2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
24 #include <linux/fsnotify.h>
25 #include <linux/pagemap.h>
26 #include <linux/highmem.h>
27 #include <linux/time.h>
28 #include <linux/init.h>
29 #include <linux/string.h>
30 #include <linux/smp_lock.h>
31 #include <linux/backing-dev.h>
32 #include <linux/mount.h>
33 #include <linux/mpage.h>
34 #include <linux/namei.h>
35 #include <linux/swap.h>
36 #include <linux/writeback.h>
37 #include <linux/statfs.h>
38 #include <linux/compat.h>
39 #include <linux/bit_spinlock.h>
40 #include <linux/security.h>
41 #include <linux/xattr.h>
42 #include <linux/vmalloc.h>
46 #include "transaction.h"
47 #include "btrfs_inode.h"
49 #include "print-tree.h"
55 static noinline int create_subvol(struct btrfs_root *root,
56 struct dentry *dentry,
57 char *name, int namelen)
59 struct btrfs_trans_handle *trans;
61 struct btrfs_root_item root_item;
62 struct btrfs_inode_item *inode_item;
63 struct extent_buffer *leaf;
64 struct btrfs_root *new_root = root;
69 u64 new_dirid = BTRFS_FIRST_FREE_OBJECTID;
73 ret = btrfs_check_metadata_free_space(root);
77 trans = btrfs_start_transaction(root, 1);
80 ret = btrfs_find_free_objectid(trans, root->fs_info->tree_root,
85 leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
86 objectid, trans->transid, 0, 0, 0);
92 btrfs_set_header_nritems(leaf, 0);
93 btrfs_set_header_level(leaf, 0);
94 btrfs_set_header_bytenr(leaf, leaf->start);
95 btrfs_set_header_generation(leaf, trans->transid);
96 btrfs_set_header_owner(leaf, objectid);
98 write_extent_buffer(leaf, root->fs_info->fsid,
99 (unsigned long)btrfs_header_fsid(leaf),
101 btrfs_mark_buffer_dirty(leaf);
103 inode_item = &root_item.inode;
104 memset(inode_item, 0, sizeof(*inode_item));
105 inode_item->generation = cpu_to_le64(1);
106 inode_item->size = cpu_to_le64(3);
107 inode_item->nlink = cpu_to_le32(1);
108 inode_item->nbytes = cpu_to_le64(root->leafsize);
109 inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
111 btrfs_set_root_bytenr(&root_item, leaf->start);
112 btrfs_set_root_generation(&root_item, trans->transid);
113 btrfs_set_root_level(&root_item, 0);
114 btrfs_set_root_refs(&root_item, 1);
115 btrfs_set_root_used(&root_item, 0);
116 btrfs_set_root_last_snapshot(&root_item, 0);
118 memset(&root_item.drop_progress, 0, sizeof(root_item.drop_progress));
119 root_item.drop_level = 0;
121 btrfs_tree_unlock(leaf);
122 free_extent_buffer(leaf);
125 btrfs_set_root_dirid(&root_item, new_dirid);
127 key.objectid = objectid;
129 btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
130 ret = btrfs_insert_root(trans, root->fs_info->tree_root, &key,
136 * insert the directory item
138 key.offset = (u64)-1;
139 dir = dentry->d_parent->d_inode;
140 ret = btrfs_set_inode_index(dir, &index);
143 ret = btrfs_insert_dir_item(trans, root,
144 name, namelen, dir->i_ino, &key,
145 BTRFS_FT_DIR, index);
149 btrfs_i_size_write(dir, dir->i_size + namelen * 2);
150 ret = btrfs_update_inode(trans, root, dir);
153 /* add the backref first */
154 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
155 objectid, BTRFS_ROOT_BACKREF_KEY,
156 root->root_key.objectid,
157 dir->i_ino, index, name, namelen);
161 /* now add the forward ref */
162 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
163 root->root_key.objectid, BTRFS_ROOT_REF_KEY,
165 dir->i_ino, index, name, namelen);
169 ret = btrfs_commit_transaction(trans, root);
173 new_root = btrfs_read_fs_root_no_name(root->fs_info, &key);
176 trans = btrfs_start_transaction(new_root, 1);
179 ret = btrfs_create_subvol_root(trans, new_root, dentry, new_dirid,
180 BTRFS_I(dir)->block_group);
185 nr = trans->blocks_used;
186 err = btrfs_commit_transaction(trans, new_root);
190 btrfs_btree_balance_dirty(root, nr);
194 static int create_snapshot(struct btrfs_root *root, struct dentry *dentry,
195 char *name, int namelen)
197 struct btrfs_pending_snapshot *pending_snapshot;
198 struct btrfs_trans_handle *trans;
201 unsigned long nr = 0;
206 ret = btrfs_check_metadata_free_space(root);
210 pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_NOFS);
211 if (!pending_snapshot) {
215 pending_snapshot->name = kmalloc(namelen + 1, GFP_NOFS);
216 if (!pending_snapshot->name) {
218 kfree(pending_snapshot);
221 memcpy(pending_snapshot->name, name, namelen);
222 pending_snapshot->name[namelen] = '\0';
223 pending_snapshot->dentry = dentry;
224 trans = btrfs_start_transaction(root, 1);
226 pending_snapshot->root = root;
227 list_add(&pending_snapshot->list,
228 &trans->transaction->pending_snapshots);
229 err = btrfs_commit_transaction(trans, root);
232 btrfs_btree_balance_dirty(root, nr);
236 /* copy of may_create in fs/namei.c() */
237 static inline int btrfs_may_create(struct inode *dir, struct dentry *child)
243 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
247 * Create a new subvolume below @parent. This is largely modeled after
248 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
249 * inside this filesystem so it's quite a bit simpler.
251 static noinline int btrfs_mksubvol(struct path *parent, char *name,
252 int mode, int namelen,
253 struct btrfs_root *snap_src)
255 struct dentry *dentry;
258 mutex_lock_nested(&parent->dentry->d_inode->i_mutex, I_MUTEX_PARENT);
260 dentry = lookup_one_len(name, parent->dentry, namelen);
261 error = PTR_ERR(dentry);
269 if (!IS_POSIXACL(parent->dentry->d_inode))
270 mode &= ~current_umask();
272 error = mnt_want_write(parent->mnt);
276 error = btrfs_may_create(parent->dentry->d_inode, dentry);
281 * Actually perform the low-level subvolume creation after all
284 * Eventually we want to pass in an inode under which we create this
285 * subvolume, but for now all are under the filesystem root.
287 * Also we should pass on the mode eventually to allow creating new
288 * subvolume with specific mode bits.
291 struct dentry *dir = dentry->d_parent;
292 struct dentry *test = dir->d_parent;
293 struct btrfs_path *path = btrfs_alloc_path();
296 u64 parent_oid = BTRFS_I(dir->d_inode)->root->root_key.objectid;
298 test_oid = snap_src->root_key.objectid;
300 ret = btrfs_find_root_ref(snap_src->fs_info->tree_root,
301 path, parent_oid, test_oid);
304 btrfs_release_path(snap_src->fs_info->tree_root, path);
306 /* we need to make sure we aren't creating a directory loop
307 * by taking a snapshot of something that has our current
308 * subvol in its directory tree. So, this loops through
309 * the dentries and checks the forward refs for each subvolume
310 * to see if is references the subvolume where we are
311 * placing this new snapshot.
315 dir == snap_src->fs_info->sb->s_root ||
316 test == snap_src->fs_info->sb->s_root ||
317 test->d_inode->i_sb != snap_src->fs_info->sb) {
320 if (S_ISLNK(test->d_inode->i_mode)) {
321 printk(KERN_INFO "Btrfs symlink in snapshot "
324 btrfs_free_path(path);
328 BTRFS_I(test->d_inode)->root->root_key.objectid;
329 ret = btrfs_find_root_ref(snap_src->fs_info->tree_root,
330 path, test_oid, parent_oid);
332 printk(KERN_INFO "Btrfs snapshot creation "
333 "failed, looping\n");
335 btrfs_free_path(path);
338 btrfs_release_path(snap_src->fs_info->tree_root, path);
339 test = test->d_parent;
342 btrfs_free_path(path);
343 error = create_snapshot(snap_src, dentry, name, namelen);
345 error = create_subvol(BTRFS_I(parent->dentry->d_inode)->root,
346 dentry, name, namelen);
351 fsnotify_mkdir(parent->dentry->d_inode, dentry);
353 mnt_drop_write(parent->mnt);
357 mutex_unlock(&parent->dentry->d_inode->i_mutex);
362 static int btrfs_defrag_file(struct file *file)
364 struct inode *inode = fdentry(file)->d_inode;
365 struct btrfs_root *root = BTRFS_I(inode)->root;
366 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
367 struct btrfs_ordered_extent *ordered;
369 unsigned long last_index;
370 unsigned long ra_pages = root->fs_info->bdi.ra_pages;
371 unsigned long total_read = 0;
377 ret = btrfs_check_data_free_space(root, inode, inode->i_size);
381 mutex_lock(&inode->i_mutex);
382 last_index = inode->i_size >> PAGE_CACHE_SHIFT;
383 for (i = 0; i <= last_index; i++) {
384 if (total_read % ra_pages == 0) {
385 btrfs_force_ra(inode->i_mapping, &file->f_ra, file, i,
386 min(last_index, i + ra_pages - 1));
390 page = grab_cache_page(inode->i_mapping, i);
393 if (!PageUptodate(page)) {
394 btrfs_readpage(NULL, page);
396 if (!PageUptodate(page)) {
398 page_cache_release(page);
403 wait_on_page_writeback(page);
405 page_start = (u64)page->index << PAGE_CACHE_SHIFT;
406 page_end = page_start + PAGE_CACHE_SIZE - 1;
407 lock_extent(io_tree, page_start, page_end, GFP_NOFS);
409 ordered = btrfs_lookup_ordered_extent(inode, page_start);
411 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
413 page_cache_release(page);
414 btrfs_start_ordered_extent(inode, ordered, 1);
415 btrfs_put_ordered_extent(ordered);
418 set_page_extent_mapped(page);
421 * this makes sure page_mkwrite is called on the
422 * page if it is dirtied again later
424 clear_page_dirty_for_io(page);
426 btrfs_set_extent_delalloc(inode, page_start, page_end);
428 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
429 set_page_dirty(page);
431 page_cache_release(page);
432 balance_dirty_pages_ratelimited_nr(inode->i_mapping, 1);
436 mutex_unlock(&inode->i_mutex);
440 static int btrfs_ioctl_resize(struct btrfs_root *root, void __user *arg)
445 struct btrfs_ioctl_vol_args *vol_args;
446 struct btrfs_trans_handle *trans;
447 struct btrfs_device *device = NULL;
454 if (root->fs_info->sb->s_flags & MS_RDONLY)
457 if (!capable(CAP_SYS_ADMIN))
460 vol_args = memdup_user(arg, sizeof(*vol_args));
461 if (IS_ERR(vol_args))
462 return PTR_ERR(vol_args);
464 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
465 namelen = strlen(vol_args->name);
467 mutex_lock(&root->fs_info->volume_mutex);
468 sizestr = vol_args->name;
469 devstr = strchr(sizestr, ':');
472 sizestr = devstr + 1;
474 devstr = vol_args->name;
475 devid = simple_strtoull(devstr, &end, 10);
476 printk(KERN_INFO "resizing devid %llu\n",
477 (unsigned long long)devid);
479 device = btrfs_find_device(root, devid, NULL, NULL);
481 printk(KERN_INFO "resizer unable to find device %llu\n",
482 (unsigned long long)devid);
486 if (!strcmp(sizestr, "max"))
487 new_size = device->bdev->bd_inode->i_size;
489 if (sizestr[0] == '-') {
492 } else if (sizestr[0] == '+') {
496 new_size = btrfs_parse_size(sizestr);
503 old_size = device->total_bytes;
506 if (new_size > old_size) {
510 new_size = old_size - new_size;
511 } else if (mod > 0) {
512 new_size = old_size + new_size;
515 if (new_size < 256 * 1024 * 1024) {
519 if (new_size > device->bdev->bd_inode->i_size) {
524 do_div(new_size, root->sectorsize);
525 new_size *= root->sectorsize;
527 printk(KERN_INFO "new size for %s is %llu\n",
528 device->name, (unsigned long long)new_size);
530 if (new_size > old_size) {
531 trans = btrfs_start_transaction(root, 1);
532 ret = btrfs_grow_device(trans, device, new_size);
533 btrfs_commit_transaction(trans, root);
535 ret = btrfs_shrink_device(device, new_size);
539 mutex_unlock(&root->fs_info->volume_mutex);
544 static noinline int btrfs_ioctl_snap_create(struct file *file,
545 void __user *arg, int subvol)
547 struct btrfs_root *root = BTRFS_I(fdentry(file)->d_inode)->root;
548 struct btrfs_ioctl_vol_args *vol_args;
549 struct btrfs_dir_item *di;
550 struct btrfs_path *path;
551 struct file *src_file;
556 if (root->fs_info->sb->s_flags & MS_RDONLY)
559 vol_args = memdup_user(arg, sizeof(*vol_args));
560 if (IS_ERR(vol_args))
561 return PTR_ERR(vol_args);
563 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
564 namelen = strlen(vol_args->name);
565 if (strchr(vol_args->name, '/')) {
570 path = btrfs_alloc_path();
576 root_dirid = root->fs_info->sb->s_root->d_inode->i_ino,
577 di = btrfs_lookup_dir_item(NULL, root->fs_info->tree_root,
579 vol_args->name, namelen, 0);
580 btrfs_free_path(path);
582 if (di && !IS_ERR(di)) {
593 ret = btrfs_mksubvol(&file->f_path, vol_args->name,
594 file->f_path.dentry->d_inode->i_mode,
597 struct inode *src_inode;
598 src_file = fget(vol_args->fd);
604 src_inode = src_file->f_path.dentry->d_inode;
605 if (src_inode->i_sb != file->f_path.dentry->d_inode->i_sb) {
606 printk(KERN_INFO "btrfs: Snapshot src from "
612 ret = btrfs_mksubvol(&file->f_path, vol_args->name,
613 file->f_path.dentry->d_inode->i_mode,
614 namelen, BTRFS_I(src_inode)->root);
623 static int btrfs_ioctl_defrag(struct file *file)
625 struct inode *inode = fdentry(file)->d_inode;
626 struct btrfs_root *root = BTRFS_I(inode)->root;
629 ret = mnt_want_write(file->f_path.mnt);
633 switch (inode->i_mode & S_IFMT) {
635 if (!capable(CAP_SYS_ADMIN)) {
639 btrfs_defrag_root(root, 0);
640 btrfs_defrag_root(root->fs_info->extent_root, 0);
643 if (!(file->f_mode & FMODE_WRITE)) {
647 btrfs_defrag_file(file);
651 mnt_drop_write(file->f_path.mnt);
655 static long btrfs_ioctl_add_dev(struct btrfs_root *root, void __user *arg)
657 struct btrfs_ioctl_vol_args *vol_args;
660 if (!capable(CAP_SYS_ADMIN))
663 vol_args = memdup_user(arg, sizeof(*vol_args));
664 if (IS_ERR(vol_args))
665 return PTR_ERR(vol_args);
667 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
668 ret = btrfs_init_new_device(root, vol_args->name);
674 static long btrfs_ioctl_rm_dev(struct btrfs_root *root, void __user *arg)
676 struct btrfs_ioctl_vol_args *vol_args;
679 if (!capable(CAP_SYS_ADMIN))
682 if (root->fs_info->sb->s_flags & MS_RDONLY)
685 vol_args = memdup_user(arg, sizeof(*vol_args));
686 if (IS_ERR(vol_args))
687 return PTR_ERR(vol_args);
689 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
690 ret = btrfs_rm_device(root, vol_args->name);
696 static long btrfs_ioctl_clone(struct file *file, unsigned long srcfd,
697 u64 off, u64 olen, u64 destoff)
699 struct inode *inode = fdentry(file)->d_inode;
700 struct btrfs_root *root = BTRFS_I(inode)->root;
701 struct file *src_file;
703 struct btrfs_trans_handle *trans;
704 struct btrfs_path *path;
705 struct extent_buffer *leaf;
707 struct btrfs_key key;
712 u64 bs = root->fs_info->sb->s_blocksize;
717 * - split compressed inline extents. annoying: we need to
718 * decompress into destination's address_space (the file offset
719 * may change, so source mapping won't do), then recompress (or
720 * otherwise reinsert) a subrange.
721 * - allow ranges within the same file to be cloned (provided
722 * they don't overlap)?
725 /* the destination must be opened for writing */
726 if (!(file->f_mode & FMODE_WRITE))
729 ret = mnt_want_write(file->f_path.mnt);
733 src_file = fget(srcfd);
738 src = src_file->f_dentry->d_inode;
745 if (S_ISDIR(src->i_mode) || S_ISDIR(inode->i_mode))
749 if (src->i_sb != inode->i_sb || BTRFS_I(src)->root != root)
753 buf = vmalloc(btrfs_level_size(root, 0));
757 path = btrfs_alloc_path();
765 mutex_lock(&inode->i_mutex);
766 mutex_lock(&src->i_mutex);
768 mutex_lock(&src->i_mutex);
769 mutex_lock(&inode->i_mutex);
772 /* determine range to clone */
774 if (off >= src->i_size || off + len > src->i_size)
777 olen = len = src->i_size - off;
778 /* if we extend to eof, continue to block boundary */
779 if (off + len == src->i_size)
780 len = ((src->i_size + bs-1) & ~(bs-1))
783 /* verify the end result is block aligned */
784 if ((off & (bs-1)) ||
785 ((off + len) & (bs-1)))
788 /* do any pending delalloc/csum calc on src, one way or
789 another, and lock file content */
791 struct btrfs_ordered_extent *ordered;
792 lock_extent(&BTRFS_I(src)->io_tree, off, off+len, GFP_NOFS);
793 ordered = btrfs_lookup_first_ordered_extent(inode, off+len);
794 if (BTRFS_I(src)->delalloc_bytes == 0 && !ordered)
796 unlock_extent(&BTRFS_I(src)->io_tree, off, off+len, GFP_NOFS);
798 btrfs_put_ordered_extent(ordered);
799 btrfs_wait_ordered_range(src, off, off+len);
802 trans = btrfs_start_transaction(root, 1);
805 /* punch hole in destination first */
806 btrfs_drop_extents(trans, root, inode, off, off + len,
807 off + len, 0, &hint_byte);
810 key.objectid = src->i_ino;
811 key.type = BTRFS_EXTENT_DATA_KEY;
816 * note the key will change type as we walk through the
819 ret = btrfs_search_slot(trans, root, &key, path, 0, 0);
823 nritems = btrfs_header_nritems(path->nodes[0]);
824 if (path->slots[0] >= nritems) {
825 ret = btrfs_next_leaf(root, path);
830 nritems = btrfs_header_nritems(path->nodes[0]);
832 leaf = path->nodes[0];
833 slot = path->slots[0];
835 btrfs_item_key_to_cpu(leaf, &key, slot);
836 if (btrfs_key_type(&key) > BTRFS_EXTENT_DATA_KEY ||
837 key.objectid != src->i_ino)
840 if (btrfs_key_type(&key) == BTRFS_EXTENT_DATA_KEY) {
841 struct btrfs_file_extent_item *extent;
844 struct btrfs_key new_key;
845 u64 disko = 0, diskl = 0;
846 u64 datao = 0, datal = 0;
849 size = btrfs_item_size_nr(leaf, slot);
850 read_extent_buffer(leaf, buf,
851 btrfs_item_ptr_offset(leaf, slot),
854 extent = btrfs_item_ptr(leaf, slot,
855 struct btrfs_file_extent_item);
856 comp = btrfs_file_extent_compression(leaf, extent);
857 type = btrfs_file_extent_type(leaf, extent);
858 if (type == BTRFS_FILE_EXTENT_REG) {
859 disko = btrfs_file_extent_disk_bytenr(leaf,
861 diskl = btrfs_file_extent_disk_num_bytes(leaf,
863 datao = btrfs_file_extent_offset(leaf, extent);
864 datal = btrfs_file_extent_num_bytes(leaf,
866 } else if (type == BTRFS_FILE_EXTENT_INLINE) {
867 /* take upper bound, may be compressed */
868 datal = btrfs_file_extent_ram_bytes(leaf,
871 btrfs_release_path(root, path);
873 if (key.offset + datal < off ||
874 key.offset >= off+len)
877 memcpy(&new_key, &key, sizeof(new_key));
878 new_key.objectid = inode->i_ino;
879 new_key.offset = key.offset + destoff - off;
881 if (type == BTRFS_FILE_EXTENT_REG) {
882 ret = btrfs_insert_empty_item(trans, root, path,
887 leaf = path->nodes[0];
888 slot = path->slots[0];
889 write_extent_buffer(leaf, buf,
890 btrfs_item_ptr_offset(leaf, slot),
893 extent = btrfs_item_ptr(leaf, slot,
894 struct btrfs_file_extent_item);
896 if (off > key.offset) {
897 datao += off - key.offset;
898 datal -= off - key.offset;
900 if (key.offset + datao + datal + key.offset >
902 datal = off + len - key.offset - datao;
903 /* disko == 0 means it's a hole */
907 btrfs_set_file_extent_offset(leaf, extent,
909 btrfs_set_file_extent_num_bytes(leaf, extent,
912 inode_add_bytes(inode, datal);
913 ret = btrfs_inc_extent_ref(trans, root,
914 disko, diskl, leaf->start,
915 root->root_key.objectid,
920 } else if (type == BTRFS_FILE_EXTENT_INLINE) {
923 if (off > key.offset) {
924 skip = off - key.offset;
925 new_key.offset += skip;
928 if (key.offset + datal > off+len)
929 trim = key.offset + datal - (off+len);
931 if (comp && (skip || trim)) {
936 datal -= skip + trim;
937 ret = btrfs_insert_empty_item(trans, root, path,
944 btrfs_file_extent_calc_inline_size(0);
945 memmove(buf+start, buf+start+skip,
949 leaf = path->nodes[0];
950 slot = path->slots[0];
951 write_extent_buffer(leaf, buf,
952 btrfs_item_ptr_offset(leaf, slot),
954 inode_add_bytes(inode, datal);
957 btrfs_mark_buffer_dirty(leaf);
961 btrfs_release_path(root, path);
966 btrfs_release_path(root, path);
968 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
969 if (destoff + olen > inode->i_size)
970 btrfs_i_size_write(inode, destoff + olen);
971 BTRFS_I(inode)->flags = BTRFS_I(src)->flags;
972 ret = btrfs_update_inode(trans, root, inode);
974 btrfs_end_transaction(trans, root);
975 unlock_extent(&BTRFS_I(src)->io_tree, off, off+len, GFP_NOFS);
977 vmtruncate(inode, 0);
979 mutex_unlock(&src->i_mutex);
980 mutex_unlock(&inode->i_mutex);
982 btrfs_free_path(path);
986 mnt_drop_write(file->f_path.mnt);
990 static long btrfs_ioctl_clone_range(struct file *file, void __user *argp)
992 struct btrfs_ioctl_clone_range_args args;
994 if (copy_from_user(&args, argp, sizeof(args)))
996 return btrfs_ioctl_clone(file, args.src_fd, args.src_offset,
997 args.src_length, args.dest_offset);
1001 * there are many ways the trans_start and trans_end ioctls can lead
1002 * to deadlocks. They should only be used by applications that
1003 * basically own the machine, and have a very in depth understanding
1004 * of all the possible deadlocks and enospc problems.
1006 static long btrfs_ioctl_trans_start(struct file *file)
1008 struct inode *inode = fdentry(file)->d_inode;
1009 struct btrfs_root *root = BTRFS_I(inode)->root;
1010 struct btrfs_trans_handle *trans;
1013 if (!capable(CAP_SYS_ADMIN))
1016 if (file->private_data) {
1021 ret = mnt_want_write(file->f_path.mnt);
1025 mutex_lock(&root->fs_info->trans_mutex);
1026 root->fs_info->open_ioctl_trans++;
1027 mutex_unlock(&root->fs_info->trans_mutex);
1029 trans = btrfs_start_ioctl_transaction(root, 0);
1031 file->private_data = trans;
1034 /*printk(KERN_INFO "btrfs_ioctl_trans_start on %p\n", file);*/
1040 * there are many ways the trans_start and trans_end ioctls can lead
1041 * to deadlocks. They should only be used by applications that
1042 * basically own the machine, and have a very in depth understanding
1043 * of all the possible deadlocks and enospc problems.
1045 long btrfs_ioctl_trans_end(struct file *file)
1047 struct inode *inode = fdentry(file)->d_inode;
1048 struct btrfs_root *root = BTRFS_I(inode)->root;
1049 struct btrfs_trans_handle *trans;
1052 trans = file->private_data;
1057 btrfs_end_transaction(trans, root);
1058 file->private_data = NULL;
1060 mutex_lock(&root->fs_info->trans_mutex);
1061 root->fs_info->open_ioctl_trans--;
1062 mutex_unlock(&root->fs_info->trans_mutex);
1064 mnt_drop_write(file->f_path.mnt);
1070 long btrfs_ioctl(struct file *file, unsigned int
1071 cmd, unsigned long arg)
1073 struct btrfs_root *root = BTRFS_I(fdentry(file)->d_inode)->root;
1074 void __user *argp = (void __user *)arg;
1077 case BTRFS_IOC_SNAP_CREATE:
1078 return btrfs_ioctl_snap_create(file, argp, 0);
1079 case BTRFS_IOC_SUBVOL_CREATE:
1080 return btrfs_ioctl_snap_create(file, argp, 1);
1081 case BTRFS_IOC_DEFRAG:
1082 return btrfs_ioctl_defrag(file);
1083 case BTRFS_IOC_RESIZE:
1084 return btrfs_ioctl_resize(root, argp);
1085 case BTRFS_IOC_ADD_DEV:
1086 return btrfs_ioctl_add_dev(root, argp);
1087 case BTRFS_IOC_RM_DEV:
1088 return btrfs_ioctl_rm_dev(root, argp);
1089 case BTRFS_IOC_BALANCE:
1090 return btrfs_balance(root->fs_info->dev_root);
1091 case BTRFS_IOC_CLONE:
1092 return btrfs_ioctl_clone(file, arg, 0, 0, 0);
1093 case BTRFS_IOC_CLONE_RANGE:
1094 return btrfs_ioctl_clone_range(file, argp);
1095 case BTRFS_IOC_TRANS_START:
1096 return btrfs_ioctl_trans_start(file);
1097 case BTRFS_IOC_TRANS_END:
1098 return btrfs_ioctl_trans_end(file);
1099 case BTRFS_IOC_SYNC:
1100 btrfs_sync_fs(file->f_dentry->d_sb, 1);