]> git.karo-electronics.de Git - karo-tx-linux.git/blob - fs/btrfs/free-space-cache.c
Merge branches 'fixes', 'misc', 'mmci', 'unstable/dma-for-next' and 'sa11x0' into...
[karo-tx-linux.git] / fs / btrfs / free-space-cache.c
1 /*
2  * Copyright (C) 2008 Red Hat.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/pagemap.h>
20 #include <linux/sched.h>
21 #include <linux/slab.h>
22 #include <linux/math64.h>
23 #include <linux/ratelimit.h>
24 #include "ctree.h"
25 #include "free-space-cache.h"
26 #include "transaction.h"
27 #include "disk-io.h"
28 #include "extent_io.h"
29 #include "inode-map.h"
30
31 #define BITS_PER_BITMAP         (PAGE_CACHE_SIZE * 8)
32 #define MAX_CACHE_BYTES_PER_GIG (32 * 1024)
33
34 static int link_free_space(struct btrfs_free_space_ctl *ctl,
35                            struct btrfs_free_space *info);
36 static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
37                               struct btrfs_free_space *info);
38
39 static struct inode *__lookup_free_space_inode(struct btrfs_root *root,
40                                                struct btrfs_path *path,
41                                                u64 offset)
42 {
43         struct btrfs_key key;
44         struct btrfs_key location;
45         struct btrfs_disk_key disk_key;
46         struct btrfs_free_space_header *header;
47         struct extent_buffer *leaf;
48         struct inode *inode = NULL;
49         int ret;
50
51         key.objectid = BTRFS_FREE_SPACE_OBJECTID;
52         key.offset = offset;
53         key.type = 0;
54
55         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
56         if (ret < 0)
57                 return ERR_PTR(ret);
58         if (ret > 0) {
59                 btrfs_release_path(path);
60                 return ERR_PTR(-ENOENT);
61         }
62
63         leaf = path->nodes[0];
64         header = btrfs_item_ptr(leaf, path->slots[0],
65                                 struct btrfs_free_space_header);
66         btrfs_free_space_key(leaf, header, &disk_key);
67         btrfs_disk_key_to_cpu(&location, &disk_key);
68         btrfs_release_path(path);
69
70         inode = btrfs_iget(root->fs_info->sb, &location, root, NULL);
71         if (!inode)
72                 return ERR_PTR(-ENOENT);
73         if (IS_ERR(inode))
74                 return inode;
75         if (is_bad_inode(inode)) {
76                 iput(inode);
77                 return ERR_PTR(-ENOENT);
78         }
79
80         mapping_set_gfp_mask(inode->i_mapping,
81                         mapping_gfp_mask(inode->i_mapping) & ~__GFP_FS);
82
83         return inode;
84 }
85
86 struct inode *lookup_free_space_inode(struct btrfs_root *root,
87                                       struct btrfs_block_group_cache
88                                       *block_group, struct btrfs_path *path)
89 {
90         struct inode *inode = NULL;
91         u32 flags = BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
92
93         spin_lock(&block_group->lock);
94         if (block_group->inode)
95                 inode = igrab(block_group->inode);
96         spin_unlock(&block_group->lock);
97         if (inode)
98                 return inode;
99
100         inode = __lookup_free_space_inode(root, path,
101                                           block_group->key.objectid);
102         if (IS_ERR(inode))
103                 return inode;
104
105         spin_lock(&block_group->lock);
106         if (!((BTRFS_I(inode)->flags & flags) == flags)) {
107                 btrfs_info(root->fs_info,
108                         "Old style space inode found, converting.");
109                 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM |
110                         BTRFS_INODE_NODATACOW;
111                 block_group->disk_cache_state = BTRFS_DC_CLEAR;
112         }
113
114         if (!block_group->iref) {
115                 block_group->inode = igrab(inode);
116                 block_group->iref = 1;
117         }
118         spin_unlock(&block_group->lock);
119
120         return inode;
121 }
122
123 static int __create_free_space_inode(struct btrfs_root *root,
124                                      struct btrfs_trans_handle *trans,
125                                      struct btrfs_path *path,
126                                      u64 ino, u64 offset)
127 {
128         struct btrfs_key key;
129         struct btrfs_disk_key disk_key;
130         struct btrfs_free_space_header *header;
131         struct btrfs_inode_item *inode_item;
132         struct extent_buffer *leaf;
133         u64 flags = BTRFS_INODE_NOCOMPRESS | BTRFS_INODE_PREALLOC;
134         int ret;
135
136         ret = btrfs_insert_empty_inode(trans, root, path, ino);
137         if (ret)
138                 return ret;
139
140         /* We inline crc's for the free disk space cache */
141         if (ino != BTRFS_FREE_INO_OBJECTID)
142                 flags |= BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
143
144         leaf = path->nodes[0];
145         inode_item = btrfs_item_ptr(leaf, path->slots[0],
146                                     struct btrfs_inode_item);
147         btrfs_item_key(leaf, &disk_key, path->slots[0]);
148         memset_extent_buffer(leaf, 0, (unsigned long)inode_item,
149                              sizeof(*inode_item));
150         btrfs_set_inode_generation(leaf, inode_item, trans->transid);
151         btrfs_set_inode_size(leaf, inode_item, 0);
152         btrfs_set_inode_nbytes(leaf, inode_item, 0);
153         btrfs_set_inode_uid(leaf, inode_item, 0);
154         btrfs_set_inode_gid(leaf, inode_item, 0);
155         btrfs_set_inode_mode(leaf, inode_item, S_IFREG | 0600);
156         btrfs_set_inode_flags(leaf, inode_item, flags);
157         btrfs_set_inode_nlink(leaf, inode_item, 1);
158         btrfs_set_inode_transid(leaf, inode_item, trans->transid);
159         btrfs_set_inode_block_group(leaf, inode_item, offset);
160         btrfs_mark_buffer_dirty(leaf);
161         btrfs_release_path(path);
162
163         key.objectid = BTRFS_FREE_SPACE_OBJECTID;
164         key.offset = offset;
165         key.type = 0;
166
167         ret = btrfs_insert_empty_item(trans, root, path, &key,
168                                       sizeof(struct btrfs_free_space_header));
169         if (ret < 0) {
170                 btrfs_release_path(path);
171                 return ret;
172         }
173         leaf = path->nodes[0];
174         header = btrfs_item_ptr(leaf, path->slots[0],
175                                 struct btrfs_free_space_header);
176         memset_extent_buffer(leaf, 0, (unsigned long)header, sizeof(*header));
177         btrfs_set_free_space_key(leaf, header, &disk_key);
178         btrfs_mark_buffer_dirty(leaf);
179         btrfs_release_path(path);
180
181         return 0;
182 }
183
184 int create_free_space_inode(struct btrfs_root *root,
185                             struct btrfs_trans_handle *trans,
186                             struct btrfs_block_group_cache *block_group,
187                             struct btrfs_path *path)
188 {
189         int ret;
190         u64 ino;
191
192         ret = btrfs_find_free_objectid(root, &ino);
193         if (ret < 0)
194                 return ret;
195
196         return __create_free_space_inode(root, trans, path, ino,
197                                          block_group->key.objectid);
198 }
199
200 int btrfs_check_trunc_cache_free_space(struct btrfs_root *root,
201                                        struct btrfs_block_rsv *rsv)
202 {
203         u64 needed_bytes;
204         int ret;
205
206         /* 1 for slack space, 1 for updating the inode */
207         needed_bytes = btrfs_calc_trunc_metadata_size(root, 1) +
208                 btrfs_calc_trans_metadata_size(root, 1);
209
210         spin_lock(&rsv->lock);
211         if (rsv->reserved < needed_bytes)
212                 ret = -ENOSPC;
213         else
214                 ret = 0;
215         spin_unlock(&rsv->lock);
216         return ret;
217 }
218
219 int btrfs_truncate_free_space_cache(struct btrfs_root *root,
220                                     struct btrfs_trans_handle *trans,
221                                     struct btrfs_path *path,
222                                     struct inode *inode)
223 {
224         int ret = 0;
225
226         btrfs_i_size_write(inode, 0);
227         truncate_pagecache(inode, 0);
228
229         /*
230          * We don't need an orphan item because truncating the free space cache
231          * will never be split across transactions.
232          */
233         ret = btrfs_truncate_inode_items(trans, root, inode,
234                                          0, BTRFS_EXTENT_DATA_KEY);
235         if (ret) {
236                 btrfs_abort_transaction(trans, root, ret);
237                 return ret;
238         }
239
240         ret = btrfs_update_inode(trans, root, inode);
241         if (ret)
242                 btrfs_abort_transaction(trans, root, ret);
243
244         return ret;
245 }
246
247 static int readahead_cache(struct inode *inode)
248 {
249         struct file_ra_state *ra;
250         unsigned long last_index;
251
252         ra = kzalloc(sizeof(*ra), GFP_NOFS);
253         if (!ra)
254                 return -ENOMEM;
255
256         file_ra_state_init(ra, inode->i_mapping);
257         last_index = (i_size_read(inode) - 1) >> PAGE_CACHE_SHIFT;
258
259         page_cache_sync_readahead(inode->i_mapping, ra, NULL, 0, last_index);
260
261         kfree(ra);
262
263         return 0;
264 }
265
266 struct io_ctl {
267         void *cur, *orig;
268         struct page *page;
269         struct page **pages;
270         struct btrfs_root *root;
271         unsigned long size;
272         int index;
273         int num_pages;
274         unsigned check_crcs:1;
275 };
276
277 static int io_ctl_init(struct io_ctl *io_ctl, struct inode *inode,
278                        struct btrfs_root *root)
279 {
280         memset(io_ctl, 0, sizeof(struct io_ctl));
281         io_ctl->num_pages = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >>
282                 PAGE_CACHE_SHIFT;
283         io_ctl->pages = kzalloc(sizeof(struct page *) * io_ctl->num_pages,
284                                 GFP_NOFS);
285         if (!io_ctl->pages)
286                 return -ENOMEM;
287         io_ctl->root = root;
288         if (btrfs_ino(inode) != BTRFS_FREE_INO_OBJECTID)
289                 io_ctl->check_crcs = 1;
290         return 0;
291 }
292
293 static void io_ctl_free(struct io_ctl *io_ctl)
294 {
295         kfree(io_ctl->pages);
296 }
297
298 static void io_ctl_unmap_page(struct io_ctl *io_ctl)
299 {
300         if (io_ctl->cur) {
301                 kunmap(io_ctl->page);
302                 io_ctl->cur = NULL;
303                 io_ctl->orig = NULL;
304         }
305 }
306
307 static void io_ctl_map_page(struct io_ctl *io_ctl, int clear)
308 {
309         ASSERT(io_ctl->index < io_ctl->num_pages);
310         io_ctl->page = io_ctl->pages[io_ctl->index++];
311         io_ctl->cur = kmap(io_ctl->page);
312         io_ctl->orig = io_ctl->cur;
313         io_ctl->size = PAGE_CACHE_SIZE;
314         if (clear)
315                 memset(io_ctl->cur, 0, PAGE_CACHE_SIZE);
316 }
317
318 static void io_ctl_drop_pages(struct io_ctl *io_ctl)
319 {
320         int i;
321
322         io_ctl_unmap_page(io_ctl);
323
324         for (i = 0; i < io_ctl->num_pages; i++) {
325                 if (io_ctl->pages[i]) {
326                         ClearPageChecked(io_ctl->pages[i]);
327                         unlock_page(io_ctl->pages[i]);
328                         page_cache_release(io_ctl->pages[i]);
329                 }
330         }
331 }
332
333 static int io_ctl_prepare_pages(struct io_ctl *io_ctl, struct inode *inode,
334                                 int uptodate)
335 {
336         struct page *page;
337         gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
338         int i;
339
340         for (i = 0; i < io_ctl->num_pages; i++) {
341                 page = find_or_create_page(inode->i_mapping, i, mask);
342                 if (!page) {
343                         io_ctl_drop_pages(io_ctl);
344                         return -ENOMEM;
345                 }
346                 io_ctl->pages[i] = page;
347                 if (uptodate && !PageUptodate(page)) {
348                         btrfs_readpage(NULL, page);
349                         lock_page(page);
350                         if (!PageUptodate(page)) {
351                                 printk(KERN_ERR "btrfs: error reading free "
352                                        "space cache\n");
353                                 io_ctl_drop_pages(io_ctl);
354                                 return -EIO;
355                         }
356                 }
357         }
358
359         for (i = 0; i < io_ctl->num_pages; i++) {
360                 clear_page_dirty_for_io(io_ctl->pages[i]);
361                 set_page_extent_mapped(io_ctl->pages[i]);
362         }
363
364         return 0;
365 }
366
367 static void io_ctl_set_generation(struct io_ctl *io_ctl, u64 generation)
368 {
369         __le64 *val;
370
371         io_ctl_map_page(io_ctl, 1);
372
373         /*
374          * Skip the csum areas.  If we don't check crcs then we just have a
375          * 64bit chunk at the front of the first page.
376          */
377         if (io_ctl->check_crcs) {
378                 io_ctl->cur += (sizeof(u32) * io_ctl->num_pages);
379                 io_ctl->size -= sizeof(u64) + (sizeof(u32) * io_ctl->num_pages);
380         } else {
381                 io_ctl->cur += sizeof(u64);
382                 io_ctl->size -= sizeof(u64) * 2;
383         }
384
385         val = io_ctl->cur;
386         *val = cpu_to_le64(generation);
387         io_ctl->cur += sizeof(u64);
388 }
389
390 static int io_ctl_check_generation(struct io_ctl *io_ctl, u64 generation)
391 {
392         __le64 *gen;
393
394         /*
395          * Skip the crc area.  If we don't check crcs then we just have a 64bit
396          * chunk at the front of the first page.
397          */
398         if (io_ctl->check_crcs) {
399                 io_ctl->cur += sizeof(u32) * io_ctl->num_pages;
400                 io_ctl->size -= sizeof(u64) +
401                         (sizeof(u32) * io_ctl->num_pages);
402         } else {
403                 io_ctl->cur += sizeof(u64);
404                 io_ctl->size -= sizeof(u64) * 2;
405         }
406
407         gen = io_ctl->cur;
408         if (le64_to_cpu(*gen) != generation) {
409                 printk_ratelimited(KERN_ERR "btrfs: space cache generation "
410                                    "(%Lu) does not match inode (%Lu)\n", *gen,
411                                    generation);
412                 io_ctl_unmap_page(io_ctl);
413                 return -EIO;
414         }
415         io_ctl->cur += sizeof(u64);
416         return 0;
417 }
418
419 static void io_ctl_set_crc(struct io_ctl *io_ctl, int index)
420 {
421         u32 *tmp;
422         u32 crc = ~(u32)0;
423         unsigned offset = 0;
424
425         if (!io_ctl->check_crcs) {
426                 io_ctl_unmap_page(io_ctl);
427                 return;
428         }
429
430         if (index == 0)
431                 offset = sizeof(u32) * io_ctl->num_pages;
432
433         crc = btrfs_csum_data(io_ctl->orig + offset, crc,
434                               PAGE_CACHE_SIZE - offset);
435         btrfs_csum_final(crc, (char *)&crc);
436         io_ctl_unmap_page(io_ctl);
437         tmp = kmap(io_ctl->pages[0]);
438         tmp += index;
439         *tmp = crc;
440         kunmap(io_ctl->pages[0]);
441 }
442
443 static int io_ctl_check_crc(struct io_ctl *io_ctl, int index)
444 {
445         u32 *tmp, val;
446         u32 crc = ~(u32)0;
447         unsigned offset = 0;
448
449         if (!io_ctl->check_crcs) {
450                 io_ctl_map_page(io_ctl, 0);
451                 return 0;
452         }
453
454         if (index == 0)
455                 offset = sizeof(u32) * io_ctl->num_pages;
456
457         tmp = kmap(io_ctl->pages[0]);
458         tmp += index;
459         val = *tmp;
460         kunmap(io_ctl->pages[0]);
461
462         io_ctl_map_page(io_ctl, 0);
463         crc = btrfs_csum_data(io_ctl->orig + offset, crc,
464                               PAGE_CACHE_SIZE - offset);
465         btrfs_csum_final(crc, (char *)&crc);
466         if (val != crc) {
467                 printk_ratelimited(KERN_ERR "btrfs: csum mismatch on free "
468                                    "space cache\n");
469                 io_ctl_unmap_page(io_ctl);
470                 return -EIO;
471         }
472
473         return 0;
474 }
475
476 static int io_ctl_add_entry(struct io_ctl *io_ctl, u64 offset, u64 bytes,
477                             void *bitmap)
478 {
479         struct btrfs_free_space_entry *entry;
480
481         if (!io_ctl->cur)
482                 return -ENOSPC;
483
484         entry = io_ctl->cur;
485         entry->offset = cpu_to_le64(offset);
486         entry->bytes = cpu_to_le64(bytes);
487         entry->type = (bitmap) ? BTRFS_FREE_SPACE_BITMAP :
488                 BTRFS_FREE_SPACE_EXTENT;
489         io_ctl->cur += sizeof(struct btrfs_free_space_entry);
490         io_ctl->size -= sizeof(struct btrfs_free_space_entry);
491
492         if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
493                 return 0;
494
495         io_ctl_set_crc(io_ctl, io_ctl->index - 1);
496
497         /* No more pages to map */
498         if (io_ctl->index >= io_ctl->num_pages)
499                 return 0;
500
501         /* map the next page */
502         io_ctl_map_page(io_ctl, 1);
503         return 0;
504 }
505
506 static int io_ctl_add_bitmap(struct io_ctl *io_ctl, void *bitmap)
507 {
508         if (!io_ctl->cur)
509                 return -ENOSPC;
510
511         /*
512          * If we aren't at the start of the current page, unmap this one and
513          * map the next one if there is any left.
514          */
515         if (io_ctl->cur != io_ctl->orig) {
516                 io_ctl_set_crc(io_ctl, io_ctl->index - 1);
517                 if (io_ctl->index >= io_ctl->num_pages)
518                         return -ENOSPC;
519                 io_ctl_map_page(io_ctl, 0);
520         }
521
522         memcpy(io_ctl->cur, bitmap, PAGE_CACHE_SIZE);
523         io_ctl_set_crc(io_ctl, io_ctl->index - 1);
524         if (io_ctl->index < io_ctl->num_pages)
525                 io_ctl_map_page(io_ctl, 0);
526         return 0;
527 }
528
529 static void io_ctl_zero_remaining_pages(struct io_ctl *io_ctl)
530 {
531         /*
532          * If we're not on the boundary we know we've modified the page and we
533          * need to crc the page.
534          */
535         if (io_ctl->cur != io_ctl->orig)
536                 io_ctl_set_crc(io_ctl, io_ctl->index - 1);
537         else
538                 io_ctl_unmap_page(io_ctl);
539
540         while (io_ctl->index < io_ctl->num_pages) {
541                 io_ctl_map_page(io_ctl, 1);
542                 io_ctl_set_crc(io_ctl, io_ctl->index - 1);
543         }
544 }
545
546 static int io_ctl_read_entry(struct io_ctl *io_ctl,
547                             struct btrfs_free_space *entry, u8 *type)
548 {
549         struct btrfs_free_space_entry *e;
550         int ret;
551
552         if (!io_ctl->cur) {
553                 ret = io_ctl_check_crc(io_ctl, io_ctl->index);
554                 if (ret)
555                         return ret;
556         }
557
558         e = io_ctl->cur;
559         entry->offset = le64_to_cpu(e->offset);
560         entry->bytes = le64_to_cpu(e->bytes);
561         *type = e->type;
562         io_ctl->cur += sizeof(struct btrfs_free_space_entry);
563         io_ctl->size -= sizeof(struct btrfs_free_space_entry);
564
565         if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
566                 return 0;
567
568         io_ctl_unmap_page(io_ctl);
569
570         return 0;
571 }
572
573 static int io_ctl_read_bitmap(struct io_ctl *io_ctl,
574                               struct btrfs_free_space *entry)
575 {
576         int ret;
577
578         ret = io_ctl_check_crc(io_ctl, io_ctl->index);
579         if (ret)
580                 return ret;
581
582         memcpy(entry->bitmap, io_ctl->cur, PAGE_CACHE_SIZE);
583         io_ctl_unmap_page(io_ctl);
584
585         return 0;
586 }
587
588 /*
589  * Since we attach pinned extents after the fact we can have contiguous sections
590  * of free space that are split up in entries.  This poses a problem with the
591  * tree logging stuff since it could have allocated across what appears to be 2
592  * entries since we would have merged the entries when adding the pinned extents
593  * back to the free space cache.  So run through the space cache that we just
594  * loaded and merge contiguous entries.  This will make the log replay stuff not
595  * blow up and it will make for nicer allocator behavior.
596  */
597 static void merge_space_tree(struct btrfs_free_space_ctl *ctl)
598 {
599         struct btrfs_free_space *e, *prev = NULL;
600         struct rb_node *n;
601
602 again:
603         spin_lock(&ctl->tree_lock);
604         for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
605                 e = rb_entry(n, struct btrfs_free_space, offset_index);
606                 if (!prev)
607                         goto next;
608                 if (e->bitmap || prev->bitmap)
609                         goto next;
610                 if (prev->offset + prev->bytes == e->offset) {
611                         unlink_free_space(ctl, prev);
612                         unlink_free_space(ctl, e);
613                         prev->bytes += e->bytes;
614                         kmem_cache_free(btrfs_free_space_cachep, e);
615                         link_free_space(ctl, prev);
616                         prev = NULL;
617                         spin_unlock(&ctl->tree_lock);
618                         goto again;
619                 }
620 next:
621                 prev = e;
622         }
623         spin_unlock(&ctl->tree_lock);
624 }
625
626 static int __load_free_space_cache(struct btrfs_root *root, struct inode *inode,
627                                    struct btrfs_free_space_ctl *ctl,
628                                    struct btrfs_path *path, u64 offset)
629 {
630         struct btrfs_free_space_header *header;
631         struct extent_buffer *leaf;
632         struct io_ctl io_ctl;
633         struct btrfs_key key;
634         struct btrfs_free_space *e, *n;
635         struct list_head bitmaps;
636         u64 num_entries;
637         u64 num_bitmaps;
638         u64 generation;
639         u8 type;
640         int ret = 0;
641
642         INIT_LIST_HEAD(&bitmaps);
643
644         /* Nothing in the space cache, goodbye */
645         if (!i_size_read(inode))
646                 return 0;
647
648         key.objectid = BTRFS_FREE_SPACE_OBJECTID;
649         key.offset = offset;
650         key.type = 0;
651
652         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
653         if (ret < 0)
654                 return 0;
655         else if (ret > 0) {
656                 btrfs_release_path(path);
657                 return 0;
658         }
659
660         ret = -1;
661
662         leaf = path->nodes[0];
663         header = btrfs_item_ptr(leaf, path->slots[0],
664                                 struct btrfs_free_space_header);
665         num_entries = btrfs_free_space_entries(leaf, header);
666         num_bitmaps = btrfs_free_space_bitmaps(leaf, header);
667         generation = btrfs_free_space_generation(leaf, header);
668         btrfs_release_path(path);
669
670         if (BTRFS_I(inode)->generation != generation) {
671                 btrfs_err(root->fs_info,
672                         "free space inode generation (%llu) "
673                         "did not match free space cache generation (%llu)",
674                         BTRFS_I(inode)->generation, generation);
675                 return 0;
676         }
677
678         if (!num_entries)
679                 return 0;
680
681         ret = io_ctl_init(&io_ctl, inode, root);
682         if (ret)
683                 return ret;
684
685         ret = readahead_cache(inode);
686         if (ret)
687                 goto out;
688
689         ret = io_ctl_prepare_pages(&io_ctl, inode, 1);
690         if (ret)
691                 goto out;
692
693         ret = io_ctl_check_crc(&io_ctl, 0);
694         if (ret)
695                 goto free_cache;
696
697         ret = io_ctl_check_generation(&io_ctl, generation);
698         if (ret)
699                 goto free_cache;
700
701         while (num_entries) {
702                 e = kmem_cache_zalloc(btrfs_free_space_cachep,
703                                       GFP_NOFS);
704                 if (!e)
705                         goto free_cache;
706
707                 ret = io_ctl_read_entry(&io_ctl, e, &type);
708                 if (ret) {
709                         kmem_cache_free(btrfs_free_space_cachep, e);
710                         goto free_cache;
711                 }
712
713                 if (!e->bytes) {
714                         kmem_cache_free(btrfs_free_space_cachep, e);
715                         goto free_cache;
716                 }
717
718                 if (type == BTRFS_FREE_SPACE_EXTENT) {
719                         spin_lock(&ctl->tree_lock);
720                         ret = link_free_space(ctl, e);
721                         spin_unlock(&ctl->tree_lock);
722                         if (ret) {
723                                 btrfs_err(root->fs_info,
724                                         "Duplicate entries in free space cache, dumping");
725                                 kmem_cache_free(btrfs_free_space_cachep, e);
726                                 goto free_cache;
727                         }
728                 } else {
729                         ASSERT(num_bitmaps);
730                         num_bitmaps--;
731                         e->bitmap = kzalloc(PAGE_CACHE_SIZE, GFP_NOFS);
732                         if (!e->bitmap) {
733                                 kmem_cache_free(
734                                         btrfs_free_space_cachep, e);
735                                 goto free_cache;
736                         }
737                         spin_lock(&ctl->tree_lock);
738                         ret = link_free_space(ctl, e);
739                         ctl->total_bitmaps++;
740                         ctl->op->recalc_thresholds(ctl);
741                         spin_unlock(&ctl->tree_lock);
742                         if (ret) {
743                                 btrfs_err(root->fs_info,
744                                         "Duplicate entries in free space cache, dumping");
745                                 kmem_cache_free(btrfs_free_space_cachep, e);
746                                 goto free_cache;
747                         }
748                         list_add_tail(&e->list, &bitmaps);
749                 }
750
751                 num_entries--;
752         }
753
754         io_ctl_unmap_page(&io_ctl);
755
756         /*
757          * We add the bitmaps at the end of the entries in order that
758          * the bitmap entries are added to the cache.
759          */
760         list_for_each_entry_safe(e, n, &bitmaps, list) {
761                 list_del_init(&e->list);
762                 ret = io_ctl_read_bitmap(&io_ctl, e);
763                 if (ret)
764                         goto free_cache;
765         }
766
767         io_ctl_drop_pages(&io_ctl);
768         merge_space_tree(ctl);
769         ret = 1;
770 out:
771         io_ctl_free(&io_ctl);
772         return ret;
773 free_cache:
774         io_ctl_drop_pages(&io_ctl);
775         __btrfs_remove_free_space_cache(ctl);
776         goto out;
777 }
778
779 int load_free_space_cache(struct btrfs_fs_info *fs_info,
780                           struct btrfs_block_group_cache *block_group)
781 {
782         struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
783         struct btrfs_root *root = fs_info->tree_root;
784         struct inode *inode;
785         struct btrfs_path *path;
786         int ret = 0;
787         bool matched;
788         u64 used = btrfs_block_group_used(&block_group->item);
789
790         /*
791          * If this block group has been marked to be cleared for one reason or
792          * another then we can't trust the on disk cache, so just return.
793          */
794         spin_lock(&block_group->lock);
795         if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
796                 spin_unlock(&block_group->lock);
797                 return 0;
798         }
799         spin_unlock(&block_group->lock);
800
801         path = btrfs_alloc_path();
802         if (!path)
803                 return 0;
804         path->search_commit_root = 1;
805         path->skip_locking = 1;
806
807         inode = lookup_free_space_inode(root, block_group, path);
808         if (IS_ERR(inode)) {
809                 btrfs_free_path(path);
810                 return 0;
811         }
812
813         /* We may have converted the inode and made the cache invalid. */
814         spin_lock(&block_group->lock);
815         if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
816                 spin_unlock(&block_group->lock);
817                 btrfs_free_path(path);
818                 goto out;
819         }
820         spin_unlock(&block_group->lock);
821
822         ret = __load_free_space_cache(fs_info->tree_root, inode, ctl,
823                                       path, block_group->key.objectid);
824         btrfs_free_path(path);
825         if (ret <= 0)
826                 goto out;
827
828         spin_lock(&ctl->tree_lock);
829         matched = (ctl->free_space == (block_group->key.offset - used -
830                                        block_group->bytes_super));
831         spin_unlock(&ctl->tree_lock);
832
833         if (!matched) {
834                 __btrfs_remove_free_space_cache(ctl);
835                 btrfs_err(fs_info, "block group %llu has wrong amount of free space",
836                         block_group->key.objectid);
837                 ret = -1;
838         }
839 out:
840         if (ret < 0) {
841                 /* This cache is bogus, make sure it gets cleared */
842                 spin_lock(&block_group->lock);
843                 block_group->disk_cache_state = BTRFS_DC_CLEAR;
844                 spin_unlock(&block_group->lock);
845                 ret = 0;
846
847                 btrfs_err(fs_info, "failed to load free space cache for block group %llu",
848                         block_group->key.objectid);
849         }
850
851         iput(inode);
852         return ret;
853 }
854
855 /**
856  * __btrfs_write_out_cache - write out cached info to an inode
857  * @root - the root the inode belongs to
858  * @ctl - the free space cache we are going to write out
859  * @block_group - the block_group for this cache if it belongs to a block_group
860  * @trans - the trans handle
861  * @path - the path to use
862  * @offset - the offset for the key we'll insert
863  *
864  * This function writes out a free space cache struct to disk for quick recovery
865  * on mount.  This will return 0 if it was successfull in writing the cache out,
866  * and -1 if it was not.
867  */
868 static int __btrfs_write_out_cache(struct btrfs_root *root, struct inode *inode,
869                                    struct btrfs_free_space_ctl *ctl,
870                                    struct btrfs_block_group_cache *block_group,
871                                    struct btrfs_trans_handle *trans,
872                                    struct btrfs_path *path, u64 offset)
873 {
874         struct btrfs_free_space_header *header;
875         struct extent_buffer *leaf;
876         struct rb_node *node;
877         struct list_head *pos, *n;
878         struct extent_state *cached_state = NULL;
879         struct btrfs_free_cluster *cluster = NULL;
880         struct extent_io_tree *unpin = NULL;
881         struct io_ctl io_ctl;
882         struct list_head bitmap_list;
883         struct btrfs_key key;
884         u64 start, extent_start, extent_end, len;
885         int entries = 0;
886         int bitmaps = 0;
887         int ret;
888         int err = -1;
889
890         INIT_LIST_HEAD(&bitmap_list);
891
892         if (!i_size_read(inode))
893                 return -1;
894
895         ret = io_ctl_init(&io_ctl, inode, root);
896         if (ret)
897                 return -1;
898
899         /* Get the cluster for this block_group if it exists */
900         if (block_group && !list_empty(&block_group->cluster_list))
901                 cluster = list_entry(block_group->cluster_list.next,
902                                      struct btrfs_free_cluster,
903                                      block_group_list);
904
905         /* Lock all pages first so we can lock the extent safely. */
906         io_ctl_prepare_pages(&io_ctl, inode, 0);
907
908         lock_extent_bits(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1,
909                          0, &cached_state);
910
911         node = rb_first(&ctl->free_space_offset);
912         if (!node && cluster) {
913                 node = rb_first(&cluster->root);
914                 cluster = NULL;
915         }
916
917         /* Make sure we can fit our crcs into the first page */
918         if (io_ctl.check_crcs &&
919             (io_ctl.num_pages * sizeof(u32)) >= PAGE_CACHE_SIZE)
920                 goto out_nospc;
921
922         io_ctl_set_generation(&io_ctl, trans->transid);
923
924         /* Write out the extent entries */
925         while (node) {
926                 struct btrfs_free_space *e;
927
928                 e = rb_entry(node, struct btrfs_free_space, offset_index);
929                 entries++;
930
931                 ret = io_ctl_add_entry(&io_ctl, e->offset, e->bytes,
932                                        e->bitmap);
933                 if (ret)
934                         goto out_nospc;
935
936                 if (e->bitmap) {
937                         list_add_tail(&e->list, &bitmap_list);
938                         bitmaps++;
939                 }
940                 node = rb_next(node);
941                 if (!node && cluster) {
942                         node = rb_first(&cluster->root);
943                         cluster = NULL;
944                 }
945         }
946
947         /*
948          * We want to add any pinned extents to our free space cache
949          * so we don't leak the space
950          */
951
952         /*
953          * We shouldn't have switched the pinned extents yet so this is the
954          * right one
955          */
956         unpin = root->fs_info->pinned_extents;
957
958         if (block_group)
959                 start = block_group->key.objectid;
960
961         while (block_group && (start < block_group->key.objectid +
962                                block_group->key.offset)) {
963                 ret = find_first_extent_bit(unpin, start,
964                                             &extent_start, &extent_end,
965                                             EXTENT_DIRTY, NULL);
966                 if (ret) {
967                         ret = 0;
968                         break;
969                 }
970
971                 /* This pinned extent is out of our range */
972                 if (extent_start >= block_group->key.objectid +
973                     block_group->key.offset)
974                         break;
975
976                 extent_start = max(extent_start, start);
977                 extent_end = min(block_group->key.objectid +
978                                  block_group->key.offset, extent_end + 1);
979                 len = extent_end - extent_start;
980
981                 entries++;
982                 ret = io_ctl_add_entry(&io_ctl, extent_start, len, NULL);
983                 if (ret)
984                         goto out_nospc;
985
986                 start = extent_end;
987         }
988
989         /* Write out the bitmaps */
990         list_for_each_safe(pos, n, &bitmap_list) {
991                 struct btrfs_free_space *entry =
992                         list_entry(pos, struct btrfs_free_space, list);
993
994                 ret = io_ctl_add_bitmap(&io_ctl, entry->bitmap);
995                 if (ret)
996                         goto out_nospc;
997                 list_del_init(&entry->list);
998         }
999
1000         /* Zero out the rest of the pages just to make sure */
1001         io_ctl_zero_remaining_pages(&io_ctl);
1002
1003         ret = btrfs_dirty_pages(root, inode, io_ctl.pages, io_ctl.num_pages,
1004                                 0, i_size_read(inode), &cached_state);
1005         io_ctl_drop_pages(&io_ctl);
1006         unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
1007                              i_size_read(inode) - 1, &cached_state, GFP_NOFS);
1008
1009         if (ret)
1010                 goto out;
1011
1012
1013         btrfs_wait_ordered_range(inode, 0, (u64)-1);
1014
1015         key.objectid = BTRFS_FREE_SPACE_OBJECTID;
1016         key.offset = offset;
1017         key.type = 0;
1018
1019         ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1020         if (ret < 0) {
1021                 clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
1022                                  EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0, NULL,
1023                                  GFP_NOFS);
1024                 goto out;
1025         }
1026         leaf = path->nodes[0];
1027         if (ret > 0) {
1028                 struct btrfs_key found_key;
1029                 ASSERT(path->slots[0]);
1030                 path->slots[0]--;
1031                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1032                 if (found_key.objectid != BTRFS_FREE_SPACE_OBJECTID ||
1033                     found_key.offset != offset) {
1034                         clear_extent_bit(&BTRFS_I(inode)->io_tree, 0,
1035                                          inode->i_size - 1,
1036                                          EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0,
1037                                          NULL, GFP_NOFS);
1038                         btrfs_release_path(path);
1039                         goto out;
1040                 }
1041         }
1042
1043         BTRFS_I(inode)->generation = trans->transid;
1044         header = btrfs_item_ptr(leaf, path->slots[0],
1045                                 struct btrfs_free_space_header);
1046         btrfs_set_free_space_entries(leaf, header, entries);
1047         btrfs_set_free_space_bitmaps(leaf, header, bitmaps);
1048         btrfs_set_free_space_generation(leaf, header, trans->transid);
1049         btrfs_mark_buffer_dirty(leaf);
1050         btrfs_release_path(path);
1051
1052         err = 0;
1053 out:
1054         io_ctl_free(&io_ctl);
1055         if (err) {
1056                 invalidate_inode_pages2(inode->i_mapping);
1057                 BTRFS_I(inode)->generation = 0;
1058         }
1059         btrfs_update_inode(trans, root, inode);
1060         return err;
1061
1062 out_nospc:
1063         list_for_each_safe(pos, n, &bitmap_list) {
1064                 struct btrfs_free_space *entry =
1065                         list_entry(pos, struct btrfs_free_space, list);
1066                 list_del_init(&entry->list);
1067         }
1068         io_ctl_drop_pages(&io_ctl);
1069         unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
1070                              i_size_read(inode) - 1, &cached_state, GFP_NOFS);
1071         goto out;
1072 }
1073
1074 int btrfs_write_out_cache(struct btrfs_root *root,
1075                           struct btrfs_trans_handle *trans,
1076                           struct btrfs_block_group_cache *block_group,
1077                           struct btrfs_path *path)
1078 {
1079         struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
1080         struct inode *inode;
1081         int ret = 0;
1082
1083         root = root->fs_info->tree_root;
1084
1085         spin_lock(&block_group->lock);
1086         if (block_group->disk_cache_state < BTRFS_DC_SETUP) {
1087                 spin_unlock(&block_group->lock);
1088                 return 0;
1089         }
1090         spin_unlock(&block_group->lock);
1091
1092         inode = lookup_free_space_inode(root, block_group, path);
1093         if (IS_ERR(inode))
1094                 return 0;
1095
1096         ret = __btrfs_write_out_cache(root, inode, ctl, block_group, trans,
1097                                       path, block_group->key.objectid);
1098         if (ret) {
1099                 spin_lock(&block_group->lock);
1100                 block_group->disk_cache_state = BTRFS_DC_ERROR;
1101                 spin_unlock(&block_group->lock);
1102                 ret = 0;
1103 #ifdef DEBUG
1104                 btrfs_err(root->fs_info,
1105                         "failed to write free space cache for block group %llu",
1106                         block_group->key.objectid);
1107 #endif
1108         }
1109
1110         iput(inode);
1111         return ret;
1112 }
1113
1114 static inline unsigned long offset_to_bit(u64 bitmap_start, u32 unit,
1115                                           u64 offset)
1116 {
1117         ASSERT(offset >= bitmap_start);
1118         offset -= bitmap_start;
1119         return (unsigned long)(div_u64(offset, unit));
1120 }
1121
1122 static inline unsigned long bytes_to_bits(u64 bytes, u32 unit)
1123 {
1124         return (unsigned long)(div_u64(bytes, unit));
1125 }
1126
1127 static inline u64 offset_to_bitmap(struct btrfs_free_space_ctl *ctl,
1128                                    u64 offset)
1129 {
1130         u64 bitmap_start;
1131         u64 bytes_per_bitmap;
1132
1133         bytes_per_bitmap = BITS_PER_BITMAP * ctl->unit;
1134         bitmap_start = offset - ctl->start;
1135         bitmap_start = div64_u64(bitmap_start, bytes_per_bitmap);
1136         bitmap_start *= bytes_per_bitmap;
1137         bitmap_start += ctl->start;
1138
1139         return bitmap_start;
1140 }
1141
1142 static int tree_insert_offset(struct rb_root *root, u64 offset,
1143                               struct rb_node *node, int bitmap)
1144 {
1145         struct rb_node **p = &root->rb_node;
1146         struct rb_node *parent = NULL;
1147         struct btrfs_free_space *info;
1148
1149         while (*p) {
1150                 parent = *p;
1151                 info = rb_entry(parent, struct btrfs_free_space, offset_index);
1152
1153                 if (offset < info->offset) {
1154                         p = &(*p)->rb_left;
1155                 } else if (offset > info->offset) {
1156                         p = &(*p)->rb_right;
1157                 } else {
1158                         /*
1159                          * we could have a bitmap entry and an extent entry
1160                          * share the same offset.  If this is the case, we want
1161                          * the extent entry to always be found first if we do a
1162                          * linear search through the tree, since we want to have
1163                          * the quickest allocation time, and allocating from an
1164                          * extent is faster than allocating from a bitmap.  So
1165                          * if we're inserting a bitmap and we find an entry at
1166                          * this offset, we want to go right, or after this entry
1167                          * logically.  If we are inserting an extent and we've
1168                          * found a bitmap, we want to go left, or before
1169                          * logically.
1170                          */
1171                         if (bitmap) {
1172                                 if (info->bitmap) {
1173                                         WARN_ON_ONCE(1);
1174                                         return -EEXIST;
1175                                 }
1176                                 p = &(*p)->rb_right;
1177                         } else {
1178                                 if (!info->bitmap) {
1179                                         WARN_ON_ONCE(1);
1180                                         return -EEXIST;
1181                                 }
1182                                 p = &(*p)->rb_left;
1183                         }
1184                 }
1185         }
1186
1187         rb_link_node(node, parent, p);
1188         rb_insert_color(node, root);
1189
1190         return 0;
1191 }
1192
1193 /*
1194  * searches the tree for the given offset.
1195  *
1196  * fuzzy - If this is set, then we are trying to make an allocation, and we just
1197  * want a section that has at least bytes size and comes at or after the given
1198  * offset.
1199  */
1200 static struct btrfs_free_space *
1201 tree_search_offset(struct btrfs_free_space_ctl *ctl,
1202                    u64 offset, int bitmap_only, int fuzzy)
1203 {
1204         struct rb_node *n = ctl->free_space_offset.rb_node;
1205         struct btrfs_free_space *entry, *prev = NULL;
1206
1207         /* find entry that is closest to the 'offset' */
1208         while (1) {
1209                 if (!n) {
1210                         entry = NULL;
1211                         break;
1212                 }
1213
1214                 entry = rb_entry(n, struct btrfs_free_space, offset_index);
1215                 prev = entry;
1216
1217                 if (offset < entry->offset)
1218                         n = n->rb_left;
1219                 else if (offset > entry->offset)
1220                         n = n->rb_right;
1221                 else
1222                         break;
1223         }
1224
1225         if (bitmap_only) {
1226                 if (!entry)
1227                         return NULL;
1228                 if (entry->bitmap)
1229                         return entry;
1230
1231                 /*
1232                  * bitmap entry and extent entry may share same offset,
1233                  * in that case, bitmap entry comes after extent entry.
1234                  */
1235                 n = rb_next(n);
1236                 if (!n)
1237                         return NULL;
1238                 entry = rb_entry(n, struct btrfs_free_space, offset_index);
1239                 if (entry->offset != offset)
1240                         return NULL;
1241
1242                 WARN_ON(!entry->bitmap);
1243                 return entry;
1244         } else if (entry) {
1245                 if (entry->bitmap) {
1246                         /*
1247                          * if previous extent entry covers the offset,
1248                          * we should return it instead of the bitmap entry
1249                          */
1250                         n = rb_prev(&entry->offset_index);
1251                         if (n) {
1252                                 prev = rb_entry(n, struct btrfs_free_space,
1253                                                 offset_index);
1254                                 if (!prev->bitmap &&
1255                                     prev->offset + prev->bytes > offset)
1256                                         entry = prev;
1257                         }
1258                 }
1259                 return entry;
1260         }
1261
1262         if (!prev)
1263                 return NULL;
1264
1265         /* find last entry before the 'offset' */
1266         entry = prev;
1267         if (entry->offset > offset) {
1268                 n = rb_prev(&entry->offset_index);
1269                 if (n) {
1270                         entry = rb_entry(n, struct btrfs_free_space,
1271                                         offset_index);
1272                         ASSERT(entry->offset <= offset);
1273                 } else {
1274                         if (fuzzy)
1275                                 return entry;
1276                         else
1277                                 return NULL;
1278                 }
1279         }
1280
1281         if (entry->bitmap) {
1282                 n = rb_prev(&entry->offset_index);
1283                 if (n) {
1284                         prev = rb_entry(n, struct btrfs_free_space,
1285                                         offset_index);
1286                         if (!prev->bitmap &&
1287                             prev->offset + prev->bytes > offset)
1288                                 return prev;
1289                 }
1290                 if (entry->offset + BITS_PER_BITMAP * ctl->unit > offset)
1291                         return entry;
1292         } else if (entry->offset + entry->bytes > offset)
1293                 return entry;
1294
1295         if (!fuzzy)
1296                 return NULL;
1297
1298         while (1) {
1299                 if (entry->bitmap) {
1300                         if (entry->offset + BITS_PER_BITMAP *
1301                             ctl->unit > offset)
1302                                 break;
1303                 } else {
1304                         if (entry->offset + entry->bytes > offset)
1305                                 break;
1306                 }
1307
1308                 n = rb_next(&entry->offset_index);
1309                 if (!n)
1310                         return NULL;
1311                 entry = rb_entry(n, struct btrfs_free_space, offset_index);
1312         }
1313         return entry;
1314 }
1315
1316 static inline void
1317 __unlink_free_space(struct btrfs_free_space_ctl *ctl,
1318                     struct btrfs_free_space *info)
1319 {
1320         rb_erase(&info->offset_index, &ctl->free_space_offset);
1321         ctl->free_extents--;
1322 }
1323
1324 static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
1325                               struct btrfs_free_space *info)
1326 {
1327         __unlink_free_space(ctl, info);
1328         ctl->free_space -= info->bytes;
1329 }
1330
1331 static int link_free_space(struct btrfs_free_space_ctl *ctl,
1332                            struct btrfs_free_space *info)
1333 {
1334         int ret = 0;
1335
1336         ASSERT(info->bytes || info->bitmap);
1337         ret = tree_insert_offset(&ctl->free_space_offset, info->offset,
1338                                  &info->offset_index, (info->bitmap != NULL));
1339         if (ret)
1340                 return ret;
1341
1342         ctl->free_space += info->bytes;
1343         ctl->free_extents++;
1344         return ret;
1345 }
1346
1347 static void recalculate_thresholds(struct btrfs_free_space_ctl *ctl)
1348 {
1349         struct btrfs_block_group_cache *block_group = ctl->private;
1350         u64 max_bytes;
1351         u64 bitmap_bytes;
1352         u64 extent_bytes;
1353         u64 size = block_group->key.offset;
1354         u64 bytes_per_bg = BITS_PER_BITMAP * ctl->unit;
1355         int max_bitmaps = div64_u64(size + bytes_per_bg - 1, bytes_per_bg);
1356
1357         max_bitmaps = max(max_bitmaps, 1);
1358
1359         ASSERT(ctl->total_bitmaps <= max_bitmaps);
1360
1361         /*
1362          * The goal is to keep the total amount of memory used per 1gb of space
1363          * at or below 32k, so we need to adjust how much memory we allow to be
1364          * used by extent based free space tracking
1365          */
1366         if (size < 1024 * 1024 * 1024)
1367                 max_bytes = MAX_CACHE_BYTES_PER_GIG;
1368         else
1369                 max_bytes = MAX_CACHE_BYTES_PER_GIG *
1370                         div64_u64(size, 1024 * 1024 * 1024);
1371
1372         /*
1373          * we want to account for 1 more bitmap than what we have so we can make
1374          * sure we don't go over our overall goal of MAX_CACHE_BYTES_PER_GIG as
1375          * we add more bitmaps.
1376          */
1377         bitmap_bytes = (ctl->total_bitmaps + 1) * PAGE_CACHE_SIZE;
1378
1379         if (bitmap_bytes >= max_bytes) {
1380                 ctl->extents_thresh = 0;
1381                 return;
1382         }
1383
1384         /*
1385          * we want the extent entry threshold to always be at most 1/2 the maxw
1386          * bytes we can have, or whatever is less than that.
1387          */
1388         extent_bytes = max_bytes - bitmap_bytes;
1389         extent_bytes = min_t(u64, extent_bytes, div64_u64(max_bytes, 2));
1390
1391         ctl->extents_thresh =
1392                 div64_u64(extent_bytes, (sizeof(struct btrfs_free_space)));
1393 }
1394
1395 static inline void __bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
1396                                        struct btrfs_free_space *info,
1397                                        u64 offset, u64 bytes)
1398 {
1399         unsigned long start, count;
1400
1401         start = offset_to_bit(info->offset, ctl->unit, offset);
1402         count = bytes_to_bits(bytes, ctl->unit);
1403         ASSERT(start + count <= BITS_PER_BITMAP);
1404
1405         bitmap_clear(info->bitmap, start, count);
1406
1407         info->bytes -= bytes;
1408 }
1409
1410 static void bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
1411                               struct btrfs_free_space *info, u64 offset,
1412                               u64 bytes)
1413 {
1414         __bitmap_clear_bits(ctl, info, offset, bytes);
1415         ctl->free_space -= bytes;
1416 }
1417
1418 static void bitmap_set_bits(struct btrfs_free_space_ctl *ctl,
1419                             struct btrfs_free_space *info, u64 offset,
1420                             u64 bytes)
1421 {
1422         unsigned long start, count;
1423
1424         start = offset_to_bit(info->offset, ctl->unit, offset);
1425         count = bytes_to_bits(bytes, ctl->unit);
1426         ASSERT(start + count <= BITS_PER_BITMAP);
1427
1428         bitmap_set(info->bitmap, start, count);
1429
1430         info->bytes += bytes;
1431         ctl->free_space += bytes;
1432 }
1433
1434 /*
1435  * If we can not find suitable extent, we will use bytes to record
1436  * the size of the max extent.
1437  */
1438 static int search_bitmap(struct btrfs_free_space_ctl *ctl,
1439                          struct btrfs_free_space *bitmap_info, u64 *offset,
1440                          u64 *bytes)
1441 {
1442         unsigned long found_bits = 0;
1443         unsigned long max_bits = 0;
1444         unsigned long bits, i;
1445         unsigned long next_zero;
1446         unsigned long extent_bits;
1447
1448         i = offset_to_bit(bitmap_info->offset, ctl->unit,
1449                           max_t(u64, *offset, bitmap_info->offset));
1450         bits = bytes_to_bits(*bytes, ctl->unit);
1451
1452         for_each_set_bit_from(i, bitmap_info->bitmap, BITS_PER_BITMAP) {
1453                 next_zero = find_next_zero_bit(bitmap_info->bitmap,
1454                                                BITS_PER_BITMAP, i);
1455                 extent_bits = next_zero - i;
1456                 if (extent_bits >= bits) {
1457                         found_bits = extent_bits;
1458                         break;
1459                 } else if (extent_bits > max_bits) {
1460                         max_bits = extent_bits;
1461                 }
1462                 i = next_zero;
1463         }
1464
1465         if (found_bits) {
1466                 *offset = (u64)(i * ctl->unit) + bitmap_info->offset;
1467                 *bytes = (u64)(found_bits) * ctl->unit;
1468                 return 0;
1469         }
1470
1471         *bytes = (u64)(max_bits) * ctl->unit;
1472         return -1;
1473 }
1474
1475 /* Cache the size of the max extent in bytes */
1476 static struct btrfs_free_space *
1477 find_free_space(struct btrfs_free_space_ctl *ctl, u64 *offset, u64 *bytes,
1478                 unsigned long align, u64 *max_extent_size)
1479 {
1480         struct btrfs_free_space *entry;
1481         struct rb_node *node;
1482         u64 tmp;
1483         u64 align_off;
1484         int ret;
1485
1486         if (!ctl->free_space_offset.rb_node)
1487                 goto out;
1488
1489         entry = tree_search_offset(ctl, offset_to_bitmap(ctl, *offset), 0, 1);
1490         if (!entry)
1491                 goto out;
1492
1493         for (node = &entry->offset_index; node; node = rb_next(node)) {
1494                 entry = rb_entry(node, struct btrfs_free_space, offset_index);
1495                 if (entry->bytes < *bytes) {
1496                         if (entry->bytes > *max_extent_size)
1497                                 *max_extent_size = entry->bytes;
1498                         continue;
1499                 }
1500
1501                 /* make sure the space returned is big enough
1502                  * to match our requested alignment
1503                  */
1504                 if (*bytes >= align) {
1505                         tmp = entry->offset - ctl->start + align - 1;
1506                         do_div(tmp, align);
1507                         tmp = tmp * align + ctl->start;
1508                         align_off = tmp - entry->offset;
1509                 } else {
1510                         align_off = 0;
1511                         tmp = entry->offset;
1512                 }
1513
1514                 if (entry->bytes < *bytes + align_off) {
1515                         if (entry->bytes > *max_extent_size)
1516                                 *max_extent_size = entry->bytes;
1517                         continue;
1518                 }
1519
1520                 if (entry->bitmap) {
1521                         u64 size = *bytes;
1522
1523                         ret = search_bitmap(ctl, entry, &tmp, &size);
1524                         if (!ret) {
1525                                 *offset = tmp;
1526                                 *bytes = size;
1527                                 return entry;
1528                         } else if (size > *max_extent_size) {
1529                                 *max_extent_size = size;
1530                         }
1531                         continue;
1532                 }
1533
1534                 *offset = tmp;
1535                 *bytes = entry->bytes - align_off;
1536                 return entry;
1537         }
1538 out:
1539         return NULL;
1540 }
1541
1542 static void add_new_bitmap(struct btrfs_free_space_ctl *ctl,
1543                            struct btrfs_free_space *info, u64 offset)
1544 {
1545         info->offset = offset_to_bitmap(ctl, offset);
1546         info->bytes = 0;
1547         INIT_LIST_HEAD(&info->list);
1548         link_free_space(ctl, info);
1549         ctl->total_bitmaps++;
1550
1551         ctl->op->recalc_thresholds(ctl);
1552 }
1553
1554 static void free_bitmap(struct btrfs_free_space_ctl *ctl,
1555                         struct btrfs_free_space *bitmap_info)
1556 {
1557         unlink_free_space(ctl, bitmap_info);
1558         kfree(bitmap_info->bitmap);
1559         kmem_cache_free(btrfs_free_space_cachep, bitmap_info);
1560         ctl->total_bitmaps--;
1561         ctl->op->recalc_thresholds(ctl);
1562 }
1563
1564 static noinline int remove_from_bitmap(struct btrfs_free_space_ctl *ctl,
1565                               struct btrfs_free_space *bitmap_info,
1566                               u64 *offset, u64 *bytes)
1567 {
1568         u64 end;
1569         u64 search_start, search_bytes;
1570         int ret;
1571
1572 again:
1573         end = bitmap_info->offset + (u64)(BITS_PER_BITMAP * ctl->unit) - 1;
1574
1575         /*
1576          * We need to search for bits in this bitmap.  We could only cover some
1577          * of the extent in this bitmap thanks to how we add space, so we need
1578          * to search for as much as it as we can and clear that amount, and then
1579          * go searching for the next bit.
1580          */
1581         search_start = *offset;
1582         search_bytes = ctl->unit;
1583         search_bytes = min(search_bytes, end - search_start + 1);
1584         ret = search_bitmap(ctl, bitmap_info, &search_start, &search_bytes);
1585         if (ret < 0 || search_start != *offset)
1586                 return -EINVAL;
1587
1588         /* We may have found more bits than what we need */
1589         search_bytes = min(search_bytes, *bytes);
1590
1591         /* Cannot clear past the end of the bitmap */
1592         search_bytes = min(search_bytes, end - search_start + 1);
1593
1594         bitmap_clear_bits(ctl, bitmap_info, search_start, search_bytes);
1595         *offset += search_bytes;
1596         *bytes -= search_bytes;
1597
1598         if (*bytes) {
1599                 struct rb_node *next = rb_next(&bitmap_info->offset_index);
1600                 if (!bitmap_info->bytes)
1601                         free_bitmap(ctl, bitmap_info);
1602
1603                 /*
1604                  * no entry after this bitmap, but we still have bytes to
1605                  * remove, so something has gone wrong.
1606                  */
1607                 if (!next)
1608                         return -EINVAL;
1609
1610                 bitmap_info = rb_entry(next, struct btrfs_free_space,
1611                                        offset_index);
1612
1613                 /*
1614                  * if the next entry isn't a bitmap we need to return to let the
1615                  * extent stuff do its work.
1616                  */
1617                 if (!bitmap_info->bitmap)
1618                         return -EAGAIN;
1619
1620                 /*
1621                  * Ok the next item is a bitmap, but it may not actually hold
1622                  * the information for the rest of this free space stuff, so
1623                  * look for it, and if we don't find it return so we can try
1624                  * everything over again.
1625                  */
1626                 search_start = *offset;
1627                 search_bytes = ctl->unit;
1628                 ret = search_bitmap(ctl, bitmap_info, &search_start,
1629                                     &search_bytes);
1630                 if (ret < 0 || search_start != *offset)
1631                         return -EAGAIN;
1632
1633                 goto again;
1634         } else if (!bitmap_info->bytes)
1635                 free_bitmap(ctl, bitmap_info);
1636
1637         return 0;
1638 }
1639
1640 static u64 add_bytes_to_bitmap(struct btrfs_free_space_ctl *ctl,
1641                                struct btrfs_free_space *info, u64 offset,
1642                                u64 bytes)
1643 {
1644         u64 bytes_to_set = 0;
1645         u64 end;
1646
1647         end = info->offset + (u64)(BITS_PER_BITMAP * ctl->unit);
1648
1649         bytes_to_set = min(end - offset, bytes);
1650
1651         bitmap_set_bits(ctl, info, offset, bytes_to_set);
1652
1653         return bytes_to_set;
1654
1655 }
1656
1657 static bool use_bitmap(struct btrfs_free_space_ctl *ctl,
1658                       struct btrfs_free_space *info)
1659 {
1660         struct btrfs_block_group_cache *block_group = ctl->private;
1661
1662         /*
1663          * If we are below the extents threshold then we can add this as an
1664          * extent, and don't have to deal with the bitmap
1665          */
1666         if (ctl->free_extents < ctl->extents_thresh) {
1667                 /*
1668                  * If this block group has some small extents we don't want to
1669                  * use up all of our free slots in the cache with them, we want
1670                  * to reserve them to larger extents, however if we have plent
1671                  * of cache left then go ahead an dadd them, no sense in adding
1672                  * the overhead of a bitmap if we don't have to.
1673                  */
1674                 if (info->bytes <= block_group->sectorsize * 4) {
1675                         if (ctl->free_extents * 2 <= ctl->extents_thresh)
1676                                 return false;
1677                 } else {
1678                         return false;
1679                 }
1680         }
1681
1682         /*
1683          * The original block groups from mkfs can be really small, like 8
1684          * megabytes, so don't bother with a bitmap for those entries.  However
1685          * some block groups can be smaller than what a bitmap would cover but
1686          * are still large enough that they could overflow the 32k memory limit,
1687          * so allow those block groups to still be allowed to have a bitmap
1688          * entry.
1689          */
1690         if (((BITS_PER_BITMAP * ctl->unit) >> 1) > block_group->key.offset)
1691                 return false;
1692
1693         return true;
1694 }
1695
1696 static struct btrfs_free_space_op free_space_op = {
1697         .recalc_thresholds      = recalculate_thresholds,
1698         .use_bitmap             = use_bitmap,
1699 };
1700
1701 static int insert_into_bitmap(struct btrfs_free_space_ctl *ctl,
1702                               struct btrfs_free_space *info)
1703 {
1704         struct btrfs_free_space *bitmap_info;
1705         struct btrfs_block_group_cache *block_group = NULL;
1706         int added = 0;
1707         u64 bytes, offset, bytes_added;
1708         int ret;
1709
1710         bytes = info->bytes;
1711         offset = info->offset;
1712
1713         if (!ctl->op->use_bitmap(ctl, info))
1714                 return 0;
1715
1716         if (ctl->op == &free_space_op)
1717                 block_group = ctl->private;
1718 again:
1719         /*
1720          * Since we link bitmaps right into the cluster we need to see if we
1721          * have a cluster here, and if so and it has our bitmap we need to add
1722          * the free space to that bitmap.
1723          */
1724         if (block_group && !list_empty(&block_group->cluster_list)) {
1725                 struct btrfs_free_cluster *cluster;
1726                 struct rb_node *node;
1727                 struct btrfs_free_space *entry;
1728
1729                 cluster = list_entry(block_group->cluster_list.next,
1730                                      struct btrfs_free_cluster,
1731                                      block_group_list);
1732                 spin_lock(&cluster->lock);
1733                 node = rb_first(&cluster->root);
1734                 if (!node) {
1735                         spin_unlock(&cluster->lock);
1736                         goto no_cluster_bitmap;
1737                 }
1738
1739                 entry = rb_entry(node, struct btrfs_free_space, offset_index);
1740                 if (!entry->bitmap) {
1741                         spin_unlock(&cluster->lock);
1742                         goto no_cluster_bitmap;
1743                 }
1744
1745                 if (entry->offset == offset_to_bitmap(ctl, offset)) {
1746                         bytes_added = add_bytes_to_bitmap(ctl, entry,
1747                                                           offset, bytes);
1748                         bytes -= bytes_added;
1749                         offset += bytes_added;
1750                 }
1751                 spin_unlock(&cluster->lock);
1752                 if (!bytes) {
1753                         ret = 1;
1754                         goto out;
1755                 }
1756         }
1757
1758 no_cluster_bitmap:
1759         bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
1760                                          1, 0);
1761         if (!bitmap_info) {
1762                 ASSERT(added == 0);
1763                 goto new_bitmap;
1764         }
1765
1766         bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes);
1767         bytes -= bytes_added;
1768         offset += bytes_added;
1769         added = 0;
1770
1771         if (!bytes) {
1772                 ret = 1;
1773                 goto out;
1774         } else
1775                 goto again;
1776
1777 new_bitmap:
1778         if (info && info->bitmap) {
1779                 add_new_bitmap(ctl, info, offset);
1780                 added = 1;
1781                 info = NULL;
1782                 goto again;
1783         } else {
1784                 spin_unlock(&ctl->tree_lock);
1785
1786                 /* no pre-allocated info, allocate a new one */
1787                 if (!info) {
1788                         info = kmem_cache_zalloc(btrfs_free_space_cachep,
1789                                                  GFP_NOFS);
1790                         if (!info) {
1791                                 spin_lock(&ctl->tree_lock);
1792                                 ret = -ENOMEM;
1793                                 goto out;
1794                         }
1795                 }
1796
1797                 /* allocate the bitmap */
1798                 info->bitmap = kzalloc(PAGE_CACHE_SIZE, GFP_NOFS);
1799                 spin_lock(&ctl->tree_lock);
1800                 if (!info->bitmap) {
1801                         ret = -ENOMEM;
1802                         goto out;
1803                 }
1804                 goto again;
1805         }
1806
1807 out:
1808         if (info) {
1809                 if (info->bitmap)
1810                         kfree(info->bitmap);
1811                 kmem_cache_free(btrfs_free_space_cachep, info);
1812         }
1813
1814         return ret;
1815 }
1816
1817 static bool try_merge_free_space(struct btrfs_free_space_ctl *ctl,
1818                           struct btrfs_free_space *info, bool update_stat)
1819 {
1820         struct btrfs_free_space *left_info;
1821         struct btrfs_free_space *right_info;
1822         bool merged = false;
1823         u64 offset = info->offset;
1824         u64 bytes = info->bytes;
1825
1826         /*
1827          * first we want to see if there is free space adjacent to the range we
1828          * are adding, if there is remove that struct and add a new one to
1829          * cover the entire range
1830          */
1831         right_info = tree_search_offset(ctl, offset + bytes, 0, 0);
1832         if (right_info && rb_prev(&right_info->offset_index))
1833                 left_info = rb_entry(rb_prev(&right_info->offset_index),
1834                                      struct btrfs_free_space, offset_index);
1835         else
1836                 left_info = tree_search_offset(ctl, offset - 1, 0, 0);
1837
1838         if (right_info && !right_info->bitmap) {
1839                 if (update_stat)
1840                         unlink_free_space(ctl, right_info);
1841                 else
1842                         __unlink_free_space(ctl, right_info);
1843                 info->bytes += right_info->bytes;
1844                 kmem_cache_free(btrfs_free_space_cachep, right_info);
1845                 merged = true;
1846         }
1847
1848         if (left_info && !left_info->bitmap &&
1849             left_info->offset + left_info->bytes == offset) {
1850                 if (update_stat)
1851                         unlink_free_space(ctl, left_info);
1852                 else
1853                         __unlink_free_space(ctl, left_info);
1854                 info->offset = left_info->offset;
1855                 info->bytes += left_info->bytes;
1856                 kmem_cache_free(btrfs_free_space_cachep, left_info);
1857                 merged = true;
1858         }
1859
1860         return merged;
1861 }
1862
1863 int __btrfs_add_free_space(struct btrfs_free_space_ctl *ctl,
1864                            u64 offset, u64 bytes)
1865 {
1866         struct btrfs_free_space *info;
1867         int ret = 0;
1868
1869         info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
1870         if (!info)
1871                 return -ENOMEM;
1872
1873         info->offset = offset;
1874         info->bytes = bytes;
1875
1876         spin_lock(&ctl->tree_lock);
1877
1878         if (try_merge_free_space(ctl, info, true))
1879                 goto link;
1880
1881         /*
1882          * There was no extent directly to the left or right of this new
1883          * extent then we know we're going to have to allocate a new extent, so
1884          * before we do that see if we need to drop this into a bitmap
1885          */
1886         ret = insert_into_bitmap(ctl, info);
1887         if (ret < 0) {
1888                 goto out;
1889         } else if (ret) {
1890                 ret = 0;
1891                 goto out;
1892         }
1893 link:
1894         ret = link_free_space(ctl, info);
1895         if (ret)
1896                 kmem_cache_free(btrfs_free_space_cachep, info);
1897 out:
1898         spin_unlock(&ctl->tree_lock);
1899
1900         if (ret) {
1901                 printk(KERN_CRIT "btrfs: unable to add free space :%d\n", ret);
1902                 ASSERT(ret != -EEXIST);
1903         }
1904
1905         return ret;
1906 }
1907
1908 int btrfs_remove_free_space(struct btrfs_block_group_cache *block_group,
1909                             u64 offset, u64 bytes)
1910 {
1911         struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
1912         struct btrfs_free_space *info;
1913         int ret;
1914         bool re_search = false;
1915
1916         spin_lock(&ctl->tree_lock);
1917
1918 again:
1919         ret = 0;
1920         if (!bytes)
1921                 goto out_lock;
1922
1923         info = tree_search_offset(ctl, offset, 0, 0);
1924         if (!info) {
1925                 /*
1926                  * oops didn't find an extent that matched the space we wanted
1927                  * to remove, look for a bitmap instead
1928                  */
1929                 info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
1930                                           1, 0);
1931                 if (!info) {
1932                         /*
1933                          * If we found a partial bit of our free space in a
1934                          * bitmap but then couldn't find the other part this may
1935                          * be a problem, so WARN about it.
1936                          */
1937                         WARN_ON(re_search);
1938                         goto out_lock;
1939                 }
1940         }
1941
1942         re_search = false;
1943         if (!info->bitmap) {
1944                 unlink_free_space(ctl, info);
1945                 if (offset == info->offset) {
1946                         u64 to_free = min(bytes, info->bytes);
1947
1948                         info->bytes -= to_free;
1949                         info->offset += to_free;
1950                         if (info->bytes) {
1951                                 ret = link_free_space(ctl, info);
1952                                 WARN_ON(ret);
1953                         } else {
1954                                 kmem_cache_free(btrfs_free_space_cachep, info);
1955                         }
1956
1957                         offset += to_free;
1958                         bytes -= to_free;
1959                         goto again;
1960                 } else {
1961                         u64 old_end = info->bytes + info->offset;
1962
1963                         info->bytes = offset - info->offset;
1964                         ret = link_free_space(ctl, info);
1965                         WARN_ON(ret);
1966                         if (ret)
1967                                 goto out_lock;
1968
1969                         /* Not enough bytes in this entry to satisfy us */
1970                         if (old_end < offset + bytes) {
1971                                 bytes -= old_end - offset;
1972                                 offset = old_end;
1973                                 goto again;
1974                         } else if (old_end == offset + bytes) {
1975                                 /* all done */
1976                                 goto out_lock;
1977                         }
1978                         spin_unlock(&ctl->tree_lock);
1979
1980                         ret = btrfs_add_free_space(block_group, offset + bytes,
1981                                                    old_end - (offset + bytes));
1982                         WARN_ON(ret);
1983                         goto out;
1984                 }
1985         }
1986
1987         ret = remove_from_bitmap(ctl, info, &offset, &bytes);
1988         if (ret == -EAGAIN) {
1989                 re_search = true;
1990                 goto again;
1991         }
1992 out_lock:
1993         spin_unlock(&ctl->tree_lock);
1994 out:
1995         return ret;
1996 }
1997
1998 void btrfs_dump_free_space(struct btrfs_block_group_cache *block_group,
1999                            u64 bytes)
2000 {
2001         struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2002         struct btrfs_free_space *info;
2003         struct rb_node *n;
2004         int count = 0;
2005
2006         for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
2007                 info = rb_entry(n, struct btrfs_free_space, offset_index);
2008                 if (info->bytes >= bytes && !block_group->ro)
2009                         count++;
2010                 printk(KERN_CRIT "entry offset %llu, bytes %llu, bitmap %s\n",
2011                        info->offset, info->bytes,
2012                        (info->bitmap) ? "yes" : "no");
2013         }
2014         printk(KERN_INFO "block group has cluster?: %s\n",
2015                list_empty(&block_group->cluster_list) ? "no" : "yes");
2016         printk(KERN_INFO "%d blocks of free space at or bigger than bytes is"
2017                "\n", count);
2018 }
2019
2020 void btrfs_init_free_space_ctl(struct btrfs_block_group_cache *block_group)
2021 {
2022         struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2023
2024         spin_lock_init(&ctl->tree_lock);
2025         ctl->unit = block_group->sectorsize;
2026         ctl->start = block_group->key.objectid;
2027         ctl->private = block_group;
2028         ctl->op = &free_space_op;
2029
2030         /*
2031          * we only want to have 32k of ram per block group for keeping
2032          * track of free space, and if we pass 1/2 of that we want to
2033          * start converting things over to using bitmaps
2034          */
2035         ctl->extents_thresh = ((1024 * 32) / 2) /
2036                                 sizeof(struct btrfs_free_space);
2037 }
2038
2039 /*
2040  * for a given cluster, put all of its extents back into the free
2041  * space cache.  If the block group passed doesn't match the block group
2042  * pointed to by the cluster, someone else raced in and freed the
2043  * cluster already.  In that case, we just return without changing anything
2044  */
2045 static int
2046 __btrfs_return_cluster_to_free_space(
2047                              struct btrfs_block_group_cache *block_group,
2048                              struct btrfs_free_cluster *cluster)
2049 {
2050         struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2051         struct btrfs_free_space *entry;
2052         struct rb_node *node;
2053
2054         spin_lock(&cluster->lock);
2055         if (cluster->block_group != block_group)
2056                 goto out;
2057
2058         cluster->block_group = NULL;
2059         cluster->window_start = 0;
2060         list_del_init(&cluster->block_group_list);
2061
2062         node = rb_first(&cluster->root);
2063         while (node) {
2064                 bool bitmap;
2065
2066                 entry = rb_entry(node, struct btrfs_free_space, offset_index);
2067                 node = rb_next(&entry->offset_index);
2068                 rb_erase(&entry->offset_index, &cluster->root);
2069
2070                 bitmap = (entry->bitmap != NULL);
2071                 if (!bitmap)
2072                         try_merge_free_space(ctl, entry, false);
2073                 tree_insert_offset(&ctl->free_space_offset,
2074                                    entry->offset, &entry->offset_index, bitmap);
2075         }
2076         cluster->root = RB_ROOT;
2077
2078 out:
2079         spin_unlock(&cluster->lock);
2080         btrfs_put_block_group(block_group);
2081         return 0;
2082 }
2083
2084 static void __btrfs_remove_free_space_cache_locked(
2085                                 struct btrfs_free_space_ctl *ctl)
2086 {
2087         struct btrfs_free_space *info;
2088         struct rb_node *node;
2089
2090         while ((node = rb_last(&ctl->free_space_offset)) != NULL) {
2091                 info = rb_entry(node, struct btrfs_free_space, offset_index);
2092                 if (!info->bitmap) {
2093                         unlink_free_space(ctl, info);
2094                         kmem_cache_free(btrfs_free_space_cachep, info);
2095                 } else {
2096                         free_bitmap(ctl, info);
2097                 }
2098                 if (need_resched()) {
2099                         spin_unlock(&ctl->tree_lock);
2100                         cond_resched();
2101                         spin_lock(&ctl->tree_lock);
2102                 }
2103         }
2104 }
2105
2106 void __btrfs_remove_free_space_cache(struct btrfs_free_space_ctl *ctl)
2107 {
2108         spin_lock(&ctl->tree_lock);
2109         __btrfs_remove_free_space_cache_locked(ctl);
2110         spin_unlock(&ctl->tree_lock);
2111 }
2112
2113 void btrfs_remove_free_space_cache(struct btrfs_block_group_cache *block_group)
2114 {
2115         struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2116         struct btrfs_free_cluster *cluster;
2117         struct list_head *head;
2118
2119         spin_lock(&ctl->tree_lock);
2120         while ((head = block_group->cluster_list.next) !=
2121                &block_group->cluster_list) {
2122                 cluster = list_entry(head, struct btrfs_free_cluster,
2123                                      block_group_list);
2124
2125                 WARN_ON(cluster->block_group != block_group);
2126                 __btrfs_return_cluster_to_free_space(block_group, cluster);
2127                 if (need_resched()) {
2128                         spin_unlock(&ctl->tree_lock);
2129                         cond_resched();
2130                         spin_lock(&ctl->tree_lock);
2131                 }
2132         }
2133         __btrfs_remove_free_space_cache_locked(ctl);
2134         spin_unlock(&ctl->tree_lock);
2135
2136 }
2137
2138 u64 btrfs_find_space_for_alloc(struct btrfs_block_group_cache *block_group,
2139                                u64 offset, u64 bytes, u64 empty_size,
2140                                u64 *max_extent_size)
2141 {
2142         struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2143         struct btrfs_free_space *entry = NULL;
2144         u64 bytes_search = bytes + empty_size;
2145         u64 ret = 0;
2146         u64 align_gap = 0;
2147         u64 align_gap_len = 0;
2148
2149         spin_lock(&ctl->tree_lock);
2150         entry = find_free_space(ctl, &offset, &bytes_search,
2151                                 block_group->full_stripe_len, max_extent_size);
2152         if (!entry)
2153                 goto out;
2154
2155         ret = offset;
2156         if (entry->bitmap) {
2157                 bitmap_clear_bits(ctl, entry, offset, bytes);
2158                 if (!entry->bytes)
2159                         free_bitmap(ctl, entry);
2160         } else {
2161                 unlink_free_space(ctl, entry);
2162                 align_gap_len = offset - entry->offset;
2163                 align_gap = entry->offset;
2164
2165                 entry->offset = offset + bytes;
2166                 WARN_ON(entry->bytes < bytes + align_gap_len);
2167
2168                 entry->bytes -= bytes + align_gap_len;
2169                 if (!entry->bytes)
2170                         kmem_cache_free(btrfs_free_space_cachep, entry);
2171                 else
2172                         link_free_space(ctl, entry);
2173         }
2174 out:
2175         spin_unlock(&ctl->tree_lock);
2176
2177         if (align_gap_len)
2178                 __btrfs_add_free_space(ctl, align_gap, align_gap_len);
2179         return ret;
2180 }
2181
2182 /*
2183  * given a cluster, put all of its extents back into the free space
2184  * cache.  If a block group is passed, this function will only free
2185  * a cluster that belongs to the passed block group.
2186  *
2187  * Otherwise, it'll get a reference on the block group pointed to by the
2188  * cluster and remove the cluster from it.
2189  */
2190 int btrfs_return_cluster_to_free_space(
2191                                struct btrfs_block_group_cache *block_group,
2192                                struct btrfs_free_cluster *cluster)
2193 {
2194         struct btrfs_free_space_ctl *ctl;
2195         int ret;
2196
2197         /* first, get a safe pointer to the block group */
2198         spin_lock(&cluster->lock);
2199         if (!block_group) {
2200                 block_group = cluster->block_group;
2201                 if (!block_group) {
2202                         spin_unlock(&cluster->lock);
2203                         return 0;
2204                 }
2205         } else if (cluster->block_group != block_group) {
2206                 /* someone else has already freed it don't redo their work */
2207                 spin_unlock(&cluster->lock);
2208                 return 0;
2209         }
2210         atomic_inc(&block_group->count);
2211         spin_unlock(&cluster->lock);
2212
2213         ctl = block_group->free_space_ctl;
2214
2215         /* now return any extents the cluster had on it */
2216         spin_lock(&ctl->tree_lock);
2217         ret = __btrfs_return_cluster_to_free_space(block_group, cluster);
2218         spin_unlock(&ctl->tree_lock);
2219
2220         /* finally drop our ref */
2221         btrfs_put_block_group(block_group);
2222         return ret;
2223 }
2224
2225 static u64 btrfs_alloc_from_bitmap(struct btrfs_block_group_cache *block_group,
2226                                    struct btrfs_free_cluster *cluster,
2227                                    struct btrfs_free_space *entry,
2228                                    u64 bytes, u64 min_start,
2229                                    u64 *max_extent_size)
2230 {
2231         struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2232         int err;
2233         u64 search_start = cluster->window_start;
2234         u64 search_bytes = bytes;
2235         u64 ret = 0;
2236
2237         search_start = min_start;
2238         search_bytes = bytes;
2239
2240         err = search_bitmap(ctl, entry, &search_start, &search_bytes);
2241         if (err) {
2242                 if (search_bytes > *max_extent_size)
2243                         *max_extent_size = search_bytes;
2244                 return 0;
2245         }
2246
2247         ret = search_start;
2248         __bitmap_clear_bits(ctl, entry, ret, bytes);
2249
2250         return ret;
2251 }
2252
2253 /*
2254  * given a cluster, try to allocate 'bytes' from it, returns 0
2255  * if it couldn't find anything suitably large, or a logical disk offset
2256  * if things worked out
2257  */
2258 u64 btrfs_alloc_from_cluster(struct btrfs_block_group_cache *block_group,
2259                              struct btrfs_free_cluster *cluster, u64 bytes,
2260                              u64 min_start, u64 *max_extent_size)
2261 {
2262         struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2263         struct btrfs_free_space *entry = NULL;
2264         struct rb_node *node;
2265         u64 ret = 0;
2266
2267         spin_lock(&cluster->lock);
2268         if (bytes > cluster->max_size)
2269                 goto out;
2270
2271         if (cluster->block_group != block_group)
2272                 goto out;
2273
2274         node = rb_first(&cluster->root);
2275         if (!node)
2276                 goto out;
2277
2278         entry = rb_entry(node, struct btrfs_free_space, offset_index);
2279         while(1) {
2280                 if (entry->bytes < bytes && entry->bytes > *max_extent_size)
2281                         *max_extent_size = entry->bytes;
2282
2283                 if (entry->bytes < bytes ||
2284                     (!entry->bitmap && entry->offset < min_start)) {
2285                         node = rb_next(&entry->offset_index);
2286                         if (!node)
2287                                 break;
2288                         entry = rb_entry(node, struct btrfs_free_space,
2289                                          offset_index);
2290                         continue;
2291                 }
2292
2293                 if (entry->bitmap) {
2294                         ret = btrfs_alloc_from_bitmap(block_group,
2295                                                       cluster, entry, bytes,
2296                                                       cluster->window_start,
2297                                                       max_extent_size);
2298                         if (ret == 0) {
2299                                 node = rb_next(&entry->offset_index);
2300                                 if (!node)
2301                                         break;
2302                                 entry = rb_entry(node, struct btrfs_free_space,
2303                                                  offset_index);
2304                                 continue;
2305                         }
2306                         cluster->window_start += bytes;
2307                 } else {
2308                         ret = entry->offset;
2309
2310                         entry->offset += bytes;
2311                         entry->bytes -= bytes;
2312                 }
2313
2314                 if (entry->bytes == 0)
2315                         rb_erase(&entry->offset_index, &cluster->root);
2316                 break;
2317         }
2318 out:
2319         spin_unlock(&cluster->lock);
2320
2321         if (!ret)
2322                 return 0;
2323
2324         spin_lock(&ctl->tree_lock);
2325
2326         ctl->free_space -= bytes;
2327         if (entry->bytes == 0) {
2328                 ctl->free_extents--;
2329                 if (entry->bitmap) {
2330                         kfree(entry->bitmap);
2331                         ctl->total_bitmaps--;
2332                         ctl->op->recalc_thresholds(ctl);
2333                 }
2334                 kmem_cache_free(btrfs_free_space_cachep, entry);
2335         }
2336
2337         spin_unlock(&ctl->tree_lock);
2338
2339         return ret;
2340 }
2341
2342 static int btrfs_bitmap_cluster(struct btrfs_block_group_cache *block_group,
2343                                 struct btrfs_free_space *entry,
2344                                 struct btrfs_free_cluster *cluster,
2345                                 u64 offset, u64 bytes,
2346                                 u64 cont1_bytes, u64 min_bytes)
2347 {
2348         struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2349         unsigned long next_zero;
2350         unsigned long i;
2351         unsigned long want_bits;
2352         unsigned long min_bits;
2353         unsigned long found_bits;
2354         unsigned long start = 0;
2355         unsigned long total_found = 0;
2356         int ret;
2357
2358         i = offset_to_bit(entry->offset, ctl->unit,
2359                           max_t(u64, offset, entry->offset));
2360         want_bits = bytes_to_bits(bytes, ctl->unit);
2361         min_bits = bytes_to_bits(min_bytes, ctl->unit);
2362
2363 again:
2364         found_bits = 0;
2365         for_each_set_bit_from(i, entry->bitmap, BITS_PER_BITMAP) {
2366                 next_zero = find_next_zero_bit(entry->bitmap,
2367                                                BITS_PER_BITMAP, i);
2368                 if (next_zero - i >= min_bits) {
2369                         found_bits = next_zero - i;
2370                         break;
2371                 }
2372                 i = next_zero;
2373         }
2374
2375         if (!found_bits)
2376                 return -ENOSPC;
2377
2378         if (!total_found) {
2379                 start = i;
2380                 cluster->max_size = 0;
2381         }
2382
2383         total_found += found_bits;
2384
2385         if (cluster->max_size < found_bits * ctl->unit)
2386                 cluster->max_size = found_bits * ctl->unit;
2387
2388         if (total_found < want_bits || cluster->max_size < cont1_bytes) {
2389                 i = next_zero + 1;
2390                 goto again;
2391         }
2392
2393         cluster->window_start = start * ctl->unit + entry->offset;
2394         rb_erase(&entry->offset_index, &ctl->free_space_offset);
2395         ret = tree_insert_offset(&cluster->root, entry->offset,
2396                                  &entry->offset_index, 1);
2397         ASSERT(!ret); /* -EEXIST; Logic error */
2398
2399         trace_btrfs_setup_cluster(block_group, cluster,
2400                                   total_found * ctl->unit, 1);
2401         return 0;
2402 }
2403
2404 /*
2405  * This searches the block group for just extents to fill the cluster with.
2406  * Try to find a cluster with at least bytes total bytes, at least one
2407  * extent of cont1_bytes, and other clusters of at least min_bytes.
2408  */
2409 static noinline int
2410 setup_cluster_no_bitmap(struct btrfs_block_group_cache *block_group,
2411                         struct btrfs_free_cluster *cluster,
2412                         struct list_head *bitmaps, u64 offset, u64 bytes,
2413                         u64 cont1_bytes, u64 min_bytes)
2414 {
2415         struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2416         struct btrfs_free_space *first = NULL;
2417         struct btrfs_free_space *entry = NULL;
2418         struct btrfs_free_space *last;
2419         struct rb_node *node;
2420         u64 window_start;
2421         u64 window_free;
2422         u64 max_extent;
2423         u64 total_size = 0;
2424
2425         entry = tree_search_offset(ctl, offset, 0, 1);
2426         if (!entry)
2427                 return -ENOSPC;
2428
2429         /*
2430          * We don't want bitmaps, so just move along until we find a normal
2431          * extent entry.
2432          */
2433         while (entry->bitmap || entry->bytes < min_bytes) {
2434                 if (entry->bitmap && list_empty(&entry->list))
2435                         list_add_tail(&entry->list, bitmaps);
2436                 node = rb_next(&entry->offset_index);
2437                 if (!node)
2438                         return -ENOSPC;
2439                 entry = rb_entry(node, struct btrfs_free_space, offset_index);
2440         }
2441
2442         window_start = entry->offset;
2443         window_free = entry->bytes;
2444         max_extent = entry->bytes;
2445         first = entry;
2446         last = entry;
2447
2448         for (node = rb_next(&entry->offset_index); node;
2449              node = rb_next(&entry->offset_index)) {
2450                 entry = rb_entry(node, struct btrfs_free_space, offset_index);
2451
2452                 if (entry->bitmap) {
2453                         if (list_empty(&entry->list))
2454                                 list_add_tail(&entry->list, bitmaps);
2455                         continue;
2456                 }
2457
2458                 if (entry->bytes < min_bytes)
2459                         continue;
2460
2461                 last = entry;
2462                 window_free += entry->bytes;
2463                 if (entry->bytes > max_extent)
2464                         max_extent = entry->bytes;
2465         }
2466
2467         if (window_free < bytes || max_extent < cont1_bytes)
2468                 return -ENOSPC;
2469
2470         cluster->window_start = first->offset;
2471
2472         node = &first->offset_index;
2473
2474         /*
2475          * now we've found our entries, pull them out of the free space
2476          * cache and put them into the cluster rbtree
2477          */
2478         do {
2479                 int ret;
2480
2481                 entry = rb_entry(node, struct btrfs_free_space, offset_index);
2482                 node = rb_next(&entry->offset_index);
2483                 if (entry->bitmap || entry->bytes < min_bytes)
2484                         continue;
2485
2486                 rb_erase(&entry->offset_index, &ctl->free_space_offset);
2487                 ret = tree_insert_offset(&cluster->root, entry->offset,
2488                                          &entry->offset_index, 0);
2489                 total_size += entry->bytes;
2490                 ASSERT(!ret); /* -EEXIST; Logic error */
2491         } while (node && entry != last);
2492
2493         cluster->max_size = max_extent;
2494         trace_btrfs_setup_cluster(block_group, cluster, total_size, 0);
2495         return 0;
2496 }
2497
2498 /*
2499  * This specifically looks for bitmaps that may work in the cluster, we assume
2500  * that we have already failed to find extents that will work.
2501  */
2502 static noinline int
2503 setup_cluster_bitmap(struct btrfs_block_group_cache *block_group,
2504                      struct btrfs_free_cluster *cluster,
2505                      struct list_head *bitmaps, u64 offset, u64 bytes,
2506                      u64 cont1_bytes, u64 min_bytes)
2507 {
2508         struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2509         struct btrfs_free_space *entry;
2510         int ret = -ENOSPC;
2511         u64 bitmap_offset = offset_to_bitmap(ctl, offset);
2512
2513         if (ctl->total_bitmaps == 0)
2514                 return -ENOSPC;
2515
2516         /*
2517          * The bitmap that covers offset won't be in the list unless offset
2518          * is just its start offset.
2519          */
2520         entry = list_first_entry(bitmaps, struct btrfs_free_space, list);
2521         if (entry->offset != bitmap_offset) {
2522                 entry = tree_search_offset(ctl, bitmap_offset, 1, 0);
2523                 if (entry && list_empty(&entry->list))
2524                         list_add(&entry->list, bitmaps);
2525         }
2526
2527         list_for_each_entry(entry, bitmaps, list) {
2528                 if (entry->bytes < bytes)
2529                         continue;
2530                 ret = btrfs_bitmap_cluster(block_group, entry, cluster, offset,
2531                                            bytes, cont1_bytes, min_bytes);
2532                 if (!ret)
2533                         return 0;
2534         }
2535
2536         /*
2537          * The bitmaps list has all the bitmaps that record free space
2538          * starting after offset, so no more search is required.
2539          */
2540         return -ENOSPC;
2541 }
2542
2543 /*
2544  * here we try to find a cluster of blocks in a block group.  The goal
2545  * is to find at least bytes+empty_size.
2546  * We might not find them all in one contiguous area.
2547  *
2548  * returns zero and sets up cluster if things worked out, otherwise
2549  * it returns -enospc
2550  */
2551 int btrfs_find_space_cluster(struct btrfs_root *root,
2552                              struct btrfs_block_group_cache *block_group,
2553                              struct btrfs_free_cluster *cluster,
2554                              u64 offset, u64 bytes, u64 empty_size)
2555 {
2556         struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2557         struct btrfs_free_space *entry, *tmp;
2558         LIST_HEAD(bitmaps);
2559         u64 min_bytes;
2560         u64 cont1_bytes;
2561         int ret;
2562
2563         /*
2564          * Choose the minimum extent size we'll require for this
2565          * cluster.  For SSD_SPREAD, don't allow any fragmentation.
2566          * For metadata, allow allocates with smaller extents.  For
2567          * data, keep it dense.
2568          */
2569         if (btrfs_test_opt(root, SSD_SPREAD)) {
2570                 cont1_bytes = min_bytes = bytes + empty_size;
2571         } else if (block_group->flags & BTRFS_BLOCK_GROUP_METADATA) {
2572                 cont1_bytes = bytes;
2573                 min_bytes = block_group->sectorsize;
2574         } else {
2575                 cont1_bytes = max(bytes, (bytes + empty_size) >> 2);
2576                 min_bytes = block_group->sectorsize;
2577         }
2578
2579         spin_lock(&ctl->tree_lock);
2580
2581         /*
2582          * If we know we don't have enough space to make a cluster don't even
2583          * bother doing all the work to try and find one.
2584          */
2585         if (ctl->free_space < bytes) {
2586                 spin_unlock(&ctl->tree_lock);
2587                 return -ENOSPC;
2588         }
2589
2590         spin_lock(&cluster->lock);
2591
2592         /* someone already found a cluster, hooray */
2593         if (cluster->block_group) {
2594                 ret = 0;
2595                 goto out;
2596         }
2597
2598         trace_btrfs_find_cluster(block_group, offset, bytes, empty_size,
2599                                  min_bytes);
2600
2601         INIT_LIST_HEAD(&bitmaps);
2602         ret = setup_cluster_no_bitmap(block_group, cluster, &bitmaps, offset,
2603                                       bytes + empty_size,
2604                                       cont1_bytes, min_bytes);
2605         if (ret)
2606                 ret = setup_cluster_bitmap(block_group, cluster, &bitmaps,
2607                                            offset, bytes + empty_size,
2608                                            cont1_bytes, min_bytes);
2609
2610         /* Clear our temporary list */
2611         list_for_each_entry_safe(entry, tmp, &bitmaps, list)
2612                 list_del_init(&entry->list);
2613
2614         if (!ret) {
2615                 atomic_inc(&block_group->count);
2616                 list_add_tail(&cluster->block_group_list,
2617                               &block_group->cluster_list);
2618                 cluster->block_group = block_group;
2619         } else {
2620                 trace_btrfs_failed_cluster_setup(block_group);
2621         }
2622 out:
2623         spin_unlock(&cluster->lock);
2624         spin_unlock(&ctl->tree_lock);
2625
2626         return ret;
2627 }
2628
2629 /*
2630  * simple code to zero out a cluster
2631  */
2632 void btrfs_init_free_cluster(struct btrfs_free_cluster *cluster)
2633 {
2634         spin_lock_init(&cluster->lock);
2635         spin_lock_init(&cluster->refill_lock);
2636         cluster->root = RB_ROOT;
2637         cluster->max_size = 0;
2638         INIT_LIST_HEAD(&cluster->block_group_list);
2639         cluster->block_group = NULL;
2640 }
2641
2642 static int do_trimming(struct btrfs_block_group_cache *block_group,
2643                        u64 *total_trimmed, u64 start, u64 bytes,
2644                        u64 reserved_start, u64 reserved_bytes)
2645 {
2646         struct btrfs_space_info *space_info = block_group->space_info;
2647         struct btrfs_fs_info *fs_info = block_group->fs_info;
2648         int ret;
2649         int update = 0;
2650         u64 trimmed = 0;
2651
2652         spin_lock(&space_info->lock);
2653         spin_lock(&block_group->lock);
2654         if (!block_group->ro) {
2655                 block_group->reserved += reserved_bytes;
2656                 space_info->bytes_reserved += reserved_bytes;
2657                 update = 1;
2658         }
2659         spin_unlock(&block_group->lock);
2660         spin_unlock(&space_info->lock);
2661
2662         ret = btrfs_error_discard_extent(fs_info->extent_root,
2663                                          start, bytes, &trimmed);
2664         if (!ret)
2665                 *total_trimmed += trimmed;
2666
2667         btrfs_add_free_space(block_group, reserved_start, reserved_bytes);
2668
2669         if (update) {
2670                 spin_lock(&space_info->lock);
2671                 spin_lock(&block_group->lock);
2672                 if (block_group->ro)
2673                         space_info->bytes_readonly += reserved_bytes;
2674                 block_group->reserved -= reserved_bytes;
2675                 space_info->bytes_reserved -= reserved_bytes;
2676                 spin_unlock(&space_info->lock);
2677                 spin_unlock(&block_group->lock);
2678         }
2679
2680         return ret;
2681 }
2682
2683 static int trim_no_bitmap(struct btrfs_block_group_cache *block_group,
2684                           u64 *total_trimmed, u64 start, u64 end, u64 minlen)
2685 {
2686         struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2687         struct btrfs_free_space *entry;
2688         struct rb_node *node;
2689         int ret = 0;
2690         u64 extent_start;
2691         u64 extent_bytes;
2692         u64 bytes;
2693
2694         while (start < end) {
2695                 spin_lock(&ctl->tree_lock);
2696
2697                 if (ctl->free_space < minlen) {
2698                         spin_unlock(&ctl->tree_lock);
2699                         break;
2700                 }
2701
2702                 entry = tree_search_offset(ctl, start, 0, 1);
2703                 if (!entry) {
2704                         spin_unlock(&ctl->tree_lock);
2705                         break;
2706                 }
2707
2708                 /* skip bitmaps */
2709                 while (entry->bitmap) {
2710                         node = rb_next(&entry->offset_index);
2711                         if (!node) {
2712                                 spin_unlock(&ctl->tree_lock);
2713                                 goto out;
2714                         }
2715                         entry = rb_entry(node, struct btrfs_free_space,
2716                                          offset_index);
2717                 }
2718
2719                 if (entry->offset >= end) {
2720                         spin_unlock(&ctl->tree_lock);
2721                         break;
2722                 }
2723
2724                 extent_start = entry->offset;
2725                 extent_bytes = entry->bytes;
2726                 start = max(start, extent_start);
2727                 bytes = min(extent_start + extent_bytes, end) - start;
2728                 if (bytes < minlen) {
2729                         spin_unlock(&ctl->tree_lock);
2730                         goto next;
2731                 }
2732
2733                 unlink_free_space(ctl, entry);
2734                 kmem_cache_free(btrfs_free_space_cachep, entry);
2735
2736                 spin_unlock(&ctl->tree_lock);
2737
2738                 ret = do_trimming(block_group, total_trimmed, start, bytes,
2739                                   extent_start, extent_bytes);
2740                 if (ret)
2741                         break;
2742 next:
2743                 start += bytes;
2744
2745                 if (fatal_signal_pending(current)) {
2746                         ret = -ERESTARTSYS;
2747                         break;
2748                 }
2749
2750                 cond_resched();
2751         }
2752 out:
2753         return ret;
2754 }
2755
2756 static int trim_bitmaps(struct btrfs_block_group_cache *block_group,
2757                         u64 *total_trimmed, u64 start, u64 end, u64 minlen)
2758 {
2759         struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2760         struct btrfs_free_space *entry;
2761         int ret = 0;
2762         int ret2;
2763         u64 bytes;
2764         u64 offset = offset_to_bitmap(ctl, start);
2765
2766         while (offset < end) {
2767                 bool next_bitmap = false;
2768
2769                 spin_lock(&ctl->tree_lock);
2770
2771                 if (ctl->free_space < minlen) {
2772                         spin_unlock(&ctl->tree_lock);
2773                         break;
2774                 }
2775
2776                 entry = tree_search_offset(ctl, offset, 1, 0);
2777                 if (!entry) {
2778                         spin_unlock(&ctl->tree_lock);
2779                         next_bitmap = true;
2780                         goto next;
2781                 }
2782
2783                 bytes = minlen;
2784                 ret2 = search_bitmap(ctl, entry, &start, &bytes);
2785                 if (ret2 || start >= end) {
2786                         spin_unlock(&ctl->tree_lock);
2787                         next_bitmap = true;
2788                         goto next;
2789                 }
2790
2791                 bytes = min(bytes, end - start);
2792                 if (bytes < minlen) {
2793                         spin_unlock(&ctl->tree_lock);
2794                         goto next;
2795                 }
2796
2797                 bitmap_clear_bits(ctl, entry, start, bytes);
2798                 if (entry->bytes == 0)
2799                         free_bitmap(ctl, entry);
2800
2801                 spin_unlock(&ctl->tree_lock);
2802
2803                 ret = do_trimming(block_group, total_trimmed, start, bytes,
2804                                   start, bytes);
2805                 if (ret)
2806                         break;
2807 next:
2808                 if (next_bitmap) {
2809                         offset += BITS_PER_BITMAP * ctl->unit;
2810                 } else {
2811                         start += bytes;
2812                         if (start >= offset + BITS_PER_BITMAP * ctl->unit)
2813                                 offset += BITS_PER_BITMAP * ctl->unit;
2814                 }
2815
2816                 if (fatal_signal_pending(current)) {
2817                         ret = -ERESTARTSYS;
2818                         break;
2819                 }
2820
2821                 cond_resched();
2822         }
2823
2824         return ret;
2825 }
2826
2827 int btrfs_trim_block_group(struct btrfs_block_group_cache *block_group,
2828                            u64 *trimmed, u64 start, u64 end, u64 minlen)
2829 {
2830         int ret;
2831
2832         *trimmed = 0;
2833
2834         ret = trim_no_bitmap(block_group, trimmed, start, end, minlen);
2835         if (ret)
2836                 return ret;
2837
2838         ret = trim_bitmaps(block_group, trimmed, start, end, minlen);
2839
2840         return ret;
2841 }
2842
2843 /*
2844  * Find the left-most item in the cache tree, and then return the
2845  * smallest inode number in the item.
2846  *
2847  * Note: the returned inode number may not be the smallest one in
2848  * the tree, if the left-most item is a bitmap.
2849  */
2850 u64 btrfs_find_ino_for_alloc(struct btrfs_root *fs_root)
2851 {
2852         struct btrfs_free_space_ctl *ctl = fs_root->free_ino_ctl;
2853         struct btrfs_free_space *entry = NULL;
2854         u64 ino = 0;
2855
2856         spin_lock(&ctl->tree_lock);
2857
2858         if (RB_EMPTY_ROOT(&ctl->free_space_offset))
2859                 goto out;
2860
2861         entry = rb_entry(rb_first(&ctl->free_space_offset),
2862                          struct btrfs_free_space, offset_index);
2863
2864         if (!entry->bitmap) {
2865                 ino = entry->offset;
2866
2867                 unlink_free_space(ctl, entry);
2868                 entry->offset++;
2869                 entry->bytes--;
2870                 if (!entry->bytes)
2871                         kmem_cache_free(btrfs_free_space_cachep, entry);
2872                 else
2873                         link_free_space(ctl, entry);
2874         } else {
2875                 u64 offset = 0;
2876                 u64 count = 1;
2877                 int ret;
2878
2879                 ret = search_bitmap(ctl, entry, &offset, &count);
2880                 /* Logic error; Should be empty if it can't find anything */
2881                 ASSERT(!ret);
2882
2883                 ino = offset;
2884                 bitmap_clear_bits(ctl, entry, offset, 1);
2885                 if (entry->bytes == 0)
2886                         free_bitmap(ctl, entry);
2887         }
2888 out:
2889         spin_unlock(&ctl->tree_lock);
2890
2891         return ino;
2892 }
2893
2894 struct inode *lookup_free_ino_inode(struct btrfs_root *root,
2895                                     struct btrfs_path *path)
2896 {
2897         struct inode *inode = NULL;
2898
2899         spin_lock(&root->cache_lock);
2900         if (root->cache_inode)
2901                 inode = igrab(root->cache_inode);
2902         spin_unlock(&root->cache_lock);
2903         if (inode)
2904                 return inode;
2905
2906         inode = __lookup_free_space_inode(root, path, 0);
2907         if (IS_ERR(inode))
2908                 return inode;
2909
2910         spin_lock(&root->cache_lock);
2911         if (!btrfs_fs_closing(root->fs_info))
2912                 root->cache_inode = igrab(inode);
2913         spin_unlock(&root->cache_lock);
2914
2915         return inode;
2916 }
2917
2918 int create_free_ino_inode(struct btrfs_root *root,
2919                           struct btrfs_trans_handle *trans,
2920                           struct btrfs_path *path)
2921 {
2922         return __create_free_space_inode(root, trans, path,
2923                                          BTRFS_FREE_INO_OBJECTID, 0);
2924 }
2925
2926 int load_free_ino_cache(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
2927 {
2928         struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
2929         struct btrfs_path *path;
2930         struct inode *inode;
2931         int ret = 0;
2932         u64 root_gen = btrfs_root_generation(&root->root_item);
2933
2934         if (!btrfs_test_opt(root, INODE_MAP_CACHE))
2935                 return 0;
2936
2937         /*
2938          * If we're unmounting then just return, since this does a search on the
2939          * normal root and not the commit root and we could deadlock.
2940          */
2941         if (btrfs_fs_closing(fs_info))
2942                 return 0;
2943
2944         path = btrfs_alloc_path();
2945         if (!path)
2946                 return 0;
2947
2948         inode = lookup_free_ino_inode(root, path);
2949         if (IS_ERR(inode))
2950                 goto out;
2951
2952         if (root_gen != BTRFS_I(inode)->generation)
2953                 goto out_put;
2954
2955         ret = __load_free_space_cache(root, inode, ctl, path, 0);
2956
2957         if (ret < 0)
2958                 btrfs_err(fs_info,
2959                         "failed to load free ino cache for root %llu",
2960                         root->root_key.objectid);
2961 out_put:
2962         iput(inode);
2963 out:
2964         btrfs_free_path(path);
2965         return ret;
2966 }
2967
2968 int btrfs_write_out_ino_cache(struct btrfs_root *root,
2969                               struct btrfs_trans_handle *trans,
2970                               struct btrfs_path *path)
2971 {
2972         struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
2973         struct inode *inode;
2974         int ret;
2975
2976         if (!btrfs_test_opt(root, INODE_MAP_CACHE))
2977                 return 0;
2978
2979         inode = lookup_free_ino_inode(root, path);
2980         if (IS_ERR(inode))
2981                 return 0;
2982
2983         ret = __btrfs_write_out_cache(root, inode, ctl, NULL, trans, path, 0);
2984         if (ret) {
2985                 btrfs_delalloc_release_metadata(inode, inode->i_size);
2986 #ifdef DEBUG
2987                 btrfs_err(root->fs_info,
2988                         "failed to write free ino cache for root %llu",
2989                         root->root_key.objectid);
2990 #endif
2991         }
2992
2993         iput(inode);
2994         return ret;
2995 }
2996
2997 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
2998 /*
2999  * Use this if you need to make a bitmap or extent entry specifically, it
3000  * doesn't do any of the merging that add_free_space does, this acts a lot like
3001  * how the free space cache loading stuff works, so you can get really weird
3002  * configurations.
3003  */
3004 int test_add_free_space_entry(struct btrfs_block_group_cache *cache,
3005                               u64 offset, u64 bytes, bool bitmap)
3006 {
3007         struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
3008         struct btrfs_free_space *info = NULL, *bitmap_info;
3009         void *map = NULL;
3010         u64 bytes_added;
3011         int ret;
3012
3013 again:
3014         if (!info) {
3015                 info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
3016                 if (!info)
3017                         return -ENOMEM;
3018         }
3019
3020         if (!bitmap) {
3021                 spin_lock(&ctl->tree_lock);
3022                 info->offset = offset;
3023                 info->bytes = bytes;
3024                 ret = link_free_space(ctl, info);
3025                 spin_unlock(&ctl->tree_lock);
3026                 if (ret)
3027                         kmem_cache_free(btrfs_free_space_cachep, info);
3028                 return ret;
3029         }
3030
3031         if (!map) {
3032                 map = kzalloc(PAGE_CACHE_SIZE, GFP_NOFS);
3033                 if (!map) {
3034                         kmem_cache_free(btrfs_free_space_cachep, info);
3035                         return -ENOMEM;
3036                 }
3037         }
3038
3039         spin_lock(&ctl->tree_lock);
3040         bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
3041                                          1, 0);
3042         if (!bitmap_info) {
3043                 info->bitmap = map;
3044                 map = NULL;
3045                 add_new_bitmap(ctl, info, offset);
3046                 bitmap_info = info;
3047         }
3048
3049         bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes);
3050         bytes -= bytes_added;
3051         offset += bytes_added;
3052         spin_unlock(&ctl->tree_lock);
3053
3054         if (bytes)
3055                 goto again;
3056
3057         if (map)
3058                 kfree(map);
3059         return 0;
3060 }
3061
3062 /*
3063  * Checks to see if the given range is in the free space cache.  This is really
3064  * just used to check the absence of space, so if there is free space in the
3065  * range at all we will return 1.
3066  */
3067 int test_check_exists(struct btrfs_block_group_cache *cache,
3068                       u64 offset, u64 bytes)
3069 {
3070         struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
3071         struct btrfs_free_space *info;
3072         int ret = 0;
3073
3074         spin_lock(&ctl->tree_lock);
3075         info = tree_search_offset(ctl, offset, 0, 0);
3076         if (!info) {
3077                 info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
3078                                           1, 0);
3079                 if (!info)
3080                         goto out;
3081         }
3082
3083 have_info:
3084         if (info->bitmap) {
3085                 u64 bit_off, bit_bytes;
3086                 struct rb_node *n;
3087                 struct btrfs_free_space *tmp;
3088
3089                 bit_off = offset;
3090                 bit_bytes = ctl->unit;
3091                 ret = search_bitmap(ctl, info, &bit_off, &bit_bytes);
3092                 if (!ret) {
3093                         if (bit_off == offset) {
3094                                 ret = 1;
3095                                 goto out;
3096                         } else if (bit_off > offset &&
3097                                    offset + bytes > bit_off) {
3098                                 ret = 1;
3099                                 goto out;
3100                         }
3101                 }
3102
3103                 n = rb_prev(&info->offset_index);
3104                 while (n) {
3105                         tmp = rb_entry(n, struct btrfs_free_space,
3106                                        offset_index);
3107                         if (tmp->offset + tmp->bytes < offset)
3108                                 break;
3109                         if (offset + bytes < tmp->offset) {
3110                                 n = rb_prev(&info->offset_index);
3111                                 continue;
3112                         }
3113                         info = tmp;
3114                         goto have_info;
3115                 }
3116
3117                 n = rb_next(&info->offset_index);
3118                 while (n) {
3119                         tmp = rb_entry(n, struct btrfs_free_space,
3120                                        offset_index);
3121                         if (offset + bytes < tmp->offset)
3122                                 break;
3123                         if (tmp->offset + tmp->bytes < offset) {
3124                                 n = rb_next(&info->offset_index);
3125                                 continue;
3126                         }
3127                         info = tmp;
3128                         goto have_info;
3129                 }
3130
3131                 goto out;
3132         }
3133
3134         if (info->offset == offset) {
3135                 ret = 1;
3136                 goto out;
3137         }
3138
3139         if (offset > info->offset && offset < info->offset + info->bytes)
3140                 ret = 1;
3141 out:
3142         spin_unlock(&ctl->tree_lock);
3143         return ret;
3144 }
3145 #endif /* CONFIG_BTRFS_FS_RUN_SANITY_TESTS */