2 * Copyright (C) 2011 STRATO. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/sched.h>
20 #include <linux/pagemap.h>
21 #include <linux/writeback.h>
22 #include <linux/blkdev.h>
23 #include <linux/rbtree.h>
24 #include <linux/slab.h>
25 #include <linux/workqueue.h>
29 #include "transaction.h"
34 * This is the implementation for the generic read ahead framework.
36 * To trigger a readahead, btrfs_reada_add must be called. It will start
37 * a read ahead for the given range [start, end) on tree root. The returned
38 * handle can either be used to wait on the readahead to finish
39 * (btrfs_reada_wait), or to send it to the background (btrfs_reada_detach).
41 * The read ahead works as follows:
42 * On btrfs_reada_add, the root of the tree is inserted into a radix_tree.
43 * reada_start_machine will then search for extents to prefetch and trigger
44 * some reads. When a read finishes for a node, all contained node/leaf
45 * pointers that lie in the given range will also be enqueued. The reads will
46 * be triggered in sequential order, thus giving a big win over a naive
47 * enumeration. It will also make use of multi-device layouts. Each disk
48 * will have its on read pointer and all disks will by utilized in parallel.
49 * Also will no two disks read both sides of a mirror simultaneously, as this
50 * would waste seeking capacity. Instead both disks will read different parts
52 * Any number of readaheads can be started in parallel. The read order will be
53 * determined globally, i.e. 2 parallel readaheads will normally finish faster
54 * than the 2 started one after another.
57 #define MAX_IN_FLIGHT 6
60 struct list_head list;
61 struct reada_control *rc;
70 struct list_head extctl;
73 struct reada_zone *zones[BTRFS_MAX_MIRRORS];
75 struct btrfs_device *scheduled_for;
82 struct list_head list;
85 struct btrfs_device *device;
86 struct btrfs_device *devs[BTRFS_MAX_MIRRORS]; /* full list, incl
92 struct reada_machine_work {
93 struct btrfs_work work;
94 struct btrfs_fs_info *fs_info;
97 static void reada_extent_put(struct btrfs_fs_info *, struct reada_extent *);
98 static void reada_control_release(struct kref *kref);
99 static void reada_zone_release(struct kref *kref);
100 static void reada_start_machine(struct btrfs_fs_info *fs_info);
101 static void __reada_start_machine(struct btrfs_fs_info *fs_info);
103 static int reada_add_block(struct reada_control *rc, u64 logical,
104 struct btrfs_key *top, int level, u64 generation);
107 /* in case of err, eb might be NULL */
108 static int __readahead_hook(struct btrfs_root *root, struct extent_buffer *eb,
116 struct reada_extent *re;
117 struct btrfs_fs_info *fs_info = root->fs_info;
118 struct list_head list;
119 unsigned long index = start >> PAGE_CACHE_SHIFT;
120 struct btrfs_device *for_dev;
123 level = btrfs_header_level(eb);
126 spin_lock(&fs_info->reada_lock);
127 re = radix_tree_lookup(&fs_info->reada_tree, index);
130 spin_unlock(&fs_info->reada_lock);
135 spin_lock(&re->lock);
137 * just take the full list from the extent. afterwards we
138 * don't need the lock anymore
140 list_replace_init(&re->extctl, &list);
141 for_dev = re->scheduled_for;
142 re->scheduled_for = NULL;
143 spin_unlock(&re->lock);
146 nritems = level ? btrfs_header_nritems(eb) : 0;
147 generation = btrfs_header_generation(eb);
149 * FIXME: currently we just set nritems to 0 if this is a leaf,
150 * effectively ignoring the content. In a next step we could
151 * trigger more readahead depending from the content, e.g.
152 * fetch the checksums for the extents in the leaf.
156 * this is the error case, the extent buffer has not been
157 * read correctly. We won't access anything from it and
158 * just cleanup our data structures. Effectively this will
159 * cut the branch below this node from read ahead.
165 for (i = 0; i < nritems; i++) {
166 struct reada_extctl *rec;
168 struct btrfs_key key;
169 struct btrfs_key next_key;
171 btrfs_node_key_to_cpu(eb, &key, i);
173 btrfs_node_key_to_cpu(eb, &next_key, i + 1);
176 bytenr = btrfs_node_blockptr(eb, i);
177 n_gen = btrfs_node_ptr_generation(eb, i);
179 list_for_each_entry(rec, &list, list) {
180 struct reada_control *rc = rec->rc;
183 * if the generation doesn't match, just ignore this
184 * extctl. This will probably cut off a branch from
185 * prefetch. Alternatively one could start a new (sub-)
186 * prefetch for this branch, starting again from root.
187 * FIXME: move the generation check out of this loop
190 if (rec->generation != generation) {
191 printk(KERN_DEBUG "generation mismatch for "
192 "(%llu,%d,%llu) %llu != %llu\n",
193 key.objectid, key.type, key.offset,
194 rec->generation, generation);
197 if (rec->generation == generation &&
198 btrfs_comp_cpu_keys(&key, &rc->key_end) < 0 &&
199 btrfs_comp_cpu_keys(&next_key, &rc->key_start) > 0)
200 reada_add_block(rc, bytenr, &next_key,
205 * free extctl records
207 while (!list_empty(&list)) {
208 struct reada_control *rc;
209 struct reada_extctl *rec;
211 rec = list_first_entry(&list, struct reada_extctl, list);
212 list_del(&rec->list);
216 kref_get(&rc->refcnt);
217 if (atomic_dec_and_test(&rc->elems)) {
218 kref_put(&rc->refcnt, reada_control_release);
221 kref_put(&rc->refcnt, reada_control_release);
223 reada_extent_put(fs_info, re); /* one ref for each entry */
225 reada_extent_put(fs_info, re); /* our ref */
227 atomic_dec(&for_dev->reada_in_flight);
233 * start is passed separately in case eb in NULL, which may be the case with
236 int btree_readahead_hook(struct btrfs_root *root, struct extent_buffer *eb,
241 ret = __readahead_hook(root, eb, start, err);
243 reada_start_machine(root->fs_info);
248 static struct reada_zone *reada_find_zone(struct btrfs_fs_info *fs_info,
249 struct btrfs_device *dev, u64 logical,
250 struct btrfs_bio *bbio)
253 struct reada_zone *zone;
254 struct btrfs_block_group_cache *cache = NULL;
260 spin_lock(&fs_info->reada_lock);
261 ret = radix_tree_gang_lookup(&dev->reada_zones, (void **)&zone,
262 logical >> PAGE_CACHE_SHIFT, 1);
264 kref_get(&zone->refcnt);
265 spin_unlock(&fs_info->reada_lock);
268 if (logical >= zone->start && logical < zone->end)
270 spin_lock(&fs_info->reada_lock);
271 kref_put(&zone->refcnt, reada_zone_release);
272 spin_unlock(&fs_info->reada_lock);
275 cache = btrfs_lookup_block_group(fs_info, logical);
279 start = cache->key.objectid;
280 end = start + cache->key.offset - 1;
281 btrfs_put_block_group(cache);
283 zone = kzalloc(sizeof(*zone), GFP_NOFS);
289 INIT_LIST_HEAD(&zone->list);
290 spin_lock_init(&zone->lock);
292 kref_init(&zone->refcnt);
294 zone->device = dev; /* our device always sits at index 0 */
295 for (i = 0; i < bbio->num_stripes; ++i) {
296 /* bounds have already been checked */
297 zone->devs[i] = bbio->stripes[i].dev;
299 zone->ndevs = bbio->num_stripes;
301 spin_lock(&fs_info->reada_lock);
302 ret = radix_tree_insert(&dev->reada_zones,
303 (unsigned long)(zone->end >> PAGE_CACHE_SHIFT),
306 if (ret == -EEXIST) {
308 ret = radix_tree_gang_lookup(&dev->reada_zones, (void **)&zone,
309 logical >> PAGE_CACHE_SHIFT, 1);
311 kref_get(&zone->refcnt);
313 spin_unlock(&fs_info->reada_lock);
318 static struct reada_extent *reada_find_extent(struct btrfs_root *root,
320 struct btrfs_key *top, int level)
323 struct reada_extent *re = NULL;
324 struct reada_extent *re_exist = NULL;
325 struct btrfs_fs_info *fs_info = root->fs_info;
326 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
327 struct btrfs_bio *bbio = NULL;
328 struct btrfs_device *dev;
329 struct btrfs_device *prev_dev;
334 unsigned long index = logical >> PAGE_CACHE_SHIFT;
336 spin_lock(&fs_info->reada_lock);
337 re = radix_tree_lookup(&fs_info->reada_tree, index);
340 spin_unlock(&fs_info->reada_lock);
345 re = kzalloc(sizeof(*re), GFP_NOFS);
349 blocksize = btrfs_level_size(root, level);
350 re->logical = logical;
351 re->blocksize = blocksize;
353 INIT_LIST_HEAD(&re->extctl);
354 spin_lock_init(&re->lock);
361 ret = btrfs_map_block(map_tree, REQ_WRITE, logical, &length, &bbio, 0);
362 if (ret || !bbio || length < blocksize)
365 if (bbio->num_stripes > BTRFS_MAX_MIRRORS) {
366 printk(KERN_ERR "btrfs readahead: more than %d copies not "
367 "supported", BTRFS_MAX_MIRRORS);
371 for (nzones = 0; nzones < bbio->num_stripes; ++nzones) {
372 struct reada_zone *zone;
374 dev = bbio->stripes[nzones].dev;
375 zone = reada_find_zone(fs_info, dev, logical, bbio);
379 re->zones[nzones] = zone;
380 spin_lock(&zone->lock);
382 kref_get(&zone->refcnt);
384 spin_unlock(&zone->lock);
385 spin_lock(&fs_info->reada_lock);
386 kref_put(&zone->refcnt, reada_zone_release);
387 spin_unlock(&fs_info->reada_lock);
391 /* not a single zone found, error and out */
395 /* insert extent in reada_tree + all per-device trees, all or nothing */
396 spin_lock(&fs_info->reada_lock);
397 ret = radix_tree_insert(&fs_info->reada_tree, index, re);
398 if (ret == -EEXIST) {
399 re_exist = radix_tree_lookup(&fs_info->reada_tree, index);
402 spin_unlock(&fs_info->reada_lock);
406 spin_unlock(&fs_info->reada_lock);
410 for (i = 0; i < nzones; ++i) {
411 dev = bbio->stripes[i].dev;
412 if (dev == prev_dev) {
414 * in case of DUP, just add the first zone. As both
415 * are on the same device, there's nothing to gain
417 * Also, it wouldn't work, as the tree is per device
418 * and adding would fail with EEXIST
423 ret = radix_tree_insert(&dev->reada_extents, index, re);
426 dev = bbio->stripes[i].dev;
428 radix_tree_delete(&dev->reada_extents, index);
430 BUG_ON(fs_info == NULL);
431 radix_tree_delete(&fs_info->reada_tree, index);
432 spin_unlock(&fs_info->reada_lock);
436 spin_unlock(&fs_info->reada_lock);
443 struct reada_zone *zone;
446 zone = re->zones[nzones];
447 kref_get(&zone->refcnt);
448 spin_lock(&zone->lock);
450 if (zone->elems == 0) {
452 * no fs_info->reada_lock needed, as this can't be
455 kref_put(&zone->refcnt, reada_zone_release);
457 spin_unlock(&zone->lock);
459 spin_lock(&fs_info->reada_lock);
460 kref_put(&zone->refcnt, reada_zone_release);
461 spin_unlock(&fs_info->reada_lock);
468 static void reada_extent_put(struct btrfs_fs_info *fs_info,
469 struct reada_extent *re)
472 unsigned long index = re->logical >> PAGE_CACHE_SHIFT;
474 spin_lock(&fs_info->reada_lock);
476 spin_unlock(&fs_info->reada_lock);
480 radix_tree_delete(&fs_info->reada_tree, index);
481 for (i = 0; i < re->nzones; ++i) {
482 struct reada_zone *zone = re->zones[i];
484 radix_tree_delete(&zone->device->reada_extents, index);
487 spin_unlock(&fs_info->reada_lock);
489 for (i = 0; i < re->nzones; ++i) {
490 struct reada_zone *zone = re->zones[i];
492 kref_get(&zone->refcnt);
493 spin_lock(&zone->lock);
495 if (zone->elems == 0) {
496 /* no fs_info->reada_lock needed, as this can't be
498 kref_put(&zone->refcnt, reada_zone_release);
500 spin_unlock(&zone->lock);
502 spin_lock(&fs_info->reada_lock);
503 kref_put(&zone->refcnt, reada_zone_release);
504 spin_unlock(&fs_info->reada_lock);
506 if (re->scheduled_for)
507 atomic_dec(&re->scheduled_for->reada_in_flight);
512 static void reada_zone_release(struct kref *kref)
514 struct reada_zone *zone = container_of(kref, struct reada_zone, refcnt);
516 radix_tree_delete(&zone->device->reada_zones,
517 zone->end >> PAGE_CACHE_SHIFT);
522 static void reada_control_release(struct kref *kref)
524 struct reada_control *rc = container_of(kref, struct reada_control,
530 static int reada_add_block(struct reada_control *rc, u64 logical,
531 struct btrfs_key *top, int level, u64 generation)
533 struct btrfs_root *root = rc->root;
534 struct reada_extent *re;
535 struct reada_extctl *rec;
537 re = reada_find_extent(root, logical, top, level); /* takes one ref */
541 rec = kzalloc(sizeof(*rec), GFP_NOFS);
543 reada_extent_put(root->fs_info, re);
548 rec->generation = generation;
549 atomic_inc(&rc->elems);
551 spin_lock(&re->lock);
552 list_add_tail(&rec->list, &re->extctl);
553 spin_unlock(&re->lock);
555 /* leave the ref on the extent */
561 * called with fs_info->reada_lock held
563 static void reada_peer_zones_set_lock(struct reada_zone *zone, int lock)
566 unsigned long index = zone->end >> PAGE_CACHE_SHIFT;
568 for (i = 0; i < zone->ndevs; ++i) {
569 struct reada_zone *peer;
570 peer = radix_tree_lookup(&zone->devs[i]->reada_zones, index);
571 if (peer && peer->device != zone->device)
577 * called with fs_info->reada_lock held
579 static int reada_pick_zone(struct btrfs_device *dev)
581 struct reada_zone *top_zone = NULL;
582 struct reada_zone *top_locked_zone = NULL;
584 u64 top_locked_elems = 0;
585 unsigned long index = 0;
588 if (dev->reada_curr_zone) {
589 reada_peer_zones_set_lock(dev->reada_curr_zone, 0);
590 kref_put(&dev->reada_curr_zone->refcnt, reada_zone_release);
591 dev->reada_curr_zone = NULL;
593 /* pick the zone with the most elements */
595 struct reada_zone *zone;
597 ret = radix_tree_gang_lookup(&dev->reada_zones,
598 (void **)&zone, index, 1);
601 index = (zone->end >> PAGE_CACHE_SHIFT) + 1;
603 if (zone->elems > top_locked_elems) {
604 top_locked_elems = zone->elems;
605 top_locked_zone = zone;
608 if (zone->elems > top_elems) {
609 top_elems = zone->elems;
615 dev->reada_curr_zone = top_zone;
616 else if (top_locked_zone)
617 dev->reada_curr_zone = top_locked_zone;
621 dev->reada_next = dev->reada_curr_zone->start;
622 kref_get(&dev->reada_curr_zone->refcnt);
623 reada_peer_zones_set_lock(dev->reada_curr_zone, 1);
628 static int reada_start_machine_dev(struct btrfs_fs_info *fs_info,
629 struct btrfs_device *dev)
631 struct reada_extent *re = NULL;
633 struct extent_buffer *eb = NULL;
640 spin_lock(&fs_info->reada_lock);
641 if (dev->reada_curr_zone == NULL) {
642 ret = reada_pick_zone(dev);
644 spin_unlock(&fs_info->reada_lock);
649 * FIXME currently we issue the reads one extent at a time. If we have
650 * a contiguous block of extents, we could also coagulate them or use
651 * plugging to speed things up
653 ret = radix_tree_gang_lookup(&dev->reada_extents, (void **)&re,
654 dev->reada_next >> PAGE_CACHE_SHIFT, 1);
655 if (ret == 0 || re->logical >= dev->reada_curr_zone->end) {
656 ret = reada_pick_zone(dev);
658 spin_unlock(&fs_info->reada_lock);
662 ret = radix_tree_gang_lookup(&dev->reada_extents, (void **)&re,
663 dev->reada_next >> PAGE_CACHE_SHIFT, 1);
666 spin_unlock(&fs_info->reada_lock);
669 dev->reada_next = re->logical + re->blocksize;
672 spin_unlock(&fs_info->reada_lock);
677 for (i = 0; i < re->nzones; ++i) {
678 if (re->zones[i]->device == dev) {
683 logical = re->logical;
684 blocksize = re->blocksize;
686 spin_lock(&re->lock);
687 if (re->scheduled_for == NULL) {
688 re->scheduled_for = dev;
691 spin_unlock(&re->lock);
693 reada_extent_put(fs_info, re);
698 atomic_inc(&dev->reada_in_flight);
699 ret = reada_tree_block_flagged(fs_info->extent_root, logical, blocksize,
702 __readahead_hook(fs_info->extent_root, NULL, logical, ret);
704 __readahead_hook(fs_info->extent_root, eb, eb->start, ret);
707 free_extent_buffer(eb);
713 static void reada_start_machine_worker(struct btrfs_work *work)
715 struct reada_machine_work *rmw;
716 struct btrfs_fs_info *fs_info;
719 rmw = container_of(work, struct reada_machine_work, work);
720 fs_info = rmw->fs_info;
724 old_ioprio = IOPRIO_PRIO_VALUE(task_nice_ioclass(current),
725 task_nice_ioprio(current));
726 set_task_ioprio(current, BTRFS_IOPRIO_READA);
727 __reada_start_machine(fs_info);
728 set_task_ioprio(current, old_ioprio);
731 static void __reada_start_machine(struct btrfs_fs_info *fs_info)
733 struct btrfs_device *device;
734 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
741 list_for_each_entry(device, &fs_devices->devices, dev_list) {
742 if (atomic_read(&device->reada_in_flight) <
744 enqueued += reada_start_machine_dev(fs_info,
748 } while (enqueued && total < 10000);
754 * If everything is already in the cache, this is effectively single
755 * threaded. To a) not hold the caller for too long and b) to utilize
756 * more cores, we broke the loop above after 10000 iterations and now
757 * enqueue to workers to finish it. This will distribute the load to
760 for (i = 0; i < 2; ++i)
761 reada_start_machine(fs_info);
764 static void reada_start_machine(struct btrfs_fs_info *fs_info)
766 struct reada_machine_work *rmw;
768 rmw = kzalloc(sizeof(*rmw), GFP_NOFS);
770 /* FIXME we cannot handle this properly right now */
773 rmw->work.func = reada_start_machine_worker;
774 rmw->fs_info = fs_info;
776 btrfs_queue_worker(&fs_info->readahead_workers, &rmw->work);
780 static void dump_devs(struct btrfs_fs_info *fs_info, int all)
782 struct btrfs_device *device;
783 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
790 spin_lock(&fs_info->reada_lock);
791 list_for_each_entry(device, &fs_devices->devices, dev_list) {
792 printk(KERN_DEBUG "dev %lld has %d in flight\n", device->devid,
793 atomic_read(&device->reada_in_flight));
796 struct reada_zone *zone;
797 ret = radix_tree_gang_lookup(&device->reada_zones,
798 (void **)&zone, index, 1);
801 printk(KERN_DEBUG " zone %llu-%llu elems %llu locked "
802 "%d devs", zone->start, zone->end, zone->elems,
804 for (j = 0; j < zone->ndevs; ++j) {
805 printk(KERN_CONT " %lld",
806 zone->devs[j]->devid);
808 if (device->reada_curr_zone == zone)
809 printk(KERN_CONT " curr off %llu",
810 device->reada_next - zone->start);
811 printk(KERN_CONT "\n");
812 index = (zone->end >> PAGE_CACHE_SHIFT) + 1;
817 struct reada_extent *re = NULL;
819 ret = radix_tree_gang_lookup(&device->reada_extents,
820 (void **)&re, index, 1);
824 " re: logical %llu size %u empty %d for %lld",
825 re->logical, re->blocksize,
826 list_empty(&re->extctl), re->scheduled_for ?
827 re->scheduled_for->devid : -1);
829 for (i = 0; i < re->nzones; ++i) {
830 printk(KERN_CONT " zone %llu-%llu devs",
833 for (j = 0; j < re->zones[i]->ndevs; ++j) {
834 printk(KERN_CONT " %lld",
835 re->zones[i]->devs[j]->devid);
838 printk(KERN_CONT "\n");
839 index = (re->logical >> PAGE_CACHE_SHIFT) + 1;
848 struct reada_extent *re = NULL;
850 ret = radix_tree_gang_lookup(&fs_info->reada_tree, (void **)&re,
854 if (!re->scheduled_for) {
855 index = (re->logical >> PAGE_CACHE_SHIFT) + 1;
859 "re: logical %llu size %u list empty %d for %lld",
860 re->logical, re->blocksize, list_empty(&re->extctl),
861 re->scheduled_for ? re->scheduled_for->devid : -1);
862 for (i = 0; i < re->nzones; ++i) {
863 printk(KERN_CONT " zone %llu-%llu devs",
866 for (i = 0; i < re->nzones; ++i) {
867 printk(KERN_CONT " zone %llu-%llu devs",
870 for (j = 0; j < re->zones[i]->ndevs; ++j) {
871 printk(KERN_CONT " %lld",
872 re->zones[i]->devs[j]->devid);
876 printk(KERN_CONT "\n");
877 index = (re->logical >> PAGE_CACHE_SHIFT) + 1;
879 spin_unlock(&fs_info->reada_lock);
886 struct reada_control *btrfs_reada_add(struct btrfs_root *root,
887 struct btrfs_key *key_start, struct btrfs_key *key_end)
889 struct reada_control *rc;
893 struct extent_buffer *node;
894 static struct btrfs_key max_key = {
900 rc = kzalloc(sizeof(*rc), GFP_NOFS);
902 return ERR_PTR(-ENOMEM);
905 rc->key_start = *key_start;
906 rc->key_end = *key_end;
907 atomic_set(&rc->elems, 0);
908 init_waitqueue_head(&rc->wait);
909 kref_init(&rc->refcnt);
910 kref_get(&rc->refcnt); /* one ref for having elements */
912 node = btrfs_root_node(root);
914 level = btrfs_header_level(node);
915 generation = btrfs_header_generation(node);
916 free_extent_buffer(node);
918 reada_add_block(rc, start, &max_key, level, generation);
920 reada_start_machine(root->fs_info);
926 int btrfs_reada_wait(void *handle)
928 struct reada_control *rc = handle;
930 while (atomic_read(&rc->elems)) {
931 wait_event_timeout(rc->wait, atomic_read(&rc->elems) == 0,
933 dump_devs(rc->root->fs_info, rc->elems < 10 ? 1 : 0);
936 dump_devs(rc->root->fs_info, rc->elems < 10 ? 1 : 0);
938 kref_put(&rc->refcnt, reada_control_release);
943 int btrfs_reada_wait(void *handle)
945 struct reada_control *rc = handle;
947 while (atomic_read(&rc->elems)) {
948 wait_event(rc->wait, atomic_read(&rc->elems) == 0);
951 kref_put(&rc->refcnt, reada_control_release);
957 void btrfs_reada_detach(void *handle)
959 struct reada_control *rc = handle;
961 kref_put(&rc->refcnt, reada_control_release);