i;
1359         int ret = 0;
1360
1361         start_pos = pos & ~((u64)PAGE_CACHE_SIZE - 1);
1362         last_pos = start_pos + ((u64)num_pages << PAGE_CACHE_SHIFT) - 1;
1363
1364         if (start_pos < inode->i_size) {
1365                 struct btrfs_ordered_extent *ordered;
1366                 lock_extent_bits(&BTRFS_I(inode)->io_tree,
1367                                  start_pos, last_pos, 0, cached_state);
1368                 ordered = btrfs_lookup_ordered_range(inode, start_pos,
1369                                                      last_pos - start_pos + 1);
1370                 if (ordered &&
1371                     ordered->file_offset + ordered->len > start_pos &&
1372                     ordered->file_offset <= last_pos) {
1373                         unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1374                                              start_pos, last_pos,
1375                                              cached_state, GFP_NOFS);
1376                         for (i = 0; i < num_pages; i++) {
1377                                 unlock_page(pages[i]);
1378                                 page_cache_release(pages[i]);
1379                         }
1380                         btrfs_start_ordered_extent(inode, ordered, 1);
1381                         btrfs_put_ordered_extent(ordered);
1382                         return -EAGAIN;
1383                 }
1384                 if (ordered)
1385                         btrfs_put_ordered_extent(ordered);
1386
1387                 clear_extent_bit(&BTRFS_I(inode)->io_tree, start_pos,
1388                                   last_pos, EXTENT_DIRTY | EXTENT_DELALLOC |
1389                                   EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
1390                                   0, 0, cached_state, GFP_NOFS);
1391                 *lockstart = start_pos;
1392                 *lockend = last_pos;
1393                 ret = 1;
1394         }
1395
1396         for (i = 0; i < num_pages; i++) {
1397                 if (clear_page_dirty_for_io(pages[i]))
1398                         account_page_redirty(pages[i]);
1399                 set_page_extent_mapped(pages[i]);
1400                 WARN_ON(!PageLocked(pages[i]));
1401         }
1402
1403         return ret;
1404 }
1405
1406 static noinline int check_can_nocow(struct inode *inode, loff_t pos,
1407                                     size_t *write_bytes)
1408 {
1409         struct btrfs_root *root = BTRFS_I(inode)->root;
1410         struct btrfs_ordered_extent *ordered;
1411         u64 lockstart, lockend;
1412         u64 num_bytes;
1413         int ret;
1414
1415         ret = btrfs_start_nocow_write(root);
1416         if (!ret)
1417                 return -ENOSPC;
1418
1419         lockstart = round_down(pos, root->sectorsize);
1420         lockend = round_up(pos + *write_bytes, root->sectorsize) - 1;
1421
1422         while (1) {
1423                 lock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend);
1424                 ordered = btrfs_lookup_ordered_range(inode, lockstart,
1425                                                      lockend - lockstart + 1);
1426                 if (!ordered) {
1427                         break;
1428                 }
1429                 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend);
1430                 btrfs_start_ordered_extent(inode, ordered, 1);
1431                 btrfs_put_ordered_extent(ordered);
1432         }
1433
1434         num_bytes = lockend - lockstart + 1;
1435         ret = can_nocow_extent(inode, lockstart, &num_bytes, NULL, NULL, NULL);
1436         if (ret <= 0) {
1437                 ret = 0;
1438                 btrfs_end_nocow_write(root);
1439         } else {
1440                 *write_bytes = min_t(size_t, *write_bytes ,
1441                                      num_bytes - pos + lockstart);
1442         }
1443
1444         unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend);
1445
1446         return ret;
1447 }
1448
1449 static noinline ssize_t __btrfs_buffered_write(struct file *file,
1450                                                struct iov_iter *i,
1451                                                loff_t pos)
1452 {
1453         struct inode *inode = file_inode(file);
1454         struct btrfs_root *root = BTRFS_I(inode)->root;
1455         struct page **pages = NULL;
1456         struct extent_state *cached_state = NULL;
1457         u64 release_bytes = 0;
1458         u64 lockstart;
1459         u64 lockend;
1460         unsigned long first_index;
1461         size_t num_written = 0;
1462         int nrptrs;
1463         int ret = 0;
1464         bool only_release_metadata = false;
1465         bool force_page_uptodate = false;
1466         bool need_unlock;
1467
1468         nrptrs = min((iov_iter_count(i) + PAGE_CACHE_SIZE - 1) /
1469                      PAGE_CACHE_SIZE, PAGE_CACHE_SIZE /
1470                      (sizeof(struct page *)));
1471         nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied);
1472         nrptrs = max(nrptrs, 8);
1473         pages = kmalloc(nrptrs * sizeof(struct page *), GFP_KERNEL);
1474         if (!pages)
1475                 return -ENOMEM;
1476
1477         first_index = pos >> PAGE_CACHE_SHIFT;
1478
1479         while (iov_iter_count(i) > 0) {
1480                 size_t offset = pos & (PAGE_CACHE_SIZE - 1);
1481                 size_t write_bytes = min(iov_iter_count(i),
1482                                          nrptrs * (size_t)PAGE_CACHE_SIZE -
1483                                          offset);
1484                 size_t num_pages = (write_bytes + offset +
1485                                     PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1486                 size_t reserve_bytes;
1487                 size_t dirty_pages;
1488                 size_t copied;
1489
1490                 WARN_ON(num_pages > nrptrs);
1491
1492                 /*
1493                  * Fault pages before locking them in prepare_pages
1494                  * to avoid recursive lock
1495                  */
1496                 if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) {
1497                         ret = -EFAULT;
1498                         break;
1499                 }
1500
1501                 reserve_bytes = num_pages << PAGE_CACHE_SHIFT;
1502                 ret = btrfs_check_data_free_space(inode, reserve_bytes);
1503                 if (ret == -ENOSPC &&
1504                     (BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW |
1505                                               BTRFS_INODE_PREALLOC))) {
1506                         ret = check_can_nocow(inode, pos, &write_bytes);
1507                         if (ret > 0) {
1508                                 only_release_metadata = true;
1509                                 /*
1510                                  * our prealloc extent may be smaller than
1511                                  * write_bytes, so scale down.
1512                                  */
1513                                 num_pages = (write_bytes + offset +
1514                                              PAGE_CACHE_SIZE - 1) >>
1515                                         PAGE_CACHE_SHIFT;
1516                                 reserve_bytes = num_pages << PAGE_CACHE_SHIFT;
1517                                 ret = 0;
1518                         } else {
1519                                 ret = -ENOSPC;
1520                         }
1521                 }
1522
1523                 if (ret)
1524                         break;
1525
1526                 ret = btrfs_delalloc_reserve_metadata(inode, reserve_bytes);
1527                 if (ret) {
1528                         if (!only_release_metadata)
1529                                 btrfs_free_reserved_data_space(inode,
1530                                                                reserve_bytes);
1531                         else
1532                                 btrfs_end_nocow_write(root);
1533                         break;
1534                 }
1535
1536                 release_bytes = reserve_bytes;
1537                 need_unlock = false;
1538 again:
1539                 /*
1540                  * This is going to setup the pages array with the number of
1541                  * pages we want, so we don't really need to worry about the
1542                  * contents of pages from loop to loop
1543                  */
1544                 ret = prepare_pages(inode, pages, num_pages,
1545                                     pos, write_bytes,
1546                                     force_page_uptodate);
1547                 if (ret)
1548                         break;
1549
1550                 ret = lock_and_cleanup_extent_if_need(inode, pages, num_pages,
1551                                                       pos, &lockstart, &lockend,
1552                                                       &cached_state);
1553                 if (ret < 0) {
1554                         if (ret == -EAGAIN)
1555                                 goto again;
1556                         break;
1557                 } else if (ret > 0) {
1558                         need_unlock = true;
1559                         ret = 0;
1560                 }
1561
1562                 copied = btrfs_copy_from_user(pos, num_pages,
1563                                            write_bytes, pages, i);
1564
1565                 /*
1566                  * if we have trouble faulting in the pages, fall
1567                  * back to one page at a time
1568                  */
1569                 if (copied < write_bytes)
1570                         nrptrs = 1;
1571
1572                 if (copied == 0) {
1573                         force_page_uptodate = true;
1574                         dirty_pages = 0;
1575                 } else {
1576                         force_page_uptodate = false;
1577                         dirty_pages = (copied + offset +
1578                                        PAGE_CACHE_SIZE - 1) >>
1579                                        PAGE_CACHE_SHIFT;
1580                 }
1581
1582                 /*
1583                  * If we had a short copy we need to release the excess delaloc
1584                  * bytes we reserved.  We need to increment outstanding_extents
1585                  * because btrfs_delalloc_release_space will decrement it, but
1586                  * we still have an outstanding extent for the chunk we actually
1587                  * managed to copy.
1588                  */
1589                 if (num_pages > dirty_pages) {
1590                         release_bytes = (num_pages - dirty_pages) <<
1591                                 PAGE_CACHE_SHIFT;
1592                         if (copied > 0) {
1593                                 spin_lock(&BTRFS_I(inode)->lock);
1594                                 BTRFS_I(inode)->outstanding_extents++;
1595                                 spin_unlock(&BTRFS_I(inode)->lock);
1596                         }
1597                         if (only_release_metadata)
1598                                 btrfs_delalloc_release_metadata(inode,
1599                                                                 release_bytes);
1600                         else
1601                                 btrfs_delalloc_release_space(inode,
1602                                                              release_bytes);
1603                 }
1604
1605                 release_bytes = dirty_pages << PAGE_CACHE_SHIFT;
1606
1607                 if (copied > 0)
1608                         ret = btrfs_dirty_pages(root, inode, pages,
1609                                                 dirty_pages, pos, copied,
1610                                                 NULL);
1611                 if (need_unlock)
1612                         unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1613                                              lockstart, lockend, &cached_state,
1614                                              GFP_NOFS);
1615                 if (ret) {
1616                         btrfs_drop_pages(pages, num_pages);
1617                         break;
1618                 }
1619
1620                 release_bytes = 0;
1621                 if (only_release_metadata)
1622                         btrfs_end_nocow_write(root);
1623
1624                 if (only_release_metadata && copied > 0) {
1625                         u64 lockstart = round_down(pos, root->sectorsize);
1626                         u64 lockend = lockstart +
1627                                 (dirty_pages << PAGE_CACHE_SHIFT) - 1;
1628
1629                         set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
1630                                        lockend, EXTENT_NORESERVE, NULL,
1631                                        NULL, GFP_NOFS);
1632                         only_release_metadata = false;
1633                 }
1634
1635                 btrfs_drop_pages(pages, num_pages);
1636
1637                 cond_resched();
1638
1639                 balance_dirty_pages_ratelimited(inode->i_mapping);
1640                 if (dirty_pages < (root->leafsize >> PAGE_CACHE_SHIFT) + 1)
1641                         btrfs_btree_balance_dirty(root);
1642
1643                 pos += copied;
1644                 num_written += copied;
1645         }
1646
1647         kfree(pages);
1648
1649         if (release_bytes) {
1650                 if (only_release_metadata) {
1651                         btrfs_end_nocow_write(root);
1652                         btrfs_delalloc_release_metadata(inode, release_bytes);
1653                 } else {
1654                         btrfs_delalloc_release_space(inode, release_bytes);
1655                 }
1656         }
1657
1658         return num_written ? num_written : ret;
1659 }
1660
1661 static ssize_t __btrfs_direct_write(struct kiocb *iocb,
1662                                     struct iov_iter *from,
1663                                     loff_t pos)
1664 {
1665         struct file *file = iocb->ki_filp;
1666         ssize_t written;
1667         ssize_t written_buffered;
1668         loff_t endbyte;
1669         int err;
1670
1671         written = generic_file_direct_write(iocb, from, pos);
1672
1673         if (written < 0 || !iov_iter_count(from))
1674                 return written;
1675
1676         pos += written;
1677         written_buffered = __btrfs_buffered_write(file, from, pos);
1678         if (written_buffered < 0) {
1679                 err = written_buffered;
1680                 goto out;
1681         }
1682         endbyte = pos + written_buffered - 1;
1683         err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte);
1684         if (err)
1685                 goto out;
1686         written += written_buffered;
1687         iocb->ki_pos = pos + written_buffered;
1688         invalidate_mapping_pages(file->f_mapping, pos >> PAGE_CACHE_SHIFT,
1689                                  endbyte >> PAGE_CACHE_SHIFT);
1690 out:
1691         return written ? written : err;
1692 }
1693
1694 static void update_time_for_write(struct inode *inode)
1695 {
1696         struct timespec now;
1697
1698         if (IS_NOCMTIME(inode))
1699                 return;
1700
1701         now = current_fs_time(inode->i_sb);
1702         if (!timespec_equal(&inode->i_mtime, &now))
1703                 inode->i_mtime = now;
1704
1705         if (!timespec_equal(&inode->i_ctime, &now))
1706                 inode->i_ctime = now;
1707
1708         if (IS_I_VERSION(inode))
1709                 inode_inc_iversion(inode);
1710 }
1711
1712 static ssize_t btrfs_file_write_iter(struct kiocb *iocb,
1713                                     struct iov_iter *from)
1714 {
1715         struct file *file = iocb->ki_filp;
1716         struct inode *inode = file_inode(file);
1717         struct btrfs_root *root = BTRFS_I(inode)->root;
1718         u64 start_pos;
1719         u64 end_pos;
1720         ssize_t num_written = 0;
1721         ssize_t err = 0;
1722         size_t count = iov_iter_count(from);
1723         bool sync = (file->f_flags & O_DSYNC) || IS_SYNC(file->f_mapping->host);
1724         loff_t pos = iocb->ki_pos;
1725
1726         mutex_lock(&inode->i_mutex);
1727
1728         current->backing_dev_info = inode->i_mapping->backing_dev_info;
1729         err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
1730         if (err) {
1731                 mutex_unlock(&inode->i_mutex);
1732                 goto out;
1733         }
1734
1735         if (count == 0) {
1736                 mutex_unlock(&inode->i_mutex);
1737                 goto out;
1738         }
1739
1740         iov_iter_truncate(from, count);
1741
1742         err = file_remove_suid(file);
1743         if (err) {
1744                 mutex_unlock(&inode->i_mutex);
1745                 goto out;
1746         }
1747
1748         /*
1749          * If BTRFS flips readonly due to some impossible error
1750          * (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR),
1751          * although we have opened a file as writable, we have
1752          * to stop this write operation to ensure FS consistency.
1753          */
1754         if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) {
1755                 mutex_unlock(&inode->i_mutex);
1756                 err = -EROFS;
1757                 goto out;
1758         }
1759
1760         /*
1761          * We reserve space for updating the inode when we reserve space for the
1762          * extent we are going to write, so we will enospc out there.  We don't
1763          * need to start yet another transaction to update the inode as we will
1764          * update the inode when we finish writing whatever data we write.
1765          */
1766         update_time_for_write(inode);
1767
1768         start_pos = round_down(pos, root->sectorsize);
1769         if (start_pos > i_size_read(inode)) {
1770                 /* Expand hole size to cover write data, preventing empty gap */
1771                 end_pos = round_up(pos + count, root->sectorsize);
1772                 err = btrfs_cont_expand(inode, i_size_read(inode), end_pos);
1773                 if (err) {
1774                         mutex_unlock(&inode->i_mutex);
1775                         goto out;
1776                 }
1777         }
1778
1779         if (sync)
1780                 atomic_inc(&BTRFS_I(inode)->sync_writers);
1781
1782         if (unlikely(file->f_flags & O_DIRECT)) {
1783                 num_written = __btrfs_direct_write(iocb, from, pos);
1784         } else {
1785                 num_written = __btrfs_buffered_write(file, from, pos);
1786                 if (num_written > 0)
1787                         iocb->ki_pos = pos + num_written;
1788         }
1789
1790         mutex_unlock(&inode->i_mutex);
1791
1792         /*
1793          * we want to make sure fsync finds this change
1794          * but we haven't joined a transaction running right now.
1795          *
1796          * Later on, someone is sure to update the inode and get the
1797          * real transid recorded.
1798          *
1799          * We set last_trans now to the fs_info generation + 1,
1800          * this will either be one more than the running transaction
1801          * or the generation used for the next transaction if there isn't
1802          * one running right now.
1803          *
1804          * We also have to set last_sub_trans to the current log transid,
1805          * otherwise subsequent syncs to a file that's been synced in this
1806          * transaction will appear to have already occured.
1807          */
1808         BTRFS_I(inode)->last_trans = root->fs_info->generation + 1;
1809         BTRFS_I(inode)->last_sub_trans = root->log_transid;
1810         if (num_written > 0) {
1811                 err = generic_write_sync(file, pos, num_written);
1812                 if (err < 0)
1813                         num_written = err;
1814         }
1815
1816         if (sync)
1817                 atomic_dec(&BTRFS_I(inode)->sync_writers);
1818 out:
1819         current->backing_dev_info = NULL;
1820         return num_written ? num_written : err;
1821 }
1822
1823 int btrfs_release_file(struct inode *inode, struct file *filp)
1824 {
1825         /*
1826          * ordered_data_close is set by settattr when we are about to truncate
1827          * a file from a non-zero size to a zero size.  This tries to
1828          * flush down new bytes that may have been written if the
1829          * application were using truncate to replace a file in place.
1830          */
1831         if (test_and_clear_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
1832                                &BTRFS_I(inode)->runtime_flags)) {
1833                 struct btrfs_trans_handle *trans;
1834                 struct btrfs_root *root = BTRFS_I(inode)->root;
1835
1836                 /*
1837                  * We need to block on a committing transaction to keep us from
1838                  * throwing a ordered operation on to the list and causing
1839                  * something like sync to deadlock trying to flush out this
1840                  * inode.
1841                  */
1842                 trans = btrfs_start_transaction(root, 0);
1843                 if (IS_ERR(trans))
1844                         return PTR_ERR(trans);
1845                 btrfs_add_ordered_operation(trans, BTRFS_I(inode)->root, inode);
1846                 btrfs_end_transaction(trans, root);
1847                 if (inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
1848                         filemap_flush(inode->i_mapping);
1849         }
1850         if (filp->private_data)
1851                 btrfs_ioctl_trans_end(filp);
1852         return 0;
1853 }
1854
1855 /*
1856  * fsync call for both files and directories.  This logs the inode into
1857  * the tree log instead of forcing full commits whenever possible.
1858  *
1859  * It needs to call filemap_fdatawait so that all ordered extent updates are
1860  * in the metadata btree are up to date for copying to the log.
1861  *
1862  * It drops the inode mutex before doing the tree log commit.  This is an
1863  * important optimization for directories because holding the mutex prevents
1864  * new operations on the dir while we write to disk.
1865  */
1866 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
1867 {
1868         struct dentry *dentry = file->f_path.dentry;
1869         struct inode *inode = dentry->d_inode;
1870         struct btrfs_root *root = BTRFS_I(inode)->root;
1871         struct btrfs_trans_handle *trans;
1872         struct btrfs_log_ctx ctx;
1873         int ret = 0;
1874         bool full_sync = 0;
1875
1876         trace_btrfs_sync_file(file, datasync);
1877
1878         /*
1879          * We write the dirty pages in the range and wait until they complete
1880          * out of the ->i_mutex. If so, we can flush the dirty pages by
1881          * multi-task, and make the performance up.  See
1882          * btrfs_wait_ordered_range for an explanation of the ASYNC check.
1883          */
1884         atomic_inc(&BTRFS_I(inode)->sync_writers);
1885         ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
1886         if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1887                              &BTRFS_I(inode)->runtime_flags))
1888                 ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
1889         atomic_dec(&BTRFS_I(inode)->sync_writers);
1890         if (ret)
1891                 return ret;
1892
1893         mutex_lock(&inode->i_mutex);
1894
1895         /*
1896          * We flush the dirty pages again to avoid some dirty pages in the
1897          * range being left.
1898          */
1899         atomic_inc(&root->log_batch);
1900         full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
1901                              &BTRFS_I(inode)->runtime_flags);
1902         if (full_sync) {
1903                 ret = btrfs_wait_ordered_range(inode, start, end - start + 1);
1904                 if (ret) {
1905                         mutex_unlock(&inode->i_mutex);
1906                         goto out;
1907                 }
1908         }
1909         atomic_inc(&root->log_batch);
1910
1911         /*
1912          * check the transaction that last modified this inode
1913          * and see if its already been committed
1914          */
1915         if (!BTRFS_I(inode)->last_trans) {
1916                 mutex_unlock(&inode->i_mutex);
1917                 goto out;
1918         }
1919
1920         /*
1921          * if the last transaction that changed this file was before
1922          * the current transaction, we can bail out now without any
1923          * syncing
1924          */
1925         smp_mb();
1926         if (btrfs_inode_in_log(inode, root->fs_info->generation) ||
1927             BTRFS_I(inode)->last_trans <=
1928             root->fs_info->last_trans_committed) {
1929                 BTRFS_I(inode)->last_trans = 0;
1930
1931                 /*
1932                  * We'v had everything committed since the last time we were
1933                  * modified so clear this flag in case it was set for whatever
1934                  * reason, it's no longer relevant.
1935                  */
1936                 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
1937                           &BTRFS_I(inode)->runtime_flags);
1938                 mutex_unlock(&inode->i_mutex);
1939                 goto out;
1940         }
1941
1942         /*
1943          * ok we haven't committed the transaction yet, lets do a commit
1944          */
1945         if (file->private_data)
1946                 btrfs_ioctl_trans_end(file);
1947
1948         /*
1949          * We use start here because we will need to wait on the IO to complete
1950          * in btrfs_sync_log, which could require joining a transaction (for
1951          * example checking cross references in the nocow path).  If we use join
1952          * here we could get into a situation where we're waiting on IO to
1953          * happen that is blocked on a transaction trying to commit.  With start
1954          * we inc the extwriter counter, so we wait for all extwriters to exit
1955          * before we start blocking join'ers.  This comment is to keep somebody
1956          * from thinking they are super smart and changing this to
1957          * btrfs_join_transaction *cough*Josef*cough*.
1958          */
1959         trans = btrfs_start_transaction(root, 0);
1960         if (IS_ERR(trans)) {
1961                 ret = PTR_ERR(trans);
1962                 mutex_unlock(&inode->i_mutex);
1963                 goto out;
1964         }
1965         trans->sync = true;
1966
1967         btrfs_init_log_ctx(&ctx);
1968
1969         ret = btrfs_log_dentry_safe(trans, root, dentry, &ctx);
1970         if (ret < 0) {
1971                 /* Fallthrough and commit/free transaction. */
1972                 ret = 1;
1973         }
1974
1975         /* we've logged all the items and now have a consistent
1976          * version of the file in the log.  It is possible that
1977          * someone will come in and modify the file, but that's
1978          * fine because the log is consistent on disk, and we
1979          * have references to all of the file's extents
1980          *
1981          * It is possible that someone will come in and log the
1982          * file again, but that will end up using the synchronization
1983          * inside btrfs_sync_log to keep things safe.
1984          */
1985         mutex_unlock(&inode->i_mutex);
1986
1987         if (ret != BTRFS_NO_LOG_SYNC) {
1988                 if (!ret) {
1989                         ret = btrfs_sync_log(trans, root, &ctx);
1990                         if (!ret) {
1991                                 ret = btrfs_end_transaction(trans, root);
1992                                 goto out;
1993                         }
1994                 }
1995                 if (!full_sync) {
1996                         ret = btrfs_wait_ordered_range(inode, start,
1997                                                        end - start + 1);
1998                         if (ret)
1999                                 goto out;
2000                 }
2001                 ret = btrfs_commit_transaction(trans, root);
2002         } else {
2003                 ret = btrfs_end_transaction(trans, root);
2004         }
2005 out:
2006         return ret > 0 ? -EIO : ret;
2007 }
2008
2009 static const struct vm_operations_struct btrfs_file_vm_ops = {
2010         .fault          = filemap_fault,
2011         .map_pages      = filemap_map_pages,
2012         .page_mkwrite   = btrfs_page_mkwrite,
2013         .remap_pages    = generic_file_remap_pages,
2014 };
2015
2016 static int btrfs_file_mmap(struct file  *filp, struct vm_area_struct *vma)
2017 {
2018         struct address_space *mapping = filp->f_mapping;
2019
2020         if (!mapping->a_ops->readpage)
2021                 return -ENOEXEC;
2022
2023         file_accessed(filp);
2024         vma->vm_ops = &btrfs_file_vm_ops;
2025
2026         return 0;
2027 }
2028
2029 static int hole_mergeable(struct inode *inode, struct extent_buffer *leaf,
2030                           int slot, u64 start, u64 end)
2031 {
2032         struct btrfs_file_extent_item *fi;
2033         struct btrfs_key key;
2034
2035         if (slot < 0 || slot >= btrfs_header_nritems(leaf))
2036                 return 0;
2037
2038         btrfs_item_key_to_cpu(leaf, &key, slot);
2039         if (key.objectid != btrfs_ino(inode) ||
2040             key.type != BTRFS_EXTENT_DATA_KEY)
2041                 return 0;
2042
2043         fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2044
2045         if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2046                 return 0;
2047
2048         if (btrfs_file_extent_disk_bytenr(leaf, fi))
2049                 return 0;
2050
2051         if (key.offset == end)
2052                 return 1;
2053         if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
2054                 return 1;
2055         return 0;
2056 }
2057
2058 static int fill_holes(struct btrfs_trans_handle *trans, struct inode *inode,
2059                       struct btrfs_path *path, u64 offset, u64 end)
2060 {
2061         struct btrfs_root *root = BTRFS_I(inode)->root;
2062         struct extent_buffer *leaf;
2063         struct btrfs_file_extent_item *fi;
2064         struct extent_map *hole_em;
2065         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2066         struct btrfs_key key;
2067         int ret;
2068
2069         if (btrfs_fs_incompat(root->fs_info, NO_HOLES))
2070                 goto out;
2071
2072         key.objectid = btrfs_ino(inode);
2073         key.type = BTRFS_EXTENT_DATA_KEY;
2074         key.offset = offset;
2075
2076         ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2077         if (ret < 0)
2078                 return ret;
2079         BUG_ON(!ret);
2080
2081         leaf = path->nodes[0];
2082         if (hole_mergeable(inode, leaf, path->slots[0]-1, offset, end)) {
2083                 u64 num_bytes;
2084
2085                 path->slots[0]--;
2086                 fi = btrfs_item_ptr(leaf, path->slots[0],
2087                                     struct btrfs_file_extent_item);
2088                 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
2089                         end - offset;
2090                 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2091                 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2092                 btrfs_set_file_extent_offset(leaf, fi, 0);
2093                 btrfs_mark_buffer_dirty(leaf);
2094                 goto out;
2095         }
2096
2097         if (hole_mergeable(inode, leaf, path->slots[0]+1, offset, end)) {
2098                 u64 num_bytes;
2099
2100                 path->slots[0]++;
2101                 key.offset = offset;
2102                 btrfs_set_item_key_safe(root, path, &key);
2103                 fi = btrfs_item_ptr(leaf, path->slots[0],
2104                                     struct btrfs_file_extent_item);
2105                 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
2106                         offset;
2107                 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2108                 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2109                 btrfs_set_file_extent_offset(leaf, fi, 0);
2110                 btrfs_mark_buffer_dirty(leaf);
2111                 goto out;
2112         }
2113         btrfs_release_path(path);
2114
2115         ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset,
2116                                        0, 0, end - offset, 0, end - offset,
2117                                        0, 0, 0);
2118         if (ret)
2119                 return ret;
2120
2121 out:
2122         btrfs_release_path(path);
2123
2124         hole_em = alloc_extent_map();
2125         if (!hole_em) {
2126                 btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2127                 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2128                         &BTRFS_I(inode)->runtime_flags);
2129         } else {
2130                 hole_em->start = offset;
2131                 hole_em->len = end - offset;
2132                 hole_em->ram_bytes = hole_em->len;
2133                 hole_em->orig_start = offset;
2134
2135                 hole_em->block_start = EXTENT_MAP_HOLE;
2136                 hole_em->block_len = 0;
2137                 hole_em->orig_block_len = 0;
2138                 hole_em->bdev = root->fs_info->fs_devices->latest_bdev;
2139                 hole_em->compress_type = BTRFS_COMPRESS_NONE;
2140                 hole_em->generation = trans->transid;
2141
2142                 do {
2143                         btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2144                         write_lock(&em_tree->lock);
2145                         ret = add_extent_mapping(em_tree, hole_em, 1);
2146                         write_unlock(&em_tree->lock);
2147                 } while (ret == -EEXIST);
2148                 free_extent_map(hole_em);
2149                 if (ret)
2150                         set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2151                                 &BTRFS_I(inode)->runtime_flags);
2152         }
2153
2154         return 0;
2155 }
2156
2157 static int btrfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
2158 {
2159         struct btrfs_root *root = BTRFS_I(inode)->root;
2160         struct extent_state *cached_state = NULL;
2161         struct btrfs_path *path;
2162         struct btrfs_block_rsv *rsv;
2163         struct btrfs_trans_handle *trans;
2164         u64 lockstart = round_up(offset, BTRFS_I(inode)->root->sectorsize);
2165         u64 lockend = round_down(offset + len,
2166                                  BTRFS_I(inode)->root->sectorsize) - 1;
2167         u64 cur_offset = lockstart;
2168         u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
2169         u64 drop_end;
2170         int ret = 0;
2171         int err = 0;
2172         int rsv_count;
2173         bool same_page = ((offset >> PAGE_CACHE_SHIFT) ==
2174                           ((offset + len - 1) >> PAGE_CACHE_SHIFT));
2175         bool no_holes = btrfs_fs_incompat(root->fs_info, NO_HOLES);
2176         u64 ino_size = round_up(inode->i_size, PAGE_CACHE_SIZE);
2177
2178         ret = btrfs_wait_ordered_range(inode, offset, len);
2179         if (ret)
2180                 return ret;
2181
2182         mutex_lock(&inode->i_mutex);
2183         /*
2184          * We needn't truncate any page which is beyond the end of the file
2185          * because we are sure there is no data there.
2186          */
2187         /*
2188          * Only do this if we are in the same page and we aren't doing the
2189          * entire page.
2190          */
2191         if (same_page && len < PAGE_CACHE_SIZE) {
2192                 if (offset < ino_size)
2193                         ret = btrfs_truncate_page(inode, offset, len, 0);
2194                 mutex_unlock(&inode->i_mutex);
2195                 return ret;
2196         }
2197
2198         /* zero back part of the first page */
2199         if (offset < ino_size) {
2200                 ret = btrfs_truncate_page(inode, offset, 0, 0);
2201                 if (ret) {
2202                         mutex_unlock(&inode->i_mutex);
2203                         return ret;
2204                 }
2205         }
2206
2207         /* zero the front end of the last page */
2208         if (offset + len < ino_size) {
2209                 ret = btrfs_truncate_page(inode, offset + len, 0, 1);
2210                 if (ret) {
2211                         mutex_unlock(&inode->i_mutex);
2212                         return ret;
2213                 }
2214         }
2215
2216         if (lockend < lockstart) {
2217                 mutex_unlock(&inode->i_mutex);
2218                 return 0;
2219         }
2220
2221         while (1) {
2222                 struct btrfs_ordered_extent *ordered;
2223
2224                 truncate_pagecache_range(inode, lockstart, lockend);
2225
2226                 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2227                                  0, &cached_state);
2228                 ordered = btrfs_lookup_first_ordered_extent(inode, lockend);
2229
2230                 /*
2231                  * We need to make sure we have no ordered extents in this range
2232                  * and nobody raced in and read a page in this range, if we did
2233                  * we need to try again.
2234                  */
2235                 if ((!ordered ||
2236                     (ordered->file_offset + ordered->len <= lockstart ||
2237                      ordered->file_offset > lockend)) &&
2238                      !test_range_bit(&BTRFS_I(inode)->io_tree, lockstart,
2239                                      lockend, EXTENT_UPTODATE, 0,
2240                                      cached_state)) {
2241                         if (ordered)
2242                                 btrfs_put_ordered_extent(ordered);
2243                         break;
2244                 }
2245                 if (ordered)
2246                         btrfs_put_ordered_extent(ordered);
2247                 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
2248                                      lockend, &cached_state, GFP_NOFS);
2249                 ret = btrfs_wait_ordered_range(inode, lockstart,
2250                                                lockend - lockstart + 1);
2251                 if (ret) {
2252                         mutex_unlock(&inode->i_mutex);
2253                         return ret;
2254                 }
2255         }
2256
2257         path = btrfs_alloc_path();
2258         if (!path) {
2259                 ret = -ENOMEM;
2260                 goto out;
2261         }
2262
2263         rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
2264         if (!rsv) {
2265                 ret = -ENOMEM;
2266                 goto out_free;
2267         }
2268         rsv->size = btrfs_calc_trunc_metadata_size(root, 1);
2269         rsv->failfast = 1;
2270
2271         /*
2272          * 1 - update the inode
2273          * 1 - removing the extents in the range
2274          * 1 - adding the hole extent if no_holes isn't set
2275          */
2276         rsv_count = no_holes ? 2 : 3;
2277         trans = btrfs_start_transaction(root, rsv_count);
2278         if (IS_ERR(trans)) {
2279                 err = PTR_ERR(trans);
2280                 goto out_free;
2281         }
2282
2283         ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
2284                                       min_size);
2285         BUG_ON(ret);
2286         trans->block_rsv = rsv;
2287
2288         while (cur_offset < lockend) {
2289                 ret = __btrfs_drop_extents(trans, root, inode, path,
2290                                            cur_offset, lockend + 1,
2291                                            &drop_end, 1, 0, 0, NULL);
2292                 if (ret != -ENOSPC)
2293                         break;
2294
2295                 trans->block_rsv = &root->fs_info->trans_block_rsv;
2296
2297                 if (cur_offset < ino_size) {
2298                         ret = fill_holes(trans, inode, path, cur_offset,
2299                                          drop_end);
2300                         if (ret) {
2301                                 err = ret;
2302                                 break;
2303                         }
2304                 }
2305
2306                 cur_offset = drop_end;
2307
2308                 ret = btrfs_update_inode(trans, root, inode);
2309                 if (ret) {
2310                         err = ret;
2311                         break;
2312                 }
2313
2314                 btrfs_end_transaction(trans, root);
2315                 btrfs_btree_balance_dirty(root);
2316
2317                 trans = btrfs_start_transaction(root, rsv_count);
2318                 if (IS_ERR(trans)) {
2319                         ret = PTR_ERR(trans);
2320                         trans = NULL;
2321                         break;
2322                 }
2323
2324                 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv,
2325                                               rsv, min_size);
2326                 BUG_ON(ret);    /* shouldn't happen */
2327                 trans->block_rsv = rsv;
2328         }
2329
2330         if (ret) {
2331                 err = ret;
2332                 goto out_trans;
2333         }
2334
2335         trans->block_rsv = &root->fs_info->trans_block_rsv;
2336         if (cur_offset < ino_size) {
2337                 ret = fill_holes(trans, inode, path, cur_offset, drop_end);
2338                 if (ret) {
2339                         err = ret;
2340                         goto out_trans;
2341                 }
2342         }
2343
2344 out_trans:
2345         if (!trans)
2346                 goto out_free;
2347
2348         inode_inc_iversion(inode);
2349         inode->i_mtime = inode->i_ctime = CURRENT_TIME;
2350
2351         trans->block_rsv = &root->fs_info->trans_block_rsv;
2352         ret = btrfs_update_inode(trans, root, inode);
2353         btrfs_end_transaction(trans, root);
2354         btrfs_btree_balance_dirty(root);
2355 out_free:
2356         btrfs_free_path(path);
2357         btrfs_free_block_rsv(root, rsv);
2358 out:
2359         unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2360                              &cached_state, GFP_NOFS);
2361         mutex_unlock(&inode->i_mutex);
2362         if (ret && !err)
2363                 err = ret;
2364         return err;
2365 }
2366
2367 static long btrfs_fallocate(struct file *file, int mode,
2368                             loff_t offset, loff_t len)
2369 {
2370         struct inode *inode = file_inode(file);
2371         struct extent_state *cached_state = NULL;
2372         struct btrfs_root *root = BTRFS_I(inode)->root;
2373         u64 cur_offset;
2374         u64 last_byte;
2375         u64 alloc_start;
2376         u64 alloc_end;
2377         u64 alloc_hint = 0;
2378         u64 locked_end;
2379         struct extent_map *em;
2380         int blocksize = BTRFS_I(inode)->root->sectorsize;
2381         int ret;
2382
2383         alloc_start = round_down(offset, blocksize);
2384         alloc_end = round_up(offset + len, blocksize);
2385
2386         /* Make sure we aren't being give some crap mode */
2387         if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2388                 return -EOPNOTSUPP;
2389
2390         if (mode & FALLOC_FL_PUNCH_HOLE)
2391                 return btrfs_punch_hole(inode, offset, len);
2392
2393         /*
2394          * Make sure we have enough space before we do the
2395          * allocation.
2396          */
2397         ret = btrfs_check_data_free_space(inode, alloc_end - alloc_start);
2398         if (ret)
2399                 return ret;
2400         if (root->fs_info->quota_enabled) {
2401                 ret = btrfs_qgroup_reserve(root, alloc_end - alloc_start);
2402                 if (ret)
2403                         goto out_reserve_fail;
2404         }
2405
2406         mutex_lock(&inode->i_mutex);
2407         ret = inode_newsize_ok(inode, alloc_end);
2408         if (ret)
2409                 goto out;
2410
2411         if (alloc_start > inode->i_size) {
2412                 ret = btrfs_cont_expand(inode, i_size_read(inode),
2413                                         alloc_start);
2414                 if (ret)
2415                         goto out;
2416         } else {
2417                 /*
2418                  * If we are fallocating from the end of the file onward we
2419                  * need to zero out the end of the page if i_size lands in the
2420                  * middle of a page.
2421                  */
2422                 ret = btrfs_truncate_page(inode, inode->i_size, 0, 0);
2423                 if (ret)
2424                         goto out;
2425         }
2426
2427         /*
2428          * wait for ordered IO before we have any locks.  We'll loop again
2429          * below with the locks held.
2430          */
2431         ret = btrfs_wait_ordered_range(inode, alloc_start,
2432                                        alloc_end - alloc_start);
2433         if (ret)
2434                 goto out;
2435
2436         locked_end = alloc_end - 1;
2437         while (1) {
2438                 struct btrfs_ordered_extent *ordered;
2439
2440                 /* the extent lock is ordered inside the running
2441                  * transaction
2442                  */
2443                 lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start,
2444                                  locked_end, 0, &cached_state);
2445                 ordered = btrfs_lookup_first_ordered_extent(inode,
2446                                                             alloc_end - 1);
2447                 if (ordered &&
2448                     ordered->file_offset + ordered->len > alloc_start &&
2449                     ordered->file_offset < alloc_end) {
2450                         btrfs_put_ordered_extent(ordered);
2451                         unlock_extent_cached(&BTRFS_I(inode)->io_tree,
2452                                              alloc_start, locked_end,
2453                                              &cached_state, GFP_NOFS);
2454                         /*
2455                          * we can't wait on the range with the transaction
2456                          * running or with the extent lock held
2457                          */
2458                         ret = btrfs_wait_ordered_range(inode, alloc_start,
2459                                                        alloc_end - alloc_start);
2460                         if (ret)
2461                                 goto out;
2462                 } else {
2463                         if (ordered)
2464                                 btrfs_put_ordered_extent(ordered);
2465                         break;
2466                 }
2467         }
2468
2469         cur_offset = alloc_start;
2470         while (1) {
2471                 u64 actual_end;
2472
2473                 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
2474                                       alloc_end - cur_offset, 0);
2475                 if (IS_ERR_OR_NULL(em)) {
2476                         if (!em)
2477                                 ret = -ENOMEM;
2478                         else
2479                                 ret = PTR_ERR(em);
2480                         break;
2481                 }
2482                 last_byte = min(extent_map_end(em), alloc_end);
2483                 actual_end = min_t(u64, extent_map_end(em), offset + len);
2484                 last_byte = ALIGN(last_byte, blocksize);
2485
2486                 if (em->block_start == EXTENT_MAP_HOLE ||
2487                     (cur_offset >= inode->i_size &&
2488                      !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
2489                         ret = btrfs_prealloc_file_range(inode, mode, cur_offset,
2490                                                         last_byte - cur_offset,
2491                                                         1 << inode->i_blkbits,
2492                                                         offset + len,
2493                                                         &alloc_hint);
2494
2495                         if (ret < 0) {
2496                                 free_extent_map(em);
2497                                 break;
2498                         }
2499                 } else if (actual_end > inode->i_size &&
2500                            !(mode & FALLOC_FL_KEEP_SIZE)) {
2501                         /*
2502                          * We didn't need to allocate any more space, but we
2503                          * still extended the size of the file so we need to
2504                          * update i_size.
2505                          */
2506                         inode->i_ctime = CURRENT_TIME;
2507                         i_size_write(inode, actual_end);
2508                         btrfs_ordered_update_i_size(inode, actual_end, NULL);
2509                 }
2510                 free_extent_map(em);
2511
2512                 cur_offset = last_byte;
2513                 if (cur_offset >= alloc_end) {
2514                         ret = 0;
2515                         break;
2516                 }
2517         }
2518         unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
2519                              &cached_state, GFP_NOFS);
2520 out:
2521         mutex_unlock(&inode->i_mutex);
2522         if (root->fs_info->quota_enabled)
2523                 btrfs_qgroup_free(root, alloc_end - alloc_start);
2524 out_reserve_fail:
2525         /* Let go of our reservation. */
2526         btrfs_free_reserved_data_space(inode, alloc_end - alloc_start);
2527         return ret;
2528 }
2529
2530 static int find_desired_extent(struct inode *inode, loff_t *offset, int whence)
2531 {
2532         struct btrfs_root *root = BTRFS_I(inode)->root;
2533         struct extent_map *em = NULL;
2534         struct extent_state *cached_state = NULL;
2535         u64 lockstart = *offset;
2536         u64 lockend = i_size_read(inode);
2537         u64 start = *offset;
2538         u64 len = i_size_read(inode);
2539         int ret = 0;
2540
2541         lockend = max_t(u64, root->sectorsize, lockend);
2542         if (lockend <= lockstart)
2543                 lockend = lockstart + root->sectorsize;
2544
2545         lockend--;
2546         len = lockend - lockstart + 1;
2547
2548         len = max_t(u64, len, root->sectorsize);
2549         if (inode->i_size == 0)
2550                 return -ENXIO;
2551
2552         lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 0,
2553                          &cached_state);
2554
2555         while (start < inode->i_size) {
2556                 em = btrfs_get_extent_fiemap(inode, NULL, 0, start, len, 0);
2557                 if (IS_ERR(em)) {
2558                         ret = PTR_ERR(em);
2559                         em = NULL;
2560                         break;
2561                 }
2562
2563                 if (whence == SEEK_HOLE &&
2564                     (em->block_start == EXTENT_MAP_HOLE ||
2565                      test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
2566                         break;
2567                 else if (whence == SEEK_DATA &&
2568                            (em->block_start != EXTENT_MAP_HOLE &&
2569                             !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
2570                         break;
2571
2572                 start = em->start + em->len;
2573                 free_extent_map(em);
2574                 em = NULL;
2575                 cond_resched();
2576         }
2577         free_extent_map(em);
2578         if (!ret) {
2579                 if (whence == SEEK_DATA && start >= inode->i_size)
2580                         ret = -ENXIO;
2581                 else
2582                         *offset = min_t(loff_t, start, inode->i_size);
2583         }
2584         unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2585                              &cached_state, GFP_NOFS);
2586         return ret;
2587 }
2588
2589 static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence)
2590 {
2591         struct inode *inode = file->f_mapping->host;
2592         int ret;
2593
2594         mutex_lock(&inode->i_mutex);
2595         switch (whence) {
2596         case SEEK_END:
2597         case SEEK_CUR:
2598                 offset = generic_file_llseek(file, offset, whence);
2599                 goto out;
2600         case SEEK_DATA:
2601         case SEEK_HOLE:
2602                 if (offset >= i_size_read(inode)) {
2603                         mutex_unlock(&inode->i_mutex);
2604                         return -ENXIO;
2605                 }
2606
2607                 ret = find_desired_extent(inode, &offset, whence);
2608                 if (ret) {
2609                         mutex_unlock(&inode->i_mutex);
2610                         return ret;
2611                 }
2612         }
2613
2614         offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
2615 out:
2616         mutex_unlock(&inode->i_mutex);
2617         return offset;
2618 }
2619
2620 const struct file_operations btrfs_file_operations = {
2621         .llseek         = btrfs_file_llseek,
2622         .read           = new_sync_read,
2623         .write          = new_sync_write,
2624         .read_iter      = generic_file_read_iter,
2625         .splice_read    = generic_file_splice_read,
2626         .write_iter     = btrfs_file_write_iter,
2627         .mmap           = btrfs_file_mmap,
2628         .open           = generic_file_open,
2629         .release        = btrfs_release_file,
2630         .fsync          = btrfs_sync_file,
2631         .fallocate      = btrfs_fallocate,
2632         .unlocked_ioctl = btrfs_ioctl,
2633 #ifdef CONFIG_COMPAT
2634         .compat_ioctl   = btrfs_ioctl,
2635 #endif
2636 };
2637
2638 void btrfs_auto_defrag_exit(void)
2639 {
2640         if (btrfs_inode_defrag_cachep)
2641                 kmem_cache_destroy(btrfs_inode_defrag_cachep);
2642 }
2643
2644 int btrfs_auto_defrag_init(void)
2645 {
2646         btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag",
2647                                         sizeof(struct inode_defrag), 0,
2648                                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
2649                                         NULL);
2650         if (!btrfs_inode_defrag_cachep)
2651                 return -ENOMEM;
2652
2653         return 0;
2654 }