]> git.karo-electronics.de Git - karo-tx-linux.git/blob - fs/btrfs/reada.c
scsi: zero per-cmd private driver data for each MQ I/O
[karo-tx-linux.git] / fs / btrfs / reada.c
1 /*
2  * Copyright (C) 2011 STRATO.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/sched.h>
20 #include <linux/pagemap.h>
21 #include <linux/writeback.h>
22 #include <linux/blkdev.h>
23 #include <linux/rbtree.h>
24 #include <linux/slab.h>
25 #include <linux/workqueue.h>
26 #include "ctree.h"
27 #include "volumes.h"
28 #include "disk-io.h"
29 #include "transaction.h"
30 #include "dev-replace.h"
31
32 #undef DEBUG
33
34 /*
35  * This is the implementation for the generic read ahead framework.
36  *
37  * To trigger a readahead, btrfs_reada_add must be called. It will start
38  * a read ahead for the given range [start, end) on tree root. The returned
39  * handle can either be used to wait on the readahead to finish
40  * (btrfs_reada_wait), or to send it to the background (btrfs_reada_detach).
41  *
42  * The read ahead works as follows:
43  * On btrfs_reada_add, the root of the tree is inserted into a radix_tree.
44  * reada_start_machine will then search for extents to prefetch and trigger
45  * some reads. When a read finishes for a node, all contained node/leaf
46  * pointers that lie in the given range will also be enqueued. The reads will
47  * be triggered in sequential order, thus giving a big win over a naive
48  * enumeration. It will also make use of multi-device layouts. Each disk
49  * will have its on read pointer and all disks will by utilized in parallel.
50  * Also will no two disks read both sides of a mirror simultaneously, as this
51  * would waste seeking capacity. Instead both disks will read different parts
52  * of the filesystem.
53  * Any number of readaheads can be started in parallel. The read order will be
54  * determined globally, i.e. 2 parallel readaheads will normally finish faster
55  * than the 2 started one after another.
56  */
57
58 #define MAX_IN_FLIGHT 6
59
60 struct reada_extctl {
61         struct list_head        list;
62         struct reada_control    *rc;
63         u64                     generation;
64 };
65
66 struct reada_extent {
67         u64                     logical;
68         struct btrfs_key        top;
69         int                     err;
70         struct list_head        extctl;
71         int                     refcnt;
72         spinlock_t              lock;
73         struct reada_zone       *zones[BTRFS_MAX_MIRRORS];
74         int                     nzones;
75         int                     scheduled;
76 };
77
78 struct reada_zone {
79         u64                     start;
80         u64                     end;
81         u64                     elems;
82         struct list_head        list;
83         spinlock_t              lock;
84         int                     locked;
85         struct btrfs_device     *device;
86         struct btrfs_device     *devs[BTRFS_MAX_MIRRORS]; /* full list, incl
87                                                            * self */
88         int                     ndevs;
89         struct kref             refcnt;
90 };
91
92 struct reada_machine_work {
93         struct btrfs_work       work;
94         struct btrfs_fs_info    *fs_info;
95 };
96
97 static void reada_extent_put(struct btrfs_fs_info *, struct reada_extent *);
98 static void reada_control_release(struct kref *kref);
99 static void reada_zone_release(struct kref *kref);
100 static void reada_start_machine(struct btrfs_fs_info *fs_info);
101 static void __reada_start_machine(struct btrfs_fs_info *fs_info);
102
103 static int reada_add_block(struct reada_control *rc, u64 logical,
104                            struct btrfs_key *top, u64 generation);
105
106 /* recurses */
107 /* in case of err, eb might be NULL */
108 static void __readahead_hook(struct btrfs_fs_info *fs_info,
109                              struct reada_extent *re, struct extent_buffer *eb,
110                              int err)
111 {
112         int nritems;
113         int i;
114         u64 bytenr;
115         u64 generation;
116         struct list_head list;
117
118         spin_lock(&re->lock);
119         /*
120          * just take the full list from the extent. afterwards we
121          * don't need the lock anymore
122          */
123         list_replace_init(&re->extctl, &list);
124         re->scheduled = 0;
125         spin_unlock(&re->lock);
126
127         /*
128          * this is the error case, the extent buffer has not been
129          * read correctly. We won't access anything from it and
130          * just cleanup our data structures. Effectively this will
131          * cut the branch below this node from read ahead.
132          */
133         if (err)
134                 goto cleanup;
135
136         /*
137          * FIXME: currently we just set nritems to 0 if this is a leaf,
138          * effectively ignoring the content. In a next step we could
139          * trigger more readahead depending from the content, e.g.
140          * fetch the checksums for the extents in the leaf.
141          */
142         if (!btrfs_header_level(eb))
143                 goto cleanup;
144
145         nritems = btrfs_header_nritems(eb);
146         generation = btrfs_header_generation(eb);
147         for (i = 0; i < nritems; i++) {
148                 struct reada_extctl *rec;
149                 u64 n_gen;
150                 struct btrfs_key key;
151                 struct btrfs_key next_key;
152
153                 btrfs_node_key_to_cpu(eb, &key, i);
154                 if (i + 1 < nritems)
155                         btrfs_node_key_to_cpu(eb, &next_key, i + 1);
156                 else
157                         next_key = re->top;
158                 bytenr = btrfs_node_blockptr(eb, i);
159                 n_gen = btrfs_node_ptr_generation(eb, i);
160
161                 list_for_each_entry(rec, &list, list) {
162                         struct reada_control *rc = rec->rc;
163
164                         /*
165                          * if the generation doesn't match, just ignore this
166                          * extctl. This will probably cut off a branch from
167                          * prefetch. Alternatively one could start a new (sub-)
168                          * prefetch for this branch, starting again from root.
169                          * FIXME: move the generation check out of this loop
170                          */
171 #ifdef DEBUG
172                         if (rec->generation != generation) {
173                                 btrfs_debug(fs_info,
174                                             "generation mismatch for (%llu,%d,%llu) %llu != %llu",
175                                             key.objectid, key.type, key.offset,
176                                             rec->generation, generation);
177                         }
178 #endif
179                         if (rec->generation == generation &&
180                             btrfs_comp_cpu_keys(&key, &rc->key_end) < 0 &&
181                             btrfs_comp_cpu_keys(&next_key, &rc->key_start) > 0)
182                                 reada_add_block(rc, bytenr, &next_key, n_gen);
183                 }
184         }
185
186 cleanup:
187         /*
188          * free extctl records
189          */
190         while (!list_empty(&list)) {
191                 struct reada_control *rc;
192                 struct reada_extctl *rec;
193
194                 rec = list_first_entry(&list, struct reada_extctl, list);
195                 list_del(&rec->list);
196                 rc = rec->rc;
197                 kfree(rec);
198
199                 kref_get(&rc->refcnt);
200                 if (atomic_dec_and_test(&rc->elems)) {
201                         kref_put(&rc->refcnt, reada_control_release);
202                         wake_up(&rc->wait);
203                 }
204                 kref_put(&rc->refcnt, reada_control_release);
205
206                 reada_extent_put(fs_info, re);  /* one ref for each entry */
207         }
208
209         return;
210 }
211
212 int btree_readahead_hook(struct btrfs_fs_info *fs_info,
213                          struct extent_buffer *eb, int err)
214 {
215         int ret = 0;
216         struct reada_extent *re;
217
218         /* find extent */
219         spin_lock(&fs_info->reada_lock);
220         re = radix_tree_lookup(&fs_info->reada_tree,
221                                eb->start >> PAGE_SHIFT);
222         if (re)
223                 re->refcnt++;
224         spin_unlock(&fs_info->reada_lock);
225         if (!re) {
226                 ret = -1;
227                 goto start_machine;
228         }
229
230         __readahead_hook(fs_info, re, eb, err);
231         reada_extent_put(fs_info, re);  /* our ref */
232
233 start_machine:
234         reada_start_machine(fs_info);
235         return ret;
236 }
237
238 static struct reada_zone *reada_find_zone(struct btrfs_fs_info *fs_info,
239                                           struct btrfs_device *dev, u64 logical,
240                                           struct btrfs_bio *bbio)
241 {
242         int ret;
243         struct reada_zone *zone;
244         struct btrfs_block_group_cache *cache = NULL;
245         u64 start;
246         u64 end;
247         int i;
248
249         zone = NULL;
250         spin_lock(&fs_info->reada_lock);
251         ret = radix_tree_gang_lookup(&dev->reada_zones, (void **)&zone,
252                                      logical >> PAGE_SHIFT, 1);
253         if (ret == 1 && logical >= zone->start && logical <= zone->end) {
254                 kref_get(&zone->refcnt);
255                 spin_unlock(&fs_info->reada_lock);
256                 return zone;
257         }
258
259         spin_unlock(&fs_info->reada_lock);
260
261         cache = btrfs_lookup_block_group(fs_info, logical);
262         if (!cache)
263                 return NULL;
264
265         start = cache->key.objectid;
266         end = start + cache->key.offset - 1;
267         btrfs_put_block_group(cache);
268
269         zone = kzalloc(sizeof(*zone), GFP_KERNEL);
270         if (!zone)
271                 return NULL;
272
273         zone->start = start;
274         zone->end = end;
275         INIT_LIST_HEAD(&zone->list);
276         spin_lock_init(&zone->lock);
277         zone->locked = 0;
278         kref_init(&zone->refcnt);
279         zone->elems = 0;
280         zone->device = dev; /* our device always sits at index 0 */
281         for (i = 0; i < bbio->num_stripes; ++i) {
282                 /* bounds have already been checked */
283                 zone->devs[i] = bbio->stripes[i].dev;
284         }
285         zone->ndevs = bbio->num_stripes;
286
287         spin_lock(&fs_info->reada_lock);
288         ret = radix_tree_insert(&dev->reada_zones,
289                                 (unsigned long)(zone->end >> PAGE_SHIFT),
290                                 zone);
291
292         if (ret == -EEXIST) {
293                 kfree(zone);
294                 ret = radix_tree_gang_lookup(&dev->reada_zones, (void **)&zone,
295                                              logical >> PAGE_SHIFT, 1);
296                 if (ret == 1 && logical >= zone->start && logical <= zone->end)
297                         kref_get(&zone->refcnt);
298                 else
299                         zone = NULL;
300         }
301         spin_unlock(&fs_info->reada_lock);
302
303         return zone;
304 }
305
306 static struct reada_extent *reada_find_extent(struct btrfs_fs_info *fs_info,
307                                               u64 logical,
308                                               struct btrfs_key *top)
309 {
310         int ret;
311         struct reada_extent *re = NULL;
312         struct reada_extent *re_exist = NULL;
313         struct btrfs_bio *bbio = NULL;
314         struct btrfs_device *dev;
315         struct btrfs_device *prev_dev;
316         u32 blocksize;
317         u64 length;
318         int real_stripes;
319         int nzones = 0;
320         unsigned long index = logical >> PAGE_SHIFT;
321         int dev_replace_is_ongoing;
322         int have_zone = 0;
323
324         spin_lock(&fs_info->reada_lock);
325         re = radix_tree_lookup(&fs_info->reada_tree, index);
326         if (re)
327                 re->refcnt++;
328         spin_unlock(&fs_info->reada_lock);
329
330         if (re)
331                 return re;
332
333         re = kzalloc(sizeof(*re), GFP_KERNEL);
334         if (!re)
335                 return NULL;
336
337         blocksize = fs_info->nodesize;
338         re->logical = logical;
339         re->top = *top;
340         INIT_LIST_HEAD(&re->extctl);
341         spin_lock_init(&re->lock);
342         re->refcnt = 1;
343
344         /*
345          * map block
346          */
347         length = blocksize;
348         ret = btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical,
349                         &length, &bbio, 0);
350         if (ret || !bbio || length < blocksize)
351                 goto error;
352
353         if (bbio->num_stripes > BTRFS_MAX_MIRRORS) {
354                 btrfs_err(fs_info,
355                            "readahead: more than %d copies not supported",
356                            BTRFS_MAX_MIRRORS);
357                 goto error;
358         }
359
360         real_stripes = bbio->num_stripes - bbio->num_tgtdevs;
361         for (nzones = 0; nzones < real_stripes; ++nzones) {
362                 struct reada_zone *zone;
363
364                 dev = bbio->stripes[nzones].dev;
365
366                 /* cannot read ahead on missing device. */
367                  if (!dev->bdev)
368                         continue;
369
370                 zone = reada_find_zone(fs_info, dev, logical, bbio);
371                 if (!zone)
372                         continue;
373
374                 re->zones[re->nzones++] = zone;
375                 spin_lock(&zone->lock);
376                 if (!zone->elems)
377                         kref_get(&zone->refcnt);
378                 ++zone->elems;
379                 spin_unlock(&zone->lock);
380                 spin_lock(&fs_info->reada_lock);
381                 kref_put(&zone->refcnt, reada_zone_release);
382                 spin_unlock(&fs_info->reada_lock);
383         }
384         if (re->nzones == 0) {
385                 /* not a single zone found, error and out */
386                 goto error;
387         }
388
389         /* insert extent in reada_tree + all per-device trees, all or nothing */
390         btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
391         spin_lock(&fs_info->reada_lock);
392         ret = radix_tree_insert(&fs_info->reada_tree, index, re);
393         if (ret == -EEXIST) {
394                 re_exist = radix_tree_lookup(&fs_info->reada_tree, index);
395                 re_exist->refcnt++;
396                 spin_unlock(&fs_info->reada_lock);
397                 btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
398                 goto error;
399         }
400         if (ret) {
401                 spin_unlock(&fs_info->reada_lock);
402                 btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
403                 goto error;
404         }
405         prev_dev = NULL;
406         dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(
407                         &fs_info->dev_replace);
408         for (nzones = 0; nzones < re->nzones; ++nzones) {
409                 dev = re->zones[nzones]->device;
410
411                 if (dev == prev_dev) {
412                         /*
413                          * in case of DUP, just add the first zone. As both
414                          * are on the same device, there's nothing to gain
415                          * from adding both.
416                          * Also, it wouldn't work, as the tree is per device
417                          * and adding would fail with EEXIST
418                          */
419                         continue;
420                 }
421                 if (!dev->bdev)
422                         continue;
423
424                 if (dev_replace_is_ongoing &&
425                     dev == fs_info->dev_replace.tgtdev) {
426                         /*
427                          * as this device is selected for reading only as
428                          * a last resort, skip it for read ahead.
429                          */
430                         continue;
431                 }
432                 prev_dev = dev;
433                 ret = radix_tree_insert(&dev->reada_extents, index, re);
434                 if (ret) {
435                         while (--nzones >= 0) {
436                                 dev = re->zones[nzones]->device;
437                                 BUG_ON(dev == NULL);
438                                 /* ignore whether the entry was inserted */
439                                 radix_tree_delete(&dev->reada_extents, index);
440                         }
441                         radix_tree_delete(&fs_info->reada_tree, index);
442                         spin_unlock(&fs_info->reada_lock);
443                         btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
444                         goto error;
445                 }
446                 have_zone = 1;
447         }
448         spin_unlock(&fs_info->reada_lock);
449         btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
450
451         if (!have_zone)
452                 goto error;
453
454         btrfs_put_bbio(bbio);
455         return re;
456
457 error:
458         for (nzones = 0; nzones < re->nzones; ++nzones) {
459                 struct reada_zone *zone;
460
461                 zone = re->zones[nzones];
462                 kref_get(&zone->refcnt);
463                 spin_lock(&zone->lock);
464                 --zone->elems;
465                 if (zone->elems == 0) {
466                         /*
467                          * no fs_info->reada_lock needed, as this can't be
468                          * the last ref
469                          */
470                         kref_put(&zone->refcnt, reada_zone_release);
471                 }
472                 spin_unlock(&zone->lock);
473
474                 spin_lock(&fs_info->reada_lock);
475                 kref_put(&zone->refcnt, reada_zone_release);
476                 spin_unlock(&fs_info->reada_lock);
477         }
478         btrfs_put_bbio(bbio);
479         kfree(re);
480         return re_exist;
481 }
482
483 static void reada_extent_put(struct btrfs_fs_info *fs_info,
484                              struct reada_extent *re)
485 {
486         int i;
487         unsigned long index = re->logical >> PAGE_SHIFT;
488
489         spin_lock(&fs_info->reada_lock);
490         if (--re->refcnt) {
491                 spin_unlock(&fs_info->reada_lock);
492                 return;
493         }
494
495         radix_tree_delete(&fs_info->reada_tree, index);
496         for (i = 0; i < re->nzones; ++i) {
497                 struct reada_zone *zone = re->zones[i];
498
499                 radix_tree_delete(&zone->device->reada_extents, index);
500         }
501
502         spin_unlock(&fs_info->reada_lock);
503
504         for (i = 0; i < re->nzones; ++i) {
505                 struct reada_zone *zone = re->zones[i];
506
507                 kref_get(&zone->refcnt);
508                 spin_lock(&zone->lock);
509                 --zone->elems;
510                 if (zone->elems == 0) {
511                         /* no fs_info->reada_lock needed, as this can't be
512                          * the last ref */
513                         kref_put(&zone->refcnt, reada_zone_release);
514                 }
515                 spin_unlock(&zone->lock);
516
517                 spin_lock(&fs_info->reada_lock);
518                 kref_put(&zone->refcnt, reada_zone_release);
519                 spin_unlock(&fs_info->reada_lock);
520         }
521
522         kfree(re);
523 }
524
525 static void reada_zone_release(struct kref *kref)
526 {
527         struct reada_zone *zone = container_of(kref, struct reada_zone, refcnt);
528
529         radix_tree_delete(&zone->device->reada_zones,
530                           zone->end >> PAGE_SHIFT);
531
532         kfree(zone);
533 }
534
535 static void reada_control_release(struct kref *kref)
536 {
537         struct reada_control *rc = container_of(kref, struct reada_control,
538                                                 refcnt);
539
540         kfree(rc);
541 }
542
543 static int reada_add_block(struct reada_control *rc, u64 logical,
544                            struct btrfs_key *top, u64 generation)
545 {
546         struct btrfs_fs_info *fs_info = rc->fs_info;
547         struct reada_extent *re;
548         struct reada_extctl *rec;
549
550         /* takes one ref */
551         re = reada_find_extent(fs_info, logical, top);
552         if (!re)
553                 return -1;
554
555         rec = kzalloc(sizeof(*rec), GFP_KERNEL);
556         if (!rec) {
557                 reada_extent_put(fs_info, re);
558                 return -ENOMEM;
559         }
560
561         rec->rc = rc;
562         rec->generation = generation;
563         atomic_inc(&rc->elems);
564
565         spin_lock(&re->lock);
566         list_add_tail(&rec->list, &re->extctl);
567         spin_unlock(&re->lock);
568
569         /* leave the ref on the extent */
570
571         return 0;
572 }
573
574 /*
575  * called with fs_info->reada_lock held
576  */
577 static void reada_peer_zones_set_lock(struct reada_zone *zone, int lock)
578 {
579         int i;
580         unsigned long index = zone->end >> PAGE_SHIFT;
581
582         for (i = 0; i < zone->ndevs; ++i) {
583                 struct reada_zone *peer;
584                 peer = radix_tree_lookup(&zone->devs[i]->reada_zones, index);
585                 if (peer && peer->device != zone->device)
586                         peer->locked = lock;
587         }
588 }
589
590 /*
591  * called with fs_info->reada_lock held
592  */
593 static int reada_pick_zone(struct btrfs_device *dev)
594 {
595         struct reada_zone *top_zone = NULL;
596         struct reada_zone *top_locked_zone = NULL;
597         u64 top_elems = 0;
598         u64 top_locked_elems = 0;
599         unsigned long index = 0;
600         int ret;
601
602         if (dev->reada_curr_zone) {
603                 reada_peer_zones_set_lock(dev->reada_curr_zone, 0);
604                 kref_put(&dev->reada_curr_zone->refcnt, reada_zone_release);
605                 dev->reada_curr_zone = NULL;
606         }
607         /* pick the zone with the most elements */
608         while (1) {
609                 struct reada_zone *zone;
610
611                 ret = radix_tree_gang_lookup(&dev->reada_zones,
612                                              (void **)&zone, index, 1);
613                 if (ret == 0)
614                         break;
615                 index = (zone->end >> PAGE_SHIFT) + 1;
616                 if (zone->locked) {
617                         if (zone->elems > top_locked_elems) {
618                                 top_locked_elems = zone->elems;
619                                 top_locked_zone = zone;
620                         }
621                 } else {
622                         if (zone->elems > top_elems) {
623                                 top_elems = zone->elems;
624                                 top_zone = zone;
625                         }
626                 }
627         }
628         if (top_zone)
629                 dev->reada_curr_zone = top_zone;
630         else if (top_locked_zone)
631                 dev->reada_curr_zone = top_locked_zone;
632         else
633                 return 0;
634
635         dev->reada_next = dev->reada_curr_zone->start;
636         kref_get(&dev->reada_curr_zone->refcnt);
637         reada_peer_zones_set_lock(dev->reada_curr_zone, 1);
638
639         return 1;
640 }
641
642 static int reada_start_machine_dev(struct btrfs_fs_info *fs_info,
643                                    struct btrfs_device *dev)
644 {
645         struct reada_extent *re = NULL;
646         int mirror_num = 0;
647         struct extent_buffer *eb = NULL;
648         u64 logical;
649         int ret;
650         int i;
651
652         spin_lock(&fs_info->reada_lock);
653         if (dev->reada_curr_zone == NULL) {
654                 ret = reada_pick_zone(dev);
655                 if (!ret) {
656                         spin_unlock(&fs_info->reada_lock);
657                         return 0;
658                 }
659         }
660         /*
661          * FIXME currently we issue the reads one extent at a time. If we have
662          * a contiguous block of extents, we could also coagulate them or use
663          * plugging to speed things up
664          */
665         ret = radix_tree_gang_lookup(&dev->reada_extents, (void **)&re,
666                                      dev->reada_next >> PAGE_SHIFT, 1);
667         if (ret == 0 || re->logical > dev->reada_curr_zone->end) {
668                 ret = reada_pick_zone(dev);
669                 if (!ret) {
670                         spin_unlock(&fs_info->reada_lock);
671                         return 0;
672                 }
673                 re = NULL;
674                 ret = radix_tree_gang_lookup(&dev->reada_extents, (void **)&re,
675                                         dev->reada_next >> PAGE_SHIFT, 1);
676         }
677         if (ret == 0) {
678                 spin_unlock(&fs_info->reada_lock);
679                 return 0;
680         }
681         dev->reada_next = re->logical + fs_info->nodesize;
682         re->refcnt++;
683
684         spin_unlock(&fs_info->reada_lock);
685
686         spin_lock(&re->lock);
687         if (re->scheduled || list_empty(&re->extctl)) {
688                 spin_unlock(&re->lock);
689                 reada_extent_put(fs_info, re);
690                 return 0;
691         }
692         re->scheduled = 1;
693         spin_unlock(&re->lock);
694
695         /*
696          * find mirror num
697          */
698         for (i = 0; i < re->nzones; ++i) {
699                 if (re->zones[i]->device == dev) {
700                         mirror_num = i + 1;
701                         break;
702                 }
703         }
704         logical = re->logical;
705
706         atomic_inc(&dev->reada_in_flight);
707         ret = reada_tree_block_flagged(fs_info, logical, mirror_num, &eb);
708         if (ret)
709                 __readahead_hook(fs_info, re, NULL, ret);
710         else if (eb)
711                 __readahead_hook(fs_info, re, eb, ret);
712
713         if (eb)
714                 free_extent_buffer(eb);
715
716         atomic_dec(&dev->reada_in_flight);
717         reada_extent_put(fs_info, re);
718
719         return 1;
720
721 }
722
723 static void reada_start_machine_worker(struct btrfs_work *work)
724 {
725         struct reada_machine_work *rmw;
726         struct btrfs_fs_info *fs_info;
727         int old_ioprio;
728
729         rmw = container_of(work, struct reada_machine_work, work);
730         fs_info = rmw->fs_info;
731
732         kfree(rmw);
733
734         old_ioprio = IOPRIO_PRIO_VALUE(task_nice_ioclass(current),
735                                        task_nice_ioprio(current));
736         set_task_ioprio(current, BTRFS_IOPRIO_READA);
737         __reada_start_machine(fs_info);
738         set_task_ioprio(current, old_ioprio);
739
740         atomic_dec(&fs_info->reada_works_cnt);
741 }
742
743 static void __reada_start_machine(struct btrfs_fs_info *fs_info)
744 {
745         struct btrfs_device *device;
746         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
747         u64 enqueued;
748         u64 total = 0;
749         int i;
750
751         do {
752                 enqueued = 0;
753                 mutex_lock(&fs_devices->device_list_mutex);
754                 list_for_each_entry(device, &fs_devices->devices, dev_list) {
755                         if (atomic_read(&device->reada_in_flight) <
756                             MAX_IN_FLIGHT)
757                                 enqueued += reada_start_machine_dev(fs_info,
758                                                                     device);
759                 }
760                 mutex_unlock(&fs_devices->device_list_mutex);
761                 total += enqueued;
762         } while (enqueued && total < 10000);
763
764         if (enqueued == 0)
765                 return;
766
767         /*
768          * If everything is already in the cache, this is effectively single
769          * threaded. To a) not hold the caller for too long and b) to utilize
770          * more cores, we broke the loop above after 10000 iterations and now
771          * enqueue to workers to finish it. This will distribute the load to
772          * the cores.
773          */
774         for (i = 0; i < 2; ++i) {
775                 reada_start_machine(fs_info);
776                 if (atomic_read(&fs_info->reada_works_cnt) >
777                     BTRFS_MAX_MIRRORS * 2)
778                         break;
779         }
780 }
781
782 static void reada_start_machine(struct btrfs_fs_info *fs_info)
783 {
784         struct reada_machine_work *rmw;
785
786         rmw = kzalloc(sizeof(*rmw), GFP_KERNEL);
787         if (!rmw) {
788                 /* FIXME we cannot handle this properly right now */
789                 BUG();
790         }
791         btrfs_init_work(&rmw->work, btrfs_readahead_helper,
792                         reada_start_machine_worker, NULL, NULL);
793         rmw->fs_info = fs_info;
794
795         btrfs_queue_work(fs_info->readahead_workers, &rmw->work);
796         atomic_inc(&fs_info->reada_works_cnt);
797 }
798
799 #ifdef DEBUG
800 static void dump_devs(struct btrfs_fs_info *fs_info, int all)
801 {
802         struct btrfs_device *device;
803         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
804         unsigned long index;
805         int ret;
806         int i;
807         int j;
808         int cnt;
809
810         spin_lock(&fs_info->reada_lock);
811         list_for_each_entry(device, &fs_devices->devices, dev_list) {
812                 btrfs_debug(fs_info, "dev %lld has %d in flight", device->devid,
813                         atomic_read(&device->reada_in_flight));
814                 index = 0;
815                 while (1) {
816                         struct reada_zone *zone;
817                         ret = radix_tree_gang_lookup(&device->reada_zones,
818                                                      (void **)&zone, index, 1);
819                         if (ret == 0)
820                                 break;
821                         pr_debug("  zone %llu-%llu elems %llu locked %d devs",
822                                     zone->start, zone->end, zone->elems,
823                                     zone->locked);
824                         for (j = 0; j < zone->ndevs; ++j) {
825                                 pr_cont(" %lld",
826                                         zone->devs[j]->devid);
827                         }
828                         if (device->reada_curr_zone == zone)
829                                 pr_cont(" curr off %llu",
830                                         device->reada_next - zone->start);
831                         pr_cont("\n");
832                         index = (zone->end >> PAGE_SHIFT) + 1;
833                 }
834                 cnt = 0;
835                 index = 0;
836                 while (all) {
837                         struct reada_extent *re = NULL;
838
839                         ret = radix_tree_gang_lookup(&device->reada_extents,
840                                                      (void **)&re, index, 1);
841                         if (ret == 0)
842                                 break;
843                         pr_debug("  re: logical %llu size %u empty %d scheduled %d",
844                                 re->logical, fs_info->nodesize,
845                                 list_empty(&re->extctl), re->scheduled);
846
847                         for (i = 0; i < re->nzones; ++i) {
848                                 pr_cont(" zone %llu-%llu devs",
849                                         re->zones[i]->start,
850                                         re->zones[i]->end);
851                                 for (j = 0; j < re->zones[i]->ndevs; ++j) {
852                                         pr_cont(" %lld",
853                                                 re->zones[i]->devs[j]->devid);
854                                 }
855                         }
856                         pr_cont("\n");
857                         index = (re->logical >> PAGE_SHIFT) + 1;
858                         if (++cnt > 15)
859                                 break;
860                 }
861         }
862
863         index = 0;
864         cnt = 0;
865         while (all) {
866                 struct reada_extent *re = NULL;
867
868                 ret = radix_tree_gang_lookup(&fs_info->reada_tree, (void **)&re,
869                                              index, 1);
870                 if (ret == 0)
871                         break;
872                 if (!re->scheduled) {
873                         index = (re->logical >> PAGE_SHIFT) + 1;
874                         continue;
875                 }
876                 pr_debug("re: logical %llu size %u list empty %d scheduled %d",
877                         re->logical, fs_info->nodesize,
878                         list_empty(&re->extctl), re->scheduled);
879                 for (i = 0; i < re->nzones; ++i) {
880                         pr_cont(" zone %llu-%llu devs",
881                                 re->zones[i]->start,
882                                 re->zones[i]->end);
883                         for (j = 0; j < re->zones[i]->ndevs; ++j) {
884                                 pr_cont(" %lld",
885                                        re->zones[i]->devs[j]->devid);
886                         }
887                 }
888                 pr_cont("\n");
889                 index = (re->logical >> PAGE_SHIFT) + 1;
890         }
891         spin_unlock(&fs_info->reada_lock);
892 }
893 #endif
894
895 /*
896  * interface
897  */
898 struct reada_control *btrfs_reada_add(struct btrfs_root *root,
899                         struct btrfs_key *key_start, struct btrfs_key *key_end)
900 {
901         struct reada_control *rc;
902         u64 start;
903         u64 generation;
904         int ret;
905         struct extent_buffer *node;
906         static struct btrfs_key max_key = {
907                 .objectid = (u64)-1,
908                 .type = (u8)-1,
909                 .offset = (u64)-1
910         };
911
912         rc = kzalloc(sizeof(*rc), GFP_KERNEL);
913         if (!rc)
914                 return ERR_PTR(-ENOMEM);
915
916         rc->fs_info = root->fs_info;
917         rc->key_start = *key_start;
918         rc->key_end = *key_end;
919         atomic_set(&rc->elems, 0);
920         init_waitqueue_head(&rc->wait);
921         kref_init(&rc->refcnt);
922         kref_get(&rc->refcnt); /* one ref for having elements */
923
924         node = btrfs_root_node(root);
925         start = node->start;
926         generation = btrfs_header_generation(node);
927         free_extent_buffer(node);
928
929         ret = reada_add_block(rc, start, &max_key, generation);
930         if (ret) {
931                 kfree(rc);
932                 return ERR_PTR(ret);
933         }
934
935         reada_start_machine(root->fs_info);
936
937         return rc;
938 }
939
940 #ifdef DEBUG
941 int btrfs_reada_wait(void *handle)
942 {
943         struct reada_control *rc = handle;
944         struct btrfs_fs_info *fs_info = rc->fs_info;
945
946         while (atomic_read(&rc->elems)) {
947                 if (!atomic_read(&fs_info->reada_works_cnt))
948                         reada_start_machine(fs_info);
949                 wait_event_timeout(rc->wait, atomic_read(&rc->elems) == 0,
950                                    5 * HZ);
951                 dump_devs(fs_info, atomic_read(&rc->elems) < 10 ? 1 : 0);
952         }
953
954         dump_devs(fs_info, atomic_read(&rc->elems) < 10 ? 1 : 0);
955
956         kref_put(&rc->refcnt, reada_control_release);
957
958         return 0;
959 }
960 #else
961 int btrfs_reada_wait(void *handle)
962 {
963         struct reada_control *rc = handle;
964         struct btrfs_fs_info *fs_info = rc->fs_info;
965
966         while (atomic_read(&rc->elems)) {
967                 if (!atomic_read(&fs_info->reada_works_cnt))
968                         reada_start_machine(fs_info);
969                 wait_event_timeout(rc->wait, atomic_read(&rc->elems) == 0,
970                                    (HZ + 9) / 10);
971         }
972
973         kref_put(&rc->refcnt, reada_control_release);
974
975         return 0;
976 }
977 #endif
978
979 void btrfs_reada_detach(void *handle)
980 {
981         struct reada_control *rc = handle;
982
983         kref_put(&rc->refcnt, reada_control_release);
984 }