2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
24 #include <linux/fsnotify.h>
25 #include <linux/pagemap.h>
26 #include <linux/highmem.h>
27 #include <linux/time.h>
28 #include <linux/init.h>
29 #include <linux/string.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mount.h>
32 #include <linux/mpage.h>
33 #include <linux/namei.h>
34 #include <linux/swap.h>
35 #include <linux/writeback.h>
36 #include <linux/compat.h>
37 #include <linux/bit_spinlock.h>
38 #include <linux/security.h>
39 #include <linux/xattr.h>
40 #include <linux/vmalloc.h>
41 #include <linux/slab.h>
42 #include <linux/blkdev.h>
43 #include <linux/uuid.h>
44 #include <linux/btrfs.h>
45 #include <linux/uaccess.h>
48 #include "transaction.h"
49 #include "btrfs_inode.h"
50 #include "print-tree.h"
53 #include "inode-map.h"
55 #include "rcu-string.h"
57 #include "dev-replace.h"
62 #include "compression.h"
65 /* If we have a 32-bit userspace and 64-bit kernel, then the UAPI
66 * structures are incorrect, as the timespec structure from userspace
67 * is 4 bytes too small. We define these alternatives here to teach
68 * the kernel about the 32-bit struct packing.
70 struct btrfs_ioctl_timespec_32 {
73 } __attribute__ ((__packed__));
75 struct btrfs_ioctl_received_subvol_args_32 {
76 char uuid[BTRFS_UUID_SIZE]; /* in */
77 __u64 stransid; /* in */
78 __u64 rtransid; /* out */
79 struct btrfs_ioctl_timespec_32 stime; /* in */
80 struct btrfs_ioctl_timespec_32 rtime; /* out */
82 __u64 reserved[16]; /* in */
83 } __attribute__ ((__packed__));
85 #define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \
86 struct btrfs_ioctl_received_subvol_args_32)
90 static int btrfs_clone(struct inode *src, struct inode *inode,
91 u64 off, u64 olen, u64 olen_aligned, u64 destoff,
94 /* Mask out flags that are inappropriate for the given type of inode. */
95 static inline __u32 btrfs_mask_flags(umode_t mode, __u32 flags)
99 else if (S_ISREG(mode))
100 return flags & ~FS_DIRSYNC_FL;
102 return flags & (FS_NODUMP_FL | FS_NOATIME_FL);
106 * Export inode flags to the format expected by the FS_IOC_GETFLAGS ioctl.
108 static unsigned int btrfs_flags_to_ioctl(unsigned int flags)
110 unsigned int iflags = 0;
112 if (flags & BTRFS_INODE_SYNC)
113 iflags |= FS_SYNC_FL;
114 if (flags & BTRFS_INODE_IMMUTABLE)
115 iflags |= FS_IMMUTABLE_FL;
116 if (flags & BTRFS_INODE_APPEND)
117 iflags |= FS_APPEND_FL;
118 if (flags & BTRFS_INODE_NODUMP)
119 iflags |= FS_NODUMP_FL;
120 if (flags & BTRFS_INODE_NOATIME)
121 iflags |= FS_NOATIME_FL;
122 if (flags & BTRFS_INODE_DIRSYNC)
123 iflags |= FS_DIRSYNC_FL;
124 if (flags & BTRFS_INODE_NODATACOW)
125 iflags |= FS_NOCOW_FL;
127 if (flags & BTRFS_INODE_NOCOMPRESS)
128 iflags |= FS_NOCOMP_FL;
129 else if (flags & BTRFS_INODE_COMPRESS)
130 iflags |= FS_COMPR_FL;
136 * Update inode->i_flags based on the btrfs internal flags.
138 void btrfs_update_iflags(struct inode *inode)
140 struct btrfs_inode *ip = BTRFS_I(inode);
141 unsigned int new_fl = 0;
143 if (ip->flags & BTRFS_INODE_SYNC)
145 if (ip->flags & BTRFS_INODE_IMMUTABLE)
146 new_fl |= S_IMMUTABLE;
147 if (ip->flags & BTRFS_INODE_APPEND)
149 if (ip->flags & BTRFS_INODE_NOATIME)
151 if (ip->flags & BTRFS_INODE_DIRSYNC)
154 set_mask_bits(&inode->i_flags,
155 S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC,
160 * Inherit flags from the parent inode.
162 * Currently only the compression flags and the cow flags are inherited.
164 void btrfs_inherit_iflags(struct inode *inode, struct inode *dir)
171 flags = BTRFS_I(dir)->flags;
173 if (flags & BTRFS_INODE_NOCOMPRESS) {
174 BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS;
175 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
176 } else if (flags & BTRFS_INODE_COMPRESS) {
177 BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS;
178 BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS;
181 if (flags & BTRFS_INODE_NODATACOW) {
182 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
183 if (S_ISREG(inode->i_mode))
184 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
187 btrfs_update_iflags(inode);
190 static int btrfs_ioctl_getflags(struct file *file, void __user *arg)
192 struct btrfs_inode *ip = BTRFS_I(file_inode(file));
193 unsigned int flags = btrfs_flags_to_ioctl(ip->flags);
195 if (copy_to_user(arg, &flags, sizeof(flags)))
200 static int check_flags(unsigned int flags)
202 if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \
203 FS_NOATIME_FL | FS_NODUMP_FL | \
204 FS_SYNC_FL | FS_DIRSYNC_FL | \
205 FS_NOCOMP_FL | FS_COMPR_FL |
209 if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL))
215 static int btrfs_ioctl_setflags(struct file *file, void __user *arg)
217 struct inode *inode = file_inode(file);
218 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
219 struct btrfs_inode *ip = BTRFS_I(inode);
220 struct btrfs_root *root = ip->root;
221 struct btrfs_trans_handle *trans;
222 unsigned int flags, oldflags;
225 unsigned int i_oldflags;
228 if (!inode_owner_or_capable(inode))
231 if (btrfs_root_readonly(root))
234 if (copy_from_user(&flags, arg, sizeof(flags)))
237 ret = check_flags(flags);
241 ret = mnt_want_write_file(file);
247 ip_oldflags = ip->flags;
248 i_oldflags = inode->i_flags;
249 mode = inode->i_mode;
251 flags = btrfs_mask_flags(inode->i_mode, flags);
252 oldflags = btrfs_flags_to_ioctl(ip->flags);
253 if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) {
254 if (!capable(CAP_LINUX_IMMUTABLE)) {
260 if (flags & FS_SYNC_FL)
261 ip->flags |= BTRFS_INODE_SYNC;
263 ip->flags &= ~BTRFS_INODE_SYNC;
264 if (flags & FS_IMMUTABLE_FL)
265 ip->flags |= BTRFS_INODE_IMMUTABLE;
267 ip->flags &= ~BTRFS_INODE_IMMUTABLE;
268 if (flags & FS_APPEND_FL)
269 ip->flags |= BTRFS_INODE_APPEND;
271 ip->flags &= ~BTRFS_INODE_APPEND;
272 if (flags & FS_NODUMP_FL)
273 ip->flags |= BTRFS_INODE_NODUMP;
275 ip->flags &= ~BTRFS_INODE_NODUMP;
276 if (flags & FS_NOATIME_FL)
277 ip->flags |= BTRFS_INODE_NOATIME;
279 ip->flags &= ~BTRFS_INODE_NOATIME;
280 if (flags & FS_DIRSYNC_FL)
281 ip->flags |= BTRFS_INODE_DIRSYNC;
283 ip->flags &= ~BTRFS_INODE_DIRSYNC;
284 if (flags & FS_NOCOW_FL) {
287 * It's safe to turn csums off here, no extents exist.
288 * Otherwise we want the flag to reflect the real COW
289 * status of the file and will not set it.
291 if (inode->i_size == 0)
292 ip->flags |= BTRFS_INODE_NODATACOW
293 | BTRFS_INODE_NODATASUM;
295 ip->flags |= BTRFS_INODE_NODATACOW;
299 * Revert back under same assumptions as above
302 if (inode->i_size == 0)
303 ip->flags &= ~(BTRFS_INODE_NODATACOW
304 | BTRFS_INODE_NODATASUM);
306 ip->flags &= ~BTRFS_INODE_NODATACOW;
311 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
312 * flag may be changed automatically if compression code won't make
315 if (flags & FS_NOCOMP_FL) {
316 ip->flags &= ~BTRFS_INODE_COMPRESS;
317 ip->flags |= BTRFS_INODE_NOCOMPRESS;
319 ret = btrfs_set_prop(inode, "btrfs.compression", NULL, 0, 0);
320 if (ret && ret != -ENODATA)
322 } else if (flags & FS_COMPR_FL) {
325 ip->flags |= BTRFS_INODE_COMPRESS;
326 ip->flags &= ~BTRFS_INODE_NOCOMPRESS;
328 if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
332 ret = btrfs_set_prop(inode, "btrfs.compression",
333 comp, strlen(comp), 0);
338 ret = btrfs_set_prop(inode, "btrfs.compression", NULL, 0, 0);
339 if (ret && ret != -ENODATA)
341 ip->flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS);
344 trans = btrfs_start_transaction(root, 1);
346 ret = PTR_ERR(trans);
350 btrfs_update_iflags(inode);
351 inode_inc_iversion(inode);
352 inode->i_ctime = current_time(inode);
353 ret = btrfs_update_inode(trans, root, inode);
355 btrfs_end_transaction(trans);
358 ip->flags = ip_oldflags;
359 inode->i_flags = i_oldflags;
364 mnt_drop_write_file(file);
368 static int btrfs_ioctl_getversion(struct file *file, int __user *arg)
370 struct inode *inode = file_inode(file);
372 return put_user(inode->i_generation, arg);
375 static noinline int btrfs_ioctl_fitrim(struct file *file, void __user *arg)
377 struct inode *inode = file_inode(file);
378 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
379 struct btrfs_device *device;
380 struct request_queue *q;
381 struct fstrim_range range;
382 u64 minlen = ULLONG_MAX;
384 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
387 if (!capable(CAP_SYS_ADMIN))
391 list_for_each_entry_rcu(device, &fs_info->fs_devices->devices,
395 q = bdev_get_queue(device->bdev);
396 if (blk_queue_discard(q)) {
398 minlen = min_t(u64, q->limits.discard_granularity,
406 if (copy_from_user(&range, arg, sizeof(range)))
408 if (range.start > total_bytes ||
409 range.len < fs_info->sb->s_blocksize)
412 range.len = min(range.len, total_bytes - range.start);
413 range.minlen = max(range.minlen, minlen);
414 ret = btrfs_trim_fs(fs_info, &range);
418 if (copy_to_user(arg, &range, sizeof(range)))
424 int btrfs_is_empty_uuid(u8 *uuid)
428 for (i = 0; i < BTRFS_UUID_SIZE; i++) {
435 static noinline int create_subvol(struct inode *dir,
436 struct dentry *dentry,
437 char *name, int namelen,
439 struct btrfs_qgroup_inherit *inherit)
441 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
442 struct btrfs_trans_handle *trans;
443 struct btrfs_key key;
444 struct btrfs_root_item *root_item;
445 struct btrfs_inode_item *inode_item;
446 struct extent_buffer *leaf;
447 struct btrfs_root *root = BTRFS_I(dir)->root;
448 struct btrfs_root *new_root;
449 struct btrfs_block_rsv block_rsv;
450 struct timespec cur_time = current_time(dir);
455 u64 new_dirid = BTRFS_FIRST_FREE_OBJECTID;
460 root_item = kzalloc(sizeof(*root_item), GFP_KERNEL);
464 ret = btrfs_find_free_objectid(fs_info->tree_root, &objectid);
469 * Don't create subvolume whose level is not zero. Or qgroup will be
470 * screwed up since it assumes subvolume qgroup's level to be 0.
472 if (btrfs_qgroup_level(objectid)) {
477 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
479 * The same as the snapshot creation, please see the comment
480 * of create_snapshot().
482 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv,
483 8, &qgroup_reserved, false);
487 trans = btrfs_start_transaction(root, 0);
489 ret = PTR_ERR(trans);
490 btrfs_subvolume_release_metadata(fs_info, &block_rsv);
493 trans->block_rsv = &block_rsv;
494 trans->bytes_reserved = block_rsv.size;
496 ret = btrfs_qgroup_inherit(trans, fs_info, 0, objectid, inherit);
500 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
506 memzero_extent_buffer(leaf, 0, sizeof(struct btrfs_header));
507 btrfs_set_header_bytenr(leaf, leaf->start);
508 btrfs_set_header_generation(leaf, trans->transid);
509 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
510 btrfs_set_header_owner(leaf, objectid);
512 write_extent_buffer_fsid(leaf, fs_info->fsid);
513 write_extent_buffer_chunk_tree_uuid(leaf, fs_info->chunk_tree_uuid);
514 btrfs_mark_buffer_dirty(leaf);
516 inode_item = &root_item->inode;
517 btrfs_set_stack_inode_generation(inode_item, 1);
518 btrfs_set_stack_inode_size(inode_item, 3);
519 btrfs_set_stack_inode_nlink(inode_item, 1);
520 btrfs_set_stack_inode_nbytes(inode_item,
522 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
524 btrfs_set_root_flags(root_item, 0);
525 btrfs_set_root_limit(root_item, 0);
526 btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT);
528 btrfs_set_root_bytenr(root_item, leaf->start);
529 btrfs_set_root_generation(root_item, trans->transid);
530 btrfs_set_root_level(root_item, 0);
531 btrfs_set_root_refs(root_item, 1);
532 btrfs_set_root_used(root_item, leaf->len);
533 btrfs_set_root_last_snapshot(root_item, 0);
535 btrfs_set_root_generation_v2(root_item,
536 btrfs_root_generation(root_item));
537 uuid_le_gen(&new_uuid);
538 memcpy(root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE);
539 btrfs_set_stack_timespec_sec(&root_item->otime, cur_time.tv_sec);
540 btrfs_set_stack_timespec_nsec(&root_item->otime, cur_time.tv_nsec);
541 root_item->ctime = root_item->otime;
542 btrfs_set_root_ctransid(root_item, trans->transid);
543 btrfs_set_root_otransid(root_item, trans->transid);
545 btrfs_tree_unlock(leaf);
546 free_extent_buffer(leaf);
549 btrfs_set_root_dirid(root_item, new_dirid);
551 key.objectid = objectid;
553 key.type = BTRFS_ROOT_ITEM_KEY;
554 ret = btrfs_insert_root(trans, fs_info->tree_root, &key,
559 key.offset = (u64)-1;
560 new_root = btrfs_read_fs_root_no_name(fs_info, &key);
561 if (IS_ERR(new_root)) {
562 ret = PTR_ERR(new_root);
563 btrfs_abort_transaction(trans, ret);
567 btrfs_record_root_in_trans(trans, new_root);
569 ret = btrfs_create_subvol_root(trans, new_root, root, new_dirid);
571 /* We potentially lose an unused inode item here */
572 btrfs_abort_transaction(trans, ret);
576 mutex_lock(&new_root->objectid_mutex);
577 new_root->highest_objectid = new_dirid;
578 mutex_unlock(&new_root->objectid_mutex);
581 * insert the directory item
583 ret = btrfs_set_inode_index(dir, &index);
585 btrfs_abort_transaction(trans, ret);
589 ret = btrfs_insert_dir_item(trans, root,
590 name, namelen, dir, &key,
591 BTRFS_FT_DIR, index);
593 btrfs_abort_transaction(trans, ret);
597 btrfs_i_size_write(dir, dir->i_size + namelen * 2);
598 ret = btrfs_update_inode(trans, root, dir);
601 ret = btrfs_add_root_ref(trans, fs_info,
602 objectid, root->root_key.objectid,
603 btrfs_ino(BTRFS_I(dir)), index, name, namelen);
606 ret = btrfs_uuid_tree_add(trans, fs_info, root_item->uuid,
607 BTRFS_UUID_KEY_SUBVOL, objectid);
609 btrfs_abort_transaction(trans, ret);
613 trans->block_rsv = NULL;
614 trans->bytes_reserved = 0;
615 btrfs_subvolume_release_metadata(fs_info, &block_rsv);
618 *async_transid = trans->transid;
619 err = btrfs_commit_transaction_async(trans, 1);
621 err = btrfs_commit_transaction(trans);
623 err = btrfs_commit_transaction(trans);
629 inode = btrfs_lookup_dentry(dir, dentry);
631 return PTR_ERR(inode);
632 d_instantiate(dentry, inode);
641 static void btrfs_wait_for_no_snapshoting_writes(struct btrfs_root *root)
647 prepare_to_wait(&root->subv_writers->wait, &wait,
648 TASK_UNINTERRUPTIBLE);
650 writers = percpu_counter_sum(&root->subv_writers->counter);
654 finish_wait(&root->subv_writers->wait, &wait);
658 static int create_snapshot(struct btrfs_root *root, struct inode *dir,
659 struct dentry *dentry,
660 u64 *async_transid, bool readonly,
661 struct btrfs_qgroup_inherit *inherit)
663 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
665 struct btrfs_pending_snapshot *pending_snapshot;
666 struct btrfs_trans_handle *trans;
669 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
672 pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_KERNEL);
673 if (!pending_snapshot)
676 pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item),
678 pending_snapshot->path = btrfs_alloc_path();
679 if (!pending_snapshot->root_item || !pending_snapshot->path) {
684 atomic_inc(&root->will_be_snapshoted);
685 smp_mb__after_atomic();
686 btrfs_wait_for_no_snapshoting_writes(root);
688 ret = btrfs_start_delalloc_inodes(root, 0);
692 btrfs_wait_ordered_extents(root, -1, 0, (u64)-1);
694 btrfs_init_block_rsv(&pending_snapshot->block_rsv,
695 BTRFS_BLOCK_RSV_TEMP);
697 * 1 - parent dir inode
700 * 2 - root ref/backref
701 * 1 - root of snapshot
704 ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root,
705 &pending_snapshot->block_rsv, 8,
706 &pending_snapshot->qgroup_reserved,
711 pending_snapshot->dentry = dentry;
712 pending_snapshot->root = root;
713 pending_snapshot->readonly = readonly;
714 pending_snapshot->dir = dir;
715 pending_snapshot->inherit = inherit;
717 trans = btrfs_start_transaction(root, 0);
719 ret = PTR_ERR(trans);
723 spin_lock(&fs_info->trans_lock);
724 list_add(&pending_snapshot->list,
725 &trans->transaction->pending_snapshots);
726 spin_unlock(&fs_info->trans_lock);
728 *async_transid = trans->transid;
729 ret = btrfs_commit_transaction_async(trans, 1);
731 ret = btrfs_commit_transaction(trans);
733 ret = btrfs_commit_transaction(trans);
738 ret = pending_snapshot->error;
742 ret = btrfs_orphan_cleanup(pending_snapshot->snap);
746 inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry);
748 ret = PTR_ERR(inode);
752 d_instantiate(dentry, inode);
755 btrfs_subvolume_release_metadata(fs_info, &pending_snapshot->block_rsv);
757 if (atomic_dec_and_test(&root->will_be_snapshoted))
758 wake_up_atomic_t(&root->will_be_snapshoted);
760 kfree(pending_snapshot->root_item);
761 btrfs_free_path(pending_snapshot->path);
762 kfree(pending_snapshot);
767 /* copy of may_delete in fs/namei.c()
768 * Check whether we can remove a link victim from directory dir, check
769 * whether the type of victim is right.
770 * 1. We can't do it if dir is read-only (done in permission())
771 * 2. We should have write and exec permissions on dir
772 * 3. We can't remove anything from append-only dir
773 * 4. We can't do anything with immutable dir (done in permission())
774 * 5. If the sticky bit on dir is set we should either
775 * a. be owner of dir, or
776 * b. be owner of victim, or
777 * c. have CAP_FOWNER capability
778 * 6. If the victim is append-only or immutable we can't do anything with
779 * links pointing to it.
780 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
781 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
782 * 9. We can't remove a root or mountpoint.
783 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
784 * nfs_async_unlink().
787 static int btrfs_may_delete(struct inode *dir, struct dentry *victim, int isdir)
791 if (d_really_is_negative(victim))
794 BUG_ON(d_inode(victim->d_parent) != dir);
795 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
797 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
802 if (check_sticky(dir, d_inode(victim)) || IS_APPEND(d_inode(victim)) ||
803 IS_IMMUTABLE(d_inode(victim)) || IS_SWAPFILE(d_inode(victim)))
806 if (!d_is_dir(victim))
810 } else if (d_is_dir(victim))
814 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
819 /* copy of may_create in fs/namei.c() */
820 static inline int btrfs_may_create(struct inode *dir, struct dentry *child)
822 if (d_really_is_positive(child))
826 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
830 * Create a new subvolume below @parent. This is largely modeled after
831 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
832 * inside this filesystem so it's quite a bit simpler.
834 static noinline int btrfs_mksubvol(const struct path *parent,
835 char *name, int namelen,
836 struct btrfs_root *snap_src,
837 u64 *async_transid, bool readonly,
838 struct btrfs_qgroup_inherit *inherit)
840 struct inode *dir = d_inode(parent->dentry);
841 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
842 struct dentry *dentry;
845 error = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
849 dentry = lookup_one_len(name, parent->dentry, namelen);
850 error = PTR_ERR(dentry);
854 error = btrfs_may_create(dir, dentry);
859 * even if this name doesn't exist, we may get hash collisions.
860 * check for them now when we can safely fail
862 error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root,
868 down_read(&fs_info->subvol_sem);
870 if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0)
874 error = create_snapshot(snap_src, dir, dentry,
875 async_transid, readonly, inherit);
877 error = create_subvol(dir, dentry, name, namelen,
878 async_transid, inherit);
881 fsnotify_mkdir(dir, dentry);
883 up_read(&fs_info->subvol_sem);
892 * When we're defragging a range, we don't want to kick it off again
893 * if it is really just waiting for delalloc to send it down.
894 * If we find a nice big extent or delalloc range for the bytes in the
895 * file you want to defrag, we return 0 to let you know to skip this
898 static int check_defrag_in_cache(struct inode *inode, u64 offset, u32 thresh)
900 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
901 struct extent_map *em = NULL;
902 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
905 read_lock(&em_tree->lock);
906 em = lookup_extent_mapping(em_tree, offset, PAGE_SIZE);
907 read_unlock(&em_tree->lock);
910 end = extent_map_end(em);
912 if (end - offset > thresh)
915 /* if we already have a nice delalloc here, just stop */
917 end = count_range_bits(io_tree, &offset, offset + thresh,
918 thresh, EXTENT_DELALLOC, 1);
925 * helper function to walk through a file and find extents
926 * newer than a specific transid, and smaller than thresh.
928 * This is used by the defragging code to find new and small
931 static int find_new_extents(struct btrfs_root *root,
932 struct inode *inode, u64 newer_than,
933 u64 *off, u32 thresh)
935 struct btrfs_path *path;
936 struct btrfs_key min_key;
937 struct extent_buffer *leaf;
938 struct btrfs_file_extent_item *extent;
941 u64 ino = btrfs_ino(BTRFS_I(inode));
943 path = btrfs_alloc_path();
947 min_key.objectid = ino;
948 min_key.type = BTRFS_EXTENT_DATA_KEY;
949 min_key.offset = *off;
952 ret = btrfs_search_forward(root, &min_key, path, newer_than);
956 if (min_key.objectid != ino)
958 if (min_key.type != BTRFS_EXTENT_DATA_KEY)
961 leaf = path->nodes[0];
962 extent = btrfs_item_ptr(leaf, path->slots[0],
963 struct btrfs_file_extent_item);
965 type = btrfs_file_extent_type(leaf, extent);
966 if (type == BTRFS_FILE_EXTENT_REG &&
967 btrfs_file_extent_num_bytes(leaf, extent) < thresh &&
968 check_defrag_in_cache(inode, min_key.offset, thresh)) {
969 *off = min_key.offset;
970 btrfs_free_path(path);
975 if (path->slots[0] < btrfs_header_nritems(leaf)) {
976 btrfs_item_key_to_cpu(leaf, &min_key, path->slots[0]);
980 if (min_key.offset == (u64)-1)
984 btrfs_release_path(path);
987 btrfs_free_path(path);
991 static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start)
993 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
994 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
995 struct extent_map *em;
999 * hopefully we have this extent in the tree already, try without
1000 * the full extent lock
1002 read_lock(&em_tree->lock);
1003 em = lookup_extent_mapping(em_tree, start, len);
1004 read_unlock(&em_tree->lock);
1007 struct extent_state *cached = NULL;
1008 u64 end = start + len - 1;
1010 /* get the big lock and read metadata off disk */
1011 lock_extent_bits(io_tree, start, end, &cached);
1012 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
1013 unlock_extent_cached(io_tree, start, end, &cached, GFP_NOFS);
1022 static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em)
1024 struct extent_map *next;
1027 /* this is the last extent */
1028 if (em->start + em->len >= i_size_read(inode))
1031 next = defrag_lookup_extent(inode, em->start + em->len);
1032 if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE)
1034 else if ((em->block_start + em->block_len == next->block_start) &&
1035 (em->block_len > SZ_128K && next->block_len > SZ_128K))
1038 free_extent_map(next);
1042 static int should_defrag_range(struct inode *inode, u64 start, u32 thresh,
1043 u64 *last_len, u64 *skip, u64 *defrag_end,
1046 struct extent_map *em;
1048 bool next_mergeable = true;
1049 bool prev_mergeable = true;
1052 * make sure that once we start defragging an extent, we keep on
1055 if (start < *defrag_end)
1060 em = defrag_lookup_extent(inode, start);
1064 /* this will cover holes, and inline extents */
1065 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
1071 prev_mergeable = false;
1073 next_mergeable = defrag_check_next_extent(inode, em);
1075 * we hit a real extent, if it is big or the next extent is not a
1076 * real extent, don't bother defragging it
1078 if (!compress && (*last_len == 0 || *last_len >= thresh) &&
1079 (em->len >= thresh || (!next_mergeable && !prev_mergeable)))
1083 * last_len ends up being a counter of how many bytes we've defragged.
1084 * every time we choose not to defrag an extent, we reset *last_len
1085 * so that the next tiny extent will force a defrag.
1087 * The end result of this is that tiny extents before a single big
1088 * extent will force at least part of that big extent to be defragged.
1091 *defrag_end = extent_map_end(em);
1094 *skip = extent_map_end(em);
1098 free_extent_map(em);
1103 * it doesn't do much good to defrag one or two pages
1104 * at a time. This pulls in a nice chunk of pages
1105 * to COW and defrag.
1107 * It also makes sure the delalloc code has enough
1108 * dirty data to avoid making new small extents as part
1111 * It's a good idea to start RA on this range
1112 * before calling this.
1114 static int cluster_pages_for_defrag(struct inode *inode,
1115 struct page **pages,
1116 unsigned long start_index,
1117 unsigned long num_pages)
1119 unsigned long file_end;
1120 u64 isize = i_size_read(inode);
1127 struct btrfs_ordered_extent *ordered;
1128 struct extent_state *cached_state = NULL;
1129 struct extent_io_tree *tree;
1130 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1132 file_end = (isize - 1) >> PAGE_SHIFT;
1133 if (!isize || start_index > file_end)
1136 page_cnt = min_t(u64, (u64)num_pages, (u64)file_end - start_index + 1);
1138 ret = btrfs_delalloc_reserve_space(inode,
1139 start_index << PAGE_SHIFT,
1140 page_cnt << PAGE_SHIFT);
1144 tree = &BTRFS_I(inode)->io_tree;
1146 /* step one, lock all the pages */
1147 for (i = 0; i < page_cnt; i++) {
1150 page = find_or_create_page(inode->i_mapping,
1151 start_index + i, mask);
1155 page_start = page_offset(page);
1156 page_end = page_start + PAGE_SIZE - 1;
1158 lock_extent_bits(tree, page_start, page_end,
1160 ordered = btrfs_lookup_ordered_extent(inode,
1162 unlock_extent_cached(tree, page_start, page_end,
1163 &cached_state, GFP_NOFS);
1168 btrfs_start_ordered_extent(inode, ordered, 1);
1169 btrfs_put_ordered_extent(ordered);
1172 * we unlocked the page above, so we need check if
1173 * it was released or not.
1175 if (page->mapping != inode->i_mapping) {
1182 if (!PageUptodate(page)) {
1183 btrfs_readpage(NULL, page);
1185 if (!PageUptodate(page)) {
1193 if (page->mapping != inode->i_mapping) {
1205 if (!(inode->i_sb->s_flags & MS_ACTIVE))
1209 * so now we have a nice long stream of locked
1210 * and up to date pages, lets wait on them
1212 for (i = 0; i < i_done; i++)
1213 wait_on_page_writeback(pages[i]);
1215 page_start = page_offset(pages[0]);
1216 page_end = page_offset(pages[i_done - 1]) + PAGE_SIZE;
1218 lock_extent_bits(&BTRFS_I(inode)->io_tree,
1219 page_start, page_end - 1, &cached_state);
1220 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start,
1221 page_end - 1, EXTENT_DIRTY | EXTENT_DELALLOC |
1222 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 0, 0,
1223 &cached_state, GFP_NOFS);
1225 if (i_done != page_cnt) {
1226 spin_lock(&BTRFS_I(inode)->lock);
1227 BTRFS_I(inode)->outstanding_extents++;
1228 spin_unlock(&BTRFS_I(inode)->lock);
1229 btrfs_delalloc_release_space(inode,
1230 start_index << PAGE_SHIFT,
1231 (page_cnt - i_done) << PAGE_SHIFT);
1235 set_extent_defrag(&BTRFS_I(inode)->io_tree, page_start, page_end - 1,
1238 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1239 page_start, page_end - 1, &cached_state,
1242 for (i = 0; i < i_done; i++) {
1243 clear_page_dirty_for_io(pages[i]);
1244 ClearPageChecked(pages[i]);
1245 set_page_extent_mapped(pages[i]);
1246 set_page_dirty(pages[i]);
1247 unlock_page(pages[i]);
1252 for (i = 0; i < i_done; i++) {
1253 unlock_page(pages[i]);
1256 btrfs_delalloc_release_space(inode,
1257 start_index << PAGE_SHIFT,
1258 page_cnt << PAGE_SHIFT);
1263 int btrfs_defrag_file(struct inode *inode, struct file *file,
1264 struct btrfs_ioctl_defrag_range_args *range,
1265 u64 newer_than, unsigned long max_to_defrag)
1267 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1268 struct btrfs_root *root = BTRFS_I(inode)->root;
1269 struct file_ra_state *ra = NULL;
1270 unsigned long last_index;
1271 u64 isize = i_size_read(inode);
1275 u64 newer_off = range->start;
1277 unsigned long ra_index = 0;
1279 int defrag_count = 0;
1280 int compress_type = BTRFS_COMPRESS_ZLIB;
1281 u32 extent_thresh = range->extent_thresh;
1282 unsigned long max_cluster = SZ_256K >> PAGE_SHIFT;
1283 unsigned long cluster = max_cluster;
1284 u64 new_align = ~((u64)SZ_128K - 1);
1285 struct page **pages = NULL;
1290 if (range->start >= isize)
1293 if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS) {
1294 if (range->compress_type > BTRFS_COMPRESS_TYPES)
1296 if (range->compress_type)
1297 compress_type = range->compress_type;
1300 if (extent_thresh == 0)
1301 extent_thresh = SZ_256K;
1304 * if we were not given a file, allocate a readahead
1308 ra = kzalloc(sizeof(*ra), GFP_NOFS);
1311 file_ra_state_init(ra, inode->i_mapping);
1316 pages = kmalloc_array(max_cluster, sizeof(struct page *),
1323 /* find the last page to defrag */
1324 if (range->start + range->len > range->start) {
1325 last_index = min_t(u64, isize - 1,
1326 range->start + range->len - 1) >> PAGE_SHIFT;
1328 last_index = (isize - 1) >> PAGE_SHIFT;
1332 ret = find_new_extents(root, inode, newer_than,
1333 &newer_off, SZ_64K);
1335 range->start = newer_off;
1337 * we always align our defrag to help keep
1338 * the extents in the file evenly spaced
1340 i = (newer_off & new_align) >> PAGE_SHIFT;
1344 i = range->start >> PAGE_SHIFT;
1347 max_to_defrag = last_index - i + 1;
1350 * make writeback starts from i, so the defrag range can be
1351 * written sequentially.
1353 if (i < inode->i_mapping->writeback_index)
1354 inode->i_mapping->writeback_index = i;
1356 while (i <= last_index && defrag_count < max_to_defrag &&
1357 (i < DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE))) {
1359 * make sure we stop running if someone unmounts
1362 if (!(inode->i_sb->s_flags & MS_ACTIVE))
1365 if (btrfs_defrag_cancelled(fs_info)) {
1366 btrfs_debug(fs_info, "defrag_file cancelled");
1371 if (!should_defrag_range(inode, (u64)i << PAGE_SHIFT,
1372 extent_thresh, &last_len, &skip,
1373 &defrag_end, range->flags &
1374 BTRFS_DEFRAG_RANGE_COMPRESS)) {
1377 * the should_defrag function tells us how much to skip
1378 * bump our counter by the suggested amount
1380 next = DIV_ROUND_UP(skip, PAGE_SIZE);
1381 i = max(i + 1, next);
1386 cluster = (PAGE_ALIGN(defrag_end) >>
1388 cluster = min(cluster, max_cluster);
1390 cluster = max_cluster;
1393 if (i + cluster > ra_index) {
1394 ra_index = max(i, ra_index);
1395 btrfs_force_ra(inode->i_mapping, ra, file, ra_index,
1397 ra_index += cluster;
1401 if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)
1402 BTRFS_I(inode)->force_compress = compress_type;
1403 ret = cluster_pages_for_defrag(inode, pages, i, cluster);
1405 inode_unlock(inode);
1409 defrag_count += ret;
1410 balance_dirty_pages_ratelimited(inode->i_mapping);
1411 inode_unlock(inode);
1414 if (newer_off == (u64)-1)
1420 newer_off = max(newer_off + 1,
1421 (u64)i << PAGE_SHIFT);
1423 ret = find_new_extents(root, inode, newer_than,
1424 &newer_off, SZ_64K);
1426 range->start = newer_off;
1427 i = (newer_off & new_align) >> PAGE_SHIFT;
1434 last_len += ret << PAGE_SHIFT;
1442 if ((range->flags & BTRFS_DEFRAG_RANGE_START_IO)) {
1443 filemap_flush(inode->i_mapping);
1444 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1445 &BTRFS_I(inode)->runtime_flags))
1446 filemap_flush(inode->i_mapping);
1449 if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
1450 /* the filemap_flush will queue IO into the worker threads, but
1451 * we have to make sure the IO is actually started and that
1452 * ordered extents get created before we return
1454 atomic_inc(&fs_info->async_submit_draining);
1455 while (atomic_read(&fs_info->nr_async_submits) ||
1456 atomic_read(&fs_info->async_delalloc_pages)) {
1457 wait_event(fs_info->async_submit_wait,
1458 (atomic_read(&fs_info->nr_async_submits) == 0 &&
1459 atomic_read(&fs_info->async_delalloc_pages) == 0));
1461 atomic_dec(&fs_info->async_submit_draining);
1464 if (range->compress_type == BTRFS_COMPRESS_LZO) {
1465 btrfs_set_fs_incompat(fs_info, COMPRESS_LZO);
1471 if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS) {
1473 BTRFS_I(inode)->force_compress = BTRFS_COMPRESS_NONE;
1474 inode_unlock(inode);
1482 static noinline int btrfs_ioctl_resize(struct file *file,
1485 struct inode *inode = file_inode(file);
1486 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1490 struct btrfs_root *root = BTRFS_I(inode)->root;
1491 struct btrfs_ioctl_vol_args *vol_args;
1492 struct btrfs_trans_handle *trans;
1493 struct btrfs_device *device = NULL;
1496 char *devstr = NULL;
1500 if (!capable(CAP_SYS_ADMIN))
1503 ret = mnt_want_write_file(file);
1507 if (atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1)) {
1508 mnt_drop_write_file(file);
1509 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
1512 mutex_lock(&fs_info->volume_mutex);
1513 vol_args = memdup_user(arg, sizeof(*vol_args));
1514 if (IS_ERR(vol_args)) {
1515 ret = PTR_ERR(vol_args);
1519 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1521 sizestr = vol_args->name;
1522 devstr = strchr(sizestr, ':');
1524 sizestr = devstr + 1;
1526 devstr = vol_args->name;
1527 ret = kstrtoull(devstr, 10, &devid);
1534 btrfs_info(fs_info, "resizing devid %llu", devid);
1537 device = btrfs_find_device(fs_info, devid, NULL, NULL);
1539 btrfs_info(fs_info, "resizer unable to find device %llu",
1545 if (!device->writeable) {
1547 "resizer unable to apply on readonly device %llu",
1553 if (!strcmp(sizestr, "max"))
1554 new_size = device->bdev->bd_inode->i_size;
1556 if (sizestr[0] == '-') {
1559 } else if (sizestr[0] == '+') {
1563 new_size = memparse(sizestr, &retptr);
1564 if (*retptr != '\0' || new_size == 0) {
1570 if (device->is_tgtdev_for_dev_replace) {
1575 old_size = btrfs_device_get_total_bytes(device);
1578 if (new_size > old_size) {
1582 new_size = old_size - new_size;
1583 } else if (mod > 0) {
1584 if (new_size > ULLONG_MAX - old_size) {
1588 new_size = old_size + new_size;
1591 if (new_size < SZ_256M) {
1595 if (new_size > device->bdev->bd_inode->i_size) {
1600 new_size = div_u64(new_size, fs_info->sectorsize);
1601 new_size *= fs_info->sectorsize;
1603 btrfs_info_in_rcu(fs_info, "new size for %s is %llu",
1604 rcu_str_deref(device->name), new_size);
1606 if (new_size > old_size) {
1607 trans = btrfs_start_transaction(root, 0);
1608 if (IS_ERR(trans)) {
1609 ret = PTR_ERR(trans);
1612 ret = btrfs_grow_device(trans, device, new_size);
1613 btrfs_commit_transaction(trans);
1614 } else if (new_size < old_size) {
1615 ret = btrfs_shrink_device(device, new_size);
1616 } /* equal, nothing need to do */
1621 mutex_unlock(&fs_info->volume_mutex);
1622 atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
1623 mnt_drop_write_file(file);
1627 static noinline int btrfs_ioctl_snap_create_transid(struct file *file,
1628 char *name, unsigned long fd, int subvol,
1629 u64 *transid, bool readonly,
1630 struct btrfs_qgroup_inherit *inherit)
1635 if (!S_ISDIR(file_inode(file)->i_mode))
1638 ret = mnt_want_write_file(file);
1642 namelen = strlen(name);
1643 if (strchr(name, '/')) {
1645 goto out_drop_write;
1648 if (name[0] == '.' &&
1649 (namelen == 1 || (name[1] == '.' && namelen == 2))) {
1651 goto out_drop_write;
1655 ret = btrfs_mksubvol(&file->f_path, name, namelen,
1656 NULL, transid, readonly, inherit);
1658 struct fd src = fdget(fd);
1659 struct inode *src_inode;
1662 goto out_drop_write;
1665 src_inode = file_inode(src.file);
1666 if (src_inode->i_sb != file_inode(file)->i_sb) {
1667 btrfs_info(BTRFS_I(file_inode(file))->root->fs_info,
1668 "Snapshot src from another FS");
1670 } else if (!inode_owner_or_capable(src_inode)) {
1672 * Subvolume creation is not restricted, but snapshots
1673 * are limited to own subvolumes only
1677 ret = btrfs_mksubvol(&file->f_path, name, namelen,
1678 BTRFS_I(src_inode)->root,
1679 transid, readonly, inherit);
1684 mnt_drop_write_file(file);
1689 static noinline int btrfs_ioctl_snap_create(struct file *file,
1690 void __user *arg, int subvol)
1692 struct btrfs_ioctl_vol_args *vol_args;
1695 if (!S_ISDIR(file_inode(file)->i_mode))
1698 vol_args = memdup_user(arg, sizeof(*vol_args));
1699 if (IS_ERR(vol_args))
1700 return PTR_ERR(vol_args);
1701 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1703 ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1704 vol_args->fd, subvol,
1711 static noinline int btrfs_ioctl_snap_create_v2(struct file *file,
1712 void __user *arg, int subvol)
1714 struct btrfs_ioctl_vol_args_v2 *vol_args;
1718 bool readonly = false;
1719 struct btrfs_qgroup_inherit *inherit = NULL;
1721 if (!S_ISDIR(file_inode(file)->i_mode))
1724 vol_args = memdup_user(arg, sizeof(*vol_args));
1725 if (IS_ERR(vol_args))
1726 return PTR_ERR(vol_args);
1727 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
1729 if (vol_args->flags &
1730 ~(BTRFS_SUBVOL_CREATE_ASYNC | BTRFS_SUBVOL_RDONLY |
1731 BTRFS_SUBVOL_QGROUP_INHERIT)) {
1736 if (vol_args->flags & BTRFS_SUBVOL_CREATE_ASYNC)
1738 if (vol_args->flags & BTRFS_SUBVOL_RDONLY)
1740 if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) {
1741 if (vol_args->size > PAGE_SIZE) {
1745 inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size);
1746 if (IS_ERR(inherit)) {
1747 ret = PTR_ERR(inherit);
1752 ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1753 vol_args->fd, subvol, ptr,
1758 if (ptr && copy_to_user(arg +
1759 offsetof(struct btrfs_ioctl_vol_args_v2,
1771 static noinline int btrfs_ioctl_subvol_getflags(struct file *file,
1774 struct inode *inode = file_inode(file);
1775 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1776 struct btrfs_root *root = BTRFS_I(inode)->root;
1780 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID)
1783 down_read(&fs_info->subvol_sem);
1784 if (btrfs_root_readonly(root))
1785 flags |= BTRFS_SUBVOL_RDONLY;
1786 up_read(&fs_info->subvol_sem);
1788 if (copy_to_user(arg, &flags, sizeof(flags)))
1794 static noinline int btrfs_ioctl_subvol_setflags(struct file *file,
1797 struct inode *inode = file_inode(file);
1798 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1799 struct btrfs_root *root = BTRFS_I(inode)->root;
1800 struct btrfs_trans_handle *trans;
1805 if (!inode_owner_or_capable(inode))
1808 ret = mnt_want_write_file(file);
1812 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
1814 goto out_drop_write;
1817 if (copy_from_user(&flags, arg, sizeof(flags))) {
1819 goto out_drop_write;
1822 if (flags & BTRFS_SUBVOL_CREATE_ASYNC) {
1824 goto out_drop_write;
1827 if (flags & ~BTRFS_SUBVOL_RDONLY) {
1829 goto out_drop_write;
1832 down_write(&fs_info->subvol_sem);
1835 if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root))
1838 root_flags = btrfs_root_flags(&root->root_item);
1839 if (flags & BTRFS_SUBVOL_RDONLY) {
1840 btrfs_set_root_flags(&root->root_item,
1841 root_flags | BTRFS_ROOT_SUBVOL_RDONLY);
1844 * Block RO -> RW transition if this subvolume is involved in
1847 spin_lock(&root->root_item_lock);
1848 if (root->send_in_progress == 0) {
1849 btrfs_set_root_flags(&root->root_item,
1850 root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY);
1851 spin_unlock(&root->root_item_lock);
1853 spin_unlock(&root->root_item_lock);
1855 "Attempt to set subvolume %llu read-write during send",
1856 root->root_key.objectid);
1862 trans = btrfs_start_transaction(root, 1);
1863 if (IS_ERR(trans)) {
1864 ret = PTR_ERR(trans);
1868 ret = btrfs_update_root(trans, fs_info->tree_root,
1869 &root->root_key, &root->root_item);
1871 btrfs_commit_transaction(trans);
1874 btrfs_set_root_flags(&root->root_item, root_flags);
1876 up_write(&fs_info->subvol_sem);
1878 mnt_drop_write_file(file);
1884 * helper to check if the subvolume references other subvolumes
1886 static noinline int may_destroy_subvol(struct btrfs_root *root)
1888 struct btrfs_fs_info *fs_info = root->fs_info;
1889 struct btrfs_path *path;
1890 struct btrfs_dir_item *di;
1891 struct btrfs_key key;
1895 path = btrfs_alloc_path();
1899 /* Make sure this root isn't set as the default subvol */
1900 dir_id = btrfs_super_root_dir(fs_info->super_copy);
1901 di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path,
1902 dir_id, "default", 7, 0);
1903 if (di && !IS_ERR(di)) {
1904 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
1905 if (key.objectid == root->root_key.objectid) {
1908 "deleting default subvolume %llu is not allowed",
1912 btrfs_release_path(path);
1915 key.objectid = root->root_key.objectid;
1916 key.type = BTRFS_ROOT_REF_KEY;
1917 key.offset = (u64)-1;
1919 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1925 if (path->slots[0] > 0) {
1927 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1928 if (key.objectid == root->root_key.objectid &&
1929 key.type == BTRFS_ROOT_REF_KEY)
1933 btrfs_free_path(path);
1937 static noinline int key_in_sk(struct btrfs_key *key,
1938 struct btrfs_ioctl_search_key *sk)
1940 struct btrfs_key test;
1943 test.objectid = sk->min_objectid;
1944 test.type = sk->min_type;
1945 test.offset = sk->min_offset;
1947 ret = btrfs_comp_cpu_keys(key, &test);
1951 test.objectid = sk->max_objectid;
1952 test.type = sk->max_type;
1953 test.offset = sk->max_offset;
1955 ret = btrfs_comp_cpu_keys(key, &test);
1961 static noinline int copy_to_sk(struct btrfs_path *path,
1962 struct btrfs_key *key,
1963 struct btrfs_ioctl_search_key *sk,
1966 unsigned long *sk_offset,
1970 struct extent_buffer *leaf;
1971 struct btrfs_ioctl_search_header sh;
1972 struct btrfs_key test;
1973 unsigned long item_off;
1974 unsigned long item_len;
1980 leaf = path->nodes[0];
1981 slot = path->slots[0];
1982 nritems = btrfs_header_nritems(leaf);
1984 if (btrfs_header_generation(leaf) > sk->max_transid) {
1988 found_transid = btrfs_header_generation(leaf);
1990 for (i = slot; i < nritems; i++) {
1991 item_off = btrfs_item_ptr_offset(leaf, i);
1992 item_len = btrfs_item_size_nr(leaf, i);
1994 btrfs_item_key_to_cpu(leaf, key, i);
1995 if (!key_in_sk(key, sk))
1998 if (sizeof(sh) + item_len > *buf_size) {
2005 * return one empty item back for v1, which does not
2009 *buf_size = sizeof(sh) + item_len;
2014 if (sizeof(sh) + item_len + *sk_offset > *buf_size) {
2019 sh.objectid = key->objectid;
2020 sh.offset = key->offset;
2021 sh.type = key->type;
2023 sh.transid = found_transid;
2025 /* copy search result header */
2026 if (copy_to_user(ubuf + *sk_offset, &sh, sizeof(sh))) {
2031 *sk_offset += sizeof(sh);
2034 char __user *up = ubuf + *sk_offset;
2036 if (read_extent_buffer_to_user(leaf, up,
2037 item_off, item_len)) {
2042 *sk_offset += item_len;
2046 if (ret) /* -EOVERFLOW from above */
2049 if (*num_found >= sk->nr_items) {
2056 test.objectid = sk->max_objectid;
2057 test.type = sk->max_type;
2058 test.offset = sk->max_offset;
2059 if (btrfs_comp_cpu_keys(key, &test) >= 0)
2061 else if (key->offset < (u64)-1)
2063 else if (key->type < (u8)-1) {
2066 } else if (key->objectid < (u64)-1) {
2074 * 0: all items from this leaf copied, continue with next
2075 * 1: * more items can be copied, but unused buffer is too small
2076 * * all items were found
2077 * Either way, it will stops the loop which iterates to the next
2079 * -EOVERFLOW: item was to large for buffer
2080 * -EFAULT: could not copy extent buffer back to userspace
2085 static noinline int search_ioctl(struct inode *inode,
2086 struct btrfs_ioctl_search_key *sk,
2090 struct btrfs_fs_info *info = btrfs_sb(inode->i_sb);
2091 struct btrfs_root *root;
2092 struct btrfs_key key;
2093 struct btrfs_path *path;
2096 unsigned long sk_offset = 0;
2098 if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) {
2099 *buf_size = sizeof(struct btrfs_ioctl_search_header);
2103 path = btrfs_alloc_path();
2107 if (sk->tree_id == 0) {
2108 /* search the root of the inode that was passed */
2109 root = BTRFS_I(inode)->root;
2111 key.objectid = sk->tree_id;
2112 key.type = BTRFS_ROOT_ITEM_KEY;
2113 key.offset = (u64)-1;
2114 root = btrfs_read_fs_root_no_name(info, &key);
2116 btrfs_free_path(path);
2121 key.objectid = sk->min_objectid;
2122 key.type = sk->min_type;
2123 key.offset = sk->min_offset;
2126 ret = btrfs_search_forward(root, &key, path, sk->min_transid);
2132 ret = copy_to_sk(path, &key, sk, buf_size, ubuf,
2133 &sk_offset, &num_found);
2134 btrfs_release_path(path);
2142 sk->nr_items = num_found;
2143 btrfs_free_path(path);
2147 static noinline int btrfs_ioctl_tree_search(struct file *file,
2150 struct btrfs_ioctl_search_args __user *uargs;
2151 struct btrfs_ioctl_search_key sk;
2152 struct inode *inode;
2156 if (!capable(CAP_SYS_ADMIN))
2159 uargs = (struct btrfs_ioctl_search_args __user *)argp;
2161 if (copy_from_user(&sk, &uargs->key, sizeof(sk)))
2164 buf_size = sizeof(uargs->buf);
2166 inode = file_inode(file);
2167 ret = search_ioctl(inode, &sk, &buf_size, uargs->buf);
2170 * In the origin implementation an overflow is handled by returning a
2171 * search header with a len of zero, so reset ret.
2173 if (ret == -EOVERFLOW)
2176 if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk)))
2181 static noinline int btrfs_ioctl_tree_search_v2(struct file *file,
2184 struct btrfs_ioctl_search_args_v2 __user *uarg;
2185 struct btrfs_ioctl_search_args_v2 args;
2186 struct inode *inode;
2189 const size_t buf_limit = SZ_16M;
2191 if (!capable(CAP_SYS_ADMIN))
2194 /* copy search header and buffer size */
2195 uarg = (struct btrfs_ioctl_search_args_v2 __user *)argp;
2196 if (copy_from_user(&args, uarg, sizeof(args)))
2199 buf_size = args.buf_size;
2201 if (buf_size < sizeof(struct btrfs_ioctl_search_header))
2204 /* limit result size to 16MB */
2205 if (buf_size > buf_limit)
2206 buf_size = buf_limit;
2208 inode = file_inode(file);
2209 ret = search_ioctl(inode, &args.key, &buf_size,
2210 (char *)(&uarg->buf[0]));
2211 if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key)))
2213 else if (ret == -EOVERFLOW &&
2214 copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size)))
2221 * Search INODE_REFs to identify path name of 'dirid' directory
2222 * in a 'tree_id' tree. and sets path name to 'name'.
2224 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info,
2225 u64 tree_id, u64 dirid, char *name)
2227 struct btrfs_root *root;
2228 struct btrfs_key key;
2234 struct btrfs_inode_ref *iref;
2235 struct extent_buffer *l;
2236 struct btrfs_path *path;
2238 if (dirid == BTRFS_FIRST_FREE_OBJECTID) {
2243 path = btrfs_alloc_path();
2247 ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX];
2249 key.objectid = tree_id;
2250 key.type = BTRFS_ROOT_ITEM_KEY;
2251 key.offset = (u64)-1;
2252 root = btrfs_read_fs_root_no_name(info, &key);
2254 btrfs_err(info, "could not find root %llu", tree_id);
2259 key.objectid = dirid;
2260 key.type = BTRFS_INODE_REF_KEY;
2261 key.offset = (u64)-1;
2264 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2268 ret = btrfs_previous_item(root, path, dirid,
2269 BTRFS_INODE_REF_KEY);
2279 slot = path->slots[0];
2280 btrfs_item_key_to_cpu(l, &key, slot);
2282 iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref);
2283 len = btrfs_inode_ref_name_len(l, iref);
2285 total_len += len + 1;
2287 ret = -ENAMETOOLONG;
2292 read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len);
2294 if (key.offset == BTRFS_FIRST_FREE_OBJECTID)
2297 btrfs_release_path(path);
2298 key.objectid = key.offset;
2299 key.offset = (u64)-1;
2300 dirid = key.objectid;
2302 memmove(name, ptr, total_len);
2303 name[total_len] = '\0';
2306 btrfs_free_path(path);
2310 static noinline int btrfs_ioctl_ino_lookup(struct file *file,
2313 struct btrfs_ioctl_ino_lookup_args *args;
2314 struct inode *inode;
2317 args = memdup_user(argp, sizeof(*args));
2319 return PTR_ERR(args);
2321 inode = file_inode(file);
2324 * Unprivileged query to obtain the containing subvolume root id. The
2325 * path is reset so it's consistent with btrfs_search_path_in_tree.
2327 if (args->treeid == 0)
2328 args->treeid = BTRFS_I(inode)->root->root_key.objectid;
2330 if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) {
2335 if (!capable(CAP_SYS_ADMIN)) {
2340 ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info,
2341 args->treeid, args->objectid,
2345 if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2352 static noinline int btrfs_ioctl_snap_destroy(struct file *file,
2355 struct dentry *parent = file->f_path.dentry;
2356 struct btrfs_fs_info *fs_info = btrfs_sb(parent->d_sb);
2357 struct dentry *dentry;
2358 struct inode *dir = d_inode(parent);
2359 struct inode *inode;
2360 struct btrfs_root *root = BTRFS_I(dir)->root;
2361 struct btrfs_root *dest = NULL;
2362 struct btrfs_ioctl_vol_args *vol_args;
2363 struct btrfs_trans_handle *trans;
2364 struct btrfs_block_rsv block_rsv;
2366 u64 qgroup_reserved;
2371 if (!S_ISDIR(dir->i_mode))
2374 vol_args = memdup_user(arg, sizeof(*vol_args));
2375 if (IS_ERR(vol_args))
2376 return PTR_ERR(vol_args);
2378 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2379 namelen = strlen(vol_args->name);
2380 if (strchr(vol_args->name, '/') ||
2381 strncmp(vol_args->name, "..", namelen) == 0) {
2386 err = mnt_want_write_file(file);
2391 err = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
2393 goto out_drop_write;
2394 dentry = lookup_one_len(vol_args->name, parent, namelen);
2395 if (IS_ERR(dentry)) {
2396 err = PTR_ERR(dentry);
2397 goto out_unlock_dir;
2400 if (d_really_is_negative(dentry)) {
2405 inode = d_inode(dentry);
2406 dest = BTRFS_I(inode)->root;
2407 if (!capable(CAP_SYS_ADMIN)) {
2409 * Regular user. Only allow this with a special mount
2410 * option, when the user has write+exec access to the
2411 * subvol root, and when rmdir(2) would have been
2414 * Note that this is _not_ check that the subvol is
2415 * empty or doesn't contain data that we wouldn't
2416 * otherwise be able to delete.
2418 * Users who want to delete empty subvols should try
2422 if (!btrfs_test_opt(fs_info, USER_SUBVOL_RM_ALLOWED))
2426 * Do not allow deletion if the parent dir is the same
2427 * as the dir to be deleted. That means the ioctl
2428 * must be called on the dentry referencing the root
2429 * of the subvol, not a random directory contained
2436 err = inode_permission(inode, MAY_WRITE | MAY_EXEC);
2441 /* check if subvolume may be deleted by a user */
2442 err = btrfs_may_delete(dir, dentry, 1);
2446 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
2454 * Don't allow to delete a subvolume with send in progress. This is
2455 * inside the i_mutex so the error handling that has to drop the bit
2456 * again is not run concurrently.
2458 spin_lock(&dest->root_item_lock);
2459 root_flags = btrfs_root_flags(&dest->root_item);
2460 if (dest->send_in_progress == 0) {
2461 btrfs_set_root_flags(&dest->root_item,
2462 root_flags | BTRFS_ROOT_SUBVOL_DEAD);
2463 spin_unlock(&dest->root_item_lock);
2465 spin_unlock(&dest->root_item_lock);
2467 "Attempt to delete subvolume %llu during send",
2468 dest->root_key.objectid);
2470 goto out_unlock_inode;
2473 down_write(&fs_info->subvol_sem);
2475 err = may_destroy_subvol(dest);
2479 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
2481 * One for dir inode, two for dir entries, two for root
2484 err = btrfs_subvolume_reserve_metadata(root, &block_rsv,
2485 5, &qgroup_reserved, true);
2489 trans = btrfs_start_transaction(root, 0);
2490 if (IS_ERR(trans)) {
2491 err = PTR_ERR(trans);
2494 trans->block_rsv = &block_rsv;
2495 trans->bytes_reserved = block_rsv.size;
2497 btrfs_record_snapshot_destroy(trans, BTRFS_I(dir));
2499 ret = btrfs_unlink_subvol(trans, root, dir,
2500 dest->root_key.objectid,
2501 dentry->d_name.name,
2502 dentry->d_name.len);
2505 btrfs_abort_transaction(trans, ret);
2509 btrfs_record_root_in_trans(trans, dest);
2511 memset(&dest->root_item.drop_progress, 0,
2512 sizeof(dest->root_item.drop_progress));
2513 dest->root_item.drop_level = 0;
2514 btrfs_set_root_refs(&dest->root_item, 0);
2516 if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) {
2517 ret = btrfs_insert_orphan_item(trans,
2519 dest->root_key.objectid);
2521 btrfs_abort_transaction(trans, ret);
2527 ret = btrfs_uuid_tree_rem(trans, fs_info, dest->root_item.uuid,
2528 BTRFS_UUID_KEY_SUBVOL,
2529 dest->root_key.objectid);
2530 if (ret && ret != -ENOENT) {
2531 btrfs_abort_transaction(trans, ret);
2535 if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) {
2536 ret = btrfs_uuid_tree_rem(trans, fs_info,
2537 dest->root_item.received_uuid,
2538 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
2539 dest->root_key.objectid);
2540 if (ret && ret != -ENOENT) {
2541 btrfs_abort_transaction(trans, ret);
2548 trans->block_rsv = NULL;
2549 trans->bytes_reserved = 0;
2550 ret = btrfs_end_transaction(trans);
2553 inode->i_flags |= S_DEAD;
2555 btrfs_subvolume_release_metadata(fs_info, &block_rsv);
2557 up_write(&fs_info->subvol_sem);
2559 spin_lock(&dest->root_item_lock);
2560 root_flags = btrfs_root_flags(&dest->root_item);
2561 btrfs_set_root_flags(&dest->root_item,
2562 root_flags & ~BTRFS_ROOT_SUBVOL_DEAD);
2563 spin_unlock(&dest->root_item_lock);
2566 inode_unlock(inode);
2568 d_invalidate(dentry);
2569 btrfs_invalidate_inodes(dest);
2571 ASSERT(dest->send_in_progress == 0);
2574 if (dest->ino_cache_inode) {
2575 iput(dest->ino_cache_inode);
2576 dest->ino_cache_inode = NULL;
2584 mnt_drop_write_file(file);
2590 static int btrfs_ioctl_defrag(struct file *file, void __user *argp)
2592 struct inode *inode = file_inode(file);
2593 struct btrfs_root *root = BTRFS_I(inode)->root;
2594 struct btrfs_ioctl_defrag_range_args *range;
2597 ret = mnt_want_write_file(file);
2601 if (btrfs_root_readonly(root)) {
2606 switch (inode->i_mode & S_IFMT) {
2608 if (!capable(CAP_SYS_ADMIN)) {
2612 ret = btrfs_defrag_root(root);
2615 if (!(file->f_mode & FMODE_WRITE)) {
2620 range = kzalloc(sizeof(*range), GFP_KERNEL);
2627 if (copy_from_user(range, argp,
2633 /* compression requires us to start the IO */
2634 if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
2635 range->flags |= BTRFS_DEFRAG_RANGE_START_IO;
2636 range->extent_thresh = (u32)-1;
2639 /* the rest are all set to zero by kzalloc */
2640 range->len = (u64)-1;
2642 ret = btrfs_defrag_file(file_inode(file), file,
2652 mnt_drop_write_file(file);
2656 static long btrfs_ioctl_add_dev(struct btrfs_fs_info *fs_info, void __user *arg)
2658 struct btrfs_ioctl_vol_args *vol_args;
2661 if (!capable(CAP_SYS_ADMIN))
2664 if (atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1))
2665 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
2667 mutex_lock(&fs_info->volume_mutex);
2668 vol_args = memdup_user(arg, sizeof(*vol_args));
2669 if (IS_ERR(vol_args)) {
2670 ret = PTR_ERR(vol_args);
2674 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2675 ret = btrfs_init_new_device(fs_info, vol_args->name);
2678 btrfs_info(fs_info, "disk added %s", vol_args->name);
2682 mutex_unlock(&fs_info->volume_mutex);
2683 atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
2687 static long btrfs_ioctl_rm_dev_v2(struct file *file, void __user *arg)
2689 struct inode *inode = file_inode(file);
2690 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2691 struct btrfs_ioctl_vol_args_v2 *vol_args;
2694 if (!capable(CAP_SYS_ADMIN))
2697 ret = mnt_want_write_file(file);
2701 vol_args = memdup_user(arg, sizeof(*vol_args));
2702 if (IS_ERR(vol_args)) {
2703 ret = PTR_ERR(vol_args);
2707 /* Check for compatibility reject unknown flags */
2708 if (vol_args->flags & ~BTRFS_VOL_ARG_V2_FLAGS_SUPPORTED)
2711 if (atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1)) {
2712 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
2716 mutex_lock(&fs_info->volume_mutex);
2717 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) {
2718 ret = btrfs_rm_device(fs_info, NULL, vol_args->devid);
2720 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
2721 ret = btrfs_rm_device(fs_info, vol_args->name, 0);
2723 mutex_unlock(&fs_info->volume_mutex);
2724 atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
2727 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID)
2728 btrfs_info(fs_info, "device deleted: id %llu",
2731 btrfs_info(fs_info, "device deleted: %s",
2737 mnt_drop_write_file(file);
2741 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg)
2743 struct inode *inode = file_inode(file);
2744 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2745 struct btrfs_ioctl_vol_args *vol_args;
2748 if (!capable(CAP_SYS_ADMIN))
2751 ret = mnt_want_write_file(file);
2755 if (atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1)) {
2756 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
2757 goto out_drop_write;
2760 vol_args = memdup_user(arg, sizeof(*vol_args));
2761 if (IS_ERR(vol_args)) {
2762 ret = PTR_ERR(vol_args);
2766 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2767 mutex_lock(&fs_info->volume_mutex);
2768 ret = btrfs_rm_device(fs_info, vol_args->name, 0);
2769 mutex_unlock(&fs_info->volume_mutex);
2772 btrfs_info(fs_info, "disk deleted %s", vol_args->name);
2775 atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
2777 mnt_drop_write_file(file);
2782 static long btrfs_ioctl_fs_info(struct btrfs_fs_info *fs_info,
2785 struct btrfs_ioctl_fs_info_args *fi_args;
2786 struct btrfs_device *device;
2787 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2790 fi_args = kzalloc(sizeof(*fi_args), GFP_KERNEL);
2794 mutex_lock(&fs_devices->device_list_mutex);
2795 fi_args->num_devices = fs_devices->num_devices;
2796 memcpy(&fi_args->fsid, fs_info->fsid, sizeof(fi_args->fsid));
2798 list_for_each_entry(device, &fs_devices->devices, dev_list) {
2799 if (device->devid > fi_args->max_id)
2800 fi_args->max_id = device->devid;
2802 mutex_unlock(&fs_devices->device_list_mutex);
2804 fi_args->nodesize = fs_info->super_copy->nodesize;
2805 fi_args->sectorsize = fs_info->super_copy->sectorsize;
2806 fi_args->clone_alignment = fs_info->super_copy->sectorsize;
2808 if (copy_to_user(arg, fi_args, sizeof(*fi_args)))
2815 static long btrfs_ioctl_dev_info(struct btrfs_fs_info *fs_info,
2818 struct btrfs_ioctl_dev_info_args *di_args;
2819 struct btrfs_device *dev;
2820 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2822 char *s_uuid = NULL;
2824 di_args = memdup_user(arg, sizeof(*di_args));
2825 if (IS_ERR(di_args))
2826 return PTR_ERR(di_args);
2828 if (!btrfs_is_empty_uuid(di_args->uuid))
2829 s_uuid = di_args->uuid;
2831 mutex_lock(&fs_devices->device_list_mutex);
2832 dev = btrfs_find_device(fs_info, di_args->devid, s_uuid, NULL);
2839 di_args->devid = dev->devid;
2840 di_args->bytes_used = btrfs_device_get_bytes_used(dev);
2841 di_args->total_bytes = btrfs_device_get_total_bytes(dev);
2842 memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid));
2844 struct rcu_string *name;
2847 name = rcu_dereference(dev->name);
2848 strncpy(di_args->path, name->str, sizeof(di_args->path));
2850 di_args->path[sizeof(di_args->path) - 1] = 0;
2852 di_args->path[0] = '\0';
2856 mutex_unlock(&fs_devices->device_list_mutex);
2857 if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args)))
2864 static struct page *extent_same_get_page(struct inode *inode, pgoff_t index)
2868 page = grab_cache_page(inode->i_mapping, index);
2870 return ERR_PTR(-ENOMEM);
2872 if (!PageUptodate(page)) {
2875 ret = btrfs_readpage(NULL, page);
2877 return ERR_PTR(ret);
2879 if (!PageUptodate(page)) {
2882 return ERR_PTR(-EIO);
2884 if (page->mapping != inode->i_mapping) {
2887 return ERR_PTR(-EAGAIN);
2894 static int gather_extent_pages(struct inode *inode, struct page **pages,
2895 int num_pages, u64 off)
2898 pgoff_t index = off >> PAGE_SHIFT;
2900 for (i = 0; i < num_pages; i++) {
2902 pages[i] = extent_same_get_page(inode, index + i);
2903 if (IS_ERR(pages[i])) {
2904 int err = PTR_ERR(pages[i]);
2915 static int lock_extent_range(struct inode *inode, u64 off, u64 len,
2916 bool retry_range_locking)
2919 * Do any pending delalloc/csum calculations on inode, one way or
2920 * another, and lock file content.
2921 * The locking order is:
2924 * 2) range in the inode's io tree
2927 struct btrfs_ordered_extent *ordered;
2928 lock_extent(&BTRFS_I(inode)->io_tree, off, off + len - 1);
2929 ordered = btrfs_lookup_first_ordered_extent(inode,
2932 ordered->file_offset + ordered->len <= off ||
2933 ordered->file_offset >= off + len) &&
2934 !test_range_bit(&BTRFS_I(inode)->io_tree, off,
2935 off + len - 1, EXTENT_DELALLOC, 0, NULL)) {
2937 btrfs_put_ordered_extent(ordered);
2940 unlock_extent(&BTRFS_I(inode)->io_tree, off, off + len - 1);
2942 btrfs_put_ordered_extent(ordered);
2943 if (!retry_range_locking)
2945 btrfs_wait_ordered_range(inode, off, len);
2950 static void btrfs_double_inode_unlock(struct inode *inode1, struct inode *inode2)
2952 inode_unlock(inode1);
2953 inode_unlock(inode2);
2956 static void btrfs_double_inode_lock(struct inode *inode1, struct inode *inode2)
2958 if (inode1 < inode2)
2959 swap(inode1, inode2);
2961 inode_lock_nested(inode1, I_MUTEX_PARENT);
2962 inode_lock_nested(inode2, I_MUTEX_CHILD);
2965 static void btrfs_double_extent_unlock(struct inode *inode1, u64 loff1,
2966 struct inode *inode2, u64 loff2, u64 len)
2968 unlock_extent(&BTRFS_I(inode1)->io_tree, loff1, loff1 + len - 1);
2969 unlock_extent(&BTRFS_I(inode2)->io_tree, loff2, loff2 + len - 1);
2972 static int btrfs_double_extent_lock(struct inode *inode1, u64 loff1,
2973 struct inode *inode2, u64 loff2, u64 len,
2974 bool retry_range_locking)
2978 if (inode1 < inode2) {
2979 swap(inode1, inode2);
2982 ret = lock_extent_range(inode1, loff1, len, retry_range_locking);
2985 ret = lock_extent_range(inode2, loff2, len, retry_range_locking);
2987 unlock_extent(&BTRFS_I(inode1)->io_tree, loff1,
2994 struct page **src_pages;
2995 struct page **dst_pages;
2998 static void btrfs_cmp_data_free(struct cmp_pages *cmp)
3003 for (i = 0; i < cmp->num_pages; i++) {
3004 pg = cmp->src_pages[i];
3009 pg = cmp->dst_pages[i];
3015 kfree(cmp->src_pages);
3016 kfree(cmp->dst_pages);
3019 static int btrfs_cmp_data_prepare(struct inode *src, u64 loff,
3020 struct inode *dst, u64 dst_loff,
3021 u64 len, struct cmp_pages *cmp)
3024 int num_pages = PAGE_ALIGN(len) >> PAGE_SHIFT;
3025 struct page **src_pgarr, **dst_pgarr;
3028 * We must gather up all the pages before we initiate our
3029 * extent locking. We use an array for the page pointers. Size
3030 * of the array is bounded by len, which is in turn bounded by
3031 * BTRFS_MAX_DEDUPE_LEN.
3033 src_pgarr = kcalloc(num_pages, sizeof(struct page *), GFP_KERNEL);
3034 dst_pgarr = kcalloc(num_pages, sizeof(struct page *), GFP_KERNEL);
3035 if (!src_pgarr || !dst_pgarr) {
3040 cmp->num_pages = num_pages;
3041 cmp->src_pages = src_pgarr;
3042 cmp->dst_pages = dst_pgarr;
3045 * If deduping ranges in the same inode, locking rules make it mandatory
3046 * to always lock pages in ascending order to avoid deadlocks with
3047 * concurrent tasks (such as starting writeback/delalloc).
3049 if (src == dst && dst_loff < loff) {
3050 swap(src_pgarr, dst_pgarr);
3051 swap(loff, dst_loff);
3054 ret = gather_extent_pages(src, src_pgarr, cmp->num_pages, loff);
3058 ret = gather_extent_pages(dst, dst_pgarr, cmp->num_pages, dst_loff);
3062 btrfs_cmp_data_free(cmp);
3066 static int btrfs_cmp_data(u64 len, struct cmp_pages *cmp)
3070 struct page *src_page, *dst_page;
3071 unsigned int cmp_len = PAGE_SIZE;
3072 void *addr, *dst_addr;
3076 if (len < PAGE_SIZE)
3079 BUG_ON(i >= cmp->num_pages);
3081 src_page = cmp->src_pages[i];
3082 dst_page = cmp->dst_pages[i];
3083 ASSERT(PageLocked(src_page));
3084 ASSERT(PageLocked(dst_page));
3086 addr = kmap_atomic(src_page);
3087 dst_addr = kmap_atomic(dst_page);
3089 flush_dcache_page(src_page);
3090 flush_dcache_page(dst_page);
3092 if (memcmp(addr, dst_addr, cmp_len))
3095 kunmap_atomic(addr);
3096 kunmap_atomic(dst_addr);
3108 static int extent_same_check_offsets(struct inode *inode, u64 off, u64 *plen,
3112 u64 bs = BTRFS_I(inode)->root->fs_info->sb->s_blocksize;
3114 if (off + olen > inode->i_size || off + olen < off)
3117 /* if we extend to eof, continue to block boundary */
3118 if (off + len == inode->i_size)
3119 *plen = len = ALIGN(inode->i_size, bs) - off;
3121 /* Check that we are block aligned - btrfs_clone() requires this */
3122 if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs))
3128 static int btrfs_extent_same(struct inode *src, u64 loff, u64 olen,
3129 struct inode *dst, u64 dst_loff)
3133 struct cmp_pages cmp;
3134 bool same_inode = (src == dst);
3135 u64 same_lock_start = 0;
3136 u64 same_lock_len = 0;
3144 btrfs_double_inode_lock(src, dst);
3146 ret = extent_same_check_offsets(src, loff, &len, olen);
3150 ret = extent_same_check_offsets(dst, dst_loff, &len, olen);
3156 * Single inode case wants the same checks, except we
3157 * don't want our length pushed out past i_size as
3158 * comparing that data range makes no sense.
3160 * extent_same_check_offsets() will do this for an
3161 * unaligned length at i_size, so catch it here and
3162 * reject the request.
3164 * This effectively means we require aligned extents
3165 * for the single-inode case, whereas the other cases
3166 * allow an unaligned length so long as it ends at
3174 /* Check for overlapping ranges */
3175 if (dst_loff + len > loff && dst_loff < loff + len) {
3180 same_lock_start = min_t(u64, loff, dst_loff);
3181 same_lock_len = max_t(u64, loff, dst_loff) + len - same_lock_start;
3184 /* don't make the dst file partly checksummed */
3185 if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) !=
3186 (BTRFS_I(dst)->flags & BTRFS_INODE_NODATASUM)) {
3192 ret = btrfs_cmp_data_prepare(src, loff, dst, dst_loff, olen, &cmp);
3197 ret = lock_extent_range(src, same_lock_start, same_lock_len,
3200 ret = btrfs_double_extent_lock(src, loff, dst, dst_loff, len,
3203 * If one of the inodes has dirty pages in the respective range or
3204 * ordered extents, we need to flush dellaloc and wait for all ordered
3205 * extents in the range. We must unlock the pages and the ranges in the
3206 * io trees to avoid deadlocks when flushing delalloc (requires locking
3207 * pages) and when waiting for ordered extents to complete (they require
3210 if (ret == -EAGAIN) {
3212 * Ranges in the io trees already unlocked. Now unlock all
3213 * pages before waiting for all IO to complete.
3215 btrfs_cmp_data_free(&cmp);
3217 btrfs_wait_ordered_range(src, same_lock_start,
3220 btrfs_wait_ordered_range(src, loff, len);
3221 btrfs_wait_ordered_range(dst, dst_loff, len);
3227 /* ranges in the io trees already unlocked */
3228 btrfs_cmp_data_free(&cmp);
3232 /* pass original length for comparison so we stay within i_size */
3233 ret = btrfs_cmp_data(olen, &cmp);
3235 ret = btrfs_clone(src, dst, loff, olen, len, dst_loff, 1);
3238 unlock_extent(&BTRFS_I(src)->io_tree, same_lock_start,
3239 same_lock_start + same_lock_len - 1);
3241 btrfs_double_extent_unlock(src, loff, dst, dst_loff, len);
3243 btrfs_cmp_data_free(&cmp);
3248 btrfs_double_inode_unlock(src, dst);
3253 #define BTRFS_MAX_DEDUPE_LEN SZ_16M
3255 ssize_t btrfs_dedupe_file_range(struct file *src_file, u64 loff, u64 olen,
3256 struct file *dst_file, u64 dst_loff)
3258 struct inode *src = file_inode(src_file);
3259 struct inode *dst = file_inode(dst_file);
3260 u64 bs = BTRFS_I(src)->root->fs_info->sb->s_blocksize;
3263 if (olen > BTRFS_MAX_DEDUPE_LEN)
3264 olen = BTRFS_MAX_DEDUPE_LEN;
3266 if (WARN_ON_ONCE(bs < PAGE_SIZE)) {
3268 * Btrfs does not support blocksize < page_size. As a
3269 * result, btrfs_cmp_data() won't correctly handle
3270 * this situation without an update.
3275 res = btrfs_extent_same(src, loff, olen, dst, dst_loff);
3281 static int clone_finish_inode_update(struct btrfs_trans_handle *trans,
3282 struct inode *inode,
3288 struct btrfs_root *root = BTRFS_I(inode)->root;
3291 inode_inc_iversion(inode);
3292 if (!no_time_update)
3293 inode->i_mtime = inode->i_ctime = current_time(inode);
3295 * We round up to the block size at eof when determining which
3296 * extents to clone above, but shouldn't round up the file size.
3298 if (endoff > destoff + olen)
3299 endoff = destoff + olen;
3300 if (endoff > inode->i_size)
3301 btrfs_i_size_write(inode, endoff);
3303 ret = btrfs_update_inode(trans, root, inode);
3305 btrfs_abort_transaction(trans, ret);
3306 btrfs_end_transaction(trans);
3309 ret = btrfs_end_transaction(trans);
3314 static void clone_update_extent_map(struct inode *inode,
3315 const struct btrfs_trans_handle *trans,
3316 const struct btrfs_path *path,
3317 const u64 hole_offset,
3320 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
3321 struct extent_map *em;
3324 em = alloc_extent_map();
3326 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3327 &BTRFS_I(inode)->runtime_flags);
3332 struct btrfs_file_extent_item *fi;
3334 fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
3335 struct btrfs_file_extent_item);
3336 btrfs_extent_item_to_extent_map(inode, path, fi, false, em);
3337 em->generation = -1;
3338 if (btrfs_file_extent_type(path->nodes[0], fi) ==
3339 BTRFS_FILE_EXTENT_INLINE)
3340 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3341 &BTRFS_I(inode)->runtime_flags);
3343 em->start = hole_offset;
3345 em->ram_bytes = em->len;
3346 em->orig_start = hole_offset;
3347 em->block_start = EXTENT_MAP_HOLE;
3349 em->orig_block_len = 0;
3350 em->compress_type = BTRFS_COMPRESS_NONE;
3351 em->generation = trans->transid;
3355 write_lock(&em_tree->lock);
3356 ret = add_extent_mapping(em_tree, em, 1);
3357 write_unlock(&em_tree->lock);
3358 if (ret != -EEXIST) {
3359 free_extent_map(em);
3362 btrfs_drop_extent_cache(inode, em->start,
3363 em->start + em->len - 1, 0);
3367 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3368 &BTRFS_I(inode)->runtime_flags);
3372 * Make sure we do not end up inserting an inline extent into a file that has
3373 * already other (non-inline) extents. If a file has an inline extent it can
3374 * not have any other extents and the (single) inline extent must start at the
3375 * file offset 0. Failing to respect these rules will lead to file corruption,
3376 * resulting in EIO errors on read/write operations, hitting BUG_ON's in mm, etc
3378 * We can have extents that have been already written to disk or we can have
3379 * dirty ranges still in delalloc, in which case the extent maps and items are
3380 * created only when we run delalloc, and the delalloc ranges might fall outside
3381 * the range we are currently locking in the inode's io tree. So we check the
3382 * inode's i_size because of that (i_size updates are done while holding the
3383 * i_mutex, which we are holding here).
3384 * We also check to see if the inode has a size not greater than "datal" but has
3385 * extents beyond it, due to an fallocate with FALLOC_FL_KEEP_SIZE (and we are
3386 * protected against such concurrent fallocate calls by the i_mutex).
3388 * If the file has no extents but a size greater than datal, do not allow the
3389 * copy because we would need turn the inline extent into a non-inline one (even
3390 * with NO_HOLES enabled). If we find our destination inode only has one inline
3391 * extent, just overwrite it with the source inline extent if its size is less
3392 * than the source extent's size, or we could copy the source inline extent's
3393 * data into the destination inode's inline extent if the later is greater then
3396 static int clone_copy_inline_extent(struct inode *dst,
3397 struct btrfs_trans_handle *trans,
3398 struct btrfs_path *path,
3399 struct btrfs_key *new_key,
3400 const u64 drop_start,
3406 struct btrfs_fs_info *fs_info = btrfs_sb(dst->i_sb);
3407 struct btrfs_root *root = BTRFS_I(dst)->root;
3408 const u64 aligned_end = ALIGN(new_key->offset + datal,
3409 fs_info->sectorsize);
3411 struct btrfs_key key;
3413 if (new_key->offset > 0)
3416 key.objectid = btrfs_ino(BTRFS_I(dst));
3417 key.type = BTRFS_EXTENT_DATA_KEY;
3419 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3422 } else if (ret > 0) {
3423 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
3424 ret = btrfs_next_leaf(root, path);
3428 goto copy_inline_extent;
3430 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
3431 if (key.objectid == btrfs_ino(BTRFS_I(dst)) &&
3432 key.type == BTRFS_EXTENT_DATA_KEY) {
3433 ASSERT(key.offset > 0);
3436 } else if (i_size_read(dst) <= datal) {
3437 struct btrfs_file_extent_item *ei;
3441 * If the file size is <= datal, make sure there are no other
3442 * extents following (can happen do to an fallocate call with
3443 * the flag FALLOC_FL_KEEP_SIZE).
3445 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
3446 struct btrfs_file_extent_item);
3448 * If it's an inline extent, it can not have other extents
3451 if (btrfs_file_extent_type(path->nodes[0], ei) ==
3452 BTRFS_FILE_EXTENT_INLINE)
3453 goto copy_inline_extent;
3455 ext_len = btrfs_file_extent_num_bytes(path->nodes[0], ei);
3456 if (ext_len > aligned_end)
3459 ret = btrfs_next_item(root, path);
3462 } else if (ret == 0) {
3463 btrfs_item_key_to_cpu(path->nodes[0], &key,
3465 if (key.objectid == btrfs_ino(BTRFS_I(dst)) &&
3466 key.type == BTRFS_EXTENT_DATA_KEY)
3473 * We have no extent items, or we have an extent at offset 0 which may
3474 * or may not be inlined. All these cases are dealt the same way.
3476 if (i_size_read(dst) > datal) {
3478 * If the destination inode has an inline extent...
3479 * This would require copying the data from the source inline
3480 * extent into the beginning of the destination's inline extent.
3481 * But this is really complex, both extents can be compressed
3482 * or just one of them, which would require decompressing and
3483 * re-compressing data (which could increase the new compressed
3484 * size, not allowing the compressed data to fit anymore in an
3486 * So just don't support this case for now (it should be rare,
3487 * we are not really saving space when cloning inline extents).
3492 btrfs_release_path(path);
3493 ret = btrfs_drop_extents(trans, root, dst, drop_start, aligned_end, 1);
3496 ret = btrfs_insert_empty_item(trans, root, path, new_key, size);
3501 const u32 start = btrfs_file_extent_calc_inline_size(0);
3503 memmove(inline_data + start, inline_data + start + skip, datal);
3506 write_extent_buffer(path->nodes[0], inline_data,
3507 btrfs_item_ptr_offset(path->nodes[0],
3510 inode_add_bytes(dst, datal);
3516 * btrfs_clone() - clone a range from inode file to another
3518 * @src: Inode to clone from
3519 * @inode: Inode to clone to
3520 * @off: Offset within source to start clone from
3521 * @olen: Original length, passed by user, of range to clone
3522 * @olen_aligned: Block-aligned value of olen
3523 * @destoff: Offset within @inode to start clone
3524 * @no_time_update: Whether to update mtime/ctime on the target inode
3526 static int btrfs_clone(struct inode *src, struct inode *inode,
3527 const u64 off, const u64 olen, const u64 olen_aligned,
3528 const u64 destoff, int no_time_update)
3530 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3531 struct btrfs_root *root = BTRFS_I(inode)->root;
3532 struct btrfs_path *path = NULL;
3533 struct extent_buffer *leaf;
3534 struct btrfs_trans_handle *trans;
3536 struct btrfs_key key;
3540 const u64 len = olen_aligned;
3541 u64 last_dest_end = destoff;
3544 buf = kmalloc(fs_info->nodesize, GFP_KERNEL | __GFP_NOWARN);
3546 buf = vmalloc(fs_info->nodesize);
3551 path = btrfs_alloc_path();
3557 path->reada = READA_FORWARD;
3559 key.objectid = btrfs_ino(BTRFS_I(src));
3560 key.type = BTRFS_EXTENT_DATA_KEY;
3564 u64 next_key_min_offset = key.offset + 1;
3567 * note the key will change type as we walk through the
3570 path->leave_spinning = 1;
3571 ret = btrfs_search_slot(NULL, BTRFS_I(src)->root, &key, path,
3576 * First search, if no extent item that starts at offset off was
3577 * found but the previous item is an extent item, it's possible
3578 * it might overlap our target range, therefore process it.
3580 if (key.offset == off && ret > 0 && path->slots[0] > 0) {
3581 btrfs_item_key_to_cpu(path->nodes[0], &key,
3582 path->slots[0] - 1);
3583 if (key.type == BTRFS_EXTENT_DATA_KEY)
3587 nritems = btrfs_header_nritems(path->nodes[0]);
3589 if (path->slots[0] >= nritems) {
3590 ret = btrfs_next_leaf(BTRFS_I(src)->root, path);
3595 nritems = btrfs_header_nritems(path->nodes[0]);
3597 leaf = path->nodes[0];
3598 slot = path->slots[0];
3600 btrfs_item_key_to_cpu(leaf, &key, slot);
3601 if (key.type > BTRFS_EXTENT_DATA_KEY ||
3602 key.objectid != btrfs_ino(BTRFS_I(src)))
3605 if (key.type == BTRFS_EXTENT_DATA_KEY) {
3606 struct btrfs_file_extent_item *extent;
3609 struct btrfs_key new_key;
3610 u64 disko = 0, diskl = 0;
3611 u64 datao = 0, datal = 0;
3615 extent = btrfs_item_ptr(leaf, slot,
3616 struct btrfs_file_extent_item);
3617 comp = btrfs_file_extent_compression(leaf, extent);
3618 type = btrfs_file_extent_type(leaf, extent);
3619 if (type == BTRFS_FILE_EXTENT_REG ||
3620 type == BTRFS_FILE_EXTENT_PREALLOC) {
3621 disko = btrfs_file_extent_disk_bytenr(leaf,
3623 diskl = btrfs_file_extent_disk_num_bytes(leaf,
3625 datao = btrfs_file_extent_offset(leaf, extent);
3626 datal = btrfs_file_extent_num_bytes(leaf,
3628 } else if (type == BTRFS_FILE_EXTENT_INLINE) {
3629 /* take upper bound, may be compressed */
3630 datal = btrfs_file_extent_ram_bytes(leaf,
3635 * The first search might have left us at an extent
3636 * item that ends before our target range's start, can
3637 * happen if we have holes and NO_HOLES feature enabled.
3639 if (key.offset + datal <= off) {
3642 } else if (key.offset >= off + len) {
3645 next_key_min_offset = key.offset + datal;
3646 size = btrfs_item_size_nr(leaf, slot);
3647 read_extent_buffer(leaf, buf,
3648 btrfs_item_ptr_offset(leaf, slot),
3651 btrfs_release_path(path);
3652 path->leave_spinning = 0;
3654 memcpy(&new_key, &key, sizeof(new_key));
3655 new_key.objectid = btrfs_ino(BTRFS_I(inode));
3656 if (off <= key.offset)
3657 new_key.offset = key.offset + destoff - off;
3659 new_key.offset = destoff;
3662 * Deal with a hole that doesn't have an extent item
3663 * that represents it (NO_HOLES feature enabled).
3664 * This hole is either in the middle of the cloning
3665 * range or at the beginning (fully overlaps it or
3666 * partially overlaps it).
3668 if (new_key.offset != last_dest_end)
3669 drop_start = last_dest_end;
3671 drop_start = new_key.offset;
3674 * 1 - adjusting old extent (we may have to split it)
3675 * 1 - add new extent
3678 trans = btrfs_start_transaction(root, 3);
3679 if (IS_ERR(trans)) {
3680 ret = PTR_ERR(trans);
3684 if (type == BTRFS_FILE_EXTENT_REG ||
3685 type == BTRFS_FILE_EXTENT_PREALLOC) {
3687 * a | --- range to clone ---| b
3688 * | ------------- extent ------------- |
3691 /* subtract range b */
3692 if (key.offset + datal > off + len)
3693 datal = off + len - key.offset;
3695 /* subtract range a */
3696 if (off > key.offset) {
3697 datao += off - key.offset;
3698 datal -= off - key.offset;
3701 ret = btrfs_drop_extents(trans, root, inode,
3703 new_key.offset + datal,
3706 if (ret != -EOPNOTSUPP)
3707 btrfs_abort_transaction(trans,
3709 btrfs_end_transaction(trans);
3713 ret = btrfs_insert_empty_item(trans, root, path,
3716 btrfs_abort_transaction(trans, ret);
3717 btrfs_end_transaction(trans);
3721 leaf = path->nodes[0];
3722 slot = path->slots[0];
3723 write_extent_buffer(leaf, buf,
3724 btrfs_item_ptr_offset(leaf, slot),
3727 extent = btrfs_item_ptr(leaf, slot,
3728 struct btrfs_file_extent_item);
3730 /* disko == 0 means it's a hole */
3734 btrfs_set_file_extent_offset(leaf, extent,
3736 btrfs_set_file_extent_num_bytes(leaf, extent,
3740 inode_add_bytes(inode, datal);
3741 ret = btrfs_inc_extent_ref(trans,
3744 root->root_key.objectid,
3745 btrfs_ino(BTRFS_I(inode)),
3746 new_key.offset - datao);
3748 btrfs_abort_transaction(trans,
3750 btrfs_end_transaction(trans);
3755 } else if (type == BTRFS_FILE_EXTENT_INLINE) {
3759 if (off > key.offset) {
3760 skip = off - key.offset;
3761 new_key.offset += skip;
3764 if (key.offset + datal > off + len)
3765 trim = key.offset + datal - (off + len);
3767 if (comp && (skip || trim)) {
3769 btrfs_end_transaction(trans);
3772 size -= skip + trim;
3773 datal -= skip + trim;
3775 ret = clone_copy_inline_extent(inode,
3782 if (ret != -EOPNOTSUPP)
3783 btrfs_abort_transaction(trans,
3785 btrfs_end_transaction(trans);
3788 leaf = path->nodes[0];
3789 slot = path->slots[0];
3792 /* If we have an implicit hole (NO_HOLES feature). */
3793 if (drop_start < new_key.offset)
3794 clone_update_extent_map(inode, trans,
3796 new_key.offset - drop_start);
3798 clone_update_extent_map(inode, trans, path, 0, 0);
3800 btrfs_mark_buffer_dirty(leaf);
3801 btrfs_release_path(path);
3803 last_dest_end = ALIGN(new_key.offset + datal,
3804 fs_info->sectorsize);
3805 ret = clone_finish_inode_update(trans, inode,
3811 if (new_key.offset + datal >= destoff + len)
3814 btrfs_release_path(path);
3815 key.offset = next_key_min_offset;
3817 if (fatal_signal_pending(current)) {
3824 if (last_dest_end < destoff + len) {
3826 * We have an implicit hole (NO_HOLES feature is enabled) that
3827 * fully or partially overlaps our cloning range at its end.
3829 btrfs_release_path(path);
3832 * 1 - remove extent(s)
3835 trans = btrfs_start_transaction(root, 2);
3836 if (IS_ERR(trans)) {
3837 ret = PTR_ERR(trans);
3840 ret = btrfs_drop_extents(trans, root, inode,
3841 last_dest_end, destoff + len, 1);
3843 if (ret != -EOPNOTSUPP)
3844 btrfs_abort_transaction(trans, ret);
3845 btrfs_end_transaction(trans);
3848 clone_update_extent_map(inode, trans, NULL, last_dest_end,
3849 destoff + len - last_dest_end);
3850 ret = clone_finish_inode_update(trans, inode, destoff + len,
3851 destoff, olen, no_time_update);
3855 btrfs_free_path(path);
3860 static noinline int btrfs_clone_files(struct file *file, struct file *file_src,
3861 u64 off, u64 olen, u64 destoff)
3863 struct inode *inode = file_inode(file);
3864 struct inode *src = file_inode(file_src);
3865 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3866 struct btrfs_root *root = BTRFS_I(inode)->root;
3869 u64 bs = fs_info->sb->s_blocksize;
3870 int same_inode = src == inode;
3874 * - split compressed inline extents. annoying: we need to
3875 * decompress into destination's address_space (the file offset
3876 * may change, so source mapping won't do), then recompress (or
3877 * otherwise reinsert) a subrange.
3879 * - split destination inode's inline extents. The inline extents can
3880 * be either compressed or non-compressed.
3883 if (btrfs_root_readonly(root))
3886 if (file_src->f_path.mnt != file->f_path.mnt ||
3887 src->i_sb != inode->i_sb)
3890 /* don't make the dst file partly checksummed */
3891 if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) !=
3892 (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM))
3895 if (S_ISDIR(src->i_mode) || S_ISDIR(inode->i_mode))
3899 btrfs_double_inode_lock(src, inode);
3904 /* determine range to clone */
3906 if (off + len > src->i_size || off + len < off)
3909 olen = len = src->i_size - off;
3910 /* if we extend to eof, continue to block boundary */
3911 if (off + len == src->i_size)
3912 len = ALIGN(src->i_size, bs) - off;
3919 /* verify the end result is block aligned */
3920 if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs) ||
3921 !IS_ALIGNED(destoff, bs))
3924 /* verify if ranges are overlapped within the same file */
3926 if (destoff + len > off && destoff < off + len)
3930 if (destoff > inode->i_size) {
3931 ret = btrfs_cont_expand(inode, inode->i_size, destoff);
3937 * Lock the target range too. Right after we replace the file extent
3938 * items in the fs tree (which now point to the cloned data), we might
3939 * have a worker replace them with extent items relative to a write
3940 * operation that was issued before this clone operation (i.e. confront
3941 * with inode.c:btrfs_finish_ordered_io).
3944 u64 lock_start = min_t(u64, off, destoff);
3945 u64 lock_len = max_t(u64, off, destoff) + len - lock_start;
3947 ret = lock_extent_range(src, lock_start, lock_len, true);
3949 ret = btrfs_double_extent_lock(src, off, inode, destoff, len,
3954 /* ranges in the io trees already unlocked */
3958 ret = btrfs_clone(src, inode, off, olen, len, destoff, 0);
3961 u64 lock_start = min_t(u64, off, destoff);
3962 u64 lock_end = max_t(u64, off, destoff) + len - 1;
3964 unlock_extent(&BTRFS_I(src)->io_tree, lock_start, lock_end);
3966 btrfs_double_extent_unlock(src, off, inode, destoff, len);
3969 * Truncate page cache pages so that future reads will see the cloned
3970 * data immediately and not the previous data.
3972 truncate_inode_pages_range(&inode->i_data,
3973 round_down(destoff, PAGE_SIZE),
3974 round_up(destoff + len, PAGE_SIZE) - 1);
3977 btrfs_double_inode_unlock(src, inode);
3983 int btrfs_clone_file_range(struct file *src_file, loff_t off,
3984 struct file *dst_file, loff_t destoff, u64 len)
3986 return btrfs_clone_files(dst_file, src_file, off, len, destoff);
3990 * there are many ways the trans_start and trans_end ioctls can lead
3991 * to deadlocks. They should only be used by applications that
3992 * basically own the machine, and have a very in depth understanding
3993 * of all the possible deadlocks and enospc problems.
3995 static long btrfs_ioctl_trans_start(struct file *file)
3997 struct inode *inode = file_inode(file);
3998 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3999 struct btrfs_root *root = BTRFS_I(inode)->root;
4000 struct btrfs_trans_handle *trans;
4004 if (!capable(CAP_SYS_ADMIN))
4008 if (file->private_data)
4012 if (btrfs_root_readonly(root))
4015 ret = mnt_want_write_file(file);
4019 atomic_inc(&fs_info->open_ioctl_trans);
4022 trans = btrfs_start_ioctl_transaction(root);
4026 file->private_data = trans;
4030 atomic_dec(&fs_info->open_ioctl_trans);
4031 mnt_drop_write_file(file);
4036 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp)
4038 struct inode *inode = file_inode(file);
4039 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4040 struct btrfs_root *root = BTRFS_I(inode)->root;
4041 struct btrfs_root *new_root;
4042 struct btrfs_dir_item *di;
4043 struct btrfs_trans_handle *trans;
4044 struct btrfs_path *path;
4045 struct btrfs_key location;
4046 struct btrfs_disk_key disk_key;
4051 if (!capable(CAP_SYS_ADMIN))
4054 ret = mnt_want_write_file(file);
4058 if (copy_from_user(&objectid, argp, sizeof(objectid))) {
4064 objectid = BTRFS_FS_TREE_OBJECTID;
4066 location.objectid = objectid;
4067 location.type = BTRFS_ROOT_ITEM_KEY;
4068 location.offset = (u64)-1;
4070 new_root = btrfs_read_fs_root_no_name(fs_info, &location);
4071 if (IS_ERR(new_root)) {
4072 ret = PTR_ERR(new_root);
4076 path = btrfs_alloc_path();
4081 path->leave_spinning = 1;
4083 trans = btrfs_start_transaction(root, 1);
4084 if (IS_ERR(trans)) {
4085 btrfs_free_path(path);
4086 ret = PTR_ERR(trans);
4090 dir_id = btrfs_super_root_dir(fs_info->super_copy);
4091 di = btrfs_lookup_dir_item(trans, fs_info->tree_root, path,
4092 dir_id, "default", 7, 1);
4093 if (IS_ERR_OR_NULL(di)) {
4094 btrfs_free_path(path);
4095 btrfs_end_transaction(trans);
4097 "Umm, you don't have the default diritem, this isn't going to work");
4102 btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key);
4103 btrfs_set_dir_item_key(path->nodes[0], di, &disk_key);
4104 btrfs_mark_buffer_dirty(path->nodes[0]);
4105 btrfs_free_path(path);
4107 btrfs_set_fs_incompat(fs_info, DEFAULT_SUBVOL);
4108 btrfs_end_transaction(trans);
4110 mnt_drop_write_file(file);
4114 void btrfs_get_block_group_info(struct list_head *groups_list,
4115 struct btrfs_ioctl_space_info *space)
4117 struct btrfs_block_group_cache *block_group;
4119 space->total_bytes = 0;
4120 space->used_bytes = 0;
4122 list_for_each_entry(block_group, groups_list, list) {
4123 space->flags = block_group->flags;
4124 space->total_bytes += block_group->key.offset;
4125 space->used_bytes +=
4126 btrfs_block_group_used(&block_group->item);
4130 static long btrfs_ioctl_space_info(struct btrfs_fs_info *fs_info,
4133 struct btrfs_ioctl_space_args space_args;
4134 struct btrfs_ioctl_space_info space;
4135 struct btrfs_ioctl_space_info *dest;
4136 struct btrfs_ioctl_space_info *dest_orig;
4137 struct btrfs_ioctl_space_info __user *user_dest;
4138 struct btrfs_space_info *info;
4139 u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
4140 BTRFS_BLOCK_GROUP_SYSTEM,
4141 BTRFS_BLOCK_GROUP_METADATA,
4142 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
4149 if (copy_from_user(&space_args,
4150 (struct btrfs_ioctl_space_args __user *)arg,
4151 sizeof(space_args)))
4154 for (i = 0; i < num_types; i++) {
4155 struct btrfs_space_info *tmp;
4159 list_for_each_entry_rcu(tmp, &fs_info->space_info,
4161 if (tmp->flags == types[i]) {
4171 down_read(&info->groups_sem);
4172 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
4173 if (!list_empty(&info->block_groups[c]))
4176 up_read(&info->groups_sem);
4180 * Global block reserve, exported as a space_info
4184 /* space_slots == 0 means they are asking for a count */
4185 if (space_args.space_slots == 0) {
4186 space_args.total_spaces = slot_count;
4190 slot_count = min_t(u64, space_args.space_slots, slot_count);
4192 alloc_size = sizeof(*dest) * slot_count;
4194 /* we generally have at most 6 or so space infos, one for each raid
4195 * level. So, a whole page should be more than enough for everyone
4197 if (alloc_size > PAGE_SIZE)
4200 space_args.total_spaces = 0;
4201 dest = kmalloc(alloc_size, GFP_KERNEL);
4206 /* now we have a buffer to copy into */
4207 for (i = 0; i < num_types; i++) {
4208 struct btrfs_space_info *tmp;
4215 list_for_each_entry_rcu(tmp, &fs_info->space_info,
4217 if (tmp->flags == types[i]) {
4226 down_read(&info->groups_sem);
4227 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
4228 if (!list_empty(&info->block_groups[c])) {
4229 btrfs_get_block_group_info(
4230 &info->block_groups[c], &space);
4231 memcpy(dest, &space, sizeof(space));
4233 space_args.total_spaces++;
4239 up_read(&info->groups_sem);
4243 * Add global block reserve
4246 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
4248 spin_lock(&block_rsv->lock);
4249 space.total_bytes = block_rsv->size;
4250 space.used_bytes = block_rsv->size - block_rsv->reserved;
4251 spin_unlock(&block_rsv->lock);
4252 space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV;
4253 memcpy(dest, &space, sizeof(space));
4254 space_args.total_spaces++;
4257 user_dest = (struct btrfs_ioctl_space_info __user *)
4258 (arg + sizeof(struct btrfs_ioctl_space_args));
4260 if (copy_to_user(user_dest, dest_orig, alloc_size))
4265 if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args)))
4272 * there are many ways the trans_start and trans_end ioctls can lead
4273 * to deadlocks. They should only be used by applications that
4274 * basically own the machine, and have a very in depth understanding
4275 * of all the possible deadlocks and enospc problems.
4277 long btrfs_ioctl_trans_end(struct file *file)
4279 struct inode *inode = file_inode(file);
4280 struct btrfs_root *root = BTRFS_I(inode)->root;
4281 struct btrfs_trans_handle *trans;
4283 trans = file->private_data;
4286 file->private_data = NULL;
4288 btrfs_end_transaction(trans);
4290 atomic_dec(&root->fs_info->open_ioctl_trans);
4292 mnt_drop_write_file(file);
4296 static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root,
4299 struct btrfs_trans_handle *trans;
4303 trans = btrfs_attach_transaction_barrier(root);
4304 if (IS_ERR(trans)) {
4305 if (PTR_ERR(trans) != -ENOENT)
4306 return PTR_ERR(trans);
4308 /* No running transaction, don't bother */
4309 transid = root->fs_info->last_trans_committed;
4312 transid = trans->transid;
4313 ret = btrfs_commit_transaction_async(trans, 0);
4315 btrfs_end_transaction(trans);
4320 if (copy_to_user(argp, &transid, sizeof(transid)))
4325 static noinline long btrfs_ioctl_wait_sync(struct btrfs_fs_info *fs_info,
4331 if (copy_from_user(&transid, argp, sizeof(transid)))
4334 transid = 0; /* current trans */
4336 return btrfs_wait_for_commit(fs_info, transid);
4339 static long btrfs_ioctl_scrub(struct file *file, void __user *arg)
4341 struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb);
4342 struct btrfs_ioctl_scrub_args *sa;
4345 if (!capable(CAP_SYS_ADMIN))
4348 sa = memdup_user(arg, sizeof(*sa));
4352 if (!(sa->flags & BTRFS_SCRUB_READONLY)) {
4353 ret = mnt_want_write_file(file);
4358 ret = btrfs_scrub_dev(fs_info, sa->devid, sa->start, sa->end,
4359 &sa->progress, sa->flags & BTRFS_SCRUB_READONLY,
4362 if (copy_to_user(arg, sa, sizeof(*sa)))
4365 if (!(sa->flags & BTRFS_SCRUB_READONLY))
4366 mnt_drop_write_file(file);
4372 static long btrfs_ioctl_scrub_cancel(struct btrfs_fs_info *fs_info)
4374 if (!capable(CAP_SYS_ADMIN))
4377 return btrfs_scrub_cancel(fs_info);
4380 static long btrfs_ioctl_scrub_progress(struct btrfs_fs_info *fs_info,
4383 struct btrfs_ioctl_scrub_args *sa;
4386 if (!capable(CAP_SYS_ADMIN))
4389 sa = memdup_user(arg, sizeof(*sa));
4393 ret = btrfs_scrub_progress(fs_info, sa->devid, &sa->progress);
4395 if (copy_to_user(arg, sa, sizeof(*sa)))
4402 static long btrfs_ioctl_get_dev_stats(struct btrfs_fs_info *fs_info,
4405 struct btrfs_ioctl_get_dev_stats *sa;
4408 sa = memdup_user(arg, sizeof(*sa));
4412 if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) {
4417 ret = btrfs_get_dev_stats(fs_info, sa);
4419 if (copy_to_user(arg, sa, sizeof(*sa)))
4426 static long btrfs_ioctl_dev_replace(struct btrfs_fs_info *fs_info,
4429 struct btrfs_ioctl_dev_replace_args *p;
4432 if (!capable(CAP_SYS_ADMIN))
4435 p = memdup_user(arg, sizeof(*p));
4440 case BTRFS_IOCTL_DEV_REPLACE_CMD_START:
4441 if (fs_info->sb->s_flags & MS_RDONLY) {
4446 &fs_info->mutually_exclusive_operation_running, 1)) {
4447 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
4449 ret = btrfs_dev_replace_by_ioctl(fs_info, p);
4451 &fs_info->mutually_exclusive_operation_running, 0);
4454 case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS:
4455 btrfs_dev_replace_status(fs_info, p);
4458 case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL:
4459 ret = btrfs_dev_replace_cancel(fs_info, p);
4466 if (copy_to_user(arg, p, sizeof(*p)))
4473 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg)
4479 struct btrfs_ioctl_ino_path_args *ipa = NULL;
4480 struct inode_fs_paths *ipath = NULL;
4481 struct btrfs_path *path;
4483 if (!capable(CAP_DAC_READ_SEARCH))
4486 path = btrfs_alloc_path();
4492 ipa = memdup_user(arg, sizeof(*ipa));
4499 size = min_t(u32, ipa->size, 4096);
4500 ipath = init_ipath(size, root, path);
4501 if (IS_ERR(ipath)) {
4502 ret = PTR_ERR(ipath);
4507 ret = paths_from_inode(ipa->inum, ipath);
4511 for (i = 0; i < ipath->fspath->elem_cnt; ++i) {
4512 rel_ptr = ipath->fspath->val[i] -
4513 (u64)(unsigned long)ipath->fspath->val;
4514 ipath->fspath->val[i] = rel_ptr;
4517 ret = copy_to_user((void *)(unsigned long)ipa->fspath,
4518 (void *)(unsigned long)ipath->fspath, size);
4525 btrfs_free_path(path);
4532 static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx)
4534 struct btrfs_data_container *inodes = ctx;
4535 const size_t c = 3 * sizeof(u64);
4537 if (inodes->bytes_left >= c) {
4538 inodes->bytes_left -= c;
4539 inodes->val[inodes->elem_cnt] = inum;
4540 inodes->val[inodes->elem_cnt + 1] = offset;
4541 inodes->val[inodes->elem_cnt + 2] = root;
4542 inodes->elem_cnt += 3;
4544 inodes->bytes_missing += c - inodes->bytes_left;
4545 inodes->bytes_left = 0;
4546 inodes->elem_missed += 3;
4552 static long btrfs_ioctl_logical_to_ino(struct btrfs_fs_info *fs_info,
4557 struct btrfs_ioctl_logical_ino_args *loi;
4558 struct btrfs_data_container *inodes = NULL;
4559 struct btrfs_path *path = NULL;
4561 if (!capable(CAP_SYS_ADMIN))
4564 loi = memdup_user(arg, sizeof(*loi));
4566 return PTR_ERR(loi);
4568 path = btrfs_alloc_path();
4574 size = min_t(u32, loi->size, SZ_64K);
4575 inodes = init_data_container(size);
4576 if (IS_ERR(inodes)) {
4577 ret = PTR_ERR(inodes);
4582 ret = iterate_inodes_from_logical(loi->logical, fs_info, path,
4583 build_ino_list, inodes);
4589 ret = copy_to_user((void *)(unsigned long)loi->inodes,
4590 (void *)(unsigned long)inodes, size);
4595 btrfs_free_path(path);
4602 void update_ioctl_balance_args(struct btrfs_fs_info *fs_info, int lock,
4603 struct btrfs_ioctl_balance_args *bargs)
4605 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4607 bargs->flags = bctl->flags;
4609 if (atomic_read(&fs_info->balance_running))
4610 bargs->state |= BTRFS_BALANCE_STATE_RUNNING;
4611 if (atomic_read(&fs_info->balance_pause_req))
4612 bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ;
4613 if (atomic_read(&fs_info->balance_cancel_req))
4614 bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ;
4616 memcpy(&bargs->data, &bctl->data, sizeof(bargs->data));
4617 memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta));
4618 memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys));
4621 spin_lock(&fs_info->balance_lock);
4622 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
4623 spin_unlock(&fs_info->balance_lock);
4625 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
4629 static long btrfs_ioctl_balance(struct file *file, void __user *arg)
4631 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4632 struct btrfs_fs_info *fs_info = root->fs_info;
4633 struct btrfs_ioctl_balance_args *bargs;
4634 struct btrfs_balance_control *bctl;
4635 bool need_unlock; /* for mut. excl. ops lock */
4638 if (!capable(CAP_SYS_ADMIN))
4641 ret = mnt_want_write_file(file);
4646 if (!atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1)) {
4647 mutex_lock(&fs_info->volume_mutex);
4648 mutex_lock(&fs_info->balance_mutex);
4654 * mut. excl. ops lock is locked. Three possibilities:
4655 * (1) some other op is running
4656 * (2) balance is running
4657 * (3) balance is paused -- special case (think resume)
4659 mutex_lock(&fs_info->balance_mutex);
4660 if (fs_info->balance_ctl) {
4661 /* this is either (2) or (3) */
4662 if (!atomic_read(&fs_info->balance_running)) {
4663 mutex_unlock(&fs_info->balance_mutex);
4664 if (!mutex_trylock(&fs_info->volume_mutex))
4666 mutex_lock(&fs_info->balance_mutex);
4668 if (fs_info->balance_ctl &&
4669 !atomic_read(&fs_info->balance_running)) {
4671 need_unlock = false;
4675 mutex_unlock(&fs_info->balance_mutex);
4676 mutex_unlock(&fs_info->volume_mutex);
4680 mutex_unlock(&fs_info->balance_mutex);
4686 mutex_unlock(&fs_info->balance_mutex);
4687 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
4692 BUG_ON(!atomic_read(&fs_info->mutually_exclusive_operation_running));
4695 bargs = memdup_user(arg, sizeof(*bargs));
4696 if (IS_ERR(bargs)) {
4697 ret = PTR_ERR(bargs);
4701 if (bargs->flags & BTRFS_BALANCE_RESUME) {
4702 if (!fs_info->balance_ctl) {
4707 bctl = fs_info->balance_ctl;
4708 spin_lock(&fs_info->balance_lock);
4709 bctl->flags |= BTRFS_BALANCE_RESUME;
4710 spin_unlock(&fs_info->balance_lock);
4718 if (fs_info->balance_ctl) {
4723 bctl = kzalloc(sizeof(*bctl), GFP_KERNEL);
4729 bctl->fs_info = fs_info;
4731 memcpy(&bctl->data, &bargs->data, sizeof(bctl->data));
4732 memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta));
4733 memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys));
4735 bctl->flags = bargs->flags;
4737 /* balance everything - no filters */
4738 bctl->flags |= BTRFS_BALANCE_TYPE_MASK;
4741 if (bctl->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) {
4748 * Ownership of bctl and mutually_exclusive_operation_running
4749 * goes to to btrfs_balance. bctl is freed in __cancel_balance,
4750 * or, if restriper was paused all the way until unmount, in
4751 * free_fs_info. mutually_exclusive_operation_running is
4752 * cleared in __cancel_balance.
4754 need_unlock = false;
4756 ret = btrfs_balance(bctl, bargs);
4760 if (copy_to_user(arg, bargs, sizeof(*bargs)))
4769 mutex_unlock(&fs_info->balance_mutex);
4770 mutex_unlock(&fs_info->volume_mutex);
4772 atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
4774 mnt_drop_write_file(file);
4778 static long btrfs_ioctl_balance_ctl(struct btrfs_fs_info *fs_info, int cmd)
4780 if (!capable(CAP_SYS_ADMIN))
4784 case BTRFS_BALANCE_CTL_PAUSE:
4785 return btrfs_pause_balance(fs_info);
4786 case BTRFS_BALANCE_CTL_CANCEL:
4787 return btrfs_cancel_balance(fs_info);
4793 static long btrfs_ioctl_balance_progress(struct btrfs_fs_info *fs_info,
4796 struct btrfs_ioctl_balance_args *bargs;
4799 if (!capable(CAP_SYS_ADMIN))
4802 mutex_lock(&fs_info->balance_mutex);
4803 if (!fs_info->balance_ctl) {
4808 bargs = kzalloc(sizeof(*bargs), GFP_KERNEL);
4814 update_ioctl_balance_args(fs_info, 1, bargs);
4816 if (copy_to_user(arg, bargs, sizeof(*bargs)))
4821 mutex_unlock(&fs_info->balance_mutex);
4825 static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg)
4827 struct inode *inode = file_inode(file);
4828 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4829 struct btrfs_ioctl_quota_ctl_args *sa;
4830 struct btrfs_trans_handle *trans = NULL;
4834 if (!capable(CAP_SYS_ADMIN))
4837 ret = mnt_want_write_file(file);
4841 sa = memdup_user(arg, sizeof(*sa));
4847 down_write(&fs_info->subvol_sem);
4848 trans = btrfs_start_transaction(fs_info->tree_root, 2);
4849 if (IS_ERR(trans)) {
4850 ret = PTR_ERR(trans);
4855 case BTRFS_QUOTA_CTL_ENABLE:
4856 ret = btrfs_quota_enable(trans, fs_info);
4858 case BTRFS_QUOTA_CTL_DISABLE:
4859 ret = btrfs_quota_disable(trans, fs_info);
4866 err = btrfs_commit_transaction(trans);
4871 up_write(&fs_info->subvol_sem);
4873 mnt_drop_write_file(file);
4877 static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg)
4879 struct inode *inode = file_inode(file);
4880 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4881 struct btrfs_root *root = BTRFS_I(inode)->root;
4882 struct btrfs_ioctl_qgroup_assign_args *sa;
4883 struct btrfs_trans_handle *trans;
4887 if (!capable(CAP_SYS_ADMIN))
4890 ret = mnt_want_write_file(file);
4894 sa = memdup_user(arg, sizeof(*sa));
4900 trans = btrfs_join_transaction(root);
4901 if (IS_ERR(trans)) {
4902 ret = PTR_ERR(trans);
4906 /* FIXME: check if the IDs really exist */
4908 ret = btrfs_add_qgroup_relation(trans, fs_info,
4911 ret = btrfs_del_qgroup_relation(trans, fs_info,
4915 /* update qgroup status and info */
4916 err = btrfs_run_qgroups(trans, fs_info);
4918 btrfs_handle_fs_error(fs_info, err,
4919 "failed to update qgroup status and info");
4920 err = btrfs_end_transaction(trans);
4927 mnt_drop_write_file(file);
4931 static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg)
4933 struct inode *inode = file_inode(file);
4934 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4935 struct btrfs_root *root = BTRFS_I(inode)->root;
4936 struct btrfs_ioctl_qgroup_create_args *sa;
4937 struct btrfs_trans_handle *trans;
4941 if (!capable(CAP_SYS_ADMIN))
4944 ret = mnt_want_write_file(file);
4948 sa = memdup_user(arg, sizeof(*sa));
4954 if (!sa->qgroupid) {
4959 trans = btrfs_join_transaction(root);
4960 if (IS_ERR(trans)) {
4961 ret = PTR_ERR(trans);
4965 /* FIXME: check if the IDs really exist */
4967 ret = btrfs_create_qgroup(trans, fs_info, sa->qgroupid);
4969 ret = btrfs_remove_qgroup(trans, fs_info, sa->qgroupid);
4972 err = btrfs_end_transaction(trans);
4979 mnt_drop_write_file(file);
4983 static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg)
4985 struct inode *inode = file_inode(file);
4986 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4987 struct btrfs_root *root = BTRFS_I(inode)->root;
4988 struct btrfs_ioctl_qgroup_limit_args *sa;
4989 struct btrfs_trans_handle *trans;
4994 if (!capable(CAP_SYS_ADMIN))
4997 ret = mnt_want_write_file(file);
5001 sa = memdup_user(arg, sizeof(*sa));
5007 trans = btrfs_join_transaction(root);
5008 if (IS_ERR(trans)) {
5009 ret = PTR_ERR(trans);
5013 qgroupid = sa->qgroupid;
5015 /* take the current subvol as qgroup */
5016 qgroupid = root->root_key.objectid;
5019 /* FIXME: check if the IDs really exist */
5020 ret = btrfs_limit_qgroup(trans, fs_info, qgroupid, &sa->lim);
5022 err = btrfs_end_transaction(trans);
5029 mnt_drop_write_file(file);
5033 static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg)
5035 struct inode *inode = file_inode(file);
5036 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5037 struct btrfs_ioctl_quota_rescan_args *qsa;
5040 if (!capable(CAP_SYS_ADMIN))
5043 ret = mnt_want_write_file(file);
5047 qsa = memdup_user(arg, sizeof(*qsa));
5058 ret = btrfs_qgroup_rescan(fs_info);
5063 mnt_drop_write_file(file);
5067 static long btrfs_ioctl_quota_rescan_status(struct file *file, void __user *arg)
5069 struct inode *inode = file_inode(file);
5070 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5071 struct btrfs_ioctl_quota_rescan_args *qsa;
5074 if (!capable(CAP_SYS_ADMIN))
5077 qsa = kzalloc(sizeof(*qsa), GFP_KERNEL);
5081 if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) {
5083 qsa->progress = fs_info->qgroup_rescan_progress.objectid;
5086 if (copy_to_user(arg, qsa, sizeof(*qsa)))
5093 static long btrfs_ioctl_quota_rescan_wait(struct file *file, void __user *arg)
5095 struct inode *inode = file_inode(file);
5096 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5098 if (!capable(CAP_SYS_ADMIN))
5101 return btrfs_qgroup_wait_for_completion(fs_info, true);
5104 static long _btrfs_ioctl_set_received_subvol(struct file *file,
5105 struct btrfs_ioctl_received_subvol_args *sa)
5107 struct inode *inode = file_inode(file);
5108 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5109 struct btrfs_root *root = BTRFS_I(inode)->root;
5110 struct btrfs_root_item *root_item = &root->root_item;
5111 struct btrfs_trans_handle *trans;
5112 struct timespec ct = current_time(inode);
5114 int received_uuid_changed;
5116 if (!inode_owner_or_capable(inode))
5119 ret = mnt_want_write_file(file);
5123 down_write(&fs_info->subvol_sem);
5125 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
5130 if (btrfs_root_readonly(root)) {
5137 * 2 - uuid items (received uuid + subvol uuid)
5139 trans = btrfs_start_transaction(root, 3);
5140 if (IS_ERR(trans)) {
5141 ret = PTR_ERR(trans);
5146 sa->rtransid = trans->transid;
5147 sa->rtime.sec = ct.tv_sec;
5148 sa->rtime.nsec = ct.tv_nsec;
5150 received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid,
5152 if (received_uuid_changed &&
5153 !btrfs_is_empty_uuid(root_item->received_uuid))
5154 btrfs_uuid_tree_rem(trans, fs_info, root_item->received_uuid,
5155 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
5156 root->root_key.objectid);
5157 memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE);
5158 btrfs_set_root_stransid(root_item, sa->stransid);
5159 btrfs_set_root_rtransid(root_item, sa->rtransid);
5160 btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec);
5161 btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec);
5162 btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec);
5163 btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec);
5165 ret = btrfs_update_root(trans, fs_info->tree_root,
5166 &root->root_key, &root->root_item);
5168 btrfs_end_transaction(trans);
5171 if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) {
5172 ret = btrfs_uuid_tree_add(trans, fs_info, sa->uuid,
5173 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
5174 root->root_key.objectid);
5175 if (ret < 0 && ret != -EEXIST) {
5176 btrfs_abort_transaction(trans, ret);
5180 ret = btrfs_commit_transaction(trans);
5182 btrfs_abort_transaction(trans, ret);
5187 up_write(&fs_info->subvol_sem);
5188 mnt_drop_write_file(file);
5193 static long btrfs_ioctl_set_received_subvol_32(struct file *file,
5196 struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL;
5197 struct btrfs_ioctl_received_subvol_args *args64 = NULL;
5200 args32 = memdup_user(arg, sizeof(*args32));
5202 return PTR_ERR(args32);
5204 args64 = kmalloc(sizeof(*args64), GFP_KERNEL);
5210 memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE);
5211 args64->stransid = args32->stransid;
5212 args64->rtransid = args32->rtransid;
5213 args64->stime.sec = args32->stime.sec;
5214 args64->stime.nsec = args32->stime.nsec;
5215 args64->rtime.sec = args32->rtime.sec;
5216 args64->rtime.nsec = args32->rtime.nsec;
5217 args64->flags = args32->flags;
5219 ret = _btrfs_ioctl_set_received_subvol(file, args64);
5223 memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE);
5224 args32->stransid = args64->stransid;
5225 args32->rtransid = args64->rtransid;
5226 args32->stime.sec = args64->stime.sec;
5227 args32->stime.nsec = args64->stime.nsec;
5228 args32->rtime.sec = args64->rtime.sec;
5229 args32->rtime.nsec = args64->rtime.nsec;
5230 args32->flags = args64->flags;
5232 ret = copy_to_user(arg, args32, sizeof(*args32));
5243 static long btrfs_ioctl_set_received_subvol(struct file *file,
5246 struct btrfs_ioctl_received_subvol_args *sa = NULL;
5249 sa = memdup_user(arg, sizeof(*sa));
5253 ret = _btrfs_ioctl_set_received_subvol(file, sa);
5258 ret = copy_to_user(arg, sa, sizeof(*sa));
5267 static int btrfs_ioctl_get_fslabel(struct file *file, void __user *arg)
5269 struct inode *inode = file_inode(file);
5270 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5273 char label[BTRFS_LABEL_SIZE];
5275 spin_lock(&fs_info->super_lock);
5276 memcpy(label, fs_info->super_copy->label, BTRFS_LABEL_SIZE);
5277 spin_unlock(&fs_info->super_lock);
5279 len = strnlen(label, BTRFS_LABEL_SIZE);
5281 if (len == BTRFS_LABEL_SIZE) {
5283 "label is too long, return the first %zu bytes",
5287 ret = copy_to_user(arg, label, len);
5289 return ret ? -EFAULT : 0;
5292 static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg)
5294 struct inode *inode = file_inode(file);
5295 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5296 struct btrfs_root *root = BTRFS_I(inode)->root;
5297 struct btrfs_super_block *super_block = fs_info->super_copy;
5298 struct btrfs_trans_handle *trans;
5299 char label[BTRFS_LABEL_SIZE];
5302 if (!capable(CAP_SYS_ADMIN))
5305 if (copy_from_user(label, arg, sizeof(label)))
5308 if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) {
5310 "unable to set label with more than %d bytes",
5311 BTRFS_LABEL_SIZE - 1);
5315 ret = mnt_want_write_file(file);
5319 trans = btrfs_start_transaction(root, 0);
5320 if (IS_ERR(trans)) {
5321 ret = PTR_ERR(trans);
5325 spin_lock(&fs_info->super_lock);
5326 strcpy(super_block->label, label);
5327 spin_unlock(&fs_info->super_lock);
5328 ret = btrfs_commit_transaction(trans);
5331 mnt_drop_write_file(file);
5335 #define INIT_FEATURE_FLAGS(suffix) \
5336 { .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \
5337 .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \
5338 .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix }
5340 int btrfs_ioctl_get_supported_features(void __user *arg)
5342 static const struct btrfs_ioctl_feature_flags features[3] = {
5343 INIT_FEATURE_FLAGS(SUPP),
5344 INIT_FEATURE_FLAGS(SAFE_SET),
5345 INIT_FEATURE_FLAGS(SAFE_CLEAR)
5348 if (copy_to_user(arg, &features, sizeof(features)))
5354 static int btrfs_ioctl_get_features(struct file *file, void __user *arg)
5356 struct inode *inode = file_inode(file);
5357 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5358 struct btrfs_super_block *super_block = fs_info->super_copy;
5359 struct btrfs_ioctl_feature_flags features;
5361 features.compat_flags = btrfs_super_compat_flags(super_block);
5362 features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block);
5363 features.incompat_flags = btrfs_super_incompat_flags(super_block);
5365 if (copy_to_user(arg, &features, sizeof(features)))
5371 static int check_feature_bits(struct btrfs_fs_info *fs_info,
5372 enum btrfs_feature_set set,
5373 u64 change_mask, u64 flags, u64 supported_flags,
5374 u64 safe_set, u64 safe_clear)
5376 const char *type = btrfs_feature_set_names[set];
5378 u64 disallowed, unsupported;
5379 u64 set_mask = flags & change_mask;
5380 u64 clear_mask = ~flags & change_mask;
5382 unsupported = set_mask & ~supported_flags;
5384 names = btrfs_printable_features(set, unsupported);
5387 "this kernel does not support the %s feature bit%s",
5388 names, strchr(names, ',') ? "s" : "");
5392 "this kernel does not support %s bits 0x%llx",
5397 disallowed = set_mask & ~safe_set;
5399 names = btrfs_printable_features(set, disallowed);
5402 "can't set the %s feature bit%s while mounted",
5403 names, strchr(names, ',') ? "s" : "");
5407 "can't set %s bits 0x%llx while mounted",
5412 disallowed = clear_mask & ~safe_clear;
5414 names = btrfs_printable_features(set, disallowed);
5417 "can't clear the %s feature bit%s while mounted",
5418 names, strchr(names, ',') ? "s" : "");
5422 "can't clear %s bits 0x%llx while mounted",
5430 #define check_feature(fs_info, change_mask, flags, mask_base) \
5431 check_feature_bits(fs_info, FEAT_##mask_base, change_mask, flags, \
5432 BTRFS_FEATURE_ ## mask_base ## _SUPP, \
5433 BTRFS_FEATURE_ ## mask_base ## _SAFE_SET, \
5434 BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR)
5436 static int btrfs_ioctl_set_features(struct file *file, void __user *arg)
5438 struct inode *inode = file_inode(file);
5439 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5440 struct btrfs_root *root = BTRFS_I(inode)->root;
5441 struct btrfs_super_block *super_block = fs_info->super_copy;
5442 struct btrfs_ioctl_feature_flags flags[2];
5443 struct btrfs_trans_handle *trans;
5447 if (!capable(CAP_SYS_ADMIN))
5450 if (copy_from_user(flags, arg, sizeof(flags)))
5454 if (!flags[0].compat_flags && !flags[0].compat_ro_flags &&
5455 !flags[0].incompat_flags)
5458 ret = check_feature(fs_info, flags[0].compat_flags,
5459 flags[1].compat_flags, COMPAT);
5463 ret = check_feature(fs_info, flags[0].compat_ro_flags,
5464 flags[1].compat_ro_flags, COMPAT_RO);
5468 ret = check_feature(fs_info, flags[0].incompat_flags,
5469 flags[1].incompat_flags, INCOMPAT);
5473 ret = mnt_want_write_file(file);
5477 trans = btrfs_start_transaction(root, 0);
5478 if (IS_ERR(trans)) {
5479 ret = PTR_ERR(trans);
5480 goto out_drop_write;
5483 spin_lock(&fs_info->super_lock);
5484 newflags = btrfs_super_compat_flags(super_block);
5485 newflags |= flags[0].compat_flags & flags[1].compat_flags;
5486 newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags);
5487 btrfs_set_super_compat_flags(super_block, newflags);
5489 newflags = btrfs_super_compat_ro_flags(super_block);
5490 newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags;
5491 newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags);
5492 btrfs_set_super_compat_ro_flags(super_block, newflags);
5494 newflags = btrfs_super_incompat_flags(super_block);
5495 newflags |= flags[0].incompat_flags & flags[1].incompat_flags;
5496 newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags);
5497 btrfs_set_super_incompat_flags(super_block, newflags);
5498 spin_unlock(&fs_info->super_lock);
5500 ret = btrfs_commit_transaction(trans);
5502 mnt_drop_write_file(file);
5507 long btrfs_ioctl(struct file *file, unsigned int
5508 cmd, unsigned long arg)
5510 struct inode *inode = file_inode(file);
5511 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5512 struct btrfs_root *root = BTRFS_I(inode)->root;
5513 void __user *argp = (void __user *)arg;
5516 case FS_IOC_GETFLAGS:
5517 return btrfs_ioctl_getflags(file, argp);
5518 case FS_IOC_SETFLAGS:
5519 return btrfs_ioctl_setflags(file, argp);
5520 case FS_IOC_GETVERSION:
5521 return btrfs_ioctl_getversion(file, argp);
5523 return btrfs_ioctl_fitrim(file, argp);
5524 case BTRFS_IOC_SNAP_CREATE:
5525 return btrfs_ioctl_snap_create(file, argp, 0);
5526 case BTRFS_IOC_SNAP_CREATE_V2:
5527 return btrfs_ioctl_snap_create_v2(file, argp, 0);
5528 case BTRFS_IOC_SUBVOL_CREATE:
5529 return btrfs_ioctl_snap_create(file, argp, 1);
5530 case BTRFS_IOC_SUBVOL_CREATE_V2:
5531 return btrfs_ioctl_snap_create_v2(file, argp, 1);
5532 case BTRFS_IOC_SNAP_DESTROY:
5533 return btrfs_ioctl_snap_destroy(file, argp);
5534 case BTRFS_IOC_SUBVOL_GETFLAGS:
5535 return btrfs_ioctl_subvol_getflags(file, argp);
5536 case BTRFS_IOC_SUBVOL_SETFLAGS:
5537 return btrfs_ioctl_subvol_setflags(file, argp);
5538 case BTRFS_IOC_DEFAULT_SUBVOL:
5539 return btrfs_ioctl_default_subvol(file, argp);
5540 case BTRFS_IOC_DEFRAG:
5541 return btrfs_ioctl_defrag(file, NULL);
5542 case BTRFS_IOC_DEFRAG_RANGE:
5543 return btrfs_ioctl_defrag(file, argp);
5544 case BTRFS_IOC_RESIZE:
5545 return btrfs_ioctl_resize(file, argp);
5546 case BTRFS_IOC_ADD_DEV:
5547 return btrfs_ioctl_add_dev(fs_info, argp);
5548 case BTRFS_IOC_RM_DEV:
5549 return btrfs_ioctl_rm_dev(file, argp);
5550 case BTRFS_IOC_RM_DEV_V2:
5551 return btrfs_ioctl_rm_dev_v2(file, argp);
5552 case BTRFS_IOC_FS_INFO:
5553 return btrfs_ioctl_fs_info(fs_info, argp);
5554 case BTRFS_IOC_DEV_INFO:
5555 return btrfs_ioctl_dev_info(fs_info, argp);
5556 case BTRFS_IOC_BALANCE:
5557 return btrfs_ioctl_balance(file, NULL);
5558 case BTRFS_IOC_TRANS_START:
5559 return btrfs_ioctl_trans_start(file);
5560 case BTRFS_IOC_TRANS_END:
5561 return btrfs_ioctl_trans_end(file);
5562 case BTRFS_IOC_TREE_SEARCH:
5563 return btrfs_ioctl_tree_search(file, argp);
5564 case BTRFS_IOC_TREE_SEARCH_V2:
5565 return btrfs_ioctl_tree_search_v2(file, argp);
5566 case BTRFS_IOC_INO_LOOKUP:
5567 return btrfs_ioctl_ino_lookup(file, argp);
5568 case BTRFS_IOC_INO_PATHS:
5569 return btrfs_ioctl_ino_to_path(root, argp);
5570 case BTRFS_IOC_LOGICAL_INO:
5571 return btrfs_ioctl_logical_to_ino(fs_info, argp);
5572 case BTRFS_IOC_SPACE_INFO:
5573 return btrfs_ioctl_space_info(fs_info, argp);
5574 case BTRFS_IOC_SYNC: {
5577 ret = btrfs_start_delalloc_roots(fs_info, 0, -1);
5580 ret = btrfs_sync_fs(inode->i_sb, 1);
5582 * The transaction thread may want to do more work,
5583 * namely it pokes the cleaner kthread that will start
5584 * processing uncleaned subvols.
5586 wake_up_process(fs_info->transaction_kthread);
5589 case BTRFS_IOC_START_SYNC:
5590 return btrfs_ioctl_start_sync(root, argp);
5591 case BTRFS_IOC_WAIT_SYNC:
5592 return btrfs_ioctl_wait_sync(fs_info, argp);
5593 case BTRFS_IOC_SCRUB:
5594 return btrfs_ioctl_scrub(file, argp);
5595 case BTRFS_IOC_SCRUB_CANCEL:
5596 return btrfs_ioctl_scrub_cancel(fs_info);
5597 case BTRFS_IOC_SCRUB_PROGRESS:
5598 return btrfs_ioctl_scrub_progress(fs_info, argp);
5599 case BTRFS_IOC_BALANCE_V2:
5600 return btrfs_ioctl_balance(file, argp);
5601 case BTRFS_IOC_BALANCE_CTL:
5602 return btrfs_ioctl_balance_ctl(fs_info, arg);
5603 case BTRFS_IOC_BALANCE_PROGRESS:
5604 return btrfs_ioctl_balance_progress(fs_info, argp);
5605 case BTRFS_IOC_SET_RECEIVED_SUBVOL:
5606 return btrfs_ioctl_set_received_subvol(file, argp);
5608 case BTRFS_IOC_SET_RECEIVED_SUBVOL_32:
5609 return btrfs_ioctl_set_received_subvol_32(file, argp);
5611 case BTRFS_IOC_SEND:
5612 return btrfs_ioctl_send(file, argp);
5613 case BTRFS_IOC_GET_DEV_STATS:
5614 return btrfs_ioctl_get_dev_stats(fs_info, argp);
5615 case BTRFS_IOC_QUOTA_CTL:
5616 return btrfs_ioctl_quota_ctl(file, argp);
5617 case BTRFS_IOC_QGROUP_ASSIGN:
5618 return btrfs_ioctl_qgroup_assign(file, argp);
5619 case BTRFS_IOC_QGROUP_CREATE:
5620 return btrfs_ioctl_qgroup_create(file, argp);
5621 case BTRFS_IOC_QGROUP_LIMIT:
5622 return btrfs_ioctl_qgroup_limit(file, argp);
5623 case BTRFS_IOC_QUOTA_RESCAN:
5624 return btrfs_ioctl_quota_rescan(file, argp);
5625 case BTRFS_IOC_QUOTA_RESCAN_STATUS:
5626 return btrfs_ioctl_quota_rescan_status(file, argp);
5627 case BTRFS_IOC_QUOTA_RESCAN_WAIT:
5628 return btrfs_ioctl_quota_rescan_wait(file, argp);
5629 case BTRFS_IOC_DEV_REPLACE:
5630 return btrfs_ioctl_dev_replace(fs_info, argp);
5631 case BTRFS_IOC_GET_FSLABEL:
5632 return btrfs_ioctl_get_fslabel(file, argp);
5633 case BTRFS_IOC_SET_FSLABEL:
5634 return btrfs_ioctl_set_fslabel(file, argp);
5635 case BTRFS_IOC_GET_SUPPORTED_FEATURES:
5636 return btrfs_ioctl_get_supported_features(argp);
5637 case BTRFS_IOC_GET_FEATURES:
5638 return btrfs_ioctl_get_features(file, argp);
5639 case BTRFS_IOC_SET_FEATURES:
5640 return btrfs_ioctl_set_features(file, argp);
5646 #ifdef CONFIG_COMPAT
5647 long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5650 * These all access 32-bit values anyway so no further
5651 * handling is necessary.
5654 case FS_IOC32_GETFLAGS:
5655 cmd = FS_IOC_GETFLAGS;
5657 case FS_IOC32_SETFLAGS:
5658 cmd = FS_IOC_SETFLAGS;
5660 case FS_IOC32_GETVERSION:
5661 cmd = FS_IOC_GETVERSION;
5665 return btrfs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));