2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
20 #include <linux/pagemap.h>
21 #include <linux/highmem.h>
22 #include <linux/time.h>
23 #include <linux/init.h>
24 #include <linux/string.h>
25 #include <linux/backing-dev.h>
26 #include <linux/mpage.h>
27 #include <linux/falloc.h>
28 #include <linux/swap.h>
29 #include <linux/writeback.h>
30 #include <linux/statfs.h>
31 #include <linux/compat.h>
32 #include <linux/slab.h>
33 #include <linux/btrfs.h>
36 #include "transaction.h"
37 #include "btrfs_inode.h"
38 #include "print-tree.h"
44 static struct kmem_cache *btrfs_inode_defrag_cachep;
46 * when auto defrag is enabled we
47 * queue up these defrag structs to remember which
48 * inodes need defragging passes
51 struct rb_node rb_node;
55 * transid where the defrag was added, we search for
56 * extents newer than this
63 /* last offset we were able to defrag */
66 /* if we've wrapped around back to zero once already */
70 static int __compare_inode_defrag(struct inode_defrag *defrag1,
71 struct inode_defrag *defrag2)
73 if (defrag1->root > defrag2->root)
75 else if (defrag1->root < defrag2->root)
77 else if (defrag1->ino > defrag2->ino)
79 else if (defrag1->ino < defrag2->ino)
85 /* pop a record for an inode into the defrag tree. The lock
86 * must be held already
88 * If you're inserting a record for an older transid than an
89 * existing record, the transid already in the tree is lowered
91 * If an existing record is found the defrag item you
94 static int __btrfs_add_inode_defrag(struct inode *inode,
95 struct inode_defrag *defrag)
97 struct btrfs_root *root = BTRFS_I(inode)->root;
98 struct inode_defrag *entry;
100 struct rb_node *parent = NULL;
103 p = &root->fs_info->defrag_inodes.rb_node;
106 entry = rb_entry(parent, struct inode_defrag, rb_node);
108 ret = __compare_inode_defrag(defrag, entry);
110 p = &parent->rb_left;
112 p = &parent->rb_right;
114 /* if we're reinserting an entry for
115 * an old defrag run, make sure to
116 * lower the transid of our existing record
118 if (defrag->transid < entry->transid)
119 entry->transid = defrag->transid;
120 if (defrag->last_offset > entry->last_offset)
121 entry->last_offset = defrag->last_offset;
125 set_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
126 rb_link_node(&defrag->rb_node, parent, p);
127 rb_insert_color(&defrag->rb_node, &root->fs_info->defrag_inodes);
131 static inline int __need_auto_defrag(struct btrfs_root *root)
133 if (!btrfs_test_opt(root, AUTO_DEFRAG))
136 if (btrfs_fs_closing(root->fs_info))
143 * insert a defrag record for this inode if auto defrag is
146 int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
149 struct btrfs_root *root = BTRFS_I(inode)->root;
150 struct inode_defrag *defrag;
154 if (!__need_auto_defrag(root))
157 if (test_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags))
161 transid = trans->transid;
163 transid = BTRFS_I(inode)->root->last_trans;
165 defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS);
169 defrag->ino = btrfs_ino(inode);
170 defrag->transid = transid;
171 defrag->root = root->root_key.objectid;
173 spin_lock(&root->fs_info->defrag_inodes_lock);
174 if (!test_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags)) {
176 * If we set IN_DEFRAG flag and evict the inode from memory,
177 * and then re-read this inode, this new inode doesn't have
178 * IN_DEFRAG flag. At the case, we may find the existed defrag.
180 ret = __btrfs_add_inode_defrag(inode, defrag);
182 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
184 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
186 spin_unlock(&root->fs_info->defrag_inodes_lock);
191 * Requeue the defrag object. If there is a defrag object that points to
192 * the same inode in the tree, we will merge them together (by
193 * __btrfs_add_inode_defrag()) and free the one that we want to requeue.
195 void btrfs_requeue_inode_defrag(struct inode *inode,
196 struct inode_defrag *defrag)
198 struct btrfs_root *root = BTRFS_I(inode)->root;
201 if (!__need_auto_defrag(root))
205 * Here we don't check the IN_DEFRAG flag, because we need merge
208 spin_lock(&root->fs_info->defrag_inodes_lock);
209 ret = __btrfs_add_inode_defrag(inode, defrag);
210 spin_unlock(&root->fs_info->defrag_inodes_lock);
215 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
219 * pick the defragable inode that we want, if it doesn't exist, we will get
222 static struct inode_defrag *
223 btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino)
225 struct inode_defrag *entry = NULL;
226 struct inode_defrag tmp;
228 struct rb_node *parent = NULL;
234 spin_lock(&fs_info->defrag_inodes_lock);
235 p = fs_info->defrag_inodes.rb_node;
238 entry = rb_entry(parent, struct inode_defrag, rb_node);
240 ret = __compare_inode_defrag(&tmp, entry);
244 p = parent->rb_right;
249 if (parent && __compare_inode_defrag(&tmp, entry) > 0) {
250 parent = rb_next(parent);
252 entry = rb_entry(parent, struct inode_defrag, rb_node);
258 rb_erase(parent, &fs_info->defrag_inodes);
259 spin_unlock(&fs_info->defrag_inodes_lock);
263 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info)
265 struct inode_defrag *defrag;
266 struct rb_node *node;
268 spin_lock(&fs_info->defrag_inodes_lock);
269 node = rb_first(&fs_info->defrag_inodes);
271 rb_erase(node, &fs_info->defrag_inodes);
272 defrag = rb_entry(node, struct inode_defrag, rb_node);
273 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
275 if (need_resched()) {
276 spin_unlock(&fs_info->defrag_inodes_lock);
278 spin_lock(&fs_info->defrag_inodes_lock);
281 node = rb_first(&fs_info->defrag_inodes);
283 spin_unlock(&fs_info->defrag_inodes_lock);
286 #define BTRFS_DEFRAG_BATCH 1024
288 static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info,
289 struct inode_defrag *defrag)
291 struct btrfs_root *inode_root;
293 struct btrfs_key key;
294 struct btrfs_ioctl_defrag_range_args range;
300 key.objectid = defrag->root;
301 btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
302 key.offset = (u64)-1;
304 index = srcu_read_lock(&fs_info->subvol_srcu);
306 inode_root = btrfs_read_fs_root_no_name(fs_info, &key);
307 if (IS_ERR(inode_root)) {
308 ret = PTR_ERR(inode_root);
311 if (btrfs_root_refs(&inode_root->root_item) == 0) {
316 key.objectid = defrag->ino;
317 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
319 inode = btrfs_iget(fs_info->sb, &key, inode_root, NULL);
321 ret = PTR_ERR(inode);
324 srcu_read_unlock(&fs_info->subvol_srcu, index);
326 /* do a chunk of defrag */
327 clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
328 memset(&range, 0, sizeof(range));
330 range.start = defrag->last_offset;
332 sb_start_write(fs_info->sb);
333 num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid,
335 sb_end_write(fs_info->sb);
337 * if we filled the whole defrag batch, there
338 * must be more work to do. Queue this defrag
341 if (num_defrag == BTRFS_DEFRAG_BATCH) {
342 defrag->last_offset = range.start;
343 btrfs_requeue_inode_defrag(inode, defrag);
344 } else if (defrag->last_offset && !defrag->cycled) {
346 * we didn't fill our defrag batch, but
347 * we didn't start at zero. Make sure we loop
348 * around to the start of the file.
350 defrag->last_offset = 0;
352 btrfs_requeue_inode_defrag(inode, defrag);
354 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
360 srcu_read_unlock(&fs_info->subvol_srcu, index);
361 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
366 * run through the list of inodes in the FS that need
369 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info)
371 struct inode_defrag *defrag;
373 u64 root_objectid = 0;
375 atomic_inc(&fs_info->defrag_running);
377 /* Pause the auto defragger. */
378 if (test_bit(BTRFS_FS_STATE_REMOUNTING,
382 if (!__need_auto_defrag(fs_info->tree_root))
385 /* find an inode to defrag */
386 defrag = btrfs_pick_defrag_inode(fs_info, root_objectid,
389 if (root_objectid || first_ino) {
398 first_ino = defrag->ino + 1;
399 root_objectid = defrag->root;
401 __btrfs_run_defrag_inode(fs_info, defrag);
403 atomic_dec(&fs_info->defrag_running);
406 * during unmount, we use the transaction_wait queue to
407 * wait for the defragger to stop
409 wake_up(&fs_info->transaction_wait);
413 /* simple helper to fault in pages and copy. This should go away
414 * and be replaced with calls into generic code.
416 static noinline int btrfs_copy_from_user(loff_t pos, int num_pages,
418 struct page **prepared_pages,
422 size_t total_copied = 0;
424 int offset = pos & (PAGE_CACHE_SIZE - 1);
426 while (write_bytes > 0) {
427 size_t count = min_t(size_t,
428 PAGE_CACHE_SIZE - offset, write_bytes);
429 struct page *page = prepared_pages[pg];
431 * Copy data from userspace to the current page
433 * Disable pagefault to avoid recursive lock since
434 * the pages are already locked
437 copied = iov_iter_copy_from_user_atomic(page, i, offset, count);
440 /* Flush processor's dcache for this page */
441 flush_dcache_page(page);
444 * if we get a partial write, we can end up with
445 * partially up to date pages. These add
446 * a lot of complexity, so make sure they don't
447 * happen by forcing this copy to be retried.
449 * The rest of the btrfs_file_write code will fall
450 * back to page at a time copies after we return 0.
452 if (!PageUptodate(page) && copied < count)
455 iov_iter_advance(i, copied);
456 write_bytes -= copied;
457 total_copied += copied;
459 /* Return to btrfs_file_aio_write to fault page */
460 if (unlikely(copied == 0))
463 if (unlikely(copied < PAGE_CACHE_SIZE - offset)) {
474 * unlocks pages after btrfs_file_write is done with them
476 void btrfs_drop_pages(struct page **pages, size_t num_pages)
479 for (i = 0; i < num_pages; i++) {
480 /* page checked is some magic around finding pages that
481 * have been modified without going through btrfs_set_page_dirty
484 ClearPageChecked(pages[i]);
485 unlock_page(pages[i]);
486 mark_page_accessed(pages[i]);
487 page_cache_release(pages[i]);
492 * after copy_from_user, pages need to be dirtied and we need to make
493 * sure holes are created between the current EOF and the start of
494 * any next extents (if required).
496 * this also makes the decision about creating an inline extent vs
497 * doing real data extents, marking pages dirty and delalloc as required.
499 int btrfs_dirty_pages(struct btrfs_root *root, struct inode *inode,
500 struct page **pages, size_t num_pages,
501 loff_t pos, size_t write_bytes,
502 struct extent_state **cached)
508 u64 end_of_last_block;
509 u64 end_pos = pos + write_bytes;
510 loff_t isize = i_size_read(inode);
512 start_pos = pos & ~((u64)root->sectorsize - 1);
513 num_bytes = ALIGN(write_bytes + pos - start_pos, root->sectorsize);
515 end_of_last_block = start_pos + num_bytes - 1;
516 err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
521 for (i = 0; i < num_pages; i++) {
522 struct page *p = pages[i];
529 * we've only changed i_size in ram, and we haven't updated
530 * the disk i_size. There is no need to log the inode
534 i_size_write(inode, end_pos);
539 * this drops all the extents in the cache that intersect the range
540 * [start, end]. Existing extents are split as required.
542 void btrfs_drop_extent_cache(struct inode *inode, u64 start, u64 end,
545 struct extent_map *em;
546 struct extent_map *split = NULL;
547 struct extent_map *split2 = NULL;
548 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
549 u64 len = end - start + 1;
556 WARN_ON(end < start);
557 if (end == (u64)-1) {
565 split = alloc_extent_map();
567 split2 = alloc_extent_map();
568 if (!split || !split2)
571 write_lock(&em_tree->lock);
572 em = lookup_extent_mapping(em_tree, start, len);
574 write_unlock(&em_tree->lock);
578 gen = em->generation;
579 if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) {
580 if (testend && em->start + em->len >= start + len) {
582 write_unlock(&em_tree->lock);
585 start = em->start + em->len;
587 len = start + len - (em->start + em->len);
589 write_unlock(&em_tree->lock);
592 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
593 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
594 clear_bit(EXTENT_FLAG_LOGGING, &flags);
595 remove_extent_mapping(em_tree, em);
599 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
601 split->start = em->start;
602 split->len = start - em->start;
603 split->orig_start = em->orig_start;
604 split->block_start = em->block_start;
607 split->block_len = em->block_len;
609 split->block_len = split->len;
610 split->ram_bytes = em->ram_bytes;
611 split->orig_block_len = max(split->block_len,
613 split->generation = gen;
614 split->bdev = em->bdev;
615 split->flags = flags;
616 split->compress_type = em->compress_type;
617 ret = add_extent_mapping(em_tree, split);
618 BUG_ON(ret); /* Logic error */
619 list_move(&split->list, &em_tree->modified_extents);
620 free_extent_map(split);
624 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
625 testend && em->start + em->len > start + len) {
626 u64 diff = start + len - em->start;
628 split->start = start + len;
629 split->len = em->start + em->len - (start + len);
630 split->bdev = em->bdev;
631 split->flags = flags;
632 split->compress_type = em->compress_type;
633 split->generation = gen;
634 split->orig_block_len = max(em->block_len,
636 split->ram_bytes = em->ram_bytes;
639 split->block_len = em->block_len;
640 split->block_start = em->block_start;
641 split->orig_start = em->orig_start;
643 split->block_len = split->len;
644 split->block_start = em->block_start + diff;
645 split->orig_start = em->orig_start;
648 ret = add_extent_mapping(em_tree, split);
649 BUG_ON(ret); /* Logic error */
650 list_move(&split->list, &em_tree->modified_extents);
651 free_extent_map(split);
655 write_unlock(&em_tree->lock);
659 /* once for the tree*/
663 free_extent_map(split);
665 free_extent_map(split2);
669 * this is very complex, but the basic idea is to drop all extents
670 * in the range start - end. hint_block is filled in with a block number
671 * that would be a good hint to the block allocator for this file.
673 * If an extent intersects the range but is not entirely inside the range
674 * it is either truncated or split. Anything entirely inside the range
675 * is deleted from the tree.
677 int __btrfs_drop_extents(struct btrfs_trans_handle *trans,
678 struct btrfs_root *root, struct inode *inode,
679 struct btrfs_path *path, u64 start, u64 end,
680 u64 *drop_end, int drop_cache)
682 struct extent_buffer *leaf;
683 struct btrfs_file_extent_item *fi;
684 struct btrfs_key key;
685 struct btrfs_key new_key;
686 u64 ino = btrfs_ino(inode);
687 u64 search_start = start;
690 u64 extent_offset = 0;
697 int modify_tree = -1;
698 int update_refs = (root->ref_cows || root == root->fs_info->tree_root);
702 btrfs_drop_extent_cache(inode, start, end - 1, 0);
704 if (start >= BTRFS_I(inode)->disk_i_size)
709 ret = btrfs_lookup_file_extent(trans, root, path, ino,
710 search_start, modify_tree);
713 if (ret > 0 && path->slots[0] > 0 && search_start == start) {
714 leaf = path->nodes[0];
715 btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
716 if (key.objectid == ino &&
717 key.type == BTRFS_EXTENT_DATA_KEY)
722 leaf = path->nodes[0];
723 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
725 ret = btrfs_next_leaf(root, path);
732 leaf = path->nodes[0];
736 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
737 if (key.objectid > ino ||
738 key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= end)
741 fi = btrfs_item_ptr(leaf, path->slots[0],
742 struct btrfs_file_extent_item);
743 extent_type = btrfs_file_extent_type(leaf, fi);
745 if (extent_type == BTRFS_FILE_EXTENT_REG ||
746 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
747 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
748 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
749 extent_offset = btrfs_file_extent_offset(leaf, fi);
750 extent_end = key.offset +
751 btrfs_file_extent_num_bytes(leaf, fi);
752 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
753 extent_end = key.offset +
754 btrfs_file_extent_inline_len(leaf, fi);
757 extent_end = search_start;
760 if (extent_end <= search_start) {
766 search_start = max(key.offset, start);
767 if (recow || !modify_tree) {
769 btrfs_release_path(path);
774 * | - range to drop - |
775 * | -------- extent -------- |
777 if (start > key.offset && end < extent_end) {
779 BUG_ON(extent_type == BTRFS_FILE_EXTENT_INLINE);
781 memcpy(&new_key, &key, sizeof(new_key));
782 new_key.offset = start;
783 ret = btrfs_duplicate_item(trans, root, path,
785 if (ret == -EAGAIN) {
786 btrfs_release_path(path);
792 leaf = path->nodes[0];
793 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
794 struct btrfs_file_extent_item);
795 btrfs_set_file_extent_num_bytes(leaf, fi,
798 fi = btrfs_item_ptr(leaf, path->slots[0],
799 struct btrfs_file_extent_item);
801 extent_offset += start - key.offset;
802 btrfs_set_file_extent_offset(leaf, fi, extent_offset);
803 btrfs_set_file_extent_num_bytes(leaf, fi,
805 btrfs_mark_buffer_dirty(leaf);
807 if (update_refs && disk_bytenr > 0) {
808 ret = btrfs_inc_extent_ref(trans, root,
809 disk_bytenr, num_bytes, 0,
810 root->root_key.objectid,
812 start - extent_offset, 0);
813 BUG_ON(ret); /* -ENOMEM */
818 * | ---- range to drop ----- |
819 * | -------- extent -------- |
821 if (start <= key.offset && end < extent_end) {
822 BUG_ON(extent_type == BTRFS_FILE_EXTENT_INLINE);
824 memcpy(&new_key, &key, sizeof(new_key));
825 new_key.offset = end;
826 btrfs_set_item_key_safe(trans, root, path, &new_key);
828 extent_offset += end - key.offset;
829 btrfs_set_file_extent_offset(leaf, fi, extent_offset);
830 btrfs_set_file_extent_num_bytes(leaf, fi,
832 btrfs_mark_buffer_dirty(leaf);
833 if (update_refs && disk_bytenr > 0)
834 inode_sub_bytes(inode, end - key.offset);
838 search_start = extent_end;
840 * | ---- range to drop ----- |
841 * | -------- extent -------- |
843 if (start > key.offset && end >= extent_end) {
845 BUG_ON(extent_type == BTRFS_FILE_EXTENT_INLINE);
847 btrfs_set_file_extent_num_bytes(leaf, fi,
849 btrfs_mark_buffer_dirty(leaf);
850 if (update_refs && disk_bytenr > 0)
851 inode_sub_bytes(inode, extent_end - start);
852 if (end == extent_end)
860 * | ---- range to drop ----- |
861 * | ------ extent ------ |
863 if (start <= key.offset && end >= extent_end) {
865 del_slot = path->slots[0];
868 BUG_ON(del_slot + del_nr != path->slots[0]);
873 extent_type == BTRFS_FILE_EXTENT_INLINE) {
874 inode_sub_bytes(inode,
875 extent_end - key.offset);
876 extent_end = ALIGN(extent_end,
878 } else if (update_refs && disk_bytenr > 0) {
879 ret = btrfs_free_extent(trans, root,
880 disk_bytenr, num_bytes, 0,
881 root->root_key.objectid,
882 key.objectid, key.offset -
884 BUG_ON(ret); /* -ENOMEM */
885 inode_sub_bytes(inode,
886 extent_end - key.offset);
889 if (end == extent_end)
892 if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
897 ret = btrfs_del_items(trans, root, path, del_slot,
900 btrfs_abort_transaction(trans, root, ret);
907 btrfs_release_path(path);
914 if (!ret && del_nr > 0) {
915 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
917 btrfs_abort_transaction(trans, root, ret);
921 *drop_end = found ? min(end, extent_end) : end;
922 btrfs_release_path(path);
926 int btrfs_drop_extents(struct btrfs_trans_handle *trans,
927 struct btrfs_root *root, struct inode *inode, u64 start,
928 u64 end, int drop_cache)
930 struct btrfs_path *path;
933 path = btrfs_alloc_path();
936 ret = __btrfs_drop_extents(trans, root, inode, path, start, end, NULL,
938 btrfs_free_path(path);
942 static int extent_mergeable(struct extent_buffer *leaf, int slot,
943 u64 objectid, u64 bytenr, u64 orig_offset,
944 u64 *start, u64 *end)
946 struct btrfs_file_extent_item *fi;
947 struct btrfs_key key;
950 if (slot < 0 || slot >= btrfs_header_nritems(leaf))
953 btrfs_item_key_to_cpu(leaf, &key, slot);
954 if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
957 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
958 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
959 btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
960 btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
961 btrfs_file_extent_compression(leaf, fi) ||
962 btrfs_file_extent_encryption(leaf, fi) ||
963 btrfs_file_extent_other_encoding(leaf, fi))
966 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
967 if ((*start && *start != key.offset) || (*end && *end != extent_end))
976 * Mark extent in the range start - end as written.
978 * This changes extent type from 'pre-allocated' to 'regular'. If only
979 * part of extent is marked as written, the extent will be split into
982 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
983 struct inode *inode, u64 start, u64 end)
985 struct btrfs_root *root = BTRFS_I(inode)->root;
986 struct extent_buffer *leaf;
987 struct btrfs_path *path;
988 struct btrfs_file_extent_item *fi;
989 struct btrfs_key key;
990 struct btrfs_key new_key;
1002 u64 ino = btrfs_ino(inode);
1004 path = btrfs_alloc_path();
1011 key.type = BTRFS_EXTENT_DATA_KEY;
1014 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1017 if (ret > 0 && path->slots[0] > 0)
1020 leaf = path->nodes[0];
1021 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1022 BUG_ON(key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY);
1023 fi = btrfs_item_ptr(leaf, path->slots[0],
1024 struct btrfs_file_extent_item);
1025 BUG_ON(btrfs_file_extent_type(leaf, fi) !=
1026 BTRFS_FILE_EXTENT_PREALLOC);
1027 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1028 BUG_ON(key.offset > start || extent_end < end);
1030 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1031 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1032 orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
1033 memcpy(&new_key, &key, sizeof(new_key));
1035 if (start == key.offset && end < extent_end) {
1038 if (extent_mergeable(leaf, path->slots[0] - 1,
1039 ino, bytenr, orig_offset,
1040 &other_start, &other_end)) {
1041 new_key.offset = end;
1042 btrfs_set_item_key_safe(trans, root, path, &new_key);
1043 fi = btrfs_item_ptr(leaf, path->slots[0],
1044 struct btrfs_file_extent_item);
1045 btrfs_set_file_extent_generation(leaf, fi,
1047 btrfs_set_file_extent_num_bytes(leaf, fi,
1049 btrfs_set_file_extent_offset(leaf, fi,
1051 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1052 struct btrfs_file_extent_item);
1053 btrfs_set_file_extent_generation(leaf, fi,
1055 btrfs_set_file_extent_num_bytes(leaf, fi,
1057 btrfs_mark_buffer_dirty(leaf);
1062 if (start > key.offset && end == extent_end) {
1065 if (extent_mergeable(leaf, path->slots[0] + 1,
1066 ino, bytenr, orig_offset,
1067 &other_start, &other_end)) {
1068 fi = btrfs_item_ptr(leaf, path->slots[0],
1069 struct btrfs_file_extent_item);
1070 btrfs_set_file_extent_num_bytes(leaf, fi,
1071 start - key.offset);
1072 btrfs_set_file_extent_generation(leaf, fi,
1075 new_key.offset = start;
1076 btrfs_set_item_key_safe(trans, root, path, &new_key);
1078 fi = btrfs_item_ptr(leaf, path->slots[0],
1079 struct btrfs_file_extent_item);
1080 btrfs_set_file_extent_generation(leaf, fi,
1082 btrfs_set_file_extent_num_bytes(leaf, fi,
1084 btrfs_set_file_extent_offset(leaf, fi,
1085 start - orig_offset);
1086 btrfs_mark_buffer_dirty(leaf);
1091 while (start > key.offset || end < extent_end) {
1092 if (key.offset == start)
1095 new_key.offset = split;
1096 ret = btrfs_duplicate_item(trans, root, path, &new_key);
1097 if (ret == -EAGAIN) {
1098 btrfs_release_path(path);
1102 btrfs_abort_transaction(trans, root, ret);
1106 leaf = path->nodes[0];
1107 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1108 struct btrfs_file_extent_item);
1109 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1110 btrfs_set_file_extent_num_bytes(leaf, fi,
1111 split - key.offset);
1113 fi = btrfs_item_ptr(leaf, path->slots[0],
1114 struct btrfs_file_extent_item);
1116 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1117 btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
1118 btrfs_set_file_extent_num_bytes(leaf, fi,
1119 extent_end - split);
1120 btrfs_mark_buffer_dirty(leaf);
1122 ret = btrfs_inc_extent_ref(trans, root, bytenr, num_bytes, 0,
1123 root->root_key.objectid,
1124 ino, orig_offset, 0);
1125 BUG_ON(ret); /* -ENOMEM */
1127 if (split == start) {
1130 BUG_ON(start != key.offset);
1139 if (extent_mergeable(leaf, path->slots[0] + 1,
1140 ino, bytenr, orig_offset,
1141 &other_start, &other_end)) {
1143 btrfs_release_path(path);
1146 extent_end = other_end;
1147 del_slot = path->slots[0] + 1;
1149 ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1150 0, root->root_key.objectid,
1151 ino, orig_offset, 0);
1152 BUG_ON(ret); /* -ENOMEM */
1156 if (extent_mergeable(leaf, path->slots[0] - 1,
1157 ino, bytenr, orig_offset,
1158 &other_start, &other_end)) {
1160 btrfs_release_path(path);
1163 key.offset = other_start;
1164 del_slot = path->slots[0];
1166 ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1167 0, root->root_key.objectid,
1168 ino, orig_offset, 0);
1169 BUG_ON(ret); /* -ENOMEM */
1172 fi = btrfs_item_ptr(leaf, path->slots[0],
1173 struct btrfs_file_extent_item);
1174 btrfs_set_file_extent_type(leaf, fi,
1175 BTRFS_FILE_EXTENT_REG);
1176 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1177 btrfs_mark_buffer_dirty(leaf);
1179 fi = btrfs_item_ptr(leaf, del_slot - 1,
1180 struct btrfs_file_extent_item);
1181 btrfs_set_file_extent_type(leaf, fi,
1182 BTRFS_FILE_EXTENT_REG);
1183 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1184 btrfs_set_file_extent_num_bytes(leaf, fi,
1185 extent_end - key.offset);
1186 btrfs_mark_buffer_dirty(leaf);
1188 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
1190 btrfs_abort_transaction(trans, root, ret);
1195 btrfs_free_path(path);
1200 * on error we return an unlocked page and the error value
1201 * on success we return a locked page and 0
1203 static int prepare_uptodate_page(struct page *page, u64 pos,
1204 bool force_uptodate)
1208 if (((pos & (PAGE_CACHE_SIZE - 1)) || force_uptodate) &&
1209 !PageUptodate(page)) {
1210 ret = btrfs_readpage(NULL, page);
1214 if (!PageUptodate(page)) {
1223 * this gets pages into the page cache and locks them down, it also properly
1224 * waits for data=ordered extents to finish before allowing the pages to be
1227 static noinline int prepare_pages(struct btrfs_root *root, struct file *file,
1228 struct page **pages, size_t num_pages,
1229 loff_t pos, unsigned long first_index,
1230 size_t write_bytes, bool force_uptodate)
1232 struct extent_state *cached_state = NULL;
1234 unsigned long index = pos >> PAGE_CACHE_SHIFT;
1235 struct inode *inode = file_inode(file);
1236 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1242 start_pos = pos & ~((u64)root->sectorsize - 1);
1243 last_pos = ((u64)index + num_pages) << PAGE_CACHE_SHIFT;
1246 for (i = 0; i < num_pages; i++) {
1247 pages[i] = find_or_create_page(inode->i_mapping, index + i,
1248 mask | __GFP_WRITE);
1256 err = prepare_uptodate_page(pages[i], pos,
1258 if (i == num_pages - 1)
1259 err = prepare_uptodate_page(pages[i],
1260 pos + write_bytes, false);
1262 page_cache_release(pages[i]);
1266 wait_on_page_writeback(pages[i]);
1269 if (start_pos < inode->i_size) {
1270 struct btrfs_ordered_extent *ordered;
1271 lock_extent_bits(&BTRFS_I(inode)->io_tree,
1272 start_pos, last_pos - 1, 0, &cached_state);
1273 ordered = btrfs_lookup_first_ordered_extent(inode,
1276 ordered->file_offset + ordered->len > start_pos &&
1277 ordered->file_offset < last_pos) {
1278 btrfs_put_ordered_extent(ordered);
1279 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1280 start_pos, last_pos - 1,
1281 &cached_state, GFP_NOFS);
1282 for (i = 0; i < num_pages; i++) {
1283 unlock_page(pages[i]);
1284 page_cache_release(pages[i]);
1286 btrfs_wait_ordered_range(inode, start_pos,
1287 last_pos - start_pos);
1291 btrfs_put_ordered_extent(ordered);
1293 clear_extent_bit(&BTRFS_I(inode)->io_tree, start_pos,
1294 last_pos - 1, EXTENT_DIRTY | EXTENT_DELALLOC |
1295 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
1296 0, 0, &cached_state, GFP_NOFS);
1297 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1298 start_pos, last_pos - 1, &cached_state,
1301 for (i = 0; i < num_pages; i++) {
1302 if (clear_page_dirty_for_io(pages[i]))
1303 account_page_redirty(pages[i]);
1304 set_page_extent_mapped(pages[i]);
1305 WARN_ON(!PageLocked(pages[i]));
1309 while (faili >= 0) {
1310 unlock_page(pages[faili]);
1311 page_cache_release(pages[faili]);
1318 static noinline ssize_t __btrfs_buffered_write(struct file *file,
1322 struct inode *inode = file_inode(file);
1323 struct btrfs_root *root = BTRFS_I(inode)->root;
1324 struct page **pages = NULL;
1325 unsigned long first_index;
1326 size_t num_written = 0;
1329 bool force_page_uptodate = false;
1331 nrptrs = min((iov_iter_count(i) + PAGE_CACHE_SIZE - 1) /
1332 PAGE_CACHE_SIZE, PAGE_CACHE_SIZE /
1333 (sizeof(struct page *)));
1334 nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied);
1335 nrptrs = max(nrptrs, 8);
1336 pages = kmalloc(nrptrs * sizeof(struct page *), GFP_KERNEL);
1340 first_index = pos >> PAGE_CACHE_SHIFT;
1342 while (iov_iter_count(i) > 0) {
1343 size_t offset = pos & (PAGE_CACHE_SIZE - 1);
1344 size_t write_bytes = min(iov_iter_count(i),
1345 nrptrs * (size_t)PAGE_CACHE_SIZE -
1347 size_t num_pages = (write_bytes + offset +
1348 PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1352 WARN_ON(num_pages > nrptrs);
1355 * Fault pages before locking them in prepare_pages
1356 * to avoid recursive lock
1358 if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) {
1363 ret = btrfs_delalloc_reserve_space(inode,
1364 num_pages << PAGE_CACHE_SHIFT);
1369 * This is going to setup the pages array with the number of
1370 * pages we want, so we don't really need to worry about the
1371 * contents of pages from loop to loop
1373 ret = prepare_pages(root, file, pages, num_pages,
1374 pos, first_index, write_bytes,
1375 force_page_uptodate);
1377 btrfs_delalloc_release_space(inode,
1378 num_pages << PAGE_CACHE_SHIFT);
1382 copied = btrfs_copy_from_user(pos, num_pages,
1383 write_bytes, pages, i);
1386 * if we have trouble faulting in the pages, fall
1387 * back to one page at a time
1389 if (copied < write_bytes)
1393 force_page_uptodate = true;
1396 force_page_uptodate = false;
1397 dirty_pages = (copied + offset +
1398 PAGE_CACHE_SIZE - 1) >>
1403 * If we had a short copy we need to release the excess delaloc
1404 * bytes we reserved. We need to increment outstanding_extents
1405 * because btrfs_delalloc_release_space will decrement it, but
1406 * we still have an outstanding extent for the chunk we actually
1409 if (num_pages > dirty_pages) {
1411 spin_lock(&BTRFS_I(inode)->lock);
1412 BTRFS_I(inode)->outstanding_extents++;
1413 spin_unlock(&BTRFS_I(inode)->lock);
1415 btrfs_delalloc_release_space(inode,
1416 (num_pages - dirty_pages) <<
1421 ret = btrfs_dirty_pages(root, inode, pages,
1422 dirty_pages, pos, copied,
1425 btrfs_delalloc_release_space(inode,
1426 dirty_pages << PAGE_CACHE_SHIFT);
1427 btrfs_drop_pages(pages, num_pages);
1432 btrfs_drop_pages(pages, num_pages);
1436 balance_dirty_pages_ratelimited(inode->i_mapping);
1437 if (dirty_pages < (root->leafsize >> PAGE_CACHE_SHIFT) + 1)
1438 btrfs_btree_balance_dirty(root);
1441 num_written += copied;
1446 return num_written ? num_written : ret;
1449 static ssize_t __btrfs_direct_write(struct kiocb *iocb,
1450 const struct iovec *iov,
1451 unsigned long nr_segs, loff_t pos,
1452 loff_t *ppos, size_t count, size_t ocount)
1454 struct file *file = iocb->ki_filp;
1457 ssize_t written_buffered;
1461 written = generic_file_direct_write(iocb, iov, &nr_segs, pos, ppos,
1464 if (written < 0 || written == count)
1469 iov_iter_init(&i, iov, nr_segs, count, written);
1470 written_buffered = __btrfs_buffered_write(file, &i, pos);
1471 if (written_buffered < 0) {
1472 err = written_buffered;
1475 endbyte = pos + written_buffered - 1;
1476 err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte);
1479 written += written_buffered;
1480 *ppos = pos + written_buffered;
1481 invalidate_mapping_pages(file->f_mapping, pos >> PAGE_CACHE_SHIFT,
1482 endbyte >> PAGE_CACHE_SHIFT);
1484 return written ? written : err;
1487 static void update_time_for_write(struct inode *inode)
1489 struct timespec now;
1491 if (IS_NOCMTIME(inode))
1494 now = current_fs_time(inode->i_sb);
1495 if (!timespec_equal(&inode->i_mtime, &now))
1496 inode->i_mtime = now;
1498 if (!timespec_equal(&inode->i_ctime, &now))
1499 inode->i_ctime = now;
1501 if (IS_I_VERSION(inode))
1502 inode_inc_iversion(inode);
1505 static ssize_t btrfs_file_aio_write(struct kiocb *iocb,
1506 const struct iovec *iov,
1507 unsigned long nr_segs, loff_t pos)
1509 struct file *file = iocb->ki_filp;
1510 struct inode *inode = file_inode(file);
1511 struct btrfs_root *root = BTRFS_I(inode)->root;
1512 loff_t *ppos = &iocb->ki_pos;
1514 ssize_t num_written = 0;
1516 size_t count, ocount;
1517 bool sync = (file->f_flags & O_DSYNC) || IS_SYNC(file->f_mapping->host);
1519 sb_start_write(inode->i_sb);
1521 mutex_lock(&inode->i_mutex);
1523 err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
1525 mutex_unlock(&inode->i_mutex);
1530 current->backing_dev_info = inode->i_mapping->backing_dev_info;
1531 err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
1533 mutex_unlock(&inode->i_mutex);
1538 mutex_unlock(&inode->i_mutex);
1542 err = file_remove_suid(file);
1544 mutex_unlock(&inode->i_mutex);
1549 * If BTRFS flips readonly due to some impossible error
1550 * (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR),
1551 * although we have opened a file as writable, we have
1552 * to stop this write operation to ensure FS consistency.
1554 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) {
1555 mutex_unlock(&inode->i_mutex);
1561 * We reserve space for updating the inode when we reserve space for the
1562 * extent we are going to write, so we will enospc out there. We don't
1563 * need to start yet another transaction to update the inode as we will
1564 * update the inode when we finish writing whatever data we write.
1566 update_time_for_write(inode);
1568 start_pos = round_down(pos, root->sectorsize);
1569 if (start_pos > i_size_read(inode)) {
1570 err = btrfs_cont_expand(inode, i_size_read(inode), start_pos);
1572 mutex_unlock(&inode->i_mutex);
1578 atomic_inc(&BTRFS_I(inode)->sync_writers);
1580 if (unlikely(file->f_flags & O_DIRECT)) {
1581 num_written = __btrfs_direct_write(iocb, iov, nr_segs,
1582 pos, ppos, count, ocount);
1586 iov_iter_init(&i, iov, nr_segs, count, num_written);
1588 num_written = __btrfs_buffered_write(file, &i, pos);
1589 if (num_written > 0)
1590 *ppos = pos + num_written;
1593 mutex_unlock(&inode->i_mutex);
1596 * we want to make sure fsync finds this change
1597 * but we haven't joined a transaction running right now.
1599 * Later on, someone is sure to update the inode and get the
1600 * real transid recorded.
1602 * We set last_trans now to the fs_info generation + 1,
1603 * this will either be one more than the running transaction
1604 * or the generation used for the next transaction if there isn't
1605 * one running right now.
1607 * We also have to set last_sub_trans to the current log transid,
1608 * otherwise subsequent syncs to a file that's been synced in this
1609 * transaction will appear to have already occured.
1611 BTRFS_I(inode)->last_trans = root->fs_info->generation + 1;
1612 BTRFS_I(inode)->last_sub_trans = root->log_transid;
1613 if (num_written > 0 || num_written == -EIOCBQUEUED) {
1614 err = generic_write_sync(file, pos, num_written);
1615 if (err < 0 && num_written > 0)
1620 atomic_dec(&BTRFS_I(inode)->sync_writers);
1622 sb_end_write(inode->i_sb);
1623 current->backing_dev_info = NULL;
1624 return num_written ? num_written : err;
1627 int btrfs_release_file(struct inode *inode, struct file *filp)
1630 * ordered_data_close is set by settattr when we are about to truncate
1631 * a file from a non-zero size to a zero size. This tries to
1632 * flush down new bytes that may have been written if the
1633 * application were using truncate to replace a file in place.
1635 if (test_and_clear_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
1636 &BTRFS_I(inode)->runtime_flags)) {
1637 struct btrfs_trans_handle *trans;
1638 struct btrfs_root *root = BTRFS_I(inode)->root;
1641 * We need to block on a committing transaction to keep us from
1642 * throwing a ordered operation on to the list and causing
1643 * something like sync to deadlock trying to flush out this
1646 trans = btrfs_start_transaction(root, 0);
1648 return PTR_ERR(trans);
1649 btrfs_add_ordered_operation(trans, BTRFS_I(inode)->root, inode);
1650 btrfs_end_transaction(trans, root);
1651 if (inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
1652 filemap_flush(inode->i_mapping);
1654 if (filp->private_data)
1655 btrfs_ioctl_trans_end(filp);
1660 * fsync call for both files and directories. This logs the inode into
1661 * the tree log instead of forcing full commits whenever possible.
1663 * It needs to call filemap_fdatawait so that all ordered extent updates are
1664 * in the metadata btree are up to date for copying to the log.
1666 * It drops the inode mutex before doing the tree log commit. This is an
1667 * important optimization for directories because holding the mutex prevents
1668 * new operations on the dir while we write to disk.
1670 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
1672 struct dentry *dentry = file->f_path.dentry;
1673 struct inode *inode = dentry->d_inode;
1674 struct btrfs_root *root = BTRFS_I(inode)->root;
1676 struct btrfs_trans_handle *trans;
1679 trace_btrfs_sync_file(file, datasync);
1682 * We write the dirty pages in the range and wait until they complete
1683 * out of the ->i_mutex. If so, we can flush the dirty pages by
1684 * multi-task, and make the performance up. See
1685 * btrfs_wait_ordered_range for an explanation of the ASYNC check.
1687 atomic_inc(&BTRFS_I(inode)->sync_writers);
1688 ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
1689 if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1690 &BTRFS_I(inode)->runtime_flags))
1691 ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
1692 atomic_dec(&BTRFS_I(inode)->sync_writers);
1696 mutex_lock(&inode->i_mutex);
1699 * We flush the dirty pages again to avoid some dirty pages in the
1702 atomic_inc(&root->log_batch);
1703 full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
1704 &BTRFS_I(inode)->runtime_flags);
1706 btrfs_wait_ordered_range(inode, start, end - start + 1);
1707 atomic_inc(&root->log_batch);
1710 * check the transaction that last modified this inode
1711 * and see if its already been committed
1713 if (!BTRFS_I(inode)->last_trans) {
1714 mutex_unlock(&inode->i_mutex);
1719 * if the last transaction that changed this file was before
1720 * the current transaction, we can bail out now without any
1724 if (btrfs_inode_in_log(inode, root->fs_info->generation) ||
1725 BTRFS_I(inode)->last_trans <=
1726 root->fs_info->last_trans_committed) {
1727 BTRFS_I(inode)->last_trans = 0;
1730 * We'v had everything committed since the last time we were
1731 * modified so clear this flag in case it was set for whatever
1732 * reason, it's no longer relevant.
1734 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
1735 &BTRFS_I(inode)->runtime_flags);
1736 mutex_unlock(&inode->i_mutex);
1741 * ok we haven't committed the transaction yet, lets do a commit
1743 if (file->private_data)
1744 btrfs_ioctl_trans_end(file);
1746 trans = btrfs_start_transaction(root, 0);
1747 if (IS_ERR(trans)) {
1748 ret = PTR_ERR(trans);
1749 mutex_unlock(&inode->i_mutex);
1753 ret = btrfs_log_dentry_safe(trans, root, dentry);
1755 mutex_unlock(&inode->i_mutex);
1759 /* we've logged all the items and now have a consistent
1760 * version of the file in the log. It is possible that
1761 * someone will come in and modify the file, but that's
1762 * fine because the log is consistent on disk, and we
1763 * have references to all of the file's extents
1765 * It is possible that someone will come in and log the
1766 * file again, but that will end up using the synchronization
1767 * inside btrfs_sync_log to keep things safe.
1769 mutex_unlock(&inode->i_mutex);
1771 if (ret != BTRFS_NO_LOG_SYNC) {
1774 * If we didn't already wait for ordered extents we need
1778 btrfs_wait_ordered_range(inode, start,
1780 ret = btrfs_commit_transaction(trans, root);
1782 ret = btrfs_sync_log(trans, root);
1784 ret = btrfs_end_transaction(trans, root);
1787 btrfs_wait_ordered_range(inode, start,
1790 ret = btrfs_commit_transaction(trans, root);
1794 ret = btrfs_end_transaction(trans, root);
1797 return ret > 0 ? -EIO : ret;
1800 static const struct vm_operations_struct btrfs_file_vm_ops = {
1801 .fault = filemap_fault,
1802 .page_mkwrite = btrfs_page_mkwrite,
1803 .remap_pages = generic_file_remap_pages,
1806 static int btrfs_file_mmap(struct file *filp, struct vm_area_struct *vma)
1808 struct address_space *mapping = filp->f_mapping;
1810 if (!mapping->a_ops->readpage)
1813 file_accessed(filp);
1814 vma->vm_ops = &btrfs_file_vm_ops;
1819 static int hole_mergeable(struct inode *inode, struct extent_buffer *leaf,
1820 int slot, u64 start, u64 end)
1822 struct btrfs_file_extent_item *fi;
1823 struct btrfs_key key;
1825 if (slot < 0 || slot >= btrfs_header_nritems(leaf))
1828 btrfs_item_key_to_cpu(leaf, &key, slot);
1829 if (key.objectid != btrfs_ino(inode) ||
1830 key.type != BTRFS_EXTENT_DATA_KEY)
1833 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
1835 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
1838 if (btrfs_file_extent_disk_bytenr(leaf, fi))
1841 if (key.offset == end)
1843 if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
1848 static int fill_holes(struct btrfs_trans_handle *trans, struct inode *inode,
1849 struct btrfs_path *path, u64 offset, u64 end)
1851 struct btrfs_root *root = BTRFS_I(inode)->root;
1852 struct extent_buffer *leaf;
1853 struct btrfs_file_extent_item *fi;
1854 struct extent_map *hole_em;
1855 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1856 struct btrfs_key key;
1859 key.objectid = btrfs_ino(inode);
1860 key.type = BTRFS_EXTENT_DATA_KEY;
1861 key.offset = offset;
1864 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1869 leaf = path->nodes[0];
1870 if (hole_mergeable(inode, leaf, path->slots[0]-1, offset, end)) {
1874 fi = btrfs_item_ptr(leaf, path->slots[0],
1875 struct btrfs_file_extent_item);
1876 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
1878 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1879 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
1880 btrfs_set_file_extent_offset(leaf, fi, 0);
1881 btrfs_mark_buffer_dirty(leaf);
1885 if (hole_mergeable(inode, leaf, path->slots[0]+1, offset, end)) {
1889 key.offset = offset;
1890 btrfs_set_item_key_safe(trans, root, path, &key);
1891 fi = btrfs_item_ptr(leaf, path->slots[0],
1892 struct btrfs_file_extent_item);
1893 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
1895 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1896 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
1897 btrfs_set_file_extent_offset(leaf, fi, 0);
1898 btrfs_mark_buffer_dirty(leaf);
1901 btrfs_release_path(path);
1903 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset,
1904 0, 0, end - offset, 0, end - offset,
1910 btrfs_release_path(path);
1912 hole_em = alloc_extent_map();
1914 btrfs_drop_extent_cache(inode, offset, end - 1, 0);
1915 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
1916 &BTRFS_I(inode)->runtime_flags);
1918 hole_em->start = offset;
1919 hole_em->len = end - offset;
1920 hole_em->ram_bytes = hole_em->len;
1921 hole_em->orig_start = offset;
1923 hole_em->block_start = EXTENT_MAP_HOLE;
1924 hole_em->block_len = 0;
1925 hole_em->orig_block_len = 0;
1926 hole_em->bdev = root->fs_info->fs_devices->latest_bdev;
1927 hole_em->compress_type = BTRFS_COMPRESS_NONE;
1928 hole_em->generation = trans->transid;
1931 btrfs_drop_extent_cache(inode, offset, end - 1, 0);
1932 write_lock(&em_tree->lock);
1933 ret = add_extent_mapping(em_tree, hole_em);
1935 list_move(&hole_em->list,
1936 &em_tree->modified_extents);
1937 write_unlock(&em_tree->lock);
1938 } while (ret == -EEXIST);
1939 free_extent_map(hole_em);
1941 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
1942 &BTRFS_I(inode)->runtime_flags);
1948 static int btrfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
1950 struct btrfs_root *root = BTRFS_I(inode)->root;
1951 struct extent_state *cached_state = NULL;
1952 struct btrfs_path *path;
1953 struct btrfs_block_rsv *rsv;
1954 struct btrfs_trans_handle *trans;
1955 u64 lockstart = round_up(offset, BTRFS_I(inode)->root->sectorsize);
1956 u64 lockend = round_down(offset + len,
1957 BTRFS_I(inode)->root->sectorsize) - 1;
1958 u64 cur_offset = lockstart;
1959 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
1963 bool same_page = ((offset >> PAGE_CACHE_SHIFT) ==
1964 ((offset + len - 1) >> PAGE_CACHE_SHIFT));
1966 btrfs_wait_ordered_range(inode, offset, len);
1968 mutex_lock(&inode->i_mutex);
1970 * We needn't truncate any page which is beyond the end of the file
1971 * because we are sure there is no data there.
1974 * Only do this if we are in the same page and we aren't doing the
1977 if (same_page && len < PAGE_CACHE_SIZE) {
1978 if (offset < round_up(inode->i_size, PAGE_CACHE_SIZE))
1979 ret = btrfs_truncate_page(inode, offset, len, 0);
1980 mutex_unlock(&inode->i_mutex);
1984 /* zero back part of the first page */
1985 if (offset < round_up(inode->i_size, PAGE_CACHE_SIZE)) {
1986 ret = btrfs_truncate_page(inode, offset, 0, 0);
1988 mutex_unlock(&inode->i_mutex);
1993 /* zero the front end of the last page */
1994 if (offset + len < round_up(inode->i_size, PAGE_CACHE_SIZE)) {
1995 ret = btrfs_truncate_page(inode, offset + len, 0, 1);
1997 mutex_unlock(&inode->i_mutex);
2002 if (lockend < lockstart) {
2003 mutex_unlock(&inode->i_mutex);
2008 struct btrfs_ordered_extent *ordered;
2010 truncate_pagecache_range(inode, lockstart, lockend);
2012 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2014 ordered = btrfs_lookup_first_ordered_extent(inode, lockend);
2017 * We need to make sure we have no ordered extents in this range
2018 * and nobody raced in and read a page in this range, if we did
2019 * we need to try again.
2022 (ordered->file_offset + ordered->len < lockstart ||
2023 ordered->file_offset > lockend)) &&
2024 !test_range_bit(&BTRFS_I(inode)->io_tree, lockstart,
2025 lockend, EXTENT_UPTODATE, 0,
2028 btrfs_put_ordered_extent(ordered);
2032 btrfs_put_ordered_extent(ordered);
2033 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
2034 lockend, &cached_state, GFP_NOFS);
2035 btrfs_wait_ordered_range(inode, lockstart,
2036 lockend - lockstart + 1);
2039 path = btrfs_alloc_path();
2045 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
2050 rsv->size = btrfs_calc_trunc_metadata_size(root, 1);
2054 * 1 - update the inode
2055 * 1 - removing the extents in the range
2056 * 1 - adding the hole extent
2058 trans = btrfs_start_transaction(root, 3);
2059 if (IS_ERR(trans)) {
2060 err = PTR_ERR(trans);
2064 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
2067 trans->block_rsv = rsv;
2069 while (cur_offset < lockend) {
2070 ret = __btrfs_drop_extents(trans, root, inode, path,
2071 cur_offset, lockend + 1,
2076 trans->block_rsv = &root->fs_info->trans_block_rsv;
2078 ret = fill_holes(trans, inode, path, cur_offset, drop_end);
2084 cur_offset = drop_end;
2086 ret = btrfs_update_inode(trans, root, inode);
2092 btrfs_end_transaction(trans, root);
2093 btrfs_btree_balance_dirty(root);
2095 trans = btrfs_start_transaction(root, 3);
2096 if (IS_ERR(trans)) {
2097 ret = PTR_ERR(trans);
2102 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv,
2104 BUG_ON(ret); /* shouldn't happen */
2105 trans->block_rsv = rsv;
2113 trans->block_rsv = &root->fs_info->trans_block_rsv;
2114 ret = fill_holes(trans, inode, path, cur_offset, drop_end);
2124 inode_inc_iversion(inode);
2125 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
2127 trans->block_rsv = &root->fs_info->trans_block_rsv;
2128 ret = btrfs_update_inode(trans, root, inode);
2129 btrfs_end_transaction(trans, root);
2130 btrfs_btree_balance_dirty(root);
2132 btrfs_free_path(path);
2133 btrfs_free_block_rsv(root, rsv);
2135 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2136 &cached_state, GFP_NOFS);
2137 mutex_unlock(&inode->i_mutex);
2143 static long btrfs_fallocate(struct file *file, int mode,
2144 loff_t offset, loff_t len)
2146 struct inode *inode = file_inode(file);
2147 struct extent_state *cached_state = NULL;
2148 struct btrfs_root *root = BTRFS_I(inode)->root;
2155 struct extent_map *em;
2156 int blocksize = BTRFS_I(inode)->root->sectorsize;
2159 alloc_start = round_down(offset, blocksize);
2160 alloc_end = round_up(offset + len, blocksize);
2162 /* Make sure we aren't being give some crap mode */
2163 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2166 if (mode & FALLOC_FL_PUNCH_HOLE)
2167 return btrfs_punch_hole(inode, offset, len);
2170 * Make sure we have enough space before we do the
2173 ret = btrfs_check_data_free_space(inode, alloc_end - alloc_start);
2176 if (root->fs_info->quota_enabled) {
2177 ret = btrfs_qgroup_reserve(root, alloc_end - alloc_start);
2179 goto out_reserve_fail;
2183 * wait for ordered IO before we have any locks. We'll loop again
2184 * below with the locks held.
2186 btrfs_wait_ordered_range(inode, alloc_start, alloc_end - alloc_start);
2188 mutex_lock(&inode->i_mutex);
2189 ret = inode_newsize_ok(inode, alloc_end);
2193 if (alloc_start > inode->i_size) {
2194 ret = btrfs_cont_expand(inode, i_size_read(inode),
2200 locked_end = alloc_end - 1;
2202 struct btrfs_ordered_extent *ordered;
2204 /* the extent lock is ordered inside the running
2207 lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start,
2208 locked_end, 0, &cached_state);
2209 ordered = btrfs_lookup_first_ordered_extent(inode,
2212 ordered->file_offset + ordered->len > alloc_start &&
2213 ordered->file_offset < alloc_end) {
2214 btrfs_put_ordered_extent(ordered);
2215 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
2216 alloc_start, locked_end,
2217 &cached_state, GFP_NOFS);
2219 * we can't wait on the range with the transaction
2220 * running or with the extent lock held
2222 btrfs_wait_ordered_range(inode, alloc_start,
2223 alloc_end - alloc_start);
2226 btrfs_put_ordered_extent(ordered);
2231 cur_offset = alloc_start;
2235 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
2236 alloc_end - cur_offset, 0);
2237 if (IS_ERR_OR_NULL(em)) {
2244 last_byte = min(extent_map_end(em), alloc_end);
2245 actual_end = min_t(u64, extent_map_end(em), offset + len);
2246 last_byte = ALIGN(last_byte, blocksize);
2248 if (em->block_start == EXTENT_MAP_HOLE ||
2249 (cur_offset >= inode->i_size &&
2250 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
2251 ret = btrfs_prealloc_file_range(inode, mode, cur_offset,
2252 last_byte - cur_offset,
2253 1 << inode->i_blkbits,
2258 free_extent_map(em);
2261 } else if (actual_end > inode->i_size &&
2262 !(mode & FALLOC_FL_KEEP_SIZE)) {
2264 * We didn't need to allocate any more space, but we
2265 * still extended the size of the file so we need to
2268 inode->i_ctime = CURRENT_TIME;
2269 i_size_write(inode, actual_end);
2270 btrfs_ordered_update_i_size(inode, actual_end, NULL);
2272 free_extent_map(em);
2274 cur_offset = last_byte;
2275 if (cur_offset >= alloc_end) {
2280 unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
2281 &cached_state, GFP_NOFS);
2283 mutex_unlock(&inode->i_mutex);
2284 if (root->fs_info->quota_enabled)
2285 btrfs_qgroup_free(root, alloc_end - alloc_start);
2287 /* Let go of our reservation. */
2288 btrfs_free_reserved_data_space(inode, alloc_end - alloc_start);
2292 static int find_desired_extent(struct inode *inode, loff_t *offset, int whence)
2294 struct btrfs_root *root = BTRFS_I(inode)->root;
2295 struct extent_map *em;
2296 struct extent_state *cached_state = NULL;
2297 u64 lockstart = *offset;
2298 u64 lockend = i_size_read(inode);
2299 u64 start = *offset;
2300 u64 orig_start = *offset;
2301 u64 len = i_size_read(inode);
2305 lockend = max_t(u64, root->sectorsize, lockend);
2306 if (lockend <= lockstart)
2307 lockend = lockstart + root->sectorsize;
2310 len = lockend - lockstart + 1;
2312 len = max_t(u64, len, root->sectorsize);
2313 if (inode->i_size == 0)
2316 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 0,
2320 * Delalloc is such a pain. If we have a hole and we have pending
2321 * delalloc for a portion of the hole we will get back a hole that
2322 * exists for the entire range since it hasn't been actually written
2323 * yet. So to take care of this case we need to look for an extent just
2324 * before the position we want in case there is outstanding delalloc
2327 if (whence == SEEK_HOLE && start != 0) {
2328 if (start <= root->sectorsize)
2329 em = btrfs_get_extent_fiemap(inode, NULL, 0, 0,
2330 root->sectorsize, 0);
2332 em = btrfs_get_extent_fiemap(inode, NULL, 0,
2333 start - root->sectorsize,
2334 root->sectorsize, 0);
2339 last_end = em->start + em->len;
2340 if (em->block_start == EXTENT_MAP_DELALLOC)
2341 last_end = min_t(u64, last_end, inode->i_size);
2342 free_extent_map(em);
2346 em = btrfs_get_extent_fiemap(inode, NULL, 0, start, len, 0);
2352 if (em->block_start == EXTENT_MAP_HOLE) {
2353 if (test_bit(EXTENT_FLAG_VACANCY, &em->flags)) {
2354 if (last_end <= orig_start) {
2355 free_extent_map(em);
2361 if (whence == SEEK_HOLE) {
2363 free_extent_map(em);
2367 if (whence == SEEK_DATA) {
2368 if (em->block_start == EXTENT_MAP_DELALLOC) {
2369 if (start >= inode->i_size) {
2370 free_extent_map(em);
2376 if (!test_bit(EXTENT_FLAG_PREALLOC,
2379 free_extent_map(em);
2385 start = em->start + em->len;
2386 last_end = em->start + em->len;
2388 if (em->block_start == EXTENT_MAP_DELALLOC)
2389 last_end = min_t(u64, last_end, inode->i_size);
2391 if (test_bit(EXTENT_FLAG_VACANCY, &em->flags)) {
2392 free_extent_map(em);
2396 free_extent_map(em);
2400 *offset = min(*offset, inode->i_size);
2402 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2403 &cached_state, GFP_NOFS);
2407 static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence)
2409 struct inode *inode = file->f_mapping->host;
2412 mutex_lock(&inode->i_mutex);
2416 offset = generic_file_llseek(file, offset, whence);
2420 if (offset >= i_size_read(inode)) {
2421 mutex_unlock(&inode->i_mutex);
2425 ret = find_desired_extent(inode, &offset, whence);
2427 mutex_unlock(&inode->i_mutex);
2432 if (offset < 0 && !(file->f_mode & FMODE_UNSIGNED_OFFSET)) {
2436 if (offset > inode->i_sb->s_maxbytes) {
2441 /* Special lock needed here? */
2442 if (offset != file->f_pos) {
2443 file->f_pos = offset;
2444 file->f_version = 0;
2447 mutex_unlock(&inode->i_mutex);
2451 const struct file_operations btrfs_file_operations = {
2452 .llseek = btrfs_file_llseek,
2453 .read = do_sync_read,
2454 .write = do_sync_write,
2455 .aio_read = generic_file_aio_read,
2456 .splice_read = generic_file_splice_read,
2457 .aio_write = btrfs_file_aio_write,
2458 .mmap = btrfs_file_mmap,
2459 .open = generic_file_open,
2460 .release = btrfs_release_file,
2461 .fsync = btrfs_sync_file,
2462 .fallocate = btrfs_fallocate,
2463 .unlocked_ioctl = btrfs_ioctl,
2464 #ifdef CONFIG_COMPAT
2465 .compat_ioctl = btrfs_ioctl,
2469 void btrfs_auto_defrag_exit(void)
2471 if (btrfs_inode_defrag_cachep)
2472 kmem_cache_destroy(btrfs_inode_defrag_cachep);
2475 int btrfs_auto_defrag_init(void)
2477 btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag",
2478 sizeof(struct inode_defrag), 0,
2479 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
2481 if (!btrfs_inode_defrag_cachep)