2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
24 #include <linux/fsnotify.h>
25 #include <linux/pagemap.h>
26 #include <linux/highmem.h>
27 #include <linux/time.h>
28 #include <linux/init.h>
29 #include <linux/string.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mount.h>
32 #include <linux/mpage.h>
33 #include <linux/namei.h>
34 #include <linux/swap.h>
35 #include <linux/writeback.h>
36 #include <linux/statfs.h>
37 #include <linux/compat.h>
38 #include <linux/bit_spinlock.h>
39 #include <linux/security.h>
40 #include <linux/xattr.h>
41 #include <linux/vmalloc.h>
42 #include <linux/slab.h>
46 #include "transaction.h"
47 #include "btrfs_inode.h"
49 #include "print-tree.h"
53 /* Mask out flags that are inappropriate for the given type of inode. */
54 static inline __u32 btrfs_mask_flags(umode_t mode, __u32 flags)
58 else if (S_ISREG(mode))
59 return flags & ~FS_DIRSYNC_FL;
61 return flags & (FS_NODUMP_FL | FS_NOATIME_FL);
65 * Export inode flags to the format expected by the FS_IOC_GETFLAGS ioctl.
67 static unsigned int btrfs_flags_to_ioctl(unsigned int flags)
69 unsigned int iflags = 0;
71 if (flags & BTRFS_INODE_SYNC)
73 if (flags & BTRFS_INODE_IMMUTABLE)
74 iflags |= FS_IMMUTABLE_FL;
75 if (flags & BTRFS_INODE_APPEND)
76 iflags |= FS_APPEND_FL;
77 if (flags & BTRFS_INODE_NODUMP)
78 iflags |= FS_NODUMP_FL;
79 if (flags & BTRFS_INODE_NOATIME)
80 iflags |= FS_NOATIME_FL;
81 if (flags & BTRFS_INODE_DIRSYNC)
82 iflags |= FS_DIRSYNC_FL;
88 * Update inode->i_flags based on the btrfs internal flags.
90 void btrfs_update_iflags(struct inode *inode)
92 struct btrfs_inode *ip = BTRFS_I(inode);
94 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
96 if (ip->flags & BTRFS_INODE_SYNC)
97 inode->i_flags |= S_SYNC;
98 if (ip->flags & BTRFS_INODE_IMMUTABLE)
99 inode->i_flags |= S_IMMUTABLE;
100 if (ip->flags & BTRFS_INODE_APPEND)
101 inode->i_flags |= S_APPEND;
102 if (ip->flags & BTRFS_INODE_NOATIME)
103 inode->i_flags |= S_NOATIME;
104 if (ip->flags & BTRFS_INODE_DIRSYNC)
105 inode->i_flags |= S_DIRSYNC;
109 * Inherit flags from the parent inode.
111 * Unlike extN we don't have any flags we don't want to inherit currently.
113 void btrfs_inherit_iflags(struct inode *inode, struct inode *dir)
120 flags = BTRFS_I(dir)->flags;
122 if (S_ISREG(inode->i_mode))
123 flags &= ~BTRFS_INODE_DIRSYNC;
124 else if (!S_ISDIR(inode->i_mode))
125 flags &= (BTRFS_INODE_NODUMP | BTRFS_INODE_NOATIME);
127 BTRFS_I(inode)->flags = flags;
128 btrfs_update_iflags(inode);
131 static int btrfs_ioctl_getflags(struct file *file, void __user *arg)
133 struct btrfs_inode *ip = BTRFS_I(file->f_path.dentry->d_inode);
134 unsigned int flags = btrfs_flags_to_ioctl(ip->flags);
136 if (copy_to_user(arg, &flags, sizeof(flags)))
141 static int btrfs_ioctl_setflags(struct file *file, void __user *arg)
143 struct inode *inode = file->f_path.dentry->d_inode;
144 struct btrfs_inode *ip = BTRFS_I(inode);
145 struct btrfs_root *root = ip->root;
146 struct btrfs_trans_handle *trans;
147 unsigned int flags, oldflags;
150 if (copy_from_user(&flags, arg, sizeof(flags)))
153 if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \
154 FS_NOATIME_FL | FS_NODUMP_FL | \
155 FS_SYNC_FL | FS_DIRSYNC_FL))
158 if (!is_owner_or_cap(inode))
161 mutex_lock(&inode->i_mutex);
163 flags = btrfs_mask_flags(inode->i_mode, flags);
164 oldflags = btrfs_flags_to_ioctl(ip->flags);
165 if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) {
166 if (!capable(CAP_LINUX_IMMUTABLE)) {
172 ret = mnt_want_write(file->f_path.mnt);
176 if (flags & FS_SYNC_FL)
177 ip->flags |= BTRFS_INODE_SYNC;
179 ip->flags &= ~BTRFS_INODE_SYNC;
180 if (flags & FS_IMMUTABLE_FL)
181 ip->flags |= BTRFS_INODE_IMMUTABLE;
183 ip->flags &= ~BTRFS_INODE_IMMUTABLE;
184 if (flags & FS_APPEND_FL)
185 ip->flags |= BTRFS_INODE_APPEND;
187 ip->flags &= ~BTRFS_INODE_APPEND;
188 if (flags & FS_NODUMP_FL)
189 ip->flags |= BTRFS_INODE_NODUMP;
191 ip->flags &= ~BTRFS_INODE_NODUMP;
192 if (flags & FS_NOATIME_FL)
193 ip->flags |= BTRFS_INODE_NOATIME;
195 ip->flags &= ~BTRFS_INODE_NOATIME;
196 if (flags & FS_DIRSYNC_FL)
197 ip->flags |= BTRFS_INODE_DIRSYNC;
199 ip->flags &= ~BTRFS_INODE_DIRSYNC;
202 trans = btrfs_join_transaction(root, 1);
205 ret = btrfs_update_inode(trans, root, inode);
208 btrfs_update_iflags(inode);
209 inode->i_ctime = CURRENT_TIME;
210 btrfs_end_transaction(trans, root);
212 mnt_drop_write(file->f_path.mnt);
214 mutex_unlock(&inode->i_mutex);
218 static int btrfs_ioctl_getversion(struct file *file, int __user *arg)
220 struct inode *inode = file->f_path.dentry->d_inode;
222 return put_user(inode->i_generation, arg);
225 static noinline int create_subvol(struct btrfs_root *root,
226 struct dentry *dentry,
227 char *name, int namelen)
229 struct btrfs_trans_handle *trans;
230 struct btrfs_key key;
231 struct btrfs_root_item root_item;
232 struct btrfs_inode_item *inode_item;
233 struct extent_buffer *leaf;
234 struct btrfs_root *new_root;
235 struct inode *dir = dentry->d_parent->d_inode;
239 u64 new_dirid = BTRFS_FIRST_FREE_OBJECTID;
242 ret = btrfs_find_free_objectid(NULL, root->fs_info->tree_root,
252 trans = btrfs_start_transaction(root, 6);
254 return PTR_ERR(trans);
256 leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
257 0, objectid, NULL, 0, 0, 0);
263 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
264 btrfs_set_header_bytenr(leaf, leaf->start);
265 btrfs_set_header_generation(leaf, trans->transid);
266 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
267 btrfs_set_header_owner(leaf, objectid);
269 write_extent_buffer(leaf, root->fs_info->fsid,
270 (unsigned long)btrfs_header_fsid(leaf),
272 write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
273 (unsigned long)btrfs_header_chunk_tree_uuid(leaf),
275 btrfs_mark_buffer_dirty(leaf);
277 inode_item = &root_item.inode;
278 memset(inode_item, 0, sizeof(*inode_item));
279 inode_item->generation = cpu_to_le64(1);
280 inode_item->size = cpu_to_le64(3);
281 inode_item->nlink = cpu_to_le32(1);
282 inode_item->nbytes = cpu_to_le64(root->leafsize);
283 inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
285 btrfs_set_root_bytenr(&root_item, leaf->start);
286 btrfs_set_root_generation(&root_item, trans->transid);
287 btrfs_set_root_level(&root_item, 0);
288 btrfs_set_root_refs(&root_item, 1);
289 btrfs_set_root_used(&root_item, leaf->len);
290 btrfs_set_root_last_snapshot(&root_item, 0);
292 memset(&root_item.drop_progress, 0, sizeof(root_item.drop_progress));
293 root_item.drop_level = 0;
295 btrfs_tree_unlock(leaf);
296 free_extent_buffer(leaf);
299 btrfs_set_root_dirid(&root_item, new_dirid);
301 key.objectid = objectid;
303 btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
304 ret = btrfs_insert_root(trans, root->fs_info->tree_root, &key,
309 key.offset = (u64)-1;
310 new_root = btrfs_read_fs_root_no_name(root->fs_info, &key);
311 BUG_ON(IS_ERR(new_root));
313 btrfs_record_root_in_trans(trans, new_root);
315 ret = btrfs_create_subvol_root(trans, new_root, new_dirid,
316 BTRFS_I(dir)->block_group);
318 * insert the directory item
320 ret = btrfs_set_inode_index(dir, &index);
323 ret = btrfs_insert_dir_item(trans, root,
324 name, namelen, dir->i_ino, &key,
325 BTRFS_FT_DIR, index);
329 btrfs_i_size_write(dir, dir->i_size + namelen * 2);
330 ret = btrfs_update_inode(trans, root, dir);
333 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
334 objectid, root->root_key.objectid,
335 dir->i_ino, index, name, namelen);
339 d_instantiate(dentry, btrfs_lookup_dentry(dir, dentry));
341 err = btrfs_commit_transaction(trans, root);
347 static int create_snapshot(struct btrfs_root *root, struct dentry *dentry)
350 struct btrfs_pending_snapshot *pending_snapshot;
351 struct btrfs_trans_handle *trans;
357 pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_NOFS);
358 if (!pending_snapshot)
361 btrfs_init_block_rsv(&pending_snapshot->block_rsv);
362 pending_snapshot->dentry = dentry;
363 pending_snapshot->root = root;
365 trans = btrfs_start_transaction(root->fs_info->extent_root, 5);
367 ret = PTR_ERR(trans);
371 ret = btrfs_snap_reserve_metadata(trans, pending_snapshot);
374 list_add(&pending_snapshot->list,
375 &trans->transaction->pending_snapshots);
376 ret = btrfs_commit_transaction(trans, root->fs_info->extent_root);
379 ret = pending_snapshot->error;
383 btrfs_orphan_cleanup(pending_snapshot->snap);
385 inode = btrfs_lookup_dentry(dentry->d_parent->d_inode, dentry);
387 ret = PTR_ERR(inode);
391 d_instantiate(dentry, inode);
394 kfree(pending_snapshot);
398 /* copy of may_create in fs/namei.c() */
399 static inline int btrfs_may_create(struct inode *dir, struct dentry *child)
405 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
409 * Create a new subvolume below @parent. This is largely modeled after
410 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
411 * inside this filesystem so it's quite a bit simpler.
413 static noinline int btrfs_mksubvol(struct path *parent,
414 char *name, int namelen,
415 struct btrfs_root *snap_src)
417 struct inode *dir = parent->dentry->d_inode;
418 struct dentry *dentry;
421 mutex_lock_nested(&dir->i_mutex, I_MUTEX_PARENT);
423 dentry = lookup_one_len(name, parent->dentry, namelen);
424 error = PTR_ERR(dentry);
432 error = mnt_want_write(parent->mnt);
436 error = btrfs_may_create(dir, dentry);
440 down_read(&BTRFS_I(dir)->root->fs_info->subvol_sem);
442 if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0)
446 error = create_snapshot(snap_src, dentry);
448 error = create_subvol(BTRFS_I(dir)->root, dentry,
452 fsnotify_mkdir(dir, dentry);
454 up_read(&BTRFS_I(dir)->root->fs_info->subvol_sem);
456 mnt_drop_write(parent->mnt);
460 mutex_unlock(&dir->i_mutex);
464 static int should_defrag_range(struct inode *inode, u64 start, u64 len,
465 int thresh, u64 *last_len, u64 *skip,
468 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
469 struct extent_map *em = NULL;
470 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
478 * make sure that once we start defragging and extent, we keep on
481 if (start < *defrag_end)
487 * hopefully we have this extent in the tree already, try without
488 * the full extent lock
490 read_lock(&em_tree->lock);
491 em = lookup_extent_mapping(em_tree, start, len);
492 read_unlock(&em_tree->lock);
495 /* get the big lock and read metadata off disk */
496 lock_extent(io_tree, start, start + len - 1, GFP_NOFS);
497 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
498 unlock_extent(io_tree, start, start + len - 1, GFP_NOFS);
504 /* this will cover holes, and inline extents */
505 if (em->block_start >= EXTENT_MAP_LAST_BYTE)
509 * we hit a real extent, if it is big don't bother defragging it again
511 if ((*last_len == 0 || *last_len >= thresh) && em->len >= thresh)
515 * last_len ends up being a counter of how many bytes we've defragged.
516 * every time we choose not to defrag an extent, we reset *last_len
517 * so that the next tiny extent will force a defrag.
519 * The end result of this is that tiny extents before a single big
520 * extent will force at least part of that big extent to be defragged.
524 *defrag_end = extent_map_end(em);
527 *skip = extent_map_end(em);
535 static int btrfs_defrag_file(struct file *file,
536 struct btrfs_ioctl_defrag_range_args *range)
538 struct inode *inode = fdentry(file)->d_inode;
539 struct btrfs_root *root = BTRFS_I(inode)->root;
540 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
541 struct btrfs_ordered_extent *ordered;
543 unsigned long last_index;
544 unsigned long ra_pages = root->fs_info->bdi.ra_pages;
545 unsigned long total_read = 0;
554 if (inode->i_size == 0)
557 if (range->start + range->len > range->start) {
558 last_index = min_t(u64, inode->i_size - 1,
559 range->start + range->len - 1) >> PAGE_CACHE_SHIFT;
561 last_index = (inode->i_size - 1) >> PAGE_CACHE_SHIFT;
564 i = range->start >> PAGE_CACHE_SHIFT;
565 while (i <= last_index) {
566 if (!should_defrag_range(inode, (u64)i << PAGE_CACHE_SHIFT,
568 range->extent_thresh,
573 * the should_defrag function tells us how much to skip
574 * bump our counter by the suggested amount
576 next = (skip + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
577 i = max(i + 1, next);
581 if (total_read % ra_pages == 0) {
582 btrfs_force_ra(inode->i_mapping, &file->f_ra, file, i,
583 min(last_index, i + ra_pages - 1));
586 mutex_lock(&inode->i_mutex);
587 if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)
588 BTRFS_I(inode)->force_compress = 1;
590 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
594 if (inode->i_size == 0 ||
595 i > ((inode->i_size - 1) >> PAGE_CACHE_SHIFT)) {
597 goto err_reservations;
600 page = grab_cache_page(inode->i_mapping, i);
603 goto err_reservations;
606 if (!PageUptodate(page)) {
607 btrfs_readpage(NULL, page);
609 if (!PageUptodate(page)) {
611 page_cache_release(page);
613 goto err_reservations;
617 if (page->mapping != inode->i_mapping) {
619 page_cache_release(page);
623 wait_on_page_writeback(page);
625 if (PageDirty(page)) {
626 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
630 page_start = (u64)page->index << PAGE_CACHE_SHIFT;
631 page_end = page_start + PAGE_CACHE_SIZE - 1;
632 lock_extent(io_tree, page_start, page_end, GFP_NOFS);
634 ordered = btrfs_lookup_ordered_extent(inode, page_start);
636 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
638 page_cache_release(page);
639 btrfs_start_ordered_extent(inode, ordered, 1);
640 btrfs_put_ordered_extent(ordered);
643 set_page_extent_mapped(page);
646 * this makes sure page_mkwrite is called on the
647 * page if it is dirtied again later
649 clear_page_dirty_for_io(page);
650 clear_extent_bits(&BTRFS_I(inode)->io_tree, page_start,
651 page_end, EXTENT_DIRTY | EXTENT_DELALLOC |
652 EXTENT_DO_ACCOUNTING, GFP_NOFS);
654 btrfs_set_extent_delalloc(inode, page_start, page_end, NULL);
655 ClearPageChecked(page);
656 set_page_dirty(page);
657 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
661 page_cache_release(page);
662 mutex_unlock(&inode->i_mutex);
664 balance_dirty_pages_ratelimited_nr(inode->i_mapping, 1);
668 if ((range->flags & BTRFS_DEFRAG_RANGE_START_IO))
669 filemap_flush(inode->i_mapping);
671 if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
672 /* the filemap_flush will queue IO into the worker threads, but
673 * we have to make sure the IO is actually started and that
674 * ordered extents get created before we return
676 atomic_inc(&root->fs_info->async_submit_draining);
677 while (atomic_read(&root->fs_info->nr_async_submits) ||
678 atomic_read(&root->fs_info->async_delalloc_pages)) {
679 wait_event(root->fs_info->async_submit_wait,
680 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
681 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
683 atomic_dec(&root->fs_info->async_submit_draining);
685 mutex_lock(&inode->i_mutex);
686 BTRFS_I(inode)->force_compress = 0;
687 mutex_unlock(&inode->i_mutex);
693 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
695 mutex_unlock(&inode->i_mutex);
699 static noinline int btrfs_ioctl_resize(struct btrfs_root *root,
705 struct btrfs_ioctl_vol_args *vol_args;
706 struct btrfs_trans_handle *trans;
707 struct btrfs_device *device = NULL;
714 if (root->fs_info->sb->s_flags & MS_RDONLY)
717 if (!capable(CAP_SYS_ADMIN))
720 vol_args = memdup_user(arg, sizeof(*vol_args));
721 if (IS_ERR(vol_args))
722 return PTR_ERR(vol_args);
724 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
725 namelen = strlen(vol_args->name);
727 mutex_lock(&root->fs_info->volume_mutex);
728 sizestr = vol_args->name;
729 devstr = strchr(sizestr, ':');
732 sizestr = devstr + 1;
734 devstr = vol_args->name;
735 devid = simple_strtoull(devstr, &end, 10);
736 printk(KERN_INFO "resizing devid %llu\n",
737 (unsigned long long)devid);
739 device = btrfs_find_device(root, devid, NULL, NULL);
741 printk(KERN_INFO "resizer unable to find device %llu\n",
742 (unsigned long long)devid);
746 if (!strcmp(sizestr, "max"))
747 new_size = device->bdev->bd_inode->i_size;
749 if (sizestr[0] == '-') {
752 } else if (sizestr[0] == '+') {
756 new_size = memparse(sizestr, NULL);
763 old_size = device->total_bytes;
766 if (new_size > old_size) {
770 new_size = old_size - new_size;
771 } else if (mod > 0) {
772 new_size = old_size + new_size;
775 if (new_size < 256 * 1024 * 1024) {
779 if (new_size > device->bdev->bd_inode->i_size) {
784 do_div(new_size, root->sectorsize);
785 new_size *= root->sectorsize;
787 printk(KERN_INFO "new size for %s is %llu\n",
788 device->name, (unsigned long long)new_size);
790 if (new_size > old_size) {
791 trans = btrfs_start_transaction(root, 0);
792 ret = btrfs_grow_device(trans, device, new_size);
793 btrfs_commit_transaction(trans, root);
795 ret = btrfs_shrink_device(device, new_size);
799 mutex_unlock(&root->fs_info->volume_mutex);
804 static noinline int btrfs_ioctl_snap_create(struct file *file,
805 void __user *arg, int subvol)
807 struct btrfs_root *root = BTRFS_I(fdentry(file)->d_inode)->root;
808 struct btrfs_ioctl_vol_args *vol_args;
809 struct file *src_file;
813 if (root->fs_info->sb->s_flags & MS_RDONLY)
816 vol_args = memdup_user(arg, sizeof(*vol_args));
817 if (IS_ERR(vol_args))
818 return PTR_ERR(vol_args);
820 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
821 namelen = strlen(vol_args->name);
822 if (strchr(vol_args->name, '/')) {
828 ret = btrfs_mksubvol(&file->f_path, vol_args->name, namelen,
831 struct inode *src_inode;
832 src_file = fget(vol_args->fd);
838 src_inode = src_file->f_path.dentry->d_inode;
839 if (src_inode->i_sb != file->f_path.dentry->d_inode->i_sb) {
840 printk(KERN_INFO "btrfs: Snapshot src from "
846 ret = btrfs_mksubvol(&file->f_path, vol_args->name, namelen,
847 BTRFS_I(src_inode)->root);
856 * helper to check if the subvolume references other subvolumes
858 static noinline int may_destroy_subvol(struct btrfs_root *root)
860 struct btrfs_path *path;
861 struct btrfs_key key;
864 path = btrfs_alloc_path();
868 key.objectid = root->root_key.objectid;
869 key.type = BTRFS_ROOT_REF_KEY;
870 key.offset = (u64)-1;
872 ret = btrfs_search_slot(NULL, root->fs_info->tree_root,
879 if (path->slots[0] > 0) {
881 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
882 if (key.objectid == root->root_key.objectid &&
883 key.type == BTRFS_ROOT_REF_KEY)
887 btrfs_free_path(path);
891 static noinline int key_in_sk(struct btrfs_key *key,
892 struct btrfs_ioctl_search_key *sk)
894 struct btrfs_key test;
897 test.objectid = sk->min_objectid;
898 test.type = sk->min_type;
899 test.offset = sk->min_offset;
901 ret = btrfs_comp_cpu_keys(key, &test);
905 test.objectid = sk->max_objectid;
906 test.type = sk->max_type;
907 test.offset = sk->max_offset;
909 ret = btrfs_comp_cpu_keys(key, &test);
915 static noinline int copy_to_sk(struct btrfs_root *root,
916 struct btrfs_path *path,
917 struct btrfs_key *key,
918 struct btrfs_ioctl_search_key *sk,
920 unsigned long *sk_offset,
924 struct extent_buffer *leaf;
925 struct btrfs_ioctl_search_header sh;
926 unsigned long item_off;
927 unsigned long item_len;
934 leaf = path->nodes[0];
935 slot = path->slots[0];
936 nritems = btrfs_header_nritems(leaf);
938 if (btrfs_header_generation(leaf) > sk->max_transid) {
942 found_transid = btrfs_header_generation(leaf);
944 for (i = slot; i < nritems; i++) {
945 item_off = btrfs_item_ptr_offset(leaf, i);
946 item_len = btrfs_item_size_nr(leaf, i);
948 if (item_len > BTRFS_SEARCH_ARGS_BUFSIZE)
951 if (sizeof(sh) + item_len + *sk_offset >
952 BTRFS_SEARCH_ARGS_BUFSIZE) {
957 btrfs_item_key_to_cpu(leaf, key, i);
958 if (!key_in_sk(key, sk))
961 sh.objectid = key->objectid;
962 sh.offset = key->offset;
965 sh.transid = found_transid;
967 /* copy search result header */
968 memcpy(buf + *sk_offset, &sh, sizeof(sh));
969 *sk_offset += sizeof(sh);
972 char *p = buf + *sk_offset;
974 read_extent_buffer(leaf, p,
976 *sk_offset += item_len;
980 if (*num_found >= sk->nr_items)
985 if (key->offset < (u64)-1 && key->offset < sk->max_offset)
987 else if (key->type < (u8)-1 && key->type < sk->max_type) {
990 } else if (key->objectid < (u64)-1 && key->objectid < sk->max_objectid) {
1001 static noinline int search_ioctl(struct inode *inode,
1002 struct btrfs_ioctl_search_args *args)
1004 struct btrfs_root *root;
1005 struct btrfs_key key;
1006 struct btrfs_key max_key;
1007 struct btrfs_path *path;
1008 struct btrfs_ioctl_search_key *sk = &args->key;
1009 struct btrfs_fs_info *info = BTRFS_I(inode)->root->fs_info;
1012 unsigned long sk_offset = 0;
1014 path = btrfs_alloc_path();
1018 if (sk->tree_id == 0) {
1019 /* search the root of the inode that was passed */
1020 root = BTRFS_I(inode)->root;
1022 key.objectid = sk->tree_id;
1023 key.type = BTRFS_ROOT_ITEM_KEY;
1024 key.offset = (u64)-1;
1025 root = btrfs_read_fs_root_no_name(info, &key);
1027 printk(KERN_ERR "could not find root %llu\n",
1029 btrfs_free_path(path);
1034 key.objectid = sk->min_objectid;
1035 key.type = sk->min_type;
1036 key.offset = sk->min_offset;
1038 max_key.objectid = sk->max_objectid;
1039 max_key.type = sk->max_type;
1040 max_key.offset = sk->max_offset;
1042 path->keep_locks = 1;
1045 ret = btrfs_search_forward(root, &key, &max_key, path, 0,
1052 ret = copy_to_sk(root, path, &key, sk, args->buf,
1053 &sk_offset, &num_found);
1054 btrfs_release_path(root, path);
1055 if (ret || num_found >= sk->nr_items)
1061 sk->nr_items = num_found;
1062 btrfs_free_path(path);
1066 static noinline int btrfs_ioctl_tree_search(struct file *file,
1069 struct btrfs_ioctl_search_args *args;
1070 struct inode *inode;
1073 if (!capable(CAP_SYS_ADMIN))
1076 args = kmalloc(sizeof(*args), GFP_KERNEL);
1080 if (copy_from_user(args, argp, sizeof(*args))) {
1084 inode = fdentry(file)->d_inode;
1085 ret = search_ioctl(inode, args);
1086 if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
1093 * Search INODE_REFs to identify path name of 'dirid' directory
1094 * in a 'tree_id' tree. and sets path name to 'name'.
1096 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info,
1097 u64 tree_id, u64 dirid, char *name)
1099 struct btrfs_root *root;
1100 struct btrfs_key key;
1106 struct btrfs_inode_ref *iref;
1107 struct extent_buffer *l;
1108 struct btrfs_path *path;
1110 if (dirid == BTRFS_FIRST_FREE_OBJECTID) {
1115 path = btrfs_alloc_path();
1119 ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX];
1121 key.objectid = tree_id;
1122 key.type = BTRFS_ROOT_ITEM_KEY;
1123 key.offset = (u64)-1;
1124 root = btrfs_read_fs_root_no_name(info, &key);
1126 printk(KERN_ERR "could not find root %llu\n", tree_id);
1131 key.objectid = dirid;
1132 key.type = BTRFS_INODE_REF_KEY;
1133 key.offset = (u64)-1;
1136 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1141 slot = path->slots[0];
1142 if (ret > 0 && slot > 0)
1144 btrfs_item_key_to_cpu(l, &key, slot);
1146 if (ret > 0 && (key.objectid != dirid ||
1147 key.type != BTRFS_INODE_REF_KEY)) {
1152 iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref);
1153 len = btrfs_inode_ref_name_len(l, iref);
1155 total_len += len + 1;
1160 read_extent_buffer(l, ptr,(unsigned long)(iref + 1), len);
1162 if (key.offset == BTRFS_FIRST_FREE_OBJECTID)
1165 btrfs_release_path(root, path);
1166 key.objectid = key.offset;
1167 key.offset = (u64)-1;
1168 dirid = key.objectid;
1173 memcpy(name, ptr, total_len);
1174 name[total_len]='\0';
1177 btrfs_free_path(path);
1181 static noinline int btrfs_ioctl_ino_lookup(struct file *file,
1184 struct btrfs_ioctl_ino_lookup_args *args;
1185 struct inode *inode;
1188 if (!capable(CAP_SYS_ADMIN))
1191 args = kmalloc(sizeof(*args), GFP_KERNEL);
1195 if (copy_from_user(args, argp, sizeof(*args))) {
1199 inode = fdentry(file)->d_inode;
1201 if (args->treeid == 0)
1202 args->treeid = BTRFS_I(inode)->root->root_key.objectid;
1204 ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info,
1205 args->treeid, args->objectid,
1208 if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
1215 static noinline int btrfs_ioctl_snap_destroy(struct file *file,
1218 struct dentry *parent = fdentry(file);
1219 struct dentry *dentry;
1220 struct inode *dir = parent->d_inode;
1221 struct inode *inode;
1222 struct btrfs_root *root = BTRFS_I(dir)->root;
1223 struct btrfs_root *dest = NULL;
1224 struct btrfs_ioctl_vol_args *vol_args;
1225 struct btrfs_trans_handle *trans;
1230 if (!capable(CAP_SYS_ADMIN))
1233 vol_args = memdup_user(arg, sizeof(*vol_args));
1234 if (IS_ERR(vol_args))
1235 return PTR_ERR(vol_args);
1237 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1238 namelen = strlen(vol_args->name);
1239 if (strchr(vol_args->name, '/') ||
1240 strncmp(vol_args->name, "..", namelen) == 0) {
1245 err = mnt_want_write(file->f_path.mnt);
1249 mutex_lock_nested(&dir->i_mutex, I_MUTEX_PARENT);
1250 dentry = lookup_one_len(vol_args->name, parent, namelen);
1251 if (IS_ERR(dentry)) {
1252 err = PTR_ERR(dentry);
1253 goto out_unlock_dir;
1256 if (!dentry->d_inode) {
1261 inode = dentry->d_inode;
1262 if (inode->i_ino != BTRFS_FIRST_FREE_OBJECTID) {
1267 dest = BTRFS_I(inode)->root;
1269 mutex_lock(&inode->i_mutex);
1270 err = d_invalidate(dentry);
1274 down_write(&root->fs_info->subvol_sem);
1276 err = may_destroy_subvol(dest);
1280 trans = btrfs_start_transaction(root, 0);
1281 if (IS_ERR(trans)) {
1282 err = PTR_ERR(trans);
1285 trans->block_rsv = &root->fs_info->global_block_rsv;
1287 ret = btrfs_unlink_subvol(trans, root, dir,
1288 dest->root_key.objectid,
1289 dentry->d_name.name,
1290 dentry->d_name.len);
1293 btrfs_record_root_in_trans(trans, dest);
1295 memset(&dest->root_item.drop_progress, 0,
1296 sizeof(dest->root_item.drop_progress));
1297 dest->root_item.drop_level = 0;
1298 btrfs_set_root_refs(&dest->root_item, 0);
1300 if (!xchg(&dest->orphan_item_inserted, 1)) {
1301 ret = btrfs_insert_orphan_item(trans,
1302 root->fs_info->tree_root,
1303 dest->root_key.objectid);
1307 ret = btrfs_commit_transaction(trans, root);
1309 inode->i_flags |= S_DEAD;
1311 up_write(&root->fs_info->subvol_sem);
1313 mutex_unlock(&inode->i_mutex);
1315 shrink_dcache_sb(root->fs_info->sb);
1316 btrfs_invalidate_inodes(dest);
1322 mutex_unlock(&dir->i_mutex);
1323 mnt_drop_write(file->f_path.mnt);
1329 static int btrfs_ioctl_defrag(struct file *file, void __user *argp)
1331 struct inode *inode = fdentry(file)->d_inode;
1332 struct btrfs_root *root = BTRFS_I(inode)->root;
1333 struct btrfs_ioctl_defrag_range_args *range;
1336 ret = mnt_want_write(file->f_path.mnt);
1340 switch (inode->i_mode & S_IFMT) {
1342 if (!capable(CAP_SYS_ADMIN)) {
1346 ret = btrfs_defrag_root(root, 0);
1349 ret = btrfs_defrag_root(root->fs_info->extent_root, 0);
1352 if (!(file->f_mode & FMODE_WRITE)) {
1357 range = kzalloc(sizeof(*range), GFP_KERNEL);
1364 if (copy_from_user(range, argp,
1370 /* compression requires us to start the IO */
1371 if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
1372 range->flags |= BTRFS_DEFRAG_RANGE_START_IO;
1373 range->extent_thresh = (u32)-1;
1376 /* the rest are all set to zero by kzalloc */
1377 range->len = (u64)-1;
1379 ret = btrfs_defrag_file(file, range);
1386 mnt_drop_write(file->f_path.mnt);
1390 static long btrfs_ioctl_add_dev(struct btrfs_root *root, void __user *arg)
1392 struct btrfs_ioctl_vol_args *vol_args;
1395 if (!capable(CAP_SYS_ADMIN))
1398 vol_args = memdup_user(arg, sizeof(*vol_args));
1399 if (IS_ERR(vol_args))
1400 return PTR_ERR(vol_args);
1402 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1403 ret = btrfs_init_new_device(root, vol_args->name);
1409 static long btrfs_ioctl_rm_dev(struct btrfs_root *root, void __user *arg)
1411 struct btrfs_ioctl_vol_args *vol_args;
1414 if (!capable(CAP_SYS_ADMIN))
1417 if (root->fs_info->sb->s_flags & MS_RDONLY)
1420 vol_args = memdup_user(arg, sizeof(*vol_args));
1421 if (IS_ERR(vol_args))
1422 return PTR_ERR(vol_args);
1424 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1425 ret = btrfs_rm_device(root, vol_args->name);
1431 static noinline long btrfs_ioctl_clone(struct file *file, unsigned long srcfd,
1432 u64 off, u64 olen, u64 destoff)
1434 struct inode *inode = fdentry(file)->d_inode;
1435 struct btrfs_root *root = BTRFS_I(inode)->root;
1436 struct file *src_file;
1438 struct btrfs_trans_handle *trans;
1439 struct btrfs_path *path;
1440 struct extent_buffer *leaf;
1442 struct btrfs_key key;
1447 u64 bs = root->fs_info->sb->s_blocksize;
1452 * - split compressed inline extents. annoying: we need to
1453 * decompress into destination's address_space (the file offset
1454 * may change, so source mapping won't do), then recompress (or
1455 * otherwise reinsert) a subrange.
1456 * - allow ranges within the same file to be cloned (provided
1457 * they don't overlap)?
1460 /* the destination must be opened for writing */
1461 if (!(file->f_mode & FMODE_WRITE))
1464 ret = mnt_want_write(file->f_path.mnt);
1468 src_file = fget(srcfd);
1471 goto out_drop_write;
1474 src = src_file->f_dentry->d_inode;
1480 /* the src must be open for reading */
1481 if (!(src_file->f_mode & FMODE_READ))
1485 if (S_ISDIR(src->i_mode) || S_ISDIR(inode->i_mode))
1489 if (src->i_sb != inode->i_sb || BTRFS_I(src)->root != root)
1493 buf = vmalloc(btrfs_level_size(root, 0));
1497 path = btrfs_alloc_path();
1505 mutex_lock(&inode->i_mutex);
1506 mutex_lock(&src->i_mutex);
1508 mutex_lock(&src->i_mutex);
1509 mutex_lock(&inode->i_mutex);
1512 /* determine range to clone */
1514 if (off >= src->i_size || off + len > src->i_size)
1517 olen = len = src->i_size - off;
1518 /* if we extend to eof, continue to block boundary */
1519 if (off + len == src->i_size)
1520 len = ((src->i_size + bs-1) & ~(bs-1))
1523 /* verify the end result is block aligned */
1524 if ((off & (bs-1)) ||
1525 ((off + len) & (bs-1)))
1528 /* do any pending delalloc/csum calc on src, one way or
1529 another, and lock file content */
1531 struct btrfs_ordered_extent *ordered;
1532 lock_extent(&BTRFS_I(src)->io_tree, off, off+len, GFP_NOFS);
1533 ordered = btrfs_lookup_first_ordered_extent(inode, off+len);
1534 if (BTRFS_I(src)->delalloc_bytes == 0 && !ordered)
1536 unlock_extent(&BTRFS_I(src)->io_tree, off, off+len, GFP_NOFS);
1538 btrfs_put_ordered_extent(ordered);
1539 btrfs_wait_ordered_range(src, off, off+len);
1543 key.objectid = src->i_ino;
1544 key.type = BTRFS_EXTENT_DATA_KEY;
1549 * note the key will change type as we walk through the
1552 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1556 nritems = btrfs_header_nritems(path->nodes[0]);
1557 if (path->slots[0] >= nritems) {
1558 ret = btrfs_next_leaf(root, path);
1563 nritems = btrfs_header_nritems(path->nodes[0]);
1565 leaf = path->nodes[0];
1566 slot = path->slots[0];
1568 btrfs_item_key_to_cpu(leaf, &key, slot);
1569 if (btrfs_key_type(&key) > BTRFS_EXTENT_DATA_KEY ||
1570 key.objectid != src->i_ino)
1573 if (btrfs_key_type(&key) == BTRFS_EXTENT_DATA_KEY) {
1574 struct btrfs_file_extent_item *extent;
1577 struct btrfs_key new_key;
1578 u64 disko = 0, diskl = 0;
1579 u64 datao = 0, datal = 0;
1582 size = btrfs_item_size_nr(leaf, slot);
1583 read_extent_buffer(leaf, buf,
1584 btrfs_item_ptr_offset(leaf, slot),
1587 extent = btrfs_item_ptr(leaf, slot,
1588 struct btrfs_file_extent_item);
1589 comp = btrfs_file_extent_compression(leaf, extent);
1590 type = btrfs_file_extent_type(leaf, extent);
1591 if (type == BTRFS_FILE_EXTENT_REG ||
1592 type == BTRFS_FILE_EXTENT_PREALLOC) {
1593 disko = btrfs_file_extent_disk_bytenr(leaf,
1595 diskl = btrfs_file_extent_disk_num_bytes(leaf,
1597 datao = btrfs_file_extent_offset(leaf, extent);
1598 datal = btrfs_file_extent_num_bytes(leaf,
1600 } else if (type == BTRFS_FILE_EXTENT_INLINE) {
1601 /* take upper bound, may be compressed */
1602 datal = btrfs_file_extent_ram_bytes(leaf,
1605 btrfs_release_path(root, path);
1607 if (key.offset + datal < off ||
1608 key.offset >= off+len)
1611 memcpy(&new_key, &key, sizeof(new_key));
1612 new_key.objectid = inode->i_ino;
1613 new_key.offset = key.offset + destoff - off;
1615 trans = btrfs_start_transaction(root, 1);
1616 if (IS_ERR(trans)) {
1617 ret = PTR_ERR(trans);
1621 if (type == BTRFS_FILE_EXTENT_REG ||
1622 type == BTRFS_FILE_EXTENT_PREALLOC) {
1623 if (off > key.offset) {
1624 datao += off - key.offset;
1625 datal -= off - key.offset;
1628 if (key.offset + datal > off + len)
1629 datal = off + len - key.offset;
1631 ret = btrfs_drop_extents(trans, inode,
1633 new_key.offset + datal,
1637 ret = btrfs_insert_empty_item(trans, root, path,
1641 leaf = path->nodes[0];
1642 slot = path->slots[0];
1643 write_extent_buffer(leaf, buf,
1644 btrfs_item_ptr_offset(leaf, slot),
1647 extent = btrfs_item_ptr(leaf, slot,
1648 struct btrfs_file_extent_item);
1650 /* disko == 0 means it's a hole */
1654 btrfs_set_file_extent_offset(leaf, extent,
1656 btrfs_set_file_extent_num_bytes(leaf, extent,
1659 inode_add_bytes(inode, datal);
1660 ret = btrfs_inc_extent_ref(trans, root,
1662 root->root_key.objectid,
1664 new_key.offset - datao);
1667 } else if (type == BTRFS_FILE_EXTENT_INLINE) {
1670 if (off > key.offset) {
1671 skip = off - key.offset;
1672 new_key.offset += skip;
1675 if (key.offset + datal > off+len)
1676 trim = key.offset + datal - (off+len);
1678 if (comp && (skip || trim)) {
1680 btrfs_end_transaction(trans, root);
1683 size -= skip + trim;
1684 datal -= skip + trim;
1686 ret = btrfs_drop_extents(trans, inode,
1688 new_key.offset + datal,
1692 ret = btrfs_insert_empty_item(trans, root, path,
1698 btrfs_file_extent_calc_inline_size(0);
1699 memmove(buf+start, buf+start+skip,
1703 leaf = path->nodes[0];
1704 slot = path->slots[0];
1705 write_extent_buffer(leaf, buf,
1706 btrfs_item_ptr_offset(leaf, slot),
1708 inode_add_bytes(inode, datal);
1711 btrfs_mark_buffer_dirty(leaf);
1712 btrfs_release_path(root, path);
1714 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1715 if (new_key.offset + datal > inode->i_size)
1716 btrfs_i_size_write(inode,
1717 new_key.offset + datal);
1718 BTRFS_I(inode)->flags = BTRFS_I(src)->flags;
1719 ret = btrfs_update_inode(trans, root, inode);
1721 btrfs_end_transaction(trans, root);
1724 btrfs_release_path(root, path);
1729 btrfs_release_path(root, path);
1730 unlock_extent(&BTRFS_I(src)->io_tree, off, off+len, GFP_NOFS);
1732 mutex_unlock(&src->i_mutex);
1733 mutex_unlock(&inode->i_mutex);
1735 btrfs_free_path(path);
1739 mnt_drop_write(file->f_path.mnt);
1743 static long btrfs_ioctl_clone_range(struct file *file, void __user *argp)
1745 struct btrfs_ioctl_clone_range_args args;
1747 if (copy_from_user(&args, argp, sizeof(args)))
1749 return btrfs_ioctl_clone(file, args.src_fd, args.src_offset,
1750 args.src_length, args.dest_offset);
1754 * there are many ways the trans_start and trans_end ioctls can lead
1755 * to deadlocks. They should only be used by applications that
1756 * basically own the machine, and have a very in depth understanding
1757 * of all the possible deadlocks and enospc problems.
1759 static long btrfs_ioctl_trans_start(struct file *file)
1761 struct inode *inode = fdentry(file)->d_inode;
1762 struct btrfs_root *root = BTRFS_I(inode)->root;
1763 struct btrfs_trans_handle *trans;
1767 if (!capable(CAP_SYS_ADMIN))
1771 if (file->private_data)
1774 ret = mnt_want_write(file->f_path.mnt);
1778 mutex_lock(&root->fs_info->trans_mutex);
1779 root->fs_info->open_ioctl_trans++;
1780 mutex_unlock(&root->fs_info->trans_mutex);
1783 trans = btrfs_start_ioctl_transaction(root, 0);
1787 file->private_data = trans;
1791 mutex_lock(&root->fs_info->trans_mutex);
1792 root->fs_info->open_ioctl_trans--;
1793 mutex_unlock(&root->fs_info->trans_mutex);
1794 mnt_drop_write(file->f_path.mnt);
1799 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp)
1801 struct inode *inode = fdentry(file)->d_inode;
1802 struct btrfs_root *root = BTRFS_I(inode)->root;
1803 struct btrfs_root *new_root;
1804 struct btrfs_dir_item *di;
1805 struct btrfs_trans_handle *trans;
1806 struct btrfs_path *path;
1807 struct btrfs_key location;
1808 struct btrfs_disk_key disk_key;
1809 struct btrfs_super_block *disk_super;
1814 if (!capable(CAP_SYS_ADMIN))
1817 if (copy_from_user(&objectid, argp, sizeof(objectid)))
1821 objectid = root->root_key.objectid;
1823 location.objectid = objectid;
1824 location.type = BTRFS_ROOT_ITEM_KEY;
1825 location.offset = (u64)-1;
1827 new_root = btrfs_read_fs_root_no_name(root->fs_info, &location);
1828 if (IS_ERR(new_root))
1829 return PTR_ERR(new_root);
1831 if (btrfs_root_refs(&new_root->root_item) == 0)
1834 path = btrfs_alloc_path();
1837 path->leave_spinning = 1;
1839 trans = btrfs_start_transaction(root, 1);
1841 btrfs_free_path(path);
1845 dir_id = btrfs_super_root_dir(&root->fs_info->super_copy);
1846 di = btrfs_lookup_dir_item(trans, root->fs_info->tree_root, path,
1847 dir_id, "default", 7, 1);
1849 btrfs_free_path(path);
1850 btrfs_end_transaction(trans, root);
1851 printk(KERN_ERR "Umm, you don't have the default dir item, "
1852 "this isn't going to work\n");
1856 btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key);
1857 btrfs_set_dir_item_key(path->nodes[0], di, &disk_key);
1858 btrfs_mark_buffer_dirty(path->nodes[0]);
1859 btrfs_free_path(path);
1861 disk_super = &root->fs_info->super_copy;
1862 features = btrfs_super_incompat_flags(disk_super);
1863 if (!(features & BTRFS_FEATURE_INCOMPAT_DEFAULT_SUBVOL)) {
1864 features |= BTRFS_FEATURE_INCOMPAT_DEFAULT_SUBVOL;
1865 btrfs_set_super_incompat_flags(disk_super, features);
1867 btrfs_end_transaction(trans, root);
1872 long btrfs_ioctl_space_info(struct btrfs_root *root, void __user *arg)
1874 struct btrfs_ioctl_space_args space_args;
1875 struct btrfs_ioctl_space_info space;
1876 struct btrfs_ioctl_space_info *dest;
1877 struct btrfs_ioctl_space_info *dest_orig;
1878 struct btrfs_ioctl_space_info *user_dest;
1879 struct btrfs_space_info *info;
1884 if (copy_from_user(&space_args,
1885 (struct btrfs_ioctl_space_args __user *)arg,
1886 sizeof(space_args)))
1889 /* first we count slots */
1891 list_for_each_entry_rcu(info, &root->fs_info->space_info, list)
1895 /* space_slots == 0 means they are asking for a count */
1896 if (space_args.space_slots == 0) {
1897 space_args.total_spaces = slot_count;
1900 alloc_size = sizeof(*dest) * slot_count;
1901 /* we generally have at most 6 or so space infos, one for each raid
1902 * level. So, a whole page should be more than enough for everyone
1904 if (alloc_size > PAGE_CACHE_SIZE)
1907 space_args.total_spaces = 0;
1908 dest = kmalloc(alloc_size, GFP_NOFS);
1913 /* now we have a buffer to copy into */
1915 list_for_each_entry_rcu(info, &root->fs_info->space_info, list) {
1916 /* make sure we don't copy more than we allocated
1919 if (slot_count == 0)
1923 /* make sure userland has enough room in their buffer */
1924 if (space_args.total_spaces >= space_args.space_slots)
1927 space.flags = info->flags;
1928 space.total_bytes = info->total_bytes;
1929 space.used_bytes = info->bytes_used;
1930 memcpy(dest, &space, sizeof(space));
1932 space_args.total_spaces++;
1936 user_dest = (struct btrfs_ioctl_space_info *)
1937 (arg + sizeof(struct btrfs_ioctl_space_args));
1939 if (copy_to_user(user_dest, dest_orig, alloc_size))
1944 if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args)))
1951 * there are many ways the trans_start and trans_end ioctls can lead
1952 * to deadlocks. They should only be used by applications that
1953 * basically own the machine, and have a very in depth understanding
1954 * of all the possible deadlocks and enospc problems.
1956 long btrfs_ioctl_trans_end(struct file *file)
1958 struct inode *inode = fdentry(file)->d_inode;
1959 struct btrfs_root *root = BTRFS_I(inode)->root;
1960 struct btrfs_trans_handle *trans;
1962 trans = file->private_data;
1965 file->private_data = NULL;
1967 btrfs_end_transaction(trans, root);
1969 mutex_lock(&root->fs_info->trans_mutex);
1970 root->fs_info->open_ioctl_trans--;
1971 mutex_unlock(&root->fs_info->trans_mutex);
1973 mnt_drop_write(file->f_path.mnt);
1977 long btrfs_ioctl(struct file *file, unsigned int
1978 cmd, unsigned long arg)
1980 struct btrfs_root *root = BTRFS_I(fdentry(file)->d_inode)->root;
1981 void __user *argp = (void __user *)arg;
1984 case FS_IOC_GETFLAGS:
1985 return btrfs_ioctl_getflags(file, argp);
1986 case FS_IOC_SETFLAGS:
1987 return btrfs_ioctl_setflags(file, argp);
1988 case FS_IOC_GETVERSION:
1989 return btrfs_ioctl_getversion(file, argp);
1990 case BTRFS_IOC_SNAP_CREATE:
1991 return btrfs_ioctl_snap_create(file, argp, 0);
1992 case BTRFS_IOC_SUBVOL_CREATE:
1993 return btrfs_ioctl_snap_create(file, argp, 1);
1994 case BTRFS_IOC_SNAP_DESTROY:
1995 return btrfs_ioctl_snap_destroy(file, argp);
1996 case BTRFS_IOC_DEFAULT_SUBVOL:
1997 return btrfs_ioctl_default_subvol(file, argp);
1998 case BTRFS_IOC_DEFRAG:
1999 return btrfs_ioctl_defrag(file, NULL);
2000 case BTRFS_IOC_DEFRAG_RANGE:
2001 return btrfs_ioctl_defrag(file, argp);
2002 case BTRFS_IOC_RESIZE:
2003 return btrfs_ioctl_resize(root, argp);
2004 case BTRFS_IOC_ADD_DEV:
2005 return btrfs_ioctl_add_dev(root, argp);
2006 case BTRFS_IOC_RM_DEV:
2007 return btrfs_ioctl_rm_dev(root, argp);
2008 case BTRFS_IOC_BALANCE:
2009 return btrfs_balance(root->fs_info->dev_root);
2010 case BTRFS_IOC_CLONE:
2011 return btrfs_ioctl_clone(file, arg, 0, 0, 0);
2012 case BTRFS_IOC_CLONE_RANGE:
2013 return btrfs_ioctl_clone_range(file, argp);
2014 case BTRFS_IOC_TRANS_START:
2015 return btrfs_ioctl_trans_start(file);
2016 case BTRFS_IOC_TRANS_END:
2017 return btrfs_ioctl_trans_end(file);
2018 case BTRFS_IOC_TREE_SEARCH:
2019 return btrfs_ioctl_tree_search(file, argp);
2020 case BTRFS_IOC_INO_LOOKUP:
2021 return btrfs_ioctl_ino_lookup(file, argp);
2022 case BTRFS_IOC_SPACE_INFO:
2023 return btrfs_ioctl_space_info(root, argp);
2024 case BTRFS_IOC_SYNC:
2025 btrfs_sync_fs(file->f_dentry->d_sb, 1);