2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
24 #include <linux/fsnotify.h>
25 #include <linux/pagemap.h>
26 #include <linux/highmem.h>
27 #include <linux/time.h>
28 #include <linux/init.h>
29 #include <linux/string.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mount.h>
32 #include <linux/mpage.h>
33 #include <linux/namei.h>
34 #include <linux/swap.h>
35 #include <linux/writeback.h>
36 #include <linux/compat.h>
37 #include <linux/bit_spinlock.h>
38 #include <linux/security.h>
39 #include <linux/xattr.h>
40 #include <linux/vmalloc.h>
41 #include <linux/slab.h>
42 #include <linux/blkdev.h>
43 #include <linux/uuid.h>
44 #include <linux/btrfs.h>
45 #include <linux/uaccess.h>
48 #include "transaction.h"
49 #include "btrfs_inode.h"
50 #include "print-tree.h"
53 #include "inode-map.h"
55 #include "rcu-string.h"
57 #include "dev-replace.h"
62 #include "compression.h"
65 /* If we have a 32-bit userspace and 64-bit kernel, then the UAPI
66 * structures are incorrect, as the timespec structure from userspace
67 * is 4 bytes too small. We define these alternatives here to teach
68 * the kernel about the 32-bit struct packing.
70 struct btrfs_ioctl_timespec_32 {
73 } __attribute__ ((__packed__));
75 struct btrfs_ioctl_received_subvol_args_32 {
76 char uuid[BTRFS_UUID_SIZE]; /* in */
77 __u64 stransid; /* in */
78 __u64 rtransid; /* out */
79 struct btrfs_ioctl_timespec_32 stime; /* in */
80 struct btrfs_ioctl_timespec_32 rtime; /* out */
82 __u64 reserved[16]; /* in */
83 } __attribute__ ((__packed__));
85 #define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \
86 struct btrfs_ioctl_received_subvol_args_32)
90 static int btrfs_clone(struct inode *src, struct inode *inode,
91 u64 off, u64 olen, u64 olen_aligned, u64 destoff,
94 /* Mask out flags that are inappropriate for the given type of inode. */
95 static inline __u32 btrfs_mask_flags(umode_t mode, __u32 flags)
99 else if (S_ISREG(mode))
100 return flags & ~FS_DIRSYNC_FL;
102 return flags & (FS_NODUMP_FL | FS_NOATIME_FL);
106 * Export inode flags to the format expected by the FS_IOC_GETFLAGS ioctl.
108 static unsigned int btrfs_flags_to_ioctl(unsigned int flags)
110 unsigned int iflags = 0;
112 if (flags & BTRFS_INODE_SYNC)
113 iflags |= FS_SYNC_FL;
114 if (flags & BTRFS_INODE_IMMUTABLE)
115 iflags |= FS_IMMUTABLE_FL;
116 if (flags & BTRFS_INODE_APPEND)
117 iflags |= FS_APPEND_FL;
118 if (flags & BTRFS_INODE_NODUMP)
119 iflags |= FS_NODUMP_FL;
120 if (flags & BTRFS_INODE_NOATIME)
121 iflags |= FS_NOATIME_FL;
122 if (flags & BTRFS_INODE_DIRSYNC)
123 iflags |= FS_DIRSYNC_FL;
124 if (flags & BTRFS_INODE_NODATACOW)
125 iflags |= FS_NOCOW_FL;
127 if (flags & BTRFS_INODE_NOCOMPRESS)
128 iflags |= FS_NOCOMP_FL;
129 else if (flags & BTRFS_INODE_COMPRESS)
130 iflags |= FS_COMPR_FL;
136 * Update inode->i_flags based on the btrfs internal flags.
138 void btrfs_update_iflags(struct inode *inode)
140 struct btrfs_inode *ip = BTRFS_I(inode);
141 unsigned int new_fl = 0;
143 if (ip->flags & BTRFS_INODE_SYNC)
145 if (ip->flags & BTRFS_INODE_IMMUTABLE)
146 new_fl |= S_IMMUTABLE;
147 if (ip->flags & BTRFS_INODE_APPEND)
149 if (ip->flags & BTRFS_INODE_NOATIME)
151 if (ip->flags & BTRFS_INODE_DIRSYNC)
154 set_mask_bits(&inode->i_flags,
155 S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC,
160 * Inherit flags from the parent inode.
162 * Currently only the compression flags and the cow flags are inherited.
164 void btrfs_inherit_iflags(struct inode *inode, struct inode *dir)
171 flags = BTRFS_I(dir)->flags;
173 if (flags & BTRFS_INODE_NOCOMPRESS) {
174 BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS;
175 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
176 } else if (flags & BTRFS_INODE_COMPRESS) {
177 BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS;
178 BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS;
181 if (flags & BTRFS_INODE_NODATACOW) {
182 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
183 if (S_ISREG(inode->i_mode))
184 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
187 btrfs_update_iflags(inode);
190 static int btrfs_ioctl_getflags(struct file *file, void __user *arg)
192 struct btrfs_inode *ip = BTRFS_I(file_inode(file));
193 unsigned int flags = btrfs_flags_to_ioctl(ip->flags);
195 if (copy_to_user(arg, &flags, sizeof(flags)))
200 static int check_flags(unsigned int flags)
202 if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \
203 FS_NOATIME_FL | FS_NODUMP_FL | \
204 FS_SYNC_FL | FS_DIRSYNC_FL | \
205 FS_NOCOMP_FL | FS_COMPR_FL |
209 if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL))
215 static int btrfs_ioctl_setflags(struct file *file, void __user *arg)
217 struct inode *inode = file_inode(file);
218 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
219 struct btrfs_inode *ip = BTRFS_I(inode);
220 struct btrfs_root *root = ip->root;
221 struct btrfs_trans_handle *trans;
222 unsigned int flags, oldflags;
225 unsigned int i_oldflags;
228 if (!inode_owner_or_capable(inode))
231 if (btrfs_root_readonly(root))
234 if (copy_from_user(&flags, arg, sizeof(flags)))
237 ret = check_flags(flags);
241 ret = mnt_want_write_file(file);
247 ip_oldflags = ip->flags;
248 i_oldflags = inode->i_flags;
249 mode = inode->i_mode;
251 flags = btrfs_mask_flags(inode->i_mode, flags);
252 oldflags = btrfs_flags_to_ioctl(ip->flags);
253 if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) {
254 if (!capable(CAP_LINUX_IMMUTABLE)) {
260 if (flags & FS_SYNC_FL)
261 ip->flags |= BTRFS_INODE_SYNC;
263 ip->flags &= ~BTRFS_INODE_SYNC;
264 if (flags & FS_IMMUTABLE_FL)
265 ip->flags |= BTRFS_INODE_IMMUTABLE;
267 ip->flags &= ~BTRFS_INODE_IMMUTABLE;
268 if (flags & FS_APPEND_FL)
269 ip->flags |= BTRFS_INODE_APPEND;
271 ip->flags &= ~BTRFS_INODE_APPEND;
272 if (flags & FS_NODUMP_FL)
273 ip->flags |= BTRFS_INODE_NODUMP;
275 ip->flags &= ~BTRFS_INODE_NODUMP;
276 if (flags & FS_NOATIME_FL)
277 ip->flags |= BTRFS_INODE_NOATIME;
279 ip->flags &= ~BTRFS_INODE_NOATIME;
280 if (flags & FS_DIRSYNC_FL)
281 ip->flags |= BTRFS_INODE_DIRSYNC;
283 ip->flags &= ~BTRFS_INODE_DIRSYNC;
284 if (flags & FS_NOCOW_FL) {
287 * It's safe to turn csums off here, no extents exist.
288 * Otherwise we want the flag to reflect the real COW
289 * status of the file and will not set it.
291 if (inode->i_size == 0)
292 ip->flags |= BTRFS_INODE_NODATACOW
293 | BTRFS_INODE_NODATASUM;
295 ip->flags |= BTRFS_INODE_NODATACOW;
299 * Revert back under same assumptions as above
302 if (inode->i_size == 0)
303 ip->flags &= ~(BTRFS_INODE_NODATACOW
304 | BTRFS_INODE_NODATASUM);
306 ip->flags &= ~BTRFS_INODE_NODATACOW;
311 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
312 * flag may be changed automatically if compression code won't make
315 if (flags & FS_NOCOMP_FL) {
316 ip->flags &= ~BTRFS_INODE_COMPRESS;
317 ip->flags |= BTRFS_INODE_NOCOMPRESS;
319 ret = btrfs_set_prop(inode, "btrfs.compression", NULL, 0, 0);
320 if (ret && ret != -ENODATA)
322 } else if (flags & FS_COMPR_FL) {
325 ip->flags |= BTRFS_INODE_COMPRESS;
326 ip->flags &= ~BTRFS_INODE_NOCOMPRESS;
328 if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
332 ret = btrfs_set_prop(inode, "btrfs.compression",
333 comp, strlen(comp), 0);
338 ret = btrfs_set_prop(inode, "btrfs.compression", NULL, 0, 0);
339 if (ret && ret != -ENODATA)
341 ip->flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS);
344 trans = btrfs_start_transaction(root, 1);
346 ret = PTR_ERR(trans);
350 btrfs_update_iflags(inode);
351 inode_inc_iversion(inode);
352 inode->i_ctime = current_time(inode);
353 ret = btrfs_update_inode(trans, root, inode);
355 btrfs_end_transaction(trans);
358 ip->flags = ip_oldflags;
359 inode->i_flags = i_oldflags;
364 mnt_drop_write_file(file);
368 static int btrfs_ioctl_getversion(struct file *file, int __user *arg)
370 struct inode *inode = file_inode(file);
372 return put_user(inode->i_generation, arg);
375 static noinline int btrfs_ioctl_fitrim(struct file *file, void __user *arg)
377 struct inode *inode = file_inode(file);
378 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
379 struct btrfs_device *device;
380 struct request_queue *q;
381 struct fstrim_range range;
382 u64 minlen = ULLONG_MAX;
384 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
387 if (!capable(CAP_SYS_ADMIN))
391 list_for_each_entry_rcu(device, &fs_info->fs_devices->devices,
395 q = bdev_get_queue(device->bdev);
396 if (blk_queue_discard(q)) {
398 minlen = min((u64)q->limits.discard_granularity,
406 if (copy_from_user(&range, arg, sizeof(range)))
408 if (range.start > total_bytes ||
409 range.len < fs_info->sb->s_blocksize)
412 range.len = min(range.len, total_bytes - range.start);
413 range.minlen = max(range.minlen, minlen);
414 ret = btrfs_trim_fs(fs_info, &range);
418 if (copy_to_user(arg, &range, sizeof(range)))
424 int btrfs_is_empty_uuid(u8 *uuid)
428 for (i = 0; i < BTRFS_UUID_SIZE; i++) {
435 static noinline int create_subvol(struct inode *dir,
436 struct dentry *dentry,
437 char *name, int namelen,
439 struct btrfs_qgroup_inherit *inherit)
441 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
442 struct btrfs_trans_handle *trans;
443 struct btrfs_key key;
444 struct btrfs_root_item *root_item;
445 struct btrfs_inode_item *inode_item;
446 struct extent_buffer *leaf;
447 struct btrfs_root *root = BTRFS_I(dir)->root;
448 struct btrfs_root *new_root;
449 struct btrfs_block_rsv block_rsv;
450 struct timespec cur_time = current_time(dir);
455 u64 new_dirid = BTRFS_FIRST_FREE_OBJECTID;
460 root_item = kzalloc(sizeof(*root_item), GFP_KERNEL);
464 ret = btrfs_find_free_objectid(fs_info->tree_root, &objectid);
469 * Don't create subvolume whose level is not zero. Or qgroup will be
470 * screwed up since it assumes subvolume qgroup's level to be 0.
472 if (btrfs_qgroup_level(objectid)) {
477 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
479 * The same as the snapshot creation, please see the comment
480 * of create_snapshot().
482 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv,
483 8, &qgroup_reserved, false);
487 trans = btrfs_start_transaction(root, 0);
489 ret = PTR_ERR(trans);
490 btrfs_subvolume_release_metadata(fs_info, &block_rsv,
494 trans->block_rsv = &block_rsv;
495 trans->bytes_reserved = block_rsv.size;
497 ret = btrfs_qgroup_inherit(trans, fs_info, 0, objectid, inherit);
501 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
507 memzero_extent_buffer(leaf, 0, sizeof(struct btrfs_header));
508 btrfs_set_header_bytenr(leaf, leaf->start);
509 btrfs_set_header_generation(leaf, trans->transid);
510 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
511 btrfs_set_header_owner(leaf, objectid);
513 write_extent_buffer_fsid(leaf, fs_info->fsid);
514 write_extent_buffer_chunk_tree_uuid(leaf, fs_info->chunk_tree_uuid);
515 btrfs_mark_buffer_dirty(leaf);
517 inode_item = &root_item->inode;
518 btrfs_set_stack_inode_generation(inode_item, 1);
519 btrfs_set_stack_inode_size(inode_item, 3);
520 btrfs_set_stack_inode_nlink(inode_item, 1);
521 btrfs_set_stack_inode_nbytes(inode_item,
523 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
525 btrfs_set_root_flags(root_item, 0);
526 btrfs_set_root_limit(root_item, 0);
527 btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT);
529 btrfs_set_root_bytenr(root_item, leaf->start);
530 btrfs_set_root_generation(root_item, trans->transid);
531 btrfs_set_root_level(root_item, 0);
532 btrfs_set_root_refs(root_item, 1);
533 btrfs_set_root_used(root_item, leaf->len);
534 btrfs_set_root_last_snapshot(root_item, 0);
536 btrfs_set_root_generation_v2(root_item,
537 btrfs_root_generation(root_item));
538 uuid_le_gen(&new_uuid);
539 memcpy(root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE);
540 btrfs_set_stack_timespec_sec(&root_item->otime, cur_time.tv_sec);
541 btrfs_set_stack_timespec_nsec(&root_item->otime, cur_time.tv_nsec);
542 root_item->ctime = root_item->otime;
543 btrfs_set_root_ctransid(root_item, trans->transid);
544 btrfs_set_root_otransid(root_item, trans->transid);
546 btrfs_tree_unlock(leaf);
547 free_extent_buffer(leaf);
550 btrfs_set_root_dirid(root_item, new_dirid);
552 key.objectid = objectid;
554 key.type = BTRFS_ROOT_ITEM_KEY;
555 ret = btrfs_insert_root(trans, fs_info->tree_root, &key,
560 key.offset = (u64)-1;
561 new_root = btrfs_read_fs_root_no_name(fs_info, &key);
562 if (IS_ERR(new_root)) {
563 ret = PTR_ERR(new_root);
564 btrfs_abort_transaction(trans, ret);
568 btrfs_record_root_in_trans(trans, new_root);
570 ret = btrfs_create_subvol_root(trans, new_root, root, new_dirid);
572 /* We potentially lose an unused inode item here */
573 btrfs_abort_transaction(trans, ret);
577 mutex_lock(&new_root->objectid_mutex);
578 new_root->highest_objectid = new_dirid;
579 mutex_unlock(&new_root->objectid_mutex);
582 * insert the directory item
584 ret = btrfs_set_inode_index(dir, &index);
586 btrfs_abort_transaction(trans, ret);
590 ret = btrfs_insert_dir_item(trans, root,
591 name, namelen, dir, &key,
592 BTRFS_FT_DIR, index);
594 btrfs_abort_transaction(trans, ret);
598 btrfs_i_size_write(dir, dir->i_size + namelen * 2);
599 ret = btrfs_update_inode(trans, root, dir);
602 ret = btrfs_add_root_ref(trans, fs_info,
603 objectid, root->root_key.objectid,
604 btrfs_ino(dir), index, name, namelen);
607 ret = btrfs_uuid_tree_add(trans, fs_info, root_item->uuid,
608 BTRFS_UUID_KEY_SUBVOL, objectid);
610 btrfs_abort_transaction(trans, ret);
614 trans->block_rsv = NULL;
615 trans->bytes_reserved = 0;
616 btrfs_subvolume_release_metadata(fs_info, &block_rsv, qgroup_reserved);
619 *async_transid = trans->transid;
620 err = btrfs_commit_transaction_async(trans, 1);
622 err = btrfs_commit_transaction(trans);
624 err = btrfs_commit_transaction(trans);
630 inode = btrfs_lookup_dentry(dir, dentry);
632 return PTR_ERR(inode);
633 d_instantiate(dentry, inode);
642 static void btrfs_wait_for_no_snapshoting_writes(struct btrfs_root *root)
648 prepare_to_wait(&root->subv_writers->wait, &wait,
649 TASK_UNINTERRUPTIBLE);
651 writers = percpu_counter_sum(&root->subv_writers->counter);
655 finish_wait(&root->subv_writers->wait, &wait);
659 static int create_snapshot(struct btrfs_root *root, struct inode *dir,
660 struct dentry *dentry, char *name, int namelen,
661 u64 *async_transid, bool readonly,
662 struct btrfs_qgroup_inherit *inherit)
664 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
666 struct btrfs_pending_snapshot *pending_snapshot;
667 struct btrfs_trans_handle *trans;
670 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
673 pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_NOFS);
674 if (!pending_snapshot)
677 pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item),
679 pending_snapshot->path = btrfs_alloc_path();
680 if (!pending_snapshot->root_item || !pending_snapshot->path) {
685 atomic_inc(&root->will_be_snapshoted);
686 smp_mb__after_atomic();
687 btrfs_wait_for_no_snapshoting_writes(root);
689 ret = btrfs_start_delalloc_inodes(root, 0);
693 btrfs_wait_ordered_extents(root, -1, 0, (u64)-1);
695 btrfs_init_block_rsv(&pending_snapshot->block_rsv,
696 BTRFS_BLOCK_RSV_TEMP);
698 * 1 - parent dir inode
701 * 2 - root ref/backref
702 * 1 - root of snapshot
705 ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root,
706 &pending_snapshot->block_rsv, 8,
707 &pending_snapshot->qgroup_reserved,
712 pending_snapshot->dentry = dentry;
713 pending_snapshot->root = root;
714 pending_snapshot->readonly = readonly;
715 pending_snapshot->dir = dir;
716 pending_snapshot->inherit = inherit;
718 trans = btrfs_start_transaction(root, 0);
720 ret = PTR_ERR(trans);
724 spin_lock(&fs_info->trans_lock);
725 list_add(&pending_snapshot->list,
726 &trans->transaction->pending_snapshots);
727 spin_unlock(&fs_info->trans_lock);
729 *async_transid = trans->transid;
730 ret = btrfs_commit_transaction_async(trans, 1);
732 ret = btrfs_commit_transaction(trans);
734 ret = btrfs_commit_transaction(trans);
739 ret = pending_snapshot->error;
743 ret = btrfs_orphan_cleanup(pending_snapshot->snap);
747 inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry);
749 ret = PTR_ERR(inode);
753 d_instantiate(dentry, inode);
756 btrfs_subvolume_release_metadata(fs_info,
757 &pending_snapshot->block_rsv,
758 pending_snapshot->qgroup_reserved);
760 if (atomic_dec_and_test(&root->will_be_snapshoted))
761 wake_up_atomic_t(&root->will_be_snapshoted);
763 kfree(pending_snapshot->root_item);
764 btrfs_free_path(pending_snapshot->path);
765 kfree(pending_snapshot);
770 /* copy of may_delete in fs/namei.c()
771 * Check whether we can remove a link victim from directory dir, check
772 * whether the type of victim is right.
773 * 1. We can't do it if dir is read-only (done in permission())
774 * 2. We should have write and exec permissions on dir
775 * 3. We can't remove anything from append-only dir
776 * 4. We can't do anything with immutable dir (done in permission())
777 * 5. If the sticky bit on dir is set we should either
778 * a. be owner of dir, or
779 * b. be owner of victim, or
780 * c. have CAP_FOWNER capability
781 * 6. If the victim is append-only or immutable we can't do anything with
782 * links pointing to it.
783 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
784 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
785 * 9. We can't remove a root or mountpoint.
786 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
787 * nfs_async_unlink().
790 static int btrfs_may_delete(struct inode *dir, struct dentry *victim, int isdir)
794 if (d_really_is_negative(victim))
797 BUG_ON(d_inode(victim->d_parent) != dir);
798 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
800 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
805 if (check_sticky(dir, d_inode(victim)) || IS_APPEND(d_inode(victim)) ||
806 IS_IMMUTABLE(d_inode(victim)) || IS_SWAPFILE(d_inode(victim)))
809 if (!d_is_dir(victim))
813 } else if (d_is_dir(victim))
817 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
822 /* copy of may_create in fs/namei.c() */
823 static inline int btrfs_may_create(struct inode *dir, struct dentry *child)
825 if (d_really_is_positive(child))
829 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
833 * Create a new subvolume below @parent. This is largely modeled after
834 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
835 * inside this filesystem so it's quite a bit simpler.
837 static noinline int btrfs_mksubvol(const struct path *parent,
838 char *name, int namelen,
839 struct btrfs_root *snap_src,
840 u64 *async_transid, bool readonly,
841 struct btrfs_qgroup_inherit *inherit)
843 struct inode *dir = d_inode(parent->dentry);
844 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
845 struct dentry *dentry;
848 error = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
852 dentry = lookup_one_len(name, parent->dentry, namelen);
853 error = PTR_ERR(dentry);
857 error = btrfs_may_create(dir, dentry);
862 * even if this name doesn't exist, we may get hash collisions.
863 * check for them now when we can safely fail
865 error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root,
871 down_read(&fs_info->subvol_sem);
873 if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0)
877 error = create_snapshot(snap_src, dir, dentry, name, namelen,
878 async_transid, readonly, inherit);
880 error = create_subvol(dir, dentry, name, namelen,
881 async_transid, inherit);
884 fsnotify_mkdir(dir, dentry);
886 up_read(&fs_info->subvol_sem);
895 * When we're defragging a range, we don't want to kick it off again
896 * if it is really just waiting for delalloc to send it down.
897 * If we find a nice big extent or delalloc range for the bytes in the
898 * file you want to defrag, we return 0 to let you know to skip this
901 static int check_defrag_in_cache(struct inode *inode, u64 offset, u32 thresh)
903 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
904 struct extent_map *em = NULL;
905 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
908 read_lock(&em_tree->lock);
909 em = lookup_extent_mapping(em_tree, offset, PAGE_SIZE);
910 read_unlock(&em_tree->lock);
913 end = extent_map_end(em);
915 if (end - offset > thresh)
918 /* if we already have a nice delalloc here, just stop */
920 end = count_range_bits(io_tree, &offset, offset + thresh,
921 thresh, EXTENT_DELALLOC, 1);
928 * helper function to walk through a file and find extents
929 * newer than a specific transid, and smaller than thresh.
931 * This is used by the defragging code to find new and small
934 static int find_new_extents(struct btrfs_root *root,
935 struct inode *inode, u64 newer_than,
936 u64 *off, u32 thresh)
938 struct btrfs_path *path;
939 struct btrfs_key min_key;
940 struct extent_buffer *leaf;
941 struct btrfs_file_extent_item *extent;
944 u64 ino = btrfs_ino(inode);
946 path = btrfs_alloc_path();
950 min_key.objectid = ino;
951 min_key.type = BTRFS_EXTENT_DATA_KEY;
952 min_key.offset = *off;
955 ret = btrfs_search_forward(root, &min_key, path, newer_than);
959 if (min_key.objectid != ino)
961 if (min_key.type != BTRFS_EXTENT_DATA_KEY)
964 leaf = path->nodes[0];
965 extent = btrfs_item_ptr(leaf, path->slots[0],
966 struct btrfs_file_extent_item);
968 type = btrfs_file_extent_type(leaf, extent);
969 if (type == BTRFS_FILE_EXTENT_REG &&
970 btrfs_file_extent_num_bytes(leaf, extent) < thresh &&
971 check_defrag_in_cache(inode, min_key.offset, thresh)) {
972 *off = min_key.offset;
973 btrfs_free_path(path);
978 if (path->slots[0] < btrfs_header_nritems(leaf)) {
979 btrfs_item_key_to_cpu(leaf, &min_key, path->slots[0]);
983 if (min_key.offset == (u64)-1)
987 btrfs_release_path(path);
990 btrfs_free_path(path);
994 static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start)
996 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
997 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
998 struct extent_map *em;
1002 * hopefully we have this extent in the tree already, try without
1003 * the full extent lock
1005 read_lock(&em_tree->lock);
1006 em = lookup_extent_mapping(em_tree, start, len);
1007 read_unlock(&em_tree->lock);
1010 struct extent_state *cached = NULL;
1011 u64 end = start + len - 1;
1013 /* get the big lock and read metadata off disk */
1014 lock_extent_bits(io_tree, start, end, &cached);
1015 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
1016 unlock_extent_cached(io_tree, start, end, &cached, GFP_NOFS);
1025 static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em)
1027 struct extent_map *next;
1030 /* this is the last extent */
1031 if (em->start + em->len >= i_size_read(inode))
1034 next = defrag_lookup_extent(inode, em->start + em->len);
1035 if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE)
1037 else if ((em->block_start + em->block_len == next->block_start) &&
1038 (em->block_len > SZ_128K && next->block_len > SZ_128K))
1041 free_extent_map(next);
1045 static int should_defrag_range(struct inode *inode, u64 start, u32 thresh,
1046 u64 *last_len, u64 *skip, u64 *defrag_end,
1049 struct extent_map *em;
1051 bool next_mergeable = true;
1052 bool prev_mergeable = true;
1055 * make sure that once we start defragging an extent, we keep on
1058 if (start < *defrag_end)
1063 em = defrag_lookup_extent(inode, start);
1067 /* this will cover holes, and inline extents */
1068 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
1074 prev_mergeable = false;
1076 next_mergeable = defrag_check_next_extent(inode, em);
1078 * we hit a real extent, if it is big or the next extent is not a
1079 * real extent, don't bother defragging it
1081 if (!compress && (*last_len == 0 || *last_len >= thresh) &&
1082 (em->len >= thresh || (!next_mergeable && !prev_mergeable)))
1086 * last_len ends up being a counter of how many bytes we've defragged.
1087 * every time we choose not to defrag an extent, we reset *last_len
1088 * so that the next tiny extent will force a defrag.
1090 * The end result of this is that tiny extents before a single big
1091 * extent will force at least part of that big extent to be defragged.
1094 *defrag_end = extent_map_end(em);
1097 *skip = extent_map_end(em);
1101 free_extent_map(em);
1106 * it doesn't do much good to defrag one or two pages
1107 * at a time. This pulls in a nice chunk of pages
1108 * to COW and defrag.
1110 * It also makes sure the delalloc code has enough
1111 * dirty data to avoid making new small extents as part
1114 * It's a good idea to start RA on this range
1115 * before calling this.
1117 static int cluster_pages_for_defrag(struct inode *inode,
1118 struct page **pages,
1119 unsigned long start_index,
1120 unsigned long num_pages)
1122 unsigned long file_end;
1123 u64 isize = i_size_read(inode);
1130 struct btrfs_ordered_extent *ordered;
1131 struct extent_state *cached_state = NULL;
1132 struct extent_io_tree *tree;
1133 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1135 file_end = (isize - 1) >> PAGE_SHIFT;
1136 if (!isize || start_index > file_end)
1139 page_cnt = min_t(u64, (u64)num_pages, (u64)file_end - start_index + 1);
1141 ret = btrfs_delalloc_reserve_space(inode,
1142 start_index << PAGE_SHIFT,
1143 page_cnt << PAGE_SHIFT);
1147 tree = &BTRFS_I(inode)->io_tree;
1149 /* step one, lock all the pages */
1150 for (i = 0; i < page_cnt; i++) {
1153 page = find_or_create_page(inode->i_mapping,
1154 start_index + i, mask);
1158 page_start = page_offset(page);
1159 page_end = page_start + PAGE_SIZE - 1;
1161 lock_extent_bits(tree, page_start, page_end,
1163 ordered = btrfs_lookup_ordered_extent(inode,
1165 unlock_extent_cached(tree, page_start, page_end,
1166 &cached_state, GFP_NOFS);
1171 btrfs_start_ordered_extent(inode, ordered, 1);
1172 btrfs_put_ordered_extent(ordered);
1175 * we unlocked the page above, so we need check if
1176 * it was released or not.
1178 if (page->mapping != inode->i_mapping) {
1185 if (!PageUptodate(page)) {
1186 btrfs_readpage(NULL, page);
1188 if (!PageUptodate(page)) {
1196 if (page->mapping != inode->i_mapping) {
1208 if (!(inode->i_sb->s_flags & MS_ACTIVE))
1212 * so now we have a nice long stream of locked
1213 * and up to date pages, lets wait on them
1215 for (i = 0; i < i_done; i++)
1216 wait_on_page_writeback(pages[i]);
1218 page_start = page_offset(pages[0]);
1219 page_end = page_offset(pages[i_done - 1]) + PAGE_SIZE;
1221 lock_extent_bits(&BTRFS_I(inode)->io_tree,
1222 page_start, page_end - 1, &cached_state);
1223 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start,
1224 page_end - 1, EXTENT_DIRTY | EXTENT_DELALLOC |
1225 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 0, 0,
1226 &cached_state, GFP_NOFS);
1228 if (i_done != page_cnt) {
1229 spin_lock(&BTRFS_I(inode)->lock);
1230 BTRFS_I(inode)->outstanding_extents++;
1231 spin_unlock(&BTRFS_I(inode)->lock);
1232 btrfs_delalloc_release_space(inode,
1233 start_index << PAGE_SHIFT,
1234 (page_cnt - i_done) << PAGE_SHIFT);
1238 set_extent_defrag(&BTRFS_I(inode)->io_tree, page_start, page_end - 1,
1241 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1242 page_start, page_end - 1, &cached_state,
1245 for (i = 0; i < i_done; i++) {
1246 clear_page_dirty_for_io(pages[i]);
1247 ClearPageChecked(pages[i]);
1248 set_page_extent_mapped(pages[i]);
1249 set_page_dirty(pages[i]);
1250 unlock_page(pages[i]);
1255 for (i = 0; i < i_done; i++) {
1256 unlock_page(pages[i]);
1259 btrfs_delalloc_release_space(inode,
1260 start_index << PAGE_SHIFT,
1261 page_cnt << PAGE_SHIFT);
1266 int btrfs_defrag_file(struct inode *inode, struct file *file,
1267 struct btrfs_ioctl_defrag_range_args *range,
1268 u64 newer_than, unsigned long max_to_defrag)
1270 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1271 struct btrfs_root *root = BTRFS_I(inode)->root;
1272 struct file_ra_state *ra = NULL;
1273 unsigned long last_index;
1274 u64 isize = i_size_read(inode);
1278 u64 newer_off = range->start;
1280 unsigned long ra_index = 0;
1282 int defrag_count = 0;
1283 int compress_type = BTRFS_COMPRESS_ZLIB;
1284 u32 extent_thresh = range->extent_thresh;
1285 unsigned long max_cluster = SZ_256K >> PAGE_SHIFT;
1286 unsigned long cluster = max_cluster;
1287 u64 new_align = ~((u64)SZ_128K - 1);
1288 struct page **pages = NULL;
1293 if (range->start >= isize)
1296 if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS) {
1297 if (range->compress_type > BTRFS_COMPRESS_TYPES)
1299 if (range->compress_type)
1300 compress_type = range->compress_type;
1303 if (extent_thresh == 0)
1304 extent_thresh = SZ_256K;
1307 * if we were not given a file, allocate a readahead
1311 ra = kzalloc(sizeof(*ra), GFP_NOFS);
1314 file_ra_state_init(ra, inode->i_mapping);
1319 pages = kmalloc_array(max_cluster, sizeof(struct page *),
1326 /* find the last page to defrag */
1327 if (range->start + range->len > range->start) {
1328 last_index = min_t(u64, isize - 1,
1329 range->start + range->len - 1) >> PAGE_SHIFT;
1331 last_index = (isize - 1) >> PAGE_SHIFT;
1335 ret = find_new_extents(root, inode, newer_than,
1336 &newer_off, SZ_64K);
1338 range->start = newer_off;
1340 * we always align our defrag to help keep
1341 * the extents in the file evenly spaced
1343 i = (newer_off & new_align) >> PAGE_SHIFT;
1347 i = range->start >> PAGE_SHIFT;
1350 max_to_defrag = last_index - i + 1;
1353 * make writeback starts from i, so the defrag range can be
1354 * written sequentially.
1356 if (i < inode->i_mapping->writeback_index)
1357 inode->i_mapping->writeback_index = i;
1359 while (i <= last_index && defrag_count < max_to_defrag &&
1360 (i < DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE))) {
1362 * make sure we stop running if someone unmounts
1365 if (!(inode->i_sb->s_flags & MS_ACTIVE))
1368 if (btrfs_defrag_cancelled(fs_info)) {
1369 btrfs_debug(fs_info, "defrag_file cancelled");
1374 if (!should_defrag_range(inode, (u64)i << PAGE_SHIFT,
1375 extent_thresh, &last_len, &skip,
1376 &defrag_end, range->flags &
1377 BTRFS_DEFRAG_RANGE_COMPRESS)) {
1380 * the should_defrag function tells us how much to skip
1381 * bump our counter by the suggested amount
1383 next = DIV_ROUND_UP(skip, PAGE_SIZE);
1384 i = max(i + 1, next);
1389 cluster = (PAGE_ALIGN(defrag_end) >>
1391 cluster = min(cluster, max_cluster);
1393 cluster = max_cluster;
1396 if (i + cluster > ra_index) {
1397 ra_index = max(i, ra_index);
1398 btrfs_force_ra(inode->i_mapping, ra, file, ra_index,
1400 ra_index += cluster;
1404 if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)
1405 BTRFS_I(inode)->force_compress = compress_type;
1406 ret = cluster_pages_for_defrag(inode, pages, i, cluster);
1408 inode_unlock(inode);
1412 defrag_count += ret;
1413 balance_dirty_pages_ratelimited(inode->i_mapping);
1414 inode_unlock(inode);
1417 if (newer_off == (u64)-1)
1423 newer_off = max(newer_off + 1,
1424 (u64)i << PAGE_SHIFT);
1426 ret = find_new_extents(root, inode, newer_than,
1427 &newer_off, SZ_64K);
1429 range->start = newer_off;
1430 i = (newer_off & new_align) >> PAGE_SHIFT;
1437 last_len += ret << PAGE_SHIFT;
1445 if ((range->flags & BTRFS_DEFRAG_RANGE_START_IO)) {
1446 filemap_flush(inode->i_mapping);
1447 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1448 &BTRFS_I(inode)->runtime_flags))
1449 filemap_flush(inode->i_mapping);
1452 if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
1453 /* the filemap_flush will queue IO into the worker threads, but
1454 * we have to make sure the IO is actually started and that
1455 * ordered extents get created before we return
1457 atomic_inc(&fs_info->async_submit_draining);
1458 while (atomic_read(&fs_info->nr_async_submits) ||
1459 atomic_read(&fs_info->async_delalloc_pages)) {
1460 wait_event(fs_info->async_submit_wait,
1461 (atomic_read(&fs_info->nr_async_submits) == 0 &&
1462 atomic_read(&fs_info->async_delalloc_pages) == 0));
1464 atomic_dec(&fs_info->async_submit_draining);
1467 if (range->compress_type == BTRFS_COMPRESS_LZO) {
1468 btrfs_set_fs_incompat(fs_info, COMPRESS_LZO);
1474 if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS) {
1476 BTRFS_I(inode)->force_compress = BTRFS_COMPRESS_NONE;
1477 inode_unlock(inode);
1485 static noinline int btrfs_ioctl_resize(struct file *file,
1488 struct inode *inode = file_inode(file);
1489 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1493 struct btrfs_root *root = BTRFS_I(inode)->root;
1494 struct btrfs_ioctl_vol_args *vol_args;
1495 struct btrfs_trans_handle *trans;
1496 struct btrfs_device *device = NULL;
1499 char *devstr = NULL;
1503 if (!capable(CAP_SYS_ADMIN))
1506 ret = mnt_want_write_file(file);
1510 if (atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1)) {
1511 mnt_drop_write_file(file);
1512 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
1515 mutex_lock(&fs_info->volume_mutex);
1516 vol_args = memdup_user(arg, sizeof(*vol_args));
1517 if (IS_ERR(vol_args)) {
1518 ret = PTR_ERR(vol_args);
1522 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1524 sizestr = vol_args->name;
1525 devstr = strchr(sizestr, ':');
1527 sizestr = devstr + 1;
1529 devstr = vol_args->name;
1530 ret = kstrtoull(devstr, 10, &devid);
1537 btrfs_info(fs_info, "resizing devid %llu", devid);
1540 device = btrfs_find_device(fs_info, devid, NULL, NULL);
1542 btrfs_info(fs_info, "resizer unable to find device %llu",
1548 if (!device->writeable) {
1550 "resizer unable to apply on readonly device %llu",
1556 if (!strcmp(sizestr, "max"))
1557 new_size = device->bdev->bd_inode->i_size;
1559 if (sizestr[0] == '-') {
1562 } else if (sizestr[0] == '+') {
1566 new_size = memparse(sizestr, &retptr);
1567 if (*retptr != '\0' || new_size == 0) {
1573 if (device->is_tgtdev_for_dev_replace) {
1578 old_size = btrfs_device_get_total_bytes(device);
1581 if (new_size > old_size) {
1585 new_size = old_size - new_size;
1586 } else if (mod > 0) {
1587 if (new_size > ULLONG_MAX - old_size) {
1591 new_size = old_size + new_size;
1594 if (new_size < SZ_256M) {
1598 if (new_size > device->bdev->bd_inode->i_size) {
1603 new_size = div_u64(new_size, fs_info->sectorsize);
1604 new_size *= fs_info->sectorsize;
1606 btrfs_info_in_rcu(fs_info, "new size for %s is %llu",
1607 rcu_str_deref(device->name), new_size);
1609 if (new_size > old_size) {
1610 trans = btrfs_start_transaction(root, 0);
1611 if (IS_ERR(trans)) {
1612 ret = PTR_ERR(trans);
1615 ret = btrfs_grow_device(trans, device, new_size);
1616 btrfs_commit_transaction(trans);
1617 } else if (new_size < old_size) {
1618 ret = btrfs_shrink_device(device, new_size);
1619 } /* equal, nothing need to do */
1624 mutex_unlock(&fs_info->volume_mutex);
1625 atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
1626 mnt_drop_write_file(file);
1630 static noinline int btrfs_ioctl_snap_create_transid(struct file *file,
1631 char *name, unsigned long fd, int subvol,
1632 u64 *transid, bool readonly,
1633 struct btrfs_qgroup_inherit *inherit)
1638 if (!S_ISDIR(file_inode(file)->i_mode))
1641 ret = mnt_want_write_file(file);
1645 namelen = strlen(name);
1646 if (strchr(name, '/')) {
1648 goto out_drop_write;
1651 if (name[0] == '.' &&
1652 (namelen == 1 || (name[1] == '.' && namelen == 2))) {
1654 goto out_drop_write;
1658 ret = btrfs_mksubvol(&file->f_path, name, namelen,
1659 NULL, transid, readonly, inherit);
1661 struct fd src = fdget(fd);
1662 struct inode *src_inode;
1665 goto out_drop_write;
1668 src_inode = file_inode(src.file);
1669 if (src_inode->i_sb != file_inode(file)->i_sb) {
1670 btrfs_info(BTRFS_I(file_inode(file))->root->fs_info,
1671 "Snapshot src from another FS");
1673 } else if (!inode_owner_or_capable(src_inode)) {
1675 * Subvolume creation is not restricted, but snapshots
1676 * are limited to own subvolumes only
1680 ret = btrfs_mksubvol(&file->f_path, name, namelen,
1681 BTRFS_I(src_inode)->root,
1682 transid, readonly, inherit);
1687 mnt_drop_write_file(file);
1692 static noinline int btrfs_ioctl_snap_create(struct file *file,
1693 void __user *arg, int subvol)
1695 struct btrfs_ioctl_vol_args *vol_args;
1698 if (!S_ISDIR(file_inode(file)->i_mode))
1701 vol_args = memdup_user(arg, sizeof(*vol_args));
1702 if (IS_ERR(vol_args))
1703 return PTR_ERR(vol_args);
1704 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1706 ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1707 vol_args->fd, subvol,
1714 static noinline int btrfs_ioctl_snap_create_v2(struct file *file,
1715 void __user *arg, int subvol)
1717 struct btrfs_ioctl_vol_args_v2 *vol_args;
1721 bool readonly = false;
1722 struct btrfs_qgroup_inherit *inherit = NULL;
1724 if (!S_ISDIR(file_inode(file)->i_mode))
1727 vol_args = memdup_user(arg, sizeof(*vol_args));
1728 if (IS_ERR(vol_args))
1729 return PTR_ERR(vol_args);
1730 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
1732 if (vol_args->flags &
1733 ~(BTRFS_SUBVOL_CREATE_ASYNC | BTRFS_SUBVOL_RDONLY |
1734 BTRFS_SUBVOL_QGROUP_INHERIT)) {
1739 if (vol_args->flags & BTRFS_SUBVOL_CREATE_ASYNC)
1741 if (vol_args->flags & BTRFS_SUBVOL_RDONLY)
1743 if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) {
1744 if (vol_args->size > PAGE_SIZE) {
1748 inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size);
1749 if (IS_ERR(inherit)) {
1750 ret = PTR_ERR(inherit);
1755 ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1756 vol_args->fd, subvol, ptr,
1761 if (ptr && copy_to_user(arg +
1762 offsetof(struct btrfs_ioctl_vol_args_v2,
1774 static noinline int btrfs_ioctl_subvol_getflags(struct file *file,
1777 struct inode *inode = file_inode(file);
1778 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1779 struct btrfs_root *root = BTRFS_I(inode)->root;
1783 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID)
1786 down_read(&fs_info->subvol_sem);
1787 if (btrfs_root_readonly(root))
1788 flags |= BTRFS_SUBVOL_RDONLY;
1789 up_read(&fs_info->subvol_sem);
1791 if (copy_to_user(arg, &flags, sizeof(flags)))
1797 static noinline int btrfs_ioctl_subvol_setflags(struct file *file,
1800 struct inode *inode = file_inode(file);
1801 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1802 struct btrfs_root *root = BTRFS_I(inode)->root;
1803 struct btrfs_trans_handle *trans;
1808 if (!inode_owner_or_capable(inode))
1811 ret = mnt_want_write_file(file);
1815 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) {
1817 goto out_drop_write;
1820 if (copy_from_user(&flags, arg, sizeof(flags))) {
1822 goto out_drop_write;
1825 if (flags & BTRFS_SUBVOL_CREATE_ASYNC) {
1827 goto out_drop_write;
1830 if (flags & ~BTRFS_SUBVOL_RDONLY) {
1832 goto out_drop_write;
1835 down_write(&fs_info->subvol_sem);
1838 if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root))
1841 root_flags = btrfs_root_flags(&root->root_item);
1842 if (flags & BTRFS_SUBVOL_RDONLY) {
1843 btrfs_set_root_flags(&root->root_item,
1844 root_flags | BTRFS_ROOT_SUBVOL_RDONLY);
1847 * Block RO -> RW transition if this subvolume is involved in
1850 spin_lock(&root->root_item_lock);
1851 if (root->send_in_progress == 0) {
1852 btrfs_set_root_flags(&root->root_item,
1853 root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY);
1854 spin_unlock(&root->root_item_lock);
1856 spin_unlock(&root->root_item_lock);
1858 "Attempt to set subvolume %llu read-write during send",
1859 root->root_key.objectid);
1865 trans = btrfs_start_transaction(root, 1);
1866 if (IS_ERR(trans)) {
1867 ret = PTR_ERR(trans);
1871 ret = btrfs_update_root(trans, fs_info->tree_root,
1872 &root->root_key, &root->root_item);
1874 btrfs_commit_transaction(trans);
1877 btrfs_set_root_flags(&root->root_item, root_flags);
1879 up_write(&fs_info->subvol_sem);
1881 mnt_drop_write_file(file);
1887 * helper to check if the subvolume references other subvolumes
1889 static noinline int may_destroy_subvol(struct btrfs_root *root)
1891 struct btrfs_fs_info *fs_info = root->fs_info;
1892 struct btrfs_path *path;
1893 struct btrfs_dir_item *di;
1894 struct btrfs_key key;
1898 path = btrfs_alloc_path();
1902 /* Make sure this root isn't set as the default subvol */
1903 dir_id = btrfs_super_root_dir(fs_info->super_copy);
1904 di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path,
1905 dir_id, "default", 7, 0);
1906 if (di && !IS_ERR(di)) {
1907 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
1908 if (key.objectid == root->root_key.objectid) {
1911 "deleting default subvolume %llu is not allowed",
1915 btrfs_release_path(path);
1918 key.objectid = root->root_key.objectid;
1919 key.type = BTRFS_ROOT_REF_KEY;
1920 key.offset = (u64)-1;
1922 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1928 if (path->slots[0] > 0) {
1930 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1931 if (key.objectid == root->root_key.objectid &&
1932 key.type == BTRFS_ROOT_REF_KEY)
1936 btrfs_free_path(path);
1940 static noinline int key_in_sk(struct btrfs_key *key,
1941 struct btrfs_ioctl_search_key *sk)
1943 struct btrfs_key test;
1946 test.objectid = sk->min_objectid;
1947 test.type = sk->min_type;
1948 test.offset = sk->min_offset;
1950 ret = btrfs_comp_cpu_keys(key, &test);
1954 test.objectid = sk->max_objectid;
1955 test.type = sk->max_type;
1956 test.offset = sk->max_offset;
1958 ret = btrfs_comp_cpu_keys(key, &test);
1964 static noinline int copy_to_sk(struct btrfs_path *path,
1965 struct btrfs_key *key,
1966 struct btrfs_ioctl_search_key *sk,
1969 unsigned long *sk_offset,
1973 struct extent_buffer *leaf;
1974 struct btrfs_ioctl_search_header sh;
1975 struct btrfs_key test;
1976 unsigned long item_off;
1977 unsigned long item_len;
1983 leaf = path->nodes[0];
1984 slot = path->slots[0];
1985 nritems = btrfs_header_nritems(leaf);
1987 if (btrfs_header_generation(leaf) > sk->max_transid) {
1991 found_transid = btrfs_header_generation(leaf);
1993 for (i = slot; i < nritems; i++) {
1994 item_off = btrfs_item_ptr_offset(leaf, i);
1995 item_len = btrfs_item_size_nr(leaf, i);
1997 btrfs_item_key_to_cpu(leaf, key, i);
1998 if (!key_in_sk(key, sk))
2001 if (sizeof(sh) + item_len > *buf_size) {
2008 * return one empty item back for v1, which does not
2012 *buf_size = sizeof(sh) + item_len;
2017 if (sizeof(sh) + item_len + *sk_offset > *buf_size) {
2022 sh.objectid = key->objectid;
2023 sh.offset = key->offset;
2024 sh.type = key->type;
2026 sh.transid = found_transid;
2028 /* copy search result header */
2029 if (copy_to_user(ubuf + *sk_offset, &sh, sizeof(sh))) {
2034 *sk_offset += sizeof(sh);
2037 char __user *up = ubuf + *sk_offset;
2039 if (read_extent_buffer_to_user(leaf, up,
2040 item_off, item_len)) {
2045 *sk_offset += item_len;
2049 if (ret) /* -EOVERFLOW from above */
2052 if (*num_found >= sk->nr_items) {
2059 test.objectid = sk->max_objectid;
2060 test.type = sk->max_type;
2061 test.offset = sk->max_offset;
2062 if (btrfs_comp_cpu_keys(key, &test) >= 0)
2064 else if (key->offset < (u64)-1)
2066 else if (key->type < (u8)-1) {
2069 } else if (key->objectid < (u64)-1) {
2077 * 0: all items from this leaf copied, continue with next
2078 * 1: * more items can be copied, but unused buffer is too small
2079 * * all items were found
2080 * Either way, it will stops the loop which iterates to the next
2082 * -EOVERFLOW: item was to large for buffer
2083 * -EFAULT: could not copy extent buffer back to userspace
2088 static noinline int search_ioctl(struct inode *inode,
2089 struct btrfs_ioctl_search_key *sk,
2093 struct btrfs_fs_info *info = btrfs_sb(inode->i_sb);
2094 struct btrfs_root *root;
2095 struct btrfs_key key;
2096 struct btrfs_path *path;
2099 unsigned long sk_offset = 0;
2101 if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) {
2102 *buf_size = sizeof(struct btrfs_ioctl_search_header);
2106 path = btrfs_alloc_path();
2110 if (sk->tree_id == 0) {
2111 /* search the root of the inode that was passed */
2112 root = BTRFS_I(inode)->root;
2114 key.objectid = sk->tree_id;
2115 key.type = BTRFS_ROOT_ITEM_KEY;
2116 key.offset = (u64)-1;
2117 root = btrfs_read_fs_root_no_name(info, &key);
2119 btrfs_free_path(path);
2124 key.objectid = sk->min_objectid;
2125 key.type = sk->min_type;
2126 key.offset = sk->min_offset;
2129 ret = btrfs_search_forward(root, &key, path, sk->min_transid);
2135 ret = copy_to_sk(path, &key, sk, buf_size, ubuf,
2136 &sk_offset, &num_found);
2137 btrfs_release_path(path);
2145 sk->nr_items = num_found;
2146 btrfs_free_path(path);
2150 static noinline int btrfs_ioctl_tree_search(struct file *file,
2153 struct btrfs_ioctl_search_args __user *uargs;
2154 struct btrfs_ioctl_search_key sk;
2155 struct inode *inode;
2159 if (!capable(CAP_SYS_ADMIN))
2162 uargs = (struct btrfs_ioctl_search_args __user *)argp;
2164 if (copy_from_user(&sk, &uargs->key, sizeof(sk)))
2167 buf_size = sizeof(uargs->buf);
2169 inode = file_inode(file);
2170 ret = search_ioctl(inode, &sk, &buf_size, uargs->buf);
2173 * In the origin implementation an overflow is handled by returning a
2174 * search header with a len of zero, so reset ret.
2176 if (ret == -EOVERFLOW)
2179 if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk)))
2184 static noinline int btrfs_ioctl_tree_search_v2(struct file *file,
2187 struct btrfs_ioctl_search_args_v2 __user *uarg;
2188 struct btrfs_ioctl_search_args_v2 args;
2189 struct inode *inode;
2192 const size_t buf_limit = SZ_16M;
2194 if (!capable(CAP_SYS_ADMIN))
2197 /* copy search header and buffer size */
2198 uarg = (struct btrfs_ioctl_search_args_v2 __user *)argp;
2199 if (copy_from_user(&args, uarg, sizeof(args)))
2202 buf_size = args.buf_size;
2204 if (buf_size < sizeof(struct btrfs_ioctl_search_header))
2207 /* limit result size to 16MB */
2208 if (buf_size > buf_limit)
2209 buf_size = buf_limit;
2211 inode = file_inode(file);
2212 ret = search_ioctl(inode, &args.key, &buf_size,
2213 (char *)(&uarg->buf[0]));
2214 if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key)))
2216 else if (ret == -EOVERFLOW &&
2217 copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size)))
2224 * Search INODE_REFs to identify path name of 'dirid' directory
2225 * in a 'tree_id' tree. and sets path name to 'name'.
2227 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info,
2228 u64 tree_id, u64 dirid, char *name)
2230 struct btrfs_root *root;
2231 struct btrfs_key key;
2237 struct btrfs_inode_ref *iref;
2238 struct extent_buffer *l;
2239 struct btrfs_path *path;
2241 if (dirid == BTRFS_FIRST_FREE_OBJECTID) {
2246 path = btrfs_alloc_path();
2250 ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX];
2252 key.objectid = tree_id;
2253 key.type = BTRFS_ROOT_ITEM_KEY;
2254 key.offset = (u64)-1;
2255 root = btrfs_read_fs_root_no_name(info, &key);
2257 btrfs_err(info, "could not find root %llu", tree_id);
2262 key.objectid = dirid;
2263 key.type = BTRFS_INODE_REF_KEY;
2264 key.offset = (u64)-1;
2267 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2271 ret = btrfs_previous_item(root, path, dirid,
2272 BTRFS_INODE_REF_KEY);
2282 slot = path->slots[0];
2283 btrfs_item_key_to_cpu(l, &key, slot);
2285 iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref);
2286 len = btrfs_inode_ref_name_len(l, iref);
2288 total_len += len + 1;
2290 ret = -ENAMETOOLONG;
2295 read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len);
2297 if (key.offset == BTRFS_FIRST_FREE_OBJECTID)
2300 btrfs_release_path(path);
2301 key.objectid = key.offset;
2302 key.offset = (u64)-1;
2303 dirid = key.objectid;
2305 memmove(name, ptr, total_len);
2306 name[total_len] = '\0';
2309 btrfs_free_path(path);
2313 static noinline int btrfs_ioctl_ino_lookup(struct file *file,
2316 struct btrfs_ioctl_ino_lookup_args *args;
2317 struct inode *inode;
2320 args = memdup_user(argp, sizeof(*args));
2322 return PTR_ERR(args);
2324 inode = file_inode(file);
2327 * Unprivileged query to obtain the containing subvolume root id. The
2328 * path is reset so it's consistent with btrfs_search_path_in_tree.
2330 if (args->treeid == 0)
2331 args->treeid = BTRFS_I(inode)->root->root_key.objectid;
2333 if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) {
2338 if (!capable(CAP_SYS_ADMIN)) {
2343 ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info,
2344 args->treeid, args->objectid,
2348 if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2355 static noinline int btrfs_ioctl_snap_destroy(struct file *file,
2358 struct dentry *parent = file->f_path.dentry;
2359 struct btrfs_fs_info *fs_info = btrfs_sb(parent->d_sb);
2360 struct dentry *dentry;
2361 struct inode *dir = d_inode(parent);
2362 struct inode *inode;
2363 struct btrfs_root *root = BTRFS_I(dir)->root;
2364 struct btrfs_root *dest = NULL;
2365 struct btrfs_ioctl_vol_args *vol_args;
2366 struct btrfs_trans_handle *trans;
2367 struct btrfs_block_rsv block_rsv;
2369 u64 qgroup_reserved;
2374 if (!S_ISDIR(dir->i_mode))
2377 vol_args = memdup_user(arg, sizeof(*vol_args));
2378 if (IS_ERR(vol_args))
2379 return PTR_ERR(vol_args);
2381 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2382 namelen = strlen(vol_args->name);
2383 if (strchr(vol_args->name, '/') ||
2384 strncmp(vol_args->name, "..", namelen) == 0) {
2389 err = mnt_want_write_file(file);
2394 err = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
2396 goto out_drop_write;
2397 dentry = lookup_one_len(vol_args->name, parent, namelen);
2398 if (IS_ERR(dentry)) {
2399 err = PTR_ERR(dentry);
2400 goto out_unlock_dir;
2403 if (d_really_is_negative(dentry)) {
2408 inode = d_inode(dentry);
2409 dest = BTRFS_I(inode)->root;
2410 if (!capable(CAP_SYS_ADMIN)) {
2412 * Regular user. Only allow this with a special mount
2413 * option, when the user has write+exec access to the
2414 * subvol root, and when rmdir(2) would have been
2417 * Note that this is _not_ check that the subvol is
2418 * empty or doesn't contain data that we wouldn't
2419 * otherwise be able to delete.
2421 * Users who want to delete empty subvols should try
2425 if (!btrfs_test_opt(fs_info, USER_SUBVOL_RM_ALLOWED))
2429 * Do not allow deletion if the parent dir is the same
2430 * as the dir to be deleted. That means the ioctl
2431 * must be called on the dentry referencing the root
2432 * of the subvol, not a random directory contained
2439 err = inode_permission(inode, MAY_WRITE | MAY_EXEC);
2444 /* check if subvolume may be deleted by a user */
2445 err = btrfs_may_delete(dir, dentry, 1);
2449 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) {
2457 * Don't allow to delete a subvolume with send in progress. This is
2458 * inside the i_mutex so the error handling that has to drop the bit
2459 * again is not run concurrently.
2461 spin_lock(&dest->root_item_lock);
2462 root_flags = btrfs_root_flags(&dest->root_item);
2463 if (dest->send_in_progress == 0) {
2464 btrfs_set_root_flags(&dest->root_item,
2465 root_flags | BTRFS_ROOT_SUBVOL_DEAD);
2466 spin_unlock(&dest->root_item_lock);
2468 spin_unlock(&dest->root_item_lock);
2470 "Attempt to delete subvolume %llu during send",
2471 dest->root_key.objectid);
2473 goto out_unlock_inode;
2476 down_write(&fs_info->subvol_sem);
2478 err = may_destroy_subvol(dest);
2482 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
2484 * One for dir inode, two for dir entries, two for root
2487 err = btrfs_subvolume_reserve_metadata(root, &block_rsv,
2488 5, &qgroup_reserved, true);
2492 trans = btrfs_start_transaction(root, 0);
2493 if (IS_ERR(trans)) {
2494 err = PTR_ERR(trans);
2497 trans->block_rsv = &block_rsv;
2498 trans->bytes_reserved = block_rsv.size;
2500 btrfs_record_snapshot_destroy(trans, dir);
2502 ret = btrfs_unlink_subvol(trans, root, dir,
2503 dest->root_key.objectid,
2504 dentry->d_name.name,
2505 dentry->d_name.len);
2508 btrfs_abort_transaction(trans, ret);
2512 btrfs_record_root_in_trans(trans, dest);
2514 memset(&dest->root_item.drop_progress, 0,
2515 sizeof(dest->root_item.drop_progress));
2516 dest->root_item.drop_level = 0;
2517 btrfs_set_root_refs(&dest->root_item, 0);
2519 if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) {
2520 ret = btrfs_insert_orphan_item(trans,
2522 dest->root_key.objectid);
2524 btrfs_abort_transaction(trans, ret);
2530 ret = btrfs_uuid_tree_rem(trans, fs_info, dest->root_item.uuid,
2531 BTRFS_UUID_KEY_SUBVOL,
2532 dest->root_key.objectid);
2533 if (ret && ret != -ENOENT) {
2534 btrfs_abort_transaction(trans, ret);
2538 if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) {
2539 ret = btrfs_uuid_tree_rem(trans, fs_info,
2540 dest->root_item.received_uuid,
2541 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
2542 dest->root_key.objectid);
2543 if (ret && ret != -ENOENT) {
2544 btrfs_abort_transaction(trans, ret);
2551 trans->block_rsv = NULL;
2552 trans->bytes_reserved = 0;
2553 ret = btrfs_end_transaction(trans);
2556 inode->i_flags |= S_DEAD;
2558 btrfs_subvolume_release_metadata(fs_info, &block_rsv, qgroup_reserved);
2560 up_write(&fs_info->subvol_sem);
2562 spin_lock(&dest->root_item_lock);
2563 root_flags = btrfs_root_flags(&dest->root_item);
2564 btrfs_set_root_flags(&dest->root_item,
2565 root_flags & ~BTRFS_ROOT_SUBVOL_DEAD);
2566 spin_unlock(&dest->root_item_lock);
2569 inode_unlock(inode);
2571 d_invalidate(dentry);
2572 btrfs_invalidate_inodes(dest);
2574 ASSERT(dest->send_in_progress == 0);
2577 if (dest->ino_cache_inode) {
2578 iput(dest->ino_cache_inode);
2579 dest->ino_cache_inode = NULL;
2587 mnt_drop_write_file(file);
2593 static int btrfs_ioctl_defrag(struct file *file, void __user *argp)
2595 struct inode *inode = file_inode(file);
2596 struct btrfs_root *root = BTRFS_I(inode)->root;
2597 struct btrfs_ioctl_defrag_range_args *range;
2600 ret = mnt_want_write_file(file);
2604 if (btrfs_root_readonly(root)) {
2609 switch (inode->i_mode & S_IFMT) {
2611 if (!capable(CAP_SYS_ADMIN)) {
2615 ret = btrfs_defrag_root(root);
2618 ret = btrfs_defrag_root(root->fs_info->extent_root);
2621 if (!(file->f_mode & FMODE_WRITE)) {
2626 range = kzalloc(sizeof(*range), GFP_KERNEL);
2633 if (copy_from_user(range, argp,
2639 /* compression requires us to start the IO */
2640 if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
2641 range->flags |= BTRFS_DEFRAG_RANGE_START_IO;
2642 range->extent_thresh = (u32)-1;
2645 /* the rest are all set to zero by kzalloc */
2646 range->len = (u64)-1;
2648 ret = btrfs_defrag_file(file_inode(file), file,
2658 mnt_drop_write_file(file);
2662 static long btrfs_ioctl_add_dev(struct btrfs_fs_info *fs_info, void __user *arg)
2664 struct btrfs_ioctl_vol_args *vol_args;
2667 if (!capable(CAP_SYS_ADMIN))
2670 if (atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1))
2671 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
2673 mutex_lock(&fs_info->volume_mutex);
2674 vol_args = memdup_user(arg, sizeof(*vol_args));
2675 if (IS_ERR(vol_args)) {
2676 ret = PTR_ERR(vol_args);
2680 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2681 ret = btrfs_init_new_device(fs_info, vol_args->name);
2684 btrfs_info(fs_info, "disk added %s", vol_args->name);
2688 mutex_unlock(&fs_info->volume_mutex);
2689 atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
2693 static long btrfs_ioctl_rm_dev_v2(struct file *file, void __user *arg)
2695 struct inode *inode = file_inode(file);
2696 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2697 struct btrfs_ioctl_vol_args_v2 *vol_args;
2700 if (!capable(CAP_SYS_ADMIN))
2703 ret = mnt_want_write_file(file);
2707 vol_args = memdup_user(arg, sizeof(*vol_args));
2708 if (IS_ERR(vol_args)) {
2709 ret = PTR_ERR(vol_args);
2713 /* Check for compatibility reject unknown flags */
2714 if (vol_args->flags & ~BTRFS_VOL_ARG_V2_FLAGS_SUPPORTED)
2717 if (atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1)) {
2718 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
2722 mutex_lock(&fs_info->volume_mutex);
2723 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) {
2724 ret = btrfs_rm_device(fs_info, NULL, vol_args->devid);
2726 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
2727 ret = btrfs_rm_device(fs_info, vol_args->name, 0);
2729 mutex_unlock(&fs_info->volume_mutex);
2730 atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
2733 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID)
2734 btrfs_info(fs_info, "device deleted: id %llu",
2737 btrfs_info(fs_info, "device deleted: %s",
2743 mnt_drop_write_file(file);
2747 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg)
2749 struct inode *inode = file_inode(file);
2750 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2751 struct btrfs_ioctl_vol_args *vol_args;
2754 if (!capable(CAP_SYS_ADMIN))
2757 ret = mnt_want_write_file(file);
2761 if (atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1)) {
2762 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
2763 goto out_drop_write;
2766 vol_args = memdup_user(arg, sizeof(*vol_args));
2767 if (IS_ERR(vol_args)) {
2768 ret = PTR_ERR(vol_args);
2772 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2773 mutex_lock(&fs_info->volume_mutex);
2774 ret = btrfs_rm_device(fs_info, vol_args->name, 0);
2775 mutex_unlock(&fs_info->volume_mutex);
2778 btrfs_info(fs_info, "disk deleted %s", vol_args->name);
2781 atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
2783 mnt_drop_write_file(file);
2788 static long btrfs_ioctl_fs_info(struct btrfs_fs_info *fs_info,
2791 struct btrfs_ioctl_fs_info_args *fi_args;
2792 struct btrfs_device *device;
2793 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2796 fi_args = kzalloc(sizeof(*fi_args), GFP_KERNEL);
2800 mutex_lock(&fs_devices->device_list_mutex);
2801 fi_args->num_devices = fs_devices->num_devices;
2802 memcpy(&fi_args->fsid, fs_info->fsid, sizeof(fi_args->fsid));
2804 list_for_each_entry(device, &fs_devices->devices, dev_list) {
2805 if (device->devid > fi_args->max_id)
2806 fi_args->max_id = device->devid;
2808 mutex_unlock(&fs_devices->device_list_mutex);
2810 fi_args->nodesize = fs_info->super_copy->nodesize;
2811 fi_args->sectorsize = fs_info->super_copy->sectorsize;
2812 fi_args->clone_alignment = fs_info->super_copy->sectorsize;
2814 if (copy_to_user(arg, fi_args, sizeof(*fi_args)))
2821 static long btrfs_ioctl_dev_info(struct btrfs_fs_info *fs_info,
2824 struct btrfs_ioctl_dev_info_args *di_args;
2825 struct btrfs_device *dev;
2826 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2828 char *s_uuid = NULL;
2830 di_args = memdup_user(arg, sizeof(*di_args));
2831 if (IS_ERR(di_args))
2832 return PTR_ERR(di_args);
2834 if (!btrfs_is_empty_uuid(di_args->uuid))
2835 s_uuid = di_args->uuid;
2837 mutex_lock(&fs_devices->device_list_mutex);
2838 dev = btrfs_find_device(fs_info, di_args->devid, s_uuid, NULL);
2845 di_args->devid = dev->devid;
2846 di_args->bytes_used = btrfs_device_get_bytes_used(dev);
2847 di_args->total_bytes = btrfs_device_get_total_bytes(dev);
2848 memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid));
2850 struct rcu_string *name;
2853 name = rcu_dereference(dev->name);
2854 strncpy(di_args->path, name->str, sizeof(di_args->path));
2856 di_args->path[sizeof(di_args->path) - 1] = 0;
2858 di_args->path[0] = '\0';
2862 mutex_unlock(&fs_devices->device_list_mutex);
2863 if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args)))
2870 static struct page *extent_same_get_page(struct inode *inode, pgoff_t index)
2874 page = grab_cache_page(inode->i_mapping, index);
2876 return ERR_PTR(-ENOMEM);
2878 if (!PageUptodate(page)) {
2881 ret = btrfs_readpage(NULL, page);
2883 return ERR_PTR(ret);
2885 if (!PageUptodate(page)) {
2888 return ERR_PTR(-EIO);
2890 if (page->mapping != inode->i_mapping) {
2893 return ERR_PTR(-EAGAIN);
2900 static int gather_extent_pages(struct inode *inode, struct page **pages,
2901 int num_pages, u64 off)
2904 pgoff_t index = off >> PAGE_SHIFT;
2906 for (i = 0; i < num_pages; i++) {
2908 pages[i] = extent_same_get_page(inode, index + i);
2909 if (IS_ERR(pages[i])) {
2910 int err = PTR_ERR(pages[i]);
2921 static int lock_extent_range(struct inode *inode, u64 off, u64 len,
2922 bool retry_range_locking)
2925 * Do any pending delalloc/csum calculations on inode, one way or
2926 * another, and lock file content.
2927 * The locking order is:
2930 * 2) range in the inode's io tree
2933 struct btrfs_ordered_extent *ordered;
2934 lock_extent(&BTRFS_I(inode)->io_tree, off, off + len - 1);
2935 ordered = btrfs_lookup_first_ordered_extent(inode,
2938 ordered->file_offset + ordered->len <= off ||
2939 ordered->file_offset >= off + len) &&
2940 !test_range_bit(&BTRFS_I(inode)->io_tree, off,
2941 off + len - 1, EXTENT_DELALLOC, 0, NULL)) {
2943 btrfs_put_ordered_extent(ordered);
2946 unlock_extent(&BTRFS_I(inode)->io_tree, off, off + len - 1);
2948 btrfs_put_ordered_extent(ordered);
2949 if (!retry_range_locking)
2951 btrfs_wait_ordered_range(inode, off, len);
2956 static void btrfs_double_inode_unlock(struct inode *inode1, struct inode *inode2)
2958 inode_unlock(inode1);
2959 inode_unlock(inode2);
2962 static void btrfs_double_inode_lock(struct inode *inode1, struct inode *inode2)
2964 if (inode1 < inode2)
2965 swap(inode1, inode2);
2967 inode_lock_nested(inode1, I_MUTEX_PARENT);
2968 inode_lock_nested(inode2, I_MUTEX_CHILD);
2971 static void btrfs_double_extent_unlock(struct inode *inode1, u64 loff1,
2972 struct inode *inode2, u64 loff2, u64 len)
2974 unlock_extent(&BTRFS_I(inode1)->io_tree, loff1, loff1 + len - 1);
2975 unlock_extent(&BTRFS_I(inode2)->io_tree, loff2, loff2 + len - 1);
2978 static int btrfs_double_extent_lock(struct inode *inode1, u64 loff1,
2979 struct inode *inode2, u64 loff2, u64 len,
2980 bool retry_range_locking)
2984 if (inode1 < inode2) {
2985 swap(inode1, inode2);
2988 ret = lock_extent_range(inode1, loff1, len, retry_range_locking);
2991 ret = lock_extent_range(inode2, loff2, len, retry_range_locking);
2993 unlock_extent(&BTRFS_I(inode1)->io_tree, loff1,
3000 struct page **src_pages;
3001 struct page **dst_pages;
3004 static void btrfs_cmp_data_free(struct cmp_pages *cmp)
3009 for (i = 0; i < cmp->num_pages; i++) {
3010 pg = cmp->src_pages[i];
3015 pg = cmp->dst_pages[i];
3021 kfree(cmp->src_pages);
3022 kfree(cmp->dst_pages);
3025 static int btrfs_cmp_data_prepare(struct inode *src, u64 loff,
3026 struct inode *dst, u64 dst_loff,
3027 u64 len, struct cmp_pages *cmp)
3030 int num_pages = PAGE_ALIGN(len) >> PAGE_SHIFT;
3031 struct page **src_pgarr, **dst_pgarr;
3034 * We must gather up all the pages before we initiate our
3035 * extent locking. We use an array for the page pointers. Size
3036 * of the array is bounded by len, which is in turn bounded by
3037 * BTRFS_MAX_DEDUPE_LEN.
3039 src_pgarr = kcalloc(num_pages, sizeof(struct page *), GFP_KERNEL);
3040 dst_pgarr = kcalloc(num_pages, sizeof(struct page *), GFP_KERNEL);
3041 if (!src_pgarr || !dst_pgarr) {
3046 cmp->num_pages = num_pages;
3047 cmp->src_pages = src_pgarr;
3048 cmp->dst_pages = dst_pgarr;
3050 ret = gather_extent_pages(src, cmp->src_pages, cmp->num_pages, loff);
3054 ret = gather_extent_pages(dst, cmp->dst_pages, cmp->num_pages, dst_loff);
3058 btrfs_cmp_data_free(cmp);
3062 static int btrfs_cmp_data(struct inode *src, u64 loff, struct inode *dst,
3063 u64 dst_loff, u64 len, struct cmp_pages *cmp)
3067 struct page *src_page, *dst_page;
3068 unsigned int cmp_len = PAGE_SIZE;
3069 void *addr, *dst_addr;
3073 if (len < PAGE_SIZE)
3076 BUG_ON(i >= cmp->num_pages);
3078 src_page = cmp->src_pages[i];
3079 dst_page = cmp->dst_pages[i];
3080 ASSERT(PageLocked(src_page));
3081 ASSERT(PageLocked(dst_page));
3083 addr = kmap_atomic(src_page);
3084 dst_addr = kmap_atomic(dst_page);
3086 flush_dcache_page(src_page);
3087 flush_dcache_page(dst_page);
3089 if (memcmp(addr, dst_addr, cmp_len))
3092 kunmap_atomic(addr);
3093 kunmap_atomic(dst_addr);
3105 static int extent_same_check_offsets(struct inode *inode, u64 off, u64 *plen,
3109 u64 bs = BTRFS_I(inode)->root->fs_info->sb->s_blocksize;
3111 if (off + olen > inode->i_size || off + olen < off)
3114 /* if we extend to eof, continue to block boundary */
3115 if (off + len == inode->i_size)
3116 *plen = len = ALIGN(inode->i_size, bs) - off;
3118 /* Check that we are block aligned - btrfs_clone() requires this */
3119 if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs))
3125 static int btrfs_extent_same(struct inode *src, u64 loff, u64 olen,
3126 struct inode *dst, u64 dst_loff)
3130 struct cmp_pages cmp;
3132 u64 same_lock_start = 0;
3133 u64 same_lock_len = 0;
3144 ret = extent_same_check_offsets(src, loff, &len, olen);
3147 ret = extent_same_check_offsets(src, dst_loff, &len, olen);
3152 * Single inode case wants the same checks, except we
3153 * don't want our length pushed out past i_size as
3154 * comparing that data range makes no sense.
3156 * extent_same_check_offsets() will do this for an
3157 * unaligned length at i_size, so catch it here and
3158 * reject the request.
3160 * This effectively means we require aligned extents
3161 * for the single-inode case, whereas the other cases
3162 * allow an unaligned length so long as it ends at
3170 /* Check for overlapping ranges */
3171 if (dst_loff + len > loff && dst_loff < loff + len) {
3176 same_lock_start = min_t(u64, loff, dst_loff);
3177 same_lock_len = max_t(u64, loff, dst_loff) + len - same_lock_start;
3179 btrfs_double_inode_lock(src, dst);
3181 ret = extent_same_check_offsets(src, loff, &len, olen);
3185 ret = extent_same_check_offsets(dst, dst_loff, &len, olen);
3190 /* don't make the dst file partly checksummed */
3191 if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) !=
3192 (BTRFS_I(dst)->flags & BTRFS_INODE_NODATASUM)) {
3198 ret = btrfs_cmp_data_prepare(src, loff, dst, dst_loff, olen, &cmp);
3203 ret = lock_extent_range(src, same_lock_start, same_lock_len,
3206 ret = btrfs_double_extent_lock(src, loff, dst, dst_loff, len,
3209 * If one of the inodes has dirty pages in the respective range or
3210 * ordered extents, we need to flush dellaloc and wait for all ordered
3211 * extents in the range. We must unlock the pages and the ranges in the
3212 * io trees to avoid deadlocks when flushing delalloc (requires locking
3213 * pages) and when waiting for ordered extents to complete (they require
3216 if (ret == -EAGAIN) {
3218 * Ranges in the io trees already unlocked. Now unlock all
3219 * pages before waiting for all IO to complete.
3221 btrfs_cmp_data_free(&cmp);
3223 btrfs_wait_ordered_range(src, same_lock_start,
3226 btrfs_wait_ordered_range(src, loff, len);
3227 btrfs_wait_ordered_range(dst, dst_loff, len);
3233 /* ranges in the io trees already unlocked */
3234 btrfs_cmp_data_free(&cmp);
3238 /* pass original length for comparison so we stay within i_size */
3239 ret = btrfs_cmp_data(src, loff, dst, dst_loff, olen, &cmp);
3241 ret = btrfs_clone(src, dst, loff, olen, len, dst_loff, 1);
3244 unlock_extent(&BTRFS_I(src)->io_tree, same_lock_start,
3245 same_lock_start + same_lock_len - 1);
3247 btrfs_double_extent_unlock(src, loff, dst, dst_loff, len);
3249 btrfs_cmp_data_free(&cmp);
3254 btrfs_double_inode_unlock(src, dst);
3259 #define BTRFS_MAX_DEDUPE_LEN SZ_16M
3261 ssize_t btrfs_dedupe_file_range(struct file *src_file, u64 loff, u64 olen,
3262 struct file *dst_file, u64 dst_loff)
3264 struct inode *src = file_inode(src_file);
3265 struct inode *dst = file_inode(dst_file);
3266 u64 bs = BTRFS_I(src)->root->fs_info->sb->s_blocksize;
3269 if (olen > BTRFS_MAX_DEDUPE_LEN)
3270 olen = BTRFS_MAX_DEDUPE_LEN;
3272 if (WARN_ON_ONCE(bs < PAGE_SIZE)) {
3274 * Btrfs does not support blocksize < page_size. As a
3275 * result, btrfs_cmp_data() won't correctly handle
3276 * this situation without an update.
3281 res = btrfs_extent_same(src, loff, olen, dst, dst_loff);
3287 static int clone_finish_inode_update(struct btrfs_trans_handle *trans,
3288 struct inode *inode,
3294 struct btrfs_root *root = BTRFS_I(inode)->root;
3297 inode_inc_iversion(inode);
3298 if (!no_time_update)
3299 inode->i_mtime = inode->i_ctime = current_time(inode);
3301 * We round up to the block size at eof when determining which
3302 * extents to clone above, but shouldn't round up the file size.
3304 if (endoff > destoff + olen)
3305 endoff = destoff + olen;
3306 if (endoff > inode->i_size)
3307 btrfs_i_size_write(inode, endoff);
3309 ret = btrfs_update_inode(trans, root, inode);
3311 btrfs_abort_transaction(trans, ret);
3312 btrfs_end_transaction(trans);
3315 ret = btrfs_end_transaction(trans);
3320 static void clone_update_extent_map(struct inode *inode,
3321 const struct btrfs_trans_handle *trans,
3322 const struct btrfs_path *path,
3323 const u64 hole_offset,
3326 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
3327 struct extent_map *em;
3330 em = alloc_extent_map();
3332 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3333 &BTRFS_I(inode)->runtime_flags);
3338 struct btrfs_file_extent_item *fi;
3340 fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
3341 struct btrfs_file_extent_item);
3342 btrfs_extent_item_to_extent_map(inode, path, fi, false, em);
3343 em->generation = -1;
3344 if (btrfs_file_extent_type(path->nodes[0], fi) ==
3345 BTRFS_FILE_EXTENT_INLINE)
3346 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3347 &BTRFS_I(inode)->runtime_flags);
3349 em->start = hole_offset;
3351 em->ram_bytes = em->len;
3352 em->orig_start = hole_offset;
3353 em->block_start = EXTENT_MAP_HOLE;
3355 em->orig_block_len = 0;
3356 em->compress_type = BTRFS_COMPRESS_NONE;
3357 em->generation = trans->transid;
3361 write_lock(&em_tree->lock);
3362 ret = add_extent_mapping(em_tree, em, 1);
3363 write_unlock(&em_tree->lock);
3364 if (ret != -EEXIST) {
3365 free_extent_map(em);
3368 btrfs_drop_extent_cache(inode, em->start,
3369 em->start + em->len - 1, 0);
3373 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3374 &BTRFS_I(inode)->runtime_flags);
3378 * Make sure we do not end up inserting an inline extent into a file that has
3379 * already other (non-inline) extents. If a file has an inline extent it can
3380 * not have any other extents and the (single) inline extent must start at the
3381 * file offset 0. Failing to respect these rules will lead to file corruption,
3382 * resulting in EIO errors on read/write operations, hitting BUG_ON's in mm, etc
3384 * We can have extents that have been already written to disk or we can have
3385 * dirty ranges still in delalloc, in which case the extent maps and items are
3386 * created only when we run delalloc, and the delalloc ranges might fall outside
3387 * the range we are currently locking in the inode's io tree. So we check the
3388 * inode's i_size because of that (i_size updates are done while holding the
3389 * i_mutex, which we are holding here).
3390 * We also check to see if the inode has a size not greater than "datal" but has
3391 * extents beyond it, due to an fallocate with FALLOC_FL_KEEP_SIZE (and we are
3392 * protected against such concurrent fallocate calls by the i_mutex).
3394 * If the file has no extents but a size greater than datal, do not allow the
3395 * copy because we would need turn the inline extent into a non-inline one (even
3396 * with NO_HOLES enabled). If we find our destination inode only has one inline
3397 * extent, just overwrite it with the source inline extent if its size is less
3398 * than the source extent's size, or we could copy the source inline extent's
3399 * data into the destination inode's inline extent if the later is greater then
3402 static int clone_copy_inline_extent(struct inode *src,
3404 struct btrfs_trans_handle *trans,
3405 struct btrfs_path *path,
3406 struct btrfs_key *new_key,
3407 const u64 drop_start,
3413 struct btrfs_fs_info *fs_info = btrfs_sb(dst->i_sb);
3414 struct btrfs_root *root = BTRFS_I(dst)->root;
3415 const u64 aligned_end = ALIGN(new_key->offset + datal,
3416 fs_info->sectorsize);
3418 struct btrfs_key key;
3420 if (new_key->offset > 0)
3423 key.objectid = btrfs_ino(dst);
3424 key.type = BTRFS_EXTENT_DATA_KEY;
3426 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3429 } else if (ret > 0) {
3430 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
3431 ret = btrfs_next_leaf(root, path);
3435 goto copy_inline_extent;
3437 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
3438 if (key.objectid == btrfs_ino(dst) &&
3439 key.type == BTRFS_EXTENT_DATA_KEY) {
3440 ASSERT(key.offset > 0);
3443 } else if (i_size_read(dst) <= datal) {
3444 struct btrfs_file_extent_item *ei;
3448 * If the file size is <= datal, make sure there are no other
3449 * extents following (can happen do to an fallocate call with
3450 * the flag FALLOC_FL_KEEP_SIZE).
3452 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
3453 struct btrfs_file_extent_item);
3455 * If it's an inline extent, it can not have other extents
3458 if (btrfs_file_extent_type(path->nodes[0], ei) ==
3459 BTRFS_FILE_EXTENT_INLINE)
3460 goto copy_inline_extent;
3462 ext_len = btrfs_file_extent_num_bytes(path->nodes[0], ei);
3463 if (ext_len > aligned_end)
3466 ret = btrfs_next_item(root, path);
3469 } else if (ret == 0) {
3470 btrfs_item_key_to_cpu(path->nodes[0], &key,
3472 if (key.objectid == btrfs_ino(dst) &&
3473 key.type == BTRFS_EXTENT_DATA_KEY)
3480 * We have no extent items, or we have an extent at offset 0 which may
3481 * or may not be inlined. All these cases are dealt the same way.
3483 if (i_size_read(dst) > datal) {
3485 * If the destination inode has an inline extent...
3486 * This would require copying the data from the source inline
3487 * extent into the beginning of the destination's inline extent.
3488 * But this is really complex, both extents can be compressed
3489 * or just one of them, which would require decompressing and
3490 * re-compressing data (which could increase the new compressed
3491 * size, not allowing the compressed data to fit anymore in an
3493 * So just don't support this case for now (it should be rare,
3494 * we are not really saving space when cloning inline extents).
3499 btrfs_release_path(path);
3500 ret = btrfs_drop_extents(trans, root, dst, drop_start, aligned_end, 1);
3503 ret = btrfs_insert_empty_item(trans, root, path, new_key, size);
3508 const u32 start = btrfs_file_extent_calc_inline_size(0);
3510 memmove(inline_data + start, inline_data + start + skip, datal);
3513 write_extent_buffer(path->nodes[0], inline_data,
3514 btrfs_item_ptr_offset(path->nodes[0],
3517 inode_add_bytes(dst, datal);
3523 * btrfs_clone() - clone a range from inode file to another
3525 * @src: Inode to clone from
3526 * @inode: Inode to clone to
3527 * @off: Offset within source to start clone from
3528 * @olen: Original length, passed by user, of range to clone
3529 * @olen_aligned: Block-aligned value of olen
3530 * @destoff: Offset within @inode to start clone
3531 * @no_time_update: Whether to update mtime/ctime on the target inode
3533 static int btrfs_clone(struct inode *src, struct inode *inode,
3534 const u64 off, const u64 olen, const u64 olen_aligned,
3535 const u64 destoff, int no_time_update)
3537 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3538 struct btrfs_root *root = BTRFS_I(inode)->root;
3539 struct btrfs_path *path = NULL;
3540 struct extent_buffer *leaf;
3541 struct btrfs_trans_handle *trans;
3543 struct btrfs_key key;
3547 const u64 len = olen_aligned;
3548 u64 last_dest_end = destoff;
3551 buf = kmalloc(fs_info->nodesize, GFP_KERNEL | __GFP_NOWARN);
3553 buf = vmalloc(fs_info->nodesize);
3558 path = btrfs_alloc_path();
3564 path->reada = READA_FORWARD;
3566 key.objectid = btrfs_ino(src);
3567 key.type = BTRFS_EXTENT_DATA_KEY;
3571 u64 next_key_min_offset = key.offset + 1;
3574 * note the key will change type as we walk through the
3577 path->leave_spinning = 1;
3578 ret = btrfs_search_slot(NULL, BTRFS_I(src)->root, &key, path,
3583 * First search, if no extent item that starts at offset off was
3584 * found but the previous item is an extent item, it's possible
3585 * it might overlap our target range, therefore process it.
3587 if (key.offset == off && ret > 0 && path->slots[0] > 0) {
3588 btrfs_item_key_to_cpu(path->nodes[0], &key,
3589 path->slots[0] - 1);
3590 if (key.type == BTRFS_EXTENT_DATA_KEY)
3594 nritems = btrfs_header_nritems(path->nodes[0]);
3596 if (path->slots[0] >= nritems) {
3597 ret = btrfs_next_leaf(BTRFS_I(src)->root, path);
3602 nritems = btrfs_header_nritems(path->nodes[0]);
3604 leaf = path->nodes[0];
3605 slot = path->slots[0];
3607 btrfs_item_key_to_cpu(leaf, &key, slot);
3608 if (key.type > BTRFS_EXTENT_DATA_KEY ||
3609 key.objectid != btrfs_ino(src))
3612 if (key.type == BTRFS_EXTENT_DATA_KEY) {
3613 struct btrfs_file_extent_item *extent;
3616 struct btrfs_key new_key;
3617 u64 disko = 0, diskl = 0;
3618 u64 datao = 0, datal = 0;
3622 extent = btrfs_item_ptr(leaf, slot,
3623 struct btrfs_file_extent_item);
3624 comp = btrfs_file_extent_compression(leaf, extent);
3625 type = btrfs_file_extent_type(leaf, extent);
3626 if (type == BTRFS_FILE_EXTENT_REG ||
3627 type == BTRFS_FILE_EXTENT_PREALLOC) {
3628 disko = btrfs_file_extent_disk_bytenr(leaf,
3630 diskl = btrfs_file_extent_disk_num_bytes(leaf,
3632 datao = btrfs_file_extent_offset(leaf, extent);
3633 datal = btrfs_file_extent_num_bytes(leaf,
3635 } else if (type == BTRFS_FILE_EXTENT_INLINE) {
3636 /* take upper bound, may be compressed */
3637 datal = btrfs_file_extent_ram_bytes(leaf,
3642 * The first search might have left us at an extent
3643 * item that ends before our target range's start, can
3644 * happen if we have holes and NO_HOLES feature enabled.
3646 if (key.offset + datal <= off) {
3649 } else if (key.offset >= off + len) {
3652 next_key_min_offset = key.offset + datal;
3653 size = btrfs_item_size_nr(leaf, slot);
3654 read_extent_buffer(leaf, buf,
3655 btrfs_item_ptr_offset(leaf, slot),
3658 btrfs_release_path(path);
3659 path->leave_spinning = 0;
3661 memcpy(&new_key, &key, sizeof(new_key));
3662 new_key.objectid = btrfs_ino(inode);
3663 if (off <= key.offset)
3664 new_key.offset = key.offset + destoff - off;
3666 new_key.offset = destoff;
3669 * Deal with a hole that doesn't have an extent item
3670 * that represents it (NO_HOLES feature enabled).
3671 * This hole is either in the middle of the cloning
3672 * range or at the beginning (fully overlaps it or
3673 * partially overlaps it).
3675 if (new_key.offset != last_dest_end)
3676 drop_start = last_dest_end;
3678 drop_start = new_key.offset;
3681 * 1 - adjusting old extent (we may have to split it)
3682 * 1 - add new extent
3685 trans = btrfs_start_transaction(root, 3);
3686 if (IS_ERR(trans)) {
3687 ret = PTR_ERR(trans);
3691 if (type == BTRFS_FILE_EXTENT_REG ||
3692 type == BTRFS_FILE_EXTENT_PREALLOC) {
3694 * a | --- range to clone ---| b
3695 * | ------------- extent ------------- |
3698 /* subtract range b */
3699 if (key.offset + datal > off + len)
3700 datal = off + len - key.offset;
3702 /* subtract range a */
3703 if (off > key.offset) {
3704 datao += off - key.offset;
3705 datal -= off - key.offset;
3708 ret = btrfs_drop_extents(trans, root, inode,
3710 new_key.offset + datal,
3713 if (ret != -EOPNOTSUPP)
3714 btrfs_abort_transaction(trans,
3716 btrfs_end_transaction(trans);
3720 ret = btrfs_insert_empty_item(trans, root, path,
3723 btrfs_abort_transaction(trans, ret);
3724 btrfs_end_transaction(trans);
3728 leaf = path->nodes[0];
3729 slot = path->slots[0];
3730 write_extent_buffer(leaf, buf,
3731 btrfs_item_ptr_offset(leaf, slot),
3734 extent = btrfs_item_ptr(leaf, slot,
3735 struct btrfs_file_extent_item);
3737 /* disko == 0 means it's a hole */
3741 btrfs_set_file_extent_offset(leaf, extent,
3743 btrfs_set_file_extent_num_bytes(leaf, extent,
3747 inode_add_bytes(inode, datal);
3748 ret = btrfs_inc_extent_ref(trans,
3751 root->root_key.objectid,
3753 new_key.offset - datao);
3755 btrfs_abort_transaction(trans,
3757 btrfs_end_transaction(trans);
3762 } else if (type == BTRFS_FILE_EXTENT_INLINE) {
3766 if (off > key.offset) {
3767 skip = off - key.offset;
3768 new_key.offset += skip;
3771 if (key.offset + datal > off + len)
3772 trim = key.offset + datal - (off + len);
3774 if (comp && (skip || trim)) {
3776 btrfs_end_transaction(trans);
3779 size -= skip + trim;
3780 datal -= skip + trim;
3782 ret = clone_copy_inline_extent(src, inode,
3789 if (ret != -EOPNOTSUPP)
3790 btrfs_abort_transaction(trans,
3792 btrfs_end_transaction(trans);
3795 leaf = path->nodes[0];
3796 slot = path->slots[0];
3799 /* If we have an implicit hole (NO_HOLES feature). */
3800 if (drop_start < new_key.offset)
3801 clone_update_extent_map(inode, trans,
3803 new_key.offset - drop_start);
3805 clone_update_extent_map(inode, trans, path, 0, 0);
3807 btrfs_mark_buffer_dirty(leaf);
3808 btrfs_release_path(path);
3810 last_dest_end = ALIGN(new_key.offset + datal,
3811 fs_info->sectorsize);
3812 ret = clone_finish_inode_update(trans, inode,
3818 if (new_key.offset + datal >= destoff + len)
3821 btrfs_release_path(path);
3822 key.offset = next_key_min_offset;
3824 if (fatal_signal_pending(current)) {
3831 if (last_dest_end < destoff + len) {
3833 * We have an implicit hole (NO_HOLES feature is enabled) that
3834 * fully or partially overlaps our cloning range at its end.
3836 btrfs_release_path(path);
3839 * 1 - remove extent(s)
3842 trans = btrfs_start_transaction(root, 2);
3843 if (IS_ERR(trans)) {
3844 ret = PTR_ERR(trans);
3847 ret = btrfs_drop_extents(trans, root, inode,
3848 last_dest_end, destoff + len, 1);
3850 if (ret != -EOPNOTSUPP)
3851 btrfs_abort_transaction(trans, ret);
3852 btrfs_end_transaction(trans);
3855 clone_update_extent_map(inode, trans, NULL, last_dest_end,
3856 destoff + len - last_dest_end);
3857 ret = clone_finish_inode_update(trans, inode, destoff + len,
3858 destoff, olen, no_time_update);
3862 btrfs_free_path(path);
3867 static noinline int btrfs_clone_files(struct file *file, struct file *file_src,
3868 u64 off, u64 olen, u64 destoff)
3870 struct inode *inode = file_inode(file);
3871 struct inode *src = file_inode(file_src);
3872 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3873 struct btrfs_root *root = BTRFS_I(inode)->root;
3876 u64 bs = fs_info->sb->s_blocksize;
3877 int same_inode = src == inode;
3881 * - split compressed inline extents. annoying: we need to
3882 * decompress into destination's address_space (the file offset
3883 * may change, so source mapping won't do), then recompress (or
3884 * otherwise reinsert) a subrange.
3886 * - split destination inode's inline extents. The inline extents can
3887 * be either compressed or non-compressed.
3890 if (btrfs_root_readonly(root))
3893 if (file_src->f_path.mnt != file->f_path.mnt ||
3894 src->i_sb != inode->i_sb)
3897 /* don't make the dst file partly checksummed */
3898 if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) !=
3899 (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM))
3902 if (S_ISDIR(src->i_mode) || S_ISDIR(inode->i_mode))
3906 btrfs_double_inode_lock(src, inode);
3911 /* determine range to clone */
3913 if (off + len > src->i_size || off + len < off)
3916 olen = len = src->i_size - off;
3917 /* if we extend to eof, continue to block boundary */
3918 if (off + len == src->i_size)
3919 len = ALIGN(src->i_size, bs) - off;
3926 /* verify the end result is block aligned */
3927 if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs) ||
3928 !IS_ALIGNED(destoff, bs))
3931 /* verify if ranges are overlapped within the same file */
3933 if (destoff + len > off && destoff < off + len)
3937 if (destoff > inode->i_size) {
3938 ret = btrfs_cont_expand(inode, inode->i_size, destoff);
3944 * Lock the target range too. Right after we replace the file extent
3945 * items in the fs tree (which now point to the cloned data), we might
3946 * have a worker replace them with extent items relative to a write
3947 * operation that was issued before this clone operation (i.e. confront
3948 * with inode.c:btrfs_finish_ordered_io).
3951 u64 lock_start = min_t(u64, off, destoff);
3952 u64 lock_len = max_t(u64, off, destoff) + len - lock_start;
3954 ret = lock_extent_range(src, lock_start, lock_len, true);
3956 ret = btrfs_double_extent_lock(src, off, inode, destoff, len,
3961 /* ranges in the io trees already unlocked */
3965 ret = btrfs_clone(src, inode, off, olen, len, destoff, 0);
3968 u64 lock_start = min_t(u64, off, destoff);
3969 u64 lock_end = max_t(u64, off, destoff) + len - 1;
3971 unlock_extent(&BTRFS_I(src)->io_tree, lock_start, lock_end);
3973 btrfs_double_extent_unlock(src, off, inode, destoff, len);
3976 * Truncate page cache pages so that future reads will see the cloned
3977 * data immediately and not the previous data.
3979 truncate_inode_pages_range(&inode->i_data,
3980 round_down(destoff, PAGE_SIZE),
3981 round_up(destoff + len, PAGE_SIZE) - 1);
3984 btrfs_double_inode_unlock(src, inode);
3990 int btrfs_clone_file_range(struct file *src_file, loff_t off,
3991 struct file *dst_file, loff_t destoff, u64 len)
3993 return btrfs_clone_files(dst_file, src_file, off, len, destoff);
3997 * there are many ways the trans_start and trans_end ioctls can lead
3998 * to deadlocks. They should only be used by applications that
3999 * basically own the machine, and have a very in depth understanding
4000 * of all the possible deadlocks and enospc problems.
4002 static long btrfs_ioctl_trans_start(struct file *file)
4004 struct inode *inode = file_inode(file);
4005 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4006 struct btrfs_root *root = BTRFS_I(inode)->root;
4007 struct btrfs_trans_handle *trans;
4011 if (!capable(CAP_SYS_ADMIN))
4015 if (file->private_data)
4019 if (btrfs_root_readonly(root))
4022 ret = mnt_want_write_file(file);
4026 atomic_inc(&fs_info->open_ioctl_trans);
4029 trans = btrfs_start_ioctl_transaction(root);
4033 file->private_data = trans;
4037 atomic_dec(&fs_info->open_ioctl_trans);
4038 mnt_drop_write_file(file);
4043 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp)
4045 struct inode *inode = file_inode(file);
4046 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4047 struct btrfs_root *root = BTRFS_I(inode)->root;
4048 struct btrfs_root *new_root;
4049 struct btrfs_dir_item *di;
4050 struct btrfs_trans_handle *trans;
4051 struct btrfs_path *path;
4052 struct btrfs_key location;
4053 struct btrfs_disk_key disk_key;
4058 if (!capable(CAP_SYS_ADMIN))
4061 ret = mnt_want_write_file(file);
4065 if (copy_from_user(&objectid, argp, sizeof(objectid))) {
4071 objectid = BTRFS_FS_TREE_OBJECTID;
4073 location.objectid = objectid;
4074 location.type = BTRFS_ROOT_ITEM_KEY;
4075 location.offset = (u64)-1;
4077 new_root = btrfs_read_fs_root_no_name(fs_info, &location);
4078 if (IS_ERR(new_root)) {
4079 ret = PTR_ERR(new_root);
4083 path = btrfs_alloc_path();
4088 path->leave_spinning = 1;
4090 trans = btrfs_start_transaction(root, 1);
4091 if (IS_ERR(trans)) {
4092 btrfs_free_path(path);
4093 ret = PTR_ERR(trans);
4097 dir_id = btrfs_super_root_dir(fs_info->super_copy);
4098 di = btrfs_lookup_dir_item(trans, fs_info->tree_root, path,
4099 dir_id, "default", 7, 1);
4100 if (IS_ERR_OR_NULL(di)) {
4101 btrfs_free_path(path);
4102 btrfs_end_transaction(trans);
4104 "Umm, you don't have the default diritem, this isn't going to work");
4109 btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key);
4110 btrfs_set_dir_item_key(path->nodes[0], di, &disk_key);
4111 btrfs_mark_buffer_dirty(path->nodes[0]);
4112 btrfs_free_path(path);
4114 btrfs_set_fs_incompat(fs_info, DEFAULT_SUBVOL);
4115 btrfs_end_transaction(trans);
4117 mnt_drop_write_file(file);
4121 void btrfs_get_block_group_info(struct list_head *groups_list,
4122 struct btrfs_ioctl_space_info *space)
4124 struct btrfs_block_group_cache *block_group;
4126 space->total_bytes = 0;
4127 space->used_bytes = 0;
4129 list_for_each_entry(block_group, groups_list, list) {
4130 space->flags = block_group->flags;
4131 space->total_bytes += block_group->key.offset;
4132 space->used_bytes +=
4133 btrfs_block_group_used(&block_group->item);
4137 static long btrfs_ioctl_space_info(struct btrfs_fs_info *fs_info,
4140 struct btrfs_ioctl_space_args space_args;
4141 struct btrfs_ioctl_space_info space;
4142 struct btrfs_ioctl_space_info *dest;
4143 struct btrfs_ioctl_space_info *dest_orig;
4144 struct btrfs_ioctl_space_info __user *user_dest;
4145 struct btrfs_space_info *info;
4146 u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
4147 BTRFS_BLOCK_GROUP_SYSTEM,
4148 BTRFS_BLOCK_GROUP_METADATA,
4149 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
4156 if (copy_from_user(&space_args,
4157 (struct btrfs_ioctl_space_args __user *)arg,
4158 sizeof(space_args)))
4161 for (i = 0; i < num_types; i++) {
4162 struct btrfs_space_info *tmp;
4166 list_for_each_entry_rcu(tmp, &fs_info->space_info,
4168 if (tmp->flags == types[i]) {
4178 down_read(&info->groups_sem);
4179 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
4180 if (!list_empty(&info->block_groups[c]))
4183 up_read(&info->groups_sem);
4187 * Global block reserve, exported as a space_info
4191 /* space_slots == 0 means they are asking for a count */
4192 if (space_args.space_slots == 0) {
4193 space_args.total_spaces = slot_count;
4197 slot_count = min_t(u64, space_args.space_slots, slot_count);
4199 alloc_size = sizeof(*dest) * slot_count;
4201 /* we generally have at most 6 or so space infos, one for each raid
4202 * level. So, a whole page should be more than enough for everyone
4204 if (alloc_size > PAGE_SIZE)
4207 space_args.total_spaces = 0;
4208 dest = kmalloc(alloc_size, GFP_KERNEL);
4213 /* now we have a buffer to copy into */
4214 for (i = 0; i < num_types; i++) {
4215 struct btrfs_space_info *tmp;
4222 list_for_each_entry_rcu(tmp, &fs_info->space_info,
4224 if (tmp->flags == types[i]) {
4233 down_read(&info->groups_sem);
4234 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
4235 if (!list_empty(&info->block_groups[c])) {
4236 btrfs_get_block_group_info(
4237 &info->block_groups[c], &space);
4238 memcpy(dest, &space, sizeof(space));
4240 space_args.total_spaces++;
4246 up_read(&info->groups_sem);
4250 * Add global block reserve
4253 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
4255 spin_lock(&block_rsv->lock);
4256 space.total_bytes = block_rsv->size;
4257 space.used_bytes = block_rsv->size - block_rsv->reserved;
4258 spin_unlock(&block_rsv->lock);
4259 space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV;
4260 memcpy(dest, &space, sizeof(space));
4261 space_args.total_spaces++;
4264 user_dest = (struct btrfs_ioctl_space_info __user *)
4265 (arg + sizeof(struct btrfs_ioctl_space_args));
4267 if (copy_to_user(user_dest, dest_orig, alloc_size))
4272 if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args)))
4279 * there are many ways the trans_start and trans_end ioctls can lead
4280 * to deadlocks. They should only be used by applications that
4281 * basically own the machine, and have a very in depth understanding
4282 * of all the possible deadlocks and enospc problems.
4284 long btrfs_ioctl_trans_end(struct file *file)
4286 struct inode *inode = file_inode(file);
4287 struct btrfs_root *root = BTRFS_I(inode)->root;
4288 struct btrfs_trans_handle *trans;
4290 trans = file->private_data;
4293 file->private_data = NULL;
4295 btrfs_end_transaction(trans);
4297 atomic_dec(&root->fs_info->open_ioctl_trans);
4299 mnt_drop_write_file(file);
4303 static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root,
4306 struct btrfs_trans_handle *trans;
4310 trans = btrfs_attach_transaction_barrier(root);
4311 if (IS_ERR(trans)) {
4312 if (PTR_ERR(trans) != -ENOENT)
4313 return PTR_ERR(trans);
4315 /* No running transaction, don't bother */
4316 transid = root->fs_info->last_trans_committed;
4319 transid = trans->transid;
4320 ret = btrfs_commit_transaction_async(trans, 0);
4322 btrfs_end_transaction(trans);
4327 if (copy_to_user(argp, &transid, sizeof(transid)))
4332 static noinline long btrfs_ioctl_wait_sync(struct btrfs_fs_info *fs_info,
4338 if (copy_from_user(&transid, argp, sizeof(transid)))
4341 transid = 0; /* current trans */
4343 return btrfs_wait_for_commit(fs_info, transid);
4346 static long btrfs_ioctl_scrub(struct file *file, void __user *arg)
4348 struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb);
4349 struct btrfs_ioctl_scrub_args *sa;
4352 if (!capable(CAP_SYS_ADMIN))
4355 sa = memdup_user(arg, sizeof(*sa));
4359 if (!(sa->flags & BTRFS_SCRUB_READONLY)) {
4360 ret = mnt_want_write_file(file);
4365 ret = btrfs_scrub_dev(fs_info, sa->devid, sa->start, sa->end,
4366 &sa->progress, sa->flags & BTRFS_SCRUB_READONLY,
4369 if (copy_to_user(arg, sa, sizeof(*sa)))
4372 if (!(sa->flags & BTRFS_SCRUB_READONLY))
4373 mnt_drop_write_file(file);
4379 static long btrfs_ioctl_scrub_cancel(struct btrfs_fs_info *fs_info)
4381 if (!capable(CAP_SYS_ADMIN))
4384 return btrfs_scrub_cancel(fs_info);
4387 static long btrfs_ioctl_scrub_progress(struct btrfs_fs_info *fs_info,
4390 struct btrfs_ioctl_scrub_args *sa;
4393 if (!capable(CAP_SYS_ADMIN))
4396 sa = memdup_user(arg, sizeof(*sa));
4400 ret = btrfs_scrub_progress(fs_info, sa->devid, &sa->progress);
4402 if (copy_to_user(arg, sa, sizeof(*sa)))
4409 static long btrfs_ioctl_get_dev_stats(struct btrfs_fs_info *fs_info,
4412 struct btrfs_ioctl_get_dev_stats *sa;
4415 sa = memdup_user(arg, sizeof(*sa));
4419 if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) {
4424 ret = btrfs_get_dev_stats(fs_info, sa);
4426 if (copy_to_user(arg, sa, sizeof(*sa)))
4433 static long btrfs_ioctl_dev_replace(struct btrfs_fs_info *fs_info,
4436 struct btrfs_ioctl_dev_replace_args *p;
4439 if (!capable(CAP_SYS_ADMIN))
4442 p = memdup_user(arg, sizeof(*p));
4447 case BTRFS_IOCTL_DEV_REPLACE_CMD_START:
4448 if (fs_info->sb->s_flags & MS_RDONLY) {
4453 &fs_info->mutually_exclusive_operation_running, 1)) {
4454 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
4456 ret = btrfs_dev_replace_by_ioctl(fs_info, p);
4458 &fs_info->mutually_exclusive_operation_running, 0);
4461 case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS:
4462 btrfs_dev_replace_status(fs_info, p);
4465 case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL:
4466 ret = btrfs_dev_replace_cancel(fs_info, p);
4473 if (copy_to_user(arg, p, sizeof(*p)))
4480 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg)
4486 struct btrfs_ioctl_ino_path_args *ipa = NULL;
4487 struct inode_fs_paths *ipath = NULL;
4488 struct btrfs_path *path;
4490 if (!capable(CAP_DAC_READ_SEARCH))
4493 path = btrfs_alloc_path();
4499 ipa = memdup_user(arg, sizeof(*ipa));
4506 size = min_t(u32, ipa->size, 4096);
4507 ipath = init_ipath(size, root, path);
4508 if (IS_ERR(ipath)) {
4509 ret = PTR_ERR(ipath);
4514 ret = paths_from_inode(ipa->inum, ipath);
4518 for (i = 0; i < ipath->fspath->elem_cnt; ++i) {
4519 rel_ptr = ipath->fspath->val[i] -
4520 (u64)(unsigned long)ipath->fspath->val;
4521 ipath->fspath->val[i] = rel_ptr;
4524 ret = copy_to_user((void *)(unsigned long)ipa->fspath,
4525 (void *)(unsigned long)ipath->fspath, size);
4532 btrfs_free_path(path);
4539 static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx)
4541 struct btrfs_data_container *inodes = ctx;
4542 const size_t c = 3 * sizeof(u64);
4544 if (inodes->bytes_left >= c) {
4545 inodes->bytes_left -= c;
4546 inodes->val[inodes->elem_cnt] = inum;
4547 inodes->val[inodes->elem_cnt + 1] = offset;
4548 inodes->val[inodes->elem_cnt + 2] = root;
4549 inodes->elem_cnt += 3;
4551 inodes->bytes_missing += c - inodes->bytes_left;
4552 inodes->bytes_left = 0;
4553 inodes->elem_missed += 3;
4559 static long btrfs_ioctl_logical_to_ino(struct btrfs_fs_info *fs_info,
4564 struct btrfs_ioctl_logical_ino_args *loi;
4565 struct btrfs_data_container *inodes = NULL;
4566 struct btrfs_path *path = NULL;
4568 if (!capable(CAP_SYS_ADMIN))
4571 loi = memdup_user(arg, sizeof(*loi));
4573 return PTR_ERR(loi);
4575 path = btrfs_alloc_path();
4581 size = min_t(u32, loi->size, SZ_64K);
4582 inodes = init_data_container(size);
4583 if (IS_ERR(inodes)) {
4584 ret = PTR_ERR(inodes);
4589 ret = iterate_inodes_from_logical(loi->logical, fs_info, path,
4590 build_ino_list, inodes);
4596 ret = copy_to_user((void *)(unsigned long)loi->inodes,
4597 (void *)(unsigned long)inodes, size);
4602 btrfs_free_path(path);
4609 void update_ioctl_balance_args(struct btrfs_fs_info *fs_info, int lock,
4610 struct btrfs_ioctl_balance_args *bargs)
4612 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4614 bargs->flags = bctl->flags;
4616 if (atomic_read(&fs_info->balance_running))
4617 bargs->state |= BTRFS_BALANCE_STATE_RUNNING;
4618 if (atomic_read(&fs_info->balance_pause_req))
4619 bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ;
4620 if (atomic_read(&fs_info->balance_cancel_req))
4621 bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ;
4623 memcpy(&bargs->data, &bctl->data, sizeof(bargs->data));
4624 memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta));
4625 memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys));
4628 spin_lock(&fs_info->balance_lock);
4629 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
4630 spin_unlock(&fs_info->balance_lock);
4632 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
4636 static long btrfs_ioctl_balance(struct file *file, void __user *arg)
4638 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4639 struct btrfs_fs_info *fs_info = root->fs_info;
4640 struct btrfs_ioctl_balance_args *bargs;
4641 struct btrfs_balance_control *bctl;
4642 bool need_unlock; /* for mut. excl. ops lock */
4645 if (!capable(CAP_SYS_ADMIN))
4648 ret = mnt_want_write_file(file);
4653 if (!atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1)) {
4654 mutex_lock(&fs_info->volume_mutex);
4655 mutex_lock(&fs_info->balance_mutex);
4661 * mut. excl. ops lock is locked. Three possibilities:
4662 * (1) some other op is running
4663 * (2) balance is running
4664 * (3) balance is paused -- special case (think resume)
4666 mutex_lock(&fs_info->balance_mutex);
4667 if (fs_info->balance_ctl) {
4668 /* this is either (2) or (3) */
4669 if (!atomic_read(&fs_info->balance_running)) {
4670 mutex_unlock(&fs_info->balance_mutex);
4671 if (!mutex_trylock(&fs_info->volume_mutex))
4673 mutex_lock(&fs_info->balance_mutex);
4675 if (fs_info->balance_ctl &&
4676 !atomic_read(&fs_info->balance_running)) {
4678 need_unlock = false;
4682 mutex_unlock(&fs_info->balance_mutex);
4683 mutex_unlock(&fs_info->volume_mutex);
4687 mutex_unlock(&fs_info->balance_mutex);
4693 mutex_unlock(&fs_info->balance_mutex);
4694 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
4699 BUG_ON(!atomic_read(&fs_info->mutually_exclusive_operation_running));
4702 bargs = memdup_user(arg, sizeof(*bargs));
4703 if (IS_ERR(bargs)) {
4704 ret = PTR_ERR(bargs);
4708 if (bargs->flags & BTRFS_BALANCE_RESUME) {
4709 if (!fs_info->balance_ctl) {
4714 bctl = fs_info->balance_ctl;
4715 spin_lock(&fs_info->balance_lock);
4716 bctl->flags |= BTRFS_BALANCE_RESUME;
4717 spin_unlock(&fs_info->balance_lock);
4725 if (fs_info->balance_ctl) {
4730 bctl = kzalloc(sizeof(*bctl), GFP_KERNEL);
4736 bctl->fs_info = fs_info;
4738 memcpy(&bctl->data, &bargs->data, sizeof(bctl->data));
4739 memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta));
4740 memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys));
4742 bctl->flags = bargs->flags;
4744 /* balance everything - no filters */
4745 bctl->flags |= BTRFS_BALANCE_TYPE_MASK;
4748 if (bctl->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) {
4755 * Ownership of bctl and mutually_exclusive_operation_running
4756 * goes to to btrfs_balance. bctl is freed in __cancel_balance,
4757 * or, if restriper was paused all the way until unmount, in
4758 * free_fs_info. mutually_exclusive_operation_running is
4759 * cleared in __cancel_balance.
4761 need_unlock = false;
4763 ret = btrfs_balance(bctl, bargs);
4767 if (copy_to_user(arg, bargs, sizeof(*bargs)))
4776 mutex_unlock(&fs_info->balance_mutex);
4777 mutex_unlock(&fs_info->volume_mutex);
4779 atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
4781 mnt_drop_write_file(file);
4785 static long btrfs_ioctl_balance_ctl(struct btrfs_fs_info *fs_info, int cmd)
4787 if (!capable(CAP_SYS_ADMIN))
4791 case BTRFS_BALANCE_CTL_PAUSE:
4792 return btrfs_pause_balance(fs_info);
4793 case BTRFS_BALANCE_CTL_CANCEL:
4794 return btrfs_cancel_balance(fs_info);
4800 static long btrfs_ioctl_balance_progress(struct btrfs_fs_info *fs_info,
4803 struct btrfs_ioctl_balance_args *bargs;
4806 if (!capable(CAP_SYS_ADMIN))
4809 mutex_lock(&fs_info->balance_mutex);
4810 if (!fs_info->balance_ctl) {
4815 bargs = kzalloc(sizeof(*bargs), GFP_KERNEL);
4821 update_ioctl_balance_args(fs_info, 1, bargs);
4823 if (copy_to_user(arg, bargs, sizeof(*bargs)))
4828 mutex_unlock(&fs_info->balance_mutex);
4832 static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg)
4834 struct inode *inode = file_inode(file);
4835 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4836 struct btrfs_ioctl_quota_ctl_args *sa;
4837 struct btrfs_trans_handle *trans = NULL;
4841 if (!capable(CAP_SYS_ADMIN))
4844 ret = mnt_want_write_file(file);
4848 sa = memdup_user(arg, sizeof(*sa));
4854 down_write(&fs_info->subvol_sem);
4855 trans = btrfs_start_transaction(fs_info->tree_root, 2);
4856 if (IS_ERR(trans)) {
4857 ret = PTR_ERR(trans);
4862 case BTRFS_QUOTA_CTL_ENABLE:
4863 ret = btrfs_quota_enable(trans, fs_info);
4865 case BTRFS_QUOTA_CTL_DISABLE:
4866 ret = btrfs_quota_disable(trans, fs_info);
4873 err = btrfs_commit_transaction(trans);
4878 up_write(&fs_info->subvol_sem);
4880 mnt_drop_write_file(file);
4884 static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg)
4886 struct inode *inode = file_inode(file);
4887 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4888 struct btrfs_root *root = BTRFS_I(inode)->root;
4889 struct btrfs_ioctl_qgroup_assign_args *sa;
4890 struct btrfs_trans_handle *trans;
4894 if (!capable(CAP_SYS_ADMIN))
4897 ret = mnt_want_write_file(file);
4901 sa = memdup_user(arg, sizeof(*sa));
4907 trans = btrfs_join_transaction(root);
4908 if (IS_ERR(trans)) {
4909 ret = PTR_ERR(trans);
4913 /* FIXME: check if the IDs really exist */
4915 ret = btrfs_add_qgroup_relation(trans, fs_info,
4918 ret = btrfs_del_qgroup_relation(trans, fs_info,
4922 /* update qgroup status and info */
4923 err = btrfs_run_qgroups(trans, fs_info);
4925 btrfs_handle_fs_error(fs_info, err,
4926 "failed to update qgroup status and info");
4927 err = btrfs_end_transaction(trans);
4934 mnt_drop_write_file(file);
4938 static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg)
4940 struct inode *inode = file_inode(file);
4941 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4942 struct btrfs_root *root = BTRFS_I(inode)->root;
4943 struct btrfs_ioctl_qgroup_create_args *sa;
4944 struct btrfs_trans_handle *trans;
4948 if (!capable(CAP_SYS_ADMIN))
4951 ret = mnt_want_write_file(file);
4955 sa = memdup_user(arg, sizeof(*sa));
4961 if (!sa->qgroupid) {
4966 trans = btrfs_join_transaction(root);
4967 if (IS_ERR(trans)) {
4968 ret = PTR_ERR(trans);
4972 /* FIXME: check if the IDs really exist */
4974 ret = btrfs_create_qgroup(trans, fs_info, sa->qgroupid);
4976 ret = btrfs_remove_qgroup(trans, fs_info, sa->qgroupid);
4979 err = btrfs_end_transaction(trans);
4986 mnt_drop_write_file(file);
4990 static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg)
4992 struct inode *inode = file_inode(file);
4993 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4994 struct btrfs_root *root = BTRFS_I(inode)->root;
4995 struct btrfs_ioctl_qgroup_limit_args *sa;
4996 struct btrfs_trans_handle *trans;
5001 if (!capable(CAP_SYS_ADMIN))
5004 ret = mnt_want_write_file(file);
5008 sa = memdup_user(arg, sizeof(*sa));
5014 trans = btrfs_join_transaction(root);
5015 if (IS_ERR(trans)) {
5016 ret = PTR_ERR(trans);
5020 qgroupid = sa->qgroupid;
5022 /* take the current subvol as qgroup */
5023 qgroupid = root->root_key.objectid;
5026 /* FIXME: check if the IDs really exist */
5027 ret = btrfs_limit_qgroup(trans, fs_info, qgroupid, &sa->lim);
5029 err = btrfs_end_transaction(trans);
5036 mnt_drop_write_file(file);
5040 static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg)
5042 struct inode *inode = file_inode(file);
5043 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5044 struct btrfs_ioctl_quota_rescan_args *qsa;
5047 if (!capable(CAP_SYS_ADMIN))
5050 ret = mnt_want_write_file(file);
5054 qsa = memdup_user(arg, sizeof(*qsa));
5065 ret = btrfs_qgroup_rescan(fs_info);
5070 mnt_drop_write_file(file);
5074 static long btrfs_ioctl_quota_rescan_status(struct file *file, void __user *arg)
5076 struct inode *inode = file_inode(file);
5077 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5078 struct btrfs_ioctl_quota_rescan_args *qsa;
5081 if (!capable(CAP_SYS_ADMIN))
5084 qsa = kzalloc(sizeof(*qsa), GFP_KERNEL);
5088 if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) {
5090 qsa->progress = fs_info->qgroup_rescan_progress.objectid;
5093 if (copy_to_user(arg, qsa, sizeof(*qsa)))
5100 static long btrfs_ioctl_quota_rescan_wait(struct file *file, void __user *arg)
5102 struct inode *inode = file_inode(file);
5103 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5105 if (!capable(CAP_SYS_ADMIN))
5108 return btrfs_qgroup_wait_for_completion(fs_info, true);
5111 static long _btrfs_ioctl_set_received_subvol(struct file *file,
5112 struct btrfs_ioctl_received_subvol_args *sa)
5114 struct inode *inode = file_inode(file);
5115 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5116 struct btrfs_root *root = BTRFS_I(inode)->root;
5117 struct btrfs_root_item *root_item = &root->root_item;
5118 struct btrfs_trans_handle *trans;
5119 struct timespec ct = current_time(inode);
5121 int received_uuid_changed;
5123 if (!inode_owner_or_capable(inode))
5126 ret = mnt_want_write_file(file);
5130 down_write(&fs_info->subvol_sem);
5132 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) {
5137 if (btrfs_root_readonly(root)) {
5144 * 2 - uuid items (received uuid + subvol uuid)
5146 trans = btrfs_start_transaction(root, 3);
5147 if (IS_ERR(trans)) {
5148 ret = PTR_ERR(trans);
5153 sa->rtransid = trans->transid;
5154 sa->rtime.sec = ct.tv_sec;
5155 sa->rtime.nsec = ct.tv_nsec;
5157 received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid,
5159 if (received_uuid_changed &&
5160 !btrfs_is_empty_uuid(root_item->received_uuid))
5161 btrfs_uuid_tree_rem(trans, fs_info, root_item->received_uuid,
5162 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
5163 root->root_key.objectid);
5164 memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE);
5165 btrfs_set_root_stransid(root_item, sa->stransid);
5166 btrfs_set_root_rtransid(root_item, sa->rtransid);
5167 btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec);
5168 btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec);
5169 btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec);
5170 btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec);
5172 ret = btrfs_update_root(trans, fs_info->tree_root,
5173 &root->root_key, &root->root_item);
5175 btrfs_end_transaction(trans);
5178 if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) {
5179 ret = btrfs_uuid_tree_add(trans, fs_info, sa->uuid,
5180 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
5181 root->root_key.objectid);
5182 if (ret < 0 && ret != -EEXIST) {
5183 btrfs_abort_transaction(trans, ret);
5187 ret = btrfs_commit_transaction(trans);
5189 btrfs_abort_transaction(trans, ret);
5194 up_write(&fs_info->subvol_sem);
5195 mnt_drop_write_file(file);
5200 static long btrfs_ioctl_set_received_subvol_32(struct file *file,
5203 struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL;
5204 struct btrfs_ioctl_received_subvol_args *args64 = NULL;
5207 args32 = memdup_user(arg, sizeof(*args32));
5209 return PTR_ERR(args32);
5211 args64 = kmalloc(sizeof(*args64), GFP_KERNEL);
5217 memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE);
5218 args64->stransid = args32->stransid;
5219 args64->rtransid = args32->rtransid;
5220 args64->stime.sec = args32->stime.sec;
5221 args64->stime.nsec = args32->stime.nsec;
5222 args64->rtime.sec = args32->rtime.sec;
5223 args64->rtime.nsec = args32->rtime.nsec;
5224 args64->flags = args32->flags;
5226 ret = _btrfs_ioctl_set_received_subvol(file, args64);
5230 memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE);
5231 args32->stransid = args64->stransid;
5232 args32->rtransid = args64->rtransid;
5233 args32->stime.sec = args64->stime.sec;
5234 args32->stime.nsec = args64->stime.nsec;
5235 args32->rtime.sec = args64->rtime.sec;
5236 args32->rtime.nsec = args64->rtime.nsec;
5237 args32->flags = args64->flags;
5239 ret = copy_to_user(arg, args32, sizeof(*args32));
5250 static long btrfs_ioctl_set_received_subvol(struct file *file,
5253 struct btrfs_ioctl_received_subvol_args *sa = NULL;
5256 sa = memdup_user(arg, sizeof(*sa));
5260 ret = _btrfs_ioctl_set_received_subvol(file, sa);
5265 ret = copy_to_user(arg, sa, sizeof(*sa));
5274 static int btrfs_ioctl_get_fslabel(struct file *file, void __user *arg)
5276 struct inode *inode = file_inode(file);
5277 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5280 char label[BTRFS_LABEL_SIZE];
5282 spin_lock(&fs_info->super_lock);
5283 memcpy(label, fs_info->super_copy->label, BTRFS_LABEL_SIZE);
5284 spin_unlock(&fs_info->super_lock);
5286 len = strnlen(label, BTRFS_LABEL_SIZE);
5288 if (len == BTRFS_LABEL_SIZE) {
5290 "label is too long, return the first %zu bytes",
5294 ret = copy_to_user(arg, label, len);
5296 return ret ? -EFAULT : 0;
5299 static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg)
5301 struct inode *inode = file_inode(file);
5302 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5303 struct btrfs_root *root = BTRFS_I(inode)->root;
5304 struct btrfs_super_block *super_block = fs_info->super_copy;
5305 struct btrfs_trans_handle *trans;
5306 char label[BTRFS_LABEL_SIZE];
5309 if (!capable(CAP_SYS_ADMIN))
5312 if (copy_from_user(label, arg, sizeof(label)))
5315 if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) {
5317 "unable to set label with more than %d bytes",
5318 BTRFS_LABEL_SIZE - 1);
5322 ret = mnt_want_write_file(file);
5326 trans = btrfs_start_transaction(root, 0);
5327 if (IS_ERR(trans)) {
5328 ret = PTR_ERR(trans);
5332 spin_lock(&fs_info->super_lock);
5333 strcpy(super_block->label, label);
5334 spin_unlock(&fs_info->super_lock);
5335 ret = btrfs_commit_transaction(trans);
5338 mnt_drop_write_file(file);
5342 #define INIT_FEATURE_FLAGS(suffix) \
5343 { .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \
5344 .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \
5345 .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix }
5347 int btrfs_ioctl_get_supported_features(void __user *arg)
5349 static const struct btrfs_ioctl_feature_flags features[3] = {
5350 INIT_FEATURE_FLAGS(SUPP),
5351 INIT_FEATURE_FLAGS(SAFE_SET),
5352 INIT_FEATURE_FLAGS(SAFE_CLEAR)
5355 if (copy_to_user(arg, &features, sizeof(features)))
5361 static int btrfs_ioctl_get_features(struct file *file, void __user *arg)
5363 struct inode *inode = file_inode(file);
5364 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5365 struct btrfs_super_block *super_block = fs_info->super_copy;
5366 struct btrfs_ioctl_feature_flags features;
5368 features.compat_flags = btrfs_super_compat_flags(super_block);
5369 features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block);
5370 features.incompat_flags = btrfs_super_incompat_flags(super_block);
5372 if (copy_to_user(arg, &features, sizeof(features)))
5378 static int check_feature_bits(struct btrfs_fs_info *fs_info,
5379 enum btrfs_feature_set set,
5380 u64 change_mask, u64 flags, u64 supported_flags,
5381 u64 safe_set, u64 safe_clear)
5383 const char *type = btrfs_feature_set_names[set];
5385 u64 disallowed, unsupported;
5386 u64 set_mask = flags & change_mask;
5387 u64 clear_mask = ~flags & change_mask;
5389 unsupported = set_mask & ~supported_flags;
5391 names = btrfs_printable_features(set, unsupported);
5394 "this kernel does not support the %s feature bit%s",
5395 names, strchr(names, ',') ? "s" : "");
5399 "this kernel does not support %s bits 0x%llx",
5404 disallowed = set_mask & ~safe_set;
5406 names = btrfs_printable_features(set, disallowed);
5409 "can't set the %s feature bit%s while mounted",
5410 names, strchr(names, ',') ? "s" : "");
5414 "can't set %s bits 0x%llx while mounted",
5419 disallowed = clear_mask & ~safe_clear;
5421 names = btrfs_printable_features(set, disallowed);
5424 "can't clear the %s feature bit%s while mounted",
5425 names, strchr(names, ',') ? "s" : "");
5429 "can't clear %s bits 0x%llx while mounted",
5437 #define check_feature(fs_info, change_mask, flags, mask_base) \
5438 check_feature_bits(fs_info, FEAT_##mask_base, change_mask, flags, \
5439 BTRFS_FEATURE_ ## mask_base ## _SUPP, \
5440 BTRFS_FEATURE_ ## mask_base ## _SAFE_SET, \
5441 BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR)
5443 static int btrfs_ioctl_set_features(struct file *file, void __user *arg)
5445 struct inode *inode = file_inode(file);
5446 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5447 struct btrfs_root *root = BTRFS_I(inode)->root;
5448 struct btrfs_super_block *super_block = fs_info->super_copy;
5449 struct btrfs_ioctl_feature_flags flags[2];
5450 struct btrfs_trans_handle *trans;
5454 if (!capable(CAP_SYS_ADMIN))
5457 if (copy_from_user(flags, arg, sizeof(flags)))
5461 if (!flags[0].compat_flags && !flags[0].compat_ro_flags &&
5462 !flags[0].incompat_flags)
5465 ret = check_feature(fs_info, flags[0].compat_flags,
5466 flags[1].compat_flags, COMPAT);
5470 ret = check_feature(fs_info, flags[0].compat_ro_flags,
5471 flags[1].compat_ro_flags, COMPAT_RO);
5475 ret = check_feature(fs_info, flags[0].incompat_flags,
5476 flags[1].incompat_flags, INCOMPAT);
5480 ret = mnt_want_write_file(file);
5484 trans = btrfs_start_transaction(root, 0);
5485 if (IS_ERR(trans)) {
5486 ret = PTR_ERR(trans);
5487 goto out_drop_write;
5490 spin_lock(&fs_info->super_lock);
5491 newflags = btrfs_super_compat_flags(super_block);
5492 newflags |= flags[0].compat_flags & flags[1].compat_flags;
5493 newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags);
5494 btrfs_set_super_compat_flags(super_block, newflags);
5496 newflags = btrfs_super_compat_ro_flags(super_block);
5497 newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags;
5498 newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags);
5499 btrfs_set_super_compat_ro_flags(super_block, newflags);
5501 newflags = btrfs_super_incompat_flags(super_block);
5502 newflags |= flags[0].incompat_flags & flags[1].incompat_flags;
5503 newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags);
5504 btrfs_set_super_incompat_flags(super_block, newflags);
5505 spin_unlock(&fs_info->super_lock);
5507 ret = btrfs_commit_transaction(trans);
5509 mnt_drop_write_file(file);
5514 long btrfs_ioctl(struct file *file, unsigned int
5515 cmd, unsigned long arg)
5517 struct inode *inode = file_inode(file);
5518 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5519 struct btrfs_root *root = BTRFS_I(inode)->root;
5520 void __user *argp = (void __user *)arg;
5523 case FS_IOC_GETFLAGS:
5524 return btrfs_ioctl_getflags(file, argp);
5525 case FS_IOC_SETFLAGS:
5526 return btrfs_ioctl_setflags(file, argp);
5527 case FS_IOC_GETVERSION:
5528 return btrfs_ioctl_getversion(file, argp);
5530 return btrfs_ioctl_fitrim(file, argp);
5531 case BTRFS_IOC_SNAP_CREATE:
5532 return btrfs_ioctl_snap_create(file, argp, 0);
5533 case BTRFS_IOC_SNAP_CREATE_V2:
5534 return btrfs_ioctl_snap_create_v2(file, argp, 0);
5535 case BTRFS_IOC_SUBVOL_CREATE:
5536 return btrfs_ioctl_snap_create(file, argp, 1);
5537 case BTRFS_IOC_SUBVOL_CREATE_V2:
5538 return btrfs_ioctl_snap_create_v2(file, argp, 1);
5539 case BTRFS_IOC_SNAP_DESTROY:
5540 return btrfs_ioctl_snap_destroy(file, argp);
5541 case BTRFS_IOC_SUBVOL_GETFLAGS:
5542 return btrfs_ioctl_subvol_getflags(file, argp);
5543 case BTRFS_IOC_SUBVOL_SETFLAGS:
5544 return btrfs_ioctl_subvol_setflags(file, argp);
5545 case BTRFS_IOC_DEFAULT_SUBVOL:
5546 return btrfs_ioctl_default_subvol(file, argp);
5547 case BTRFS_IOC_DEFRAG:
5548 return btrfs_ioctl_defrag(file, NULL);
5549 case BTRFS_IOC_DEFRAG_RANGE:
5550 return btrfs_ioctl_defrag(file, argp);
5551 case BTRFS_IOC_RESIZE:
5552 return btrfs_ioctl_resize(file, argp);
5553 case BTRFS_IOC_ADD_DEV:
5554 return btrfs_ioctl_add_dev(fs_info, argp);
5555 case BTRFS_IOC_RM_DEV:
5556 return btrfs_ioctl_rm_dev(file, argp);
5557 case BTRFS_IOC_RM_DEV_V2:
5558 return btrfs_ioctl_rm_dev_v2(file, argp);
5559 case BTRFS_IOC_FS_INFO:
5560 return btrfs_ioctl_fs_info(fs_info, argp);
5561 case BTRFS_IOC_DEV_INFO:
5562 return btrfs_ioctl_dev_info(fs_info, argp);
5563 case BTRFS_IOC_BALANCE:
5564 return btrfs_ioctl_balance(file, NULL);
5565 case BTRFS_IOC_TRANS_START:
5566 return btrfs_ioctl_trans_start(file);
5567 case BTRFS_IOC_TRANS_END:
5568 return btrfs_ioctl_trans_end(file);
5569 case BTRFS_IOC_TREE_SEARCH:
5570 return btrfs_ioctl_tree_search(file, argp);
5571 case BTRFS_IOC_TREE_SEARCH_V2:
5572 return btrfs_ioctl_tree_search_v2(file, argp);
5573 case BTRFS_IOC_INO_LOOKUP:
5574 return btrfs_ioctl_ino_lookup(file, argp);
5575 case BTRFS_IOC_INO_PATHS:
5576 return btrfs_ioctl_ino_to_path(root, argp);
5577 case BTRFS_IOC_LOGICAL_INO:
5578 return btrfs_ioctl_logical_to_ino(fs_info, argp);
5579 case BTRFS_IOC_SPACE_INFO:
5580 return btrfs_ioctl_space_info(fs_info, argp);
5581 case BTRFS_IOC_SYNC: {
5584 ret = btrfs_start_delalloc_roots(fs_info, 0, -1);
5587 ret = btrfs_sync_fs(inode->i_sb, 1);
5589 * The transaction thread may want to do more work,
5590 * namely it pokes the cleaner kthread that will start
5591 * processing uncleaned subvols.
5593 wake_up_process(fs_info->transaction_kthread);
5596 case BTRFS_IOC_START_SYNC:
5597 return btrfs_ioctl_start_sync(root, argp);
5598 case BTRFS_IOC_WAIT_SYNC:
5599 return btrfs_ioctl_wait_sync(fs_info, argp);
5600 case BTRFS_IOC_SCRUB:
5601 return btrfs_ioctl_scrub(file, argp);
5602 case BTRFS_IOC_SCRUB_CANCEL:
5603 return btrfs_ioctl_scrub_cancel(fs_info);
5604 case BTRFS_IOC_SCRUB_PROGRESS:
5605 return btrfs_ioctl_scrub_progress(fs_info, argp);
5606 case BTRFS_IOC_BALANCE_V2:
5607 return btrfs_ioctl_balance(file, argp);
5608 case BTRFS_IOC_BALANCE_CTL:
5609 return btrfs_ioctl_balance_ctl(fs_info, arg);
5610 case BTRFS_IOC_BALANCE_PROGRESS:
5611 return btrfs_ioctl_balance_progress(fs_info, argp);
5612 case BTRFS_IOC_SET_RECEIVED_SUBVOL:
5613 return btrfs_ioctl_set_received_subvol(file, argp);
5615 case BTRFS_IOC_SET_RECEIVED_SUBVOL_32:
5616 return btrfs_ioctl_set_received_subvol_32(file, argp);
5618 case BTRFS_IOC_SEND:
5619 return btrfs_ioctl_send(file, argp);
5620 case BTRFS_IOC_GET_DEV_STATS:
5621 return btrfs_ioctl_get_dev_stats(fs_info, argp);
5622 case BTRFS_IOC_QUOTA_CTL:
5623 return btrfs_ioctl_quota_ctl(file, argp);
5624 case BTRFS_IOC_QGROUP_ASSIGN:
5625 return btrfs_ioctl_qgroup_assign(file, argp);
5626 case BTRFS_IOC_QGROUP_CREATE:
5627 return btrfs_ioctl_qgroup_create(file, argp);
5628 case BTRFS_IOC_QGROUP_LIMIT:
5629 return btrfs_ioctl_qgroup_limit(file, argp);
5630 case BTRFS_IOC_QUOTA_RESCAN:
5631 return btrfs_ioctl_quota_rescan(file, argp);
5632 case BTRFS_IOC_QUOTA_RESCAN_STATUS:
5633 return btrfs_ioctl_quota_rescan_status(file, argp);
5634 case BTRFS_IOC_QUOTA_RESCAN_WAIT:
5635 return btrfs_ioctl_quota_rescan_wait(file, argp);
5636 case BTRFS_IOC_DEV_REPLACE:
5637 return btrfs_ioctl_dev_replace(fs_info, argp);
5638 case BTRFS_IOC_GET_FSLABEL:
5639 return btrfs_ioctl_get_fslabel(file, argp);
5640 case BTRFS_IOC_SET_FSLABEL:
5641 return btrfs_ioctl_set_fslabel(file, argp);
5642 case BTRFS_IOC_GET_SUPPORTED_FEATURES:
5643 return btrfs_ioctl_get_supported_features(argp);
5644 case BTRFS_IOC_GET_FEATURES:
5645 return btrfs_ioctl_get_features(file, argp);
5646 case BTRFS_IOC_SET_FEATURES:
5647 return btrfs_ioctl_set_features(file, argp);
5653 #ifdef CONFIG_COMPAT
5654 long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5657 * These all access 32-bit values anyway so no further
5658 * handling is necessary.
5661 case FS_IOC32_GETFLAGS:
5662 cmd = FS_IOC_GETFLAGS;
5664 case FS_IOC32_SETFLAGS:
5665 cmd = FS_IOC_SETFLAGS;
5667 case FS_IOC32_GETVERSION:
5668 cmd = FS_IOC_GETVERSION;
5672 return btrfs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));