]> git.karo-electronics.de Git - mv-sheeva.git/blob - fs/btrfs/inode.c
Btrfs: Fix page count calculation
[mv-sheeva.git] / fs / btrfs / inode.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/statfs.h>
34 #include <linux/compat.h>
35 #include <linux/bit_spinlock.h>
36 #include <linux/xattr.h>
37 #include <linux/posix_acl.h>
38 #include <linux/falloc.h>
39 #include <linux/slab.h>
40 #include "compat.h"
41 #include "ctree.h"
42 #include "disk-io.h"
43 #include "transaction.h"
44 #include "btrfs_inode.h"
45 #include "ioctl.h"
46 #include "print-tree.h"
47 #include "volumes.h"
48 #include "ordered-data.h"
49 #include "xattr.h"
50 #include "tree-log.h"
51 #include "compression.h"
52 #include "locking.h"
53
54 struct btrfs_iget_args {
55         u64 ino;
56         struct btrfs_root *root;
57 };
58
59 static const struct inode_operations btrfs_dir_inode_operations;
60 static const struct inode_operations btrfs_symlink_inode_operations;
61 static const struct inode_operations btrfs_dir_ro_inode_operations;
62 static const struct inode_operations btrfs_special_inode_operations;
63 static const struct inode_operations btrfs_file_inode_operations;
64 static const struct address_space_operations btrfs_aops;
65 static const struct address_space_operations btrfs_symlink_aops;
66 static const struct file_operations btrfs_dir_file_operations;
67 static struct extent_io_ops btrfs_extent_io_ops;
68
69 static struct kmem_cache *btrfs_inode_cachep;
70 struct kmem_cache *btrfs_trans_handle_cachep;
71 struct kmem_cache *btrfs_transaction_cachep;
72 struct kmem_cache *btrfs_path_cachep;
73
74 #define S_SHIFT 12
75 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
76         [S_IFREG >> S_SHIFT]    = BTRFS_FT_REG_FILE,
77         [S_IFDIR >> S_SHIFT]    = BTRFS_FT_DIR,
78         [S_IFCHR >> S_SHIFT]    = BTRFS_FT_CHRDEV,
79         [S_IFBLK >> S_SHIFT]    = BTRFS_FT_BLKDEV,
80         [S_IFIFO >> S_SHIFT]    = BTRFS_FT_FIFO,
81         [S_IFSOCK >> S_SHIFT]   = BTRFS_FT_SOCK,
82         [S_IFLNK >> S_SHIFT]    = BTRFS_FT_SYMLINK,
83 };
84
85 static void btrfs_truncate(struct inode *inode);
86 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end);
87 static noinline int cow_file_range(struct inode *inode,
88                                    struct page *locked_page,
89                                    u64 start, u64 end, int *page_started,
90                                    unsigned long *nr_written, int unlock);
91
92 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
93                                      struct inode *inode,  struct inode *dir)
94 {
95         int err;
96
97         err = btrfs_init_acl(trans, inode, dir);
98         if (!err)
99                 err = btrfs_xattr_security_init(trans, inode, dir);
100         return err;
101 }
102
103 /*
104  * this does all the hard work for inserting an inline extent into
105  * the btree.  The caller should have done a btrfs_drop_extents so that
106  * no overlapping inline items exist in the btree
107  */
108 static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
109                                 struct btrfs_root *root, struct inode *inode,
110                                 u64 start, size_t size, size_t compressed_size,
111                                 struct page **compressed_pages)
112 {
113         struct btrfs_key key;
114         struct btrfs_path *path;
115         struct extent_buffer *leaf;
116         struct page *page = NULL;
117         char *kaddr;
118         unsigned long ptr;
119         struct btrfs_file_extent_item *ei;
120         int err = 0;
121         int ret;
122         size_t cur_size = size;
123         size_t datasize;
124         unsigned long offset;
125         int compress_type = BTRFS_COMPRESS_NONE;
126
127         if (compressed_size && compressed_pages) {
128                 compress_type = root->fs_info->compress_type;
129                 cur_size = compressed_size;
130         }
131
132         path = btrfs_alloc_path();
133         if (!path)
134                 return -ENOMEM;
135
136         path->leave_spinning = 1;
137         btrfs_set_trans_block_group(trans, inode);
138
139         key.objectid = inode->i_ino;
140         key.offset = start;
141         btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
142         datasize = btrfs_file_extent_calc_inline_size(cur_size);
143
144         inode_add_bytes(inode, size);
145         ret = btrfs_insert_empty_item(trans, root, path, &key,
146                                       datasize);
147         BUG_ON(ret);
148         if (ret) {
149                 err = ret;
150                 goto fail;
151         }
152         leaf = path->nodes[0];
153         ei = btrfs_item_ptr(leaf, path->slots[0],
154                             struct btrfs_file_extent_item);
155         btrfs_set_file_extent_generation(leaf, ei, trans->transid);
156         btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
157         btrfs_set_file_extent_encryption(leaf, ei, 0);
158         btrfs_set_file_extent_other_encoding(leaf, ei, 0);
159         btrfs_set_file_extent_ram_bytes(leaf, ei, size);
160         ptr = btrfs_file_extent_inline_start(ei);
161
162         if (compress_type != BTRFS_COMPRESS_NONE) {
163                 struct page *cpage;
164                 int i = 0;
165                 while (compressed_size > 0) {
166                         cpage = compressed_pages[i];
167                         cur_size = min_t(unsigned long, compressed_size,
168                                        PAGE_CACHE_SIZE);
169
170                         kaddr = kmap_atomic(cpage, KM_USER0);
171                         write_extent_buffer(leaf, kaddr, ptr, cur_size);
172                         kunmap_atomic(kaddr, KM_USER0);
173
174                         i++;
175                         ptr += cur_size;
176                         compressed_size -= cur_size;
177                 }
178                 btrfs_set_file_extent_compression(leaf, ei,
179                                                   compress_type);
180         } else {
181                 page = find_get_page(inode->i_mapping,
182                                      start >> PAGE_CACHE_SHIFT);
183                 btrfs_set_file_extent_compression(leaf, ei, 0);
184                 kaddr = kmap_atomic(page, KM_USER0);
185                 offset = start & (PAGE_CACHE_SIZE - 1);
186                 write_extent_buffer(leaf, kaddr + offset, ptr, size);
187                 kunmap_atomic(kaddr, KM_USER0);
188                 page_cache_release(page);
189         }
190         btrfs_mark_buffer_dirty(leaf);
191         btrfs_free_path(path);
192
193         /*
194          * we're an inline extent, so nobody can
195          * extend the file past i_size without locking
196          * a page we already have locked.
197          *
198          * We must do any isize and inode updates
199          * before we unlock the pages.  Otherwise we
200          * could end up racing with unlink.
201          */
202         BTRFS_I(inode)->disk_i_size = inode->i_size;
203         btrfs_update_inode(trans, root, inode);
204
205         return 0;
206 fail:
207         btrfs_free_path(path);
208         return err;
209 }
210
211
212 /*
213  * conditionally insert an inline extent into the file.  This
214  * does the checks required to make sure the data is small enough
215  * to fit as an inline extent.
216  */
217 static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans,
218                                  struct btrfs_root *root,
219                                  struct inode *inode, u64 start, u64 end,
220                                  size_t compressed_size,
221                                  struct page **compressed_pages)
222 {
223         u64 isize = i_size_read(inode);
224         u64 actual_end = min(end + 1, isize);
225         u64 inline_len = actual_end - start;
226         u64 aligned_end = (end + root->sectorsize - 1) &
227                         ~((u64)root->sectorsize - 1);
228         u64 hint_byte;
229         u64 data_len = inline_len;
230         int ret;
231
232         if (compressed_size)
233                 data_len = compressed_size;
234
235         if (start > 0 ||
236             actual_end >= PAGE_CACHE_SIZE ||
237             data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
238             (!compressed_size &&
239             (actual_end & (root->sectorsize - 1)) == 0) ||
240             end + 1 < isize ||
241             data_len > root->fs_info->max_inline) {
242                 return 1;
243         }
244
245         ret = btrfs_drop_extents(trans, inode, start, aligned_end,
246                                  &hint_byte, 1);
247         BUG_ON(ret);
248
249         if (isize > actual_end)
250                 inline_len = min_t(u64, isize, actual_end);
251         ret = insert_inline_extent(trans, root, inode, start,
252                                    inline_len, compressed_size,
253                                    compressed_pages);
254         BUG_ON(ret);
255         btrfs_delalloc_release_metadata(inode, end + 1 - start);
256         btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
257         return 0;
258 }
259
260 struct async_extent {
261         u64 start;
262         u64 ram_size;
263         u64 compressed_size;
264         struct page **pages;
265         unsigned long nr_pages;
266         int compress_type;
267         struct list_head list;
268 };
269
270 struct async_cow {
271         struct inode *inode;
272         struct btrfs_root *root;
273         struct page *locked_page;
274         u64 start;
275         u64 end;
276         struct list_head extents;
277         struct btrfs_work work;
278 };
279
280 static noinline int add_async_extent(struct async_cow *cow,
281                                      u64 start, u64 ram_size,
282                                      u64 compressed_size,
283                                      struct page **pages,
284                                      unsigned long nr_pages,
285                                      int compress_type)
286 {
287         struct async_extent *async_extent;
288
289         async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
290         async_extent->start = start;
291         async_extent->ram_size = ram_size;
292         async_extent->compressed_size = compressed_size;
293         async_extent->pages = pages;
294         async_extent->nr_pages = nr_pages;
295         async_extent->compress_type = compress_type;
296         list_add_tail(&async_extent->list, &cow->extents);
297         return 0;
298 }
299
300 /*
301  * we create compressed extents in two phases.  The first
302  * phase compresses a range of pages that have already been
303  * locked (both pages and state bits are locked).
304  *
305  * This is done inside an ordered work queue, and the compression
306  * is spread across many cpus.  The actual IO submission is step
307  * two, and the ordered work queue takes care of making sure that
308  * happens in the same order things were put onto the queue by
309  * writepages and friends.
310  *
311  * If this code finds it can't get good compression, it puts an
312  * entry onto the work queue to write the uncompressed bytes.  This
313  * makes sure that both compressed inodes and uncompressed inodes
314  * are written in the same order that pdflush sent them down.
315  */
316 static noinline int compress_file_range(struct inode *inode,
317                                         struct page *locked_page,
318                                         u64 start, u64 end,
319                                         struct async_cow *async_cow,
320                                         int *num_added)
321 {
322         struct btrfs_root *root = BTRFS_I(inode)->root;
323         struct btrfs_trans_handle *trans;
324         u64 num_bytes;
325         u64 blocksize = root->sectorsize;
326         u64 actual_end;
327         u64 isize = i_size_read(inode);
328         int ret = 0;
329         struct page **pages = NULL;
330         unsigned long nr_pages;
331         unsigned long nr_pages_ret = 0;
332         unsigned long total_compressed = 0;
333         unsigned long total_in = 0;
334         unsigned long max_compressed = 128 * 1024;
335         unsigned long max_uncompressed = 128 * 1024;
336         int i;
337         int will_compress;
338         int compress_type = root->fs_info->compress_type;
339
340         actual_end = min_t(u64, isize, end + 1);
341 again:
342         will_compress = 0;
343         nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
344         nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
345
346         /*
347          * we don't want to send crud past the end of i_size through
348          * compression, that's just a waste of CPU time.  So, if the
349          * end of the file is before the start of our current
350          * requested range of bytes, we bail out to the uncompressed
351          * cleanup code that can deal with all of this.
352          *
353          * It isn't really the fastest way to fix things, but this is a
354          * very uncommon corner.
355          */
356         if (actual_end <= start)
357                 goto cleanup_and_bail_uncompressed;
358
359         total_compressed = actual_end - start;
360
361         /* we want to make sure that amount of ram required to uncompress
362          * an extent is reasonable, so we limit the total size in ram
363          * of a compressed extent to 128k.  This is a crucial number
364          * because it also controls how easily we can spread reads across
365          * cpus for decompression.
366          *
367          * We also want to make sure the amount of IO required to do
368          * a random read is reasonably small, so we limit the size of
369          * a compressed extent to 128k.
370          */
371         total_compressed = min(total_compressed, max_uncompressed);
372         num_bytes = (end - start + blocksize) & ~(blocksize - 1);
373         num_bytes = max(blocksize,  num_bytes);
374         total_in = 0;
375         ret = 0;
376
377         /*
378          * we do compression for mount -o compress and when the
379          * inode has not been flagged as nocompress.  This flag can
380          * change at any time if we discover bad compression ratios.
381          */
382         if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) &&
383             (btrfs_test_opt(root, COMPRESS) ||
384              (BTRFS_I(inode)->force_compress))) {
385                 WARN_ON(pages);
386                 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
387
388                 if (BTRFS_I(inode)->force_compress)
389                         compress_type = BTRFS_I(inode)->force_compress;
390
391                 ret = btrfs_compress_pages(compress_type,
392                                            inode->i_mapping, start,
393                                            total_compressed, pages,
394                                            nr_pages, &nr_pages_ret,
395                                            &total_in,
396                                            &total_compressed,
397                                            max_compressed);
398
399                 if (!ret) {
400                         unsigned long offset = total_compressed &
401                                 (PAGE_CACHE_SIZE - 1);
402                         struct page *page = pages[nr_pages_ret - 1];
403                         char *kaddr;
404
405                         /* zero the tail end of the last page, we might be
406                          * sending it down to disk
407                          */
408                         if (offset) {
409                                 kaddr = kmap_atomic(page, KM_USER0);
410                                 memset(kaddr + offset, 0,
411                                        PAGE_CACHE_SIZE - offset);
412                                 kunmap_atomic(kaddr, KM_USER0);
413                         }
414                         will_compress = 1;
415                 }
416         }
417         if (start == 0) {
418                 trans = btrfs_join_transaction(root, 1);
419                 BUG_ON(IS_ERR(trans));
420                 btrfs_set_trans_block_group(trans, inode);
421                 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
422
423                 /* lets try to make an inline extent */
424                 if (ret || total_in < (actual_end - start)) {
425                         /* we didn't compress the entire range, try
426                          * to make an uncompressed inline extent.
427                          */
428                         ret = cow_file_range_inline(trans, root, inode,
429                                                     start, end, 0, NULL);
430                 } else {
431                         /* try making a compressed inline extent */
432                         ret = cow_file_range_inline(trans, root, inode,
433                                                     start, end,
434                                                     total_compressed, pages);
435                 }
436                 if (ret == 0) {
437                         /*
438                          * inline extent creation worked, we don't need
439                          * to create any more async work items.  Unlock
440                          * and free up our temp pages.
441                          */
442                         extent_clear_unlock_delalloc(inode,
443                              &BTRFS_I(inode)->io_tree,
444                              start, end, NULL,
445                              EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
446                              EXTENT_CLEAR_DELALLOC |
447                              EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK);
448
449                         btrfs_end_transaction(trans, root);
450                         goto free_pages_out;
451                 }
452                 btrfs_end_transaction(trans, root);
453         }
454
455         if (will_compress) {
456                 /*
457                  * we aren't doing an inline extent round the compressed size
458                  * up to a block size boundary so the allocator does sane
459                  * things
460                  */
461                 total_compressed = (total_compressed + blocksize - 1) &
462                         ~(blocksize - 1);
463
464                 /*
465                  * one last check to make sure the compression is really a
466                  * win, compare the page count read with the blocks on disk
467                  */
468                 total_in = (total_in + PAGE_CACHE_SIZE - 1) &
469                         ~(PAGE_CACHE_SIZE - 1);
470                 if (total_compressed >= total_in) {
471                         will_compress = 0;
472                 } else {
473                         num_bytes = total_in;
474                 }
475         }
476         if (!will_compress && pages) {
477                 /*
478                  * the compression code ran but failed to make things smaller,
479                  * free any pages it allocated and our page pointer array
480                  */
481                 for (i = 0; i < nr_pages_ret; i++) {
482                         WARN_ON(pages[i]->mapping);
483                         page_cache_release(pages[i]);
484                 }
485                 kfree(pages);
486                 pages = NULL;
487                 total_compressed = 0;
488                 nr_pages_ret = 0;
489
490                 /* flag the file so we don't compress in the future */
491                 if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
492                     !(BTRFS_I(inode)->force_compress)) {
493                         BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
494                 }
495         }
496         if (will_compress) {
497                 *num_added += 1;
498
499                 /* the async work queues will take care of doing actual
500                  * allocation on disk for these compressed pages,
501                  * and will submit them to the elevator.
502                  */
503                 add_async_extent(async_cow, start, num_bytes,
504                                  total_compressed, pages, nr_pages_ret,
505                                  compress_type);
506
507                 if (start + num_bytes < end) {
508                         start += num_bytes;
509                         pages = NULL;
510                         cond_resched();
511                         goto again;
512                 }
513         } else {
514 cleanup_and_bail_uncompressed:
515                 /*
516                  * No compression, but we still need to write the pages in
517                  * the file we've been given so far.  redirty the locked
518                  * page if it corresponds to our extent and set things up
519                  * for the async work queue to run cow_file_range to do
520                  * the normal delalloc dance
521                  */
522                 if (page_offset(locked_page) >= start &&
523                     page_offset(locked_page) <= end) {
524                         __set_page_dirty_nobuffers(locked_page);
525                         /* unlocked later on in the async handlers */
526                 }
527                 add_async_extent(async_cow, start, end - start + 1,
528                                  0, NULL, 0, BTRFS_COMPRESS_NONE);
529                 *num_added += 1;
530         }
531
532 out:
533         return 0;
534
535 free_pages_out:
536         for (i = 0; i < nr_pages_ret; i++) {
537                 WARN_ON(pages[i]->mapping);
538                 page_cache_release(pages[i]);
539         }
540         kfree(pages);
541
542         goto out;
543 }
544
545 /*
546  * phase two of compressed writeback.  This is the ordered portion
547  * of the code, which only gets called in the order the work was
548  * queued.  We walk all the async extents created by compress_file_range
549  * and send them down to the disk.
550  */
551 static noinline int submit_compressed_extents(struct inode *inode,
552                                               struct async_cow *async_cow)
553 {
554         struct async_extent *async_extent;
555         u64 alloc_hint = 0;
556         struct btrfs_trans_handle *trans;
557         struct btrfs_key ins;
558         struct extent_map *em;
559         struct btrfs_root *root = BTRFS_I(inode)->root;
560         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
561         struct extent_io_tree *io_tree;
562         int ret = 0;
563
564         if (list_empty(&async_cow->extents))
565                 return 0;
566
567
568         while (!list_empty(&async_cow->extents)) {
569                 async_extent = list_entry(async_cow->extents.next,
570                                           struct async_extent, list);
571                 list_del(&async_extent->list);
572
573                 io_tree = &BTRFS_I(inode)->io_tree;
574
575 retry:
576                 /* did the compression code fall back to uncompressed IO? */
577                 if (!async_extent->pages) {
578                         int page_started = 0;
579                         unsigned long nr_written = 0;
580
581                         lock_extent(io_tree, async_extent->start,
582                                          async_extent->start +
583                                          async_extent->ram_size - 1, GFP_NOFS);
584
585                         /* allocate blocks */
586                         ret = cow_file_range(inode, async_cow->locked_page,
587                                              async_extent->start,
588                                              async_extent->start +
589                                              async_extent->ram_size - 1,
590                                              &page_started, &nr_written, 0);
591
592                         /*
593                          * if page_started, cow_file_range inserted an
594                          * inline extent and took care of all the unlocking
595                          * and IO for us.  Otherwise, we need to submit
596                          * all those pages down to the drive.
597                          */
598                         if (!page_started && !ret)
599                                 extent_write_locked_range(io_tree,
600                                                   inode, async_extent->start,
601                                                   async_extent->start +
602                                                   async_extent->ram_size - 1,
603                                                   btrfs_get_extent,
604                                                   WB_SYNC_ALL);
605                         kfree(async_extent);
606                         cond_resched();
607                         continue;
608                 }
609
610                 lock_extent(io_tree, async_extent->start,
611                             async_extent->start + async_extent->ram_size - 1,
612                             GFP_NOFS);
613
614                 trans = btrfs_join_transaction(root, 1);
615                 BUG_ON(IS_ERR(trans));
616                 ret = btrfs_reserve_extent(trans, root,
617                                            async_extent->compressed_size,
618                                            async_extent->compressed_size,
619                                            0, alloc_hint,
620                                            (u64)-1, &ins, 1);
621                 btrfs_end_transaction(trans, root);
622
623                 if (ret) {
624                         int i;
625                         for (i = 0; i < async_extent->nr_pages; i++) {
626                                 WARN_ON(async_extent->pages[i]->mapping);
627                                 page_cache_release(async_extent->pages[i]);
628                         }
629                         kfree(async_extent->pages);
630                         async_extent->nr_pages = 0;
631                         async_extent->pages = NULL;
632                         unlock_extent(io_tree, async_extent->start,
633                                       async_extent->start +
634                                       async_extent->ram_size - 1, GFP_NOFS);
635                         goto retry;
636                 }
637
638                 /*
639                  * here we're doing allocation and writeback of the
640                  * compressed pages
641                  */
642                 btrfs_drop_extent_cache(inode, async_extent->start,
643                                         async_extent->start +
644                                         async_extent->ram_size - 1, 0);
645
646                 em = alloc_extent_map(GFP_NOFS);
647                 em->start = async_extent->start;
648                 em->len = async_extent->ram_size;
649                 em->orig_start = em->start;
650
651                 em->block_start = ins.objectid;
652                 em->block_len = ins.offset;
653                 em->bdev = root->fs_info->fs_devices->latest_bdev;
654                 em->compress_type = async_extent->compress_type;
655                 set_bit(EXTENT_FLAG_PINNED, &em->flags);
656                 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
657
658                 while (1) {
659                         write_lock(&em_tree->lock);
660                         ret = add_extent_mapping(em_tree, em);
661                         write_unlock(&em_tree->lock);
662                         if (ret != -EEXIST) {
663                                 free_extent_map(em);
664                                 break;
665                         }
666                         btrfs_drop_extent_cache(inode, async_extent->start,
667                                                 async_extent->start +
668                                                 async_extent->ram_size - 1, 0);
669                 }
670
671                 ret = btrfs_add_ordered_extent_compress(inode,
672                                                 async_extent->start,
673                                                 ins.objectid,
674                                                 async_extent->ram_size,
675                                                 ins.offset,
676                                                 BTRFS_ORDERED_COMPRESSED,
677                                                 async_extent->compress_type);
678                 BUG_ON(ret);
679
680                 /*
681                  * clear dirty, set writeback and unlock the pages.
682                  */
683                 extent_clear_unlock_delalloc(inode,
684                                 &BTRFS_I(inode)->io_tree,
685                                 async_extent->start,
686                                 async_extent->start +
687                                 async_extent->ram_size - 1,
688                                 NULL, EXTENT_CLEAR_UNLOCK_PAGE |
689                                 EXTENT_CLEAR_UNLOCK |
690                                 EXTENT_CLEAR_DELALLOC |
691                                 EXTENT_CLEAR_DIRTY | EXTENT_SET_WRITEBACK);
692
693                 ret = btrfs_submit_compressed_write(inode,
694                                     async_extent->start,
695                                     async_extent->ram_size,
696                                     ins.objectid,
697                                     ins.offset, async_extent->pages,
698                                     async_extent->nr_pages);
699
700                 BUG_ON(ret);
701                 alloc_hint = ins.objectid + ins.offset;
702                 kfree(async_extent);
703                 cond_resched();
704         }
705
706         return 0;
707 }
708
709 static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
710                                       u64 num_bytes)
711 {
712         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
713         struct extent_map *em;
714         u64 alloc_hint = 0;
715
716         read_lock(&em_tree->lock);
717         em = search_extent_mapping(em_tree, start, num_bytes);
718         if (em) {
719                 /*
720                  * if block start isn't an actual block number then find the
721                  * first block in this inode and use that as a hint.  If that
722                  * block is also bogus then just don't worry about it.
723                  */
724                 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
725                         free_extent_map(em);
726                         em = search_extent_mapping(em_tree, 0, 0);
727                         if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
728                                 alloc_hint = em->block_start;
729                         if (em)
730                                 free_extent_map(em);
731                 } else {
732                         alloc_hint = em->block_start;
733                         free_extent_map(em);
734                 }
735         }
736         read_unlock(&em_tree->lock);
737
738         return alloc_hint;
739 }
740
741 /*
742  * when extent_io.c finds a delayed allocation range in the file,
743  * the call backs end up in this code.  The basic idea is to
744  * allocate extents on disk for the range, and create ordered data structs
745  * in ram to track those extents.
746  *
747  * locked_page is the page that writepage had locked already.  We use
748  * it to make sure we don't do extra locks or unlocks.
749  *
750  * *page_started is set to one if we unlock locked_page and do everything
751  * required to start IO on it.  It may be clean and already done with
752  * IO when we return.
753  */
754 static noinline int cow_file_range(struct inode *inode,
755                                    struct page *locked_page,
756                                    u64 start, u64 end, int *page_started,
757                                    unsigned long *nr_written,
758                                    int unlock)
759 {
760         struct btrfs_root *root = BTRFS_I(inode)->root;
761         struct btrfs_trans_handle *trans;
762         u64 alloc_hint = 0;
763         u64 num_bytes;
764         unsigned long ram_size;
765         u64 disk_num_bytes;
766         u64 cur_alloc_size;
767         u64 blocksize = root->sectorsize;
768         struct btrfs_key ins;
769         struct extent_map *em;
770         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
771         int ret = 0;
772
773         BUG_ON(root == root->fs_info->tree_root);
774         trans = btrfs_join_transaction(root, 1);
775         BUG_ON(IS_ERR(trans));
776         btrfs_set_trans_block_group(trans, inode);
777         trans->block_rsv = &root->fs_info->delalloc_block_rsv;
778
779         num_bytes = (end - start + blocksize) & ~(blocksize - 1);
780         num_bytes = max(blocksize,  num_bytes);
781         disk_num_bytes = num_bytes;
782         ret = 0;
783
784         if (start == 0) {
785                 /* lets try to make an inline extent */
786                 ret = cow_file_range_inline(trans, root, inode,
787                                             start, end, 0, NULL);
788                 if (ret == 0) {
789                         extent_clear_unlock_delalloc(inode,
790                                      &BTRFS_I(inode)->io_tree,
791                                      start, end, NULL,
792                                      EXTENT_CLEAR_UNLOCK_PAGE |
793                                      EXTENT_CLEAR_UNLOCK |
794                                      EXTENT_CLEAR_DELALLOC |
795                                      EXTENT_CLEAR_DIRTY |
796                                      EXTENT_SET_WRITEBACK |
797                                      EXTENT_END_WRITEBACK);
798
799                         *nr_written = *nr_written +
800                              (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
801                         *page_started = 1;
802                         ret = 0;
803                         goto out;
804                 }
805         }
806
807         BUG_ON(disk_num_bytes >
808                btrfs_super_total_bytes(&root->fs_info->super_copy));
809
810         alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
811         btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
812
813         while (disk_num_bytes > 0) {
814                 unsigned long op;
815
816                 cur_alloc_size = disk_num_bytes;
817                 ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
818                                            root->sectorsize, 0, alloc_hint,
819                                            (u64)-1, &ins, 1);
820                 BUG_ON(ret);
821
822                 em = alloc_extent_map(GFP_NOFS);
823                 em->start = start;
824                 em->orig_start = em->start;
825                 ram_size = ins.offset;
826                 em->len = ins.offset;
827
828                 em->block_start = ins.objectid;
829                 em->block_len = ins.offset;
830                 em->bdev = root->fs_info->fs_devices->latest_bdev;
831                 set_bit(EXTENT_FLAG_PINNED, &em->flags);
832
833                 while (1) {
834                         write_lock(&em_tree->lock);
835                         ret = add_extent_mapping(em_tree, em);
836                         write_unlock(&em_tree->lock);
837                         if (ret != -EEXIST) {
838                                 free_extent_map(em);
839                                 break;
840                         }
841                         btrfs_drop_extent_cache(inode, start,
842                                                 start + ram_size - 1, 0);
843                 }
844
845                 cur_alloc_size = ins.offset;
846                 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
847                                                ram_size, cur_alloc_size, 0);
848                 BUG_ON(ret);
849
850                 if (root->root_key.objectid ==
851                     BTRFS_DATA_RELOC_TREE_OBJECTID) {
852                         ret = btrfs_reloc_clone_csums(inode, start,
853                                                       cur_alloc_size);
854                         BUG_ON(ret);
855                 }
856
857                 if (disk_num_bytes < cur_alloc_size)
858                         break;
859
860                 /* we're not doing compressed IO, don't unlock the first
861                  * page (which the caller expects to stay locked), don't
862                  * clear any dirty bits and don't set any writeback bits
863                  *
864                  * Do set the Private2 bit so we know this page was properly
865                  * setup for writepage
866                  */
867                 op = unlock ? EXTENT_CLEAR_UNLOCK_PAGE : 0;
868                 op |= EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
869                         EXTENT_SET_PRIVATE2;
870
871                 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
872                                              start, start + ram_size - 1,
873                                              locked_page, op);
874                 disk_num_bytes -= cur_alloc_size;
875                 num_bytes -= cur_alloc_size;
876                 alloc_hint = ins.objectid + ins.offset;
877                 start += cur_alloc_size;
878         }
879 out:
880         ret = 0;
881         btrfs_end_transaction(trans, root);
882
883         return ret;
884 }
885
886 /*
887  * work queue call back to started compression on a file and pages
888  */
889 static noinline void async_cow_start(struct btrfs_work *work)
890 {
891         struct async_cow *async_cow;
892         int num_added = 0;
893         async_cow = container_of(work, struct async_cow, work);
894
895         compress_file_range(async_cow->inode, async_cow->locked_page,
896                             async_cow->start, async_cow->end, async_cow,
897                             &num_added);
898         if (num_added == 0)
899                 async_cow->inode = NULL;
900 }
901
902 /*
903  * work queue call back to submit previously compressed pages
904  */
905 static noinline void async_cow_submit(struct btrfs_work *work)
906 {
907         struct async_cow *async_cow;
908         struct btrfs_root *root;
909         unsigned long nr_pages;
910
911         async_cow = container_of(work, struct async_cow, work);
912
913         root = async_cow->root;
914         nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
915                 PAGE_CACHE_SHIFT;
916
917         atomic_sub(nr_pages, &root->fs_info->async_delalloc_pages);
918
919         if (atomic_read(&root->fs_info->async_delalloc_pages) <
920             5 * 1042 * 1024 &&
921             waitqueue_active(&root->fs_info->async_submit_wait))
922                 wake_up(&root->fs_info->async_submit_wait);
923
924         if (async_cow->inode)
925                 submit_compressed_extents(async_cow->inode, async_cow);
926 }
927
928 static noinline void async_cow_free(struct btrfs_work *work)
929 {
930         struct async_cow *async_cow;
931         async_cow = container_of(work, struct async_cow, work);
932         kfree(async_cow);
933 }
934
935 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
936                                 u64 start, u64 end, int *page_started,
937                                 unsigned long *nr_written)
938 {
939         struct async_cow *async_cow;
940         struct btrfs_root *root = BTRFS_I(inode)->root;
941         unsigned long nr_pages;
942         u64 cur_end;
943         int limit = 10 * 1024 * 1042;
944
945         clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
946                          1, 0, NULL, GFP_NOFS);
947         while (start < end) {
948                 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
949                 async_cow->inode = inode;
950                 async_cow->root = root;
951                 async_cow->locked_page = locked_page;
952                 async_cow->start = start;
953
954                 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
955                         cur_end = end;
956                 else
957                         cur_end = min(end, start + 512 * 1024 - 1);
958
959                 async_cow->end = cur_end;
960                 INIT_LIST_HEAD(&async_cow->extents);
961
962                 async_cow->work.func = async_cow_start;
963                 async_cow->work.ordered_func = async_cow_submit;
964                 async_cow->work.ordered_free = async_cow_free;
965                 async_cow->work.flags = 0;
966
967                 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
968                         PAGE_CACHE_SHIFT;
969                 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
970
971                 btrfs_queue_worker(&root->fs_info->delalloc_workers,
972                                    &async_cow->work);
973
974                 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
975                         wait_event(root->fs_info->async_submit_wait,
976                            (atomic_read(&root->fs_info->async_delalloc_pages) <
977                             limit));
978                 }
979
980                 while (atomic_read(&root->fs_info->async_submit_draining) &&
981                       atomic_read(&root->fs_info->async_delalloc_pages)) {
982                         wait_event(root->fs_info->async_submit_wait,
983                           (atomic_read(&root->fs_info->async_delalloc_pages) ==
984                            0));
985                 }
986
987                 *nr_written += nr_pages;
988                 start = cur_end + 1;
989         }
990         *page_started = 1;
991         return 0;
992 }
993
994 static noinline int csum_exist_in_range(struct btrfs_root *root,
995                                         u64 bytenr, u64 num_bytes)
996 {
997         int ret;
998         struct btrfs_ordered_sum *sums;
999         LIST_HEAD(list);
1000
1001         ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
1002                                        bytenr + num_bytes - 1, &list);
1003         if (ret == 0 && list_empty(&list))
1004                 return 0;
1005
1006         while (!list_empty(&list)) {
1007                 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1008                 list_del(&sums->list);
1009                 kfree(sums);
1010         }
1011         return 1;
1012 }
1013
1014 /*
1015  * when nowcow writeback call back.  This checks for snapshots or COW copies
1016  * of the extents that exist in the file, and COWs the file as required.
1017  *
1018  * If no cow copies or snapshots exist, we write directly to the existing
1019  * blocks on disk
1020  */
1021 static noinline int run_delalloc_nocow(struct inode *inode,
1022                                        struct page *locked_page,
1023                               u64 start, u64 end, int *page_started, int force,
1024                               unsigned long *nr_written)
1025 {
1026         struct btrfs_root *root = BTRFS_I(inode)->root;
1027         struct btrfs_trans_handle *trans;
1028         struct extent_buffer *leaf;
1029         struct btrfs_path *path;
1030         struct btrfs_file_extent_item *fi;
1031         struct btrfs_key found_key;
1032         u64 cow_start;
1033         u64 cur_offset;
1034         u64 extent_end;
1035         u64 extent_offset;
1036         u64 disk_bytenr;
1037         u64 num_bytes;
1038         int extent_type;
1039         int ret;
1040         int type;
1041         int nocow;
1042         int check_prev = 1;
1043         bool nolock = false;
1044
1045         path = btrfs_alloc_path();
1046         BUG_ON(!path);
1047         if (root == root->fs_info->tree_root) {
1048                 nolock = true;
1049                 trans = btrfs_join_transaction_nolock(root, 1);
1050         } else {
1051                 trans = btrfs_join_transaction(root, 1);
1052         }
1053         BUG_ON(IS_ERR(trans));
1054
1055         cow_start = (u64)-1;
1056         cur_offset = start;
1057         while (1) {
1058                 ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
1059                                                cur_offset, 0);
1060                 BUG_ON(ret < 0);
1061                 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1062                         leaf = path->nodes[0];
1063                         btrfs_item_key_to_cpu(leaf, &found_key,
1064                                               path->slots[0] - 1);
1065                         if (found_key.objectid == inode->i_ino &&
1066                             found_key.type == BTRFS_EXTENT_DATA_KEY)
1067                                 path->slots[0]--;
1068                 }
1069                 check_prev = 0;
1070 next_slot:
1071                 leaf = path->nodes[0];
1072                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1073                         ret = btrfs_next_leaf(root, path);
1074                         if (ret < 0)
1075                                 BUG_ON(1);
1076                         if (ret > 0)
1077                                 break;
1078                         leaf = path->nodes[0];
1079                 }
1080
1081                 nocow = 0;
1082                 disk_bytenr = 0;
1083                 num_bytes = 0;
1084                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1085
1086                 if (found_key.objectid > inode->i_ino ||
1087                     found_key.type > BTRFS_EXTENT_DATA_KEY ||
1088                     found_key.offset > end)
1089                         break;
1090
1091                 if (found_key.offset > cur_offset) {
1092                         extent_end = found_key.offset;
1093                         extent_type = 0;
1094                         goto out_check;
1095                 }
1096
1097                 fi = btrfs_item_ptr(leaf, path->slots[0],
1098                                     struct btrfs_file_extent_item);
1099                 extent_type = btrfs_file_extent_type(leaf, fi);
1100
1101                 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1102                     extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1103                         disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1104                         extent_offset = btrfs_file_extent_offset(leaf, fi);
1105                         extent_end = found_key.offset +
1106                                 btrfs_file_extent_num_bytes(leaf, fi);
1107                         if (extent_end <= start) {
1108                                 path->slots[0]++;
1109                                 goto next_slot;
1110                         }
1111                         if (disk_bytenr == 0)
1112                                 goto out_check;
1113                         if (btrfs_file_extent_compression(leaf, fi) ||
1114                             btrfs_file_extent_encryption(leaf, fi) ||
1115                             btrfs_file_extent_other_encoding(leaf, fi))
1116                                 goto out_check;
1117                         if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1118                                 goto out_check;
1119                         if (btrfs_extent_readonly(root, disk_bytenr))
1120                                 goto out_check;
1121                         if (btrfs_cross_ref_exist(trans, root, inode->i_ino,
1122                                                   found_key.offset -
1123                                                   extent_offset, disk_bytenr))
1124                                 goto out_check;
1125                         disk_bytenr += extent_offset;
1126                         disk_bytenr += cur_offset - found_key.offset;
1127                         num_bytes = min(end + 1, extent_end) - cur_offset;
1128                         /*
1129                          * force cow if csum exists in the range.
1130                          * this ensure that csum for a given extent are
1131                          * either valid or do not exist.
1132                          */
1133                         if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1134                                 goto out_check;
1135                         nocow = 1;
1136                 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1137                         extent_end = found_key.offset +
1138                                 btrfs_file_extent_inline_len(leaf, fi);
1139                         extent_end = ALIGN(extent_end, root->sectorsize);
1140                 } else {
1141                         BUG_ON(1);
1142                 }
1143 out_check:
1144                 if (extent_end <= start) {
1145                         path->slots[0]++;
1146                         goto next_slot;
1147                 }
1148                 if (!nocow) {
1149                         if (cow_start == (u64)-1)
1150                                 cow_start = cur_offset;
1151                         cur_offset = extent_end;
1152                         if (cur_offset > end)
1153                                 break;
1154                         path->slots[0]++;
1155                         goto next_slot;
1156                 }
1157
1158                 btrfs_release_path(root, path);
1159                 if (cow_start != (u64)-1) {
1160                         ret = cow_file_range(inode, locked_page, cow_start,
1161                                         found_key.offset - 1, page_started,
1162                                         nr_written, 1);
1163                         BUG_ON(ret);
1164                         cow_start = (u64)-1;
1165                 }
1166
1167                 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1168                         struct extent_map *em;
1169                         struct extent_map_tree *em_tree;
1170                         em_tree = &BTRFS_I(inode)->extent_tree;
1171                         em = alloc_extent_map(GFP_NOFS);
1172                         em->start = cur_offset;
1173                         em->orig_start = em->start;
1174                         em->len = num_bytes;
1175                         em->block_len = num_bytes;
1176                         em->block_start = disk_bytenr;
1177                         em->bdev = root->fs_info->fs_devices->latest_bdev;
1178                         set_bit(EXTENT_FLAG_PINNED, &em->flags);
1179                         while (1) {
1180                                 write_lock(&em_tree->lock);
1181                                 ret = add_extent_mapping(em_tree, em);
1182                                 write_unlock(&em_tree->lock);
1183                                 if (ret != -EEXIST) {
1184                                         free_extent_map(em);
1185                                         break;
1186                                 }
1187                                 btrfs_drop_extent_cache(inode, em->start,
1188                                                 em->start + em->len - 1, 0);
1189                         }
1190                         type = BTRFS_ORDERED_PREALLOC;
1191                 } else {
1192                         type = BTRFS_ORDERED_NOCOW;
1193                 }
1194
1195                 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1196                                                num_bytes, num_bytes, type);
1197                 BUG_ON(ret);
1198
1199                 if (root->root_key.objectid ==
1200                     BTRFS_DATA_RELOC_TREE_OBJECTID) {
1201                         ret = btrfs_reloc_clone_csums(inode, cur_offset,
1202                                                       num_bytes);
1203                         BUG_ON(ret);
1204                 }
1205
1206                 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
1207                                 cur_offset, cur_offset + num_bytes - 1,
1208                                 locked_page, EXTENT_CLEAR_UNLOCK_PAGE |
1209                                 EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
1210                                 EXTENT_SET_PRIVATE2);
1211                 cur_offset = extent_end;
1212                 if (cur_offset > end)
1213                         break;
1214         }
1215         btrfs_release_path(root, path);
1216
1217         if (cur_offset <= end && cow_start == (u64)-1)
1218                 cow_start = cur_offset;
1219         if (cow_start != (u64)-1) {
1220                 ret = cow_file_range(inode, locked_page, cow_start, end,
1221                                      page_started, nr_written, 1);
1222                 BUG_ON(ret);
1223         }
1224
1225         if (nolock) {
1226                 ret = btrfs_end_transaction_nolock(trans, root);
1227                 BUG_ON(ret);
1228         } else {
1229                 ret = btrfs_end_transaction(trans, root);
1230                 BUG_ON(ret);
1231         }
1232         btrfs_free_path(path);
1233         return 0;
1234 }
1235
1236 /*
1237  * extent_io.c call back to do delayed allocation processing
1238  */
1239 static int run_delalloc_range(struct inode *inode, struct page *locked_page,
1240                               u64 start, u64 end, int *page_started,
1241                               unsigned long *nr_written)
1242 {
1243         int ret;
1244         struct btrfs_root *root = BTRFS_I(inode)->root;
1245
1246         if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)
1247                 ret = run_delalloc_nocow(inode, locked_page, start, end,
1248                                          page_started, 1, nr_written);
1249         else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)
1250                 ret = run_delalloc_nocow(inode, locked_page, start, end,
1251                                          page_started, 0, nr_written);
1252         else if (!btrfs_test_opt(root, COMPRESS) &&
1253                  !(BTRFS_I(inode)->force_compress))
1254                 ret = cow_file_range(inode, locked_page, start, end,
1255                                       page_started, nr_written, 1);
1256         else
1257                 ret = cow_file_range_async(inode, locked_page, start, end,
1258                                            page_started, nr_written);
1259         return ret;
1260 }
1261
1262 static int btrfs_split_extent_hook(struct inode *inode,
1263                                    struct extent_state *orig, u64 split)
1264 {
1265         /* not delalloc, ignore it */
1266         if (!(orig->state & EXTENT_DELALLOC))
1267                 return 0;
1268
1269         atomic_inc(&BTRFS_I(inode)->outstanding_extents);
1270         return 0;
1271 }
1272
1273 /*
1274  * extent_io.c merge_extent_hook, used to track merged delayed allocation
1275  * extents so we can keep track of new extents that are just merged onto old
1276  * extents, such as when we are doing sequential writes, so we can properly
1277  * account for the metadata space we'll need.
1278  */
1279 static int btrfs_merge_extent_hook(struct inode *inode,
1280                                    struct extent_state *new,
1281                                    struct extent_state *other)
1282 {
1283         /* not delalloc, ignore it */
1284         if (!(other->state & EXTENT_DELALLOC))
1285                 return 0;
1286
1287         atomic_dec(&BTRFS_I(inode)->outstanding_extents);
1288         return 0;
1289 }
1290
1291 /*
1292  * extent_io.c set_bit_hook, used to track delayed allocation
1293  * bytes in this file, and to maintain the list of inodes that
1294  * have pending delalloc work to be done.
1295  */
1296 static int btrfs_set_bit_hook(struct inode *inode,
1297                               struct extent_state *state, int *bits)
1298 {
1299
1300         /*
1301          * set_bit and clear bit hooks normally require _irqsave/restore
1302          * but in this case, we are only testeing for the DELALLOC
1303          * bit, which is only set or cleared with irqs on
1304          */
1305         if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1306                 struct btrfs_root *root = BTRFS_I(inode)->root;
1307                 u64 len = state->end + 1 - state->start;
1308                 int do_list = (root->root_key.objectid !=
1309                                BTRFS_ROOT_TREE_OBJECTID);
1310
1311                 if (*bits & EXTENT_FIRST_DELALLOC)
1312                         *bits &= ~EXTENT_FIRST_DELALLOC;
1313                 else
1314                         atomic_inc(&BTRFS_I(inode)->outstanding_extents);
1315
1316                 spin_lock(&root->fs_info->delalloc_lock);
1317                 BTRFS_I(inode)->delalloc_bytes += len;
1318                 root->fs_info->delalloc_bytes += len;
1319                 if (do_list && list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1320                         list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1321                                       &root->fs_info->delalloc_inodes);
1322                 }
1323                 spin_unlock(&root->fs_info->delalloc_lock);
1324         }
1325         return 0;
1326 }
1327
1328 /*
1329  * extent_io.c clear_bit_hook, see set_bit_hook for why
1330  */
1331 static int btrfs_clear_bit_hook(struct inode *inode,
1332                                 struct extent_state *state, int *bits)
1333 {
1334         /*
1335          * set_bit and clear bit hooks normally require _irqsave/restore
1336          * but in this case, we are only testeing for the DELALLOC
1337          * bit, which is only set or cleared with irqs on
1338          */
1339         if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1340                 struct btrfs_root *root = BTRFS_I(inode)->root;
1341                 u64 len = state->end + 1 - state->start;
1342                 int do_list = (root->root_key.objectid !=
1343                                BTRFS_ROOT_TREE_OBJECTID);
1344
1345                 if (*bits & EXTENT_FIRST_DELALLOC)
1346                         *bits &= ~EXTENT_FIRST_DELALLOC;
1347                 else if (!(*bits & EXTENT_DO_ACCOUNTING))
1348                         atomic_dec(&BTRFS_I(inode)->outstanding_extents);
1349
1350                 if (*bits & EXTENT_DO_ACCOUNTING)
1351                         btrfs_delalloc_release_metadata(inode, len);
1352
1353                 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
1354                     && do_list)
1355                         btrfs_free_reserved_data_space(inode, len);
1356
1357                 spin_lock(&root->fs_info->delalloc_lock);
1358                 root->fs_info->delalloc_bytes -= len;
1359                 BTRFS_I(inode)->delalloc_bytes -= len;
1360
1361                 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
1362                     !list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1363                         list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1364                 }
1365                 spin_unlock(&root->fs_info->delalloc_lock);
1366         }
1367         return 0;
1368 }
1369
1370 /*
1371  * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1372  * we don't create bios that span stripes or chunks
1373  */
1374 int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
1375                          size_t size, struct bio *bio,
1376                          unsigned long bio_flags)
1377 {
1378         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1379         struct btrfs_mapping_tree *map_tree;
1380         u64 logical = (u64)bio->bi_sector << 9;
1381         u64 length = 0;
1382         u64 map_length;
1383         int ret;
1384
1385         if (bio_flags & EXTENT_BIO_COMPRESSED)
1386                 return 0;
1387
1388         length = bio->bi_size;
1389         map_tree = &root->fs_info->mapping_tree;
1390         map_length = length;
1391         ret = btrfs_map_block(map_tree, READ, logical,
1392                               &map_length, NULL, 0);
1393
1394         if (map_length < length + size)
1395                 return 1;
1396         return ret;
1397 }
1398
1399 /*
1400  * in order to insert checksums into the metadata in large chunks,
1401  * we wait until bio submission time.   All the pages in the bio are
1402  * checksummed and sums are attached onto the ordered extent record.
1403  *
1404  * At IO completion time the cums attached on the ordered extent record
1405  * are inserted into the btree
1406  */
1407 static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1408                                     struct bio *bio, int mirror_num,
1409                                     unsigned long bio_flags,
1410                                     u64 bio_offset)
1411 {
1412         struct btrfs_root *root = BTRFS_I(inode)->root;
1413         int ret = 0;
1414
1415         ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1416         BUG_ON(ret);
1417         return 0;
1418 }
1419
1420 /*
1421  * in order to insert checksums into the metadata in large chunks,
1422  * we wait until bio submission time.   All the pages in the bio are
1423  * checksummed and sums are attached onto the ordered extent record.
1424  *
1425  * At IO completion time the cums attached on the ordered extent record
1426  * are inserted into the btree
1427  */
1428 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
1429                           int mirror_num, unsigned long bio_flags,
1430                           u64 bio_offset)
1431 {
1432         struct btrfs_root *root = BTRFS_I(inode)->root;
1433         return btrfs_map_bio(root, rw, bio, mirror_num, 1);
1434 }
1435
1436 /*
1437  * extent_io.c submission hook. This does the right thing for csum calculation
1438  * on write, or reading the csums from the tree before a read
1439  */
1440 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
1441                           int mirror_num, unsigned long bio_flags,
1442                           u64 bio_offset)
1443 {
1444         struct btrfs_root *root = BTRFS_I(inode)->root;
1445         int ret = 0;
1446         int skip_sum;
1447
1448         skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
1449
1450         if (root == root->fs_info->tree_root)
1451                 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 2);
1452         else
1453                 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
1454         BUG_ON(ret);
1455
1456         if (!(rw & REQ_WRITE)) {
1457                 if (bio_flags & EXTENT_BIO_COMPRESSED) {
1458                         return btrfs_submit_compressed_read(inode, bio,
1459                                                     mirror_num, bio_flags);
1460                 } else if (!skip_sum)
1461                         btrfs_lookup_bio_sums(root, inode, bio, NULL);
1462                 goto mapit;
1463         } else if (!skip_sum) {
1464                 /* csum items have already been cloned */
1465                 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1466                         goto mapit;
1467                 /* we're doing a write, do the async checksumming */
1468                 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
1469                                    inode, rw, bio, mirror_num,
1470                                    bio_flags, bio_offset,
1471                                    __btrfs_submit_bio_start,
1472                                    __btrfs_submit_bio_done);
1473         }
1474
1475 mapit:
1476         return btrfs_map_bio(root, rw, bio, mirror_num, 0);
1477 }
1478
1479 /*
1480  * given a list of ordered sums record them in the inode.  This happens
1481  * at IO completion time based on sums calculated at bio submission time.
1482  */
1483 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
1484                              struct inode *inode, u64 file_offset,
1485                              struct list_head *list)
1486 {
1487         struct btrfs_ordered_sum *sum;
1488
1489         btrfs_set_trans_block_group(trans, inode);
1490
1491         list_for_each_entry(sum, list, list) {
1492                 btrfs_csum_file_blocks(trans,
1493                        BTRFS_I(inode)->root->fs_info->csum_root, sum);
1494         }
1495         return 0;
1496 }
1497
1498 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1499                               struct extent_state **cached_state)
1500 {
1501         if ((end & (PAGE_CACHE_SIZE - 1)) == 0)
1502                 WARN_ON(1);
1503         return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
1504                                    cached_state, GFP_NOFS);
1505 }
1506
1507 /* see btrfs_writepage_start_hook for details on why this is required */
1508 struct btrfs_writepage_fixup {
1509         struct page *page;
1510         struct btrfs_work work;
1511 };
1512
1513 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
1514 {
1515         struct btrfs_writepage_fixup *fixup;
1516         struct btrfs_ordered_extent *ordered;
1517         struct extent_state *cached_state = NULL;
1518         struct page *page;
1519         struct inode *inode;
1520         u64 page_start;
1521         u64 page_end;
1522
1523         fixup = container_of(work, struct btrfs_writepage_fixup, work);
1524         page = fixup->page;
1525 again:
1526         lock_page(page);
1527         if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1528                 ClearPageChecked(page);
1529                 goto out_page;
1530         }
1531
1532         inode = page->mapping->host;
1533         page_start = page_offset(page);
1534         page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1535
1536         lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0,
1537                          &cached_state, GFP_NOFS);
1538
1539         /* already ordered? We're done */
1540         if (PagePrivate2(page))
1541                 goto out;
1542
1543         ordered = btrfs_lookup_ordered_extent(inode, page_start);
1544         if (ordered) {
1545                 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
1546                                      page_end, &cached_state, GFP_NOFS);
1547                 unlock_page(page);
1548                 btrfs_start_ordered_extent(inode, ordered, 1);
1549                 goto again;
1550         }
1551
1552         BUG();
1553         btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
1554         ClearPageChecked(page);
1555 out:
1556         unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
1557                              &cached_state, GFP_NOFS);
1558 out_page:
1559         unlock_page(page);
1560         page_cache_release(page);
1561         kfree(fixup);
1562 }
1563
1564 /*
1565  * There are a few paths in the higher layers of the kernel that directly
1566  * set the page dirty bit without asking the filesystem if it is a
1567  * good idea.  This causes problems because we want to make sure COW
1568  * properly happens and the data=ordered rules are followed.
1569  *
1570  * In our case any range that doesn't have the ORDERED bit set
1571  * hasn't been properly setup for IO.  We kick off an async process
1572  * to fix it up.  The async helper will wait for ordered extents, set
1573  * the delalloc bit and make it safe to write the page.
1574  */
1575 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
1576 {
1577         struct inode *inode = page->mapping->host;
1578         struct btrfs_writepage_fixup *fixup;
1579         struct btrfs_root *root = BTRFS_I(inode)->root;
1580
1581         /* this page is properly in the ordered list */
1582         if (TestClearPagePrivate2(page))
1583                 return 0;
1584
1585         if (PageChecked(page))
1586                 return -EAGAIN;
1587
1588         fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1589         if (!fixup)
1590                 return -EAGAIN;
1591
1592         SetPageChecked(page);
1593         page_cache_get(page);
1594         fixup->work.func = btrfs_writepage_fixup_worker;
1595         fixup->page = page;
1596         btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
1597         return -EAGAIN;
1598 }
1599
1600 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1601                                        struct inode *inode, u64 file_pos,
1602                                        u64 disk_bytenr, u64 disk_num_bytes,
1603                                        u64 num_bytes, u64 ram_bytes,
1604                                        u8 compression, u8 encryption,
1605                                        u16 other_encoding, int extent_type)
1606 {
1607         struct btrfs_root *root = BTRFS_I(inode)->root;
1608         struct btrfs_file_extent_item *fi;
1609         struct btrfs_path *path;
1610         struct extent_buffer *leaf;
1611         struct btrfs_key ins;
1612         u64 hint;
1613         int ret;
1614
1615         path = btrfs_alloc_path();
1616         BUG_ON(!path);
1617
1618         path->leave_spinning = 1;
1619
1620         /*
1621          * we may be replacing one extent in the tree with another.
1622          * The new extent is pinned in the extent map, and we don't want
1623          * to drop it from the cache until it is completely in the btree.
1624          *
1625          * So, tell btrfs_drop_extents to leave this extent in the cache.
1626          * the caller is expected to unpin it and allow it to be merged
1627          * with the others.
1628          */
1629         ret = btrfs_drop_extents(trans, inode, file_pos, file_pos + num_bytes,
1630                                  &hint, 0);
1631         BUG_ON(ret);
1632
1633         ins.objectid = inode->i_ino;
1634         ins.offset = file_pos;
1635         ins.type = BTRFS_EXTENT_DATA_KEY;
1636         ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
1637         BUG_ON(ret);
1638         leaf = path->nodes[0];
1639         fi = btrfs_item_ptr(leaf, path->slots[0],
1640                             struct btrfs_file_extent_item);
1641         btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1642         btrfs_set_file_extent_type(leaf, fi, extent_type);
1643         btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1644         btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1645         btrfs_set_file_extent_offset(leaf, fi, 0);
1646         btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1647         btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1648         btrfs_set_file_extent_compression(leaf, fi, compression);
1649         btrfs_set_file_extent_encryption(leaf, fi, encryption);
1650         btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
1651
1652         btrfs_unlock_up_safe(path, 1);
1653         btrfs_set_lock_blocking(leaf);
1654
1655         btrfs_mark_buffer_dirty(leaf);
1656
1657         inode_add_bytes(inode, num_bytes);
1658
1659         ins.objectid = disk_bytenr;
1660         ins.offset = disk_num_bytes;
1661         ins.type = BTRFS_EXTENT_ITEM_KEY;
1662         ret = btrfs_alloc_reserved_file_extent(trans, root,
1663                                         root->root_key.objectid,
1664                                         inode->i_ino, file_pos, &ins);
1665         BUG_ON(ret);
1666         btrfs_free_path(path);
1667
1668         return 0;
1669 }
1670
1671 /*
1672  * helper function for btrfs_finish_ordered_io, this
1673  * just reads in some of the csum leaves to prime them into ram
1674  * before we start the transaction.  It limits the amount of btree
1675  * reads required while inside the transaction.
1676  */
1677 /* as ordered data IO finishes, this gets called so we can finish
1678  * an ordered extent if the range of bytes in the file it covers are
1679  * fully written.
1680  */
1681 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end)
1682 {
1683         struct btrfs_root *root = BTRFS_I(inode)->root;
1684         struct btrfs_trans_handle *trans = NULL;
1685         struct btrfs_ordered_extent *ordered_extent = NULL;
1686         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1687         struct extent_state *cached_state = NULL;
1688         int compress_type = 0;
1689         int ret;
1690         bool nolock = false;
1691
1692         ret = btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
1693                                              end - start + 1);
1694         if (!ret)
1695                 return 0;
1696         BUG_ON(!ordered_extent);
1697
1698         nolock = (root == root->fs_info->tree_root);
1699
1700         if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
1701                 BUG_ON(!list_empty(&ordered_extent->list));
1702                 ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1703                 if (!ret) {
1704                         if (nolock)
1705                                 trans = btrfs_join_transaction_nolock(root, 1);
1706                         else
1707                                 trans = btrfs_join_transaction(root, 1);
1708                         BUG_ON(IS_ERR(trans));
1709                         btrfs_set_trans_block_group(trans, inode);
1710                         trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1711                         ret = btrfs_update_inode(trans, root, inode);
1712                         BUG_ON(ret);
1713                 }
1714                 goto out;
1715         }
1716
1717         lock_extent_bits(io_tree, ordered_extent->file_offset,
1718                          ordered_extent->file_offset + ordered_extent->len - 1,
1719                          0, &cached_state, GFP_NOFS);
1720
1721         if (nolock)
1722                 trans = btrfs_join_transaction_nolock(root, 1);
1723         else
1724                 trans = btrfs_join_transaction(root, 1);
1725         BUG_ON(IS_ERR(trans));
1726         btrfs_set_trans_block_group(trans, inode);
1727         trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1728
1729         if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
1730                 compress_type = ordered_extent->compress_type;
1731         if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
1732                 BUG_ON(compress_type);
1733                 ret = btrfs_mark_extent_written(trans, inode,
1734                                                 ordered_extent->file_offset,
1735                                                 ordered_extent->file_offset +
1736                                                 ordered_extent->len);
1737                 BUG_ON(ret);
1738         } else {
1739                 BUG_ON(root == root->fs_info->tree_root);
1740                 ret = insert_reserved_file_extent(trans, inode,
1741                                                 ordered_extent->file_offset,
1742                                                 ordered_extent->start,
1743                                                 ordered_extent->disk_len,
1744                                                 ordered_extent->len,
1745                                                 ordered_extent->len,
1746                                                 compress_type, 0, 0,
1747                                                 BTRFS_FILE_EXTENT_REG);
1748                 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
1749                                    ordered_extent->file_offset,
1750                                    ordered_extent->len);
1751                 BUG_ON(ret);
1752         }
1753         unlock_extent_cached(io_tree, ordered_extent->file_offset,
1754                              ordered_extent->file_offset +
1755                              ordered_extent->len - 1, &cached_state, GFP_NOFS);
1756
1757         add_pending_csums(trans, inode, ordered_extent->file_offset,
1758                           &ordered_extent->list);
1759
1760         btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1761         ret = btrfs_update_inode(trans, root, inode);
1762         BUG_ON(ret);
1763 out:
1764         if (nolock) {
1765                 if (trans)
1766                         btrfs_end_transaction_nolock(trans, root);
1767         } else {
1768                 btrfs_delalloc_release_metadata(inode, ordered_extent->len);
1769                 if (trans)
1770                         btrfs_end_transaction(trans, root);
1771         }
1772
1773         /* once for us */
1774         btrfs_put_ordered_extent(ordered_extent);
1775         /* once for the tree */
1776         btrfs_put_ordered_extent(ordered_extent);
1777
1778         return 0;
1779 }
1780
1781 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
1782                                 struct extent_state *state, int uptodate)
1783 {
1784         ClearPagePrivate2(page);
1785         return btrfs_finish_ordered_io(page->mapping->host, start, end);
1786 }
1787
1788 /*
1789  * When IO fails, either with EIO or csum verification fails, we
1790  * try other mirrors that might have a good copy of the data.  This
1791  * io_failure_record is used to record state as we go through all the
1792  * mirrors.  If another mirror has good data, the page is set up to date
1793  * and things continue.  If a good mirror can't be found, the original
1794  * bio end_io callback is called to indicate things have failed.
1795  */
1796 struct io_failure_record {
1797         struct page *page;
1798         u64 start;
1799         u64 len;
1800         u64 logical;
1801         unsigned long bio_flags;
1802         int last_mirror;
1803 };
1804
1805 static int btrfs_io_failed_hook(struct bio *failed_bio,
1806                          struct page *page, u64 start, u64 end,
1807                          struct extent_state *state)
1808 {
1809         struct io_failure_record *failrec = NULL;
1810         u64 private;
1811         struct extent_map *em;
1812         struct inode *inode = page->mapping->host;
1813         struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1814         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1815         struct bio *bio;
1816         int num_copies;
1817         int ret;
1818         int rw;
1819         u64 logical;
1820
1821         ret = get_state_private(failure_tree, start, &private);
1822         if (ret) {
1823                 failrec = kmalloc(sizeof(*failrec), GFP_NOFS);
1824                 if (!failrec)
1825                         return -ENOMEM;
1826                 failrec->start = start;
1827                 failrec->len = end - start + 1;
1828                 failrec->last_mirror = 0;
1829                 failrec->bio_flags = 0;
1830
1831                 read_lock(&em_tree->lock);
1832                 em = lookup_extent_mapping(em_tree, start, failrec->len);
1833                 if (em->start > start || em->start + em->len < start) {
1834                         free_extent_map(em);
1835                         em = NULL;
1836                 }
1837                 read_unlock(&em_tree->lock);
1838
1839                 if (!em || IS_ERR(em)) {
1840                         kfree(failrec);
1841                         return -EIO;
1842                 }
1843                 logical = start - em->start;
1844                 logical = em->block_start + logical;
1845                 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
1846                         logical = em->block_start;
1847                         failrec->bio_flags = EXTENT_BIO_COMPRESSED;
1848                         extent_set_compress_type(&failrec->bio_flags,
1849                                                  em->compress_type);
1850                 }
1851                 failrec->logical = logical;
1852                 free_extent_map(em);
1853                 set_extent_bits(failure_tree, start, end, EXTENT_LOCKED |
1854                                 EXTENT_DIRTY, GFP_NOFS);
1855                 set_state_private(failure_tree, start,
1856                                  (u64)(unsigned long)failrec);
1857         } else {
1858                 failrec = (struct io_failure_record *)(unsigned long)private;
1859         }
1860         num_copies = btrfs_num_copies(
1861                               &BTRFS_I(inode)->root->fs_info->mapping_tree,
1862                               failrec->logical, failrec->len);
1863         failrec->last_mirror++;
1864         if (!state) {
1865                 spin_lock(&BTRFS_I(inode)->io_tree.lock);
1866                 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
1867                                                     failrec->start,
1868                                                     EXTENT_LOCKED);
1869                 if (state && state->start != failrec->start)
1870                         state = NULL;
1871                 spin_unlock(&BTRFS_I(inode)->io_tree.lock);
1872         }
1873         if (!state || failrec->last_mirror > num_copies) {
1874                 set_state_private(failure_tree, failrec->start, 0);
1875                 clear_extent_bits(failure_tree, failrec->start,
1876                                   failrec->start + failrec->len - 1,
1877                                   EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1878                 kfree(failrec);
1879                 return -EIO;
1880         }
1881         bio = bio_alloc(GFP_NOFS, 1);
1882         bio->bi_private = state;
1883         bio->bi_end_io = failed_bio->bi_end_io;
1884         bio->bi_sector = failrec->logical >> 9;
1885         bio->bi_bdev = failed_bio->bi_bdev;
1886         bio->bi_size = 0;
1887
1888         bio_add_page(bio, page, failrec->len, start - page_offset(page));
1889         if (failed_bio->bi_rw & REQ_WRITE)
1890                 rw = WRITE;
1891         else
1892                 rw = READ;
1893
1894         BTRFS_I(inode)->io_tree.ops->submit_bio_hook(inode, rw, bio,
1895                                                       failrec->last_mirror,
1896                                                       failrec->bio_flags, 0);
1897         return 0;
1898 }
1899
1900 /*
1901  * each time an IO finishes, we do a fast check in the IO failure tree
1902  * to see if we need to process or clean up an io_failure_record
1903  */
1904 static int btrfs_clean_io_failures(struct inode *inode, u64 start)
1905 {
1906         u64 private;
1907         u64 private_failure;
1908         struct io_failure_record *failure;
1909         int ret;
1910
1911         private = 0;
1912         if (count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
1913                              (u64)-1, 1, EXTENT_DIRTY)) {
1914                 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree,
1915                                         start, &private_failure);
1916                 if (ret == 0) {
1917                         failure = (struct io_failure_record *)(unsigned long)
1918                                    private_failure;
1919                         set_state_private(&BTRFS_I(inode)->io_failure_tree,
1920                                           failure->start, 0);
1921                         clear_extent_bits(&BTRFS_I(inode)->io_failure_tree,
1922                                           failure->start,
1923                                           failure->start + failure->len - 1,
1924                                           EXTENT_DIRTY | EXTENT_LOCKED,
1925                                           GFP_NOFS);
1926                         kfree(failure);
1927                 }
1928         }
1929         return 0;
1930 }
1931
1932 /*
1933  * when reads are done, we need to check csums to verify the data is correct
1934  * if there's a match, we allow the bio to finish.  If not, we go through
1935  * the io_failure_record routines to find good copies
1936  */
1937 static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
1938                                struct extent_state *state)
1939 {
1940         size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT);
1941         struct inode *inode = page->mapping->host;
1942         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1943         char *kaddr;
1944         u64 private = ~(u32)0;
1945         int ret;
1946         struct btrfs_root *root = BTRFS_I(inode)->root;
1947         u32 csum = ~(u32)0;
1948
1949         if (PageChecked(page)) {
1950                 ClearPageChecked(page);
1951                 goto good;
1952         }
1953
1954         if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
1955                 return 0;
1956
1957         if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
1958             test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
1959                 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
1960                                   GFP_NOFS);
1961                 return 0;
1962         }
1963
1964         if (state && state->start == start) {
1965                 private = state->private;
1966                 ret = 0;
1967         } else {
1968                 ret = get_state_private(io_tree, start, &private);
1969         }
1970         kaddr = kmap_atomic(page, KM_USER0);
1971         if (ret)
1972                 goto zeroit;
1973
1974         csum = btrfs_csum_data(root, kaddr + offset, csum,  end - start + 1);
1975         btrfs_csum_final(csum, (char *)&csum);
1976         if (csum != private)
1977                 goto zeroit;
1978
1979         kunmap_atomic(kaddr, KM_USER0);
1980 good:
1981         /* if the io failure tree for this inode is non-empty,
1982          * check to see if we've recovered from a failed IO
1983          */
1984         btrfs_clean_io_failures(inode, start);
1985         return 0;
1986
1987 zeroit:
1988         if (printk_ratelimit()) {
1989                 printk(KERN_INFO "btrfs csum failed ino %lu off %llu csum %u "
1990                        "private %llu\n", page->mapping->host->i_ino,
1991                        (unsigned long long)start, csum,
1992                        (unsigned long long)private);
1993         }
1994         memset(kaddr + offset, 1, end - start + 1);
1995         flush_dcache_page(page);
1996         kunmap_atomic(kaddr, KM_USER0);
1997         if (private == 0)
1998                 return 0;
1999         return -EIO;
2000 }
2001
2002 struct delayed_iput {
2003         struct list_head list;
2004         struct inode *inode;
2005 };
2006
2007 void btrfs_add_delayed_iput(struct inode *inode)
2008 {
2009         struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2010         struct delayed_iput *delayed;
2011
2012         if (atomic_add_unless(&inode->i_count, -1, 1))
2013                 return;
2014
2015         delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL);
2016         delayed->inode = inode;
2017
2018         spin_lock(&fs_info->delayed_iput_lock);
2019         list_add_tail(&delayed->list, &fs_info->delayed_iputs);
2020         spin_unlock(&fs_info->delayed_iput_lock);
2021 }
2022
2023 void btrfs_run_delayed_iputs(struct btrfs_root *root)
2024 {
2025         LIST_HEAD(list);
2026         struct btrfs_fs_info *fs_info = root->fs_info;
2027         struct delayed_iput *delayed;
2028         int empty;
2029
2030         spin_lock(&fs_info->delayed_iput_lock);
2031         empty = list_empty(&fs_info->delayed_iputs);
2032         spin_unlock(&fs_info->delayed_iput_lock);
2033         if (empty)
2034                 return;
2035
2036         down_read(&root->fs_info->cleanup_work_sem);
2037         spin_lock(&fs_info->delayed_iput_lock);
2038         list_splice_init(&fs_info->delayed_iputs, &list);
2039         spin_unlock(&fs_info->delayed_iput_lock);
2040
2041         while (!list_empty(&list)) {
2042                 delayed = list_entry(list.next, struct delayed_iput, list);
2043                 list_del(&delayed->list);
2044                 iput(delayed->inode);
2045                 kfree(delayed);
2046         }
2047         up_read(&root->fs_info->cleanup_work_sem);
2048 }
2049
2050 /*
2051  * calculate extra metadata reservation when snapshotting a subvolume
2052  * contains orphan files.
2053  */
2054 void btrfs_orphan_pre_snapshot(struct btrfs_trans_handle *trans,
2055                                 struct btrfs_pending_snapshot *pending,
2056                                 u64 *bytes_to_reserve)
2057 {
2058         struct btrfs_root *root;
2059         struct btrfs_block_rsv *block_rsv;
2060         u64 num_bytes;
2061         int index;
2062
2063         root = pending->root;
2064         if (!root->orphan_block_rsv || list_empty(&root->orphan_list))
2065                 return;
2066
2067         block_rsv = root->orphan_block_rsv;
2068
2069         /* orphan block reservation for the snapshot */
2070         num_bytes = block_rsv->size;
2071
2072         /*
2073          * after the snapshot is created, COWing tree blocks may use more
2074          * space than it frees. So we should make sure there is enough
2075          * reserved space.
2076          */
2077         index = trans->transid & 0x1;
2078         if (block_rsv->reserved + block_rsv->freed[index] < block_rsv->size) {
2079                 num_bytes += block_rsv->size -
2080                              (block_rsv->reserved + block_rsv->freed[index]);
2081         }
2082
2083         *bytes_to_reserve += num_bytes;
2084 }
2085
2086 void btrfs_orphan_post_snapshot(struct btrfs_trans_handle *trans,
2087                                 struct btrfs_pending_snapshot *pending)
2088 {
2089         struct btrfs_root *root = pending->root;
2090         struct btrfs_root *snap = pending->snap;
2091         struct btrfs_block_rsv *block_rsv;
2092         u64 num_bytes;
2093         int index;
2094         int ret;
2095
2096         if (!root->orphan_block_rsv || list_empty(&root->orphan_list))
2097                 return;
2098
2099         /* refill source subvolume's orphan block reservation */
2100         block_rsv = root->orphan_block_rsv;
2101         index = trans->transid & 0x1;
2102         if (block_rsv->reserved + block_rsv->freed[index] < block_rsv->size) {
2103                 num_bytes = block_rsv->size -
2104                             (block_rsv->reserved + block_rsv->freed[index]);
2105                 ret = btrfs_block_rsv_migrate(&pending->block_rsv,
2106                                               root->orphan_block_rsv,
2107                                               num_bytes);
2108                 BUG_ON(ret);
2109         }
2110
2111         /* setup orphan block reservation for the snapshot */
2112         block_rsv = btrfs_alloc_block_rsv(snap);
2113         BUG_ON(!block_rsv);
2114
2115         btrfs_add_durable_block_rsv(root->fs_info, block_rsv);
2116         snap->orphan_block_rsv = block_rsv;
2117
2118         num_bytes = root->orphan_block_rsv->size;
2119         ret = btrfs_block_rsv_migrate(&pending->block_rsv,
2120                                       block_rsv, num_bytes);
2121         BUG_ON(ret);
2122
2123 #if 0
2124         /* insert orphan item for the snapshot */
2125         WARN_ON(!root->orphan_item_inserted);
2126         ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
2127                                        snap->root_key.objectid);
2128         BUG_ON(ret);
2129         snap->orphan_item_inserted = 1;
2130 #endif
2131 }
2132
2133 enum btrfs_orphan_cleanup_state {
2134         ORPHAN_CLEANUP_STARTED  = 1,
2135         ORPHAN_CLEANUP_DONE     = 2,
2136 };
2137
2138 /*
2139  * This is called in transaction commmit time. If there are no orphan
2140  * files in the subvolume, it removes orphan item and frees block_rsv
2141  * structure.
2142  */
2143 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
2144                               struct btrfs_root *root)
2145 {
2146         int ret;
2147
2148         if (!list_empty(&root->orphan_list) ||
2149             root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
2150                 return;
2151
2152         if (root->orphan_item_inserted &&
2153             btrfs_root_refs(&root->root_item) > 0) {
2154                 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
2155                                             root->root_key.objectid);
2156                 BUG_ON(ret);
2157                 root->orphan_item_inserted = 0;
2158         }
2159
2160         if (root->orphan_block_rsv) {
2161                 WARN_ON(root->orphan_block_rsv->size > 0);
2162                 btrfs_free_block_rsv(root, root->orphan_block_rsv);
2163                 root->orphan_block_rsv = NULL;
2164         }
2165 }
2166
2167 /*
2168  * This creates an orphan entry for the given inode in case something goes
2169  * wrong in the middle of an unlink/truncate.
2170  *
2171  * NOTE: caller of this function should reserve 5 units of metadata for
2172  *       this function.
2173  */
2174 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
2175 {
2176         struct btrfs_root *root = BTRFS_I(inode)->root;
2177         struct btrfs_block_rsv *block_rsv = NULL;
2178         int reserve = 0;
2179         int insert = 0;
2180         int ret;
2181
2182         if (!root->orphan_block_rsv) {
2183                 block_rsv = btrfs_alloc_block_rsv(root);
2184                 BUG_ON(!block_rsv);
2185         }
2186
2187         spin_lock(&root->orphan_lock);
2188         if (!root->orphan_block_rsv) {
2189                 root->orphan_block_rsv = block_rsv;
2190         } else if (block_rsv) {
2191                 btrfs_free_block_rsv(root, block_rsv);
2192                 block_rsv = NULL;
2193         }
2194
2195         if (list_empty(&BTRFS_I(inode)->i_orphan)) {
2196                 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
2197 #if 0
2198                 /*
2199                  * For proper ENOSPC handling, we should do orphan
2200                  * cleanup when mounting. But this introduces backward
2201                  * compatibility issue.
2202                  */
2203                 if (!xchg(&root->orphan_item_inserted, 1))
2204                         insert = 2;
2205                 else
2206                         insert = 1;
2207 #endif
2208                 insert = 1;
2209         } else {
2210                 WARN_ON(!BTRFS_I(inode)->orphan_meta_reserved);
2211         }
2212
2213         if (!BTRFS_I(inode)->orphan_meta_reserved) {
2214                 BTRFS_I(inode)->orphan_meta_reserved = 1;
2215                 reserve = 1;
2216         }
2217         spin_unlock(&root->orphan_lock);
2218
2219         if (block_rsv)
2220                 btrfs_add_durable_block_rsv(root->fs_info, block_rsv);
2221
2222         /* grab metadata reservation from transaction handle */
2223         if (reserve) {
2224                 ret = btrfs_orphan_reserve_metadata(trans, inode);
2225                 BUG_ON(ret);
2226         }
2227
2228         /* insert an orphan item to track this unlinked/truncated file */
2229         if (insert >= 1) {
2230                 ret = btrfs_insert_orphan_item(trans, root, inode->i_ino);
2231                 BUG_ON(ret);
2232         }
2233
2234         /* insert an orphan item to track subvolume contains orphan files */
2235         if (insert >= 2) {
2236                 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
2237                                                root->root_key.objectid);
2238                 BUG_ON(ret);
2239         }
2240         return 0;
2241 }
2242
2243 /*
2244  * We have done the truncate/delete so we can go ahead and remove the orphan
2245  * item for this particular inode.
2246  */
2247 int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
2248 {
2249         struct btrfs_root *root = BTRFS_I(inode)->root;
2250         int delete_item = 0;
2251         int release_rsv = 0;
2252         int ret = 0;
2253
2254         spin_lock(&root->orphan_lock);
2255         if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
2256                 list_del_init(&BTRFS_I(inode)->i_orphan);
2257                 delete_item = 1;
2258         }
2259
2260         if (BTRFS_I(inode)->orphan_meta_reserved) {
2261                 BTRFS_I(inode)->orphan_meta_reserved = 0;
2262                 release_rsv = 1;
2263         }
2264         spin_unlock(&root->orphan_lock);
2265
2266         if (trans && delete_item) {
2267                 ret = btrfs_del_orphan_item(trans, root, inode->i_ino);
2268                 BUG_ON(ret);
2269         }
2270
2271         if (release_rsv)
2272                 btrfs_orphan_release_metadata(inode);
2273
2274         return 0;
2275 }
2276
2277 /*
2278  * this cleans up any orphans that may be left on the list from the last use
2279  * of this root.
2280  */
2281 void btrfs_orphan_cleanup(struct btrfs_root *root)
2282 {
2283         struct btrfs_path *path;
2284         struct extent_buffer *leaf;
2285         struct btrfs_key key, found_key;
2286         struct btrfs_trans_handle *trans;
2287         struct inode *inode;
2288         int ret = 0, nr_unlink = 0, nr_truncate = 0;
2289
2290         if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
2291                 return;
2292
2293         path = btrfs_alloc_path();
2294         BUG_ON(!path);
2295         path->reada = -1;
2296
2297         key.objectid = BTRFS_ORPHAN_OBJECTID;
2298         btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
2299         key.offset = (u64)-1;
2300
2301         while (1) {
2302                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2303                 if (ret < 0) {
2304                         printk(KERN_ERR "Error searching slot for orphan: %d"
2305                                "\n", ret);
2306                         break;
2307                 }
2308
2309                 /*
2310                  * if ret == 0 means we found what we were searching for, which
2311                  * is weird, but possible, so only screw with path if we didnt
2312                  * find the key and see if we have stuff that matches
2313                  */
2314                 if (ret > 0) {
2315                         if (path->slots[0] == 0)
2316                                 break;
2317                         path->slots[0]--;
2318                 }
2319
2320                 /* pull out the item */
2321                 leaf = path->nodes[0];
2322                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2323
2324                 /* make sure the item matches what we want */
2325                 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
2326                         break;
2327                 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
2328                         break;
2329
2330                 /* release the path since we're done with it */
2331                 btrfs_release_path(root, path);
2332
2333                 /*
2334                  * this is where we are basically btrfs_lookup, without the
2335                  * crossing root thing.  we store the inode number in the
2336                  * offset of the orphan item.
2337                  */
2338                 found_key.objectid = found_key.offset;
2339                 found_key.type = BTRFS_INODE_ITEM_KEY;
2340                 found_key.offset = 0;
2341                 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
2342                 BUG_ON(IS_ERR(inode));
2343
2344                 /*
2345                  * add this inode to the orphan list so btrfs_orphan_del does
2346                  * the proper thing when we hit it
2347                  */
2348                 spin_lock(&root->orphan_lock);
2349                 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
2350                 spin_unlock(&root->orphan_lock);
2351
2352                 /*
2353                  * if this is a bad inode, means we actually succeeded in
2354                  * removing the inode, but not the orphan record, which means
2355                  * we need to manually delete the orphan since iput will just
2356                  * do a destroy_inode
2357                  */
2358                 if (is_bad_inode(inode)) {
2359                         trans = btrfs_start_transaction(root, 0);
2360                         BUG_ON(IS_ERR(trans));
2361                         btrfs_orphan_del(trans, inode);
2362                         btrfs_end_transaction(trans, root);
2363                         iput(inode);
2364                         continue;
2365                 }
2366
2367                 /* if we have links, this was a truncate, lets do that */
2368                 if (inode->i_nlink) {
2369                         nr_truncate++;
2370                         btrfs_truncate(inode);
2371                 } else {
2372                         nr_unlink++;
2373                 }
2374
2375                 /* this will do delete_inode and everything for us */
2376                 iput(inode);
2377         }
2378         btrfs_free_path(path);
2379
2380         root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
2381
2382         if (root->orphan_block_rsv)
2383                 btrfs_block_rsv_release(root, root->orphan_block_rsv,
2384                                         (u64)-1);
2385
2386         if (root->orphan_block_rsv || root->orphan_item_inserted) {
2387                 trans = btrfs_join_transaction(root, 1);
2388                 BUG_ON(IS_ERR(trans));
2389                 btrfs_end_transaction(trans, root);
2390         }
2391
2392         if (nr_unlink)
2393                 printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
2394         if (nr_truncate)
2395                 printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
2396 }
2397
2398 /*
2399  * very simple check to peek ahead in the leaf looking for xattrs.  If we
2400  * don't find any xattrs, we know there can't be any acls.
2401  *
2402  * slot is the slot the inode is in, objectid is the objectid of the inode
2403  */
2404 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
2405                                           int slot, u64 objectid)
2406 {
2407         u32 nritems = btrfs_header_nritems(leaf);
2408         struct btrfs_key found_key;
2409         int scanned = 0;
2410
2411         slot++;
2412         while (slot < nritems) {
2413                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
2414
2415                 /* we found a different objectid, there must not be acls */
2416                 if (found_key.objectid != objectid)
2417                         return 0;
2418
2419                 /* we found an xattr, assume we've got an acl */
2420                 if (found_key.type == BTRFS_XATTR_ITEM_KEY)
2421                         return 1;
2422
2423                 /*
2424                  * we found a key greater than an xattr key, there can't
2425                  * be any acls later on
2426                  */
2427                 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
2428                         return 0;
2429
2430                 slot++;
2431                 scanned++;
2432
2433                 /*
2434                  * it goes inode, inode backrefs, xattrs, extents,
2435                  * so if there are a ton of hard links to an inode there can
2436                  * be a lot of backrefs.  Don't waste time searching too hard,
2437                  * this is just an optimization
2438                  */
2439                 if (scanned >= 8)
2440                         break;
2441         }
2442         /* we hit the end of the leaf before we found an xattr or
2443          * something larger than an xattr.  We have to assume the inode
2444          * has acls
2445          */
2446         return 1;
2447 }
2448
2449 /*
2450  * read an inode from the btree into the in-memory inode
2451  */
2452 static void btrfs_read_locked_inode(struct inode *inode)
2453 {
2454         struct btrfs_path *path;
2455         struct extent_buffer *leaf;
2456         struct btrfs_inode_item *inode_item;
2457         struct btrfs_timespec *tspec;
2458         struct btrfs_root *root = BTRFS_I(inode)->root;
2459         struct btrfs_key location;
2460         int maybe_acls;
2461         u64 alloc_group_block;
2462         u32 rdev;
2463         int ret;
2464
2465         path = btrfs_alloc_path();
2466         BUG_ON(!path);
2467         memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
2468
2469         ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
2470         if (ret)
2471                 goto make_bad;
2472
2473         leaf = path->nodes[0];
2474         inode_item = btrfs_item_ptr(leaf, path->slots[0],
2475                                     struct btrfs_inode_item);
2476
2477         inode->i_mode = btrfs_inode_mode(leaf, inode_item);
2478         inode->i_nlink = btrfs_inode_nlink(leaf, inode_item);
2479         inode->i_uid = btrfs_inode_uid(leaf, inode_item);
2480         inode->i_gid = btrfs_inode_gid(leaf, inode_item);
2481         btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
2482
2483         tspec = btrfs_inode_atime(inode_item);
2484         inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2485         inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2486
2487         tspec = btrfs_inode_mtime(inode_item);
2488         inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2489         inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2490
2491         tspec = btrfs_inode_ctime(inode_item);
2492         inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2493         inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2494
2495         inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
2496         BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
2497         BTRFS_I(inode)->sequence = btrfs_inode_sequence(leaf, inode_item);
2498         inode->i_generation = BTRFS_I(inode)->generation;
2499         inode->i_rdev = 0;
2500         rdev = btrfs_inode_rdev(leaf, inode_item);
2501
2502         BTRFS_I(inode)->index_cnt = (u64)-1;
2503         BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
2504
2505         alloc_group_block = btrfs_inode_block_group(leaf, inode_item);
2506
2507         /*
2508          * try to precache a NULL acl entry for files that don't have
2509          * any xattrs or acls
2510          */
2511         maybe_acls = acls_after_inode_item(leaf, path->slots[0], inode->i_ino);
2512         if (!maybe_acls)
2513                 cache_no_acl(inode);
2514
2515         BTRFS_I(inode)->block_group = btrfs_find_block_group(root, 0,
2516                                                 alloc_group_block, 0);
2517         btrfs_free_path(path);
2518         inode_item = NULL;
2519
2520         switch (inode->i_mode & S_IFMT) {
2521         case S_IFREG:
2522                 inode->i_mapping->a_ops = &btrfs_aops;
2523                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2524                 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
2525                 inode->i_fop = &btrfs_file_operations;
2526                 inode->i_op = &btrfs_file_inode_operations;
2527                 break;
2528         case S_IFDIR:
2529                 inode->i_fop = &btrfs_dir_file_operations;
2530                 if (root == root->fs_info->tree_root)
2531                         inode->i_op = &btrfs_dir_ro_inode_operations;
2532                 else
2533                         inode->i_op = &btrfs_dir_inode_operations;
2534                 break;
2535         case S_IFLNK:
2536                 inode->i_op = &btrfs_symlink_inode_operations;
2537                 inode->i_mapping->a_ops = &btrfs_symlink_aops;
2538                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2539                 break;
2540         default:
2541                 inode->i_op = &btrfs_special_inode_operations;
2542                 init_special_inode(inode, inode->i_mode, rdev);
2543                 break;
2544         }
2545
2546         btrfs_update_iflags(inode);
2547         return;
2548
2549 make_bad:
2550         btrfs_free_path(path);
2551         make_bad_inode(inode);
2552 }
2553
2554 /*
2555  * given a leaf and an inode, copy the inode fields into the leaf
2556  */
2557 static void fill_inode_item(struct btrfs_trans_handle *trans,
2558                             struct extent_buffer *leaf,
2559                             struct btrfs_inode_item *item,
2560                             struct inode *inode)
2561 {
2562         btrfs_set_inode_uid(leaf, item, inode->i_uid);
2563         btrfs_set_inode_gid(leaf, item, inode->i_gid);
2564         btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
2565         btrfs_set_inode_mode(leaf, item, inode->i_mode);
2566         btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
2567
2568         btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
2569                                inode->i_atime.tv_sec);
2570         btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
2571                                 inode->i_atime.tv_nsec);
2572
2573         btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
2574                                inode->i_mtime.tv_sec);
2575         btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
2576                                 inode->i_mtime.tv_nsec);
2577
2578         btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
2579                                inode->i_ctime.tv_sec);
2580         btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
2581                                 inode->i_ctime.tv_nsec);
2582
2583         btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode));
2584         btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
2585         btrfs_set_inode_sequence(leaf, item, BTRFS_I(inode)->sequence);
2586         btrfs_set_inode_transid(leaf, item, trans->transid);
2587         btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
2588         btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
2589         btrfs_set_inode_block_group(leaf, item, BTRFS_I(inode)->block_group);
2590 }
2591
2592 /*
2593  * copy everything in the in-memory inode into the btree.
2594  */
2595 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
2596                                 struct btrfs_root *root, struct inode *inode)
2597 {
2598         struct btrfs_inode_item *inode_item;
2599         struct btrfs_path *path;
2600         struct extent_buffer *leaf;
2601         int ret;
2602
2603         path = btrfs_alloc_path();
2604         BUG_ON(!path);
2605         path->leave_spinning = 1;
2606         ret = btrfs_lookup_inode(trans, root, path,
2607                                  &BTRFS_I(inode)->location, 1);
2608         if (ret) {
2609                 if (ret > 0)
2610                         ret = -ENOENT;
2611                 goto failed;
2612         }
2613
2614         btrfs_unlock_up_safe(path, 1);
2615         leaf = path->nodes[0];
2616         inode_item = btrfs_item_ptr(leaf, path->slots[0],
2617                                   struct btrfs_inode_item);
2618
2619         fill_inode_item(trans, leaf, inode_item, inode);
2620         btrfs_mark_buffer_dirty(leaf);
2621         btrfs_set_inode_last_trans(trans, inode);
2622         ret = 0;
2623 failed:
2624         btrfs_free_path(path);
2625         return ret;
2626 }
2627
2628
2629 /*
2630  * unlink helper that gets used here in inode.c and in the tree logging
2631  * recovery code.  It remove a link in a directory with a given name, and
2632  * also drops the back refs in the inode to the directory
2633  */
2634 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2635                        struct btrfs_root *root,
2636                        struct inode *dir, struct inode *inode,
2637                        const char *name, int name_len)
2638 {
2639         struct btrfs_path *path;
2640         int ret = 0;
2641         struct extent_buffer *leaf;
2642         struct btrfs_dir_item *di;
2643         struct btrfs_key key;
2644         u64 index;
2645
2646         path = btrfs_alloc_path();
2647         if (!path) {
2648                 ret = -ENOMEM;
2649                 goto out;
2650         }
2651
2652         path->leave_spinning = 1;
2653         di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2654                                     name, name_len, -1);
2655         if (IS_ERR(di)) {
2656                 ret = PTR_ERR(di);
2657                 goto err;
2658         }
2659         if (!di) {
2660                 ret = -ENOENT;
2661                 goto err;
2662         }
2663         leaf = path->nodes[0];
2664         btrfs_dir_item_key_to_cpu(leaf, di, &key);
2665         ret = btrfs_delete_one_dir_name(trans, root, path, di);
2666         if (ret)
2667                 goto err;
2668         btrfs_release_path(root, path);
2669
2670         ret = btrfs_del_inode_ref(trans, root, name, name_len,
2671                                   inode->i_ino,
2672                                   dir->i_ino, &index);
2673         if (ret) {
2674                 printk(KERN_INFO "btrfs failed to delete reference to %.*s, "
2675                        "inode %lu parent %lu\n", name_len, name,
2676                        inode->i_ino, dir->i_ino);
2677                 goto err;
2678         }
2679
2680         di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
2681                                          index, name, name_len, -1);
2682         if (IS_ERR(di)) {
2683                 ret = PTR_ERR(di);
2684                 goto err;
2685         }
2686         if (!di) {
2687                 ret = -ENOENT;
2688                 goto err;
2689         }
2690         ret = btrfs_delete_one_dir_name(trans, root, path, di);
2691         btrfs_release_path(root, path);
2692
2693         ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
2694                                          inode, dir->i_ino);
2695         BUG_ON(ret != 0 && ret != -ENOENT);
2696
2697         ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
2698                                            dir, index);
2699         if (ret == -ENOENT)
2700                 ret = 0;
2701 err:
2702         btrfs_free_path(path);
2703         if (ret)
2704                 goto out;
2705
2706         btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2707         inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2708         btrfs_update_inode(trans, root, dir);
2709         btrfs_drop_nlink(inode);
2710         ret = btrfs_update_inode(trans, root, inode);
2711 out:
2712         return ret;
2713 }
2714
2715 /* helper to check if there is any shared block in the path */
2716 static int check_path_shared(struct btrfs_root *root,
2717                              struct btrfs_path *path)
2718 {
2719         struct extent_buffer *eb;
2720         int level;
2721         u64 refs = 1;
2722
2723         for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
2724                 int ret;
2725
2726                 if (!path->nodes[level])
2727                         break;
2728                 eb = path->nodes[level];
2729                 if (!btrfs_block_can_be_shared(root, eb))
2730                         continue;
2731                 ret = btrfs_lookup_extent_info(NULL, root, eb->start, eb->len,
2732                                                &refs, NULL);
2733                 if (refs > 1)
2734                         return 1;
2735         }
2736         return 0;
2737 }
2738
2739 /*
2740  * helper to start transaction for unlink and rmdir.
2741  *
2742  * unlink and rmdir are special in btrfs, they do not always free space.
2743  * so in enospc case, we should make sure they will free space before
2744  * allowing them to use the global metadata reservation.
2745  */
2746 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir,
2747                                                        struct dentry *dentry)
2748 {
2749         struct btrfs_trans_handle *trans;
2750         struct btrfs_root *root = BTRFS_I(dir)->root;
2751         struct btrfs_path *path;
2752         struct btrfs_inode_ref *ref;
2753         struct btrfs_dir_item *di;
2754         struct inode *inode = dentry->d_inode;
2755         u64 index;
2756         int check_link = 1;
2757         int err = -ENOSPC;
2758         int ret;
2759
2760         trans = btrfs_start_transaction(root, 10);
2761         if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
2762                 return trans;
2763
2764         if (inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
2765                 return ERR_PTR(-ENOSPC);
2766
2767         /* check if there is someone else holds reference */
2768         if (S_ISDIR(inode->i_mode) && atomic_read(&inode->i_count) > 1)
2769                 return ERR_PTR(-ENOSPC);
2770
2771         if (atomic_read(&inode->i_count) > 2)
2772                 return ERR_PTR(-ENOSPC);
2773
2774         if (xchg(&root->fs_info->enospc_unlink, 1))
2775                 return ERR_PTR(-ENOSPC);
2776
2777         path = btrfs_alloc_path();
2778         if (!path) {
2779                 root->fs_info->enospc_unlink = 0;
2780                 return ERR_PTR(-ENOMEM);
2781         }
2782
2783         trans = btrfs_start_transaction(root, 0);
2784         if (IS_ERR(trans)) {
2785                 btrfs_free_path(path);
2786                 root->fs_info->enospc_unlink = 0;
2787                 return trans;
2788         }
2789
2790         path->skip_locking = 1;
2791         path->search_commit_root = 1;
2792
2793         ret = btrfs_lookup_inode(trans, root, path,
2794                                 &BTRFS_I(dir)->location, 0);
2795         if (ret < 0) {
2796                 err = ret;
2797                 goto out;
2798         }
2799         if (ret == 0) {
2800                 if (check_path_shared(root, path))
2801                         goto out;
2802         } else {
2803                 check_link = 0;
2804         }
2805         btrfs_release_path(root, path);
2806
2807         ret = btrfs_lookup_inode(trans, root, path,
2808                                 &BTRFS_I(inode)->location, 0);
2809         if (ret < 0) {
2810                 err = ret;
2811                 goto out;
2812         }
2813         if (ret == 0) {
2814                 if (check_path_shared(root, path))
2815                         goto out;
2816         } else {
2817                 check_link = 0;
2818         }
2819         btrfs_release_path(root, path);
2820
2821         if (ret == 0 && S_ISREG(inode->i_mode)) {
2822                 ret = btrfs_lookup_file_extent(trans, root, path,
2823                                                inode->i_ino, (u64)-1, 0);
2824                 if (ret < 0) {
2825                         err = ret;
2826                         goto out;
2827                 }
2828                 BUG_ON(ret == 0);
2829                 if (check_path_shared(root, path))
2830                         goto out;
2831                 btrfs_release_path(root, path);
2832         }
2833
2834         if (!check_link) {
2835                 err = 0;
2836                 goto out;
2837         }
2838
2839         di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2840                                 dentry->d_name.name, dentry->d_name.len, 0);
2841         if (IS_ERR(di)) {
2842                 err = PTR_ERR(di);
2843                 goto out;
2844         }
2845         if (di) {
2846                 if (check_path_shared(root, path))
2847                         goto out;
2848         } else {
2849                 err = 0;
2850                 goto out;
2851         }
2852         btrfs_release_path(root, path);
2853
2854         ref = btrfs_lookup_inode_ref(trans, root, path,
2855                                 dentry->d_name.name, dentry->d_name.len,
2856                                 inode->i_ino, dir->i_ino, 0);
2857         if (IS_ERR(ref)) {
2858                 err = PTR_ERR(ref);
2859                 goto out;
2860         }
2861         BUG_ON(!ref);
2862         if (check_path_shared(root, path))
2863                 goto out;
2864         index = btrfs_inode_ref_index(path->nodes[0], ref);
2865         btrfs_release_path(root, path);
2866
2867         di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino, index,
2868                                 dentry->d_name.name, dentry->d_name.len, 0);
2869         if (IS_ERR(di)) {
2870                 err = PTR_ERR(di);
2871                 goto out;
2872         }
2873         BUG_ON(ret == -ENOENT);
2874         if (check_path_shared(root, path))
2875                 goto out;
2876
2877         err = 0;
2878 out:
2879         btrfs_free_path(path);
2880         if (err) {
2881                 btrfs_end_transaction(trans, root);
2882                 root->fs_info->enospc_unlink = 0;
2883                 return ERR_PTR(err);
2884         }
2885
2886         trans->block_rsv = &root->fs_info->global_block_rsv;
2887         return trans;
2888 }
2889
2890 static void __unlink_end_trans(struct btrfs_trans_handle *trans,
2891                                struct btrfs_root *root)
2892 {
2893         if (trans->block_rsv == &root->fs_info->global_block_rsv) {
2894                 BUG_ON(!root->fs_info->enospc_unlink);
2895                 root->fs_info->enospc_unlink = 0;
2896         }
2897         btrfs_end_transaction_throttle(trans, root);
2898 }
2899
2900 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
2901 {
2902         struct btrfs_root *root = BTRFS_I(dir)->root;
2903         struct btrfs_trans_handle *trans;
2904         struct inode *inode = dentry->d_inode;
2905         int ret;
2906         unsigned long nr = 0;
2907
2908         trans = __unlink_start_trans(dir, dentry);
2909         if (IS_ERR(trans))
2910                 return PTR_ERR(trans);
2911
2912         btrfs_set_trans_block_group(trans, dir);
2913
2914         btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
2915
2916         ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2917                                  dentry->d_name.name, dentry->d_name.len);
2918         BUG_ON(ret);
2919
2920         if (inode->i_nlink == 0) {
2921                 ret = btrfs_orphan_add(trans, inode);
2922                 BUG_ON(ret);
2923         }
2924
2925         nr = trans->blocks_used;
2926         __unlink_end_trans(trans, root);
2927         btrfs_btree_balance_dirty(root, nr);
2928         return ret;
2929 }
2930
2931 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
2932                         struct btrfs_root *root,
2933                         struct inode *dir, u64 objectid,
2934                         const char *name, int name_len)
2935 {
2936         struct btrfs_path *path;
2937         struct extent_buffer *leaf;
2938         struct btrfs_dir_item *di;
2939         struct btrfs_key key;
2940         u64 index;
2941         int ret;
2942
2943         path = btrfs_alloc_path();
2944         if (!path)
2945                 return -ENOMEM;
2946
2947         di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2948                                    name, name_len, -1);
2949         BUG_ON(!di || IS_ERR(di));
2950
2951         leaf = path->nodes[0];
2952         btrfs_dir_item_key_to_cpu(leaf, di, &key);
2953         WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
2954         ret = btrfs_delete_one_dir_name(trans, root, path, di);
2955         BUG_ON(ret);
2956         btrfs_release_path(root, path);
2957
2958         ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
2959                                  objectid, root->root_key.objectid,
2960                                  dir->i_ino, &index, name, name_len);
2961         if (ret < 0) {
2962                 BUG_ON(ret != -ENOENT);
2963                 di = btrfs_search_dir_index_item(root, path, dir->i_ino,
2964                                                  name, name_len);
2965                 BUG_ON(!di || IS_ERR(di));
2966
2967                 leaf = path->nodes[0];
2968                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2969                 btrfs_release_path(root, path);
2970                 index = key.offset;
2971         }
2972
2973         di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
2974                                          index, name, name_len, -1);
2975         BUG_ON(!di || IS_ERR(di));
2976
2977         leaf = path->nodes[0];
2978         btrfs_dir_item_key_to_cpu(leaf, di, &key);
2979         WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
2980         ret = btrfs_delete_one_dir_name(trans, root, path, di);
2981         BUG_ON(ret);
2982         btrfs_release_path(root, path);
2983
2984         btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2985         dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2986         ret = btrfs_update_inode(trans, root, dir);
2987         BUG_ON(ret);
2988
2989         btrfs_free_path(path);
2990         return 0;
2991 }
2992
2993 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
2994 {
2995         struct inode *inode = dentry->d_inode;
2996         int err = 0;
2997         struct btrfs_root *root = BTRFS_I(dir)->root;
2998         struct btrfs_trans_handle *trans;
2999         unsigned long nr = 0;
3000
3001         if (inode->i_size > BTRFS_EMPTY_DIR_SIZE ||
3002             inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
3003                 return -ENOTEMPTY;
3004
3005         trans = __unlink_start_trans(dir, dentry);
3006         if (IS_ERR(trans))
3007                 return PTR_ERR(trans);
3008
3009         btrfs_set_trans_block_group(trans, dir);
3010
3011         if (unlikely(inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
3012                 err = btrfs_unlink_subvol(trans, root, dir,
3013                                           BTRFS_I(inode)->location.objectid,
3014                                           dentry->d_name.name,
3015                                           dentry->d_name.len);
3016                 goto out;
3017         }
3018
3019         err = btrfs_orphan_add(trans, inode);
3020         if (err)
3021                 goto out;
3022
3023         /* now the directory is empty */
3024         err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3025                                  dentry->d_name.name, dentry->d_name.len);
3026         if (!err)
3027                 btrfs_i_size_write(inode, 0);
3028 out:
3029         nr = trans->blocks_used;
3030         __unlink_end_trans(trans, root);
3031         btrfs_btree_balance_dirty(root, nr);
3032
3033         return err;
3034 }
3035
3036 #if 0
3037 /*
3038  * when truncating bytes in a file, it is possible to avoid reading
3039  * the leaves that contain only checksum items.  This can be the
3040  * majority of the IO required to delete a large file, but it must
3041  * be done carefully.
3042  *
3043  * The keys in the level just above the leaves are checked to make sure
3044  * the lowest key in a given leaf is a csum key, and starts at an offset
3045  * after the new  size.
3046  *
3047  * Then the key for the next leaf is checked to make sure it also has
3048  * a checksum item for the same file.  If it does, we know our target leaf
3049  * contains only checksum items, and it can be safely freed without reading
3050  * it.
3051  *
3052  * This is just an optimization targeted at large files.  It may do
3053  * nothing.  It will return 0 unless things went badly.
3054  */
3055 static noinline int drop_csum_leaves(struct btrfs_trans_handle *trans,
3056                                      struct btrfs_root *root,
3057                                      struct btrfs_path *path,
3058                                      struct inode *inode, u64 new_size)
3059 {
3060         struct btrfs_key key;
3061         int ret;
3062         int nritems;
3063         struct btrfs_key found_key;
3064         struct btrfs_key other_key;
3065         struct btrfs_leaf_ref *ref;
3066         u64 leaf_gen;
3067         u64 leaf_start;
3068
3069         path->lowest_level = 1;
3070         key.objectid = inode->i_ino;
3071         key.type = BTRFS_CSUM_ITEM_KEY;
3072         key.offset = new_size;
3073 again:
3074         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3075         if (ret < 0)
3076                 goto out;
3077
3078         if (path->nodes[1] == NULL) {
3079                 ret = 0;
3080                 goto out;
3081         }
3082         ret = 0;
3083         btrfs_node_key_to_cpu(path->nodes[1], &found_key, path->slots[1]);
3084         nritems = btrfs_header_nritems(path->nodes[1]);
3085
3086         if (!nritems)
3087                 goto out;
3088
3089         if (path->slots[1] >= nritems)
3090                 goto next_node;
3091
3092         /* did we find a key greater than anything we want to delete? */
3093         if (found_key.objectid > inode->i_ino ||
3094            (found_key.objectid == inode->i_ino && found_key.type > key.type))
3095                 goto out;
3096
3097         /* we check the next key in the node to make sure the leave contains
3098          * only checksum items.  This comparison doesn't work if our
3099          * leaf is the last one in the node
3100          */
3101         if (path->slots[1] + 1 >= nritems) {
3102 next_node:
3103                 /* search forward from the last key in the node, this
3104                  * will bring us into the next node in the tree
3105                  */
3106                 btrfs_node_key_to_cpu(path->nodes[1], &found_key, nritems - 1);
3107
3108                 /* unlikely, but we inc below, so check to be safe */
3109                 if (found_key.offset == (u64)-1)
3110                         goto out;
3111
3112                 /* search_forward needs a path with locks held, do the
3113                  * search again for the original key.  It is possible
3114                  * this will race with a balance and return a path that
3115                  * we could modify, but this drop is just an optimization
3116                  * and is allowed to miss some leaves.
3117                  */
3118                 btrfs_release_path(root, path);
3119                 found_key.offset++;
3120
3121                 /* setup a max key for search_forward */
3122                 other_key.offset = (u64)-1;
3123                 other_key.type = key.type;
3124                 other_key.objectid = key.objectid;
3125
3126                 path->keep_locks = 1;
3127                 ret = btrfs_search_forward(root, &found_key, &other_key,
3128                                            path, 0, 0);
3129                 path->keep_locks = 0;
3130                 if (ret || found_key.objectid != key.objectid ||
3131                     found_key.type != key.type) {
3132                         ret = 0;
3133                         goto out;
3134                 }
3135
3136                 key.offset = found_key.offset;
3137                 btrfs_release_path(root, path);
3138                 cond_resched();
3139                 goto again;
3140         }
3141
3142         /* we know there's one more slot after us in the tree,
3143          * read that key so we can verify it is also a checksum item
3144          */
3145         btrfs_node_key_to_cpu(path->nodes[1], &other_key, path->slots[1] + 1);
3146
3147         if (found_key.objectid < inode->i_ino)
3148                 goto next_key;
3149
3150         if (found_key.type != key.type || found_key.offset < new_size)
3151                 goto next_key;
3152
3153         /*
3154          * if the key for the next leaf isn't a csum key from this objectid,
3155          * we can't be sure there aren't good items inside this leaf.
3156          * Bail out
3157          */
3158         if (other_key.objectid != inode->i_ino || other_key.type != key.type)
3159                 goto out;
3160
3161         leaf_start = btrfs_node_blockptr(path->nodes[1], path->slots[1]);
3162         leaf_gen = btrfs_node_ptr_generation(path->nodes[1], path->slots[1]);
3163         /*
3164          * it is safe to delete this leaf, it contains only
3165          * csum items from this inode at an offset >= new_size
3166          */
3167         ret = btrfs_del_leaf(trans, root, path, leaf_start);
3168         BUG_ON(ret);
3169
3170         if (root->ref_cows && leaf_gen < trans->transid) {
3171                 ref = btrfs_alloc_leaf_ref(root, 0);
3172                 if (ref) {
3173                         ref->root_gen = root->root_key.offset;
3174                         ref->bytenr = leaf_start;
3175                         ref->owner = 0;
3176                         ref->generation = leaf_gen;
3177                         ref->nritems = 0;
3178
3179                         btrfs_sort_leaf_ref(ref);
3180
3181                         ret = btrfs_add_leaf_ref(root, ref, 0);
3182                         WARN_ON(ret);
3183                         btrfs_free_leaf_ref(root, ref);
3184                 } else {
3185                         WARN_ON(1);
3186                 }
3187         }
3188 next_key:
3189         btrfs_release_path(root, path);
3190
3191         if (other_key.objectid == inode->i_ino &&
3192             other_key.type == key.type && other_key.offset > key.offset) {
3193                 key.offset = other_key.offset;
3194                 cond_resched();
3195                 goto again;
3196         }
3197         ret = 0;
3198 out:
3199         /* fixup any changes we've made to the path */
3200         path->lowest_level = 0;
3201         path->keep_locks = 0;
3202         btrfs_release_path(root, path);
3203         return ret;
3204 }
3205
3206 #endif
3207
3208 /*
3209  * this can truncate away extent items, csum items and directory items.
3210  * It starts at a high offset and removes keys until it can't find
3211  * any higher than new_size
3212  *
3213  * csum items that cross the new i_size are truncated to the new size
3214  * as well.
3215  *
3216  * min_type is the minimum key type to truncate down to.  If set to 0, this
3217  * will kill all the items on this inode, including the INODE_ITEM_KEY.
3218  */
3219 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
3220                                struct btrfs_root *root,
3221                                struct inode *inode,
3222                                u64 new_size, u32 min_type)
3223 {
3224         struct btrfs_path *path;
3225         struct extent_buffer *leaf;
3226         struct btrfs_file_extent_item *fi;
3227         struct btrfs_key key;
3228         struct btrfs_key found_key;
3229         u64 extent_start = 0;
3230         u64 extent_num_bytes = 0;
3231         u64 extent_offset = 0;
3232         u64 item_end = 0;
3233         u64 mask = root->sectorsize - 1;
3234         u32 found_type = (u8)-1;
3235         int found_extent;
3236         int del_item;
3237         int pending_del_nr = 0;
3238         int pending_del_slot = 0;
3239         int extent_type = -1;
3240         int encoding;
3241         int ret;
3242         int err = 0;
3243
3244         BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
3245
3246         if (root->ref_cows || root == root->fs_info->tree_root)
3247                 btrfs_drop_extent_cache(inode, new_size & (~mask), (u64)-1, 0);
3248
3249         path = btrfs_alloc_path();
3250         BUG_ON(!path);
3251         path->reada = -1;
3252
3253         key.objectid = inode->i_ino;
3254         key.offset = (u64)-1;
3255         key.type = (u8)-1;
3256
3257 search_again:
3258         path->leave_spinning = 1;
3259         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3260         if (ret < 0) {
3261                 err = ret;
3262                 goto out;
3263         }
3264
3265         if (ret > 0) {
3266                 /* there are no items in the tree for us to truncate, we're
3267                  * done
3268                  */
3269                 if (path->slots[0] == 0)
3270                         goto out;
3271                 path->slots[0]--;
3272         }
3273
3274         while (1) {
3275                 fi = NULL;
3276                 leaf = path->nodes[0];
3277                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3278                 found_type = btrfs_key_type(&found_key);
3279                 encoding = 0;
3280
3281                 if (found_key.objectid != inode->i_ino)
3282                         break;
3283
3284                 if (found_type < min_type)
3285                         break;
3286
3287                 item_end = found_key.offset;
3288                 if (found_type == BTRFS_EXTENT_DATA_KEY) {
3289                         fi = btrfs_item_ptr(leaf, path->slots[0],
3290                                             struct btrfs_file_extent_item);
3291                         extent_type = btrfs_file_extent_type(leaf, fi);
3292                         encoding = btrfs_file_extent_compression(leaf, fi);
3293                         encoding |= btrfs_file_extent_encryption(leaf, fi);
3294                         encoding |= btrfs_file_extent_other_encoding(leaf, fi);
3295
3296                         if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
3297                                 item_end +=
3298                                     btrfs_file_extent_num_bytes(leaf, fi);
3299                         } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3300                                 item_end += btrfs_file_extent_inline_len(leaf,
3301                                                                          fi);
3302                         }
3303                         item_end--;
3304                 }
3305                 if (found_type > min_type) {
3306                         del_item = 1;
3307                 } else {
3308                         if (item_end < new_size)
3309                                 break;
3310                         if (found_key.offset >= new_size)
3311                                 del_item = 1;
3312                         else
3313                                 del_item = 0;
3314                 }
3315                 found_extent = 0;
3316                 /* FIXME, shrink the extent if the ref count is only 1 */
3317                 if (found_type != BTRFS_EXTENT_DATA_KEY)
3318                         goto delete;
3319
3320                 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
3321                         u64 num_dec;
3322                         extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
3323                         if (!del_item && !encoding) {
3324                                 u64 orig_num_bytes =
3325                                         btrfs_file_extent_num_bytes(leaf, fi);
3326                                 extent_num_bytes = new_size -
3327                                         found_key.offset + root->sectorsize - 1;
3328                                 extent_num_bytes = extent_num_bytes &
3329                                         ~((u64)root->sectorsize - 1);
3330                                 btrfs_set_file_extent_num_bytes(leaf, fi,
3331                                                          extent_num_bytes);
3332                                 num_dec = (orig_num_bytes -
3333                                            extent_num_bytes);
3334                                 if (root->ref_cows && extent_start != 0)
3335                                         inode_sub_bytes(inode, num_dec);
3336                                 btrfs_mark_buffer_dirty(leaf);
3337                         } else {
3338                                 extent_num_bytes =
3339                                         btrfs_file_extent_disk_num_bytes(leaf,
3340                                                                          fi);
3341                                 extent_offset = found_key.offset -
3342                                         btrfs_file_extent_offset(leaf, fi);
3343
3344                                 /* FIXME blocksize != 4096 */
3345                                 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
3346                                 if (extent_start != 0) {
3347                                         found_extent = 1;
3348                                         if (root->ref_cows)
3349                                                 inode_sub_bytes(inode, num_dec);
3350                                 }
3351                         }
3352                 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3353                         /*
3354                          * we can't truncate inline items that have had
3355                          * special encodings
3356                          */
3357                         if (!del_item &&
3358                             btrfs_file_extent_compression(leaf, fi) == 0 &&
3359                             btrfs_file_extent_encryption(leaf, fi) == 0 &&
3360                             btrfs_file_extent_other_encoding(leaf, fi) == 0) {
3361                                 u32 size = new_size - found_key.offset;
3362
3363                                 if (root->ref_cows) {
3364                                         inode_sub_bytes(inode, item_end + 1 -
3365                                                         new_size);
3366                                 }
3367                                 size =
3368                                     btrfs_file_extent_calc_inline_size(size);
3369                                 ret = btrfs_truncate_item(trans, root, path,
3370                                                           size, 1);
3371                                 BUG_ON(ret);
3372                         } else if (root->ref_cows) {
3373                                 inode_sub_bytes(inode, item_end + 1 -
3374                                                 found_key.offset);
3375                         }
3376                 }
3377 delete:
3378                 if (del_item) {
3379                         if (!pending_del_nr) {
3380                                 /* no pending yet, add ourselves */
3381                                 pending_del_slot = path->slots[0];
3382                                 pending_del_nr = 1;
3383                         } else if (pending_del_nr &&
3384                                    path->slots[0] + 1 == pending_del_slot) {
3385                                 /* hop on the pending chunk */
3386                                 pending_del_nr++;
3387                                 pending_del_slot = path->slots[0];
3388                         } else {
3389                                 BUG();
3390                         }
3391                 } else {
3392                         break;
3393                 }
3394                 if (found_extent && (root->ref_cows ||
3395                                      root == root->fs_info->tree_root)) {
3396                         btrfs_set_path_blocking(path);
3397                         ret = btrfs_free_extent(trans, root, extent_start,
3398                                                 extent_num_bytes, 0,
3399                                                 btrfs_header_owner(leaf),
3400                                                 inode->i_ino, extent_offset);
3401                         BUG_ON(ret);
3402                 }
3403
3404                 if (found_type == BTRFS_INODE_ITEM_KEY)
3405                         break;
3406
3407                 if (path->slots[0] == 0 ||
3408                     path->slots[0] != pending_del_slot) {
3409                         if (root->ref_cows) {
3410                                 err = -EAGAIN;
3411                                 goto out;
3412                         }
3413                         if (pending_del_nr) {
3414                                 ret = btrfs_del_items(trans, root, path,
3415                                                 pending_del_slot,
3416                                                 pending_del_nr);
3417                                 BUG_ON(ret);
3418                                 pending_del_nr = 0;
3419                         }
3420                         btrfs_release_path(root, path);
3421                         goto search_again;
3422                 } else {
3423                         path->slots[0]--;
3424                 }
3425         }
3426 out:
3427         if (pending_del_nr) {
3428                 ret = btrfs_del_items(trans, root, path, pending_del_slot,
3429                                       pending_del_nr);
3430                 BUG_ON(ret);
3431         }
3432         btrfs_free_path(path);
3433         return err;
3434 }
3435
3436 /*
3437  * taken from block_truncate_page, but does cow as it zeros out
3438  * any bytes left in the last page in the file.
3439  */
3440 static int btrfs_truncate_page(struct address_space *mapping, loff_t from)
3441 {
3442         struct inode *inode = mapping->host;
3443         struct btrfs_root *root = BTRFS_I(inode)->root;
3444         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3445         struct btrfs_ordered_extent *ordered;
3446         struct extent_state *cached_state = NULL;
3447         char *kaddr;
3448         u32 blocksize = root->sectorsize;
3449         pgoff_t index = from >> PAGE_CACHE_SHIFT;
3450         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3451         struct page *page;
3452         int ret = 0;
3453         u64 page_start;
3454         u64 page_end;
3455
3456         if ((offset & (blocksize - 1)) == 0)
3457                 goto out;
3458         ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
3459         if (ret)
3460                 goto out;
3461
3462         ret = -ENOMEM;
3463 again:
3464         page = grab_cache_page(mapping, index);
3465         if (!page) {
3466                 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
3467                 goto out;
3468         }
3469
3470         page_start = page_offset(page);
3471         page_end = page_start + PAGE_CACHE_SIZE - 1;
3472
3473         if (!PageUptodate(page)) {
3474                 ret = btrfs_readpage(NULL, page);
3475                 lock_page(page);
3476                 if (page->mapping != mapping) {
3477                         unlock_page(page);
3478                         page_cache_release(page);
3479                         goto again;
3480                 }
3481                 if (!PageUptodate(page)) {
3482                         ret = -EIO;
3483                         goto out_unlock;
3484                 }
3485         }
3486         wait_on_page_writeback(page);
3487
3488         lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state,
3489                          GFP_NOFS);
3490         set_page_extent_mapped(page);
3491
3492         ordered = btrfs_lookup_ordered_extent(inode, page_start);
3493         if (ordered) {
3494                 unlock_extent_cached(io_tree, page_start, page_end,
3495                                      &cached_state, GFP_NOFS);
3496                 unlock_page(page);
3497                 page_cache_release(page);
3498                 btrfs_start_ordered_extent(inode, ordered, 1);
3499                 btrfs_put_ordered_extent(ordered);
3500                 goto again;
3501         }
3502
3503         clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
3504                           EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
3505                           0, 0, &cached_state, GFP_NOFS);
3506
3507         ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
3508                                         &cached_state);
3509         if (ret) {
3510                 unlock_extent_cached(io_tree, page_start, page_end,
3511                                      &cached_state, GFP_NOFS);
3512                 goto out_unlock;
3513         }
3514
3515         ret = 0;
3516         if (offset != PAGE_CACHE_SIZE) {
3517                 kaddr = kmap(page);
3518                 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
3519                 flush_dcache_page(page);
3520                 kunmap(page);
3521         }
3522         ClearPageChecked(page);
3523         set_page_dirty(page);
3524         unlock_extent_cached(io_tree, page_start, page_end, &cached_state,
3525                              GFP_NOFS);
3526
3527 out_unlock:
3528         if (ret)
3529                 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
3530         unlock_page(page);
3531         page_cache_release(page);
3532 out:
3533         return ret;
3534 }
3535
3536 int btrfs_cont_expand(struct inode *inode, loff_t size)
3537 {
3538         struct btrfs_trans_handle *trans;
3539         struct btrfs_root *root = BTRFS_I(inode)->root;
3540         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3541         struct extent_map *em = NULL;
3542         struct extent_state *cached_state = NULL;
3543         u64 mask = root->sectorsize - 1;
3544         u64 hole_start = (inode->i_size + mask) & ~mask;
3545         u64 block_end = (size + mask) & ~mask;
3546         u64 last_byte;
3547         u64 cur_offset;
3548         u64 hole_size;
3549         int err = 0;
3550
3551         if (size <= hole_start)
3552                 return 0;
3553
3554         while (1) {
3555                 struct btrfs_ordered_extent *ordered;
3556                 btrfs_wait_ordered_range(inode, hole_start,
3557                                          block_end - hole_start);
3558                 lock_extent_bits(io_tree, hole_start, block_end - 1, 0,
3559                                  &cached_state, GFP_NOFS);
3560                 ordered = btrfs_lookup_ordered_extent(inode, hole_start);
3561                 if (!ordered)
3562                         break;
3563                 unlock_extent_cached(io_tree, hole_start, block_end - 1,
3564                                      &cached_state, GFP_NOFS);
3565                 btrfs_put_ordered_extent(ordered);
3566         }
3567
3568         cur_offset = hole_start;
3569         while (1) {
3570                 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
3571                                 block_end - cur_offset, 0);
3572                 BUG_ON(IS_ERR(em) || !em);
3573                 last_byte = min(extent_map_end(em), block_end);
3574                 last_byte = (last_byte + mask) & ~mask;
3575                 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3576                         u64 hint_byte = 0;
3577                         hole_size = last_byte - cur_offset;
3578
3579                         trans = btrfs_start_transaction(root, 2);
3580                         if (IS_ERR(trans)) {
3581                                 err = PTR_ERR(trans);
3582                                 break;
3583                         }
3584                         btrfs_set_trans_block_group(trans, inode);
3585
3586                         err = btrfs_drop_extents(trans, inode, cur_offset,
3587                                                  cur_offset + hole_size,
3588                                                  &hint_byte, 1);
3589                         BUG_ON(err);
3590
3591                         err = btrfs_insert_file_extent(trans, root,
3592                                         inode->i_ino, cur_offset, 0,
3593                                         0, hole_size, 0, hole_size,
3594                                         0, 0, 0);
3595                         BUG_ON(err);
3596
3597                         btrfs_drop_extent_cache(inode, hole_start,
3598                                         last_byte - 1, 0);
3599
3600                         btrfs_end_transaction(trans, root);
3601                 }
3602                 free_extent_map(em);
3603                 em = NULL;
3604                 cur_offset = last_byte;
3605                 if (cur_offset >= block_end)
3606                         break;
3607         }
3608
3609         free_extent_map(em);
3610         unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
3611                              GFP_NOFS);
3612         return err;
3613 }
3614
3615 static int btrfs_setattr_size(struct inode *inode, struct iattr *attr)
3616 {
3617         struct btrfs_root *root = BTRFS_I(inode)->root;
3618         struct btrfs_trans_handle *trans;
3619         unsigned long nr;
3620         int ret;
3621
3622         if (attr->ia_size == inode->i_size)
3623                 return 0;
3624
3625         if (attr->ia_size > inode->i_size) {
3626                 unsigned long limit;
3627                 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
3628                 if (attr->ia_size > inode->i_sb->s_maxbytes)
3629                         return -EFBIG;
3630                 if (limit != RLIM_INFINITY && attr->ia_size > limit) {
3631                         send_sig(SIGXFSZ, current, 0);
3632                         return -EFBIG;
3633                 }
3634         }
3635
3636         trans = btrfs_start_transaction(root, 5);
3637         if (IS_ERR(trans))
3638                 return PTR_ERR(trans);
3639
3640         btrfs_set_trans_block_group(trans, inode);
3641
3642         ret = btrfs_orphan_add(trans, inode);
3643         BUG_ON(ret);
3644
3645         nr = trans->blocks_used;
3646         btrfs_end_transaction(trans, root);
3647         btrfs_btree_balance_dirty(root, nr);
3648
3649         if (attr->ia_size > inode->i_size) {
3650                 ret = btrfs_cont_expand(inode, attr->ia_size);
3651                 if (ret) {
3652                         btrfs_truncate(inode);
3653                         return ret;
3654                 }
3655
3656                 i_size_write(inode, attr->ia_size);
3657                 btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
3658
3659                 trans = btrfs_start_transaction(root, 0);
3660                 BUG_ON(IS_ERR(trans));
3661                 btrfs_set_trans_block_group(trans, inode);
3662                 trans->block_rsv = root->orphan_block_rsv;
3663                 BUG_ON(!trans->block_rsv);
3664
3665                 ret = btrfs_update_inode(trans, root, inode);
3666                 BUG_ON(ret);
3667                 if (inode->i_nlink > 0) {
3668                         ret = btrfs_orphan_del(trans, inode);
3669                         BUG_ON(ret);
3670                 }
3671                 nr = trans->blocks_used;
3672                 btrfs_end_transaction(trans, root);
3673                 btrfs_btree_balance_dirty(root, nr);
3674                 return 0;
3675         }
3676
3677         /*
3678          * We're truncating a file that used to have good data down to
3679          * zero. Make sure it gets into the ordered flush list so that
3680          * any new writes get down to disk quickly.
3681          */
3682         if (attr->ia_size == 0)
3683                 BTRFS_I(inode)->ordered_data_close = 1;
3684
3685         /* we don't support swapfiles, so vmtruncate shouldn't fail */
3686         ret = vmtruncate(inode, attr->ia_size);
3687         BUG_ON(ret);
3688
3689         return 0;
3690 }
3691
3692 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
3693 {
3694         struct inode *inode = dentry->d_inode;
3695         struct btrfs_root *root = BTRFS_I(inode)->root;
3696         int err;
3697
3698         if (btrfs_root_readonly(root))
3699                 return -EROFS;
3700
3701         err = inode_change_ok(inode, attr);
3702         if (err)
3703                 return err;
3704
3705         if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
3706                 err = btrfs_setattr_size(inode, attr);
3707                 if (err)
3708                         return err;
3709         }
3710
3711         if (attr->ia_valid) {
3712                 setattr_copy(inode, attr);
3713                 mark_inode_dirty(inode);
3714
3715                 if (attr->ia_valid & ATTR_MODE)
3716                         err = btrfs_acl_chmod(inode);
3717         }
3718
3719         return err;
3720 }
3721
3722 void btrfs_evict_inode(struct inode *inode)
3723 {
3724         struct btrfs_trans_handle *trans;
3725         struct btrfs_root *root = BTRFS_I(inode)->root;
3726         unsigned long nr;
3727         int ret;
3728
3729         truncate_inode_pages(&inode->i_data, 0);
3730         if (inode->i_nlink && (btrfs_root_refs(&root->root_item) != 0 ||
3731                                root == root->fs_info->tree_root))
3732                 goto no_delete;
3733
3734         if (is_bad_inode(inode)) {
3735                 btrfs_orphan_del(NULL, inode);
3736                 goto no_delete;
3737         }
3738         /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
3739         btrfs_wait_ordered_range(inode, 0, (u64)-1);
3740
3741         if (root->fs_info->log_root_recovering) {
3742                 BUG_ON(!list_empty(&BTRFS_I(inode)->i_orphan));
3743                 goto no_delete;
3744         }
3745
3746         if (inode->i_nlink > 0) {
3747                 BUG_ON(btrfs_root_refs(&root->root_item) != 0);
3748                 goto no_delete;
3749         }
3750
3751         btrfs_i_size_write(inode, 0);
3752
3753         while (1) {
3754                 trans = btrfs_start_transaction(root, 0);
3755                 BUG_ON(IS_ERR(trans));
3756                 btrfs_set_trans_block_group(trans, inode);
3757                 trans->block_rsv = root->orphan_block_rsv;
3758
3759                 ret = btrfs_block_rsv_check(trans, root,
3760                                             root->orphan_block_rsv, 0, 5);
3761                 if (ret) {
3762                         BUG_ON(ret != -EAGAIN);
3763                         ret = btrfs_commit_transaction(trans, root);
3764                         BUG_ON(ret);
3765                         continue;
3766                 }
3767
3768                 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
3769                 if (ret != -EAGAIN)
3770                         break;
3771
3772                 nr = trans->blocks_used;
3773                 btrfs_end_transaction(trans, root);
3774                 trans = NULL;
3775                 btrfs_btree_balance_dirty(root, nr);
3776
3777         }
3778
3779         if (ret == 0) {
3780                 ret = btrfs_orphan_del(trans, inode);
3781                 BUG_ON(ret);
3782         }
3783
3784         nr = trans->blocks_used;
3785         btrfs_end_transaction(trans, root);
3786         btrfs_btree_balance_dirty(root, nr);
3787 no_delete:
3788         end_writeback(inode);
3789         return;
3790 }
3791
3792 /*
3793  * this returns the key found in the dir entry in the location pointer.
3794  * If no dir entries were found, location->objectid is 0.
3795  */
3796 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
3797                                struct btrfs_key *location)
3798 {
3799         const char *name = dentry->d_name.name;
3800         int namelen = dentry->d_name.len;
3801         struct btrfs_dir_item *di;
3802         struct btrfs_path *path;
3803         struct btrfs_root *root = BTRFS_I(dir)->root;
3804         int ret = 0;
3805
3806         path = btrfs_alloc_path();
3807         BUG_ON(!path);
3808
3809         di = btrfs_lookup_dir_item(NULL, root, path, dir->i_ino, name,
3810                                     namelen, 0);
3811         if (IS_ERR(di))
3812                 ret = PTR_ERR(di);
3813
3814         if (!di || IS_ERR(di))
3815                 goto out_err;
3816
3817         btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
3818 out:
3819         btrfs_free_path(path);
3820         return ret;
3821 out_err:
3822         location->objectid = 0;
3823         goto out;
3824 }
3825
3826 /*
3827  * when we hit a tree root in a directory, the btrfs part of the inode
3828  * needs to be changed to reflect the root directory of the tree root.  This
3829  * is kind of like crossing a mount point.
3830  */
3831 static int fixup_tree_root_location(struct btrfs_root *root,
3832                                     struct inode *dir,
3833                                     struct dentry *dentry,
3834                                     struct btrfs_key *location,
3835                                     struct btrfs_root **sub_root)
3836 {
3837         struct btrfs_path *path;
3838         struct btrfs_root *new_root;
3839         struct btrfs_root_ref *ref;
3840         struct extent_buffer *leaf;
3841         int ret;
3842         int err = 0;
3843
3844         path = btrfs_alloc_path();
3845         if (!path) {
3846                 err = -ENOMEM;
3847                 goto out;
3848         }
3849
3850         err = -ENOENT;
3851         ret = btrfs_find_root_ref(root->fs_info->tree_root, path,
3852                                   BTRFS_I(dir)->root->root_key.objectid,
3853                                   location->objectid);
3854         if (ret) {
3855                 if (ret < 0)
3856                         err = ret;
3857                 goto out;
3858         }
3859
3860         leaf = path->nodes[0];
3861         ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
3862         if (btrfs_root_ref_dirid(leaf, ref) != dir->i_ino ||
3863             btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
3864                 goto out;
3865
3866         ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
3867                                    (unsigned long)(ref + 1),
3868                                    dentry->d_name.len);
3869         if (ret)
3870                 goto out;
3871
3872         btrfs_release_path(root->fs_info->tree_root, path);
3873
3874         new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
3875         if (IS_ERR(new_root)) {
3876                 err = PTR_ERR(new_root);
3877                 goto out;
3878         }
3879
3880         if (btrfs_root_refs(&new_root->root_item) == 0) {
3881                 err = -ENOENT;
3882                 goto out;
3883         }
3884
3885         *sub_root = new_root;
3886         location->objectid = btrfs_root_dirid(&new_root->root_item);
3887         location->type = BTRFS_INODE_ITEM_KEY;
3888         location->offset = 0;
3889         err = 0;
3890 out:
3891         btrfs_free_path(path);
3892         return err;
3893 }
3894
3895 static void inode_tree_add(struct inode *inode)
3896 {
3897         struct btrfs_root *root = BTRFS_I(inode)->root;
3898         struct btrfs_inode *entry;
3899         struct rb_node **p;
3900         struct rb_node *parent;
3901 again:
3902         p = &root->inode_tree.rb_node;
3903         parent = NULL;
3904
3905         if (hlist_unhashed(&inode->i_hash))
3906                 return;
3907
3908         spin_lock(&root->inode_lock);
3909         while (*p) {
3910                 parent = *p;
3911                 entry = rb_entry(parent, struct btrfs_inode, rb_node);
3912
3913                 if (inode->i_ino < entry->vfs_inode.i_ino)
3914                         p = &parent->rb_left;
3915                 else if (inode->i_ino > entry->vfs_inode.i_ino)
3916                         p = &parent->rb_right;
3917                 else {
3918                         WARN_ON(!(entry->vfs_inode.i_state &
3919                                   (I_WILL_FREE | I_FREEING)));
3920                         rb_erase(parent, &root->inode_tree);
3921                         RB_CLEAR_NODE(parent);
3922                         spin_unlock(&root->inode_lock);
3923                         goto again;
3924                 }
3925         }
3926         rb_link_node(&BTRFS_I(inode)->rb_node, parent, p);
3927         rb_insert_color(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3928         spin_unlock(&root->inode_lock);
3929 }
3930
3931 static void inode_tree_del(struct inode *inode)
3932 {
3933         struct btrfs_root *root = BTRFS_I(inode)->root;
3934         int empty = 0;
3935
3936         spin_lock(&root->inode_lock);
3937         if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
3938                 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3939                 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
3940                 empty = RB_EMPTY_ROOT(&root->inode_tree);
3941         }
3942         spin_unlock(&root->inode_lock);
3943
3944         /*
3945          * Free space cache has inodes in the tree root, but the tree root has a
3946          * root_refs of 0, so this could end up dropping the tree root as a
3947          * snapshot, so we need the extra !root->fs_info->tree_root check to
3948          * make sure we don't drop it.
3949          */
3950         if (empty && btrfs_root_refs(&root->root_item) == 0 &&
3951             root != root->fs_info->tree_root) {
3952                 synchronize_srcu(&root->fs_info->subvol_srcu);
3953                 spin_lock(&root->inode_lock);
3954                 empty = RB_EMPTY_ROOT(&root->inode_tree);
3955                 spin_unlock(&root->inode_lock);
3956                 if (empty)
3957                         btrfs_add_dead_root(root);
3958         }
3959 }
3960
3961 int btrfs_invalidate_inodes(struct btrfs_root *root)
3962 {
3963         struct rb_node *node;
3964         struct rb_node *prev;
3965         struct btrfs_inode *entry;
3966         struct inode *inode;
3967         u64 objectid = 0;
3968
3969         WARN_ON(btrfs_root_refs(&root->root_item) != 0);
3970
3971         spin_lock(&root->inode_lock);
3972 again:
3973         node = root->inode_tree.rb_node;
3974         prev = NULL;
3975         while (node) {
3976                 prev = node;
3977                 entry = rb_entry(node, struct btrfs_inode, rb_node);
3978
3979                 if (objectid < entry->vfs_inode.i_ino)
3980                         node = node->rb_left;
3981                 else if (objectid > entry->vfs_inode.i_ino)
3982                         node = node->rb_right;
3983                 else
3984                         break;
3985         }
3986         if (!node) {
3987                 while (prev) {
3988                         entry = rb_entry(prev, struct btrfs_inode, rb_node);
3989                         if (objectid <= entry->vfs_inode.i_ino) {
3990                                 node = prev;
3991                                 break;
3992                         }
3993                         prev = rb_next(prev);
3994                 }
3995         }
3996         while (node) {
3997                 entry = rb_entry(node, struct btrfs_inode, rb_node);
3998                 objectid = entry->vfs_inode.i_ino + 1;
3999                 inode = igrab(&entry->vfs_inode);
4000                 if (inode) {
4001                         spin_unlock(&root->inode_lock);
4002                         if (atomic_read(&inode->i_count) > 1)
4003                                 d_prune_aliases(inode);
4004                         /*
4005                          * btrfs_drop_inode will have it removed from
4006                          * the inode cache when its usage count
4007                          * hits zero.
4008                          */
4009                         iput(inode);
4010                         cond_resched();
4011                         spin_lock(&root->inode_lock);
4012                         goto again;
4013                 }
4014
4015                 if (cond_resched_lock(&root->inode_lock))
4016                         goto again;
4017
4018                 node = rb_next(node);
4019         }
4020         spin_unlock(&root->inode_lock);
4021         return 0;
4022 }
4023
4024 static int btrfs_init_locked_inode(struct inode *inode, void *p)
4025 {
4026         struct btrfs_iget_args *args = p;
4027         inode->i_ino = args->ino;
4028         BTRFS_I(inode)->root = args->root;
4029         btrfs_set_inode_space_info(args->root, inode);
4030         return 0;
4031 }
4032
4033 static int btrfs_find_actor(struct inode *inode, void *opaque)
4034 {
4035         struct btrfs_iget_args *args = opaque;
4036         return args->ino == inode->i_ino &&
4037                 args->root == BTRFS_I(inode)->root;
4038 }
4039
4040 static struct inode *btrfs_iget_locked(struct super_block *s,
4041                                        u64 objectid,
4042                                        struct btrfs_root *root)
4043 {
4044         struct inode *inode;
4045         struct btrfs_iget_args args;
4046         args.ino = objectid;
4047         args.root = root;
4048
4049         inode = iget5_locked(s, objectid, btrfs_find_actor,
4050                              btrfs_init_locked_inode,
4051                              (void *)&args);
4052         return inode;
4053 }
4054
4055 /* Get an inode object given its location and corresponding root.
4056  * Returns in *is_new if the inode was read from disk
4057  */
4058 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
4059                          struct btrfs_root *root, int *new)
4060 {
4061         struct inode *inode;
4062
4063         inode = btrfs_iget_locked(s, location->objectid, root);
4064         if (!inode)
4065                 return ERR_PTR(-ENOMEM);
4066
4067         if (inode->i_state & I_NEW) {
4068                 BTRFS_I(inode)->root = root;
4069                 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
4070                 btrfs_read_locked_inode(inode);
4071
4072                 inode_tree_add(inode);
4073                 unlock_new_inode(inode);
4074                 if (new)
4075                         *new = 1;
4076         }
4077
4078         return inode;
4079 }
4080
4081 static struct inode *new_simple_dir(struct super_block *s,
4082                                     struct btrfs_key *key,
4083                                     struct btrfs_root *root)
4084 {
4085         struct inode *inode = new_inode(s);
4086
4087         if (!inode)
4088                 return ERR_PTR(-ENOMEM);
4089
4090         BTRFS_I(inode)->root = root;
4091         memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
4092         BTRFS_I(inode)->dummy_inode = 1;
4093
4094         inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
4095         inode->i_op = &simple_dir_inode_operations;
4096         inode->i_fop = &simple_dir_operations;
4097         inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
4098         inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
4099
4100         return inode;
4101 }
4102
4103 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
4104 {
4105         struct inode *inode;
4106         struct btrfs_root *root = BTRFS_I(dir)->root;
4107         struct btrfs_root *sub_root = root;
4108         struct btrfs_key location;
4109         int index;
4110         int ret;
4111
4112         dentry->d_op = &btrfs_dentry_operations;
4113
4114         if (dentry->d_name.len > BTRFS_NAME_LEN)
4115                 return ERR_PTR(-ENAMETOOLONG);
4116
4117         ret = btrfs_inode_by_name(dir, dentry, &location);
4118
4119         if (ret < 0)
4120                 return ERR_PTR(ret);
4121
4122         if (location.objectid == 0)
4123                 return NULL;
4124
4125         if (location.type == BTRFS_INODE_ITEM_KEY) {
4126                 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
4127                 return inode;
4128         }
4129
4130         BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
4131
4132         index = srcu_read_lock(&root->fs_info->subvol_srcu);
4133         ret = fixup_tree_root_location(root, dir, dentry,
4134                                        &location, &sub_root);
4135         if (ret < 0) {
4136                 if (ret != -ENOENT)
4137                         inode = ERR_PTR(ret);
4138                 else
4139                         inode = new_simple_dir(dir->i_sb, &location, sub_root);
4140         } else {
4141                 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
4142         }
4143         srcu_read_unlock(&root->fs_info->subvol_srcu, index);
4144
4145         if (!IS_ERR(inode) && root != sub_root) {
4146                 down_read(&root->fs_info->cleanup_work_sem);
4147                 if (!(inode->i_sb->s_flags & MS_RDONLY))
4148                         btrfs_orphan_cleanup(sub_root);
4149                 up_read(&root->fs_info->cleanup_work_sem);
4150         }
4151
4152         return inode;
4153 }
4154
4155 static int btrfs_dentry_delete(struct dentry *dentry)
4156 {
4157         struct btrfs_root *root;
4158
4159         if (!dentry->d_inode && !IS_ROOT(dentry))
4160                 dentry = dentry->d_parent;
4161
4162         if (dentry->d_inode) {
4163                 root = BTRFS_I(dentry->d_inode)->root;
4164                 if (btrfs_root_refs(&root->root_item) == 0)
4165                         return 1;
4166         }
4167         return 0;
4168 }
4169
4170 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
4171                                    struct nameidata *nd)
4172 {
4173         struct inode *inode;
4174
4175         inode = btrfs_lookup_dentry(dir, dentry);
4176         if (IS_ERR(inode))
4177                 return ERR_CAST(inode);
4178
4179         return d_splice_alias(inode, dentry);
4180 }
4181
4182 static unsigned char btrfs_filetype_table[] = {
4183         DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
4184 };
4185
4186 static int btrfs_real_readdir(struct file *filp, void *dirent,
4187                               filldir_t filldir)
4188 {
4189         struct inode *inode = filp->f_dentry->d_inode;
4190         struct btrfs_root *root = BTRFS_I(inode)->root;
4191         struct btrfs_item *item;
4192         struct btrfs_dir_item *di;
4193         struct btrfs_key key;
4194         struct btrfs_key found_key;
4195         struct btrfs_path *path;
4196         int ret;
4197         u32 nritems;
4198         struct extent_buffer *leaf;
4199         int slot;
4200         int advance;
4201         unsigned char d_type;
4202         int over = 0;
4203         u32 di_cur;
4204         u32 di_total;
4205         u32 di_len;
4206         int key_type = BTRFS_DIR_INDEX_KEY;
4207         char tmp_name[32];
4208         char *name_ptr;
4209         int name_len;
4210
4211         /* FIXME, use a real flag for deciding about the key type */
4212         if (root->fs_info->tree_root == root)
4213                 key_type = BTRFS_DIR_ITEM_KEY;
4214
4215         /* special case for "." */
4216         if (filp->f_pos == 0) {
4217                 over = filldir(dirent, ".", 1,
4218                                1, inode->i_ino,
4219                                DT_DIR);
4220                 if (over)
4221                         return 0;
4222                 filp->f_pos = 1;
4223         }
4224         /* special case for .., just use the back ref */
4225         if (filp->f_pos == 1) {
4226                 u64 pino = parent_ino(filp->f_path.dentry);
4227                 over = filldir(dirent, "..", 2,
4228                                2, pino, DT_DIR);
4229                 if (over)
4230                         return 0;
4231                 filp->f_pos = 2;
4232         }
4233         path = btrfs_alloc_path();
4234         path->reada = 2;
4235
4236         btrfs_set_key_type(&key, key_type);
4237         key.offset = filp->f_pos;
4238         key.objectid = inode->i_ino;
4239
4240         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4241         if (ret < 0)
4242                 goto err;
4243         advance = 0;
4244
4245         while (1) {
4246                 leaf = path->nodes[0];
4247                 nritems = btrfs_header_nritems(leaf);
4248                 slot = path->slots[0];
4249                 if (advance || slot >= nritems) {
4250                         if (slot >= nritems - 1) {
4251                                 ret = btrfs_next_leaf(root, path);
4252                                 if (ret)
4253                                         break;
4254                                 leaf = path->nodes[0];
4255                                 nritems = btrfs_header_nritems(leaf);
4256                                 slot = path->slots[0];
4257                         } else {
4258                                 slot++;
4259                                 path->slots[0]++;
4260                         }
4261                 }
4262
4263                 advance = 1;
4264                 item = btrfs_item_nr(leaf, slot);
4265                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
4266
4267                 if (found_key.objectid != key.objectid)
4268                         break;
4269                 if (btrfs_key_type(&found_key) != key_type)
4270                         break;
4271                 if (found_key.offset < filp->f_pos)
4272                         continue;
4273
4274                 filp->f_pos = found_key.offset;
4275
4276                 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
4277                 di_cur = 0;
4278                 di_total = btrfs_item_size(leaf, item);
4279
4280                 while (di_cur < di_total) {
4281                         struct btrfs_key location;
4282
4283                         name_len = btrfs_dir_name_len(leaf, di);
4284                         if (name_len <= sizeof(tmp_name)) {
4285                                 name_ptr = tmp_name;
4286                         } else {
4287                                 name_ptr = kmalloc(name_len, GFP_NOFS);
4288                                 if (!name_ptr) {
4289                                         ret = -ENOMEM;
4290                                         goto err;
4291                                 }
4292                         }
4293                         read_extent_buffer(leaf, name_ptr,
4294                                            (unsigned long)(di + 1), name_len);
4295
4296                         d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
4297                         btrfs_dir_item_key_to_cpu(leaf, di, &location);
4298
4299                         /* is this a reference to our own snapshot? If so
4300                          * skip it
4301                          */
4302                         if (location.type == BTRFS_ROOT_ITEM_KEY &&
4303                             location.objectid == root->root_key.objectid) {
4304                                 over = 0;
4305                                 goto skip;
4306                         }
4307                         over = filldir(dirent, name_ptr, name_len,
4308                                        found_key.offset, location.objectid,
4309                                        d_type);
4310
4311 skip:
4312                         if (name_ptr != tmp_name)
4313                                 kfree(name_ptr);
4314
4315                         if (over)
4316                                 goto nopos;
4317                         di_len = btrfs_dir_name_len(leaf, di) +
4318                                  btrfs_dir_data_len(leaf, di) + sizeof(*di);
4319                         di_cur += di_len;
4320                         di = (struct btrfs_dir_item *)((char *)di + di_len);
4321                 }
4322         }
4323
4324         /* Reached end of directory/root. Bump pos past the last item. */
4325         if (key_type == BTRFS_DIR_INDEX_KEY)
4326                 /*
4327                  * 32-bit glibc will use getdents64, but then strtol -
4328                  * so the last number we can serve is this.
4329                  */
4330                 filp->f_pos = 0x7fffffff;
4331         else
4332                 filp->f_pos++;
4333 nopos:
4334         ret = 0;
4335 err:
4336         btrfs_free_path(path);
4337         return ret;
4338 }
4339
4340 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
4341 {
4342         struct btrfs_root *root = BTRFS_I(inode)->root;
4343         struct btrfs_trans_handle *trans;
4344         int ret = 0;
4345         bool nolock = false;
4346
4347         if (BTRFS_I(inode)->dummy_inode)
4348                 return 0;
4349
4350         smp_mb();
4351         nolock = (root->fs_info->closing && root == root->fs_info->tree_root);
4352
4353         if (wbc->sync_mode == WB_SYNC_ALL) {
4354                 if (nolock)
4355                         trans = btrfs_join_transaction_nolock(root, 1);
4356                 else
4357                         trans = btrfs_join_transaction(root, 1);
4358                 if (IS_ERR(trans))
4359                         return PTR_ERR(trans);
4360                 btrfs_set_trans_block_group(trans, inode);
4361                 if (nolock)
4362                         ret = btrfs_end_transaction_nolock(trans, root);
4363                 else
4364                         ret = btrfs_commit_transaction(trans, root);
4365         }
4366         return ret;
4367 }
4368
4369 /*
4370  * This is somewhat expensive, updating the tree every time the
4371  * inode changes.  But, it is most likely to find the inode in cache.
4372  * FIXME, needs more benchmarking...there are no reasons other than performance
4373  * to keep or drop this code.
4374  */
4375 void btrfs_dirty_inode(struct inode *inode)
4376 {
4377         struct btrfs_root *root = BTRFS_I(inode)->root;
4378         struct btrfs_trans_handle *trans;
4379         int ret;
4380
4381         if (BTRFS_I(inode)->dummy_inode)
4382                 return;
4383
4384         trans = btrfs_join_transaction(root, 1);
4385         BUG_ON(IS_ERR(trans));
4386         btrfs_set_trans_block_group(trans, inode);
4387
4388         ret = btrfs_update_inode(trans, root, inode);
4389         if (ret && ret == -ENOSPC) {
4390                 /* whoops, lets try again with the full transaction */
4391                 btrfs_end_transaction(trans, root);
4392                 trans = btrfs_start_transaction(root, 1);
4393                 if (IS_ERR(trans)) {
4394                         if (printk_ratelimit()) {
4395                                 printk(KERN_ERR "btrfs: fail to "
4396                                        "dirty  inode %lu error %ld\n",
4397                                        inode->i_ino, PTR_ERR(trans));
4398                         }
4399                         return;
4400                 }
4401                 btrfs_set_trans_block_group(trans, inode);
4402
4403                 ret = btrfs_update_inode(trans, root, inode);
4404                 if (ret) {
4405                         if (printk_ratelimit()) {
4406                                 printk(KERN_ERR "btrfs: fail to "
4407                                        "dirty  inode %lu error %d\n",
4408                                        inode->i_ino, ret);
4409                         }
4410                 }
4411         }
4412         btrfs_end_transaction(trans, root);
4413 }
4414
4415 /*
4416  * find the highest existing sequence number in a directory
4417  * and then set the in-memory index_cnt variable to reflect
4418  * free sequence numbers
4419  */
4420 static int btrfs_set_inode_index_count(struct inode *inode)
4421 {
4422         struct btrfs_root *root = BTRFS_I(inode)->root;
4423         struct btrfs_key key, found_key;
4424         struct btrfs_path *path;
4425         struct extent_buffer *leaf;
4426         int ret;
4427
4428         key.objectid = inode->i_ino;
4429         btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
4430         key.offset = (u64)-1;
4431
4432         path = btrfs_alloc_path();
4433         if (!path)
4434                 return -ENOMEM;
4435
4436         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4437         if (ret < 0)
4438                 goto out;
4439         /* FIXME: we should be able to handle this */
4440         if (ret == 0)
4441                 goto out;
4442         ret = 0;
4443
4444         /*
4445          * MAGIC NUMBER EXPLANATION:
4446          * since we search a directory based on f_pos we have to start at 2
4447          * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
4448          * else has to start at 2
4449          */
4450         if (path->slots[0] == 0) {
4451                 BTRFS_I(inode)->index_cnt = 2;
4452                 goto out;
4453         }
4454
4455         path->slots[0]--;
4456
4457         leaf = path->nodes[0];
4458         btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4459
4460         if (found_key.objectid != inode->i_ino ||
4461             btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
4462                 BTRFS_I(inode)->index_cnt = 2;
4463                 goto out;
4464         }
4465
4466         BTRFS_I(inode)->index_cnt = found_key.offset + 1;
4467 out:
4468         btrfs_free_path(path);
4469         return ret;
4470 }
4471
4472 /*
4473  * helper to find a free sequence number in a given directory.  This current
4474  * code is very simple, later versions will do smarter things in the btree
4475  */
4476 int btrfs_set_inode_index(struct inode *dir, u64 *index)
4477 {
4478         int ret = 0;
4479
4480         if (BTRFS_I(dir)->index_cnt == (u64)-1) {
4481                 ret = btrfs_set_inode_index_count(dir);
4482                 if (ret)
4483                         return ret;
4484         }
4485
4486         *index = BTRFS_I(dir)->index_cnt;
4487         BTRFS_I(dir)->index_cnt++;
4488
4489         return ret;
4490 }
4491
4492 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
4493                                      struct btrfs_root *root,
4494                                      struct inode *dir,
4495                                      const char *name, int name_len,
4496                                      u64 ref_objectid, u64 objectid,
4497                                      u64 alloc_hint, int mode, u64 *index)
4498 {
4499         struct inode *inode;
4500         struct btrfs_inode_item *inode_item;
4501         struct btrfs_key *location;
4502         struct btrfs_path *path;
4503         struct btrfs_inode_ref *ref;
4504         struct btrfs_key key[2];
4505         u32 sizes[2];
4506         unsigned long ptr;
4507         int ret;
4508         int owner;
4509
4510         path = btrfs_alloc_path();
4511         BUG_ON(!path);
4512
4513         inode = new_inode(root->fs_info->sb);
4514         if (!inode)
4515                 return ERR_PTR(-ENOMEM);
4516
4517         if (dir) {
4518                 ret = btrfs_set_inode_index(dir, index);
4519                 if (ret) {
4520                         iput(inode);
4521                         return ERR_PTR(ret);
4522                 }
4523         }
4524         /*
4525          * index_cnt is ignored for everything but a dir,
4526          * btrfs_get_inode_index_count has an explanation for the magic
4527          * number
4528          */
4529         BTRFS_I(inode)->index_cnt = 2;
4530         BTRFS_I(inode)->root = root;
4531         BTRFS_I(inode)->generation = trans->transid;
4532         inode->i_generation = BTRFS_I(inode)->generation;
4533         btrfs_set_inode_space_info(root, inode);
4534
4535         if (mode & S_IFDIR)
4536                 owner = 0;
4537         else
4538                 owner = 1;
4539         BTRFS_I(inode)->block_group =
4540                         btrfs_find_block_group(root, 0, alloc_hint, owner);
4541
4542         key[0].objectid = objectid;
4543         btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
4544         key[0].offset = 0;
4545
4546         key[1].objectid = objectid;
4547         btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
4548         key[1].offset = ref_objectid;
4549
4550         sizes[0] = sizeof(struct btrfs_inode_item);
4551         sizes[1] = name_len + sizeof(*ref);
4552
4553         path->leave_spinning = 1;
4554         ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
4555         if (ret != 0)
4556                 goto fail;
4557
4558         inode_init_owner(inode, dir, mode);
4559         inode->i_ino = objectid;
4560         inode_set_bytes(inode, 0);
4561         inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
4562         inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4563                                   struct btrfs_inode_item);
4564         fill_inode_item(trans, path->nodes[0], inode_item, inode);
4565
4566         ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
4567                              struct btrfs_inode_ref);
4568         btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
4569         btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
4570         ptr = (unsigned long)(ref + 1);
4571         write_extent_buffer(path->nodes[0], name, ptr, name_len);
4572
4573         btrfs_mark_buffer_dirty(path->nodes[0]);
4574         btrfs_free_path(path);
4575
4576         location = &BTRFS_I(inode)->location;
4577         location->objectid = objectid;
4578         location->offset = 0;
4579         btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
4580
4581         btrfs_inherit_iflags(inode, dir);
4582
4583         if ((mode & S_IFREG)) {
4584                 if (btrfs_test_opt(root, NODATASUM))
4585                         BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
4586                 if (btrfs_test_opt(root, NODATACOW))
4587                         BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
4588         }
4589
4590         insert_inode_hash(inode);
4591         inode_tree_add(inode);
4592         return inode;
4593 fail:
4594         if (dir)
4595                 BTRFS_I(dir)->index_cnt--;
4596         btrfs_free_path(path);
4597         iput(inode);
4598         return ERR_PTR(ret);
4599 }
4600
4601 static inline u8 btrfs_inode_type(struct inode *inode)
4602 {
4603         return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
4604 }
4605
4606 /*
4607  * utility function to add 'inode' into 'parent_inode' with
4608  * a give name and a given sequence number.
4609  * if 'add_backref' is true, also insert a backref from the
4610  * inode to the parent directory.
4611  */
4612 int btrfs_add_link(struct btrfs_trans_handle *trans,
4613                    struct inode *parent_inode, struct inode *inode,
4614                    const char *name, int name_len, int add_backref, u64 index)
4615 {
4616         int ret = 0;
4617         struct btrfs_key key;
4618         struct btrfs_root *root = BTRFS_I(parent_inode)->root;
4619
4620         if (unlikely(inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4621                 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
4622         } else {
4623                 key.objectid = inode->i_ino;
4624                 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
4625                 key.offset = 0;
4626         }
4627
4628         if (unlikely(inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4629                 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
4630                                          key.objectid, root->root_key.objectid,
4631                                          parent_inode->i_ino,
4632                                          index, name, name_len);
4633         } else if (add_backref) {
4634                 ret = btrfs_insert_inode_ref(trans, root,
4635                                              name, name_len, inode->i_ino,
4636                                              parent_inode->i_ino, index);
4637         }
4638
4639         if (ret == 0) {
4640                 ret = btrfs_insert_dir_item(trans, root, name, name_len,
4641                                             parent_inode->i_ino, &key,
4642                                             btrfs_inode_type(inode), index);
4643                 BUG_ON(ret);
4644
4645                 btrfs_i_size_write(parent_inode, parent_inode->i_size +
4646                                    name_len * 2);
4647                 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
4648                 ret = btrfs_update_inode(trans, root, parent_inode);
4649         }
4650         return ret;
4651 }
4652
4653 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
4654                             struct inode *dir, struct dentry *dentry,
4655                             struct inode *inode, int backref, u64 index)
4656 {
4657         int err = btrfs_add_link(trans, dir, inode,
4658                                  dentry->d_name.name, dentry->d_name.len,
4659                                  backref, index);
4660         if (!err) {
4661                 d_instantiate(dentry, inode);
4662                 return 0;
4663         }
4664         if (err > 0)
4665                 err = -EEXIST;
4666         return err;
4667 }
4668
4669 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
4670                         int mode, dev_t rdev)
4671 {
4672         struct btrfs_trans_handle *trans;
4673         struct btrfs_root *root = BTRFS_I(dir)->root;
4674         struct inode *inode = NULL;
4675         int err;
4676         int drop_inode = 0;
4677         u64 objectid;
4678         unsigned long nr = 0;
4679         u64 index = 0;
4680
4681         if (!new_valid_dev(rdev))
4682                 return -EINVAL;
4683
4684         err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid);
4685         if (err)
4686                 return err;
4687
4688         /*
4689          * 2 for inode item and ref
4690          * 2 for dir items
4691          * 1 for xattr if selinux is on
4692          */
4693         trans = btrfs_start_transaction(root, 5);
4694         if (IS_ERR(trans))
4695                 return PTR_ERR(trans);
4696
4697         btrfs_set_trans_block_group(trans, dir);
4698
4699         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4700                                 dentry->d_name.len, dir->i_ino, objectid,
4701                                 BTRFS_I(dir)->block_group, mode, &index);
4702         err = PTR_ERR(inode);
4703         if (IS_ERR(inode))
4704                 goto out_unlock;
4705
4706         err = btrfs_init_inode_security(trans, inode, dir);
4707         if (err) {
4708                 drop_inode = 1;
4709                 goto out_unlock;
4710         }
4711
4712         btrfs_set_trans_block_group(trans, inode);
4713         err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
4714         if (err)
4715                 drop_inode = 1;
4716         else {
4717                 inode->i_op = &btrfs_special_inode_operations;
4718                 init_special_inode(inode, inode->i_mode, rdev);
4719                 btrfs_update_inode(trans, root, inode);
4720         }
4721         btrfs_update_inode_block_group(trans, inode);
4722         btrfs_update_inode_block_group(trans, dir);
4723 out_unlock:
4724         nr = trans->blocks_used;
4725         btrfs_end_transaction_throttle(trans, root);
4726         btrfs_btree_balance_dirty(root, nr);
4727         if (drop_inode) {
4728                 inode_dec_link_count(inode);
4729                 iput(inode);
4730         }
4731         return err;
4732 }
4733
4734 static int btrfs_create(struct inode *dir, struct dentry *dentry,
4735                         int mode, struct nameidata *nd)
4736 {
4737         struct btrfs_trans_handle *trans;
4738         struct btrfs_root *root = BTRFS_I(dir)->root;
4739         struct inode *inode = NULL;
4740         int drop_inode = 0;
4741         int err;
4742         unsigned long nr = 0;
4743         u64 objectid;
4744         u64 index = 0;
4745
4746         err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid);
4747         if (err)
4748                 return err;
4749         /*
4750          * 2 for inode item and ref
4751          * 2 for dir items
4752          * 1 for xattr if selinux is on
4753          */
4754         trans = btrfs_start_transaction(root, 5);
4755         if (IS_ERR(trans))
4756                 return PTR_ERR(trans);
4757
4758         btrfs_set_trans_block_group(trans, dir);
4759
4760         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4761                                 dentry->d_name.len, dir->i_ino, objectid,
4762                                 BTRFS_I(dir)->block_group, mode, &index);
4763         err = PTR_ERR(inode);
4764         if (IS_ERR(inode))
4765                 goto out_unlock;
4766
4767         err = btrfs_init_inode_security(trans, inode, dir);
4768         if (err) {
4769                 drop_inode = 1;
4770                 goto out_unlock;
4771         }
4772
4773         btrfs_set_trans_block_group(trans, inode);
4774         err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
4775         if (err)
4776                 drop_inode = 1;
4777         else {
4778                 inode->i_mapping->a_ops = &btrfs_aops;
4779                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
4780                 inode->i_fop = &btrfs_file_operations;
4781                 inode->i_op = &btrfs_file_inode_operations;
4782                 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
4783         }
4784         btrfs_update_inode_block_group(trans, inode);
4785         btrfs_update_inode_block_group(trans, dir);
4786 out_unlock:
4787         nr = trans->blocks_used;
4788         btrfs_end_transaction_throttle(trans, root);
4789         if (drop_inode) {
4790                 inode_dec_link_count(inode);
4791                 iput(inode);
4792         }
4793         btrfs_btree_balance_dirty(root, nr);
4794         return err;
4795 }
4796
4797 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
4798                       struct dentry *dentry)
4799 {
4800         struct btrfs_trans_handle *trans;
4801         struct btrfs_root *root = BTRFS_I(dir)->root;
4802         struct inode *inode = old_dentry->d_inode;
4803         u64 index;
4804         unsigned long nr = 0;
4805         int err;
4806         int drop_inode = 0;
4807
4808         if (inode->i_nlink == 0)
4809                 return -ENOENT;
4810
4811         /* do not allow sys_link's with other subvols of the same device */
4812         if (root->objectid != BTRFS_I(inode)->root->objectid)
4813                 return -EPERM;
4814
4815         btrfs_inc_nlink(inode);
4816         inode->i_ctime = CURRENT_TIME;
4817
4818         err = btrfs_set_inode_index(dir, &index);
4819         if (err)
4820                 goto fail;
4821
4822         /*
4823          * 1 item for inode ref
4824          * 2 items for dir items
4825          */
4826         trans = btrfs_start_transaction(root, 3);
4827         if (IS_ERR(trans)) {
4828                 err = PTR_ERR(trans);
4829                 goto fail;
4830         }
4831
4832         btrfs_set_trans_block_group(trans, dir);
4833         atomic_inc(&inode->i_count);
4834
4835         err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
4836
4837         if (err) {
4838                 drop_inode = 1;
4839         } else {
4840                 struct dentry *parent = dget_parent(dentry);
4841                 btrfs_update_inode_block_group(trans, dir);
4842                 err = btrfs_update_inode(trans, root, inode);
4843                 BUG_ON(err);
4844                 btrfs_log_new_name(trans, inode, NULL, parent);
4845                 dput(parent);
4846         }
4847
4848         nr = trans->blocks_used;
4849         btrfs_end_transaction_throttle(trans, root);
4850 fail:
4851         if (drop_inode) {
4852                 inode_dec_link_count(inode);
4853                 iput(inode);
4854         }
4855         btrfs_btree_balance_dirty(root, nr);
4856         return err;
4857 }
4858
4859 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
4860 {
4861         struct inode *inode = NULL;
4862         struct btrfs_trans_handle *trans;
4863         struct btrfs_root *root = BTRFS_I(dir)->root;
4864         int err = 0;
4865         int drop_on_err = 0;
4866         u64 objectid = 0;
4867         u64 index = 0;
4868         unsigned long nr = 1;
4869
4870         err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid);
4871         if (err)
4872                 return err;
4873
4874         /*
4875          * 2 items for inode and ref
4876          * 2 items for dir items
4877          * 1 for xattr if selinux is on
4878          */
4879         trans = btrfs_start_transaction(root, 5);
4880         if (IS_ERR(trans))
4881                 return PTR_ERR(trans);
4882         btrfs_set_trans_block_group(trans, dir);
4883
4884         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4885                                 dentry->d_name.len, dir->i_ino, objectid,
4886                                 BTRFS_I(dir)->block_group, S_IFDIR | mode,
4887                                 &index);
4888         if (IS_ERR(inode)) {
4889                 err = PTR_ERR(inode);
4890                 goto out_fail;
4891         }
4892
4893         drop_on_err = 1;
4894
4895         err = btrfs_init_inode_security(trans, inode, dir);
4896         if (err)
4897                 goto out_fail;
4898
4899         inode->i_op = &btrfs_dir_inode_operations;
4900         inode->i_fop = &btrfs_dir_file_operations;
4901         btrfs_set_trans_block_group(trans, inode);
4902
4903         btrfs_i_size_write(inode, 0);
4904         err = btrfs_update_inode(trans, root, inode);
4905         if (err)
4906                 goto out_fail;
4907
4908         err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
4909                              dentry->d_name.len, 0, index);
4910         if (err)
4911                 goto out_fail;
4912
4913         d_instantiate(dentry, inode);
4914         drop_on_err = 0;
4915         btrfs_update_inode_block_group(trans, inode);
4916         btrfs_update_inode_block_group(trans, dir);
4917
4918 out_fail:
4919         nr = trans->blocks_used;
4920         btrfs_end_transaction_throttle(trans, root);
4921         if (drop_on_err)
4922                 iput(inode);
4923         btrfs_btree_balance_dirty(root, nr);
4924         return err;
4925 }
4926
4927 /* helper for btfs_get_extent.  Given an existing extent in the tree,
4928  * and an extent that you want to insert, deal with overlap and insert
4929  * the new extent into the tree.
4930  */
4931 static int merge_extent_mapping(struct extent_map_tree *em_tree,
4932                                 struct extent_map *existing,
4933                                 struct extent_map *em,
4934                                 u64 map_start, u64 map_len)
4935 {
4936         u64 start_diff;
4937
4938         BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
4939         start_diff = map_start - em->start;
4940         em->start = map_start;
4941         em->len = map_len;
4942         if (em->block_start < EXTENT_MAP_LAST_BYTE &&
4943             !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
4944                 em->block_start += start_diff;
4945                 em->block_len -= start_diff;
4946         }
4947         return add_extent_mapping(em_tree, em);
4948 }
4949
4950 static noinline int uncompress_inline(struct btrfs_path *path,
4951                                       struct inode *inode, struct page *page,
4952                                       size_t pg_offset, u64 extent_offset,
4953                                       struct btrfs_file_extent_item *item)
4954 {
4955         int ret;
4956         struct extent_buffer *leaf = path->nodes[0];
4957         char *tmp;
4958         size_t max_size;
4959         unsigned long inline_size;
4960         unsigned long ptr;
4961         int compress_type;
4962
4963         WARN_ON(pg_offset != 0);
4964         compress_type = btrfs_file_extent_compression(leaf, item);
4965         max_size = btrfs_file_extent_ram_bytes(leaf, item);
4966         inline_size = btrfs_file_extent_inline_item_len(leaf,
4967                                         btrfs_item_nr(leaf, path->slots[0]));
4968         tmp = kmalloc(inline_size, GFP_NOFS);
4969         ptr = btrfs_file_extent_inline_start(item);
4970
4971         read_extent_buffer(leaf, tmp, ptr, inline_size);
4972
4973         max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
4974         ret = btrfs_decompress(compress_type, tmp, page,
4975                                extent_offset, inline_size, max_size);
4976         if (ret) {
4977                 char *kaddr = kmap_atomic(page, KM_USER0);
4978                 unsigned long copy_size = min_t(u64,
4979                                   PAGE_CACHE_SIZE - pg_offset,
4980                                   max_size - extent_offset);
4981                 memset(kaddr + pg_offset, 0, copy_size);
4982                 kunmap_atomic(kaddr, KM_USER0);
4983         }
4984         kfree(tmp);
4985         return 0;
4986 }
4987
4988 /*
4989  * a bit scary, this does extent mapping from logical file offset to the disk.
4990  * the ugly parts come from merging extents from the disk with the in-ram
4991  * representation.  This gets more complex because of the data=ordered code,
4992  * where the in-ram extents might be locked pending data=ordered completion.
4993  *
4994  * This also copies inline extents directly into the page.
4995  */
4996
4997 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
4998                                     size_t pg_offset, u64 start, u64 len,
4999                                     int create)
5000 {
5001         int ret;
5002         int err = 0;
5003         u64 bytenr;
5004         u64 extent_start = 0;
5005         u64 extent_end = 0;
5006         u64 objectid = inode->i_ino;
5007         u32 found_type;
5008         struct btrfs_path *path = NULL;
5009         struct btrfs_root *root = BTRFS_I(inode)->root;
5010         struct btrfs_file_extent_item *item;
5011         struct extent_buffer *leaf;
5012         struct btrfs_key found_key;
5013         struct extent_map *em = NULL;
5014         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
5015         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5016         struct btrfs_trans_handle *trans = NULL;
5017         int compress_type;
5018
5019 again:
5020         read_lock(&em_tree->lock);
5021         em = lookup_extent_mapping(em_tree, start, len);
5022         if (em)
5023                 em->bdev = root->fs_info->fs_devices->latest_bdev;
5024         read_unlock(&em_tree->lock);
5025
5026         if (em) {
5027                 if (em->start > start || em->start + em->len <= start)
5028                         free_extent_map(em);
5029                 else if (em->block_start == EXTENT_MAP_INLINE && page)
5030                         free_extent_map(em);
5031                 else
5032                         goto out;
5033         }
5034         em = alloc_extent_map(GFP_NOFS);
5035         if (!em) {
5036                 err = -ENOMEM;
5037                 goto out;
5038         }
5039         em->bdev = root->fs_info->fs_devices->latest_bdev;
5040         em->start = EXTENT_MAP_HOLE;
5041         em->orig_start = EXTENT_MAP_HOLE;
5042         em->len = (u64)-1;
5043         em->block_len = (u64)-1;
5044
5045         if (!path) {
5046                 path = btrfs_alloc_path();
5047                 BUG_ON(!path);
5048         }
5049
5050         ret = btrfs_lookup_file_extent(trans, root, path,
5051                                        objectid, start, trans != NULL);
5052         if (ret < 0) {
5053                 err = ret;
5054                 goto out;
5055         }
5056
5057         if (ret != 0) {
5058                 if (path->slots[0] == 0)
5059                         goto not_found;
5060                 path->slots[0]--;
5061         }
5062
5063         leaf = path->nodes[0];
5064         item = btrfs_item_ptr(leaf, path->slots[0],
5065                               struct btrfs_file_extent_item);
5066         /* are we inside the extent that was found? */
5067         btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5068         found_type = btrfs_key_type(&found_key);
5069         if (found_key.objectid != objectid ||
5070             found_type != BTRFS_EXTENT_DATA_KEY) {
5071                 goto not_found;
5072         }
5073
5074         found_type = btrfs_file_extent_type(leaf, item);
5075         extent_start = found_key.offset;
5076         compress_type = btrfs_file_extent_compression(leaf, item);
5077         if (found_type == BTRFS_FILE_EXTENT_REG ||
5078             found_type == BTRFS_FILE_EXTENT_PREALLOC) {
5079                 extent_end = extent_start +
5080                        btrfs_file_extent_num_bytes(leaf, item);
5081         } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5082                 size_t size;
5083                 size = btrfs_file_extent_inline_len(leaf, item);
5084                 extent_end = (extent_start + size + root->sectorsize - 1) &
5085                         ~((u64)root->sectorsize - 1);
5086         }
5087
5088         if (start >= extent_end) {
5089                 path->slots[0]++;
5090                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
5091                         ret = btrfs_next_leaf(root, path);
5092                         if (ret < 0) {
5093                                 err = ret;
5094                                 goto out;
5095                         }
5096                         if (ret > 0)
5097                                 goto not_found;
5098                         leaf = path->nodes[0];
5099                 }
5100                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5101                 if (found_key.objectid != objectid ||
5102                     found_key.type != BTRFS_EXTENT_DATA_KEY)
5103                         goto not_found;
5104                 if (start + len <= found_key.offset)
5105                         goto not_found;
5106                 em->start = start;
5107                 em->len = found_key.offset - start;
5108                 goto not_found_em;
5109         }
5110
5111         if (found_type == BTRFS_FILE_EXTENT_REG ||
5112             found_type == BTRFS_FILE_EXTENT_PREALLOC) {
5113                 em->start = extent_start;
5114                 em->len = extent_end - extent_start;
5115                 em->orig_start = extent_start -
5116                                  btrfs_file_extent_offset(leaf, item);
5117                 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
5118                 if (bytenr == 0) {
5119                         em->block_start = EXTENT_MAP_HOLE;
5120                         goto insert;
5121                 }
5122                 if (compress_type != BTRFS_COMPRESS_NONE) {
5123                         set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
5124                         em->compress_type = compress_type;
5125                         em->block_start = bytenr;
5126                         em->block_len = btrfs_file_extent_disk_num_bytes(leaf,
5127                                                                          item);
5128                 } else {
5129                         bytenr += btrfs_file_extent_offset(leaf, item);
5130                         em->block_start = bytenr;
5131                         em->block_len = em->len;
5132                         if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
5133                                 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
5134                 }
5135                 goto insert;
5136         } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5137                 unsigned long ptr;
5138                 char *map;
5139                 size_t size;
5140                 size_t extent_offset;
5141                 size_t copy_size;
5142
5143                 em->block_start = EXTENT_MAP_INLINE;
5144                 if (!page || create) {
5145                         em->start = extent_start;
5146                         em->len = extent_end - extent_start;
5147                         goto out;
5148                 }
5149
5150                 size = btrfs_file_extent_inline_len(leaf, item);
5151                 extent_offset = page_offset(page) + pg_offset - extent_start;
5152                 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
5153                                 size - extent_offset);
5154                 em->start = extent_start + extent_offset;
5155                 em->len = (copy_size + root->sectorsize - 1) &
5156                         ~((u64)root->sectorsize - 1);
5157                 em->orig_start = EXTENT_MAP_INLINE;
5158                 if (compress_type) {
5159                         set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
5160                         em->compress_type = compress_type;
5161                 }
5162                 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
5163                 if (create == 0 && !PageUptodate(page)) {
5164                         if (btrfs_file_extent_compression(leaf, item) !=
5165                             BTRFS_COMPRESS_NONE) {
5166                                 ret = uncompress_inline(path, inode, page,
5167                                                         pg_offset,
5168                                                         extent_offset, item);
5169                                 BUG_ON(ret);
5170                         } else {
5171                                 map = kmap(page);
5172                                 read_extent_buffer(leaf, map + pg_offset, ptr,
5173                                                    copy_size);
5174                                 if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
5175                                         memset(map + pg_offset + copy_size, 0,
5176                                                PAGE_CACHE_SIZE - pg_offset -
5177                                                copy_size);
5178                                 }
5179                                 kunmap(page);
5180                         }
5181                         flush_dcache_page(page);
5182                 } else if (create && PageUptodate(page)) {
5183                         WARN_ON(1);
5184                         if (!trans) {
5185                                 kunmap(page);
5186                                 free_extent_map(em);
5187                                 em = NULL;
5188                                 btrfs_release_path(root, path);
5189                                 trans = btrfs_join_transaction(root, 1);
5190                                 if (IS_ERR(trans))
5191                                         return ERR_CAST(trans);
5192                                 goto again;
5193                         }
5194                         map = kmap(page);
5195                         write_extent_buffer(leaf, map + pg_offset, ptr,
5196                                             copy_size);
5197                         kunmap(page);
5198                         btrfs_mark_buffer_dirty(leaf);
5199                 }
5200                 set_extent_uptodate(io_tree, em->start,
5201                                     extent_map_end(em) - 1, GFP_NOFS);
5202                 goto insert;
5203         } else {
5204                 printk(KERN_ERR "btrfs unknown found_type %d\n", found_type);
5205                 WARN_ON(1);
5206         }
5207 not_found:
5208         em->start = start;
5209         em->len = len;
5210 not_found_em:
5211         em->block_start = EXTENT_MAP_HOLE;
5212         set_bit(EXTENT_FLAG_VACANCY, &em->flags);
5213 insert:
5214         btrfs_release_path(root, path);
5215         if (em->start > start || extent_map_end(em) <= start) {
5216                 printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed "
5217                        "[%llu %llu]\n", (unsigned long long)em->start,
5218                        (unsigned long long)em->len,
5219                        (unsigned long long)start,
5220                        (unsigned long long)len);
5221                 err = -EIO;
5222                 goto out;
5223         }
5224
5225         err = 0;
5226         write_lock(&em_tree->lock);
5227         ret = add_extent_mapping(em_tree, em);
5228         /* it is possible that someone inserted the extent into the tree
5229          * while we had the lock dropped.  It is also possible that
5230          * an overlapping map exists in the tree
5231          */
5232         if (ret == -EEXIST) {
5233                 struct extent_map *existing;
5234
5235                 ret = 0;
5236
5237                 existing = lookup_extent_mapping(em_tree, start, len);
5238                 if (existing && (existing->start > start ||
5239                     existing->start + existing->len <= start)) {
5240                         free_extent_map(existing);
5241                         existing = NULL;
5242                 }
5243                 if (!existing) {
5244                         existing = lookup_extent_mapping(em_tree, em->start,
5245                                                          em->len);
5246                         if (existing) {
5247                                 err = merge_extent_mapping(em_tree, existing,
5248                                                            em, start,
5249                                                            root->sectorsize);
5250                                 free_extent_map(existing);
5251                                 if (err) {
5252                                         free_extent_map(em);
5253                                         em = NULL;
5254                                 }
5255                         } else {
5256                                 err = -EIO;
5257                                 free_extent_map(em);
5258                                 em = NULL;
5259                         }
5260                 } else {
5261                         free_extent_map(em);
5262                         em = existing;
5263                         err = 0;
5264                 }
5265         }
5266         write_unlock(&em_tree->lock);
5267 out:
5268         if (path)
5269                 btrfs_free_path(path);
5270         if (trans) {
5271                 ret = btrfs_end_transaction(trans, root);
5272                 if (!err)
5273                         err = ret;
5274         }
5275         if (err) {
5276                 free_extent_map(em);
5277                 return ERR_PTR(err);
5278         }
5279         return em;
5280 }
5281
5282 static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
5283                                                   u64 start, u64 len)
5284 {
5285         struct btrfs_root *root = BTRFS_I(inode)->root;
5286         struct btrfs_trans_handle *trans;
5287         struct extent_map *em;
5288         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
5289         struct btrfs_key ins;
5290         u64 alloc_hint;
5291         int ret;
5292
5293         btrfs_drop_extent_cache(inode, start, start + len - 1, 0);
5294
5295         trans = btrfs_join_transaction(root, 0);
5296         if (IS_ERR(trans))
5297                 return ERR_CAST(trans);
5298
5299         trans->block_rsv = &root->fs_info->delalloc_block_rsv;
5300
5301         alloc_hint = get_extent_allocation_hint(inode, start, len);
5302         ret = btrfs_reserve_extent(trans, root, len, root->sectorsize, 0,
5303                                    alloc_hint, (u64)-1, &ins, 1);
5304         if (ret) {
5305                 em = ERR_PTR(ret);
5306                 goto out;
5307         }
5308
5309         em = alloc_extent_map(GFP_NOFS);
5310         if (!em) {
5311                 em = ERR_PTR(-ENOMEM);
5312                 goto out;
5313         }
5314
5315         em->start = start;
5316         em->orig_start = em->start;
5317         em->len = ins.offset;
5318
5319         em->block_start = ins.objectid;
5320         em->block_len = ins.offset;
5321         em->bdev = root->fs_info->fs_devices->latest_bdev;
5322         set_bit(EXTENT_FLAG_PINNED, &em->flags);
5323
5324         while (1) {
5325                 write_lock(&em_tree->lock);
5326                 ret = add_extent_mapping(em_tree, em);
5327                 write_unlock(&em_tree->lock);
5328                 if (ret != -EEXIST)
5329                         break;
5330                 btrfs_drop_extent_cache(inode, start, start + em->len - 1, 0);
5331         }
5332
5333         ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid,
5334                                            ins.offset, ins.offset, 0);
5335         if (ret) {
5336                 btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
5337                 em = ERR_PTR(ret);
5338         }
5339 out:
5340         btrfs_end_transaction(trans, root);
5341         return em;
5342 }
5343
5344 /*
5345  * returns 1 when the nocow is safe, < 1 on error, 0 if the
5346  * block must be cow'd
5347  */
5348 static noinline int can_nocow_odirect(struct btrfs_trans_handle *trans,
5349                                       struct inode *inode, u64 offset, u64 len)
5350 {
5351         struct btrfs_path *path;
5352         int ret;
5353         struct extent_buffer *leaf;
5354         struct btrfs_root *root = BTRFS_I(inode)->root;
5355         struct btrfs_file_extent_item *fi;
5356         struct btrfs_key key;
5357         u64 disk_bytenr;
5358         u64 backref_offset;
5359         u64 extent_end;
5360         u64 num_bytes;
5361         int slot;
5362         int found_type;
5363
5364         path = btrfs_alloc_path();
5365         if (!path)
5366                 return -ENOMEM;
5367
5368         ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
5369                                        offset, 0);
5370         if (ret < 0)
5371                 goto out;
5372
5373         slot = path->slots[0];
5374         if (ret == 1) {
5375                 if (slot == 0) {
5376                         /* can't find the item, must cow */
5377                         ret = 0;
5378                         goto out;
5379                 }
5380                 slot--;
5381         }
5382         ret = 0;
5383         leaf = path->nodes[0];
5384         btrfs_item_key_to_cpu(leaf, &key, slot);
5385         if (key.objectid != inode->i_ino ||
5386             key.type != BTRFS_EXTENT_DATA_KEY) {
5387                 /* not our file or wrong item type, must cow */
5388                 goto out;
5389         }
5390
5391         if (key.offset > offset) {
5392                 /* Wrong offset, must cow */
5393                 goto out;
5394         }
5395
5396         fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5397         found_type = btrfs_file_extent_type(leaf, fi);
5398         if (found_type != BTRFS_FILE_EXTENT_REG &&
5399             found_type != BTRFS_FILE_EXTENT_PREALLOC) {
5400                 /* not a regular extent, must cow */
5401                 goto out;
5402         }
5403         disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5404         backref_offset = btrfs_file_extent_offset(leaf, fi);
5405
5406         extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
5407         if (extent_end < offset + len) {
5408                 /* extent doesn't include our full range, must cow */
5409                 goto out;
5410         }
5411
5412         if (btrfs_extent_readonly(root, disk_bytenr))
5413                 goto out;
5414
5415         /*
5416          * look for other files referencing this extent, if we
5417          * find any we must cow
5418          */
5419         if (btrfs_cross_ref_exist(trans, root, inode->i_ino,
5420                                   key.offset - backref_offset, disk_bytenr))
5421                 goto out;
5422
5423         /*
5424          * adjust disk_bytenr and num_bytes to cover just the bytes
5425          * in this extent we are about to write.  If there
5426          * are any csums in that range we have to cow in order
5427          * to keep the csums correct
5428          */
5429         disk_bytenr += backref_offset;
5430         disk_bytenr += offset - key.offset;
5431         num_bytes = min(offset + len, extent_end) - offset;
5432         if (csum_exist_in_range(root, disk_bytenr, num_bytes))
5433                                 goto out;
5434         /*
5435          * all of the above have passed, it is safe to overwrite this extent
5436          * without cow
5437          */
5438         ret = 1;
5439 out:
5440         btrfs_free_path(path);
5441         return ret;
5442 }
5443
5444 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
5445                                    struct buffer_head *bh_result, int create)
5446 {
5447         struct extent_map *em;
5448         struct btrfs_root *root = BTRFS_I(inode)->root;
5449         u64 start = iblock << inode->i_blkbits;
5450         u64 len = bh_result->b_size;
5451         struct btrfs_trans_handle *trans;
5452
5453         em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
5454         if (IS_ERR(em))
5455                 return PTR_ERR(em);
5456
5457         /*
5458          * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
5459          * io.  INLINE is special, and we could probably kludge it in here, but
5460          * it's still buffered so for safety lets just fall back to the generic
5461          * buffered path.
5462          *
5463          * For COMPRESSED we _have_ to read the entire extent in so we can
5464          * decompress it, so there will be buffering required no matter what we
5465          * do, so go ahead and fallback to buffered.
5466          *
5467          * We return -ENOTBLK because thats what makes DIO go ahead and go back
5468          * to buffered IO.  Don't blame me, this is the price we pay for using
5469          * the generic code.
5470          */
5471         if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
5472             em->block_start == EXTENT_MAP_INLINE) {
5473                 free_extent_map(em);
5474                 return -ENOTBLK;
5475         }
5476
5477         /* Just a good old fashioned hole, return */
5478         if (!create && (em->block_start == EXTENT_MAP_HOLE ||
5479                         test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
5480                 free_extent_map(em);
5481                 /* DIO will do one hole at a time, so just unlock a sector */
5482                 unlock_extent(&BTRFS_I(inode)->io_tree, start,
5483                               start + root->sectorsize - 1, GFP_NOFS);
5484                 return 0;
5485         }
5486
5487         /*
5488          * We don't allocate a new extent in the following cases
5489          *
5490          * 1) The inode is marked as NODATACOW.  In this case we'll just use the
5491          * existing extent.
5492          * 2) The extent is marked as PREALLOC.  We're good to go here and can
5493          * just use the extent.
5494          *
5495          */
5496         if (!create) {
5497                 len = em->len - (start - em->start);
5498                 goto map;
5499         }
5500
5501         if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
5502             ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
5503              em->block_start != EXTENT_MAP_HOLE)) {
5504                 int type;
5505                 int ret;
5506                 u64 block_start;
5507
5508                 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5509                         type = BTRFS_ORDERED_PREALLOC;
5510                 else
5511                         type = BTRFS_ORDERED_NOCOW;
5512                 len = min(len, em->len - (start - em->start));
5513                 block_start = em->block_start + (start - em->start);
5514
5515                 /*
5516                  * we're not going to log anything, but we do need
5517                  * to make sure the current transaction stays open
5518                  * while we look for nocow cross refs
5519                  */
5520                 trans = btrfs_join_transaction(root, 0);
5521                 if (IS_ERR(trans))
5522                         goto must_cow;
5523
5524                 if (can_nocow_odirect(trans, inode, start, len) == 1) {
5525                         ret = btrfs_add_ordered_extent_dio(inode, start,
5526                                            block_start, len, len, type);
5527                         btrfs_end_transaction(trans, root);
5528                         if (ret) {
5529                                 free_extent_map(em);
5530                                 return ret;
5531                         }
5532                         goto unlock;
5533                 }
5534                 btrfs_end_transaction(trans, root);
5535         }
5536 must_cow:
5537         /*
5538          * this will cow the extent, reset the len in case we changed
5539          * it above
5540          */
5541         len = bh_result->b_size;
5542         free_extent_map(em);
5543         em = btrfs_new_extent_direct(inode, start, len);
5544         if (IS_ERR(em))
5545                 return PTR_ERR(em);
5546         len = min(len, em->len - (start - em->start));
5547 unlock:
5548         clear_extent_bit(&BTRFS_I(inode)->io_tree, start, start + len - 1,
5549                           EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DIRTY, 1,
5550                           0, NULL, GFP_NOFS);
5551 map:
5552         bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
5553                 inode->i_blkbits;
5554         bh_result->b_size = len;
5555         bh_result->b_bdev = em->bdev;
5556         set_buffer_mapped(bh_result);
5557         if (create && !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5558                 set_buffer_new(bh_result);
5559
5560         free_extent_map(em);
5561
5562         return 0;
5563 }
5564
5565 struct btrfs_dio_private {
5566         struct inode *inode;
5567         u64 logical_offset;
5568         u64 disk_bytenr;
5569         u64 bytes;
5570         u32 *csums;
5571         void *private;
5572
5573         /* number of bios pending for this dio */
5574         atomic_t pending_bios;
5575
5576         /* IO errors */
5577         int errors;
5578
5579         struct bio *orig_bio;
5580 };
5581
5582 static void btrfs_endio_direct_read(struct bio *bio, int err)
5583 {
5584         struct btrfs_dio_private *dip = bio->bi_private;
5585         struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
5586         struct bio_vec *bvec = bio->bi_io_vec;
5587         struct inode *inode = dip->inode;
5588         struct btrfs_root *root = BTRFS_I(inode)->root;
5589         u64 start;
5590         u32 *private = dip->csums;
5591
5592         start = dip->logical_offset;
5593         do {
5594                 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
5595                         struct page *page = bvec->bv_page;
5596                         char *kaddr;
5597                         u32 csum = ~(u32)0;
5598                         unsigned long flags;
5599
5600                         local_irq_save(flags);
5601                         kaddr = kmap_atomic(page, KM_IRQ0);
5602                         csum = btrfs_csum_data(root, kaddr + bvec->bv_offset,
5603                                                csum, bvec->bv_len);
5604                         btrfs_csum_final(csum, (char *)&csum);
5605                         kunmap_atomic(kaddr, KM_IRQ0);
5606                         local_irq_restore(flags);
5607
5608                         flush_dcache_page(bvec->bv_page);
5609                         if (csum != *private) {
5610                                 printk(KERN_ERR "btrfs csum failed ino %lu off"
5611                                       " %llu csum %u private %u\n",
5612                                       inode->i_ino, (unsigned long long)start,
5613                                       csum, *private);
5614                                 err = -EIO;
5615                         }
5616                 }
5617
5618                 start += bvec->bv_len;
5619                 private++;
5620                 bvec++;
5621         } while (bvec <= bvec_end);
5622
5623         unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
5624                       dip->logical_offset + dip->bytes - 1, GFP_NOFS);
5625         bio->bi_private = dip->private;
5626
5627         kfree(dip->csums);
5628         kfree(dip);
5629         dio_end_io(bio, err);
5630 }
5631
5632 static void btrfs_endio_direct_write(struct bio *bio, int err)
5633 {
5634         struct btrfs_dio_private *dip = bio->bi_private;
5635         struct inode *inode = dip->inode;
5636         struct btrfs_root *root = BTRFS_I(inode)->root;
5637         struct btrfs_trans_handle *trans;
5638         struct btrfs_ordered_extent *ordered = NULL;
5639         struct extent_state *cached_state = NULL;
5640         u64 ordered_offset = dip->logical_offset;
5641         u64 ordered_bytes = dip->bytes;
5642         int ret;
5643
5644         if (err)
5645                 goto out_done;
5646 again:
5647         ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
5648                                                    &ordered_offset,
5649                                                    ordered_bytes);
5650         if (!ret)
5651                 goto out_test;
5652
5653         BUG_ON(!ordered);
5654
5655         trans = btrfs_join_transaction(root, 1);
5656         if (IS_ERR(trans)) {
5657                 err = -ENOMEM;
5658                 goto out;
5659         }
5660         trans->block_rsv = &root->fs_info->delalloc_block_rsv;
5661
5662         if (test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags)) {
5663                 ret = btrfs_ordered_update_i_size(inode, 0, ordered);
5664                 if (!ret)
5665                         ret = btrfs_update_inode(trans, root, inode);
5666                 err = ret;
5667                 goto out;
5668         }
5669
5670         lock_extent_bits(&BTRFS_I(inode)->io_tree, ordered->file_offset,
5671                          ordered->file_offset + ordered->len - 1, 0,
5672                          &cached_state, GFP_NOFS);
5673
5674         if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags)) {
5675                 ret = btrfs_mark_extent_written(trans, inode,
5676                                                 ordered->file_offset,
5677                                                 ordered->file_offset +
5678                                                 ordered->len);
5679                 if (ret) {
5680                         err = ret;
5681                         goto out_unlock;
5682                 }
5683         } else {
5684                 ret = insert_reserved_file_extent(trans, inode,
5685                                                   ordered->file_offset,
5686                                                   ordered->start,
5687                                                   ordered->disk_len,
5688                                                   ordered->len,
5689                                                   ordered->len,
5690                                                   0, 0, 0,
5691                                                   BTRFS_FILE_EXTENT_REG);
5692                 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
5693                                    ordered->file_offset, ordered->len);
5694                 if (ret) {
5695                         err = ret;
5696                         WARN_ON(1);
5697                         goto out_unlock;
5698                 }
5699         }
5700
5701         add_pending_csums(trans, inode, ordered->file_offset, &ordered->list);
5702         btrfs_ordered_update_i_size(inode, 0, ordered);
5703         btrfs_update_inode(trans, root, inode);
5704 out_unlock:
5705         unlock_extent_cached(&BTRFS_I(inode)->io_tree, ordered->file_offset,
5706                              ordered->file_offset + ordered->len - 1,
5707                              &cached_state, GFP_NOFS);
5708 out:
5709         btrfs_delalloc_release_metadata(inode, ordered->len);
5710         btrfs_end_transaction(trans, root);
5711         ordered_offset = ordered->file_offset + ordered->len;
5712         btrfs_put_ordered_extent(ordered);
5713         btrfs_put_ordered_extent(ordered);
5714
5715 out_test:
5716         /*
5717          * our bio might span multiple ordered extents.  If we haven't
5718          * completed the accounting for the whole dio, go back and try again
5719          */
5720         if (ordered_offset < dip->logical_offset + dip->bytes) {
5721                 ordered_bytes = dip->logical_offset + dip->bytes -
5722                         ordered_offset;
5723                 goto again;
5724         }
5725 out_done:
5726         bio->bi_private = dip->private;
5727
5728         kfree(dip->csums);
5729         kfree(dip);
5730         dio_end_io(bio, err);
5731 }
5732
5733 static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw,
5734                                     struct bio *bio, int mirror_num,
5735                                     unsigned long bio_flags, u64 offset)
5736 {
5737         int ret;
5738         struct btrfs_root *root = BTRFS_I(inode)->root;
5739         ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
5740         BUG_ON(ret);
5741         return 0;
5742 }
5743
5744 static void btrfs_end_dio_bio(struct bio *bio, int err)
5745 {
5746         struct btrfs_dio_private *dip = bio->bi_private;
5747
5748         if (err) {
5749                 printk(KERN_ERR "btrfs direct IO failed ino %lu rw %lu "
5750                       "sector %#Lx len %u err no %d\n",
5751                       dip->inode->i_ino, bio->bi_rw,
5752                       (unsigned long long)bio->bi_sector, bio->bi_size, err);
5753                 dip->errors = 1;
5754
5755                 /*
5756                  * before atomic variable goto zero, we must make sure
5757                  * dip->errors is perceived to be set.
5758                  */
5759                 smp_mb__before_atomic_dec();
5760         }
5761
5762         /* if there are more bios still pending for this dio, just exit */
5763         if (!atomic_dec_and_test(&dip->pending_bios))
5764                 goto out;
5765
5766         if (dip->errors)
5767                 bio_io_error(dip->orig_bio);
5768         else {
5769                 set_bit(BIO_UPTODATE, &dip->orig_bio->bi_flags);
5770                 bio_endio(dip->orig_bio, 0);
5771         }
5772 out:
5773         bio_put(bio);
5774 }
5775
5776 static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
5777                                        u64 first_sector, gfp_t gfp_flags)
5778 {
5779         int nr_vecs = bio_get_nr_vecs(bdev);
5780         return btrfs_bio_alloc(bdev, first_sector, nr_vecs, gfp_flags);
5781 }
5782
5783 static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
5784                                          int rw, u64 file_offset, int skip_sum,
5785                                          u32 *csums)
5786 {
5787         int write = rw & REQ_WRITE;
5788         struct btrfs_root *root = BTRFS_I(inode)->root;
5789         int ret;
5790
5791         bio_get(bio);
5792         ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
5793         if (ret)
5794                 goto err;
5795
5796         if (write && !skip_sum) {
5797                 ret = btrfs_wq_submit_bio(root->fs_info,
5798                                    inode, rw, bio, 0, 0,
5799                                    file_offset,
5800                                    __btrfs_submit_bio_start_direct_io,
5801                                    __btrfs_submit_bio_done);
5802                 goto err;
5803         } else if (!skip_sum)
5804                 btrfs_lookup_bio_sums_dio(root, inode, bio,
5805                                           file_offset, csums);
5806
5807         ret = btrfs_map_bio(root, rw, bio, 0, 1);
5808 err:
5809         bio_put(bio);
5810         return ret;
5811 }
5812
5813 static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip,
5814                                     int skip_sum)
5815 {
5816         struct inode *inode = dip->inode;
5817         struct btrfs_root *root = BTRFS_I(inode)->root;
5818         struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
5819         struct bio *bio;
5820         struct bio *orig_bio = dip->orig_bio;
5821         struct bio_vec *bvec = orig_bio->bi_io_vec;
5822         u64 start_sector = orig_bio->bi_sector;
5823         u64 file_offset = dip->logical_offset;
5824         u64 submit_len = 0;
5825         u64 map_length;
5826         int nr_pages = 0;
5827         u32 *csums = dip->csums;
5828         int ret = 0;
5829
5830         bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
5831         if (!bio)
5832                 return -ENOMEM;
5833         bio->bi_private = dip;
5834         bio->bi_end_io = btrfs_end_dio_bio;
5835         atomic_inc(&dip->pending_bios);
5836
5837         map_length = orig_bio->bi_size;
5838         ret = btrfs_map_block(map_tree, READ, start_sector << 9,
5839                               &map_length, NULL, 0);
5840         if (ret) {
5841                 bio_put(bio);
5842                 return -EIO;
5843         }
5844
5845         while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
5846                 if (unlikely(map_length < submit_len + bvec->bv_len ||
5847                     bio_add_page(bio, bvec->bv_page, bvec->bv_len,
5848                                  bvec->bv_offset) < bvec->bv_len)) {
5849                         /*
5850                          * inc the count before we submit the bio so
5851                          * we know the end IO handler won't happen before
5852                          * we inc the count. Otherwise, the dip might get freed
5853                          * before we're done setting it up
5854                          */
5855                         atomic_inc(&dip->pending_bios);
5856                         ret = __btrfs_submit_dio_bio(bio, inode, rw,
5857                                                      file_offset, skip_sum,
5858                                                      csums);
5859                         if (ret) {
5860                                 bio_put(bio);
5861                                 atomic_dec(&dip->pending_bios);
5862                                 goto out_err;
5863                         }
5864
5865                         if (!skip_sum)
5866                                 csums = csums + nr_pages;
5867                         start_sector += submit_len >> 9;
5868                         file_offset += submit_len;
5869
5870                         submit_len = 0;
5871                         nr_pages = 0;
5872
5873                         bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
5874                                                   start_sector, GFP_NOFS);
5875                         if (!bio)
5876                                 goto out_err;
5877                         bio->bi_private = dip;
5878                         bio->bi_end_io = btrfs_end_dio_bio;
5879
5880                         map_length = orig_bio->bi_size;
5881                         ret = btrfs_map_block(map_tree, READ, start_sector << 9,
5882                                               &map_length, NULL, 0);
5883                         if (ret) {
5884                                 bio_put(bio);
5885                                 goto out_err;
5886                         }
5887                 } else {
5888                         submit_len += bvec->bv_len;
5889                         nr_pages ++;
5890                         bvec++;
5891                 }
5892         }
5893
5894         ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum,
5895                                      csums);
5896         if (!ret)
5897                 return 0;
5898
5899         bio_put(bio);
5900 out_err:
5901         dip->errors = 1;
5902         /*
5903          * before atomic variable goto zero, we must
5904          * make sure dip->errors is perceived to be set.
5905          */
5906         smp_mb__before_atomic_dec();
5907         if (atomic_dec_and_test(&dip->pending_bios))
5908                 bio_io_error(dip->orig_bio);
5909
5910         /* bio_end_io() will handle error, so we needn't return it */
5911         return 0;
5912 }
5913
5914 static void btrfs_submit_direct(int rw, struct bio *bio, struct inode *inode,
5915                                 loff_t file_offset)
5916 {
5917         struct btrfs_root *root = BTRFS_I(inode)->root;
5918         struct btrfs_dio_private *dip;
5919         struct bio_vec *bvec = bio->bi_io_vec;
5920         int skip_sum;
5921         int write = rw & REQ_WRITE;
5922         int ret = 0;
5923
5924         skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
5925
5926         dip = kmalloc(sizeof(*dip), GFP_NOFS);
5927         if (!dip) {
5928                 ret = -ENOMEM;
5929                 goto free_ordered;
5930         }
5931         dip->csums = NULL;
5932
5933         if (!skip_sum) {
5934                 dip->csums = kmalloc(sizeof(u32) * bio->bi_vcnt, GFP_NOFS);
5935                 if (!dip->csums) {
5936                         ret = -ENOMEM;
5937                         goto free_ordered;
5938                 }
5939         }
5940
5941         dip->private = bio->bi_private;
5942         dip->inode = inode;
5943         dip->logical_offset = file_offset;
5944
5945         dip->bytes = 0;
5946         do {
5947                 dip->bytes += bvec->bv_len;
5948                 bvec++;
5949         } while (bvec <= (bio->bi_io_vec + bio->bi_vcnt - 1));
5950
5951         dip->disk_bytenr = (u64)bio->bi_sector << 9;
5952         bio->bi_private = dip;
5953         dip->errors = 0;
5954         dip->orig_bio = bio;
5955         atomic_set(&dip->pending_bios, 0);
5956
5957         if (write)
5958                 bio->bi_end_io = btrfs_endio_direct_write;
5959         else
5960                 bio->bi_end_io = btrfs_endio_direct_read;
5961
5962         ret = btrfs_submit_direct_hook(rw, dip, skip_sum);
5963         if (!ret)
5964                 return;
5965 free_ordered:
5966         /*
5967          * If this is a write, we need to clean up the reserved space and kill
5968          * the ordered extent.
5969          */
5970         if (write) {
5971                 struct btrfs_ordered_extent *ordered;
5972                 ordered = btrfs_lookup_ordered_extent(inode, file_offset);
5973                 if (!test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags) &&
5974                     !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags))
5975                         btrfs_free_reserved_extent(root, ordered->start,
5976                                                    ordered->disk_len);
5977                 btrfs_put_ordered_extent(ordered);
5978                 btrfs_put_ordered_extent(ordered);
5979         }
5980         bio_endio(bio, ret);
5981 }
5982
5983 static ssize_t check_direct_IO(struct btrfs_root *root, int rw, struct kiocb *iocb,
5984                         const struct iovec *iov, loff_t offset,
5985                         unsigned long nr_segs)
5986 {
5987         int seg;
5988         size_t size;
5989         unsigned long addr;
5990         unsigned blocksize_mask = root->sectorsize - 1;
5991         ssize_t retval = -EINVAL;
5992         loff_t end = offset;
5993
5994         if (offset & blocksize_mask)
5995                 goto out;
5996
5997         /* Check the memory alignment.  Blocks cannot straddle pages */
5998         for (seg = 0; seg < nr_segs; seg++) {
5999                 addr = (unsigned long)iov[seg].iov_base;
6000                 size = iov[seg].iov_len;
6001                 end += size;
6002                 if ((addr & blocksize_mask) || (size & blocksize_mask)) 
6003                         goto out;
6004         }
6005         retval = 0;
6006 out:
6007         return retval;
6008 }
6009 static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
6010                         const struct iovec *iov, loff_t offset,
6011                         unsigned long nr_segs)
6012 {
6013         struct file *file = iocb->ki_filp;
6014         struct inode *inode = file->f_mapping->host;
6015         struct btrfs_ordered_extent *ordered;
6016         struct extent_state *cached_state = NULL;
6017         u64 lockstart, lockend;
6018         ssize_t ret;
6019         int writing = rw & WRITE;
6020         int write_bits = 0;
6021         size_t count = iov_length(iov, nr_segs);
6022
6023         if (check_direct_IO(BTRFS_I(inode)->root, rw, iocb, iov,
6024                             offset, nr_segs)) {
6025                 return 0;
6026         }
6027
6028         lockstart = offset;
6029         lockend = offset + count - 1;
6030
6031         if (writing) {
6032                 ret = btrfs_delalloc_reserve_space(inode, count);
6033                 if (ret)
6034                         goto out;
6035         }
6036
6037         while (1) {
6038                 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6039                                  0, &cached_state, GFP_NOFS);
6040                 /*
6041                  * We're concerned with the entire range that we're going to be
6042                  * doing DIO to, so we need to make sure theres no ordered
6043                  * extents in this range.
6044                  */
6045                 ordered = btrfs_lookup_ordered_range(inode, lockstart,
6046                                                      lockend - lockstart + 1);
6047                 if (!ordered)
6048                         break;
6049                 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6050                                      &cached_state, GFP_NOFS);
6051                 btrfs_start_ordered_extent(inode, ordered, 1);
6052                 btrfs_put_ordered_extent(ordered);
6053                 cond_resched();
6054         }
6055
6056         /*
6057          * we don't use btrfs_set_extent_delalloc because we don't want
6058          * the dirty or uptodate bits
6059          */
6060         if (writing) {
6061                 write_bits = EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING;
6062                 ret = set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6063                                      EXTENT_DELALLOC, 0, NULL, &cached_state,
6064                                      GFP_NOFS);
6065                 if (ret) {
6066                         clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
6067                                          lockend, EXTENT_LOCKED | write_bits,
6068                                          1, 0, &cached_state, GFP_NOFS);
6069                         goto out;
6070                 }
6071         }
6072
6073         free_extent_state(cached_state);
6074         cached_state = NULL;
6075
6076         ret = __blockdev_direct_IO(rw, iocb, inode,
6077                    BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
6078                    iov, offset, nr_segs, btrfs_get_blocks_direct, NULL,
6079                    btrfs_submit_direct, 0);
6080
6081         if (ret < 0 && ret != -EIOCBQUEUED) {
6082                 clear_extent_bit(&BTRFS_I(inode)->io_tree, offset,
6083                               offset + iov_length(iov, nr_segs) - 1,
6084                               EXTENT_LOCKED | write_bits, 1, 0,
6085                               &cached_state, GFP_NOFS);
6086         } else if (ret >= 0 && ret < iov_length(iov, nr_segs)) {
6087                 /*
6088                  * We're falling back to buffered, unlock the section we didn't
6089                  * do IO on.
6090                  */
6091                 clear_extent_bit(&BTRFS_I(inode)->io_tree, offset + ret,
6092                               offset + iov_length(iov, nr_segs) - 1,
6093                               EXTENT_LOCKED | write_bits, 1, 0,
6094                               &cached_state, GFP_NOFS);
6095         }
6096 out:
6097         free_extent_state(cached_state);
6098         return ret;
6099 }
6100
6101 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
6102                 __u64 start, __u64 len)
6103 {
6104         return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent);
6105 }
6106
6107 int btrfs_readpage(struct file *file, struct page *page)
6108 {
6109         struct extent_io_tree *tree;
6110         tree = &BTRFS_I(page->mapping->host)->io_tree;
6111         return extent_read_full_page(tree, page, btrfs_get_extent);
6112 }
6113
6114 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
6115 {
6116         struct extent_io_tree *tree;
6117
6118
6119         if (current->flags & PF_MEMALLOC) {
6120                 redirty_page_for_writepage(wbc, page);
6121                 unlock_page(page);
6122                 return 0;
6123         }
6124         tree = &BTRFS_I(page->mapping->host)->io_tree;
6125         return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
6126 }
6127
6128 int btrfs_writepages(struct address_space *mapping,
6129                      struct writeback_control *wbc)
6130 {
6131         struct extent_io_tree *tree;
6132
6133         tree = &BTRFS_I(mapping->host)->io_tree;
6134         return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
6135 }
6136
6137 static int
6138 btrfs_readpages(struct file *file, struct address_space *mapping,
6139                 struct list_head *pages, unsigned nr_pages)
6140 {
6141         struct extent_io_tree *tree;
6142         tree = &BTRFS_I(mapping->host)->io_tree;
6143         return extent_readpages(tree, mapping, pages, nr_pages,
6144                                 btrfs_get_extent);
6145 }
6146 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
6147 {
6148         struct extent_io_tree *tree;
6149         struct extent_map_tree *map;
6150         int ret;
6151
6152         tree = &BTRFS_I(page->mapping->host)->io_tree;
6153         map = &BTRFS_I(page->mapping->host)->extent_tree;
6154         ret = try_release_extent_mapping(map, tree, page, gfp_flags);
6155         if (ret == 1) {
6156                 ClearPagePrivate(page);
6157                 set_page_private(page, 0);
6158                 page_cache_release(page);
6159         }
6160         return ret;
6161 }
6162
6163 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
6164 {
6165         if (PageWriteback(page) || PageDirty(page))
6166                 return 0;
6167         return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
6168 }
6169
6170 static void btrfs_invalidatepage(struct page *page, unsigned long offset)
6171 {
6172         struct extent_io_tree *tree;
6173         struct btrfs_ordered_extent *ordered;
6174         struct extent_state *cached_state = NULL;
6175         u64 page_start = page_offset(page);
6176         u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
6177
6178
6179         /*
6180          * we have the page locked, so new writeback can't start,
6181          * and the dirty bit won't be cleared while we are here.
6182          *
6183          * Wait for IO on this page so that we can safely clear
6184          * the PagePrivate2 bit and do ordered accounting
6185          */
6186         wait_on_page_writeback(page);
6187
6188         tree = &BTRFS_I(page->mapping->host)->io_tree;
6189         if (offset) {
6190                 btrfs_releasepage(page, GFP_NOFS);
6191                 return;
6192         }
6193         lock_extent_bits(tree, page_start, page_end, 0, &cached_state,
6194                          GFP_NOFS);
6195         ordered = btrfs_lookup_ordered_extent(page->mapping->host,
6196                                            page_offset(page));
6197         if (ordered) {
6198                 /*
6199                  * IO on this page will never be started, so we need
6200                  * to account for any ordered extents now
6201                  */
6202                 clear_extent_bit(tree, page_start, page_end,
6203                                  EXTENT_DIRTY | EXTENT_DELALLOC |
6204                                  EXTENT_LOCKED | EXTENT_DO_ACCOUNTING, 1, 0,
6205                                  &cached_state, GFP_NOFS);
6206                 /*
6207                  * whoever cleared the private bit is responsible
6208                  * for the finish_ordered_io
6209                  */
6210                 if (TestClearPagePrivate2(page)) {
6211                         btrfs_finish_ordered_io(page->mapping->host,
6212                                                 page_start, page_end);
6213                 }
6214                 btrfs_put_ordered_extent(ordered);
6215                 cached_state = NULL;
6216                 lock_extent_bits(tree, page_start, page_end, 0, &cached_state,
6217                                  GFP_NOFS);
6218         }
6219         clear_extent_bit(tree, page_start, page_end,
6220                  EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
6221                  EXTENT_DO_ACCOUNTING, 1, 1, &cached_state, GFP_NOFS);
6222         __btrfs_releasepage(page, GFP_NOFS);
6223
6224         ClearPageChecked(page);
6225         if (PagePrivate(page)) {
6226                 ClearPagePrivate(page);
6227                 set_page_private(page, 0);
6228                 page_cache_release(page);
6229         }
6230 }
6231
6232 /*
6233  * btrfs_page_mkwrite() is not allowed to change the file size as it gets
6234  * called from a page fault handler when a page is first dirtied. Hence we must
6235  * be careful to check for EOF conditions here. We set the page up correctly
6236  * for a written page which means we get ENOSPC checking when writing into
6237  * holes and correct delalloc and unwritten extent mapping on filesystems that
6238  * support these features.
6239  *
6240  * We are not allowed to take the i_mutex here so we have to play games to
6241  * protect against truncate races as the page could now be beyond EOF.  Because
6242  * vmtruncate() writes the inode size before removing pages, once we have the
6243  * page lock we can determine safely if the page is beyond EOF. If it is not
6244  * beyond EOF, then the page is guaranteed safe against truncation until we
6245  * unlock the page.
6246  */
6247 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
6248 {
6249         struct page *page = vmf->page;
6250         struct inode *inode = fdentry(vma->vm_file)->d_inode;
6251         struct btrfs_root *root = BTRFS_I(inode)->root;
6252         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
6253         struct btrfs_ordered_extent *ordered;
6254         struct extent_state *cached_state = NULL;
6255         char *kaddr;
6256         unsigned long zero_start;
6257         loff_t size;
6258         int ret;
6259         u64 page_start;
6260         u64 page_end;
6261
6262         ret  = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
6263         if (ret) {
6264                 if (ret == -ENOMEM)
6265                         ret = VM_FAULT_OOM;
6266                 else /* -ENOSPC, -EIO, etc */
6267                         ret = VM_FAULT_SIGBUS;
6268                 goto out;
6269         }
6270
6271         ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
6272 again:
6273         lock_page(page);
6274         size = i_size_read(inode);
6275         page_start = page_offset(page);
6276         page_end = page_start + PAGE_CACHE_SIZE - 1;
6277
6278         if ((page->mapping != inode->i_mapping) ||
6279             (page_start >= size)) {
6280                 /* page got truncated out from underneath us */
6281                 goto out_unlock;
6282         }
6283         wait_on_page_writeback(page);
6284
6285         lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state,
6286                          GFP_NOFS);
6287         set_page_extent_mapped(page);
6288
6289         /*
6290          * we can't set the delalloc bits if there are pending ordered
6291          * extents.  Drop our locks and wait for them to finish
6292          */
6293         ordered = btrfs_lookup_ordered_extent(inode, page_start);
6294         if (ordered) {
6295                 unlock_extent_cached(io_tree, page_start, page_end,
6296                                      &cached_state, GFP_NOFS);
6297                 unlock_page(page);
6298                 btrfs_start_ordered_extent(inode, ordered, 1);
6299                 btrfs_put_ordered_extent(ordered);
6300                 goto again;
6301         }
6302
6303         /*
6304          * XXX - page_mkwrite gets called every time the page is dirtied, even
6305          * if it was already dirty, so for space accounting reasons we need to
6306          * clear any delalloc bits for the range we are fixing to save.  There
6307          * is probably a better way to do this, but for now keep consistent with
6308          * prepare_pages in the normal write path.
6309          */
6310         clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
6311                           EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
6312                           0, 0, &cached_state, GFP_NOFS);
6313
6314         ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
6315                                         &cached_state);
6316         if (ret) {
6317                 unlock_extent_cached(io_tree, page_start, page_end,
6318                                      &cached_state, GFP_NOFS);
6319                 ret = VM_FAULT_SIGBUS;
6320                 goto out_unlock;
6321         }
6322         ret = 0;
6323
6324         /* page is wholly or partially inside EOF */
6325         if (page_start + PAGE_CACHE_SIZE > size)
6326                 zero_start = size & ~PAGE_CACHE_MASK;
6327         else
6328                 zero_start = PAGE_CACHE_SIZE;
6329
6330         if (zero_start != PAGE_CACHE_SIZE) {
6331                 kaddr = kmap(page);
6332                 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
6333                 flush_dcache_page(page);
6334                 kunmap(page);
6335         }
6336         ClearPageChecked(page);
6337         set_page_dirty(page);
6338         SetPageUptodate(page);
6339
6340         BTRFS_I(inode)->last_trans = root->fs_info->generation;
6341         BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
6342
6343         unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
6344
6345 out_unlock:
6346         if (!ret)
6347                 return VM_FAULT_LOCKED;
6348         unlock_page(page);
6349         btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
6350 out:
6351         return ret;
6352 }
6353
6354 static void btrfs_truncate(struct inode *inode)
6355 {
6356         struct btrfs_root *root = BTRFS_I(inode)->root;
6357         int ret;
6358         struct btrfs_trans_handle *trans;
6359         unsigned long nr;
6360         u64 mask = root->sectorsize - 1;
6361
6362         if (!S_ISREG(inode->i_mode)) {
6363                 WARN_ON(1);
6364                 return;
6365         }
6366
6367         ret = btrfs_truncate_page(inode->i_mapping, inode->i_size);
6368         if (ret)
6369                 return;
6370
6371         btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
6372         btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
6373
6374         trans = btrfs_start_transaction(root, 0);
6375         BUG_ON(IS_ERR(trans));
6376         btrfs_set_trans_block_group(trans, inode);
6377         trans->block_rsv = root->orphan_block_rsv;
6378
6379         /*
6380          * setattr is responsible for setting the ordered_data_close flag,
6381          * but that is only tested during the last file release.  That
6382          * could happen well after the next commit, leaving a great big
6383          * window where new writes may get lost if someone chooses to write
6384          * to this file after truncating to zero
6385          *
6386          * The inode doesn't have any dirty data here, and so if we commit
6387          * this is a noop.  If someone immediately starts writing to the inode
6388          * it is very likely we'll catch some of their writes in this
6389          * transaction, and the commit will find this file on the ordered
6390          * data list with good things to send down.
6391          *
6392          * This is a best effort solution, there is still a window where
6393          * using truncate to replace the contents of the file will
6394          * end up with a zero length file after a crash.
6395          */
6396         if (inode->i_size == 0 && BTRFS_I(inode)->ordered_data_close)
6397                 btrfs_add_ordered_operation(trans, root, inode);
6398
6399         while (1) {
6400                 if (!trans) {
6401                         trans = btrfs_start_transaction(root, 0);
6402                         BUG_ON(IS_ERR(trans));
6403                         btrfs_set_trans_block_group(trans, inode);
6404                         trans->block_rsv = root->orphan_block_rsv;
6405                 }
6406
6407                 ret = btrfs_block_rsv_check(trans, root,
6408                                             root->orphan_block_rsv, 0, 5);
6409                 if (ret) {
6410                         BUG_ON(ret != -EAGAIN);
6411                         ret = btrfs_commit_transaction(trans, root);
6412                         BUG_ON(ret);
6413                         trans = NULL;
6414                         continue;
6415                 }
6416
6417                 ret = btrfs_truncate_inode_items(trans, root, inode,
6418                                                  inode->i_size,
6419                                                  BTRFS_EXTENT_DATA_KEY);
6420                 if (ret != -EAGAIN)
6421                         break;
6422
6423                 ret = btrfs_update_inode(trans, root, inode);
6424                 BUG_ON(ret);
6425
6426                 nr = trans->blocks_used;
6427                 btrfs_end_transaction(trans, root);
6428                 trans = NULL;
6429                 btrfs_btree_balance_dirty(root, nr);
6430         }
6431
6432         if (ret == 0 && inode->i_nlink > 0) {
6433                 ret = btrfs_orphan_del(trans, inode);
6434                 BUG_ON(ret);
6435         }
6436
6437         ret = btrfs_update_inode(trans, root, inode);
6438         BUG_ON(ret);
6439
6440         nr = trans->blocks_used;
6441         ret = btrfs_end_transaction_throttle(trans, root);
6442         BUG_ON(ret);
6443         btrfs_btree_balance_dirty(root, nr);
6444 }
6445
6446 /*
6447  * create a new subvolume directory/inode (helper for the ioctl).
6448  */
6449 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
6450                              struct btrfs_root *new_root,
6451                              u64 new_dirid, u64 alloc_hint)
6452 {
6453         struct inode *inode;
6454         int err;
6455         u64 index = 0;
6456
6457         inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, new_dirid,
6458                                 new_dirid, alloc_hint, S_IFDIR | 0700, &index);
6459         if (IS_ERR(inode))
6460                 return PTR_ERR(inode);
6461         inode->i_op = &btrfs_dir_inode_operations;
6462         inode->i_fop = &btrfs_dir_file_operations;
6463
6464         inode->i_nlink = 1;
6465         btrfs_i_size_write(inode, 0);
6466
6467         err = btrfs_update_inode(trans, new_root, inode);
6468         BUG_ON(err);
6469
6470         iput(inode);
6471         return 0;
6472 }
6473
6474 /* helper function for file defrag and space balancing.  This
6475  * forces readahead on a given range of bytes in an inode
6476  */
6477 unsigned long btrfs_force_ra(struct address_space *mapping,
6478                               struct file_ra_state *ra, struct file *file,
6479                               pgoff_t offset, pgoff_t last_index)
6480 {
6481         pgoff_t req_size = last_index - offset + 1;
6482
6483         page_cache_sync_readahead(mapping, ra, file, offset, req_size);
6484         return offset + req_size;
6485 }
6486
6487 struct inode *btrfs_alloc_inode(struct super_block *sb)
6488 {
6489         struct btrfs_inode *ei;
6490         struct inode *inode;
6491
6492         ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
6493         if (!ei)
6494                 return NULL;
6495
6496         ei->root = NULL;
6497         ei->space_info = NULL;
6498         ei->generation = 0;
6499         ei->sequence = 0;
6500         ei->last_trans = 0;
6501         ei->last_sub_trans = 0;
6502         ei->logged_trans = 0;
6503         ei->delalloc_bytes = 0;
6504         ei->reserved_bytes = 0;
6505         ei->disk_i_size = 0;
6506         ei->flags = 0;
6507         ei->index_cnt = (u64)-1;
6508         ei->last_unlink_trans = 0;
6509
6510         spin_lock_init(&ei->accounting_lock);
6511         atomic_set(&ei->outstanding_extents, 0);
6512         ei->reserved_extents = 0;
6513
6514         ei->ordered_data_close = 0;
6515         ei->orphan_meta_reserved = 0;
6516         ei->dummy_inode = 0;
6517         ei->force_compress = BTRFS_COMPRESS_NONE;
6518
6519         inode = &ei->vfs_inode;
6520         extent_map_tree_init(&ei->extent_tree, GFP_NOFS);
6521         extent_io_tree_init(&ei->io_tree, &inode->i_data, GFP_NOFS);
6522         extent_io_tree_init(&ei->io_failure_tree, &inode->i_data, GFP_NOFS);
6523         mutex_init(&ei->log_mutex);
6524         btrfs_ordered_inode_tree_init(&ei->ordered_tree);
6525         INIT_LIST_HEAD(&ei->i_orphan);
6526         INIT_LIST_HEAD(&ei->delalloc_inodes);
6527         INIT_LIST_HEAD(&ei->ordered_operations);
6528         RB_CLEAR_NODE(&ei->rb_node);
6529
6530         return inode;
6531 }
6532
6533 void btrfs_destroy_inode(struct inode *inode)
6534 {
6535         struct btrfs_ordered_extent *ordered;
6536         struct btrfs_root *root = BTRFS_I(inode)->root;
6537
6538         WARN_ON(!list_empty(&inode->i_dentry));
6539         WARN_ON(inode->i_data.nrpages);
6540         WARN_ON(atomic_read(&BTRFS_I(inode)->outstanding_extents));
6541         WARN_ON(BTRFS_I(inode)->reserved_extents);
6542
6543         /*
6544          * This can happen where we create an inode, but somebody else also
6545          * created the same inode and we need to destroy the one we already
6546          * created.
6547          */
6548         if (!root)
6549                 goto free;
6550
6551         /*
6552          * Make sure we're properly removed from the ordered operation
6553          * lists.
6554          */
6555         smp_mb();
6556         if (!list_empty(&BTRFS_I(inode)->ordered_operations)) {
6557                 spin_lock(&root->fs_info->ordered_extent_lock);
6558                 list_del_init(&BTRFS_I(inode)->ordered_operations);
6559                 spin_unlock(&root->fs_info->ordered_extent_lock);
6560         }
6561
6562         if (root == root->fs_info->tree_root) {
6563                 struct btrfs_block_group_cache *block_group;
6564
6565                 block_group = btrfs_lookup_block_group(root->fs_info,
6566                                                 BTRFS_I(inode)->block_group);
6567                 if (block_group && block_group->inode == inode) {
6568                         spin_lock(&block_group->lock);
6569                         block_group->inode = NULL;
6570                         spin_unlock(&block_group->lock);
6571                         btrfs_put_block_group(block_group);
6572                 } else if (block_group) {
6573                         btrfs_put_block_group(block_group);
6574                 }
6575         }
6576
6577         spin_lock(&root->orphan_lock);
6578         if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
6579                 printk(KERN_INFO "BTRFS: inode %lu still on the orphan list\n",
6580                        inode->i_ino);
6581                 list_del_init(&BTRFS_I(inode)->i_orphan);
6582         }
6583         spin_unlock(&root->orphan_lock);
6584
6585         while (1) {
6586                 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
6587                 if (!ordered)
6588                         break;
6589                 else {
6590                         printk(KERN_ERR "btrfs found ordered "
6591                                "extent %llu %llu on inode cleanup\n",
6592                                (unsigned long long)ordered->file_offset,
6593                                (unsigned long long)ordered->len);
6594                         btrfs_remove_ordered_extent(inode, ordered);
6595                         btrfs_put_ordered_extent(ordered);
6596                         btrfs_put_ordered_extent(ordered);
6597                 }
6598         }
6599         inode_tree_del(inode);
6600         btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
6601 free:
6602         kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
6603 }
6604
6605 int btrfs_drop_inode(struct inode *inode)
6606 {
6607         struct btrfs_root *root = BTRFS_I(inode)->root;
6608
6609         if (btrfs_root_refs(&root->root_item) == 0 &&
6610             root != root->fs_info->tree_root)
6611                 return 1;
6612         else
6613                 return generic_drop_inode(inode);
6614 }
6615
6616 static void init_once(void *foo)
6617 {
6618         struct btrfs_inode *ei = (struct btrfs_inode *) foo;
6619
6620         inode_init_once(&ei->vfs_inode);
6621 }
6622
6623 void btrfs_destroy_cachep(void)
6624 {
6625         if (btrfs_inode_cachep)
6626                 kmem_cache_destroy(btrfs_inode_cachep);
6627         if (btrfs_trans_handle_cachep)
6628                 kmem_cache_destroy(btrfs_trans_handle_cachep);
6629         if (btrfs_transaction_cachep)
6630                 kmem_cache_destroy(btrfs_transaction_cachep);
6631         if (btrfs_path_cachep)
6632                 kmem_cache_destroy(btrfs_path_cachep);
6633 }
6634
6635 int btrfs_init_cachep(void)
6636 {
6637         btrfs_inode_cachep = kmem_cache_create("btrfs_inode_cache",
6638                         sizeof(struct btrfs_inode), 0,
6639                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
6640         if (!btrfs_inode_cachep)
6641                 goto fail;
6642
6643         btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle_cache",
6644                         sizeof(struct btrfs_trans_handle), 0,
6645                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6646         if (!btrfs_trans_handle_cachep)
6647                 goto fail;
6648
6649         btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction_cache",
6650                         sizeof(struct btrfs_transaction), 0,
6651                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6652         if (!btrfs_transaction_cachep)
6653                 goto fail;
6654
6655         btrfs_path_cachep = kmem_cache_create("btrfs_path_cache",
6656                         sizeof(struct btrfs_path), 0,
6657                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6658         if (!btrfs_path_cachep)
6659                 goto fail;
6660
6661         return 0;
6662 fail:
6663         btrfs_destroy_cachep();
6664         return -ENOMEM;
6665 }
6666
6667 static int btrfs_getattr(struct vfsmount *mnt,
6668                          struct dentry *dentry, struct kstat *stat)
6669 {
6670         struct inode *inode = dentry->d_inode;
6671         generic_fillattr(inode, stat);
6672         stat->dev = BTRFS_I(inode)->root->anon_super.s_dev;
6673         stat->blksize = PAGE_CACHE_SIZE;
6674         stat->blocks = (inode_get_bytes(inode) +
6675                         BTRFS_I(inode)->delalloc_bytes) >> 9;
6676         return 0;
6677 }
6678
6679 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
6680                            struct inode *new_dir, struct dentry *new_dentry)
6681 {
6682         struct btrfs_trans_handle *trans;
6683         struct btrfs_root *root = BTRFS_I(old_dir)->root;
6684         struct btrfs_root *dest = BTRFS_I(new_dir)->root;
6685         struct inode *new_inode = new_dentry->d_inode;
6686         struct inode *old_inode = old_dentry->d_inode;
6687         struct timespec ctime = CURRENT_TIME;
6688         u64 index = 0;
6689         u64 root_objectid;
6690         int ret;
6691
6692         if (new_dir->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
6693                 return -EPERM;
6694
6695         /* we only allow rename subvolume link between subvolumes */
6696         if (old_inode->i_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
6697                 return -EXDEV;
6698
6699         if (old_inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
6700             (new_inode && new_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID))
6701                 return -ENOTEMPTY;
6702
6703         if (S_ISDIR(old_inode->i_mode) && new_inode &&
6704             new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
6705                 return -ENOTEMPTY;
6706         /*
6707          * we're using rename to replace one file with another.
6708          * and the replacement file is large.  Start IO on it now so
6709          * we don't add too much work to the end of the transaction
6710          */
6711         if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size &&
6712             old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
6713                 filemap_flush(old_inode->i_mapping);
6714
6715         /* close the racy window with snapshot create/destroy ioctl */
6716         if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
6717                 down_read(&root->fs_info->subvol_sem);
6718         /*
6719          * We want to reserve the absolute worst case amount of items.  So if
6720          * both inodes are subvols and we need to unlink them then that would
6721          * require 4 item modifications, but if they are both normal inodes it
6722          * would require 5 item modifications, so we'll assume their normal
6723          * inodes.  So 5 * 2 is 10, plus 1 for the new link, so 11 total items
6724          * should cover the worst case number of items we'll modify.
6725          */
6726         trans = btrfs_start_transaction(root, 20);
6727         if (IS_ERR(trans))
6728                 return PTR_ERR(trans);
6729
6730         btrfs_set_trans_block_group(trans, new_dir);
6731
6732         if (dest != root)
6733                 btrfs_record_root_in_trans(trans, dest);
6734
6735         ret = btrfs_set_inode_index(new_dir, &index);
6736         if (ret)
6737                 goto out_fail;
6738
6739         if (unlikely(old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
6740                 /* force full log commit if subvolume involved. */
6741                 root->fs_info->last_trans_log_full_commit = trans->transid;
6742         } else {
6743                 ret = btrfs_insert_inode_ref(trans, dest,
6744                                              new_dentry->d_name.name,
6745                                              new_dentry->d_name.len,
6746                                              old_inode->i_ino,
6747                                              new_dir->i_ino, index);
6748                 if (ret)
6749                         goto out_fail;
6750                 /*
6751                  * this is an ugly little race, but the rename is required
6752                  * to make sure that if we crash, the inode is either at the
6753                  * old name or the new one.  pinning the log transaction lets
6754                  * us make sure we don't allow a log commit to come in after
6755                  * we unlink the name but before we add the new name back in.
6756                  */
6757                 btrfs_pin_log_trans(root);
6758         }
6759         /*
6760          * make sure the inode gets flushed if it is replacing
6761          * something.
6762          */
6763         if (new_inode && new_inode->i_size &&
6764             old_inode && S_ISREG(old_inode->i_mode)) {
6765                 btrfs_add_ordered_operation(trans, root, old_inode);
6766         }
6767
6768         old_dir->i_ctime = old_dir->i_mtime = ctime;
6769         new_dir->i_ctime = new_dir->i_mtime = ctime;
6770         old_inode->i_ctime = ctime;
6771
6772         if (old_dentry->d_parent != new_dentry->d_parent)
6773                 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
6774
6775         if (unlikely(old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
6776                 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
6777                 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
6778                                         old_dentry->d_name.name,
6779                                         old_dentry->d_name.len);
6780         } else {
6781                 btrfs_inc_nlink(old_dentry->d_inode);
6782                 ret = btrfs_unlink_inode(trans, root, old_dir,
6783                                          old_dentry->d_inode,
6784                                          old_dentry->d_name.name,
6785                                          old_dentry->d_name.len);
6786         }
6787         BUG_ON(ret);
6788
6789         if (new_inode) {
6790                 new_inode->i_ctime = CURRENT_TIME;
6791                 if (unlikely(new_inode->i_ino ==
6792                              BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
6793                         root_objectid = BTRFS_I(new_inode)->location.objectid;
6794                         ret = btrfs_unlink_subvol(trans, dest, new_dir,
6795                                                 root_objectid,
6796                                                 new_dentry->d_name.name,
6797                                                 new_dentry->d_name.len);
6798                         BUG_ON(new_inode->i_nlink == 0);
6799                 } else {
6800                         ret = btrfs_unlink_inode(trans, dest, new_dir,
6801                                                  new_dentry->d_inode,
6802                                                  new_dentry->d_name.name,
6803                                                  new_dentry->d_name.len);
6804                 }
6805                 BUG_ON(ret);
6806                 if (new_inode->i_nlink == 0) {
6807                         ret = btrfs_orphan_add(trans, new_dentry->d_inode);
6808                         BUG_ON(ret);
6809                 }
6810         }
6811
6812         ret = btrfs_add_link(trans, new_dir, old_inode,
6813                              new_dentry->d_name.name,
6814                              new_dentry->d_name.len, 0, index);
6815         BUG_ON(ret);
6816
6817         if (old_inode->i_ino != BTRFS_FIRST_FREE_OBJECTID) {
6818                 struct dentry *parent = dget_parent(new_dentry);
6819                 btrfs_log_new_name(trans, old_inode, old_dir, parent);
6820                 dput(parent);
6821                 btrfs_end_log_trans(root);
6822         }
6823 out_fail:
6824         btrfs_end_transaction_throttle(trans, root);
6825
6826         if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
6827                 up_read(&root->fs_info->subvol_sem);
6828
6829         return ret;
6830 }
6831
6832 /*
6833  * some fairly slow code that needs optimization. This walks the list
6834  * of all the inodes with pending delalloc and forces them to disk.
6835  */
6836 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
6837 {
6838         struct list_head *head = &root->fs_info->delalloc_inodes;
6839         struct btrfs_inode *binode;
6840         struct inode *inode;
6841
6842         if (root->fs_info->sb->s_flags & MS_RDONLY)
6843                 return -EROFS;
6844
6845         spin_lock(&root->fs_info->delalloc_lock);
6846         while (!list_empty(head)) {
6847                 binode = list_entry(head->next, struct btrfs_inode,
6848                                     delalloc_inodes);
6849                 inode = igrab(&binode->vfs_inode);
6850                 if (!inode)
6851                         list_del_init(&binode->delalloc_inodes);
6852                 spin_unlock(&root->fs_info->delalloc_lock);
6853                 if (inode) {
6854                         filemap_flush(inode->i_mapping);
6855                         if (delay_iput)
6856                                 btrfs_add_delayed_iput(inode);
6857                         else
6858                                 iput(inode);
6859                 }
6860                 cond_resched();
6861                 spin_lock(&root->fs_info->delalloc_lock);
6862         }
6863         spin_unlock(&root->fs_info->delalloc_lock);
6864
6865         /* the filemap_flush will queue IO into the worker threads, but
6866          * we have to make sure the IO is actually started and that
6867          * ordered extents get created before we return
6868          */
6869         atomic_inc(&root->fs_info->async_submit_draining);
6870         while (atomic_read(&root->fs_info->nr_async_submits) ||
6871               atomic_read(&root->fs_info->async_delalloc_pages)) {
6872                 wait_event(root->fs_info->async_submit_wait,
6873                    (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
6874                     atomic_read(&root->fs_info->async_delalloc_pages) == 0));
6875         }
6876         atomic_dec(&root->fs_info->async_submit_draining);
6877         return 0;
6878 }
6879
6880 int btrfs_start_one_delalloc_inode(struct btrfs_root *root, int delay_iput,
6881                                    int sync)
6882 {
6883         struct btrfs_inode *binode;
6884         struct inode *inode = NULL;
6885
6886         spin_lock(&root->fs_info->delalloc_lock);
6887         while (!list_empty(&root->fs_info->delalloc_inodes)) {
6888                 binode = list_entry(root->fs_info->delalloc_inodes.next,
6889                                     struct btrfs_inode, delalloc_inodes);
6890                 inode = igrab(&binode->vfs_inode);
6891                 if (inode) {
6892                         list_move_tail(&binode->delalloc_inodes,
6893                                        &root->fs_info->delalloc_inodes);
6894                         break;
6895                 }
6896
6897                 list_del_init(&binode->delalloc_inodes);
6898                 cond_resched_lock(&root->fs_info->delalloc_lock);
6899         }
6900         spin_unlock(&root->fs_info->delalloc_lock);
6901
6902         if (inode) {
6903                 if (sync) {
6904                         filemap_write_and_wait(inode->i_mapping);
6905                         /*
6906                          * We have to do this because compression doesn't
6907                          * actually set PG_writeback until it submits the pages
6908                          * for IO, which happens in an async thread, so we could
6909                          * race and not actually wait for any writeback pages
6910                          * because they've not been submitted yet.  Technically
6911                          * this could still be the case for the ordered stuff
6912                          * since the async thread may not have started to do its
6913                          * work yet.  If this becomes the case then we need to
6914                          * figure out a way to make sure that in writepage we
6915                          * wait for any async pages to be submitted before
6916                          * returning so that fdatawait does what its supposed to
6917                          * do.
6918                          */
6919                         btrfs_wait_ordered_range(inode, 0, (u64)-1);
6920                 } else {
6921                         filemap_flush(inode->i_mapping);
6922                 }
6923                 if (delay_iput)
6924                         btrfs_add_delayed_iput(inode);
6925                 else
6926                         iput(inode);
6927                 return 1;
6928         }
6929         return 0;
6930 }
6931
6932 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
6933                          const char *symname)
6934 {
6935         struct btrfs_trans_handle *trans;
6936         struct btrfs_root *root = BTRFS_I(dir)->root;
6937         struct btrfs_path *path;
6938         struct btrfs_key key;
6939         struct inode *inode = NULL;
6940         int err;
6941         int drop_inode = 0;
6942         u64 objectid;
6943         u64 index = 0 ;
6944         int name_len;
6945         int datasize;
6946         unsigned long ptr;
6947         struct btrfs_file_extent_item *ei;
6948         struct extent_buffer *leaf;
6949         unsigned long nr = 0;
6950
6951         name_len = strlen(symname) + 1;
6952         if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
6953                 return -ENAMETOOLONG;
6954
6955         err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid);
6956         if (err)
6957                 return err;
6958         /*
6959          * 2 items for inode item and ref
6960          * 2 items for dir items
6961          * 1 item for xattr if selinux is on
6962          */
6963         trans = btrfs_start_transaction(root, 5);
6964         if (IS_ERR(trans))
6965                 return PTR_ERR(trans);
6966
6967         btrfs_set_trans_block_group(trans, dir);
6968
6969         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6970                                 dentry->d_name.len, dir->i_ino, objectid,
6971                                 BTRFS_I(dir)->block_group, S_IFLNK|S_IRWXUGO,
6972                                 &index);
6973         err = PTR_ERR(inode);
6974         if (IS_ERR(inode))
6975                 goto out_unlock;
6976
6977         err = btrfs_init_inode_security(trans, inode, dir);
6978         if (err) {
6979                 drop_inode = 1;
6980                 goto out_unlock;
6981         }
6982
6983         btrfs_set_trans_block_group(trans, inode);
6984         err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
6985         if (err)
6986                 drop_inode = 1;
6987         else {
6988                 inode->i_mapping->a_ops = &btrfs_aops;
6989                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
6990                 inode->i_fop = &btrfs_file_operations;
6991                 inode->i_op = &btrfs_file_inode_operations;
6992                 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
6993         }
6994         btrfs_update_inode_block_group(trans, inode);
6995         btrfs_update_inode_block_group(trans, dir);
6996         if (drop_inode)
6997                 goto out_unlock;
6998
6999         path = btrfs_alloc_path();
7000         BUG_ON(!path);
7001         key.objectid = inode->i_ino;
7002         key.offset = 0;
7003         btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
7004         datasize = btrfs_file_extent_calc_inline_size(name_len);
7005         err = btrfs_insert_empty_item(trans, root, path, &key,
7006                                       datasize);
7007         if (err) {
7008                 drop_inode = 1;
7009                 goto out_unlock;
7010         }
7011         leaf = path->nodes[0];
7012         ei = btrfs_item_ptr(leaf, path->slots[0],
7013                             struct btrfs_file_extent_item);
7014         btrfs_set_file_extent_generation(leaf, ei, trans->transid);
7015         btrfs_set_file_extent_type(leaf, ei,
7016                                    BTRFS_FILE_EXTENT_INLINE);
7017         btrfs_set_file_extent_encryption(leaf, ei, 0);
7018         btrfs_set_file_extent_compression(leaf, ei, 0);
7019         btrfs_set_file_extent_other_encoding(leaf, ei, 0);
7020         btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
7021
7022         ptr = btrfs_file_extent_inline_start(ei);
7023         write_extent_buffer(leaf, symname, ptr, name_len);
7024         btrfs_mark_buffer_dirty(leaf);
7025         btrfs_free_path(path);
7026
7027         inode->i_op = &btrfs_symlink_inode_operations;
7028         inode->i_mapping->a_ops = &btrfs_symlink_aops;
7029         inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
7030         inode_set_bytes(inode, name_len);
7031         btrfs_i_size_write(inode, name_len - 1);
7032         err = btrfs_update_inode(trans, root, inode);
7033         if (err)
7034                 drop_inode = 1;
7035
7036 out_unlock:
7037         nr = trans->blocks_used;
7038         btrfs_end_transaction_throttle(trans, root);
7039         if (drop_inode) {
7040                 inode_dec_link_count(inode);
7041                 iput(inode);
7042         }
7043         btrfs_btree_balance_dirty(root, nr);
7044         return err;
7045 }
7046
7047 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
7048                                        u64 start, u64 num_bytes, u64 min_size,
7049                                        loff_t actual_len, u64 *alloc_hint,
7050                                        struct btrfs_trans_handle *trans)
7051 {
7052         struct btrfs_root *root = BTRFS_I(inode)->root;
7053         struct btrfs_key ins;
7054         u64 cur_offset = start;
7055         u64 i_size;
7056         int ret = 0;
7057         bool own_trans = true;
7058
7059         if (trans)
7060                 own_trans = false;
7061         while (num_bytes > 0) {
7062                 if (own_trans) {
7063                         trans = btrfs_start_transaction(root, 3);
7064                         if (IS_ERR(trans)) {
7065                                 ret = PTR_ERR(trans);
7066                                 break;
7067                         }
7068                 }
7069
7070                 ret = btrfs_reserve_extent(trans, root, num_bytes, min_size,
7071                                            0, *alloc_hint, (u64)-1, &ins, 1);
7072                 if (ret) {
7073                         if (own_trans)
7074                                 btrfs_end_transaction(trans, root);
7075                         break;
7076                 }
7077
7078                 ret = insert_reserved_file_extent(trans, inode,
7079                                                   cur_offset, ins.objectid,
7080                                                   ins.offset, ins.offset,
7081                                                   ins.offset, 0, 0, 0,
7082                                                   BTRFS_FILE_EXTENT_PREALLOC);
7083                 BUG_ON(ret);
7084                 btrfs_drop_extent_cache(inode, cur_offset,
7085                                         cur_offset + ins.offset -1, 0);
7086
7087                 num_bytes -= ins.offset;
7088                 cur_offset += ins.offset;
7089                 *alloc_hint = ins.objectid + ins.offset;
7090
7091                 inode->i_ctime = CURRENT_TIME;
7092                 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
7093                 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
7094                     (actual_len > inode->i_size) &&
7095                     (cur_offset > inode->i_size)) {
7096                         if (cur_offset > actual_len)
7097                                 i_size = actual_len;
7098                         else
7099                                 i_size = cur_offset;
7100                         i_size_write(inode, i_size);
7101                         btrfs_ordered_update_i_size(inode, i_size, NULL);
7102                 }
7103
7104                 ret = btrfs_update_inode(trans, root, inode);
7105                 BUG_ON(ret);
7106
7107                 if (own_trans)
7108                         btrfs_end_transaction(trans, root);
7109         }
7110         return ret;
7111 }
7112
7113 int btrfs_prealloc_file_range(struct inode *inode, int mode,
7114                               u64 start, u64 num_bytes, u64 min_size,
7115                               loff_t actual_len, u64 *alloc_hint)
7116 {
7117         return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
7118                                            min_size, actual_len, alloc_hint,
7119                                            NULL);
7120 }
7121
7122 int btrfs_prealloc_file_range_trans(struct inode *inode,
7123                                     struct btrfs_trans_handle *trans, int mode,
7124                                     u64 start, u64 num_bytes, u64 min_size,
7125                                     loff_t actual_len, u64 *alloc_hint)
7126 {
7127         return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
7128                                            min_size, actual_len, alloc_hint, trans);
7129 }
7130
7131 static long btrfs_fallocate(struct inode *inode, int mode,
7132                             loff_t offset, loff_t len)
7133 {
7134         struct extent_state *cached_state = NULL;
7135         u64 cur_offset;
7136         u64 last_byte;
7137         u64 alloc_start;
7138         u64 alloc_end;
7139         u64 alloc_hint = 0;
7140         u64 locked_end;
7141         u64 mask = BTRFS_I(inode)->root->sectorsize - 1;
7142         struct extent_map *em;
7143         int ret;
7144
7145         alloc_start = offset & ~mask;
7146         alloc_end =  (offset + len + mask) & ~mask;
7147
7148         /*
7149          * wait for ordered IO before we have any locks.  We'll loop again
7150          * below with the locks held.
7151          */
7152         btrfs_wait_ordered_range(inode, alloc_start, alloc_end - alloc_start);
7153
7154         mutex_lock(&inode->i_mutex);
7155         ret = inode_newsize_ok(inode, alloc_end);
7156         if (ret)
7157                 goto out;
7158
7159         if (alloc_start > inode->i_size) {
7160                 ret = btrfs_cont_expand(inode, alloc_start);
7161                 if (ret)
7162                         goto out;
7163         }
7164
7165         ret = btrfs_check_data_free_space(inode, alloc_end - alloc_start);
7166         if (ret)
7167                 goto out;
7168
7169         locked_end = alloc_end - 1;
7170         while (1) {
7171                 struct btrfs_ordered_extent *ordered;
7172
7173                 /* the extent lock is ordered inside the running
7174                  * transaction
7175                  */
7176                 lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start,
7177                                  locked_end, 0, &cached_state, GFP_NOFS);
7178                 ordered = btrfs_lookup_first_ordered_extent(inode,
7179                                                             alloc_end - 1);
7180                 if (ordered &&
7181                     ordered->file_offset + ordered->len > alloc_start &&
7182                     ordered->file_offset < alloc_end) {
7183                         btrfs_put_ordered_extent(ordered);
7184                         unlock_extent_cached(&BTRFS_I(inode)->io_tree,
7185                                              alloc_start, locked_end,
7186                                              &cached_state, GFP_NOFS);
7187                         /*
7188                          * we can't wait on the range with the transaction
7189                          * running or with the extent lock held
7190                          */
7191                         btrfs_wait_ordered_range(inode, alloc_start,
7192                                                  alloc_end - alloc_start);
7193                 } else {
7194                         if (ordered)
7195                                 btrfs_put_ordered_extent(ordered);
7196                         break;
7197                 }
7198         }
7199
7200         cur_offset = alloc_start;
7201         while (1) {
7202                 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
7203                                       alloc_end - cur_offset, 0);
7204                 BUG_ON(IS_ERR(em) || !em);
7205                 last_byte = min(extent_map_end(em), alloc_end);
7206                 last_byte = (last_byte + mask) & ~mask;
7207                 if (em->block_start == EXTENT_MAP_HOLE ||
7208                     (cur_offset >= inode->i_size &&
7209                      !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
7210                         ret = btrfs_prealloc_file_range(inode, mode, cur_offset,
7211                                                         last_byte - cur_offset,
7212                                                         1 << inode->i_blkbits,
7213                                                         offset + len,
7214                                                         &alloc_hint);
7215                         if (ret < 0) {
7216                                 free_extent_map(em);
7217                                 break;
7218                         }
7219                 }
7220                 free_extent_map(em);
7221
7222                 cur_offset = last_byte;
7223                 if (cur_offset >= alloc_end) {
7224                         ret = 0;
7225                         break;
7226                 }
7227         }
7228         unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
7229                              &cached_state, GFP_NOFS);
7230
7231         btrfs_free_reserved_data_space(inode, alloc_end - alloc_start);
7232 out:
7233         mutex_unlock(&inode->i_mutex);
7234         return ret;
7235 }
7236
7237 static int btrfs_set_page_dirty(struct page *page)
7238 {
7239         return __set_page_dirty_nobuffers(page);
7240 }
7241
7242 static int btrfs_permission(struct inode *inode, int mask)
7243 {
7244         struct btrfs_root *root = BTRFS_I(inode)->root;
7245
7246         if (btrfs_root_readonly(root) && (mask & MAY_WRITE))
7247                 return -EROFS;
7248         if ((BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) && (mask & MAY_WRITE))
7249                 return -EACCES;
7250         return generic_permission(inode, mask, btrfs_check_acl);
7251 }
7252
7253 static const struct inode_operations btrfs_dir_inode_operations = {
7254         .getattr        = btrfs_getattr,
7255         .lookup         = btrfs_lookup,
7256         .create         = btrfs_create,
7257         .unlink         = btrfs_unlink,
7258         .link           = btrfs_link,
7259         .mkdir          = btrfs_mkdir,
7260         .rmdir          = btrfs_rmdir,
7261         .rename         = btrfs_rename,
7262         .symlink        = btrfs_symlink,
7263         .setattr        = btrfs_setattr,
7264         .mknod          = btrfs_mknod,
7265         .setxattr       = btrfs_setxattr,
7266         .getxattr       = btrfs_getxattr,
7267         .listxattr      = btrfs_listxattr,
7268         .removexattr    = btrfs_removexattr,
7269         .permission     = btrfs_permission,
7270 };
7271 static const struct inode_operations btrfs_dir_ro_inode_operations = {
7272         .lookup         = btrfs_lookup,
7273         .permission     = btrfs_permission,
7274 };
7275
7276 static const struct file_operations btrfs_dir_file_operations = {
7277         .llseek         = generic_file_llseek,
7278         .read           = generic_read_dir,
7279         .readdir        = btrfs_real_readdir,
7280         .unlocked_ioctl = btrfs_ioctl,
7281 #ifdef CONFIG_COMPAT
7282         .compat_ioctl   = btrfs_ioctl,
7283 #endif
7284         .release        = btrfs_release_file,
7285         .fsync          = btrfs_sync_file,
7286 };
7287
7288 static struct extent_io_ops btrfs_extent_io_ops = {
7289         .fill_delalloc = run_delalloc_range,
7290         .submit_bio_hook = btrfs_submit_bio_hook,
7291         .merge_bio_hook = btrfs_merge_bio_hook,
7292         .readpage_end_io_hook = btrfs_readpage_end_io_hook,
7293         .writepage_end_io_hook = btrfs_writepage_end_io_hook,
7294         .writepage_start_hook = btrfs_writepage_start_hook,
7295         .readpage_io_failed_hook = btrfs_io_failed_hook,
7296         .set_bit_hook = btrfs_set_bit_hook,
7297         .clear_bit_hook = btrfs_clear_bit_hook,
7298         .merge_extent_hook = btrfs_merge_extent_hook,
7299         .split_extent_hook = btrfs_split_extent_hook,
7300 };
7301
7302 /*
7303  * btrfs doesn't support the bmap operation because swapfiles
7304  * use bmap to make a mapping of extents in the file.  They assume
7305  * these extents won't change over the life of the file and they
7306  * use the bmap result to do IO directly to the drive.
7307  *
7308  * the btrfs bmap call would return logical addresses that aren't
7309  * suitable for IO and they also will change frequently as COW
7310  * operations happen.  So, swapfile + btrfs == corruption.
7311  *
7312  * For now we're avoiding this by dropping bmap.
7313  */
7314 static const struct address_space_operations btrfs_aops = {
7315         .readpage       = btrfs_readpage,
7316         .writepage      = btrfs_writepage,
7317         .writepages     = btrfs_writepages,
7318         .readpages      = btrfs_readpages,
7319         .sync_page      = block_sync_page,
7320         .direct_IO      = btrfs_direct_IO,
7321         .invalidatepage = btrfs_invalidatepage,
7322         .releasepage    = btrfs_releasepage,
7323         .set_page_dirty = btrfs_set_page_dirty,
7324         .error_remove_page = generic_error_remove_page,
7325 };
7326
7327 static const struct address_space_operations btrfs_symlink_aops = {
7328         .readpage       = btrfs_readpage,
7329         .writepage      = btrfs_writepage,
7330         .invalidatepage = btrfs_invalidatepage,
7331         .releasepage    = btrfs_releasepage,
7332 };
7333
7334 static const struct inode_operations btrfs_file_inode_operations = {
7335         .truncate       = btrfs_truncate,
7336         .getattr        = btrfs_getattr,
7337         .setattr        = btrfs_setattr,
7338         .setxattr       = btrfs_setxattr,
7339         .getxattr       = btrfs_getxattr,
7340         .listxattr      = btrfs_listxattr,
7341         .removexattr    = btrfs_removexattr,
7342         .permission     = btrfs_permission,
7343         .fallocate      = btrfs_fallocate,
7344         .fiemap         = btrfs_fiemap,
7345 };
7346 static const struct inode_operations btrfs_special_inode_operations = {
7347         .getattr        = btrfs_getattr,
7348         .setattr        = btrfs_setattr,
7349         .permission     = btrfs_permission,
7350         .setxattr       = btrfs_setxattr,
7351         .getxattr       = btrfs_getxattr,
7352         .listxattr      = btrfs_listxattr,
7353         .removexattr    = btrfs_removexattr,
7354 };
7355 static const struct inode_operations btrfs_symlink_inode_operations = {
7356         .readlink       = generic_readlink,
7357         .follow_link    = page_follow_link_light,
7358         .put_link       = page_put_link,
7359         .getattr        = btrfs_getattr,
7360         .permission     = btrfs_permission,
7361         .setxattr       = btrfs_setxattr,
7362         .getxattr       = btrfs_getxattr,
7363         .listxattr      = btrfs_listxattr,
7364         .removexattr    = btrfs_removexattr,
7365 };
7366
7367 const struct dentry_operations btrfs_dentry_operations = {
7368         .d_delete       = btrfs_dentry_delete,
7369 };