]> git.karo-electronics.de Git - mv-sheeva.git/blob - fs/btrfs/inode.c
Merge branch 'slabh' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/misc
[mv-sheeva.git] / fs / btrfs / inode.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/statfs.h>
34 #include <linux/compat.h>
35 #include <linux/bit_spinlock.h>
36 #include <linux/xattr.h>
37 #include <linux/posix_acl.h>
38 #include <linux/falloc.h>
39 #include <linux/slab.h>
40 #include "compat.h"
41 #include "ctree.h"
42 #include "disk-io.h"
43 #include "transaction.h"
44 #include "btrfs_inode.h"
45 #include "ioctl.h"
46 #include "print-tree.h"
47 #include "volumes.h"
48 #include "ordered-data.h"
49 #include "xattr.h"
50 #include "tree-log.h"
51 #include "compression.h"
52 #include "locking.h"
53
54 struct btrfs_iget_args {
55         u64 ino;
56         struct btrfs_root *root;
57 };
58
59 static const struct inode_operations btrfs_dir_inode_operations;
60 static const struct inode_operations btrfs_symlink_inode_operations;
61 static const struct inode_operations btrfs_dir_ro_inode_operations;
62 static const struct inode_operations btrfs_special_inode_operations;
63 static const struct inode_operations btrfs_file_inode_operations;
64 static const struct address_space_operations btrfs_aops;
65 static const struct address_space_operations btrfs_symlink_aops;
66 static const struct file_operations btrfs_dir_file_operations;
67 static struct extent_io_ops btrfs_extent_io_ops;
68
69 static struct kmem_cache *btrfs_inode_cachep;
70 struct kmem_cache *btrfs_trans_handle_cachep;
71 struct kmem_cache *btrfs_transaction_cachep;
72 struct kmem_cache *btrfs_path_cachep;
73
74 #define S_SHIFT 12
75 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
76         [S_IFREG >> S_SHIFT]    = BTRFS_FT_REG_FILE,
77         [S_IFDIR >> S_SHIFT]    = BTRFS_FT_DIR,
78         [S_IFCHR >> S_SHIFT]    = BTRFS_FT_CHRDEV,
79         [S_IFBLK >> S_SHIFT]    = BTRFS_FT_BLKDEV,
80         [S_IFIFO >> S_SHIFT]    = BTRFS_FT_FIFO,
81         [S_IFSOCK >> S_SHIFT]   = BTRFS_FT_SOCK,
82         [S_IFLNK >> S_SHIFT]    = BTRFS_FT_SYMLINK,
83 };
84
85 static void btrfs_truncate(struct inode *inode);
86 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end);
87 static noinline int cow_file_range(struct inode *inode,
88                                    struct page *locked_page,
89                                    u64 start, u64 end, int *page_started,
90                                    unsigned long *nr_written, int unlock);
91
92 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
93                                      struct inode *inode,  struct inode *dir)
94 {
95         int err;
96
97         err = btrfs_init_acl(trans, inode, dir);
98         if (!err)
99                 err = btrfs_xattr_security_init(trans, inode, dir);
100         return err;
101 }
102
103 /*
104  * this does all the hard work for inserting an inline extent into
105  * the btree.  The caller should have done a btrfs_drop_extents so that
106  * no overlapping inline items exist in the btree
107  */
108 static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
109                                 struct btrfs_root *root, struct inode *inode,
110                                 u64 start, size_t size, size_t compressed_size,
111                                 struct page **compressed_pages)
112 {
113         struct btrfs_key key;
114         struct btrfs_path *path;
115         struct extent_buffer *leaf;
116         struct page *page = NULL;
117         char *kaddr;
118         unsigned long ptr;
119         struct btrfs_file_extent_item *ei;
120         int err = 0;
121         int ret;
122         size_t cur_size = size;
123         size_t datasize;
124         unsigned long offset;
125         int use_compress = 0;
126
127         if (compressed_size && compressed_pages) {
128                 use_compress = 1;
129                 cur_size = compressed_size;
130         }
131
132         path = btrfs_alloc_path();
133         if (!path)
134                 return -ENOMEM;
135
136         path->leave_spinning = 1;
137         btrfs_set_trans_block_group(trans, inode);
138
139         key.objectid = inode->i_ino;
140         key.offset = start;
141         btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
142         datasize = btrfs_file_extent_calc_inline_size(cur_size);
143
144         inode_add_bytes(inode, size);
145         ret = btrfs_insert_empty_item(trans, root, path, &key,
146                                       datasize);
147         BUG_ON(ret);
148         if (ret) {
149                 err = ret;
150                 goto fail;
151         }
152         leaf = path->nodes[0];
153         ei = btrfs_item_ptr(leaf, path->slots[0],
154                             struct btrfs_file_extent_item);
155         btrfs_set_file_extent_generation(leaf, ei, trans->transid);
156         btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
157         btrfs_set_file_extent_encryption(leaf, ei, 0);
158         btrfs_set_file_extent_other_encoding(leaf, ei, 0);
159         btrfs_set_file_extent_ram_bytes(leaf, ei, size);
160         ptr = btrfs_file_extent_inline_start(ei);
161
162         if (use_compress) {
163                 struct page *cpage;
164                 int i = 0;
165                 while (compressed_size > 0) {
166                         cpage = compressed_pages[i];
167                         cur_size = min_t(unsigned long, compressed_size,
168                                        PAGE_CACHE_SIZE);
169
170                         kaddr = kmap_atomic(cpage, KM_USER0);
171                         write_extent_buffer(leaf, kaddr, ptr, cur_size);
172                         kunmap_atomic(kaddr, KM_USER0);
173
174                         i++;
175                         ptr += cur_size;
176                         compressed_size -= cur_size;
177                 }
178                 btrfs_set_file_extent_compression(leaf, ei,
179                                                   BTRFS_COMPRESS_ZLIB);
180         } else {
181                 page = find_get_page(inode->i_mapping,
182                                      start >> PAGE_CACHE_SHIFT);
183                 btrfs_set_file_extent_compression(leaf, ei, 0);
184                 kaddr = kmap_atomic(page, KM_USER0);
185                 offset = start & (PAGE_CACHE_SIZE - 1);
186                 write_extent_buffer(leaf, kaddr + offset, ptr, size);
187                 kunmap_atomic(kaddr, KM_USER0);
188                 page_cache_release(page);
189         }
190         btrfs_mark_buffer_dirty(leaf);
191         btrfs_free_path(path);
192
193         /*
194          * we're an inline extent, so nobody can
195          * extend the file past i_size without locking
196          * a page we already have locked.
197          *
198          * We must do any isize and inode updates
199          * before we unlock the pages.  Otherwise we
200          * could end up racing with unlink.
201          */
202         BTRFS_I(inode)->disk_i_size = inode->i_size;
203         btrfs_update_inode(trans, root, inode);
204
205         return 0;
206 fail:
207         btrfs_free_path(path);
208         return err;
209 }
210
211
212 /*
213  * conditionally insert an inline extent into the file.  This
214  * does the checks required to make sure the data is small enough
215  * to fit as an inline extent.
216  */
217 static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans,
218                                  struct btrfs_root *root,
219                                  struct inode *inode, u64 start, u64 end,
220                                  size_t compressed_size,
221                                  struct page **compressed_pages)
222 {
223         u64 isize = i_size_read(inode);
224         u64 actual_end = min(end + 1, isize);
225         u64 inline_len = actual_end - start;
226         u64 aligned_end = (end + root->sectorsize - 1) &
227                         ~((u64)root->sectorsize - 1);
228         u64 hint_byte;
229         u64 data_len = inline_len;
230         int ret;
231
232         if (compressed_size)
233                 data_len = compressed_size;
234
235         if (start > 0 ||
236             actual_end >= PAGE_CACHE_SIZE ||
237             data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
238             (!compressed_size &&
239             (actual_end & (root->sectorsize - 1)) == 0) ||
240             end + 1 < isize ||
241             data_len > root->fs_info->max_inline) {
242                 return 1;
243         }
244
245         ret = btrfs_drop_extents(trans, inode, start, aligned_end,
246                                  &hint_byte, 1);
247         BUG_ON(ret);
248
249         if (isize > actual_end)
250                 inline_len = min_t(u64, isize, actual_end);
251         ret = insert_inline_extent(trans, root, inode, start,
252                                    inline_len, compressed_size,
253                                    compressed_pages);
254         BUG_ON(ret);
255         btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
256         return 0;
257 }
258
259 struct async_extent {
260         u64 start;
261         u64 ram_size;
262         u64 compressed_size;
263         struct page **pages;
264         unsigned long nr_pages;
265         struct list_head list;
266 };
267
268 struct async_cow {
269         struct inode *inode;
270         struct btrfs_root *root;
271         struct page *locked_page;
272         u64 start;
273         u64 end;
274         struct list_head extents;
275         struct btrfs_work work;
276 };
277
278 static noinline int add_async_extent(struct async_cow *cow,
279                                      u64 start, u64 ram_size,
280                                      u64 compressed_size,
281                                      struct page **pages,
282                                      unsigned long nr_pages)
283 {
284         struct async_extent *async_extent;
285
286         async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
287         async_extent->start = start;
288         async_extent->ram_size = ram_size;
289         async_extent->compressed_size = compressed_size;
290         async_extent->pages = pages;
291         async_extent->nr_pages = nr_pages;
292         list_add_tail(&async_extent->list, &cow->extents);
293         return 0;
294 }
295
296 /*
297  * we create compressed extents in two phases.  The first
298  * phase compresses a range of pages that have already been
299  * locked (both pages and state bits are locked).
300  *
301  * This is done inside an ordered work queue, and the compression
302  * is spread across many cpus.  The actual IO submission is step
303  * two, and the ordered work queue takes care of making sure that
304  * happens in the same order things were put onto the queue by
305  * writepages and friends.
306  *
307  * If this code finds it can't get good compression, it puts an
308  * entry onto the work queue to write the uncompressed bytes.  This
309  * makes sure that both compressed inodes and uncompressed inodes
310  * are written in the same order that pdflush sent them down.
311  */
312 static noinline int compress_file_range(struct inode *inode,
313                                         struct page *locked_page,
314                                         u64 start, u64 end,
315                                         struct async_cow *async_cow,
316                                         int *num_added)
317 {
318         struct btrfs_root *root = BTRFS_I(inode)->root;
319         struct btrfs_trans_handle *trans;
320         u64 num_bytes;
321         u64 orig_start;
322         u64 disk_num_bytes;
323         u64 blocksize = root->sectorsize;
324         u64 actual_end;
325         u64 isize = i_size_read(inode);
326         int ret = 0;
327         struct page **pages = NULL;
328         unsigned long nr_pages;
329         unsigned long nr_pages_ret = 0;
330         unsigned long total_compressed = 0;
331         unsigned long total_in = 0;
332         unsigned long max_compressed = 128 * 1024;
333         unsigned long max_uncompressed = 128 * 1024;
334         int i;
335         int will_compress;
336
337         orig_start = start;
338
339         actual_end = min_t(u64, isize, end + 1);
340 again:
341         will_compress = 0;
342         nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
343         nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
344
345         /*
346          * we don't want to send crud past the end of i_size through
347          * compression, that's just a waste of CPU time.  So, if the
348          * end of the file is before the start of our current
349          * requested range of bytes, we bail out to the uncompressed
350          * cleanup code that can deal with all of this.
351          *
352          * It isn't really the fastest way to fix things, but this is a
353          * very uncommon corner.
354          */
355         if (actual_end <= start)
356                 goto cleanup_and_bail_uncompressed;
357
358         total_compressed = actual_end - start;
359
360         /* we want to make sure that amount of ram required to uncompress
361          * an extent is reasonable, so we limit the total size in ram
362          * of a compressed extent to 128k.  This is a crucial number
363          * because it also controls how easily we can spread reads across
364          * cpus for decompression.
365          *
366          * We also want to make sure the amount of IO required to do
367          * a random read is reasonably small, so we limit the size of
368          * a compressed extent to 128k.
369          */
370         total_compressed = min(total_compressed, max_uncompressed);
371         num_bytes = (end - start + blocksize) & ~(blocksize - 1);
372         num_bytes = max(blocksize,  num_bytes);
373         disk_num_bytes = num_bytes;
374         total_in = 0;
375         ret = 0;
376
377         /*
378          * we do compression for mount -o compress and when the
379          * inode has not been flagged as nocompress.  This flag can
380          * change at any time if we discover bad compression ratios.
381          */
382         if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) &&
383             (btrfs_test_opt(root, COMPRESS) ||
384              (BTRFS_I(inode)->force_compress))) {
385                 WARN_ON(pages);
386                 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
387
388                 ret = btrfs_zlib_compress_pages(inode->i_mapping, start,
389                                                 total_compressed, pages,
390                                                 nr_pages, &nr_pages_ret,
391                                                 &total_in,
392                                                 &total_compressed,
393                                                 max_compressed);
394
395                 if (!ret) {
396                         unsigned long offset = total_compressed &
397                                 (PAGE_CACHE_SIZE - 1);
398                         struct page *page = pages[nr_pages_ret - 1];
399                         char *kaddr;
400
401                         /* zero the tail end of the last page, we might be
402                          * sending it down to disk
403                          */
404                         if (offset) {
405                                 kaddr = kmap_atomic(page, KM_USER0);
406                                 memset(kaddr + offset, 0,
407                                        PAGE_CACHE_SIZE - offset);
408                                 kunmap_atomic(kaddr, KM_USER0);
409                         }
410                         will_compress = 1;
411                 }
412         }
413         if (start == 0) {
414                 trans = btrfs_join_transaction(root, 1);
415                 BUG_ON(!trans);
416                 btrfs_set_trans_block_group(trans, inode);
417
418                 /* lets try to make an inline extent */
419                 if (ret || total_in < (actual_end - start)) {
420                         /* we didn't compress the entire range, try
421                          * to make an uncompressed inline extent.
422                          */
423                         ret = cow_file_range_inline(trans, root, inode,
424                                                     start, end, 0, NULL);
425                 } else {
426                         /* try making a compressed inline extent */
427                         ret = cow_file_range_inline(trans, root, inode,
428                                                     start, end,
429                                                     total_compressed, pages);
430                 }
431                 if (ret == 0) {
432                         /*
433                          * inline extent creation worked, we don't need
434                          * to create any more async work items.  Unlock
435                          * and free up our temp pages.
436                          */
437                         extent_clear_unlock_delalloc(inode,
438                              &BTRFS_I(inode)->io_tree,
439                              start, end, NULL,
440                              EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
441                              EXTENT_CLEAR_DELALLOC |
442                              EXTENT_CLEAR_ACCOUNTING |
443                              EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK);
444
445                         btrfs_end_transaction(trans, root);
446                         goto free_pages_out;
447                 }
448                 btrfs_end_transaction(trans, root);
449         }
450
451         if (will_compress) {
452                 /*
453                  * we aren't doing an inline extent round the compressed size
454                  * up to a block size boundary so the allocator does sane
455                  * things
456                  */
457                 total_compressed = (total_compressed + blocksize - 1) &
458                         ~(blocksize - 1);
459
460                 /*
461                  * one last check to make sure the compression is really a
462                  * win, compare the page count read with the blocks on disk
463                  */
464                 total_in = (total_in + PAGE_CACHE_SIZE - 1) &
465                         ~(PAGE_CACHE_SIZE - 1);
466                 if (total_compressed >= total_in) {
467                         will_compress = 0;
468                 } else {
469                         disk_num_bytes = total_compressed;
470                         num_bytes = total_in;
471                 }
472         }
473         if (!will_compress && pages) {
474                 /*
475                  * the compression code ran but failed to make things smaller,
476                  * free any pages it allocated and our page pointer array
477                  */
478                 for (i = 0; i < nr_pages_ret; i++) {
479                         WARN_ON(pages[i]->mapping);
480                         page_cache_release(pages[i]);
481                 }
482                 kfree(pages);
483                 pages = NULL;
484                 total_compressed = 0;
485                 nr_pages_ret = 0;
486
487                 /* flag the file so we don't compress in the future */
488                 if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
489                     !(BTRFS_I(inode)->force_compress)) {
490                         BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
491                 }
492         }
493         if (will_compress) {
494                 *num_added += 1;
495
496                 /* the async work queues will take care of doing actual
497                  * allocation on disk for these compressed pages,
498                  * and will submit them to the elevator.
499                  */
500                 add_async_extent(async_cow, start, num_bytes,
501                                  total_compressed, pages, nr_pages_ret);
502
503                 if (start + num_bytes < end && start + num_bytes < actual_end) {
504                         start += num_bytes;
505                         pages = NULL;
506                         cond_resched();
507                         goto again;
508                 }
509         } else {
510 cleanup_and_bail_uncompressed:
511                 /*
512                  * No compression, but we still need to write the pages in
513                  * the file we've been given so far.  redirty the locked
514                  * page if it corresponds to our extent and set things up
515                  * for the async work queue to run cow_file_range to do
516                  * the normal delalloc dance
517                  */
518                 if (page_offset(locked_page) >= start &&
519                     page_offset(locked_page) <= end) {
520                         __set_page_dirty_nobuffers(locked_page);
521                         /* unlocked later on in the async handlers */
522                 }
523                 add_async_extent(async_cow, start, end - start + 1, 0, NULL, 0);
524                 *num_added += 1;
525         }
526
527 out:
528         return 0;
529
530 free_pages_out:
531         for (i = 0; i < nr_pages_ret; i++) {
532                 WARN_ON(pages[i]->mapping);
533                 page_cache_release(pages[i]);
534         }
535         kfree(pages);
536
537         goto out;
538 }
539
540 /*
541  * phase two of compressed writeback.  This is the ordered portion
542  * of the code, which only gets called in the order the work was
543  * queued.  We walk all the async extents created by compress_file_range
544  * and send them down to the disk.
545  */
546 static noinline int submit_compressed_extents(struct inode *inode,
547                                               struct async_cow *async_cow)
548 {
549         struct async_extent *async_extent;
550         u64 alloc_hint = 0;
551         struct btrfs_trans_handle *trans;
552         struct btrfs_key ins;
553         struct extent_map *em;
554         struct btrfs_root *root = BTRFS_I(inode)->root;
555         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
556         struct extent_io_tree *io_tree;
557         int ret = 0;
558
559         if (list_empty(&async_cow->extents))
560                 return 0;
561
562
563         while (!list_empty(&async_cow->extents)) {
564                 async_extent = list_entry(async_cow->extents.next,
565                                           struct async_extent, list);
566                 list_del(&async_extent->list);
567
568                 io_tree = &BTRFS_I(inode)->io_tree;
569
570 retry:
571                 /* did the compression code fall back to uncompressed IO? */
572                 if (!async_extent->pages) {
573                         int page_started = 0;
574                         unsigned long nr_written = 0;
575
576                         lock_extent(io_tree, async_extent->start,
577                                          async_extent->start +
578                                          async_extent->ram_size - 1, GFP_NOFS);
579
580                         /* allocate blocks */
581                         ret = cow_file_range(inode, async_cow->locked_page,
582                                              async_extent->start,
583                                              async_extent->start +
584                                              async_extent->ram_size - 1,
585                                              &page_started, &nr_written, 0);
586
587                         /*
588                          * if page_started, cow_file_range inserted an
589                          * inline extent and took care of all the unlocking
590                          * and IO for us.  Otherwise, we need to submit
591                          * all those pages down to the drive.
592                          */
593                         if (!page_started && !ret)
594                                 extent_write_locked_range(io_tree,
595                                                   inode, async_extent->start,
596                                                   async_extent->start +
597                                                   async_extent->ram_size - 1,
598                                                   btrfs_get_extent,
599                                                   WB_SYNC_ALL);
600                         kfree(async_extent);
601                         cond_resched();
602                         continue;
603                 }
604
605                 lock_extent(io_tree, async_extent->start,
606                             async_extent->start + async_extent->ram_size - 1,
607                             GFP_NOFS);
608
609                 trans = btrfs_join_transaction(root, 1);
610                 ret = btrfs_reserve_extent(trans, root,
611                                            async_extent->compressed_size,
612                                            async_extent->compressed_size,
613                                            0, alloc_hint,
614                                            (u64)-1, &ins, 1);
615                 btrfs_end_transaction(trans, root);
616
617                 if (ret) {
618                         int i;
619                         for (i = 0; i < async_extent->nr_pages; i++) {
620                                 WARN_ON(async_extent->pages[i]->mapping);
621                                 page_cache_release(async_extent->pages[i]);
622                         }
623                         kfree(async_extent->pages);
624                         async_extent->nr_pages = 0;
625                         async_extent->pages = NULL;
626                         unlock_extent(io_tree, async_extent->start,
627                                       async_extent->start +
628                                       async_extent->ram_size - 1, GFP_NOFS);
629                         goto retry;
630                 }
631
632                 /*
633                  * here we're doing allocation and writeback of the
634                  * compressed pages
635                  */
636                 btrfs_drop_extent_cache(inode, async_extent->start,
637                                         async_extent->start +
638                                         async_extent->ram_size - 1, 0);
639
640                 em = alloc_extent_map(GFP_NOFS);
641                 em->start = async_extent->start;
642                 em->len = async_extent->ram_size;
643                 em->orig_start = em->start;
644
645                 em->block_start = ins.objectid;
646                 em->block_len = ins.offset;
647                 em->bdev = root->fs_info->fs_devices->latest_bdev;
648                 set_bit(EXTENT_FLAG_PINNED, &em->flags);
649                 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
650
651                 while (1) {
652                         write_lock(&em_tree->lock);
653                         ret = add_extent_mapping(em_tree, em);
654                         write_unlock(&em_tree->lock);
655                         if (ret != -EEXIST) {
656                                 free_extent_map(em);
657                                 break;
658                         }
659                         btrfs_drop_extent_cache(inode, async_extent->start,
660                                                 async_extent->start +
661                                                 async_extent->ram_size - 1, 0);
662                 }
663
664                 ret = btrfs_add_ordered_extent(inode, async_extent->start,
665                                                ins.objectid,
666                                                async_extent->ram_size,
667                                                ins.offset,
668                                                BTRFS_ORDERED_COMPRESSED);
669                 BUG_ON(ret);
670
671                 /*
672                  * clear dirty, set writeback and unlock the pages.
673                  */
674                 extent_clear_unlock_delalloc(inode,
675                                 &BTRFS_I(inode)->io_tree,
676                                 async_extent->start,
677                                 async_extent->start +
678                                 async_extent->ram_size - 1,
679                                 NULL, EXTENT_CLEAR_UNLOCK_PAGE |
680                                 EXTENT_CLEAR_UNLOCK |
681                                 EXTENT_CLEAR_DELALLOC |
682                                 EXTENT_CLEAR_DIRTY | EXTENT_SET_WRITEBACK);
683
684                 ret = btrfs_submit_compressed_write(inode,
685                                     async_extent->start,
686                                     async_extent->ram_size,
687                                     ins.objectid,
688                                     ins.offset, async_extent->pages,
689                                     async_extent->nr_pages);
690
691                 BUG_ON(ret);
692                 alloc_hint = ins.objectid + ins.offset;
693                 kfree(async_extent);
694                 cond_resched();
695         }
696
697         return 0;
698 }
699
700 /*
701  * when extent_io.c finds a delayed allocation range in the file,
702  * the call backs end up in this code.  The basic idea is to
703  * allocate extents on disk for the range, and create ordered data structs
704  * in ram to track those extents.
705  *
706  * locked_page is the page that writepage had locked already.  We use
707  * it to make sure we don't do extra locks or unlocks.
708  *
709  * *page_started is set to one if we unlock locked_page and do everything
710  * required to start IO on it.  It may be clean and already done with
711  * IO when we return.
712  */
713 static noinline int cow_file_range(struct inode *inode,
714                                    struct page *locked_page,
715                                    u64 start, u64 end, int *page_started,
716                                    unsigned long *nr_written,
717                                    int unlock)
718 {
719         struct btrfs_root *root = BTRFS_I(inode)->root;
720         struct btrfs_trans_handle *trans;
721         u64 alloc_hint = 0;
722         u64 num_bytes;
723         unsigned long ram_size;
724         u64 disk_num_bytes;
725         u64 cur_alloc_size;
726         u64 blocksize = root->sectorsize;
727         u64 actual_end;
728         u64 isize = i_size_read(inode);
729         struct btrfs_key ins;
730         struct extent_map *em;
731         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
732         int ret = 0;
733
734         trans = btrfs_join_transaction(root, 1);
735         BUG_ON(!trans);
736         btrfs_set_trans_block_group(trans, inode);
737
738         actual_end = min_t(u64, isize, end + 1);
739
740         num_bytes = (end - start + blocksize) & ~(blocksize - 1);
741         num_bytes = max(blocksize,  num_bytes);
742         disk_num_bytes = num_bytes;
743         ret = 0;
744
745         if (start == 0) {
746                 /* lets try to make an inline extent */
747                 ret = cow_file_range_inline(trans, root, inode,
748                                             start, end, 0, NULL);
749                 if (ret == 0) {
750                         extent_clear_unlock_delalloc(inode,
751                                      &BTRFS_I(inode)->io_tree,
752                                      start, end, NULL,
753                                      EXTENT_CLEAR_UNLOCK_PAGE |
754                                      EXTENT_CLEAR_UNLOCK |
755                                      EXTENT_CLEAR_DELALLOC |
756                                      EXTENT_CLEAR_ACCOUNTING |
757                                      EXTENT_CLEAR_DIRTY |
758                                      EXTENT_SET_WRITEBACK |
759                                      EXTENT_END_WRITEBACK);
760
761                         *nr_written = *nr_written +
762                              (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
763                         *page_started = 1;
764                         ret = 0;
765                         goto out;
766                 }
767         }
768
769         BUG_ON(disk_num_bytes >
770                btrfs_super_total_bytes(&root->fs_info->super_copy));
771
772
773         read_lock(&BTRFS_I(inode)->extent_tree.lock);
774         em = search_extent_mapping(&BTRFS_I(inode)->extent_tree,
775                                    start, num_bytes);
776         if (em) {
777                 /*
778                  * if block start isn't an actual block number then find the
779                  * first block in this inode and use that as a hint.  If that
780                  * block is also bogus then just don't worry about it.
781                  */
782                 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
783                         free_extent_map(em);
784                         em = search_extent_mapping(em_tree, 0, 0);
785                         if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
786                                 alloc_hint = em->block_start;
787                         if (em)
788                                 free_extent_map(em);
789                 } else {
790                         alloc_hint = em->block_start;
791                         free_extent_map(em);
792                 }
793         }
794         read_unlock(&BTRFS_I(inode)->extent_tree.lock);
795         btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
796
797         while (disk_num_bytes > 0) {
798                 unsigned long op;
799
800                 cur_alloc_size = min(disk_num_bytes, root->fs_info->max_extent);
801                 ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
802                                            root->sectorsize, 0, alloc_hint,
803                                            (u64)-1, &ins, 1);
804                 BUG_ON(ret);
805
806                 em = alloc_extent_map(GFP_NOFS);
807                 em->start = start;
808                 em->orig_start = em->start;
809                 ram_size = ins.offset;
810                 em->len = ins.offset;
811
812                 em->block_start = ins.objectid;
813                 em->block_len = ins.offset;
814                 em->bdev = root->fs_info->fs_devices->latest_bdev;
815                 set_bit(EXTENT_FLAG_PINNED, &em->flags);
816
817                 while (1) {
818                         write_lock(&em_tree->lock);
819                         ret = add_extent_mapping(em_tree, em);
820                         write_unlock(&em_tree->lock);
821                         if (ret != -EEXIST) {
822                                 free_extent_map(em);
823                                 break;
824                         }
825                         btrfs_drop_extent_cache(inode, start,
826                                                 start + ram_size - 1, 0);
827                 }
828
829                 cur_alloc_size = ins.offset;
830                 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
831                                                ram_size, cur_alloc_size, 0);
832                 BUG_ON(ret);
833
834                 if (root->root_key.objectid ==
835                     BTRFS_DATA_RELOC_TREE_OBJECTID) {
836                         ret = btrfs_reloc_clone_csums(inode, start,
837                                                       cur_alloc_size);
838                         BUG_ON(ret);
839                 }
840
841                 if (disk_num_bytes < cur_alloc_size)
842                         break;
843
844                 /* we're not doing compressed IO, don't unlock the first
845                  * page (which the caller expects to stay locked), don't
846                  * clear any dirty bits and don't set any writeback bits
847                  *
848                  * Do set the Private2 bit so we know this page was properly
849                  * setup for writepage
850                  */
851                 op = unlock ? EXTENT_CLEAR_UNLOCK_PAGE : 0;
852                 op |= EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
853                         EXTENT_SET_PRIVATE2;
854
855                 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
856                                              start, start + ram_size - 1,
857                                              locked_page, op);
858                 disk_num_bytes -= cur_alloc_size;
859                 num_bytes -= cur_alloc_size;
860                 alloc_hint = ins.objectid + ins.offset;
861                 start += cur_alloc_size;
862         }
863 out:
864         ret = 0;
865         btrfs_end_transaction(trans, root);
866
867         return ret;
868 }
869
870 /*
871  * work queue call back to started compression on a file and pages
872  */
873 static noinline void async_cow_start(struct btrfs_work *work)
874 {
875         struct async_cow *async_cow;
876         int num_added = 0;
877         async_cow = container_of(work, struct async_cow, work);
878
879         compress_file_range(async_cow->inode, async_cow->locked_page,
880                             async_cow->start, async_cow->end, async_cow,
881                             &num_added);
882         if (num_added == 0)
883                 async_cow->inode = NULL;
884 }
885
886 /*
887  * work queue call back to submit previously compressed pages
888  */
889 static noinline void async_cow_submit(struct btrfs_work *work)
890 {
891         struct async_cow *async_cow;
892         struct btrfs_root *root;
893         unsigned long nr_pages;
894
895         async_cow = container_of(work, struct async_cow, work);
896
897         root = async_cow->root;
898         nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
899                 PAGE_CACHE_SHIFT;
900
901         atomic_sub(nr_pages, &root->fs_info->async_delalloc_pages);
902
903         if (atomic_read(&root->fs_info->async_delalloc_pages) <
904             5 * 1042 * 1024 &&
905             waitqueue_active(&root->fs_info->async_submit_wait))
906                 wake_up(&root->fs_info->async_submit_wait);
907
908         if (async_cow->inode)
909                 submit_compressed_extents(async_cow->inode, async_cow);
910 }
911
912 static noinline void async_cow_free(struct btrfs_work *work)
913 {
914         struct async_cow *async_cow;
915         async_cow = container_of(work, struct async_cow, work);
916         kfree(async_cow);
917 }
918
919 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
920                                 u64 start, u64 end, int *page_started,
921                                 unsigned long *nr_written)
922 {
923         struct async_cow *async_cow;
924         struct btrfs_root *root = BTRFS_I(inode)->root;
925         unsigned long nr_pages;
926         u64 cur_end;
927         int limit = 10 * 1024 * 1042;
928
929         clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
930                          1, 0, NULL, GFP_NOFS);
931         while (start < end) {
932                 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
933                 async_cow->inode = inode;
934                 async_cow->root = root;
935                 async_cow->locked_page = locked_page;
936                 async_cow->start = start;
937
938                 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
939                         cur_end = end;
940                 else
941                         cur_end = min(end, start + 512 * 1024 - 1);
942
943                 async_cow->end = cur_end;
944                 INIT_LIST_HEAD(&async_cow->extents);
945
946                 async_cow->work.func = async_cow_start;
947                 async_cow->work.ordered_func = async_cow_submit;
948                 async_cow->work.ordered_free = async_cow_free;
949                 async_cow->work.flags = 0;
950
951                 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
952                         PAGE_CACHE_SHIFT;
953                 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
954
955                 btrfs_queue_worker(&root->fs_info->delalloc_workers,
956                                    &async_cow->work);
957
958                 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
959                         wait_event(root->fs_info->async_submit_wait,
960                            (atomic_read(&root->fs_info->async_delalloc_pages) <
961                             limit));
962                 }
963
964                 while (atomic_read(&root->fs_info->async_submit_draining) &&
965                       atomic_read(&root->fs_info->async_delalloc_pages)) {
966                         wait_event(root->fs_info->async_submit_wait,
967                           (atomic_read(&root->fs_info->async_delalloc_pages) ==
968                            0));
969                 }
970
971                 *nr_written += nr_pages;
972                 start = cur_end + 1;
973         }
974         *page_started = 1;
975         return 0;
976 }
977
978 static noinline int csum_exist_in_range(struct btrfs_root *root,
979                                         u64 bytenr, u64 num_bytes)
980 {
981         int ret;
982         struct btrfs_ordered_sum *sums;
983         LIST_HEAD(list);
984
985         ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
986                                        bytenr + num_bytes - 1, &list);
987         if (ret == 0 && list_empty(&list))
988                 return 0;
989
990         while (!list_empty(&list)) {
991                 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
992                 list_del(&sums->list);
993                 kfree(sums);
994         }
995         return 1;
996 }
997
998 /*
999  * when nowcow writeback call back.  This checks for snapshots or COW copies
1000  * of the extents that exist in the file, and COWs the file as required.
1001  *
1002  * If no cow copies or snapshots exist, we write directly to the existing
1003  * blocks on disk
1004  */
1005 static noinline int run_delalloc_nocow(struct inode *inode,
1006                                        struct page *locked_page,
1007                               u64 start, u64 end, int *page_started, int force,
1008                               unsigned long *nr_written)
1009 {
1010         struct btrfs_root *root = BTRFS_I(inode)->root;
1011         struct btrfs_trans_handle *trans;
1012         struct extent_buffer *leaf;
1013         struct btrfs_path *path;
1014         struct btrfs_file_extent_item *fi;
1015         struct btrfs_key found_key;
1016         u64 cow_start;
1017         u64 cur_offset;
1018         u64 extent_end;
1019         u64 extent_offset;
1020         u64 disk_bytenr;
1021         u64 num_bytes;
1022         int extent_type;
1023         int ret;
1024         int type;
1025         int nocow;
1026         int check_prev = 1;
1027
1028         path = btrfs_alloc_path();
1029         BUG_ON(!path);
1030         trans = btrfs_join_transaction(root, 1);
1031         BUG_ON(!trans);
1032
1033         cow_start = (u64)-1;
1034         cur_offset = start;
1035         while (1) {
1036                 ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
1037                                                cur_offset, 0);
1038                 BUG_ON(ret < 0);
1039                 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1040                         leaf = path->nodes[0];
1041                         btrfs_item_key_to_cpu(leaf, &found_key,
1042                                               path->slots[0] - 1);
1043                         if (found_key.objectid == inode->i_ino &&
1044                             found_key.type == BTRFS_EXTENT_DATA_KEY)
1045                                 path->slots[0]--;
1046                 }
1047                 check_prev = 0;
1048 next_slot:
1049                 leaf = path->nodes[0];
1050                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1051                         ret = btrfs_next_leaf(root, path);
1052                         if (ret < 0)
1053                                 BUG_ON(1);
1054                         if (ret > 0)
1055                                 break;
1056                         leaf = path->nodes[0];
1057                 }
1058
1059                 nocow = 0;
1060                 disk_bytenr = 0;
1061                 num_bytes = 0;
1062                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1063
1064                 if (found_key.objectid > inode->i_ino ||
1065                     found_key.type > BTRFS_EXTENT_DATA_KEY ||
1066                     found_key.offset > end)
1067                         break;
1068
1069                 if (found_key.offset > cur_offset) {
1070                         extent_end = found_key.offset;
1071                         extent_type = 0;
1072                         goto out_check;
1073                 }
1074
1075                 fi = btrfs_item_ptr(leaf, path->slots[0],
1076                                     struct btrfs_file_extent_item);
1077                 extent_type = btrfs_file_extent_type(leaf, fi);
1078
1079                 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1080                     extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1081                         disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1082                         extent_offset = btrfs_file_extent_offset(leaf, fi);
1083                         extent_end = found_key.offset +
1084                                 btrfs_file_extent_num_bytes(leaf, fi);
1085                         if (extent_end <= start) {
1086                                 path->slots[0]++;
1087                                 goto next_slot;
1088                         }
1089                         if (disk_bytenr == 0)
1090                                 goto out_check;
1091                         if (btrfs_file_extent_compression(leaf, fi) ||
1092                             btrfs_file_extent_encryption(leaf, fi) ||
1093                             btrfs_file_extent_other_encoding(leaf, fi))
1094                                 goto out_check;
1095                         if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1096                                 goto out_check;
1097                         if (btrfs_extent_readonly(root, disk_bytenr))
1098                                 goto out_check;
1099                         if (btrfs_cross_ref_exist(trans, root, inode->i_ino,
1100                                                   found_key.offset -
1101                                                   extent_offset, disk_bytenr))
1102                                 goto out_check;
1103                         disk_bytenr += extent_offset;
1104                         disk_bytenr += cur_offset - found_key.offset;
1105                         num_bytes = min(end + 1, extent_end) - cur_offset;
1106                         /*
1107                          * force cow if csum exists in the range.
1108                          * this ensure that csum for a given extent are
1109                          * either valid or do not exist.
1110                          */
1111                         if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1112                                 goto out_check;
1113                         nocow = 1;
1114                 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1115                         extent_end = found_key.offset +
1116                                 btrfs_file_extent_inline_len(leaf, fi);
1117                         extent_end = ALIGN(extent_end, root->sectorsize);
1118                 } else {
1119                         BUG_ON(1);
1120                 }
1121 out_check:
1122                 if (extent_end <= start) {
1123                         path->slots[0]++;
1124                         goto next_slot;
1125                 }
1126                 if (!nocow) {
1127                         if (cow_start == (u64)-1)
1128                                 cow_start = cur_offset;
1129                         cur_offset = extent_end;
1130                         if (cur_offset > end)
1131                                 break;
1132                         path->slots[0]++;
1133                         goto next_slot;
1134                 }
1135
1136                 btrfs_release_path(root, path);
1137                 if (cow_start != (u64)-1) {
1138                         ret = cow_file_range(inode, locked_page, cow_start,
1139                                         found_key.offset - 1, page_started,
1140                                         nr_written, 1);
1141                         BUG_ON(ret);
1142                         cow_start = (u64)-1;
1143                 }
1144
1145                 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1146                         struct extent_map *em;
1147                         struct extent_map_tree *em_tree;
1148                         em_tree = &BTRFS_I(inode)->extent_tree;
1149                         em = alloc_extent_map(GFP_NOFS);
1150                         em->start = cur_offset;
1151                         em->orig_start = em->start;
1152                         em->len = num_bytes;
1153                         em->block_len = num_bytes;
1154                         em->block_start = disk_bytenr;
1155                         em->bdev = root->fs_info->fs_devices->latest_bdev;
1156                         set_bit(EXTENT_FLAG_PINNED, &em->flags);
1157                         while (1) {
1158                                 write_lock(&em_tree->lock);
1159                                 ret = add_extent_mapping(em_tree, em);
1160                                 write_unlock(&em_tree->lock);
1161                                 if (ret != -EEXIST) {
1162                                         free_extent_map(em);
1163                                         break;
1164                                 }
1165                                 btrfs_drop_extent_cache(inode, em->start,
1166                                                 em->start + em->len - 1, 0);
1167                         }
1168                         type = BTRFS_ORDERED_PREALLOC;
1169                 } else {
1170                         type = BTRFS_ORDERED_NOCOW;
1171                 }
1172
1173                 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1174                                                num_bytes, num_bytes, type);
1175                 BUG_ON(ret);
1176
1177                 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
1178                                 cur_offset, cur_offset + num_bytes - 1,
1179                                 locked_page, EXTENT_CLEAR_UNLOCK_PAGE |
1180                                 EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
1181                                 EXTENT_SET_PRIVATE2);
1182                 cur_offset = extent_end;
1183                 if (cur_offset > end)
1184                         break;
1185         }
1186         btrfs_release_path(root, path);
1187
1188         if (cur_offset <= end && cow_start == (u64)-1)
1189                 cow_start = cur_offset;
1190         if (cow_start != (u64)-1) {
1191                 ret = cow_file_range(inode, locked_page, cow_start, end,
1192                                      page_started, nr_written, 1);
1193                 BUG_ON(ret);
1194         }
1195
1196         ret = btrfs_end_transaction(trans, root);
1197         BUG_ON(ret);
1198         btrfs_free_path(path);
1199         return 0;
1200 }
1201
1202 /*
1203  * extent_io.c call back to do delayed allocation processing
1204  */
1205 static int run_delalloc_range(struct inode *inode, struct page *locked_page,
1206                               u64 start, u64 end, int *page_started,
1207                               unsigned long *nr_written)
1208 {
1209         int ret;
1210         struct btrfs_root *root = BTRFS_I(inode)->root;
1211
1212         if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)
1213                 ret = run_delalloc_nocow(inode, locked_page, start, end,
1214                                          page_started, 1, nr_written);
1215         else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)
1216                 ret = run_delalloc_nocow(inode, locked_page, start, end,
1217                                          page_started, 0, nr_written);
1218         else if (!btrfs_test_opt(root, COMPRESS) &&
1219                  !(BTRFS_I(inode)->force_compress))
1220                 ret = cow_file_range(inode, locked_page, start, end,
1221                                       page_started, nr_written, 1);
1222         else
1223                 ret = cow_file_range_async(inode, locked_page, start, end,
1224                                            page_started, nr_written);
1225         return ret;
1226 }
1227
1228 static int btrfs_split_extent_hook(struct inode *inode,
1229                                     struct extent_state *orig, u64 split)
1230 {
1231         struct btrfs_root *root = BTRFS_I(inode)->root;
1232         u64 size;
1233
1234         if (!(orig->state & EXTENT_DELALLOC))
1235                 return 0;
1236
1237         size = orig->end - orig->start + 1;
1238         if (size > root->fs_info->max_extent) {
1239                 u64 num_extents;
1240                 u64 new_size;
1241
1242                 new_size = orig->end - split + 1;
1243                 num_extents = div64_u64(size + root->fs_info->max_extent - 1,
1244                                         root->fs_info->max_extent);
1245
1246                 /*
1247                  * if we break a large extent up then leave oustanding_extents
1248                  * be, since we've already accounted for the large extent.
1249                  */
1250                 if (div64_u64(new_size + root->fs_info->max_extent - 1,
1251                               root->fs_info->max_extent) < num_extents)
1252                         return 0;
1253         }
1254
1255         spin_lock(&BTRFS_I(inode)->accounting_lock);
1256         BTRFS_I(inode)->outstanding_extents++;
1257         spin_unlock(&BTRFS_I(inode)->accounting_lock);
1258
1259         return 0;
1260 }
1261
1262 /*
1263  * extent_io.c merge_extent_hook, used to track merged delayed allocation
1264  * extents so we can keep track of new extents that are just merged onto old
1265  * extents, such as when we are doing sequential writes, so we can properly
1266  * account for the metadata space we'll need.
1267  */
1268 static int btrfs_merge_extent_hook(struct inode *inode,
1269                                    struct extent_state *new,
1270                                    struct extent_state *other)
1271 {
1272         struct btrfs_root *root = BTRFS_I(inode)->root;
1273         u64 new_size, old_size;
1274         u64 num_extents;
1275
1276         /* not delalloc, ignore it */
1277         if (!(other->state & EXTENT_DELALLOC))
1278                 return 0;
1279
1280         old_size = other->end - other->start + 1;
1281         if (new->start < other->start)
1282                 new_size = other->end - new->start + 1;
1283         else
1284                 new_size = new->end - other->start + 1;
1285
1286         /* we're not bigger than the max, unreserve the space and go */
1287         if (new_size <= root->fs_info->max_extent) {
1288                 spin_lock(&BTRFS_I(inode)->accounting_lock);
1289                 BTRFS_I(inode)->outstanding_extents--;
1290                 spin_unlock(&BTRFS_I(inode)->accounting_lock);
1291                 return 0;
1292         }
1293
1294         /*
1295          * If we grew by another max_extent, just return, we want to keep that
1296          * reserved amount.
1297          */
1298         num_extents = div64_u64(old_size + root->fs_info->max_extent - 1,
1299                                 root->fs_info->max_extent);
1300         if (div64_u64(new_size + root->fs_info->max_extent - 1,
1301                       root->fs_info->max_extent) > num_extents)
1302                 return 0;
1303
1304         spin_lock(&BTRFS_I(inode)->accounting_lock);
1305         BTRFS_I(inode)->outstanding_extents--;
1306         spin_unlock(&BTRFS_I(inode)->accounting_lock);
1307
1308         return 0;
1309 }
1310
1311 /*
1312  * extent_io.c set_bit_hook, used to track delayed allocation
1313  * bytes in this file, and to maintain the list of inodes that
1314  * have pending delalloc work to be done.
1315  */
1316 static int btrfs_set_bit_hook(struct inode *inode, u64 start, u64 end,
1317                        unsigned long old, unsigned long bits)
1318 {
1319
1320         /*
1321          * set_bit and clear bit hooks normally require _irqsave/restore
1322          * but in this case, we are only testeing for the DELALLOC
1323          * bit, which is only set or cleared with irqs on
1324          */
1325         if (!(old & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
1326                 struct btrfs_root *root = BTRFS_I(inode)->root;
1327
1328                 spin_lock(&BTRFS_I(inode)->accounting_lock);
1329                 BTRFS_I(inode)->outstanding_extents++;
1330                 spin_unlock(&BTRFS_I(inode)->accounting_lock);
1331                 btrfs_delalloc_reserve_space(root, inode, end - start + 1);
1332                 spin_lock(&root->fs_info->delalloc_lock);
1333                 BTRFS_I(inode)->delalloc_bytes += end - start + 1;
1334                 root->fs_info->delalloc_bytes += end - start + 1;
1335                 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1336                         list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1337                                       &root->fs_info->delalloc_inodes);
1338                 }
1339                 spin_unlock(&root->fs_info->delalloc_lock);
1340         }
1341         return 0;
1342 }
1343
1344 /*
1345  * extent_io.c clear_bit_hook, see set_bit_hook for why
1346  */
1347 static int btrfs_clear_bit_hook(struct inode *inode,
1348                                 struct extent_state *state, unsigned long bits)
1349 {
1350         /*
1351          * set_bit and clear bit hooks normally require _irqsave/restore
1352          * but in this case, we are only testeing for the DELALLOC
1353          * bit, which is only set or cleared with irqs on
1354          */
1355         if ((state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
1356                 struct btrfs_root *root = BTRFS_I(inode)->root;
1357
1358                 if (bits & EXTENT_DO_ACCOUNTING) {
1359                         spin_lock(&BTRFS_I(inode)->accounting_lock);
1360                         BTRFS_I(inode)->outstanding_extents--;
1361                         spin_unlock(&BTRFS_I(inode)->accounting_lock);
1362                         btrfs_unreserve_metadata_for_delalloc(root, inode, 1);
1363                 }
1364
1365                 spin_lock(&root->fs_info->delalloc_lock);
1366                 if (state->end - state->start + 1 >
1367                     root->fs_info->delalloc_bytes) {
1368                         printk(KERN_INFO "btrfs warning: delalloc account "
1369                                "%llu %llu\n",
1370                                (unsigned long long)
1371                                state->end - state->start + 1,
1372                                (unsigned long long)
1373                                root->fs_info->delalloc_bytes);
1374                         btrfs_delalloc_free_space(root, inode, (u64)-1);
1375                         root->fs_info->delalloc_bytes = 0;
1376                         BTRFS_I(inode)->delalloc_bytes = 0;
1377                 } else {
1378                         btrfs_delalloc_free_space(root, inode,
1379                                                   state->end -
1380                                                   state->start + 1);
1381                         root->fs_info->delalloc_bytes -= state->end -
1382                                 state->start + 1;
1383                         BTRFS_I(inode)->delalloc_bytes -= state->end -
1384                                 state->start + 1;
1385                 }
1386                 if (BTRFS_I(inode)->delalloc_bytes == 0 &&
1387                     !list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1388                         list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1389                 }
1390                 spin_unlock(&root->fs_info->delalloc_lock);
1391         }
1392         return 0;
1393 }
1394
1395 /*
1396  * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1397  * we don't create bios that span stripes or chunks
1398  */
1399 int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
1400                          size_t size, struct bio *bio,
1401                          unsigned long bio_flags)
1402 {
1403         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1404         struct btrfs_mapping_tree *map_tree;
1405         u64 logical = (u64)bio->bi_sector << 9;
1406         u64 length = 0;
1407         u64 map_length;
1408         int ret;
1409
1410         if (bio_flags & EXTENT_BIO_COMPRESSED)
1411                 return 0;
1412
1413         length = bio->bi_size;
1414         map_tree = &root->fs_info->mapping_tree;
1415         map_length = length;
1416         ret = btrfs_map_block(map_tree, READ, logical,
1417                               &map_length, NULL, 0);
1418
1419         if (map_length < length + size)
1420                 return 1;
1421         return 0;
1422 }
1423
1424 /*
1425  * in order to insert checksums into the metadata in large chunks,
1426  * we wait until bio submission time.   All the pages in the bio are
1427  * checksummed and sums are attached onto the ordered extent record.
1428  *
1429  * At IO completion time the cums attached on the ordered extent record
1430  * are inserted into the btree
1431  */
1432 static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1433                                     struct bio *bio, int mirror_num,
1434                                     unsigned long bio_flags)
1435 {
1436         struct btrfs_root *root = BTRFS_I(inode)->root;
1437         int ret = 0;
1438
1439         ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1440         BUG_ON(ret);
1441         return 0;
1442 }
1443
1444 /*
1445  * in order to insert checksums into the metadata in large chunks,
1446  * we wait until bio submission time.   All the pages in the bio are
1447  * checksummed and sums are attached onto the ordered extent record.
1448  *
1449  * At IO completion time the cums attached on the ordered extent record
1450  * are inserted into the btree
1451  */
1452 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
1453                           int mirror_num, unsigned long bio_flags)
1454 {
1455         struct btrfs_root *root = BTRFS_I(inode)->root;
1456         return btrfs_map_bio(root, rw, bio, mirror_num, 1);
1457 }
1458
1459 /*
1460  * extent_io.c submission hook. This does the right thing for csum calculation
1461  * on write, or reading the csums from the tree before a read
1462  */
1463 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
1464                           int mirror_num, unsigned long bio_flags)
1465 {
1466         struct btrfs_root *root = BTRFS_I(inode)->root;
1467         int ret = 0;
1468         int skip_sum;
1469
1470         skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
1471
1472         ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
1473         BUG_ON(ret);
1474
1475         if (!(rw & (1 << BIO_RW))) {
1476                 if (bio_flags & EXTENT_BIO_COMPRESSED) {
1477                         return btrfs_submit_compressed_read(inode, bio,
1478                                                     mirror_num, bio_flags);
1479                 } else if (!skip_sum)
1480                         btrfs_lookup_bio_sums(root, inode, bio, NULL);
1481                 goto mapit;
1482         } else if (!skip_sum) {
1483                 /* csum items have already been cloned */
1484                 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1485                         goto mapit;
1486                 /* we're doing a write, do the async checksumming */
1487                 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
1488                                    inode, rw, bio, mirror_num,
1489                                    bio_flags, __btrfs_submit_bio_start,
1490                                    __btrfs_submit_bio_done);
1491         }
1492
1493 mapit:
1494         return btrfs_map_bio(root, rw, bio, mirror_num, 0);
1495 }
1496
1497 /*
1498  * given a list of ordered sums record them in the inode.  This happens
1499  * at IO completion time based on sums calculated at bio submission time.
1500  */
1501 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
1502                              struct inode *inode, u64 file_offset,
1503                              struct list_head *list)
1504 {
1505         struct btrfs_ordered_sum *sum;
1506
1507         btrfs_set_trans_block_group(trans, inode);
1508
1509         list_for_each_entry(sum, list, list) {
1510                 btrfs_csum_file_blocks(trans,
1511                        BTRFS_I(inode)->root->fs_info->csum_root, sum);
1512         }
1513         return 0;
1514 }
1515
1516 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1517                               struct extent_state **cached_state)
1518 {
1519         if ((end & (PAGE_CACHE_SIZE - 1)) == 0)
1520                 WARN_ON(1);
1521         return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
1522                                    cached_state, GFP_NOFS);
1523 }
1524
1525 /* see btrfs_writepage_start_hook for details on why this is required */
1526 struct btrfs_writepage_fixup {
1527         struct page *page;
1528         struct btrfs_work work;
1529 };
1530
1531 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
1532 {
1533         struct btrfs_writepage_fixup *fixup;
1534         struct btrfs_ordered_extent *ordered;
1535         struct extent_state *cached_state = NULL;
1536         struct page *page;
1537         struct inode *inode;
1538         u64 page_start;
1539         u64 page_end;
1540
1541         fixup = container_of(work, struct btrfs_writepage_fixup, work);
1542         page = fixup->page;
1543 again:
1544         lock_page(page);
1545         if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1546                 ClearPageChecked(page);
1547                 goto out_page;
1548         }
1549
1550         inode = page->mapping->host;
1551         page_start = page_offset(page);
1552         page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1553
1554         lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0,
1555                          &cached_state, GFP_NOFS);
1556
1557         /* already ordered? We're done */
1558         if (PagePrivate2(page))
1559                 goto out;
1560
1561         ordered = btrfs_lookup_ordered_extent(inode, page_start);
1562         if (ordered) {
1563                 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
1564                                      page_end, &cached_state, GFP_NOFS);
1565                 unlock_page(page);
1566                 btrfs_start_ordered_extent(inode, ordered, 1);
1567                 goto again;
1568         }
1569
1570         btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
1571         ClearPageChecked(page);
1572 out:
1573         unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
1574                              &cached_state, GFP_NOFS);
1575 out_page:
1576         unlock_page(page);
1577         page_cache_release(page);
1578 }
1579
1580 /*
1581  * There are a few paths in the higher layers of the kernel that directly
1582  * set the page dirty bit without asking the filesystem if it is a
1583  * good idea.  This causes problems because we want to make sure COW
1584  * properly happens and the data=ordered rules are followed.
1585  *
1586  * In our case any range that doesn't have the ORDERED bit set
1587  * hasn't been properly setup for IO.  We kick off an async process
1588  * to fix it up.  The async helper will wait for ordered extents, set
1589  * the delalloc bit and make it safe to write the page.
1590  */
1591 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
1592 {
1593         struct inode *inode = page->mapping->host;
1594         struct btrfs_writepage_fixup *fixup;
1595         struct btrfs_root *root = BTRFS_I(inode)->root;
1596
1597         /* this page is properly in the ordered list */
1598         if (TestClearPagePrivate2(page))
1599                 return 0;
1600
1601         if (PageChecked(page))
1602                 return -EAGAIN;
1603
1604         fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1605         if (!fixup)
1606                 return -EAGAIN;
1607
1608         SetPageChecked(page);
1609         page_cache_get(page);
1610         fixup->work.func = btrfs_writepage_fixup_worker;
1611         fixup->page = page;
1612         btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
1613         return -EAGAIN;
1614 }
1615
1616 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1617                                        struct inode *inode, u64 file_pos,
1618                                        u64 disk_bytenr, u64 disk_num_bytes,
1619                                        u64 num_bytes, u64 ram_bytes,
1620                                        u8 compression, u8 encryption,
1621                                        u16 other_encoding, int extent_type)
1622 {
1623         struct btrfs_root *root = BTRFS_I(inode)->root;
1624         struct btrfs_file_extent_item *fi;
1625         struct btrfs_path *path;
1626         struct extent_buffer *leaf;
1627         struct btrfs_key ins;
1628         u64 hint;
1629         int ret;
1630
1631         path = btrfs_alloc_path();
1632         BUG_ON(!path);
1633
1634         path->leave_spinning = 1;
1635
1636         /*
1637          * we may be replacing one extent in the tree with another.
1638          * The new extent is pinned in the extent map, and we don't want
1639          * to drop it from the cache until it is completely in the btree.
1640          *
1641          * So, tell btrfs_drop_extents to leave this extent in the cache.
1642          * the caller is expected to unpin it and allow it to be merged
1643          * with the others.
1644          */
1645         ret = btrfs_drop_extents(trans, inode, file_pos, file_pos + num_bytes,
1646                                  &hint, 0);
1647         BUG_ON(ret);
1648
1649         ins.objectid = inode->i_ino;
1650         ins.offset = file_pos;
1651         ins.type = BTRFS_EXTENT_DATA_KEY;
1652         ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
1653         BUG_ON(ret);
1654         leaf = path->nodes[0];
1655         fi = btrfs_item_ptr(leaf, path->slots[0],
1656                             struct btrfs_file_extent_item);
1657         btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1658         btrfs_set_file_extent_type(leaf, fi, extent_type);
1659         btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1660         btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1661         btrfs_set_file_extent_offset(leaf, fi, 0);
1662         btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1663         btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1664         btrfs_set_file_extent_compression(leaf, fi, compression);
1665         btrfs_set_file_extent_encryption(leaf, fi, encryption);
1666         btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
1667
1668         btrfs_unlock_up_safe(path, 1);
1669         btrfs_set_lock_blocking(leaf);
1670
1671         btrfs_mark_buffer_dirty(leaf);
1672
1673         inode_add_bytes(inode, num_bytes);
1674
1675         ins.objectid = disk_bytenr;
1676         ins.offset = disk_num_bytes;
1677         ins.type = BTRFS_EXTENT_ITEM_KEY;
1678         ret = btrfs_alloc_reserved_file_extent(trans, root,
1679                                         root->root_key.objectid,
1680                                         inode->i_ino, file_pos, &ins);
1681         BUG_ON(ret);
1682         btrfs_free_path(path);
1683
1684         return 0;
1685 }
1686
1687 /*
1688  * helper function for btrfs_finish_ordered_io, this
1689  * just reads in some of the csum leaves to prime them into ram
1690  * before we start the transaction.  It limits the amount of btree
1691  * reads required while inside the transaction.
1692  */
1693 /* as ordered data IO finishes, this gets called so we can finish
1694  * an ordered extent if the range of bytes in the file it covers are
1695  * fully written.
1696  */
1697 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end)
1698 {
1699         struct btrfs_root *root = BTRFS_I(inode)->root;
1700         struct btrfs_trans_handle *trans;
1701         struct btrfs_ordered_extent *ordered_extent = NULL;
1702         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1703         struct extent_state *cached_state = NULL;
1704         int compressed = 0;
1705         int ret;
1706
1707         ret = btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
1708                                              end - start + 1);
1709         if (!ret)
1710                 return 0;
1711         BUG_ON(!ordered_extent);
1712
1713         if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
1714                 BUG_ON(!list_empty(&ordered_extent->list));
1715                 ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1716                 if (!ret) {
1717                         trans = btrfs_join_transaction(root, 1);
1718                         ret = btrfs_update_inode(trans, root, inode);
1719                         BUG_ON(ret);
1720                         btrfs_end_transaction(trans, root);
1721                 }
1722                 goto out;
1723         }
1724
1725         lock_extent_bits(io_tree, ordered_extent->file_offset,
1726                          ordered_extent->file_offset + ordered_extent->len - 1,
1727                          0, &cached_state, GFP_NOFS);
1728
1729         trans = btrfs_join_transaction(root, 1);
1730
1731         if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
1732                 compressed = 1;
1733         if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
1734                 BUG_ON(compressed);
1735                 ret = btrfs_mark_extent_written(trans, inode,
1736                                                 ordered_extent->file_offset,
1737                                                 ordered_extent->file_offset +
1738                                                 ordered_extent->len);
1739                 BUG_ON(ret);
1740         } else {
1741                 ret = insert_reserved_file_extent(trans, inode,
1742                                                 ordered_extent->file_offset,
1743                                                 ordered_extent->start,
1744                                                 ordered_extent->disk_len,
1745                                                 ordered_extent->len,
1746                                                 ordered_extent->len,
1747                                                 compressed, 0, 0,
1748                                                 BTRFS_FILE_EXTENT_REG);
1749                 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
1750                                    ordered_extent->file_offset,
1751                                    ordered_extent->len);
1752                 BUG_ON(ret);
1753         }
1754         unlock_extent_cached(io_tree, ordered_extent->file_offset,
1755                              ordered_extent->file_offset +
1756                              ordered_extent->len - 1, &cached_state, GFP_NOFS);
1757
1758         add_pending_csums(trans, inode, ordered_extent->file_offset,
1759                           &ordered_extent->list);
1760
1761         /* this also removes the ordered extent from the tree */
1762         btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1763         ret = btrfs_update_inode(trans, root, inode);
1764         BUG_ON(ret);
1765         btrfs_end_transaction(trans, root);
1766 out:
1767         /* once for us */
1768         btrfs_put_ordered_extent(ordered_extent);
1769         /* once for the tree */
1770         btrfs_put_ordered_extent(ordered_extent);
1771
1772         return 0;
1773 }
1774
1775 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
1776                                 struct extent_state *state, int uptodate)
1777 {
1778         ClearPagePrivate2(page);
1779         return btrfs_finish_ordered_io(page->mapping->host, start, end);
1780 }
1781
1782 /*
1783  * When IO fails, either with EIO or csum verification fails, we
1784  * try other mirrors that might have a good copy of the data.  This
1785  * io_failure_record is used to record state as we go through all the
1786  * mirrors.  If another mirror has good data, the page is set up to date
1787  * and things continue.  If a good mirror can't be found, the original
1788  * bio end_io callback is called to indicate things have failed.
1789  */
1790 struct io_failure_record {
1791         struct page *page;
1792         u64 start;
1793         u64 len;
1794         u64 logical;
1795         unsigned long bio_flags;
1796         int last_mirror;
1797 };
1798
1799 static int btrfs_io_failed_hook(struct bio *failed_bio,
1800                          struct page *page, u64 start, u64 end,
1801                          struct extent_state *state)
1802 {
1803         struct io_failure_record *failrec = NULL;
1804         u64 private;
1805         struct extent_map *em;
1806         struct inode *inode = page->mapping->host;
1807         struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1808         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1809         struct bio *bio;
1810         int num_copies;
1811         int ret;
1812         int rw;
1813         u64 logical;
1814
1815         ret = get_state_private(failure_tree, start, &private);
1816         if (ret) {
1817                 failrec = kmalloc(sizeof(*failrec), GFP_NOFS);
1818                 if (!failrec)
1819                         return -ENOMEM;
1820                 failrec->start = start;
1821                 failrec->len = end - start + 1;
1822                 failrec->last_mirror = 0;
1823                 failrec->bio_flags = 0;
1824
1825                 read_lock(&em_tree->lock);
1826                 em = lookup_extent_mapping(em_tree, start, failrec->len);
1827                 if (em->start > start || em->start + em->len < start) {
1828                         free_extent_map(em);
1829                         em = NULL;
1830                 }
1831                 read_unlock(&em_tree->lock);
1832
1833                 if (!em || IS_ERR(em)) {
1834                         kfree(failrec);
1835                         return -EIO;
1836                 }
1837                 logical = start - em->start;
1838                 logical = em->block_start + logical;
1839                 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
1840                         logical = em->block_start;
1841                         failrec->bio_flags = EXTENT_BIO_COMPRESSED;
1842                 }
1843                 failrec->logical = logical;
1844                 free_extent_map(em);
1845                 set_extent_bits(failure_tree, start, end, EXTENT_LOCKED |
1846                                 EXTENT_DIRTY, GFP_NOFS);
1847                 set_state_private(failure_tree, start,
1848                                  (u64)(unsigned long)failrec);
1849         } else {
1850                 failrec = (struct io_failure_record *)(unsigned long)private;
1851         }
1852         num_copies = btrfs_num_copies(
1853                               &BTRFS_I(inode)->root->fs_info->mapping_tree,
1854                               failrec->logical, failrec->len);
1855         failrec->last_mirror++;
1856         if (!state) {
1857                 spin_lock(&BTRFS_I(inode)->io_tree.lock);
1858                 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
1859                                                     failrec->start,
1860                                                     EXTENT_LOCKED);
1861                 if (state && state->start != failrec->start)
1862                         state = NULL;
1863                 spin_unlock(&BTRFS_I(inode)->io_tree.lock);
1864         }
1865         if (!state || failrec->last_mirror > num_copies) {
1866                 set_state_private(failure_tree, failrec->start, 0);
1867                 clear_extent_bits(failure_tree, failrec->start,
1868                                   failrec->start + failrec->len - 1,
1869                                   EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1870                 kfree(failrec);
1871                 return -EIO;
1872         }
1873         bio = bio_alloc(GFP_NOFS, 1);
1874         bio->bi_private = state;
1875         bio->bi_end_io = failed_bio->bi_end_io;
1876         bio->bi_sector = failrec->logical >> 9;
1877         bio->bi_bdev = failed_bio->bi_bdev;
1878         bio->bi_size = 0;
1879
1880         bio_add_page(bio, page, failrec->len, start - page_offset(page));
1881         if (failed_bio->bi_rw & (1 << BIO_RW))
1882                 rw = WRITE;
1883         else
1884                 rw = READ;
1885
1886         BTRFS_I(inode)->io_tree.ops->submit_bio_hook(inode, rw, bio,
1887                                                       failrec->last_mirror,
1888                                                       failrec->bio_flags);
1889         return 0;
1890 }
1891
1892 /*
1893  * each time an IO finishes, we do a fast check in the IO failure tree
1894  * to see if we need to process or clean up an io_failure_record
1895  */
1896 static int btrfs_clean_io_failures(struct inode *inode, u64 start)
1897 {
1898         u64 private;
1899         u64 private_failure;
1900         struct io_failure_record *failure;
1901         int ret;
1902
1903         private = 0;
1904         if (count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
1905                              (u64)-1, 1, EXTENT_DIRTY)) {
1906                 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree,
1907                                         start, &private_failure);
1908                 if (ret == 0) {
1909                         failure = (struct io_failure_record *)(unsigned long)
1910                                    private_failure;
1911                         set_state_private(&BTRFS_I(inode)->io_failure_tree,
1912                                           failure->start, 0);
1913                         clear_extent_bits(&BTRFS_I(inode)->io_failure_tree,
1914                                           failure->start,
1915                                           failure->start + failure->len - 1,
1916                                           EXTENT_DIRTY | EXTENT_LOCKED,
1917                                           GFP_NOFS);
1918                         kfree(failure);
1919                 }
1920         }
1921         return 0;
1922 }
1923
1924 /*
1925  * when reads are done, we need to check csums to verify the data is correct
1926  * if there's a match, we allow the bio to finish.  If not, we go through
1927  * the io_failure_record routines to find good copies
1928  */
1929 static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
1930                                struct extent_state *state)
1931 {
1932         size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT);
1933         struct inode *inode = page->mapping->host;
1934         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1935         char *kaddr;
1936         u64 private = ~(u32)0;
1937         int ret;
1938         struct btrfs_root *root = BTRFS_I(inode)->root;
1939         u32 csum = ~(u32)0;
1940
1941         if (PageChecked(page)) {
1942                 ClearPageChecked(page);
1943                 goto good;
1944         }
1945
1946         if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
1947                 return 0;
1948
1949         if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
1950             test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
1951                 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
1952                                   GFP_NOFS);
1953                 return 0;
1954         }
1955
1956         if (state && state->start == start) {
1957                 private = state->private;
1958                 ret = 0;
1959         } else {
1960                 ret = get_state_private(io_tree, start, &private);
1961         }
1962         kaddr = kmap_atomic(page, KM_USER0);
1963         if (ret)
1964                 goto zeroit;
1965
1966         csum = btrfs_csum_data(root, kaddr + offset, csum,  end - start + 1);
1967         btrfs_csum_final(csum, (char *)&csum);
1968         if (csum != private)
1969                 goto zeroit;
1970
1971         kunmap_atomic(kaddr, KM_USER0);
1972 good:
1973         /* if the io failure tree for this inode is non-empty,
1974          * check to see if we've recovered from a failed IO
1975          */
1976         btrfs_clean_io_failures(inode, start);
1977         return 0;
1978
1979 zeroit:
1980         if (printk_ratelimit()) {
1981                 printk(KERN_INFO "btrfs csum failed ino %lu off %llu csum %u "
1982                        "private %llu\n", page->mapping->host->i_ino,
1983                        (unsigned long long)start, csum,
1984                        (unsigned long long)private);
1985         }
1986         memset(kaddr + offset, 1, end - start + 1);
1987         flush_dcache_page(page);
1988         kunmap_atomic(kaddr, KM_USER0);
1989         if (private == 0)
1990                 return 0;
1991         return -EIO;
1992 }
1993
1994 struct delayed_iput {
1995         struct list_head list;
1996         struct inode *inode;
1997 };
1998
1999 void btrfs_add_delayed_iput(struct inode *inode)
2000 {
2001         struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2002         struct delayed_iput *delayed;
2003
2004         if (atomic_add_unless(&inode->i_count, -1, 1))
2005                 return;
2006
2007         delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL);
2008         delayed->inode = inode;
2009
2010         spin_lock(&fs_info->delayed_iput_lock);
2011         list_add_tail(&delayed->list, &fs_info->delayed_iputs);
2012         spin_unlock(&fs_info->delayed_iput_lock);
2013 }
2014
2015 void btrfs_run_delayed_iputs(struct btrfs_root *root)
2016 {
2017         LIST_HEAD(list);
2018         struct btrfs_fs_info *fs_info = root->fs_info;
2019         struct delayed_iput *delayed;
2020         int empty;
2021
2022         spin_lock(&fs_info->delayed_iput_lock);
2023         empty = list_empty(&fs_info->delayed_iputs);
2024         spin_unlock(&fs_info->delayed_iput_lock);
2025         if (empty)
2026                 return;
2027
2028         down_read(&root->fs_info->cleanup_work_sem);
2029         spin_lock(&fs_info->delayed_iput_lock);
2030         list_splice_init(&fs_info->delayed_iputs, &list);
2031         spin_unlock(&fs_info->delayed_iput_lock);
2032
2033         while (!list_empty(&list)) {
2034                 delayed = list_entry(list.next, struct delayed_iput, list);
2035                 list_del(&delayed->list);
2036                 iput(delayed->inode);
2037                 kfree(delayed);
2038         }
2039         up_read(&root->fs_info->cleanup_work_sem);
2040 }
2041
2042 /*
2043  * This creates an orphan entry for the given inode in case something goes
2044  * wrong in the middle of an unlink/truncate.
2045  */
2046 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
2047 {
2048         struct btrfs_root *root = BTRFS_I(inode)->root;
2049         int ret = 0;
2050
2051         spin_lock(&root->list_lock);
2052
2053         /* already on the orphan list, we're good */
2054         if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
2055                 spin_unlock(&root->list_lock);
2056                 return 0;
2057         }
2058
2059         list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
2060
2061         spin_unlock(&root->list_lock);
2062
2063         /*
2064          * insert an orphan item to track this unlinked/truncated file
2065          */
2066         ret = btrfs_insert_orphan_item(trans, root, inode->i_ino);
2067
2068         return ret;
2069 }
2070
2071 /*
2072  * We have done the truncate/delete so we can go ahead and remove the orphan
2073  * item for this particular inode.
2074  */
2075 int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
2076 {
2077         struct btrfs_root *root = BTRFS_I(inode)->root;
2078         int ret = 0;
2079
2080         spin_lock(&root->list_lock);
2081
2082         if (list_empty(&BTRFS_I(inode)->i_orphan)) {
2083                 spin_unlock(&root->list_lock);
2084                 return 0;
2085         }
2086
2087         list_del_init(&BTRFS_I(inode)->i_orphan);
2088         if (!trans) {
2089                 spin_unlock(&root->list_lock);
2090                 return 0;
2091         }
2092
2093         spin_unlock(&root->list_lock);
2094
2095         ret = btrfs_del_orphan_item(trans, root, inode->i_ino);
2096
2097         return ret;
2098 }
2099
2100 /*
2101  * this cleans up any orphans that may be left on the list from the last use
2102  * of this root.
2103  */
2104 void btrfs_orphan_cleanup(struct btrfs_root *root)
2105 {
2106         struct btrfs_path *path;
2107         struct extent_buffer *leaf;
2108         struct btrfs_item *item;
2109         struct btrfs_key key, found_key;
2110         struct btrfs_trans_handle *trans;
2111         struct inode *inode;
2112         int ret = 0, nr_unlink = 0, nr_truncate = 0;
2113
2114         if (!xchg(&root->clean_orphans, 0))
2115                 return;
2116
2117         path = btrfs_alloc_path();
2118         BUG_ON(!path);
2119         path->reada = -1;
2120
2121         key.objectid = BTRFS_ORPHAN_OBJECTID;
2122         btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
2123         key.offset = (u64)-1;
2124
2125         while (1) {
2126                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2127                 if (ret < 0) {
2128                         printk(KERN_ERR "Error searching slot for orphan: %d"
2129                                "\n", ret);
2130                         break;
2131                 }
2132
2133                 /*
2134                  * if ret == 0 means we found what we were searching for, which
2135                  * is weird, but possible, so only screw with path if we didnt
2136                  * find the key and see if we have stuff that matches
2137                  */
2138                 if (ret > 0) {
2139                         if (path->slots[0] == 0)
2140                                 break;
2141                         path->slots[0]--;
2142                 }
2143
2144                 /* pull out the item */
2145                 leaf = path->nodes[0];
2146                 item = btrfs_item_nr(leaf, path->slots[0]);
2147                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2148
2149                 /* make sure the item matches what we want */
2150                 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
2151                         break;
2152                 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
2153                         break;
2154
2155                 /* release the path since we're done with it */
2156                 btrfs_release_path(root, path);
2157
2158                 /*
2159                  * this is where we are basically btrfs_lookup, without the
2160                  * crossing root thing.  we store the inode number in the
2161                  * offset of the orphan item.
2162                  */
2163                 found_key.objectid = found_key.offset;
2164                 found_key.type = BTRFS_INODE_ITEM_KEY;
2165                 found_key.offset = 0;
2166                 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
2167                 if (IS_ERR(inode))
2168                         break;
2169
2170                 /*
2171                  * add this inode to the orphan list so btrfs_orphan_del does
2172                  * the proper thing when we hit it
2173                  */
2174                 spin_lock(&root->list_lock);
2175                 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
2176                 spin_unlock(&root->list_lock);
2177
2178                 /*
2179                  * if this is a bad inode, means we actually succeeded in
2180                  * removing the inode, but not the orphan record, which means
2181                  * we need to manually delete the orphan since iput will just
2182                  * do a destroy_inode
2183                  */
2184                 if (is_bad_inode(inode)) {
2185                         trans = btrfs_start_transaction(root, 1);
2186                         btrfs_orphan_del(trans, inode);
2187                         btrfs_end_transaction(trans, root);
2188                         iput(inode);
2189                         continue;
2190                 }
2191
2192                 /* if we have links, this was a truncate, lets do that */
2193                 if (inode->i_nlink) {
2194                         nr_truncate++;
2195                         btrfs_truncate(inode);
2196                 } else {
2197                         nr_unlink++;
2198                 }
2199
2200                 /* this will do delete_inode and everything for us */
2201                 iput(inode);
2202         }
2203
2204         if (nr_unlink)
2205                 printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
2206         if (nr_truncate)
2207                 printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
2208
2209         btrfs_free_path(path);
2210 }
2211
2212 /*
2213  * very simple check to peek ahead in the leaf looking for xattrs.  If we
2214  * don't find any xattrs, we know there can't be any acls.
2215  *
2216  * slot is the slot the inode is in, objectid is the objectid of the inode
2217  */
2218 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
2219                                           int slot, u64 objectid)
2220 {
2221         u32 nritems = btrfs_header_nritems(leaf);
2222         struct btrfs_key found_key;
2223         int scanned = 0;
2224
2225         slot++;
2226         while (slot < nritems) {
2227                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
2228
2229                 /* we found a different objectid, there must not be acls */
2230                 if (found_key.objectid != objectid)
2231                         return 0;
2232
2233                 /* we found an xattr, assume we've got an acl */
2234                 if (found_key.type == BTRFS_XATTR_ITEM_KEY)
2235                         return 1;
2236
2237                 /*
2238                  * we found a key greater than an xattr key, there can't
2239                  * be any acls later on
2240                  */
2241                 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
2242                         return 0;
2243
2244                 slot++;
2245                 scanned++;
2246
2247                 /*
2248                  * it goes inode, inode backrefs, xattrs, extents,
2249                  * so if there are a ton of hard links to an inode there can
2250                  * be a lot of backrefs.  Don't waste time searching too hard,
2251                  * this is just an optimization
2252                  */
2253                 if (scanned >= 8)
2254                         break;
2255         }
2256         /* we hit the end of the leaf before we found an xattr or
2257          * something larger than an xattr.  We have to assume the inode
2258          * has acls
2259          */
2260         return 1;
2261 }
2262
2263 /*
2264  * read an inode from the btree into the in-memory inode
2265  */
2266 static void btrfs_read_locked_inode(struct inode *inode)
2267 {
2268         struct btrfs_path *path;
2269         struct extent_buffer *leaf;
2270         struct btrfs_inode_item *inode_item;
2271         struct btrfs_timespec *tspec;
2272         struct btrfs_root *root = BTRFS_I(inode)->root;
2273         struct btrfs_key location;
2274         int maybe_acls;
2275         u64 alloc_group_block;
2276         u32 rdev;
2277         int ret;
2278
2279         path = btrfs_alloc_path();
2280         BUG_ON(!path);
2281         memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
2282
2283         ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
2284         if (ret)
2285                 goto make_bad;
2286
2287         leaf = path->nodes[0];
2288         inode_item = btrfs_item_ptr(leaf, path->slots[0],
2289                                     struct btrfs_inode_item);
2290
2291         inode->i_mode = btrfs_inode_mode(leaf, inode_item);
2292         inode->i_nlink = btrfs_inode_nlink(leaf, inode_item);
2293         inode->i_uid = btrfs_inode_uid(leaf, inode_item);
2294         inode->i_gid = btrfs_inode_gid(leaf, inode_item);
2295         btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
2296
2297         tspec = btrfs_inode_atime(inode_item);
2298         inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2299         inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2300
2301         tspec = btrfs_inode_mtime(inode_item);
2302         inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2303         inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2304
2305         tspec = btrfs_inode_ctime(inode_item);
2306         inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2307         inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2308
2309         inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
2310         BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
2311         BTRFS_I(inode)->sequence = btrfs_inode_sequence(leaf, inode_item);
2312         inode->i_generation = BTRFS_I(inode)->generation;
2313         inode->i_rdev = 0;
2314         rdev = btrfs_inode_rdev(leaf, inode_item);
2315
2316         BTRFS_I(inode)->index_cnt = (u64)-1;
2317         BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
2318
2319         alloc_group_block = btrfs_inode_block_group(leaf, inode_item);
2320
2321         /*
2322          * try to precache a NULL acl entry for files that don't have
2323          * any xattrs or acls
2324          */
2325         maybe_acls = acls_after_inode_item(leaf, path->slots[0], inode->i_ino);
2326         if (!maybe_acls)
2327                 cache_no_acl(inode);
2328
2329         BTRFS_I(inode)->block_group = btrfs_find_block_group(root, 0,
2330                                                 alloc_group_block, 0);
2331         btrfs_free_path(path);
2332         inode_item = NULL;
2333
2334         switch (inode->i_mode & S_IFMT) {
2335         case S_IFREG:
2336                 inode->i_mapping->a_ops = &btrfs_aops;
2337                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2338                 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
2339                 inode->i_fop = &btrfs_file_operations;
2340                 inode->i_op = &btrfs_file_inode_operations;
2341                 break;
2342         case S_IFDIR:
2343                 inode->i_fop = &btrfs_dir_file_operations;
2344                 if (root == root->fs_info->tree_root)
2345                         inode->i_op = &btrfs_dir_ro_inode_operations;
2346                 else
2347                         inode->i_op = &btrfs_dir_inode_operations;
2348                 break;
2349         case S_IFLNK:
2350                 inode->i_op = &btrfs_symlink_inode_operations;
2351                 inode->i_mapping->a_ops = &btrfs_symlink_aops;
2352                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2353                 break;
2354         default:
2355                 inode->i_op = &btrfs_special_inode_operations;
2356                 init_special_inode(inode, inode->i_mode, rdev);
2357                 break;
2358         }
2359
2360         btrfs_update_iflags(inode);
2361         return;
2362
2363 make_bad:
2364         btrfs_free_path(path);
2365         make_bad_inode(inode);
2366 }
2367
2368 /*
2369  * given a leaf and an inode, copy the inode fields into the leaf
2370  */
2371 static void fill_inode_item(struct btrfs_trans_handle *trans,
2372                             struct extent_buffer *leaf,
2373                             struct btrfs_inode_item *item,
2374                             struct inode *inode)
2375 {
2376         btrfs_set_inode_uid(leaf, item, inode->i_uid);
2377         btrfs_set_inode_gid(leaf, item, inode->i_gid);
2378         btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
2379         btrfs_set_inode_mode(leaf, item, inode->i_mode);
2380         btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
2381
2382         btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
2383                                inode->i_atime.tv_sec);
2384         btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
2385                                 inode->i_atime.tv_nsec);
2386
2387         btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
2388                                inode->i_mtime.tv_sec);
2389         btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
2390                                 inode->i_mtime.tv_nsec);
2391
2392         btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
2393                                inode->i_ctime.tv_sec);
2394         btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
2395                                 inode->i_ctime.tv_nsec);
2396
2397         btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode));
2398         btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
2399         btrfs_set_inode_sequence(leaf, item, BTRFS_I(inode)->sequence);
2400         btrfs_set_inode_transid(leaf, item, trans->transid);
2401         btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
2402         btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
2403         btrfs_set_inode_block_group(leaf, item, BTRFS_I(inode)->block_group);
2404 }
2405
2406 /*
2407  * copy everything in the in-memory inode into the btree.
2408  */
2409 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
2410                                 struct btrfs_root *root, struct inode *inode)
2411 {
2412         struct btrfs_inode_item *inode_item;
2413         struct btrfs_path *path;
2414         struct extent_buffer *leaf;
2415         int ret;
2416
2417         path = btrfs_alloc_path();
2418         BUG_ON(!path);
2419         path->leave_spinning = 1;
2420         ret = btrfs_lookup_inode(trans, root, path,
2421                                  &BTRFS_I(inode)->location, 1);
2422         if (ret) {
2423                 if (ret > 0)
2424                         ret = -ENOENT;
2425                 goto failed;
2426         }
2427
2428         btrfs_unlock_up_safe(path, 1);
2429         leaf = path->nodes[0];
2430         inode_item = btrfs_item_ptr(leaf, path->slots[0],
2431                                   struct btrfs_inode_item);
2432
2433         fill_inode_item(trans, leaf, inode_item, inode);
2434         btrfs_mark_buffer_dirty(leaf);
2435         btrfs_set_inode_last_trans(trans, inode);
2436         ret = 0;
2437 failed:
2438         btrfs_free_path(path);
2439         return ret;
2440 }
2441
2442
2443 /*
2444  * unlink helper that gets used here in inode.c and in the tree logging
2445  * recovery code.  It remove a link in a directory with a given name, and
2446  * also drops the back refs in the inode to the directory
2447  */
2448 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2449                        struct btrfs_root *root,
2450                        struct inode *dir, struct inode *inode,
2451                        const char *name, int name_len)
2452 {
2453         struct btrfs_path *path;
2454         int ret = 0;
2455         struct extent_buffer *leaf;
2456         struct btrfs_dir_item *di;
2457         struct btrfs_key key;
2458         u64 index;
2459
2460         path = btrfs_alloc_path();
2461         if (!path) {
2462                 ret = -ENOMEM;
2463                 goto err;
2464         }
2465
2466         path->leave_spinning = 1;
2467         di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2468                                     name, name_len, -1);
2469         if (IS_ERR(di)) {
2470                 ret = PTR_ERR(di);
2471                 goto err;
2472         }
2473         if (!di) {
2474                 ret = -ENOENT;
2475                 goto err;
2476         }
2477         leaf = path->nodes[0];
2478         btrfs_dir_item_key_to_cpu(leaf, di, &key);
2479         ret = btrfs_delete_one_dir_name(trans, root, path, di);
2480         if (ret)
2481                 goto err;
2482         btrfs_release_path(root, path);
2483
2484         ret = btrfs_del_inode_ref(trans, root, name, name_len,
2485                                   inode->i_ino,
2486                                   dir->i_ino, &index);
2487         if (ret) {
2488                 printk(KERN_INFO "btrfs failed to delete reference to %.*s, "
2489                        "inode %lu parent %lu\n", name_len, name,
2490                        inode->i_ino, dir->i_ino);
2491                 goto err;
2492         }
2493
2494         di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
2495                                          index, name, name_len, -1);
2496         if (IS_ERR(di)) {
2497                 ret = PTR_ERR(di);
2498                 goto err;
2499         }
2500         if (!di) {
2501                 ret = -ENOENT;
2502                 goto err;
2503         }
2504         ret = btrfs_delete_one_dir_name(trans, root, path, di);
2505         btrfs_release_path(root, path);
2506
2507         ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
2508                                          inode, dir->i_ino);
2509         BUG_ON(ret != 0 && ret != -ENOENT);
2510
2511         ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
2512                                            dir, index);
2513         BUG_ON(ret);
2514 err:
2515         btrfs_free_path(path);
2516         if (ret)
2517                 goto out;
2518
2519         btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2520         inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2521         btrfs_update_inode(trans, root, dir);
2522         btrfs_drop_nlink(inode);
2523         ret = btrfs_update_inode(trans, root, inode);
2524 out:
2525         return ret;
2526 }
2527
2528 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
2529 {
2530         struct btrfs_root *root;
2531         struct btrfs_trans_handle *trans;
2532         struct inode *inode = dentry->d_inode;
2533         int ret;
2534         unsigned long nr = 0;
2535
2536         root = BTRFS_I(dir)->root;
2537
2538         /*
2539          * 5 items for unlink inode
2540          * 1 for orphan
2541          */
2542         ret = btrfs_reserve_metadata_space(root, 6);
2543         if (ret)
2544                 return ret;
2545
2546         trans = btrfs_start_transaction(root, 1);
2547         if (IS_ERR(trans)) {
2548                 btrfs_unreserve_metadata_space(root, 6);
2549                 return PTR_ERR(trans);
2550         }
2551
2552         btrfs_set_trans_block_group(trans, dir);
2553
2554         btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
2555
2556         ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2557                                  dentry->d_name.name, dentry->d_name.len);
2558
2559         if (inode->i_nlink == 0)
2560                 ret = btrfs_orphan_add(trans, inode);
2561
2562         nr = trans->blocks_used;
2563
2564         btrfs_end_transaction_throttle(trans, root);
2565         btrfs_unreserve_metadata_space(root, 6);
2566         btrfs_btree_balance_dirty(root, nr);
2567         return ret;
2568 }
2569
2570 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
2571                         struct btrfs_root *root,
2572                         struct inode *dir, u64 objectid,
2573                         const char *name, int name_len)
2574 {
2575         struct btrfs_path *path;
2576         struct extent_buffer *leaf;
2577         struct btrfs_dir_item *di;
2578         struct btrfs_key key;
2579         u64 index;
2580         int ret;
2581
2582         path = btrfs_alloc_path();
2583         if (!path)
2584                 return -ENOMEM;
2585
2586         di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2587                                    name, name_len, -1);
2588         BUG_ON(!di || IS_ERR(di));
2589
2590         leaf = path->nodes[0];
2591         btrfs_dir_item_key_to_cpu(leaf, di, &key);
2592         WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
2593         ret = btrfs_delete_one_dir_name(trans, root, path, di);
2594         BUG_ON(ret);
2595         btrfs_release_path(root, path);
2596
2597         ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
2598                                  objectid, root->root_key.objectid,
2599                                  dir->i_ino, &index, name, name_len);
2600         if (ret < 0) {
2601                 BUG_ON(ret != -ENOENT);
2602                 di = btrfs_search_dir_index_item(root, path, dir->i_ino,
2603                                                  name, name_len);
2604                 BUG_ON(!di || IS_ERR(di));
2605
2606                 leaf = path->nodes[0];
2607                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2608                 btrfs_release_path(root, path);
2609                 index = key.offset;
2610         }
2611
2612         di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
2613                                          index, name, name_len, -1);
2614         BUG_ON(!di || IS_ERR(di));
2615
2616         leaf = path->nodes[0];
2617         btrfs_dir_item_key_to_cpu(leaf, di, &key);
2618         WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
2619         ret = btrfs_delete_one_dir_name(trans, root, path, di);
2620         BUG_ON(ret);
2621         btrfs_release_path(root, path);
2622
2623         btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2624         dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2625         ret = btrfs_update_inode(trans, root, dir);
2626         BUG_ON(ret);
2627         dir->i_sb->s_dirt = 1;
2628
2629         btrfs_free_path(path);
2630         return 0;
2631 }
2632
2633 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
2634 {
2635         struct inode *inode = dentry->d_inode;
2636         int err = 0;
2637         int ret;
2638         struct btrfs_root *root = BTRFS_I(dir)->root;
2639         struct btrfs_trans_handle *trans;
2640         unsigned long nr = 0;
2641
2642         if (inode->i_size > BTRFS_EMPTY_DIR_SIZE ||
2643             inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
2644                 return -ENOTEMPTY;
2645
2646         ret = btrfs_reserve_metadata_space(root, 5);
2647         if (ret)
2648                 return ret;
2649
2650         trans = btrfs_start_transaction(root, 1);
2651         if (IS_ERR(trans)) {
2652                 btrfs_unreserve_metadata_space(root, 5);
2653                 return PTR_ERR(trans);
2654         }
2655
2656         btrfs_set_trans_block_group(trans, dir);
2657
2658         if (unlikely(inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
2659                 err = btrfs_unlink_subvol(trans, root, dir,
2660                                           BTRFS_I(inode)->location.objectid,
2661                                           dentry->d_name.name,
2662                                           dentry->d_name.len);
2663                 goto out;
2664         }
2665
2666         err = btrfs_orphan_add(trans, inode);
2667         if (err)
2668                 goto out;
2669
2670         /* now the directory is empty */
2671         err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2672                                  dentry->d_name.name, dentry->d_name.len);
2673         if (!err)
2674                 btrfs_i_size_write(inode, 0);
2675 out:
2676         nr = trans->blocks_used;
2677         ret = btrfs_end_transaction_throttle(trans, root);
2678         btrfs_unreserve_metadata_space(root, 5);
2679         btrfs_btree_balance_dirty(root, nr);
2680
2681         if (ret && !err)
2682                 err = ret;
2683         return err;
2684 }
2685
2686 #if 0
2687 /*
2688  * when truncating bytes in a file, it is possible to avoid reading
2689  * the leaves that contain only checksum items.  This can be the
2690  * majority of the IO required to delete a large file, but it must
2691  * be done carefully.
2692  *
2693  * The keys in the level just above the leaves are checked to make sure
2694  * the lowest key in a given leaf is a csum key, and starts at an offset
2695  * after the new  size.
2696  *
2697  * Then the key for the next leaf is checked to make sure it also has
2698  * a checksum item for the same file.  If it does, we know our target leaf
2699  * contains only checksum items, and it can be safely freed without reading
2700  * it.
2701  *
2702  * This is just an optimization targeted at large files.  It may do
2703  * nothing.  It will return 0 unless things went badly.
2704  */
2705 static noinline int drop_csum_leaves(struct btrfs_trans_handle *trans,
2706                                      struct btrfs_root *root,
2707                                      struct btrfs_path *path,
2708                                      struct inode *inode, u64 new_size)
2709 {
2710         struct btrfs_key key;
2711         int ret;
2712         int nritems;
2713         struct btrfs_key found_key;
2714         struct btrfs_key other_key;
2715         struct btrfs_leaf_ref *ref;
2716         u64 leaf_gen;
2717         u64 leaf_start;
2718
2719         path->lowest_level = 1;
2720         key.objectid = inode->i_ino;
2721         key.type = BTRFS_CSUM_ITEM_KEY;
2722         key.offset = new_size;
2723 again:
2724         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2725         if (ret < 0)
2726                 goto out;
2727
2728         if (path->nodes[1] == NULL) {
2729                 ret = 0;
2730                 goto out;
2731         }
2732         ret = 0;
2733         btrfs_node_key_to_cpu(path->nodes[1], &found_key, path->slots[1]);
2734         nritems = btrfs_header_nritems(path->nodes[1]);
2735
2736         if (!nritems)
2737                 goto out;
2738
2739         if (path->slots[1] >= nritems)
2740                 goto next_node;
2741
2742         /* did we find a key greater than anything we want to delete? */
2743         if (found_key.objectid > inode->i_ino ||
2744            (found_key.objectid == inode->i_ino && found_key.type > key.type))
2745                 goto out;
2746
2747         /* we check the next key in the node to make sure the leave contains
2748          * only checksum items.  This comparison doesn't work if our
2749          * leaf is the last one in the node
2750          */
2751         if (path->slots[1] + 1 >= nritems) {
2752 next_node:
2753                 /* search forward from the last key in the node, this
2754                  * will bring us into the next node in the tree
2755                  */
2756                 btrfs_node_key_to_cpu(path->nodes[1], &found_key, nritems - 1);
2757
2758                 /* unlikely, but we inc below, so check to be safe */
2759                 if (found_key.offset == (u64)-1)
2760                         goto out;
2761
2762                 /* search_forward needs a path with locks held, do the
2763                  * search again for the original key.  It is possible
2764                  * this will race with a balance and return a path that
2765                  * we could modify, but this drop is just an optimization
2766                  * and is allowed to miss some leaves.
2767                  */
2768                 btrfs_release_path(root, path);
2769                 found_key.offset++;
2770
2771                 /* setup a max key for search_forward */
2772                 other_key.offset = (u64)-1;
2773                 other_key.type = key.type;
2774                 other_key.objectid = key.objectid;
2775
2776                 path->keep_locks = 1;
2777                 ret = btrfs_search_forward(root, &found_key, &other_key,
2778                                            path, 0, 0);
2779                 path->keep_locks = 0;
2780                 if (ret || found_key.objectid != key.objectid ||
2781                     found_key.type != key.type) {
2782                         ret = 0;
2783                         goto out;
2784                 }
2785
2786                 key.offset = found_key.offset;
2787                 btrfs_release_path(root, path);
2788                 cond_resched();
2789                 goto again;
2790         }
2791
2792         /* we know there's one more slot after us in the tree,
2793          * read that key so we can verify it is also a checksum item
2794          */
2795         btrfs_node_key_to_cpu(path->nodes[1], &other_key, path->slots[1] + 1);
2796
2797         if (found_key.objectid < inode->i_ino)
2798                 goto next_key;
2799
2800         if (found_key.type != key.type || found_key.offset < new_size)
2801                 goto next_key;
2802
2803         /*
2804          * if the key for the next leaf isn't a csum key from this objectid,
2805          * we can't be sure there aren't good items inside this leaf.
2806          * Bail out
2807          */
2808         if (other_key.objectid != inode->i_ino || other_key.type != key.type)
2809                 goto out;
2810
2811         leaf_start = btrfs_node_blockptr(path->nodes[1], path->slots[1]);
2812         leaf_gen = btrfs_node_ptr_generation(path->nodes[1], path->slots[1]);
2813         /*
2814          * it is safe to delete this leaf, it contains only
2815          * csum items from this inode at an offset >= new_size
2816          */
2817         ret = btrfs_del_leaf(trans, root, path, leaf_start);
2818         BUG_ON(ret);
2819
2820         if (root->ref_cows && leaf_gen < trans->transid) {
2821                 ref = btrfs_alloc_leaf_ref(root, 0);
2822                 if (ref) {
2823                         ref->root_gen = root->root_key.offset;
2824                         ref->bytenr = leaf_start;
2825                         ref->owner = 0;
2826                         ref->generation = leaf_gen;
2827                         ref->nritems = 0;
2828
2829                         btrfs_sort_leaf_ref(ref);
2830
2831                         ret = btrfs_add_leaf_ref(root, ref, 0);
2832                         WARN_ON(ret);
2833                         btrfs_free_leaf_ref(root, ref);
2834                 } else {
2835                         WARN_ON(1);
2836                 }
2837         }
2838 next_key:
2839         btrfs_release_path(root, path);
2840
2841         if (other_key.objectid == inode->i_ino &&
2842             other_key.type == key.type && other_key.offset > key.offset) {
2843                 key.offset = other_key.offset;
2844                 cond_resched();
2845                 goto again;
2846         }
2847         ret = 0;
2848 out:
2849         /* fixup any changes we've made to the path */
2850         path->lowest_level = 0;
2851         path->keep_locks = 0;
2852         btrfs_release_path(root, path);
2853         return ret;
2854 }
2855
2856 #endif
2857
2858 /*
2859  * this can truncate away extent items, csum items and directory items.
2860  * It starts at a high offset and removes keys until it can't find
2861  * any higher than new_size
2862  *
2863  * csum items that cross the new i_size are truncated to the new size
2864  * as well.
2865  *
2866  * min_type is the minimum key type to truncate down to.  If set to 0, this
2867  * will kill all the items on this inode, including the INODE_ITEM_KEY.
2868  */
2869 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
2870                                struct btrfs_root *root,
2871                                struct inode *inode,
2872                                u64 new_size, u32 min_type)
2873 {
2874         struct btrfs_path *path;
2875         struct extent_buffer *leaf;
2876         struct btrfs_file_extent_item *fi;
2877         struct btrfs_key key;
2878         struct btrfs_key found_key;
2879         u64 extent_start = 0;
2880         u64 extent_num_bytes = 0;
2881         u64 extent_offset = 0;
2882         u64 item_end = 0;
2883         u64 mask = root->sectorsize - 1;
2884         u32 found_type = (u8)-1;
2885         int found_extent;
2886         int del_item;
2887         int pending_del_nr = 0;
2888         int pending_del_slot = 0;
2889         int extent_type = -1;
2890         int encoding;
2891         int ret;
2892         int err = 0;
2893
2894         BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
2895
2896         if (root->ref_cows)
2897                 btrfs_drop_extent_cache(inode, new_size & (~mask), (u64)-1, 0);
2898
2899         path = btrfs_alloc_path();
2900         BUG_ON(!path);
2901         path->reada = -1;
2902
2903         key.objectid = inode->i_ino;
2904         key.offset = (u64)-1;
2905         key.type = (u8)-1;
2906
2907 search_again:
2908         path->leave_spinning = 1;
2909         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2910         if (ret < 0) {
2911                 err = ret;
2912                 goto out;
2913         }
2914
2915         if (ret > 0) {
2916                 /* there are no items in the tree for us to truncate, we're
2917                  * done
2918                  */
2919                 if (path->slots[0] == 0)
2920                         goto out;
2921                 path->slots[0]--;
2922         }
2923
2924         while (1) {
2925                 fi = NULL;
2926                 leaf = path->nodes[0];
2927                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2928                 found_type = btrfs_key_type(&found_key);
2929                 encoding = 0;
2930
2931                 if (found_key.objectid != inode->i_ino)
2932                         break;
2933
2934                 if (found_type < min_type)
2935                         break;
2936
2937                 item_end = found_key.offset;
2938                 if (found_type == BTRFS_EXTENT_DATA_KEY) {
2939                         fi = btrfs_item_ptr(leaf, path->slots[0],
2940                                             struct btrfs_file_extent_item);
2941                         extent_type = btrfs_file_extent_type(leaf, fi);
2942                         encoding = btrfs_file_extent_compression(leaf, fi);
2943                         encoding |= btrfs_file_extent_encryption(leaf, fi);
2944                         encoding |= btrfs_file_extent_other_encoding(leaf, fi);
2945
2946                         if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
2947                                 item_end +=
2948                                     btrfs_file_extent_num_bytes(leaf, fi);
2949                         } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
2950                                 item_end += btrfs_file_extent_inline_len(leaf,
2951                                                                          fi);
2952                         }
2953                         item_end--;
2954                 }
2955                 if (found_type > min_type) {
2956                         del_item = 1;
2957                 } else {
2958                         if (item_end < new_size)
2959                                 break;
2960                         if (found_key.offset >= new_size)
2961                                 del_item = 1;
2962                         else
2963                                 del_item = 0;
2964                 }
2965                 found_extent = 0;
2966                 /* FIXME, shrink the extent if the ref count is only 1 */
2967                 if (found_type != BTRFS_EXTENT_DATA_KEY)
2968                         goto delete;
2969
2970                 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
2971                         u64 num_dec;
2972                         extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
2973                         if (!del_item && !encoding) {
2974                                 u64 orig_num_bytes =
2975                                         btrfs_file_extent_num_bytes(leaf, fi);
2976                                 extent_num_bytes = new_size -
2977                                         found_key.offset + root->sectorsize - 1;
2978                                 extent_num_bytes = extent_num_bytes &
2979                                         ~((u64)root->sectorsize - 1);
2980                                 btrfs_set_file_extent_num_bytes(leaf, fi,
2981                                                          extent_num_bytes);
2982                                 num_dec = (orig_num_bytes -
2983                                            extent_num_bytes);
2984                                 if (root->ref_cows && extent_start != 0)
2985                                         inode_sub_bytes(inode, num_dec);
2986                                 btrfs_mark_buffer_dirty(leaf);
2987                         } else {
2988                                 extent_num_bytes =
2989                                         btrfs_file_extent_disk_num_bytes(leaf,
2990                                                                          fi);
2991                                 extent_offset = found_key.offset -
2992                                         btrfs_file_extent_offset(leaf, fi);
2993
2994                                 /* FIXME blocksize != 4096 */
2995                                 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
2996                                 if (extent_start != 0) {
2997                                         found_extent = 1;
2998                                         if (root->ref_cows)
2999                                                 inode_sub_bytes(inode, num_dec);
3000                                 }
3001                         }
3002                 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3003                         /*
3004                          * we can't truncate inline items that have had
3005                          * special encodings
3006                          */
3007                         if (!del_item &&
3008                             btrfs_file_extent_compression(leaf, fi) == 0 &&
3009                             btrfs_file_extent_encryption(leaf, fi) == 0 &&
3010                             btrfs_file_extent_other_encoding(leaf, fi) == 0) {
3011                                 u32 size = new_size - found_key.offset;
3012
3013                                 if (root->ref_cows) {
3014                                         inode_sub_bytes(inode, item_end + 1 -
3015                                                         new_size);
3016                                 }
3017                                 size =
3018                                     btrfs_file_extent_calc_inline_size(size);
3019                                 ret = btrfs_truncate_item(trans, root, path,
3020                                                           size, 1);
3021                                 BUG_ON(ret);
3022                         } else if (root->ref_cows) {
3023                                 inode_sub_bytes(inode, item_end + 1 -
3024                                                 found_key.offset);
3025                         }
3026                 }
3027 delete:
3028                 if (del_item) {
3029                         if (!pending_del_nr) {
3030                                 /* no pending yet, add ourselves */
3031                                 pending_del_slot = path->slots[0];
3032                                 pending_del_nr = 1;
3033                         } else if (pending_del_nr &&
3034                                    path->slots[0] + 1 == pending_del_slot) {
3035                                 /* hop on the pending chunk */
3036                                 pending_del_nr++;
3037                                 pending_del_slot = path->slots[0];
3038                         } else {
3039                                 BUG();
3040                         }
3041                 } else {
3042                         break;
3043                 }
3044                 if (found_extent && root->ref_cows) {
3045                         btrfs_set_path_blocking(path);
3046                         ret = btrfs_free_extent(trans, root, extent_start,
3047                                                 extent_num_bytes, 0,
3048                                                 btrfs_header_owner(leaf),
3049                                                 inode->i_ino, extent_offset);
3050                         BUG_ON(ret);
3051                 }
3052
3053                 if (found_type == BTRFS_INODE_ITEM_KEY)
3054                         break;
3055
3056                 if (path->slots[0] == 0 ||
3057                     path->slots[0] != pending_del_slot) {
3058                         if (root->ref_cows) {
3059                                 err = -EAGAIN;
3060                                 goto out;
3061                         }
3062                         if (pending_del_nr) {
3063                                 ret = btrfs_del_items(trans, root, path,
3064                                                 pending_del_slot,
3065                                                 pending_del_nr);
3066                                 BUG_ON(ret);
3067                                 pending_del_nr = 0;
3068                         }
3069                         btrfs_release_path(root, path);
3070                         goto search_again;
3071                 } else {
3072                         path->slots[0]--;
3073                 }
3074         }
3075 out:
3076         if (pending_del_nr) {
3077                 ret = btrfs_del_items(trans, root, path, pending_del_slot,
3078                                       pending_del_nr);
3079         }
3080         btrfs_free_path(path);
3081         return err;
3082 }
3083
3084 /*
3085  * taken from block_truncate_page, but does cow as it zeros out
3086  * any bytes left in the last page in the file.
3087  */
3088 static int btrfs_truncate_page(struct address_space *mapping, loff_t from)
3089 {
3090         struct inode *inode = mapping->host;
3091         struct btrfs_root *root = BTRFS_I(inode)->root;
3092         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3093         struct btrfs_ordered_extent *ordered;
3094         struct extent_state *cached_state = NULL;
3095         char *kaddr;
3096         u32 blocksize = root->sectorsize;
3097         pgoff_t index = from >> PAGE_CACHE_SHIFT;
3098         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3099         struct page *page;
3100         int ret = 0;
3101         u64 page_start;
3102         u64 page_end;
3103
3104         if ((offset & (blocksize - 1)) == 0)
3105                 goto out;
3106         ret = btrfs_check_data_free_space(root, inode, PAGE_CACHE_SIZE);
3107         if (ret)
3108                 goto out;
3109
3110         ret = btrfs_reserve_metadata_for_delalloc(root, inode, 1);
3111         if (ret)
3112                 goto out;
3113
3114         ret = -ENOMEM;
3115 again:
3116         page = grab_cache_page(mapping, index);
3117         if (!page) {
3118                 btrfs_free_reserved_data_space(root, inode, PAGE_CACHE_SIZE);
3119                 btrfs_unreserve_metadata_for_delalloc(root, inode, 1);
3120                 goto out;
3121         }
3122
3123         page_start = page_offset(page);
3124         page_end = page_start + PAGE_CACHE_SIZE - 1;
3125
3126         if (!PageUptodate(page)) {
3127                 ret = btrfs_readpage(NULL, page);
3128                 lock_page(page);
3129                 if (page->mapping != mapping) {
3130                         unlock_page(page);
3131                         page_cache_release(page);
3132                         goto again;
3133                 }
3134                 if (!PageUptodate(page)) {
3135                         ret = -EIO;
3136                         goto out_unlock;
3137                 }
3138         }
3139         wait_on_page_writeback(page);
3140
3141         lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state,
3142                          GFP_NOFS);
3143         set_page_extent_mapped(page);
3144
3145         ordered = btrfs_lookup_ordered_extent(inode, page_start);
3146         if (ordered) {
3147                 unlock_extent_cached(io_tree, page_start, page_end,
3148                                      &cached_state, GFP_NOFS);
3149                 unlock_page(page);
3150                 page_cache_release(page);
3151                 btrfs_start_ordered_extent(inode, ordered, 1);
3152                 btrfs_put_ordered_extent(ordered);
3153                 goto again;
3154         }
3155
3156         clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
3157                           EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
3158                           0, 0, &cached_state, GFP_NOFS);
3159
3160         ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
3161                                         &cached_state);
3162         if (ret) {
3163                 unlock_extent_cached(io_tree, page_start, page_end,
3164                                      &cached_state, GFP_NOFS);
3165                 goto out_unlock;
3166         }
3167
3168         ret = 0;
3169         if (offset != PAGE_CACHE_SIZE) {
3170                 kaddr = kmap(page);
3171                 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
3172                 flush_dcache_page(page);
3173                 kunmap(page);
3174         }
3175         ClearPageChecked(page);
3176         set_page_dirty(page);
3177         unlock_extent_cached(io_tree, page_start, page_end, &cached_state,
3178                              GFP_NOFS);
3179
3180 out_unlock:
3181         if (ret)
3182                 btrfs_free_reserved_data_space(root, inode, PAGE_CACHE_SIZE);
3183         btrfs_unreserve_metadata_for_delalloc(root, inode, 1);
3184         unlock_page(page);
3185         page_cache_release(page);
3186 out:
3187         return ret;
3188 }
3189
3190 int btrfs_cont_expand(struct inode *inode, loff_t size)
3191 {
3192         struct btrfs_trans_handle *trans;
3193         struct btrfs_root *root = BTRFS_I(inode)->root;
3194         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3195         struct extent_map *em;
3196         struct extent_state *cached_state = NULL;
3197         u64 mask = root->sectorsize - 1;
3198         u64 hole_start = (inode->i_size + mask) & ~mask;
3199         u64 block_end = (size + mask) & ~mask;
3200         u64 last_byte;
3201         u64 cur_offset;
3202         u64 hole_size;
3203         int err = 0;
3204
3205         if (size <= hole_start)
3206                 return 0;
3207
3208         while (1) {
3209                 struct btrfs_ordered_extent *ordered;
3210                 btrfs_wait_ordered_range(inode, hole_start,
3211                                          block_end - hole_start);
3212                 lock_extent_bits(io_tree, hole_start, block_end - 1, 0,
3213                                  &cached_state, GFP_NOFS);
3214                 ordered = btrfs_lookup_ordered_extent(inode, hole_start);
3215                 if (!ordered)
3216                         break;
3217                 unlock_extent_cached(io_tree, hole_start, block_end - 1,
3218                                      &cached_state, GFP_NOFS);
3219                 btrfs_put_ordered_extent(ordered);
3220         }
3221
3222         cur_offset = hole_start;
3223         while (1) {
3224                 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
3225                                 block_end - cur_offset, 0);
3226                 BUG_ON(IS_ERR(em) || !em);
3227                 last_byte = min(extent_map_end(em), block_end);
3228                 last_byte = (last_byte + mask) & ~mask;
3229                 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3230                         u64 hint_byte = 0;
3231                         hole_size = last_byte - cur_offset;
3232
3233                         err = btrfs_reserve_metadata_space(root, 2);
3234                         if (err)
3235                                 break;
3236
3237                         trans = btrfs_start_transaction(root, 1);
3238                         btrfs_set_trans_block_group(trans, inode);
3239
3240                         err = btrfs_drop_extents(trans, inode, cur_offset,
3241                                                  cur_offset + hole_size,
3242                                                  &hint_byte, 1);
3243                         BUG_ON(err);
3244
3245                         err = btrfs_insert_file_extent(trans, root,
3246                                         inode->i_ino, cur_offset, 0,
3247                                         0, hole_size, 0, hole_size,
3248                                         0, 0, 0);
3249                         BUG_ON(err);
3250
3251                         btrfs_drop_extent_cache(inode, hole_start,
3252                                         last_byte - 1, 0);
3253
3254                         btrfs_end_transaction(trans, root);
3255                         btrfs_unreserve_metadata_space(root, 2);
3256                 }
3257                 free_extent_map(em);
3258                 cur_offset = last_byte;
3259                 if (cur_offset >= block_end)
3260                         break;
3261         }
3262
3263         unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
3264                              GFP_NOFS);
3265         return err;
3266 }
3267
3268 static int btrfs_setattr_size(struct inode *inode, struct iattr *attr)
3269 {
3270         struct btrfs_root *root = BTRFS_I(inode)->root;
3271         struct btrfs_trans_handle *trans;
3272         unsigned long nr;
3273         int ret;
3274
3275         if (attr->ia_size == inode->i_size)
3276                 return 0;
3277
3278         if (attr->ia_size > inode->i_size) {
3279                 unsigned long limit;
3280                 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
3281                 if (attr->ia_size > inode->i_sb->s_maxbytes)
3282                         return -EFBIG;
3283                 if (limit != RLIM_INFINITY && attr->ia_size > limit) {
3284                         send_sig(SIGXFSZ, current, 0);
3285                         return -EFBIG;
3286                 }
3287         }
3288
3289         ret = btrfs_reserve_metadata_space(root, 1);
3290         if (ret)
3291                 return ret;
3292
3293         trans = btrfs_start_transaction(root, 1);
3294         btrfs_set_trans_block_group(trans, inode);
3295
3296         ret = btrfs_orphan_add(trans, inode);
3297         BUG_ON(ret);
3298
3299         nr = trans->blocks_used;
3300         btrfs_end_transaction(trans, root);
3301         btrfs_unreserve_metadata_space(root, 1);
3302         btrfs_btree_balance_dirty(root, nr);
3303
3304         if (attr->ia_size > inode->i_size) {
3305                 ret = btrfs_cont_expand(inode, attr->ia_size);
3306                 if (ret) {
3307                         btrfs_truncate(inode);
3308                         return ret;
3309                 }
3310
3311                 i_size_write(inode, attr->ia_size);
3312                 btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
3313
3314                 trans = btrfs_start_transaction(root, 1);
3315                 btrfs_set_trans_block_group(trans, inode);
3316
3317                 ret = btrfs_update_inode(trans, root, inode);
3318                 BUG_ON(ret);
3319                 if (inode->i_nlink > 0) {
3320                         ret = btrfs_orphan_del(trans, inode);
3321                         BUG_ON(ret);
3322                 }
3323                 nr = trans->blocks_used;
3324                 btrfs_end_transaction(trans, root);
3325                 btrfs_btree_balance_dirty(root, nr);
3326                 return 0;
3327         }
3328
3329         /*
3330          * We're truncating a file that used to have good data down to
3331          * zero. Make sure it gets into the ordered flush list so that
3332          * any new writes get down to disk quickly.
3333          */
3334         if (attr->ia_size == 0)
3335                 BTRFS_I(inode)->ordered_data_close = 1;
3336
3337         /* we don't support swapfiles, so vmtruncate shouldn't fail */
3338         ret = vmtruncate(inode, attr->ia_size);
3339         BUG_ON(ret);
3340
3341         return 0;
3342 }
3343
3344 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
3345 {
3346         struct inode *inode = dentry->d_inode;
3347         int err;
3348
3349         err = inode_change_ok(inode, attr);
3350         if (err)
3351                 return err;
3352
3353         if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
3354                 err = btrfs_setattr_size(inode, attr);
3355                 if (err)
3356                         return err;
3357         }
3358         attr->ia_valid &= ~ATTR_SIZE;
3359
3360         if (attr->ia_valid)
3361                 err = inode_setattr(inode, attr);
3362
3363         if (!err && ((attr->ia_valid & ATTR_MODE)))
3364                 err = btrfs_acl_chmod(inode);
3365         return err;
3366 }
3367
3368 void btrfs_delete_inode(struct inode *inode)
3369 {
3370         struct btrfs_trans_handle *trans;
3371         struct btrfs_root *root = BTRFS_I(inode)->root;
3372         unsigned long nr;
3373         int ret;
3374
3375         truncate_inode_pages(&inode->i_data, 0);
3376         if (is_bad_inode(inode)) {
3377                 btrfs_orphan_del(NULL, inode);
3378                 goto no_delete;
3379         }
3380         btrfs_wait_ordered_range(inode, 0, (u64)-1);
3381
3382         if (root->fs_info->log_root_recovering) {
3383                 BUG_ON(!list_empty(&BTRFS_I(inode)->i_orphan));
3384                 goto no_delete;
3385         }
3386
3387         if (inode->i_nlink > 0) {
3388                 BUG_ON(btrfs_root_refs(&root->root_item) != 0);
3389                 goto no_delete;
3390         }
3391
3392         btrfs_i_size_write(inode, 0);
3393
3394         while (1) {
3395                 trans = btrfs_start_transaction(root, 1);
3396                 btrfs_set_trans_block_group(trans, inode);
3397                 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
3398
3399                 if (ret != -EAGAIN)
3400                         break;
3401
3402                 nr = trans->blocks_used;
3403                 btrfs_end_transaction(trans, root);
3404                 trans = NULL;
3405                 btrfs_btree_balance_dirty(root, nr);
3406         }
3407
3408         if (ret == 0) {
3409                 ret = btrfs_orphan_del(trans, inode);
3410                 BUG_ON(ret);
3411         }
3412
3413         nr = trans->blocks_used;
3414         btrfs_end_transaction(trans, root);
3415         btrfs_btree_balance_dirty(root, nr);
3416 no_delete:
3417         clear_inode(inode);
3418         return;
3419 }
3420
3421 /*
3422  * this returns the key found in the dir entry in the location pointer.
3423  * If no dir entries were found, location->objectid is 0.
3424  */
3425 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
3426                                struct btrfs_key *location)
3427 {
3428         const char *name = dentry->d_name.name;
3429         int namelen = dentry->d_name.len;
3430         struct btrfs_dir_item *di;
3431         struct btrfs_path *path;
3432         struct btrfs_root *root = BTRFS_I(dir)->root;
3433         int ret = 0;
3434
3435         path = btrfs_alloc_path();
3436         BUG_ON(!path);
3437
3438         di = btrfs_lookup_dir_item(NULL, root, path, dir->i_ino, name,
3439                                     namelen, 0);
3440         if (IS_ERR(di))
3441                 ret = PTR_ERR(di);
3442
3443         if (!di || IS_ERR(di))
3444                 goto out_err;
3445
3446         btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
3447 out:
3448         btrfs_free_path(path);
3449         return ret;
3450 out_err:
3451         location->objectid = 0;
3452         goto out;
3453 }
3454
3455 /*
3456  * when we hit a tree root in a directory, the btrfs part of the inode
3457  * needs to be changed to reflect the root directory of the tree root.  This
3458  * is kind of like crossing a mount point.
3459  */
3460 static int fixup_tree_root_location(struct btrfs_root *root,
3461                                     struct inode *dir,
3462                                     struct dentry *dentry,
3463                                     struct btrfs_key *location,
3464                                     struct btrfs_root **sub_root)
3465 {
3466         struct btrfs_path *path;
3467         struct btrfs_root *new_root;
3468         struct btrfs_root_ref *ref;
3469         struct extent_buffer *leaf;
3470         int ret;
3471         int err = 0;
3472
3473         path = btrfs_alloc_path();
3474         if (!path) {
3475                 err = -ENOMEM;
3476                 goto out;
3477         }
3478
3479         err = -ENOENT;
3480         ret = btrfs_find_root_ref(root->fs_info->tree_root, path,
3481                                   BTRFS_I(dir)->root->root_key.objectid,
3482                                   location->objectid);
3483         if (ret) {
3484                 if (ret < 0)
3485                         err = ret;
3486                 goto out;
3487         }
3488
3489         leaf = path->nodes[0];
3490         ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
3491         if (btrfs_root_ref_dirid(leaf, ref) != dir->i_ino ||
3492             btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
3493                 goto out;
3494
3495         ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
3496                                    (unsigned long)(ref + 1),
3497                                    dentry->d_name.len);
3498         if (ret)
3499                 goto out;
3500
3501         btrfs_release_path(root->fs_info->tree_root, path);
3502
3503         new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
3504         if (IS_ERR(new_root)) {
3505                 err = PTR_ERR(new_root);
3506                 goto out;
3507         }
3508
3509         if (btrfs_root_refs(&new_root->root_item) == 0) {
3510                 err = -ENOENT;
3511                 goto out;
3512         }
3513
3514         *sub_root = new_root;
3515         location->objectid = btrfs_root_dirid(&new_root->root_item);
3516         location->type = BTRFS_INODE_ITEM_KEY;
3517         location->offset = 0;
3518         err = 0;
3519 out:
3520         btrfs_free_path(path);
3521         return err;
3522 }
3523
3524 static void inode_tree_add(struct inode *inode)
3525 {
3526         struct btrfs_root *root = BTRFS_I(inode)->root;
3527         struct btrfs_inode *entry;
3528         struct rb_node **p;
3529         struct rb_node *parent;
3530 again:
3531         p = &root->inode_tree.rb_node;
3532         parent = NULL;
3533
3534         if (hlist_unhashed(&inode->i_hash))
3535                 return;
3536
3537         spin_lock(&root->inode_lock);
3538         while (*p) {
3539                 parent = *p;
3540                 entry = rb_entry(parent, struct btrfs_inode, rb_node);
3541
3542                 if (inode->i_ino < entry->vfs_inode.i_ino)
3543                         p = &parent->rb_left;
3544                 else if (inode->i_ino > entry->vfs_inode.i_ino)
3545                         p = &parent->rb_right;
3546                 else {
3547                         WARN_ON(!(entry->vfs_inode.i_state &
3548                                   (I_WILL_FREE | I_FREEING | I_CLEAR)));
3549                         rb_erase(parent, &root->inode_tree);
3550                         RB_CLEAR_NODE(parent);
3551                         spin_unlock(&root->inode_lock);
3552                         goto again;
3553                 }
3554         }
3555         rb_link_node(&BTRFS_I(inode)->rb_node, parent, p);
3556         rb_insert_color(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3557         spin_unlock(&root->inode_lock);
3558 }
3559
3560 static void inode_tree_del(struct inode *inode)
3561 {
3562         struct btrfs_root *root = BTRFS_I(inode)->root;
3563         int empty = 0;
3564
3565         spin_lock(&root->inode_lock);
3566         if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
3567                 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3568                 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
3569                 empty = RB_EMPTY_ROOT(&root->inode_tree);
3570         }
3571         spin_unlock(&root->inode_lock);
3572
3573         if (empty && btrfs_root_refs(&root->root_item) == 0) {
3574                 synchronize_srcu(&root->fs_info->subvol_srcu);
3575                 spin_lock(&root->inode_lock);
3576                 empty = RB_EMPTY_ROOT(&root->inode_tree);
3577                 spin_unlock(&root->inode_lock);
3578                 if (empty)
3579                         btrfs_add_dead_root(root);
3580         }
3581 }
3582
3583 int btrfs_invalidate_inodes(struct btrfs_root *root)
3584 {
3585         struct rb_node *node;
3586         struct rb_node *prev;
3587         struct btrfs_inode *entry;
3588         struct inode *inode;
3589         u64 objectid = 0;
3590
3591         WARN_ON(btrfs_root_refs(&root->root_item) != 0);
3592
3593         spin_lock(&root->inode_lock);
3594 again:
3595         node = root->inode_tree.rb_node;
3596         prev = NULL;
3597         while (node) {
3598                 prev = node;
3599                 entry = rb_entry(node, struct btrfs_inode, rb_node);
3600
3601                 if (objectid < entry->vfs_inode.i_ino)
3602                         node = node->rb_left;
3603                 else if (objectid > entry->vfs_inode.i_ino)
3604                         node = node->rb_right;
3605                 else
3606                         break;
3607         }
3608         if (!node) {
3609                 while (prev) {
3610                         entry = rb_entry(prev, struct btrfs_inode, rb_node);
3611                         if (objectid <= entry->vfs_inode.i_ino) {
3612                                 node = prev;
3613                                 break;
3614                         }
3615                         prev = rb_next(prev);
3616                 }
3617         }
3618         while (node) {
3619                 entry = rb_entry(node, struct btrfs_inode, rb_node);
3620                 objectid = entry->vfs_inode.i_ino + 1;
3621                 inode = igrab(&entry->vfs_inode);
3622                 if (inode) {
3623                         spin_unlock(&root->inode_lock);
3624                         if (atomic_read(&inode->i_count) > 1)
3625                                 d_prune_aliases(inode);
3626                         /*
3627                          * btrfs_drop_inode will remove it from
3628                          * the inode cache when its usage count
3629                          * hits zero.
3630                          */
3631                         iput(inode);
3632                         cond_resched();
3633                         spin_lock(&root->inode_lock);
3634                         goto again;
3635                 }
3636
3637                 if (cond_resched_lock(&root->inode_lock))
3638                         goto again;
3639
3640                 node = rb_next(node);
3641         }
3642         spin_unlock(&root->inode_lock);
3643         return 0;
3644 }
3645
3646 static noinline void init_btrfs_i(struct inode *inode)
3647 {
3648         struct btrfs_inode *bi = BTRFS_I(inode);
3649
3650         bi->generation = 0;
3651         bi->sequence = 0;
3652         bi->last_trans = 0;
3653         bi->last_sub_trans = 0;
3654         bi->logged_trans = 0;
3655         bi->delalloc_bytes = 0;
3656         bi->reserved_bytes = 0;
3657         bi->disk_i_size = 0;
3658         bi->flags = 0;
3659         bi->index_cnt = (u64)-1;
3660         bi->last_unlink_trans = 0;
3661         bi->ordered_data_close = 0;
3662         bi->force_compress = 0;
3663         extent_map_tree_init(&BTRFS_I(inode)->extent_tree, GFP_NOFS);
3664         extent_io_tree_init(&BTRFS_I(inode)->io_tree,
3665                              inode->i_mapping, GFP_NOFS);
3666         extent_io_tree_init(&BTRFS_I(inode)->io_failure_tree,
3667                              inode->i_mapping, GFP_NOFS);
3668         INIT_LIST_HEAD(&BTRFS_I(inode)->delalloc_inodes);
3669         INIT_LIST_HEAD(&BTRFS_I(inode)->ordered_operations);
3670         RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
3671         btrfs_ordered_inode_tree_init(&BTRFS_I(inode)->ordered_tree);
3672         mutex_init(&BTRFS_I(inode)->log_mutex);
3673 }
3674
3675 static int btrfs_init_locked_inode(struct inode *inode, void *p)
3676 {
3677         struct btrfs_iget_args *args = p;
3678         inode->i_ino = args->ino;
3679         init_btrfs_i(inode);
3680         BTRFS_I(inode)->root = args->root;
3681         btrfs_set_inode_space_info(args->root, inode);
3682         return 0;
3683 }
3684
3685 static int btrfs_find_actor(struct inode *inode, void *opaque)
3686 {
3687         struct btrfs_iget_args *args = opaque;
3688         return args->ino == inode->i_ino &&
3689                 args->root == BTRFS_I(inode)->root;
3690 }
3691
3692 static struct inode *btrfs_iget_locked(struct super_block *s,
3693                                        u64 objectid,
3694                                        struct btrfs_root *root)
3695 {
3696         struct inode *inode;
3697         struct btrfs_iget_args args;
3698         args.ino = objectid;
3699         args.root = root;
3700
3701         inode = iget5_locked(s, objectid, btrfs_find_actor,
3702                              btrfs_init_locked_inode,
3703                              (void *)&args);
3704         return inode;
3705 }
3706
3707 /* Get an inode object given its location and corresponding root.
3708  * Returns in *is_new if the inode was read from disk
3709  */
3710 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
3711                          struct btrfs_root *root, int *new)
3712 {
3713         struct inode *inode;
3714
3715         inode = btrfs_iget_locked(s, location->objectid, root);
3716         if (!inode)
3717                 return ERR_PTR(-ENOMEM);
3718
3719         if (inode->i_state & I_NEW) {
3720                 BTRFS_I(inode)->root = root;
3721                 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
3722                 btrfs_read_locked_inode(inode);
3723
3724                 inode_tree_add(inode);
3725                 unlock_new_inode(inode);
3726                 if (new)
3727                         *new = 1;
3728         }
3729
3730         return inode;
3731 }
3732
3733 static struct inode *new_simple_dir(struct super_block *s,
3734                                     struct btrfs_key *key,
3735                                     struct btrfs_root *root)
3736 {
3737         struct inode *inode = new_inode(s);
3738
3739         if (!inode)
3740                 return ERR_PTR(-ENOMEM);
3741
3742         init_btrfs_i(inode);
3743
3744         BTRFS_I(inode)->root = root;
3745         memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
3746         BTRFS_I(inode)->dummy_inode = 1;
3747
3748         inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
3749         inode->i_op = &simple_dir_inode_operations;
3750         inode->i_fop = &simple_dir_operations;
3751         inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
3752         inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
3753
3754         return inode;
3755 }
3756
3757 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
3758 {
3759         struct inode *inode;
3760         struct btrfs_root *root = BTRFS_I(dir)->root;
3761         struct btrfs_root *sub_root = root;
3762         struct btrfs_key location;
3763         int index;
3764         int ret;
3765
3766         dentry->d_op = &btrfs_dentry_operations;
3767
3768         if (dentry->d_name.len > BTRFS_NAME_LEN)
3769                 return ERR_PTR(-ENAMETOOLONG);
3770
3771         ret = btrfs_inode_by_name(dir, dentry, &location);
3772
3773         if (ret < 0)
3774                 return ERR_PTR(ret);
3775
3776         if (location.objectid == 0)
3777                 return NULL;
3778
3779         if (location.type == BTRFS_INODE_ITEM_KEY) {
3780                 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
3781                 return inode;
3782         }
3783
3784         BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
3785
3786         index = srcu_read_lock(&root->fs_info->subvol_srcu);
3787         ret = fixup_tree_root_location(root, dir, dentry,
3788                                        &location, &sub_root);
3789         if (ret < 0) {
3790                 if (ret != -ENOENT)
3791                         inode = ERR_PTR(ret);
3792                 else
3793                         inode = new_simple_dir(dir->i_sb, &location, sub_root);
3794         } else {
3795                 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
3796         }
3797         srcu_read_unlock(&root->fs_info->subvol_srcu, index);
3798
3799         if (root != sub_root) {
3800                 down_read(&root->fs_info->cleanup_work_sem);
3801                 if (!(inode->i_sb->s_flags & MS_RDONLY))
3802                         btrfs_orphan_cleanup(sub_root);
3803                 up_read(&root->fs_info->cleanup_work_sem);
3804         }
3805
3806         return inode;
3807 }
3808
3809 static int btrfs_dentry_delete(struct dentry *dentry)
3810 {
3811         struct btrfs_root *root;
3812
3813         if (!dentry->d_inode && !IS_ROOT(dentry))
3814                 dentry = dentry->d_parent;
3815
3816         if (dentry->d_inode) {
3817                 root = BTRFS_I(dentry->d_inode)->root;
3818                 if (btrfs_root_refs(&root->root_item) == 0)
3819                         return 1;
3820         }
3821         return 0;
3822 }
3823
3824 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
3825                                    struct nameidata *nd)
3826 {
3827         struct inode *inode;
3828
3829         inode = btrfs_lookup_dentry(dir, dentry);
3830         if (IS_ERR(inode))
3831                 return ERR_CAST(inode);
3832
3833         return d_splice_alias(inode, dentry);
3834 }
3835
3836 static unsigned char btrfs_filetype_table[] = {
3837         DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
3838 };
3839
3840 static int btrfs_real_readdir(struct file *filp, void *dirent,
3841                               filldir_t filldir)
3842 {
3843         struct inode *inode = filp->f_dentry->d_inode;
3844         struct btrfs_root *root = BTRFS_I(inode)->root;
3845         struct btrfs_item *item;
3846         struct btrfs_dir_item *di;
3847         struct btrfs_key key;
3848         struct btrfs_key found_key;
3849         struct btrfs_path *path;
3850         int ret;
3851         u32 nritems;
3852         struct extent_buffer *leaf;
3853         int slot;
3854         int advance;
3855         unsigned char d_type;
3856         int over = 0;
3857         u32 di_cur;
3858         u32 di_total;
3859         u32 di_len;
3860         int key_type = BTRFS_DIR_INDEX_KEY;
3861         char tmp_name[32];
3862         char *name_ptr;
3863         int name_len;
3864
3865         /* FIXME, use a real flag for deciding about the key type */
3866         if (root->fs_info->tree_root == root)
3867                 key_type = BTRFS_DIR_ITEM_KEY;
3868
3869         /* special case for "." */
3870         if (filp->f_pos == 0) {
3871                 over = filldir(dirent, ".", 1,
3872                                1, inode->i_ino,
3873                                DT_DIR);
3874                 if (over)
3875                         return 0;
3876                 filp->f_pos = 1;
3877         }
3878         /* special case for .., just use the back ref */
3879         if (filp->f_pos == 1) {
3880                 u64 pino = parent_ino(filp->f_path.dentry);
3881                 over = filldir(dirent, "..", 2,
3882                                2, pino, DT_DIR);
3883                 if (over)
3884                         return 0;
3885                 filp->f_pos = 2;
3886         }
3887         path = btrfs_alloc_path();
3888         path->reada = 2;
3889
3890         btrfs_set_key_type(&key, key_type);
3891         key.offset = filp->f_pos;
3892         key.objectid = inode->i_ino;
3893
3894         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3895         if (ret < 0)
3896                 goto err;
3897         advance = 0;
3898
3899         while (1) {
3900                 leaf = path->nodes[0];
3901                 nritems = btrfs_header_nritems(leaf);
3902                 slot = path->slots[0];
3903                 if (advance || slot >= nritems) {
3904                         if (slot >= nritems - 1) {
3905                                 ret = btrfs_next_leaf(root, path);
3906                                 if (ret)
3907                                         break;
3908                                 leaf = path->nodes[0];
3909                                 nritems = btrfs_header_nritems(leaf);
3910                                 slot = path->slots[0];
3911                         } else {
3912                                 slot++;
3913                                 path->slots[0]++;
3914                         }
3915                 }
3916
3917                 advance = 1;
3918                 item = btrfs_item_nr(leaf, slot);
3919                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3920
3921                 if (found_key.objectid != key.objectid)
3922                         break;
3923                 if (btrfs_key_type(&found_key) != key_type)
3924                         break;
3925                 if (found_key.offset < filp->f_pos)
3926                         continue;
3927
3928                 filp->f_pos = found_key.offset;
3929
3930                 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
3931                 di_cur = 0;
3932                 di_total = btrfs_item_size(leaf, item);
3933
3934                 while (di_cur < di_total) {
3935                         struct btrfs_key location;
3936
3937                         name_len = btrfs_dir_name_len(leaf, di);
3938                         if (name_len <= sizeof(tmp_name)) {
3939                                 name_ptr = tmp_name;
3940                         } else {
3941                                 name_ptr = kmalloc(name_len, GFP_NOFS);
3942                                 if (!name_ptr) {
3943                                         ret = -ENOMEM;
3944                                         goto err;
3945                                 }
3946                         }
3947                         read_extent_buffer(leaf, name_ptr,
3948                                            (unsigned long)(di + 1), name_len);
3949
3950                         d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
3951                         btrfs_dir_item_key_to_cpu(leaf, di, &location);
3952
3953                         /* is this a reference to our own snapshot? If so
3954                          * skip it
3955                          */
3956                         if (location.type == BTRFS_ROOT_ITEM_KEY &&
3957                             location.objectid == root->root_key.objectid) {
3958                                 over = 0;
3959                                 goto skip;
3960                         }
3961                         over = filldir(dirent, name_ptr, name_len,
3962                                        found_key.offset, location.objectid,
3963                                        d_type);
3964
3965 skip:
3966                         if (name_ptr != tmp_name)
3967                                 kfree(name_ptr);
3968
3969                         if (over)
3970                                 goto nopos;
3971                         di_len = btrfs_dir_name_len(leaf, di) +
3972                                  btrfs_dir_data_len(leaf, di) + sizeof(*di);
3973                         di_cur += di_len;
3974                         di = (struct btrfs_dir_item *)((char *)di + di_len);
3975                 }
3976         }
3977
3978         /* Reached end of directory/root. Bump pos past the last item. */
3979         if (key_type == BTRFS_DIR_INDEX_KEY)
3980                 /*
3981                  * 32-bit glibc will use getdents64, but then strtol -
3982                  * so the last number we can serve is this.
3983                  */
3984                 filp->f_pos = 0x7fffffff;
3985         else
3986                 filp->f_pos++;
3987 nopos:
3988         ret = 0;
3989 err:
3990         btrfs_free_path(path);
3991         return ret;
3992 }
3993
3994 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
3995 {
3996         struct btrfs_root *root = BTRFS_I(inode)->root;
3997         struct btrfs_trans_handle *trans;
3998         int ret = 0;
3999
4000         if (root->fs_info->btree_inode == inode)
4001                 return 0;
4002
4003         if (wbc->sync_mode == WB_SYNC_ALL) {
4004                 trans = btrfs_join_transaction(root, 1);
4005                 btrfs_set_trans_block_group(trans, inode);
4006                 ret = btrfs_commit_transaction(trans, root);
4007         }
4008         return ret;
4009 }
4010
4011 /*
4012  * This is somewhat expensive, updating the tree every time the
4013  * inode changes.  But, it is most likely to find the inode in cache.
4014  * FIXME, needs more benchmarking...there are no reasons other than performance
4015  * to keep or drop this code.
4016  */
4017 void btrfs_dirty_inode(struct inode *inode)
4018 {
4019         struct btrfs_root *root = BTRFS_I(inode)->root;
4020         struct btrfs_trans_handle *trans;
4021
4022         trans = btrfs_join_transaction(root, 1);
4023         btrfs_set_trans_block_group(trans, inode);
4024         btrfs_update_inode(trans, root, inode);
4025         btrfs_end_transaction(trans, root);
4026 }
4027
4028 /*
4029  * find the highest existing sequence number in a directory
4030  * and then set the in-memory index_cnt variable to reflect
4031  * free sequence numbers
4032  */
4033 static int btrfs_set_inode_index_count(struct inode *inode)
4034 {
4035         struct btrfs_root *root = BTRFS_I(inode)->root;
4036         struct btrfs_key key, found_key;
4037         struct btrfs_path *path;
4038         struct extent_buffer *leaf;
4039         int ret;
4040
4041         key.objectid = inode->i_ino;
4042         btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
4043         key.offset = (u64)-1;
4044
4045         path = btrfs_alloc_path();
4046         if (!path)
4047                 return -ENOMEM;
4048
4049         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4050         if (ret < 0)
4051                 goto out;
4052         /* FIXME: we should be able to handle this */
4053         if (ret == 0)
4054                 goto out;
4055         ret = 0;
4056
4057         /*
4058          * MAGIC NUMBER EXPLANATION:
4059          * since we search a directory based on f_pos we have to start at 2
4060          * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
4061          * else has to start at 2
4062          */
4063         if (path->slots[0] == 0) {
4064                 BTRFS_I(inode)->index_cnt = 2;
4065                 goto out;
4066         }
4067
4068         path->slots[0]--;
4069
4070         leaf = path->nodes[0];
4071         btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4072
4073         if (found_key.objectid != inode->i_ino ||
4074             btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
4075                 BTRFS_I(inode)->index_cnt = 2;
4076                 goto out;
4077         }
4078
4079         BTRFS_I(inode)->index_cnt = found_key.offset + 1;
4080 out:
4081         btrfs_free_path(path);
4082         return ret;
4083 }
4084
4085 /*
4086  * helper to find a free sequence number in a given directory.  This current
4087  * code is very simple, later versions will do smarter things in the btree
4088  */
4089 int btrfs_set_inode_index(struct inode *dir, u64 *index)
4090 {
4091         int ret = 0;
4092
4093         if (BTRFS_I(dir)->index_cnt == (u64)-1) {
4094                 ret = btrfs_set_inode_index_count(dir);
4095                 if (ret)
4096                         return ret;
4097         }
4098
4099         *index = BTRFS_I(dir)->index_cnt;
4100         BTRFS_I(dir)->index_cnt++;
4101
4102         return ret;
4103 }
4104
4105 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
4106                                      struct btrfs_root *root,
4107                                      struct inode *dir,
4108                                      const char *name, int name_len,
4109                                      u64 ref_objectid, u64 objectid,
4110                                      u64 alloc_hint, int mode, u64 *index)
4111 {
4112         struct inode *inode;
4113         struct btrfs_inode_item *inode_item;
4114         struct btrfs_key *location;
4115         struct btrfs_path *path;
4116         struct btrfs_inode_ref *ref;
4117         struct btrfs_key key[2];
4118         u32 sizes[2];
4119         unsigned long ptr;
4120         int ret;
4121         int owner;
4122
4123         path = btrfs_alloc_path();
4124         BUG_ON(!path);
4125
4126         inode = new_inode(root->fs_info->sb);
4127         if (!inode)
4128                 return ERR_PTR(-ENOMEM);
4129
4130         if (dir) {
4131                 ret = btrfs_set_inode_index(dir, index);
4132                 if (ret) {
4133                         iput(inode);
4134                         return ERR_PTR(ret);
4135                 }
4136         }
4137         /*
4138          * index_cnt is ignored for everything but a dir,
4139          * btrfs_get_inode_index_count has an explanation for the magic
4140          * number
4141          */
4142         init_btrfs_i(inode);
4143         BTRFS_I(inode)->index_cnt = 2;
4144         BTRFS_I(inode)->root = root;
4145         BTRFS_I(inode)->generation = trans->transid;
4146         btrfs_set_inode_space_info(root, inode);
4147
4148         if (mode & S_IFDIR)
4149                 owner = 0;
4150         else
4151                 owner = 1;
4152         BTRFS_I(inode)->block_group =
4153                         btrfs_find_block_group(root, 0, alloc_hint, owner);
4154
4155         key[0].objectid = objectid;
4156         btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
4157         key[0].offset = 0;
4158
4159         key[1].objectid = objectid;
4160         btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
4161         key[1].offset = ref_objectid;
4162
4163         sizes[0] = sizeof(struct btrfs_inode_item);
4164         sizes[1] = name_len + sizeof(*ref);
4165
4166         path->leave_spinning = 1;
4167         ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
4168         if (ret != 0)
4169                 goto fail;
4170
4171         inode->i_uid = current_fsuid();
4172
4173         if (dir && (dir->i_mode & S_ISGID)) {
4174                 inode->i_gid = dir->i_gid;
4175                 if (S_ISDIR(mode))
4176                         mode |= S_ISGID;
4177         } else
4178                 inode->i_gid = current_fsgid();
4179
4180         inode->i_mode = mode;
4181         inode->i_ino = objectid;
4182         inode_set_bytes(inode, 0);
4183         inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
4184         inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4185                                   struct btrfs_inode_item);
4186         fill_inode_item(trans, path->nodes[0], inode_item, inode);
4187
4188         ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
4189                              struct btrfs_inode_ref);
4190         btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
4191         btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
4192         ptr = (unsigned long)(ref + 1);
4193         write_extent_buffer(path->nodes[0], name, ptr, name_len);
4194
4195         btrfs_mark_buffer_dirty(path->nodes[0]);
4196         btrfs_free_path(path);
4197
4198         location = &BTRFS_I(inode)->location;
4199         location->objectid = objectid;
4200         location->offset = 0;
4201         btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
4202
4203         btrfs_inherit_iflags(inode, dir);
4204
4205         if ((mode & S_IFREG)) {
4206                 if (btrfs_test_opt(root, NODATASUM))
4207                         BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
4208                 if (btrfs_test_opt(root, NODATACOW))
4209                         BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
4210         }
4211
4212         insert_inode_hash(inode);
4213         inode_tree_add(inode);
4214         return inode;
4215 fail:
4216         if (dir)
4217                 BTRFS_I(dir)->index_cnt--;
4218         btrfs_free_path(path);
4219         iput(inode);
4220         return ERR_PTR(ret);
4221 }
4222
4223 static inline u8 btrfs_inode_type(struct inode *inode)
4224 {
4225         return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
4226 }
4227
4228 /*
4229  * utility function to add 'inode' into 'parent_inode' with
4230  * a give name and a given sequence number.
4231  * if 'add_backref' is true, also insert a backref from the
4232  * inode to the parent directory.
4233  */
4234 int btrfs_add_link(struct btrfs_trans_handle *trans,
4235                    struct inode *parent_inode, struct inode *inode,
4236                    const char *name, int name_len, int add_backref, u64 index)
4237 {
4238         int ret = 0;
4239         struct btrfs_key key;
4240         struct btrfs_root *root = BTRFS_I(parent_inode)->root;
4241
4242         if (unlikely(inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4243                 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
4244         } else {
4245                 key.objectid = inode->i_ino;
4246                 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
4247                 key.offset = 0;
4248         }
4249
4250         if (unlikely(inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4251                 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
4252                                          key.objectid, root->root_key.objectid,
4253                                          parent_inode->i_ino,
4254                                          index, name, name_len);
4255         } else if (add_backref) {
4256                 ret = btrfs_insert_inode_ref(trans, root,
4257                                              name, name_len, inode->i_ino,
4258                                              parent_inode->i_ino, index);
4259         }
4260
4261         if (ret == 0) {
4262                 ret = btrfs_insert_dir_item(trans, root, name, name_len,
4263                                             parent_inode->i_ino, &key,
4264                                             btrfs_inode_type(inode), index);
4265                 BUG_ON(ret);
4266
4267                 btrfs_i_size_write(parent_inode, parent_inode->i_size +
4268                                    name_len * 2);
4269                 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
4270                 ret = btrfs_update_inode(trans, root, parent_inode);
4271         }
4272         return ret;
4273 }
4274
4275 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
4276                             struct dentry *dentry, struct inode *inode,
4277                             int backref, u64 index)
4278 {
4279         int err = btrfs_add_link(trans, dentry->d_parent->d_inode,
4280                                  inode, dentry->d_name.name,
4281                                  dentry->d_name.len, backref, index);
4282         if (!err) {
4283                 d_instantiate(dentry, inode);
4284                 return 0;
4285         }
4286         if (err > 0)
4287                 err = -EEXIST;
4288         return err;
4289 }
4290
4291 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
4292                         int mode, dev_t rdev)
4293 {
4294         struct btrfs_trans_handle *trans;
4295         struct btrfs_root *root = BTRFS_I(dir)->root;
4296         struct inode *inode = NULL;
4297         int err;
4298         int drop_inode = 0;
4299         u64 objectid;
4300         unsigned long nr = 0;
4301         u64 index = 0;
4302
4303         if (!new_valid_dev(rdev))
4304                 return -EINVAL;
4305
4306         /*
4307          * 2 for inode item and ref
4308          * 2 for dir items
4309          * 1 for xattr if selinux is on
4310          */
4311         err = btrfs_reserve_metadata_space(root, 5);
4312         if (err)
4313                 return err;
4314
4315         trans = btrfs_start_transaction(root, 1);
4316         if (!trans)
4317                 goto fail;
4318         btrfs_set_trans_block_group(trans, dir);
4319
4320         err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
4321         if (err) {
4322                 err = -ENOSPC;
4323                 goto out_unlock;
4324         }
4325
4326         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4327                                 dentry->d_name.len,
4328                                 dentry->d_parent->d_inode->i_ino, objectid,
4329                                 BTRFS_I(dir)->block_group, mode, &index);
4330         err = PTR_ERR(inode);
4331         if (IS_ERR(inode))
4332                 goto out_unlock;
4333
4334         err = btrfs_init_inode_security(trans, inode, dir);
4335         if (err) {
4336                 drop_inode = 1;
4337                 goto out_unlock;
4338         }
4339
4340         btrfs_set_trans_block_group(trans, inode);
4341         err = btrfs_add_nondir(trans, dentry, inode, 0, index);
4342         if (err)
4343                 drop_inode = 1;
4344         else {
4345                 inode->i_op = &btrfs_special_inode_operations;
4346                 init_special_inode(inode, inode->i_mode, rdev);
4347                 btrfs_update_inode(trans, root, inode);
4348         }
4349         btrfs_update_inode_block_group(trans, inode);
4350         btrfs_update_inode_block_group(trans, dir);
4351 out_unlock:
4352         nr = trans->blocks_used;
4353         btrfs_end_transaction_throttle(trans, root);
4354 fail:
4355         btrfs_unreserve_metadata_space(root, 5);
4356         if (drop_inode) {
4357                 inode_dec_link_count(inode);
4358                 iput(inode);
4359         }
4360         btrfs_btree_balance_dirty(root, nr);
4361         return err;
4362 }
4363
4364 static int btrfs_create(struct inode *dir, struct dentry *dentry,
4365                         int mode, struct nameidata *nd)
4366 {
4367         struct btrfs_trans_handle *trans;
4368         struct btrfs_root *root = BTRFS_I(dir)->root;
4369         struct inode *inode = NULL;
4370         int err;
4371         int drop_inode = 0;
4372         unsigned long nr = 0;
4373         u64 objectid;
4374         u64 index = 0;
4375
4376         /*
4377          * 2 for inode item and ref
4378          * 2 for dir items
4379          * 1 for xattr if selinux is on
4380          */
4381         err = btrfs_reserve_metadata_space(root, 5);
4382         if (err)
4383                 return err;
4384
4385         trans = btrfs_start_transaction(root, 1);
4386         if (!trans)
4387                 goto fail;
4388         btrfs_set_trans_block_group(trans, dir);
4389
4390         err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
4391         if (err) {
4392                 err = -ENOSPC;
4393                 goto out_unlock;
4394         }
4395
4396         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4397                                 dentry->d_name.len,
4398                                 dentry->d_parent->d_inode->i_ino,
4399                                 objectid, BTRFS_I(dir)->block_group, mode,
4400                                 &index);
4401         err = PTR_ERR(inode);
4402         if (IS_ERR(inode))
4403                 goto out_unlock;
4404
4405         err = btrfs_init_inode_security(trans, inode, dir);
4406         if (err) {
4407                 drop_inode = 1;
4408                 goto out_unlock;
4409         }
4410
4411         btrfs_set_trans_block_group(trans, inode);
4412         err = btrfs_add_nondir(trans, dentry, inode, 0, index);
4413         if (err)
4414                 drop_inode = 1;
4415         else {
4416                 inode->i_mapping->a_ops = &btrfs_aops;
4417                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
4418                 inode->i_fop = &btrfs_file_operations;
4419                 inode->i_op = &btrfs_file_inode_operations;
4420                 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
4421         }
4422         btrfs_update_inode_block_group(trans, inode);
4423         btrfs_update_inode_block_group(trans, dir);
4424 out_unlock:
4425         nr = trans->blocks_used;
4426         btrfs_end_transaction_throttle(trans, root);
4427 fail:
4428         btrfs_unreserve_metadata_space(root, 5);
4429         if (drop_inode) {
4430                 inode_dec_link_count(inode);
4431                 iput(inode);
4432         }
4433         btrfs_btree_balance_dirty(root, nr);
4434         return err;
4435 }
4436
4437 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
4438                       struct dentry *dentry)
4439 {
4440         struct btrfs_trans_handle *trans;
4441         struct btrfs_root *root = BTRFS_I(dir)->root;
4442         struct inode *inode = old_dentry->d_inode;
4443         u64 index;
4444         unsigned long nr = 0;
4445         int err;
4446         int drop_inode = 0;
4447
4448         if (inode->i_nlink == 0)
4449                 return -ENOENT;
4450
4451         /* do not allow sys_link's with other subvols of the same device */
4452         if (root->objectid != BTRFS_I(inode)->root->objectid)
4453                 return -EPERM;
4454
4455         /*
4456          * 1 item for inode ref
4457          * 2 items for dir items
4458          */
4459         err = btrfs_reserve_metadata_space(root, 3);
4460         if (err)
4461                 return err;
4462
4463         btrfs_inc_nlink(inode);
4464
4465         err = btrfs_set_inode_index(dir, &index);
4466         if (err)
4467                 goto fail;
4468
4469         trans = btrfs_start_transaction(root, 1);
4470
4471         btrfs_set_trans_block_group(trans, dir);
4472         atomic_inc(&inode->i_count);
4473
4474         err = btrfs_add_nondir(trans, dentry, inode, 1, index);
4475
4476         if (err) {
4477                 drop_inode = 1;
4478         } else {
4479                 btrfs_update_inode_block_group(trans, dir);
4480                 err = btrfs_update_inode(trans, root, inode);
4481                 BUG_ON(err);
4482                 btrfs_log_new_name(trans, inode, NULL, dentry->d_parent);
4483         }
4484
4485         nr = trans->blocks_used;
4486         btrfs_end_transaction_throttle(trans, root);
4487 fail:
4488         btrfs_unreserve_metadata_space(root, 3);
4489         if (drop_inode) {
4490                 inode_dec_link_count(inode);
4491                 iput(inode);
4492         }
4493         btrfs_btree_balance_dirty(root, nr);
4494         return err;
4495 }
4496
4497 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
4498 {
4499         struct inode *inode = NULL;
4500         struct btrfs_trans_handle *trans;
4501         struct btrfs_root *root = BTRFS_I(dir)->root;
4502         int err = 0;
4503         int drop_on_err = 0;
4504         u64 objectid = 0;
4505         u64 index = 0;
4506         unsigned long nr = 1;
4507
4508         /*
4509          * 2 items for inode and ref
4510          * 2 items for dir items
4511          * 1 for xattr if selinux is on
4512          */
4513         err = btrfs_reserve_metadata_space(root, 5);
4514         if (err)
4515                 return err;
4516
4517         trans = btrfs_start_transaction(root, 1);
4518         if (!trans) {
4519                 err = -ENOMEM;
4520                 goto out_unlock;
4521         }
4522         btrfs_set_trans_block_group(trans, dir);
4523
4524         err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
4525         if (err) {
4526                 err = -ENOSPC;
4527                 goto out_fail;
4528         }
4529
4530         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4531                                 dentry->d_name.len,
4532                                 dentry->d_parent->d_inode->i_ino, objectid,
4533                                 BTRFS_I(dir)->block_group, S_IFDIR | mode,
4534                                 &index);
4535         if (IS_ERR(inode)) {
4536                 err = PTR_ERR(inode);
4537                 goto out_fail;
4538         }
4539
4540         drop_on_err = 1;
4541
4542         err = btrfs_init_inode_security(trans, inode, dir);
4543         if (err)
4544                 goto out_fail;
4545
4546         inode->i_op = &btrfs_dir_inode_operations;
4547         inode->i_fop = &btrfs_dir_file_operations;
4548         btrfs_set_trans_block_group(trans, inode);
4549
4550         btrfs_i_size_write(inode, 0);
4551         err = btrfs_update_inode(trans, root, inode);
4552         if (err)
4553                 goto out_fail;
4554
4555         err = btrfs_add_link(trans, dentry->d_parent->d_inode,
4556                                  inode, dentry->d_name.name,
4557                                  dentry->d_name.len, 0, index);
4558         if (err)
4559                 goto out_fail;
4560
4561         d_instantiate(dentry, inode);
4562         drop_on_err = 0;
4563         btrfs_update_inode_block_group(trans, inode);
4564         btrfs_update_inode_block_group(trans, dir);
4565
4566 out_fail:
4567         nr = trans->blocks_used;
4568         btrfs_end_transaction_throttle(trans, root);
4569
4570 out_unlock:
4571         btrfs_unreserve_metadata_space(root, 5);
4572         if (drop_on_err)
4573                 iput(inode);
4574         btrfs_btree_balance_dirty(root, nr);
4575         return err;
4576 }
4577
4578 /* helper for btfs_get_extent.  Given an existing extent in the tree,
4579  * and an extent that you want to insert, deal with overlap and insert
4580  * the new extent into the tree.
4581  */
4582 static int merge_extent_mapping(struct extent_map_tree *em_tree,
4583                                 struct extent_map *existing,
4584                                 struct extent_map *em,
4585                                 u64 map_start, u64 map_len)
4586 {
4587         u64 start_diff;
4588
4589         BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
4590         start_diff = map_start - em->start;
4591         em->start = map_start;
4592         em->len = map_len;
4593         if (em->block_start < EXTENT_MAP_LAST_BYTE &&
4594             !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
4595                 em->block_start += start_diff;
4596                 em->block_len -= start_diff;
4597         }
4598         return add_extent_mapping(em_tree, em);
4599 }
4600
4601 static noinline int uncompress_inline(struct btrfs_path *path,
4602                                       struct inode *inode, struct page *page,
4603                                       size_t pg_offset, u64 extent_offset,
4604                                       struct btrfs_file_extent_item *item)
4605 {
4606         int ret;
4607         struct extent_buffer *leaf = path->nodes[0];
4608         char *tmp;
4609         size_t max_size;
4610         unsigned long inline_size;
4611         unsigned long ptr;
4612
4613         WARN_ON(pg_offset != 0);
4614         max_size = btrfs_file_extent_ram_bytes(leaf, item);
4615         inline_size = btrfs_file_extent_inline_item_len(leaf,
4616                                         btrfs_item_nr(leaf, path->slots[0]));
4617         tmp = kmalloc(inline_size, GFP_NOFS);
4618         ptr = btrfs_file_extent_inline_start(item);
4619
4620         read_extent_buffer(leaf, tmp, ptr, inline_size);
4621
4622         max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
4623         ret = btrfs_zlib_decompress(tmp, page, extent_offset,
4624                                     inline_size, max_size);
4625         if (ret) {
4626                 char *kaddr = kmap_atomic(page, KM_USER0);
4627                 unsigned long copy_size = min_t(u64,
4628                                   PAGE_CACHE_SIZE - pg_offset,
4629                                   max_size - extent_offset);
4630                 memset(kaddr + pg_offset, 0, copy_size);
4631                 kunmap_atomic(kaddr, KM_USER0);
4632         }
4633         kfree(tmp);
4634         return 0;
4635 }
4636
4637 /*
4638  * a bit scary, this does extent mapping from logical file offset to the disk.
4639  * the ugly parts come from merging extents from the disk with the in-ram
4640  * representation.  This gets more complex because of the data=ordered code,
4641  * where the in-ram extents might be locked pending data=ordered completion.
4642  *
4643  * This also copies inline extents directly into the page.
4644  */
4645
4646 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
4647                                     size_t pg_offset, u64 start, u64 len,
4648                                     int create)
4649 {
4650         int ret;
4651         int err = 0;
4652         u64 bytenr;
4653         u64 extent_start = 0;
4654         u64 extent_end = 0;
4655         u64 objectid = inode->i_ino;
4656         u32 found_type;
4657         struct btrfs_path *path = NULL;
4658         struct btrfs_root *root = BTRFS_I(inode)->root;
4659         struct btrfs_file_extent_item *item;
4660         struct extent_buffer *leaf;
4661         struct btrfs_key found_key;
4662         struct extent_map *em = NULL;
4663         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4664         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4665         struct btrfs_trans_handle *trans = NULL;
4666         int compressed;
4667
4668 again:
4669         read_lock(&em_tree->lock);
4670         em = lookup_extent_mapping(em_tree, start, len);
4671         if (em)
4672                 em->bdev = root->fs_info->fs_devices->latest_bdev;
4673         read_unlock(&em_tree->lock);
4674
4675         if (em) {
4676                 if (em->start > start || em->start + em->len <= start)
4677                         free_extent_map(em);
4678                 else if (em->block_start == EXTENT_MAP_INLINE && page)
4679                         free_extent_map(em);
4680                 else
4681                         goto out;
4682         }
4683         em = alloc_extent_map(GFP_NOFS);
4684         if (!em) {
4685                 err = -ENOMEM;
4686                 goto out;
4687         }
4688         em->bdev = root->fs_info->fs_devices->latest_bdev;
4689         em->start = EXTENT_MAP_HOLE;
4690         em->orig_start = EXTENT_MAP_HOLE;
4691         em->len = (u64)-1;
4692         em->block_len = (u64)-1;
4693
4694         if (!path) {
4695                 path = btrfs_alloc_path();
4696                 BUG_ON(!path);
4697         }
4698
4699         ret = btrfs_lookup_file_extent(trans, root, path,
4700                                        objectid, start, trans != NULL);
4701         if (ret < 0) {
4702                 err = ret;
4703                 goto out;
4704         }
4705
4706         if (ret != 0) {
4707                 if (path->slots[0] == 0)
4708                         goto not_found;
4709                 path->slots[0]--;
4710         }
4711
4712         leaf = path->nodes[0];
4713         item = btrfs_item_ptr(leaf, path->slots[0],
4714                               struct btrfs_file_extent_item);
4715         /* are we inside the extent that was found? */
4716         btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4717         found_type = btrfs_key_type(&found_key);
4718         if (found_key.objectid != objectid ||
4719             found_type != BTRFS_EXTENT_DATA_KEY) {
4720                 goto not_found;
4721         }
4722
4723         found_type = btrfs_file_extent_type(leaf, item);
4724         extent_start = found_key.offset;
4725         compressed = btrfs_file_extent_compression(leaf, item);
4726         if (found_type == BTRFS_FILE_EXTENT_REG ||
4727             found_type == BTRFS_FILE_EXTENT_PREALLOC) {
4728                 extent_end = extent_start +
4729                        btrfs_file_extent_num_bytes(leaf, item);
4730         } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
4731                 size_t size;
4732                 size = btrfs_file_extent_inline_len(leaf, item);
4733                 extent_end = (extent_start + size + root->sectorsize - 1) &
4734                         ~((u64)root->sectorsize - 1);
4735         }
4736
4737         if (start >= extent_end) {
4738                 path->slots[0]++;
4739                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
4740                         ret = btrfs_next_leaf(root, path);
4741                         if (ret < 0) {
4742                                 err = ret;
4743                                 goto out;
4744                         }
4745                         if (ret > 0)
4746                                 goto not_found;
4747                         leaf = path->nodes[0];
4748                 }
4749                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4750                 if (found_key.objectid != objectid ||
4751                     found_key.type != BTRFS_EXTENT_DATA_KEY)
4752                         goto not_found;
4753                 if (start + len <= found_key.offset)
4754                         goto not_found;
4755                 em->start = start;
4756                 em->len = found_key.offset - start;
4757                 goto not_found_em;
4758         }
4759
4760         if (found_type == BTRFS_FILE_EXTENT_REG ||
4761             found_type == BTRFS_FILE_EXTENT_PREALLOC) {
4762                 em->start = extent_start;
4763                 em->len = extent_end - extent_start;
4764                 em->orig_start = extent_start -
4765                                  btrfs_file_extent_offset(leaf, item);
4766                 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
4767                 if (bytenr == 0) {
4768                         em->block_start = EXTENT_MAP_HOLE;
4769                         goto insert;
4770                 }
4771                 if (compressed) {
4772                         set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
4773                         em->block_start = bytenr;
4774                         em->block_len = btrfs_file_extent_disk_num_bytes(leaf,
4775                                                                          item);
4776                 } else {
4777                         bytenr += btrfs_file_extent_offset(leaf, item);
4778                         em->block_start = bytenr;
4779                         em->block_len = em->len;
4780                         if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
4781                                 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
4782                 }
4783                 goto insert;
4784         } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
4785                 unsigned long ptr;
4786                 char *map;
4787                 size_t size;
4788                 size_t extent_offset;
4789                 size_t copy_size;
4790
4791                 em->block_start = EXTENT_MAP_INLINE;
4792                 if (!page || create) {
4793                         em->start = extent_start;
4794                         em->len = extent_end - extent_start;
4795                         goto out;
4796                 }
4797
4798                 size = btrfs_file_extent_inline_len(leaf, item);
4799                 extent_offset = page_offset(page) + pg_offset - extent_start;
4800                 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
4801                                 size - extent_offset);
4802                 em->start = extent_start + extent_offset;
4803                 em->len = (copy_size + root->sectorsize - 1) &
4804                         ~((u64)root->sectorsize - 1);
4805                 em->orig_start = EXTENT_MAP_INLINE;
4806                 if (compressed)
4807                         set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
4808                 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
4809                 if (create == 0 && !PageUptodate(page)) {
4810                         if (btrfs_file_extent_compression(leaf, item) ==
4811                             BTRFS_COMPRESS_ZLIB) {
4812                                 ret = uncompress_inline(path, inode, page,
4813                                                         pg_offset,
4814                                                         extent_offset, item);
4815                                 BUG_ON(ret);
4816                         } else {
4817                                 map = kmap(page);
4818                                 read_extent_buffer(leaf, map + pg_offset, ptr,
4819                                                    copy_size);
4820                                 if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
4821                                         memset(map + pg_offset + copy_size, 0,
4822                                                PAGE_CACHE_SIZE - pg_offset -
4823                                                copy_size);
4824                                 }
4825                                 kunmap(page);
4826                         }
4827                         flush_dcache_page(page);
4828                 } else if (create && PageUptodate(page)) {
4829                         if (!trans) {
4830                                 kunmap(page);
4831                                 free_extent_map(em);
4832                                 em = NULL;
4833                                 btrfs_release_path(root, path);
4834                                 trans = btrfs_join_transaction(root, 1);
4835                                 goto again;
4836                         }
4837                         map = kmap(page);
4838                         write_extent_buffer(leaf, map + pg_offset, ptr,
4839                                             copy_size);
4840                         kunmap(page);
4841                         btrfs_mark_buffer_dirty(leaf);
4842                 }
4843                 set_extent_uptodate(io_tree, em->start,
4844                                     extent_map_end(em) - 1, GFP_NOFS);
4845                 goto insert;
4846         } else {
4847                 printk(KERN_ERR "btrfs unknown found_type %d\n", found_type);
4848                 WARN_ON(1);
4849         }
4850 not_found:
4851         em->start = start;
4852         em->len = len;
4853 not_found_em:
4854         em->block_start = EXTENT_MAP_HOLE;
4855         set_bit(EXTENT_FLAG_VACANCY, &em->flags);
4856 insert:
4857         btrfs_release_path(root, path);
4858         if (em->start > start || extent_map_end(em) <= start) {
4859                 printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed "
4860                        "[%llu %llu]\n", (unsigned long long)em->start,
4861                        (unsigned long long)em->len,
4862                        (unsigned long long)start,
4863                        (unsigned long long)len);
4864                 err = -EIO;
4865                 goto out;
4866         }
4867
4868         err = 0;
4869         write_lock(&em_tree->lock);
4870         ret = add_extent_mapping(em_tree, em);
4871         /* it is possible that someone inserted the extent into the tree
4872          * while we had the lock dropped.  It is also possible that
4873          * an overlapping map exists in the tree
4874          */
4875         if (ret == -EEXIST) {
4876                 struct extent_map *existing;
4877
4878                 ret = 0;
4879
4880                 existing = lookup_extent_mapping(em_tree, start, len);
4881                 if (existing && (existing->start > start ||
4882                     existing->start + existing->len <= start)) {
4883                         free_extent_map(existing);
4884                         existing = NULL;
4885                 }
4886                 if (!existing) {
4887                         existing = lookup_extent_mapping(em_tree, em->start,
4888                                                          em->len);
4889                         if (existing) {
4890                                 err = merge_extent_mapping(em_tree, existing,
4891                                                            em, start,
4892                                                            root->sectorsize);
4893                                 free_extent_map(existing);
4894                                 if (err) {
4895                                         free_extent_map(em);
4896                                         em = NULL;
4897                                 }
4898                         } else {
4899                                 err = -EIO;
4900                                 free_extent_map(em);
4901                                 em = NULL;
4902                         }
4903                 } else {
4904                         free_extent_map(em);
4905                         em = existing;
4906                         err = 0;
4907                 }
4908         }
4909         write_unlock(&em_tree->lock);
4910 out:
4911         if (path)
4912                 btrfs_free_path(path);
4913         if (trans) {
4914                 ret = btrfs_end_transaction(trans, root);
4915                 if (!err)
4916                         err = ret;
4917         }
4918         if (err) {
4919                 free_extent_map(em);
4920                 return ERR_PTR(err);
4921         }
4922         return em;
4923 }
4924
4925 static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
4926                         const struct iovec *iov, loff_t offset,
4927                         unsigned long nr_segs)
4928 {
4929         return -EINVAL;
4930 }
4931
4932 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4933                 __u64 start, __u64 len)
4934 {
4935         return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent);
4936 }
4937
4938 int btrfs_readpage(struct file *file, struct page *page)
4939 {
4940         struct extent_io_tree *tree;
4941         tree = &BTRFS_I(page->mapping->host)->io_tree;
4942         return extent_read_full_page(tree, page, btrfs_get_extent);
4943 }
4944
4945 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
4946 {
4947         struct extent_io_tree *tree;
4948
4949
4950         if (current->flags & PF_MEMALLOC) {
4951                 redirty_page_for_writepage(wbc, page);
4952                 unlock_page(page);
4953                 return 0;
4954         }
4955         tree = &BTRFS_I(page->mapping->host)->io_tree;
4956         return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
4957 }
4958
4959 int btrfs_writepages(struct address_space *mapping,
4960                      struct writeback_control *wbc)
4961 {
4962         struct extent_io_tree *tree;
4963
4964         tree = &BTRFS_I(mapping->host)->io_tree;
4965         return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
4966 }
4967
4968 static int
4969 btrfs_readpages(struct file *file, struct address_space *mapping,
4970                 struct list_head *pages, unsigned nr_pages)
4971 {
4972         struct extent_io_tree *tree;
4973         tree = &BTRFS_I(mapping->host)->io_tree;
4974         return extent_readpages(tree, mapping, pages, nr_pages,
4975                                 btrfs_get_extent);
4976 }
4977 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
4978 {
4979         struct extent_io_tree *tree;
4980         struct extent_map_tree *map;
4981         int ret;
4982
4983         tree = &BTRFS_I(page->mapping->host)->io_tree;
4984         map = &BTRFS_I(page->mapping->host)->extent_tree;
4985         ret = try_release_extent_mapping(map, tree, page, gfp_flags);
4986         if (ret == 1) {
4987                 ClearPagePrivate(page);
4988                 set_page_private(page, 0);
4989                 page_cache_release(page);
4990         }
4991         return ret;
4992 }
4993
4994 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
4995 {
4996         if (PageWriteback(page) || PageDirty(page))
4997                 return 0;
4998         return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
4999 }
5000
5001 static void btrfs_invalidatepage(struct page *page, unsigned long offset)
5002 {
5003         struct extent_io_tree *tree;
5004         struct btrfs_ordered_extent *ordered;
5005         struct extent_state *cached_state = NULL;
5006         u64 page_start = page_offset(page);
5007         u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
5008
5009
5010         /*
5011          * we have the page locked, so new writeback can't start,
5012          * and the dirty bit won't be cleared while we are here.
5013          *
5014          * Wait for IO on this page so that we can safely clear
5015          * the PagePrivate2 bit and do ordered accounting
5016          */
5017         wait_on_page_writeback(page);
5018
5019         tree = &BTRFS_I(page->mapping->host)->io_tree;
5020         if (offset) {
5021                 btrfs_releasepage(page, GFP_NOFS);
5022                 return;
5023         }
5024         lock_extent_bits(tree, page_start, page_end, 0, &cached_state,
5025                          GFP_NOFS);
5026         ordered = btrfs_lookup_ordered_extent(page->mapping->host,
5027                                            page_offset(page));
5028         if (ordered) {
5029                 /*
5030                  * IO on this page will never be started, so we need
5031                  * to account for any ordered extents now
5032                  */
5033                 clear_extent_bit(tree, page_start, page_end,
5034                                  EXTENT_DIRTY | EXTENT_DELALLOC |
5035                                  EXTENT_LOCKED | EXTENT_DO_ACCOUNTING, 1, 0,
5036                                  &cached_state, GFP_NOFS);
5037                 /*
5038                  * whoever cleared the private bit is responsible
5039                  * for the finish_ordered_io
5040                  */
5041                 if (TestClearPagePrivate2(page)) {
5042                         btrfs_finish_ordered_io(page->mapping->host,
5043                                                 page_start, page_end);
5044                 }
5045                 btrfs_put_ordered_extent(ordered);
5046                 cached_state = NULL;
5047                 lock_extent_bits(tree, page_start, page_end, 0, &cached_state,
5048                                  GFP_NOFS);
5049         }
5050         clear_extent_bit(tree, page_start, page_end,
5051                  EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
5052                  EXTENT_DO_ACCOUNTING, 1, 1, &cached_state, GFP_NOFS);
5053         __btrfs_releasepage(page, GFP_NOFS);
5054
5055         ClearPageChecked(page);
5056         if (PagePrivate(page)) {
5057                 ClearPagePrivate(page);
5058                 set_page_private(page, 0);
5059                 page_cache_release(page);
5060         }
5061 }
5062
5063 /*
5064  * btrfs_page_mkwrite() is not allowed to change the file size as it gets
5065  * called from a page fault handler when a page is first dirtied. Hence we must
5066  * be careful to check for EOF conditions here. We set the page up correctly
5067  * for a written page which means we get ENOSPC checking when writing into
5068  * holes and correct delalloc and unwritten extent mapping on filesystems that
5069  * support these features.
5070  *
5071  * We are not allowed to take the i_mutex here so we have to play games to
5072  * protect against truncate races as the page could now be beyond EOF.  Because
5073  * vmtruncate() writes the inode size before removing pages, once we have the
5074  * page lock we can determine safely if the page is beyond EOF. If it is not
5075  * beyond EOF, then the page is guaranteed safe against truncation until we
5076  * unlock the page.
5077  */
5078 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5079 {
5080         struct page *page = vmf->page;
5081         struct inode *inode = fdentry(vma->vm_file)->d_inode;
5082         struct btrfs_root *root = BTRFS_I(inode)->root;
5083         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5084         struct btrfs_ordered_extent *ordered;
5085         struct extent_state *cached_state = NULL;
5086         char *kaddr;
5087         unsigned long zero_start;
5088         loff_t size;
5089         int ret;
5090         u64 page_start;
5091         u64 page_end;
5092
5093         ret = btrfs_check_data_free_space(root, inode, PAGE_CACHE_SIZE);
5094         if (ret) {
5095                 if (ret == -ENOMEM)
5096                         ret = VM_FAULT_OOM;
5097                 else /* -ENOSPC, -EIO, etc */
5098                         ret = VM_FAULT_SIGBUS;
5099                 goto out;
5100         }
5101
5102         ret = btrfs_reserve_metadata_for_delalloc(root, inode, 1);
5103         if (ret) {
5104                 btrfs_free_reserved_data_space(root, inode, PAGE_CACHE_SIZE);
5105                 ret = VM_FAULT_SIGBUS;
5106                 goto out;
5107         }
5108
5109         ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
5110 again:
5111         lock_page(page);
5112         size = i_size_read(inode);
5113         page_start = page_offset(page);
5114         page_end = page_start + PAGE_CACHE_SIZE - 1;
5115
5116         if ((page->mapping != inode->i_mapping) ||
5117             (page_start >= size)) {
5118                 btrfs_free_reserved_data_space(root, inode, PAGE_CACHE_SIZE);
5119                 /* page got truncated out from underneath us */
5120                 goto out_unlock;
5121         }
5122         wait_on_page_writeback(page);
5123
5124         lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state,
5125                          GFP_NOFS);
5126         set_page_extent_mapped(page);
5127
5128         /*
5129          * we can't set the delalloc bits if there are pending ordered
5130          * extents.  Drop our locks and wait for them to finish
5131          */
5132         ordered = btrfs_lookup_ordered_extent(inode, page_start);
5133         if (ordered) {
5134                 unlock_extent_cached(io_tree, page_start, page_end,
5135                                      &cached_state, GFP_NOFS);
5136                 unlock_page(page);
5137                 btrfs_start_ordered_extent(inode, ordered, 1);
5138                 btrfs_put_ordered_extent(ordered);
5139                 goto again;
5140         }
5141
5142         /*
5143          * XXX - page_mkwrite gets called every time the page is dirtied, even
5144          * if it was already dirty, so for space accounting reasons we need to
5145          * clear any delalloc bits for the range we are fixing to save.  There
5146          * is probably a better way to do this, but for now keep consistent with
5147          * prepare_pages in the normal write path.
5148          */
5149         clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
5150                           EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
5151                           0, 0, &cached_state, GFP_NOFS);
5152
5153         ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
5154                                         &cached_state);
5155         if (ret) {
5156                 unlock_extent_cached(io_tree, page_start, page_end,
5157                                      &cached_state, GFP_NOFS);
5158                 ret = VM_FAULT_SIGBUS;
5159                 btrfs_free_reserved_data_space(root, inode, PAGE_CACHE_SIZE);
5160                 goto out_unlock;
5161         }
5162         ret = 0;
5163
5164         /* page is wholly or partially inside EOF */
5165         if (page_start + PAGE_CACHE_SIZE > size)
5166                 zero_start = size & ~PAGE_CACHE_MASK;
5167         else
5168                 zero_start = PAGE_CACHE_SIZE;
5169
5170         if (zero_start != PAGE_CACHE_SIZE) {
5171                 kaddr = kmap(page);
5172                 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
5173                 flush_dcache_page(page);
5174                 kunmap(page);
5175         }
5176         ClearPageChecked(page);
5177         set_page_dirty(page);
5178         SetPageUptodate(page);
5179
5180         BTRFS_I(inode)->last_trans = root->fs_info->generation;
5181         BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
5182
5183         unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
5184
5185 out_unlock:
5186         btrfs_unreserve_metadata_for_delalloc(root, inode, 1);
5187         if (!ret)
5188                 return VM_FAULT_LOCKED;
5189         unlock_page(page);
5190 out:
5191         return ret;
5192 }
5193
5194 static void btrfs_truncate(struct inode *inode)
5195 {
5196         struct btrfs_root *root = BTRFS_I(inode)->root;
5197         int ret;
5198         struct btrfs_trans_handle *trans;
5199         unsigned long nr;
5200         u64 mask = root->sectorsize - 1;
5201
5202         if (!S_ISREG(inode->i_mode)) {
5203                 WARN_ON(1);
5204                 return;
5205         }
5206
5207         ret = btrfs_truncate_page(inode->i_mapping, inode->i_size);
5208         if (ret)
5209                 return;
5210
5211         btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
5212         btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
5213
5214         trans = btrfs_start_transaction(root, 1);
5215         btrfs_set_trans_block_group(trans, inode);
5216
5217         /*
5218          * setattr is responsible for setting the ordered_data_close flag,
5219          * but that is only tested during the last file release.  That
5220          * could happen well after the next commit, leaving a great big
5221          * window where new writes may get lost if someone chooses to write
5222          * to this file after truncating to zero
5223          *
5224          * The inode doesn't have any dirty data here, and so if we commit
5225          * this is a noop.  If someone immediately starts writing to the inode
5226          * it is very likely we'll catch some of their writes in this
5227          * transaction, and the commit will find this file on the ordered
5228          * data list with good things to send down.
5229          *
5230          * This is a best effort solution, there is still a window where
5231          * using truncate to replace the contents of the file will
5232          * end up with a zero length file after a crash.
5233          */
5234         if (inode->i_size == 0 && BTRFS_I(inode)->ordered_data_close)
5235                 btrfs_add_ordered_operation(trans, root, inode);
5236
5237         while (1) {
5238                 ret = btrfs_truncate_inode_items(trans, root, inode,
5239                                                  inode->i_size,
5240                                                  BTRFS_EXTENT_DATA_KEY);
5241                 if (ret != -EAGAIN)
5242                         break;
5243
5244                 ret = btrfs_update_inode(trans, root, inode);
5245                 BUG_ON(ret);
5246
5247                 nr = trans->blocks_used;
5248                 btrfs_end_transaction(trans, root);
5249                 btrfs_btree_balance_dirty(root, nr);
5250
5251                 trans = btrfs_start_transaction(root, 1);
5252                 btrfs_set_trans_block_group(trans, inode);
5253         }
5254
5255         if (ret == 0 && inode->i_nlink > 0) {
5256                 ret = btrfs_orphan_del(trans, inode);
5257                 BUG_ON(ret);
5258         }
5259
5260         ret = btrfs_update_inode(trans, root, inode);
5261         BUG_ON(ret);
5262
5263         nr = trans->blocks_used;
5264         ret = btrfs_end_transaction_throttle(trans, root);
5265         BUG_ON(ret);
5266         btrfs_btree_balance_dirty(root, nr);
5267 }
5268
5269 /*
5270  * create a new subvolume directory/inode (helper for the ioctl).
5271  */
5272 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
5273                              struct btrfs_root *new_root,
5274                              u64 new_dirid, u64 alloc_hint)
5275 {
5276         struct inode *inode;
5277         int err;
5278         u64 index = 0;
5279
5280         inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, new_dirid,
5281                                 new_dirid, alloc_hint, S_IFDIR | 0700, &index);
5282         if (IS_ERR(inode))
5283                 return PTR_ERR(inode);
5284         inode->i_op = &btrfs_dir_inode_operations;
5285         inode->i_fop = &btrfs_dir_file_operations;
5286
5287         inode->i_nlink = 1;
5288         btrfs_i_size_write(inode, 0);
5289
5290         err = btrfs_update_inode(trans, new_root, inode);
5291         BUG_ON(err);
5292
5293         iput(inode);
5294         return 0;
5295 }
5296
5297 /* helper function for file defrag and space balancing.  This
5298  * forces readahead on a given range of bytes in an inode
5299  */
5300 unsigned long btrfs_force_ra(struct address_space *mapping,
5301                               struct file_ra_state *ra, struct file *file,
5302                               pgoff_t offset, pgoff_t last_index)
5303 {
5304         pgoff_t req_size = last_index - offset + 1;
5305
5306         page_cache_sync_readahead(mapping, ra, file, offset, req_size);
5307         return offset + req_size;
5308 }
5309
5310 struct inode *btrfs_alloc_inode(struct super_block *sb)
5311 {
5312         struct btrfs_inode *ei;
5313
5314         ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
5315         if (!ei)
5316                 return NULL;
5317         ei->last_trans = 0;
5318         ei->last_sub_trans = 0;
5319         ei->logged_trans = 0;
5320         ei->outstanding_extents = 0;
5321         ei->reserved_extents = 0;
5322         ei->root = NULL;
5323         spin_lock_init(&ei->accounting_lock);
5324         btrfs_ordered_inode_tree_init(&ei->ordered_tree);
5325         INIT_LIST_HEAD(&ei->i_orphan);
5326         INIT_LIST_HEAD(&ei->ordered_operations);
5327         return &ei->vfs_inode;
5328 }
5329
5330 void btrfs_destroy_inode(struct inode *inode)
5331 {
5332         struct btrfs_ordered_extent *ordered;
5333         struct btrfs_root *root = BTRFS_I(inode)->root;
5334
5335         WARN_ON(!list_empty(&inode->i_dentry));
5336         WARN_ON(inode->i_data.nrpages);
5337
5338         /*
5339          * This can happen where we create an inode, but somebody else also
5340          * created the same inode and we need to destroy the one we already
5341          * created.
5342          */
5343         if (!root)
5344                 goto free;
5345
5346         /*
5347          * Make sure we're properly removed from the ordered operation
5348          * lists.
5349          */
5350         smp_mb();
5351         if (!list_empty(&BTRFS_I(inode)->ordered_operations)) {
5352                 spin_lock(&root->fs_info->ordered_extent_lock);
5353                 list_del_init(&BTRFS_I(inode)->ordered_operations);
5354                 spin_unlock(&root->fs_info->ordered_extent_lock);
5355         }
5356
5357         spin_lock(&root->list_lock);
5358         if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
5359                 printk(KERN_INFO "BTRFS: inode %lu still on the orphan list\n",
5360                        inode->i_ino);
5361                 list_del_init(&BTRFS_I(inode)->i_orphan);
5362         }
5363         spin_unlock(&root->list_lock);
5364
5365         while (1) {
5366                 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
5367                 if (!ordered)
5368                         break;
5369                 else {
5370                         printk(KERN_ERR "btrfs found ordered "
5371                                "extent %llu %llu on inode cleanup\n",
5372                                (unsigned long long)ordered->file_offset,
5373                                (unsigned long long)ordered->len);
5374                         btrfs_remove_ordered_extent(inode, ordered);
5375                         btrfs_put_ordered_extent(ordered);
5376                         btrfs_put_ordered_extent(ordered);
5377                 }
5378         }
5379         inode_tree_del(inode);
5380         btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
5381 free:
5382         kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
5383 }
5384
5385 void btrfs_drop_inode(struct inode *inode)
5386 {
5387         struct btrfs_root *root = BTRFS_I(inode)->root;
5388
5389         if (inode->i_nlink > 0 && btrfs_root_refs(&root->root_item) == 0)
5390                 generic_delete_inode(inode);
5391         else
5392                 generic_drop_inode(inode);
5393 }
5394
5395 static void init_once(void *foo)
5396 {
5397         struct btrfs_inode *ei = (struct btrfs_inode *) foo;
5398
5399         inode_init_once(&ei->vfs_inode);
5400 }
5401
5402 void btrfs_destroy_cachep(void)
5403 {
5404         if (btrfs_inode_cachep)
5405                 kmem_cache_destroy(btrfs_inode_cachep);
5406         if (btrfs_trans_handle_cachep)
5407                 kmem_cache_destroy(btrfs_trans_handle_cachep);
5408         if (btrfs_transaction_cachep)
5409                 kmem_cache_destroy(btrfs_transaction_cachep);
5410         if (btrfs_path_cachep)
5411                 kmem_cache_destroy(btrfs_path_cachep);
5412 }
5413
5414 int btrfs_init_cachep(void)
5415 {
5416         btrfs_inode_cachep = kmem_cache_create("btrfs_inode_cache",
5417                         sizeof(struct btrfs_inode), 0,
5418                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
5419         if (!btrfs_inode_cachep)
5420                 goto fail;
5421
5422         btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle_cache",
5423                         sizeof(struct btrfs_trans_handle), 0,
5424                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
5425         if (!btrfs_trans_handle_cachep)
5426                 goto fail;
5427
5428         btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction_cache",
5429                         sizeof(struct btrfs_transaction), 0,
5430                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
5431         if (!btrfs_transaction_cachep)
5432                 goto fail;
5433
5434         btrfs_path_cachep = kmem_cache_create("btrfs_path_cache",
5435                         sizeof(struct btrfs_path), 0,
5436                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
5437         if (!btrfs_path_cachep)
5438                 goto fail;
5439
5440         return 0;
5441 fail:
5442         btrfs_destroy_cachep();
5443         return -ENOMEM;
5444 }
5445
5446 static int btrfs_getattr(struct vfsmount *mnt,
5447                          struct dentry *dentry, struct kstat *stat)
5448 {
5449         struct inode *inode = dentry->d_inode;
5450         generic_fillattr(inode, stat);
5451         stat->dev = BTRFS_I(inode)->root->anon_super.s_dev;
5452         stat->blksize = PAGE_CACHE_SIZE;
5453         stat->blocks = (inode_get_bytes(inode) +
5454                         BTRFS_I(inode)->delalloc_bytes) >> 9;
5455         return 0;
5456 }
5457
5458 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
5459                            struct inode *new_dir, struct dentry *new_dentry)
5460 {
5461         struct btrfs_trans_handle *trans;
5462         struct btrfs_root *root = BTRFS_I(old_dir)->root;
5463         struct btrfs_root *dest = BTRFS_I(new_dir)->root;
5464         struct inode *new_inode = new_dentry->d_inode;
5465         struct inode *old_inode = old_dentry->d_inode;
5466         struct timespec ctime = CURRENT_TIME;
5467         u64 index = 0;
5468         u64 root_objectid;
5469         int ret;
5470
5471         if (new_dir->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5472                 return -EPERM;
5473
5474         /* we only allow rename subvolume link between subvolumes */
5475         if (old_inode->i_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
5476                 return -EXDEV;
5477
5478         if (old_inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
5479             (new_inode && new_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID))
5480                 return -ENOTEMPTY;
5481
5482         if (S_ISDIR(old_inode->i_mode) && new_inode &&
5483             new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
5484                 return -ENOTEMPTY;
5485
5486         /*
5487          * We want to reserve the absolute worst case amount of items.  So if
5488          * both inodes are subvols and we need to unlink them then that would
5489          * require 4 item modifications, but if they are both normal inodes it
5490          * would require 5 item modifications, so we'll assume their normal
5491          * inodes.  So 5 * 2 is 10, plus 1 for the new link, so 11 total items
5492          * should cover the worst case number of items we'll modify.
5493          */
5494         ret = btrfs_reserve_metadata_space(root, 11);
5495         if (ret)
5496                 return ret;
5497
5498         /*
5499          * we're using rename to replace one file with another.
5500          * and the replacement file is large.  Start IO on it now so
5501          * we don't add too much work to the end of the transaction
5502          */
5503         if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size &&
5504             old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
5505                 filemap_flush(old_inode->i_mapping);
5506
5507         /* close the racy window with snapshot create/destroy ioctl */
5508         if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
5509                 down_read(&root->fs_info->subvol_sem);
5510
5511         trans = btrfs_start_transaction(root, 1);
5512         btrfs_set_trans_block_group(trans, new_dir);
5513
5514         if (dest != root)
5515                 btrfs_record_root_in_trans(trans, dest);
5516
5517         ret = btrfs_set_inode_index(new_dir, &index);
5518         if (ret)
5519                 goto out_fail;
5520
5521         if (unlikely(old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
5522                 /* force full log commit if subvolume involved. */
5523                 root->fs_info->last_trans_log_full_commit = trans->transid;
5524         } else {
5525                 ret = btrfs_insert_inode_ref(trans, dest,
5526                                              new_dentry->d_name.name,
5527                                              new_dentry->d_name.len,
5528                                              old_inode->i_ino,
5529                                              new_dir->i_ino, index);
5530                 if (ret)
5531                         goto out_fail;
5532                 /*
5533                  * this is an ugly little race, but the rename is required
5534                  * to make sure that if we crash, the inode is either at the
5535                  * old name or the new one.  pinning the log transaction lets
5536                  * us make sure we don't allow a log commit to come in after
5537                  * we unlink the name but before we add the new name back in.
5538                  */
5539                 btrfs_pin_log_trans(root);
5540         }
5541         /*
5542          * make sure the inode gets flushed if it is replacing
5543          * something.
5544          */
5545         if (new_inode && new_inode->i_size &&
5546             old_inode && S_ISREG(old_inode->i_mode)) {
5547                 btrfs_add_ordered_operation(trans, root, old_inode);
5548         }
5549
5550         old_dir->i_ctime = old_dir->i_mtime = ctime;
5551         new_dir->i_ctime = new_dir->i_mtime = ctime;
5552         old_inode->i_ctime = ctime;
5553
5554         if (old_dentry->d_parent != new_dentry->d_parent)
5555                 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
5556
5557         if (unlikely(old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
5558                 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
5559                 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
5560                                         old_dentry->d_name.name,
5561                                         old_dentry->d_name.len);
5562         } else {
5563                 btrfs_inc_nlink(old_dentry->d_inode);
5564                 ret = btrfs_unlink_inode(trans, root, old_dir,
5565                                          old_dentry->d_inode,
5566                                          old_dentry->d_name.name,
5567                                          old_dentry->d_name.len);
5568         }
5569         BUG_ON(ret);
5570
5571         if (new_inode) {
5572                 new_inode->i_ctime = CURRENT_TIME;
5573                 if (unlikely(new_inode->i_ino ==
5574                              BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
5575                         root_objectid = BTRFS_I(new_inode)->location.objectid;
5576                         ret = btrfs_unlink_subvol(trans, dest, new_dir,
5577                                                 root_objectid,
5578                                                 new_dentry->d_name.name,
5579                                                 new_dentry->d_name.len);
5580                         BUG_ON(new_inode->i_nlink == 0);
5581                 } else {
5582                         ret = btrfs_unlink_inode(trans, dest, new_dir,
5583                                                  new_dentry->d_inode,
5584                                                  new_dentry->d_name.name,
5585                                                  new_dentry->d_name.len);
5586                 }
5587                 BUG_ON(ret);
5588                 if (new_inode->i_nlink == 0) {
5589                         ret = btrfs_orphan_add(trans, new_dentry->d_inode);
5590                         BUG_ON(ret);
5591                 }
5592         }
5593
5594         ret = btrfs_add_link(trans, new_dir, old_inode,
5595                              new_dentry->d_name.name,
5596                              new_dentry->d_name.len, 0, index);
5597         BUG_ON(ret);
5598
5599         if (old_inode->i_ino != BTRFS_FIRST_FREE_OBJECTID) {
5600                 btrfs_log_new_name(trans, old_inode, old_dir,
5601                                    new_dentry->d_parent);
5602                 btrfs_end_log_trans(root);
5603         }
5604 out_fail:
5605         btrfs_end_transaction_throttle(trans, root);
5606
5607         if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
5608                 up_read(&root->fs_info->subvol_sem);
5609
5610         btrfs_unreserve_metadata_space(root, 11);
5611         return ret;
5612 }
5613
5614 /*
5615  * some fairly slow code that needs optimization. This walks the list
5616  * of all the inodes with pending delalloc and forces them to disk.
5617  */
5618 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
5619 {
5620         struct list_head *head = &root->fs_info->delalloc_inodes;
5621         struct btrfs_inode *binode;
5622         struct inode *inode;
5623
5624         if (root->fs_info->sb->s_flags & MS_RDONLY)
5625                 return -EROFS;
5626
5627         spin_lock(&root->fs_info->delalloc_lock);
5628         while (!list_empty(head)) {
5629                 binode = list_entry(head->next, struct btrfs_inode,
5630                                     delalloc_inodes);
5631                 inode = igrab(&binode->vfs_inode);
5632                 if (!inode)
5633                         list_del_init(&binode->delalloc_inodes);
5634                 spin_unlock(&root->fs_info->delalloc_lock);
5635                 if (inode) {
5636                         filemap_flush(inode->i_mapping);
5637                         if (delay_iput)
5638                                 btrfs_add_delayed_iput(inode);
5639                         else
5640                                 iput(inode);
5641                 }
5642                 cond_resched();
5643                 spin_lock(&root->fs_info->delalloc_lock);
5644         }
5645         spin_unlock(&root->fs_info->delalloc_lock);
5646
5647         /* the filemap_flush will queue IO into the worker threads, but
5648          * we have to make sure the IO is actually started and that
5649          * ordered extents get created before we return
5650          */
5651         atomic_inc(&root->fs_info->async_submit_draining);
5652         while (atomic_read(&root->fs_info->nr_async_submits) ||
5653               atomic_read(&root->fs_info->async_delalloc_pages)) {
5654                 wait_event(root->fs_info->async_submit_wait,
5655                    (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
5656                     atomic_read(&root->fs_info->async_delalloc_pages) == 0));
5657         }
5658         atomic_dec(&root->fs_info->async_submit_draining);
5659         return 0;
5660 }
5661
5662 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
5663                          const char *symname)
5664 {
5665         struct btrfs_trans_handle *trans;
5666         struct btrfs_root *root = BTRFS_I(dir)->root;
5667         struct btrfs_path *path;
5668         struct btrfs_key key;
5669         struct inode *inode = NULL;
5670         int err;
5671         int drop_inode = 0;
5672         u64 objectid;
5673         u64 index = 0 ;
5674         int name_len;
5675         int datasize;
5676         unsigned long ptr;
5677         struct btrfs_file_extent_item *ei;
5678         struct extent_buffer *leaf;
5679         unsigned long nr = 0;
5680
5681         name_len = strlen(symname) + 1;
5682         if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
5683                 return -ENAMETOOLONG;
5684
5685         /*
5686          * 2 items for inode item and ref
5687          * 2 items for dir items
5688          * 1 item for xattr if selinux is on
5689          */
5690         err = btrfs_reserve_metadata_space(root, 5);
5691         if (err)
5692                 return err;
5693
5694         trans = btrfs_start_transaction(root, 1);
5695         if (!trans)
5696                 goto out_fail;
5697         btrfs_set_trans_block_group(trans, dir);
5698
5699         err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
5700         if (err) {
5701                 err = -ENOSPC;
5702                 goto out_unlock;
5703         }
5704
5705         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
5706                                 dentry->d_name.len,
5707                                 dentry->d_parent->d_inode->i_ino, objectid,
5708                                 BTRFS_I(dir)->block_group, S_IFLNK|S_IRWXUGO,
5709                                 &index);
5710         err = PTR_ERR(inode);
5711         if (IS_ERR(inode))
5712                 goto out_unlock;
5713
5714         err = btrfs_init_inode_security(trans, inode, dir);
5715         if (err) {
5716                 drop_inode = 1;
5717                 goto out_unlock;
5718         }
5719
5720         btrfs_set_trans_block_group(trans, inode);
5721         err = btrfs_add_nondir(trans, dentry, inode, 0, index);
5722         if (err)
5723                 drop_inode = 1;
5724         else {
5725                 inode->i_mapping->a_ops = &btrfs_aops;
5726                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
5727                 inode->i_fop = &btrfs_file_operations;
5728                 inode->i_op = &btrfs_file_inode_operations;
5729                 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
5730         }
5731         btrfs_update_inode_block_group(trans, inode);
5732         btrfs_update_inode_block_group(trans, dir);
5733         if (drop_inode)
5734                 goto out_unlock;
5735
5736         path = btrfs_alloc_path();
5737         BUG_ON(!path);
5738         key.objectid = inode->i_ino;
5739         key.offset = 0;
5740         btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
5741         datasize = btrfs_file_extent_calc_inline_size(name_len);
5742         err = btrfs_insert_empty_item(trans, root, path, &key,
5743                                       datasize);
5744         if (err) {
5745                 drop_inode = 1;
5746                 goto out_unlock;
5747         }
5748         leaf = path->nodes[0];
5749         ei = btrfs_item_ptr(leaf, path->slots[0],
5750                             struct btrfs_file_extent_item);
5751         btrfs_set_file_extent_generation(leaf, ei, trans->transid);
5752         btrfs_set_file_extent_type(leaf, ei,
5753                                    BTRFS_FILE_EXTENT_INLINE);
5754         btrfs_set_file_extent_encryption(leaf, ei, 0);
5755         btrfs_set_file_extent_compression(leaf, ei, 0);
5756         btrfs_set_file_extent_other_encoding(leaf, ei, 0);
5757         btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
5758
5759         ptr = btrfs_file_extent_inline_start(ei);
5760         write_extent_buffer(leaf, symname, ptr, name_len);
5761         btrfs_mark_buffer_dirty(leaf);
5762         btrfs_free_path(path);
5763
5764         inode->i_op = &btrfs_symlink_inode_operations;
5765         inode->i_mapping->a_ops = &btrfs_symlink_aops;
5766         inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
5767         inode_set_bytes(inode, name_len);
5768         btrfs_i_size_write(inode, name_len - 1);
5769         err = btrfs_update_inode(trans, root, inode);
5770         if (err)
5771                 drop_inode = 1;
5772
5773 out_unlock:
5774         nr = trans->blocks_used;
5775         btrfs_end_transaction_throttle(trans, root);
5776 out_fail:
5777         btrfs_unreserve_metadata_space(root, 5);
5778         if (drop_inode) {
5779                 inode_dec_link_count(inode);
5780                 iput(inode);
5781         }
5782         btrfs_btree_balance_dirty(root, nr);
5783         return err;
5784 }
5785
5786 static int prealloc_file_range(struct inode *inode, u64 start, u64 end,
5787                         u64 alloc_hint, int mode, loff_t actual_len)
5788 {
5789         struct btrfs_trans_handle *trans;
5790         struct btrfs_root *root = BTRFS_I(inode)->root;
5791         struct btrfs_key ins;
5792         u64 alloc_size;
5793         u64 cur_offset = start;
5794         u64 num_bytes = end - start;
5795         int ret = 0;
5796         u64 i_size;
5797
5798         while (num_bytes > 0) {
5799                 alloc_size = min(num_bytes, root->fs_info->max_extent);
5800
5801                 trans = btrfs_start_transaction(root, 1);
5802
5803                 ret = btrfs_reserve_extent(trans, root, alloc_size,
5804                                            root->sectorsize, 0, alloc_hint,
5805                                            (u64)-1, &ins, 1);
5806                 if (ret) {
5807                         WARN_ON(1);
5808                         goto stop_trans;
5809                 }
5810
5811                 ret = btrfs_reserve_metadata_space(root, 3);
5812                 if (ret) {
5813                         btrfs_free_reserved_extent(root, ins.objectid,
5814                                                    ins.offset);
5815                         goto stop_trans;
5816                 }
5817
5818                 ret = insert_reserved_file_extent(trans, inode,
5819                                                   cur_offset, ins.objectid,
5820                                                   ins.offset, ins.offset,
5821                                                   ins.offset, 0, 0, 0,
5822                                                   BTRFS_FILE_EXTENT_PREALLOC);
5823                 BUG_ON(ret);
5824                 btrfs_drop_extent_cache(inode, cur_offset,
5825                                         cur_offset + ins.offset -1, 0);
5826
5827                 num_bytes -= ins.offset;
5828                 cur_offset += ins.offset;
5829                 alloc_hint = ins.objectid + ins.offset;
5830
5831                 inode->i_ctime = CURRENT_TIME;
5832                 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
5833                 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
5834                         (actual_len > inode->i_size) &&
5835                         (cur_offset > inode->i_size)) {
5836
5837                         if (cur_offset > actual_len)
5838                                 i_size  = actual_len;
5839                         else
5840                                 i_size = cur_offset;
5841                         i_size_write(inode, i_size);
5842                         btrfs_ordered_update_i_size(inode, i_size, NULL);
5843                 }
5844
5845                 ret = btrfs_update_inode(trans, root, inode);
5846                 BUG_ON(ret);
5847
5848                 btrfs_end_transaction(trans, root);
5849                 btrfs_unreserve_metadata_space(root, 3);
5850         }
5851         return ret;
5852
5853 stop_trans:
5854         btrfs_end_transaction(trans, root);
5855         return ret;
5856
5857 }
5858
5859 static long btrfs_fallocate(struct inode *inode, int mode,
5860                             loff_t offset, loff_t len)
5861 {
5862         struct extent_state *cached_state = NULL;
5863         u64 cur_offset;
5864         u64 last_byte;
5865         u64 alloc_start;
5866         u64 alloc_end;
5867         u64 alloc_hint = 0;
5868         u64 locked_end;
5869         u64 mask = BTRFS_I(inode)->root->sectorsize - 1;
5870         struct extent_map *em;
5871         int ret;
5872
5873         alloc_start = offset & ~mask;
5874         alloc_end =  (offset + len + mask) & ~mask;
5875
5876         /*
5877          * wait for ordered IO before we have any locks.  We'll loop again
5878          * below with the locks held.
5879          */
5880         btrfs_wait_ordered_range(inode, alloc_start, alloc_end - alloc_start);
5881
5882         mutex_lock(&inode->i_mutex);
5883         if (alloc_start > inode->i_size) {
5884                 ret = btrfs_cont_expand(inode, alloc_start);
5885                 if (ret)
5886                         goto out;
5887         }
5888
5889         ret = btrfs_check_data_free_space(BTRFS_I(inode)->root, inode,
5890                                           alloc_end - alloc_start);
5891         if (ret)
5892                 goto out;
5893
5894         locked_end = alloc_end - 1;
5895         while (1) {
5896                 struct btrfs_ordered_extent *ordered;
5897
5898                 /* the extent lock is ordered inside the running
5899                  * transaction
5900                  */
5901                 lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start,
5902                                  locked_end, 0, &cached_state, GFP_NOFS);
5903                 ordered = btrfs_lookup_first_ordered_extent(inode,
5904                                                             alloc_end - 1);
5905                 if (ordered &&
5906                     ordered->file_offset + ordered->len > alloc_start &&
5907                     ordered->file_offset < alloc_end) {
5908                         btrfs_put_ordered_extent(ordered);
5909                         unlock_extent_cached(&BTRFS_I(inode)->io_tree,
5910                                              alloc_start, locked_end,
5911                                              &cached_state, GFP_NOFS);
5912                         /*
5913                          * we can't wait on the range with the transaction
5914                          * running or with the extent lock held
5915                          */
5916                         btrfs_wait_ordered_range(inode, alloc_start,
5917                                                  alloc_end - alloc_start);
5918                 } else {
5919                         if (ordered)
5920                                 btrfs_put_ordered_extent(ordered);
5921                         break;
5922                 }
5923         }
5924
5925         cur_offset = alloc_start;
5926         while (1) {
5927                 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
5928                                       alloc_end - cur_offset, 0);
5929                 BUG_ON(IS_ERR(em) || !em);
5930                 last_byte = min(extent_map_end(em), alloc_end);
5931                 last_byte = (last_byte + mask) & ~mask;
5932                 if (em->block_start == EXTENT_MAP_HOLE ||
5933                     (cur_offset >= inode->i_size &&
5934                      !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
5935                         ret = prealloc_file_range(inode,
5936                                                   cur_offset, last_byte,
5937                                                 alloc_hint, mode, offset+len);
5938                         if (ret < 0) {
5939                                 free_extent_map(em);
5940                                 break;
5941                         }
5942                 }
5943                 if (em->block_start <= EXTENT_MAP_LAST_BYTE)
5944                         alloc_hint = em->block_start;
5945                 free_extent_map(em);
5946
5947                 cur_offset = last_byte;
5948                 if (cur_offset >= alloc_end) {
5949                         ret = 0;
5950                         break;
5951                 }
5952         }
5953         unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
5954                              &cached_state, GFP_NOFS);
5955
5956         btrfs_free_reserved_data_space(BTRFS_I(inode)->root, inode,
5957                                        alloc_end - alloc_start);
5958 out:
5959         mutex_unlock(&inode->i_mutex);
5960         return ret;
5961 }
5962
5963 static int btrfs_set_page_dirty(struct page *page)
5964 {
5965         return __set_page_dirty_nobuffers(page);
5966 }
5967
5968 static int btrfs_permission(struct inode *inode, int mask)
5969 {
5970         if ((BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) && (mask & MAY_WRITE))
5971                 return -EACCES;
5972         return generic_permission(inode, mask, btrfs_check_acl);
5973 }
5974
5975 static const struct inode_operations btrfs_dir_inode_operations = {
5976         .getattr        = btrfs_getattr,
5977         .lookup         = btrfs_lookup,
5978         .create         = btrfs_create,
5979         .unlink         = btrfs_unlink,
5980         .link           = btrfs_link,
5981         .mkdir          = btrfs_mkdir,
5982         .rmdir          = btrfs_rmdir,
5983         .rename         = btrfs_rename,
5984         .symlink        = btrfs_symlink,
5985         .setattr        = btrfs_setattr,
5986         .mknod          = btrfs_mknod,
5987         .setxattr       = btrfs_setxattr,
5988         .getxattr       = btrfs_getxattr,
5989         .listxattr      = btrfs_listxattr,
5990         .removexattr    = btrfs_removexattr,
5991         .permission     = btrfs_permission,
5992 };
5993 static const struct inode_operations btrfs_dir_ro_inode_operations = {
5994         .lookup         = btrfs_lookup,
5995         .permission     = btrfs_permission,
5996 };
5997
5998 static const struct file_operations btrfs_dir_file_operations = {
5999         .llseek         = generic_file_llseek,
6000         .read           = generic_read_dir,
6001         .readdir        = btrfs_real_readdir,
6002         .unlocked_ioctl = btrfs_ioctl,
6003 #ifdef CONFIG_COMPAT
6004         .compat_ioctl   = btrfs_ioctl,
6005 #endif
6006         .release        = btrfs_release_file,
6007         .fsync          = btrfs_sync_file,
6008 };
6009
6010 static struct extent_io_ops btrfs_extent_io_ops = {
6011         .fill_delalloc = run_delalloc_range,
6012         .submit_bio_hook = btrfs_submit_bio_hook,
6013         .merge_bio_hook = btrfs_merge_bio_hook,
6014         .readpage_end_io_hook = btrfs_readpage_end_io_hook,
6015         .writepage_end_io_hook = btrfs_writepage_end_io_hook,
6016         .writepage_start_hook = btrfs_writepage_start_hook,
6017         .readpage_io_failed_hook = btrfs_io_failed_hook,
6018         .set_bit_hook = btrfs_set_bit_hook,
6019         .clear_bit_hook = btrfs_clear_bit_hook,
6020         .merge_extent_hook = btrfs_merge_extent_hook,
6021         .split_extent_hook = btrfs_split_extent_hook,
6022 };
6023
6024 /*
6025  * btrfs doesn't support the bmap operation because swapfiles
6026  * use bmap to make a mapping of extents in the file.  They assume
6027  * these extents won't change over the life of the file and they
6028  * use the bmap result to do IO directly to the drive.
6029  *
6030  * the btrfs bmap call would return logical addresses that aren't
6031  * suitable for IO and they also will change frequently as COW
6032  * operations happen.  So, swapfile + btrfs == corruption.
6033  *
6034  * For now we're avoiding this by dropping bmap.
6035  */
6036 static const struct address_space_operations btrfs_aops = {
6037         .readpage       = btrfs_readpage,
6038         .writepage      = btrfs_writepage,
6039         .writepages     = btrfs_writepages,
6040         .readpages      = btrfs_readpages,
6041         .sync_page      = block_sync_page,
6042         .direct_IO      = btrfs_direct_IO,
6043         .invalidatepage = btrfs_invalidatepage,
6044         .releasepage    = btrfs_releasepage,
6045         .set_page_dirty = btrfs_set_page_dirty,
6046         .error_remove_page = generic_error_remove_page,
6047 };
6048
6049 static const struct address_space_operations btrfs_symlink_aops = {
6050         .readpage       = btrfs_readpage,
6051         .writepage      = btrfs_writepage,
6052         .invalidatepage = btrfs_invalidatepage,
6053         .releasepage    = btrfs_releasepage,
6054 };
6055
6056 static const struct inode_operations btrfs_file_inode_operations = {
6057         .truncate       = btrfs_truncate,
6058         .getattr        = btrfs_getattr,
6059         .setattr        = btrfs_setattr,
6060         .setxattr       = btrfs_setxattr,
6061         .getxattr       = btrfs_getxattr,
6062         .listxattr      = btrfs_listxattr,
6063         .removexattr    = btrfs_removexattr,
6064         .permission     = btrfs_permission,
6065         .fallocate      = btrfs_fallocate,
6066         .fiemap         = btrfs_fiemap,
6067 };
6068 static const struct inode_operations btrfs_special_inode_operations = {
6069         .getattr        = btrfs_getattr,
6070         .setattr        = btrfs_setattr,
6071         .permission     = btrfs_permission,
6072         .setxattr       = btrfs_setxattr,
6073         .getxattr       = btrfs_getxattr,
6074         .listxattr      = btrfs_listxattr,
6075         .removexattr    = btrfs_removexattr,
6076 };
6077 static const struct inode_operations btrfs_symlink_inode_operations = {
6078         .readlink       = generic_readlink,
6079         .follow_link    = page_follow_link_light,
6080         .put_link       = page_put_link,
6081         .permission     = btrfs_permission,
6082         .setxattr       = btrfs_setxattr,
6083         .getxattr       = btrfs_getxattr,
6084         .listxattr      = btrfs_listxattr,
6085         .removexattr    = btrfs_removexattr,
6086 };
6087
6088 const struct dentry_operations btrfs_dentry_operations = {
6089         .d_delete       = btrfs_dentry_delete,
6090 };