2 * Copyright (C) 2011, 2012 STRATO. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/blkdev.h>
20 #include <linux/ratelimit.h>
24 #include "ordered-data.h"
25 #include "transaction.h"
27 #include "extent_io.h"
28 #include "dev-replace.h"
29 #include "check-integrity.h"
30 #include "rcu-string.h"
34 * This is only the first step towards a full-features scrub. It reads all
35 * extent and super block and verifies the checksums. In case a bad checksum
36 * is found or the extent cannot be read, good data will be written back if
39 * Future enhancements:
40 * - In case an unrepairable extent is encountered, track which files are
41 * affected and report them
42 * - track and record media errors, throw out bad devices
43 * - add a mode to also read unallocated space
50 * the following three values only influence the performance.
51 * The last one configures the number of parallel and outstanding I/O
52 * operations. The first two values configure an upper limit for the number
53 * of (dynamically allocated) pages that are added to a bio.
55 #define SCRUB_PAGES_PER_RD_BIO 32 /* 128k per bio */
56 #define SCRUB_PAGES_PER_WR_BIO 32 /* 128k per bio */
57 #define SCRUB_BIOS_PER_SCTX 64 /* 8MB per device in flight */
60 * the following value times PAGE_SIZE needs to be large enough to match the
61 * largest node/leaf/sector size that shall be supported.
62 * Values larger than BTRFS_STRIPE_LEN are not supported.
64 #define SCRUB_MAX_PAGES_PER_BLOCK 16 /* 64k per node/leaf/sector */
67 struct scrub_block *sblock;
69 struct btrfs_device *dev;
70 u64 flags; /* extent flags */
74 u64 physical_for_dev_replace;
77 unsigned int mirror_num:8;
78 unsigned int have_csum:1;
79 unsigned int io_error:1;
81 u8 csum[BTRFS_CSUM_SIZE];
86 struct scrub_ctx *sctx;
87 struct btrfs_device *dev;
92 #if SCRUB_PAGES_PER_WR_BIO >= SCRUB_PAGES_PER_RD_BIO
93 struct scrub_page *pagev[SCRUB_PAGES_PER_WR_BIO];
95 struct scrub_page *pagev[SCRUB_PAGES_PER_RD_BIO];
99 struct btrfs_work work;
103 struct scrub_page *pagev[SCRUB_MAX_PAGES_PER_BLOCK];
105 atomic_t outstanding_pages;
106 atomic_t ref_count; /* free mem on transition to zero */
107 struct scrub_ctx *sctx;
109 unsigned int header_error:1;
110 unsigned int checksum_error:1;
111 unsigned int no_io_error_seen:1;
112 unsigned int generation_error:1; /* also sets header_error */
116 struct scrub_wr_ctx {
117 struct scrub_bio *wr_curr_bio;
118 struct btrfs_device *tgtdev;
119 int pages_per_wr_bio; /* <= SCRUB_PAGES_PER_WR_BIO */
120 atomic_t flush_all_writes;
121 struct mutex wr_lock;
125 struct scrub_bio *bios[SCRUB_BIOS_PER_SCTX];
126 struct btrfs_root *dev_root;
129 atomic_t bios_in_flight;
130 atomic_t workers_pending;
131 spinlock_t list_lock;
132 wait_queue_head_t list_wait;
134 struct list_head csum_list;
137 int pages_per_rd_bio;
143 struct scrub_wr_ctx wr_ctx;
148 struct btrfs_scrub_progress stat;
149 spinlock_t stat_lock;
152 struct scrub_fixup_nodatasum {
153 struct scrub_ctx *sctx;
154 struct btrfs_device *dev;
156 struct btrfs_root *root;
157 struct btrfs_work work;
161 struct scrub_nocow_inode {
165 struct list_head list;
168 struct scrub_copy_nocow_ctx {
169 struct scrub_ctx *sctx;
173 u64 physical_for_dev_replace;
174 struct list_head inodes;
175 struct btrfs_work work;
178 struct scrub_warning {
179 struct btrfs_path *path;
180 u64 extent_item_size;
186 struct btrfs_device *dev;
192 static void scrub_pending_bio_inc(struct scrub_ctx *sctx);
193 static void scrub_pending_bio_dec(struct scrub_ctx *sctx);
194 static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx);
195 static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx);
196 static int scrub_handle_errored_block(struct scrub_block *sblock_to_check);
197 static int scrub_setup_recheck_block(struct scrub_ctx *sctx,
198 struct btrfs_fs_info *fs_info,
199 struct scrub_block *original_sblock,
200 u64 length, u64 logical,
201 struct scrub_block *sblocks_for_recheck);
202 static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
203 struct scrub_block *sblock, int is_metadata,
204 int have_csum, u8 *csum, u64 generation,
206 static void scrub_recheck_block_checksum(struct btrfs_fs_info *fs_info,
207 struct scrub_block *sblock,
208 int is_metadata, int have_csum,
209 const u8 *csum, u64 generation,
211 static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
212 struct scrub_block *sblock_good,
214 static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
215 struct scrub_block *sblock_good,
216 int page_num, int force_write);
217 static void scrub_write_block_to_dev_replace(struct scrub_block *sblock);
218 static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
220 static int scrub_checksum_data(struct scrub_block *sblock);
221 static int scrub_checksum_tree_block(struct scrub_block *sblock);
222 static int scrub_checksum_super(struct scrub_block *sblock);
223 static void scrub_block_get(struct scrub_block *sblock);
224 static void scrub_block_put(struct scrub_block *sblock);
225 static void scrub_page_get(struct scrub_page *spage);
226 static void scrub_page_put(struct scrub_page *spage);
227 static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
228 struct scrub_page *spage);
229 static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
230 u64 physical, struct btrfs_device *dev, u64 flags,
231 u64 gen, int mirror_num, u8 *csum, int force,
232 u64 physical_for_dev_replace);
233 static void scrub_bio_end_io(struct bio *bio, int err);
234 static void scrub_bio_end_io_worker(struct btrfs_work *work);
235 static void scrub_block_complete(struct scrub_block *sblock);
236 static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
237 u64 extent_logical, u64 extent_len,
238 u64 *extent_physical,
239 struct btrfs_device **extent_dev,
240 int *extent_mirror_num);
241 static int scrub_setup_wr_ctx(struct scrub_ctx *sctx,
242 struct scrub_wr_ctx *wr_ctx,
243 struct btrfs_fs_info *fs_info,
244 struct btrfs_device *dev,
246 static void scrub_free_wr_ctx(struct scrub_wr_ctx *wr_ctx);
247 static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
248 struct scrub_page *spage);
249 static void scrub_wr_submit(struct scrub_ctx *sctx);
250 static void scrub_wr_bio_end_io(struct bio *bio, int err);
251 static void scrub_wr_bio_end_io_worker(struct btrfs_work *work);
252 static int write_page_nocow(struct scrub_ctx *sctx,
253 u64 physical_for_dev_replace, struct page *page);
254 static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root,
255 struct scrub_copy_nocow_ctx *ctx);
256 static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
257 int mirror_num, u64 physical_for_dev_replace);
258 static void copy_nocow_pages_worker(struct btrfs_work *work);
259 static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
260 static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
263 static void scrub_pending_bio_inc(struct scrub_ctx *sctx)
265 atomic_inc(&sctx->bios_in_flight);
268 static void scrub_pending_bio_dec(struct scrub_ctx *sctx)
270 atomic_dec(&sctx->bios_in_flight);
271 wake_up(&sctx->list_wait);
274 static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
276 while (atomic_read(&fs_info->scrub_pause_req)) {
277 mutex_unlock(&fs_info->scrub_lock);
278 wait_event(fs_info->scrub_pause_wait,
279 atomic_read(&fs_info->scrub_pause_req) == 0);
280 mutex_lock(&fs_info->scrub_lock);
284 static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
286 atomic_inc(&fs_info->scrubs_paused);
287 wake_up(&fs_info->scrub_pause_wait);
289 mutex_lock(&fs_info->scrub_lock);
290 __scrub_blocked_if_needed(fs_info);
291 atomic_dec(&fs_info->scrubs_paused);
292 mutex_unlock(&fs_info->scrub_lock);
294 wake_up(&fs_info->scrub_pause_wait);
298 * used for workers that require transaction commits (i.e., for the
301 static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx)
303 struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
306 * increment scrubs_running to prevent cancel requests from
307 * completing as long as a worker is running. we must also
308 * increment scrubs_paused to prevent deadlocking on pause
309 * requests used for transactions commits (as the worker uses a
310 * transaction context). it is safe to regard the worker
311 * as paused for all matters practical. effectively, we only
312 * avoid cancellation requests from completing.
314 mutex_lock(&fs_info->scrub_lock);
315 atomic_inc(&fs_info->scrubs_running);
316 atomic_inc(&fs_info->scrubs_paused);
317 mutex_unlock(&fs_info->scrub_lock);
320 * check if @scrubs_running=@scrubs_paused condition
321 * inside wait_event() is not an atomic operation.
322 * which means we may inc/dec @scrub_running/paused
323 * at any time. Let's wake up @scrub_pause_wait as
324 * much as we can to let commit transaction blocked less.
326 wake_up(&fs_info->scrub_pause_wait);
328 atomic_inc(&sctx->workers_pending);
331 /* used for workers that require transaction commits */
332 static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx)
334 struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
337 * see scrub_pending_trans_workers_inc() why we're pretending
338 * to be paused in the scrub counters
340 mutex_lock(&fs_info->scrub_lock);
341 atomic_dec(&fs_info->scrubs_running);
342 atomic_dec(&fs_info->scrubs_paused);
343 mutex_unlock(&fs_info->scrub_lock);
344 atomic_dec(&sctx->workers_pending);
345 wake_up(&fs_info->scrub_pause_wait);
346 wake_up(&sctx->list_wait);
349 static void scrub_free_csums(struct scrub_ctx *sctx)
351 while (!list_empty(&sctx->csum_list)) {
352 struct btrfs_ordered_sum *sum;
353 sum = list_first_entry(&sctx->csum_list,
354 struct btrfs_ordered_sum, list);
355 list_del(&sum->list);
360 static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
367 scrub_free_wr_ctx(&sctx->wr_ctx);
369 /* this can happen when scrub is cancelled */
370 if (sctx->curr != -1) {
371 struct scrub_bio *sbio = sctx->bios[sctx->curr];
373 for (i = 0; i < sbio->page_count; i++) {
374 WARN_ON(!sbio->pagev[i]->page);
375 scrub_block_put(sbio->pagev[i]->sblock);
380 for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
381 struct scrub_bio *sbio = sctx->bios[i];
388 scrub_free_csums(sctx);
392 static noinline_for_stack
393 struct scrub_ctx *scrub_setup_ctx(struct btrfs_device *dev, int is_dev_replace)
395 struct scrub_ctx *sctx;
397 struct btrfs_fs_info *fs_info = dev->dev_root->fs_info;
398 int pages_per_rd_bio;
402 * the setting of pages_per_rd_bio is correct for scrub but might
403 * be wrong for the dev_replace code where we might read from
404 * different devices in the initial huge bios. However, that
405 * code is able to correctly handle the case when adding a page
409 pages_per_rd_bio = min_t(int, SCRUB_PAGES_PER_RD_BIO,
410 bio_get_nr_vecs(dev->bdev));
412 pages_per_rd_bio = SCRUB_PAGES_PER_RD_BIO;
413 sctx = kzalloc(sizeof(*sctx), GFP_NOFS);
416 sctx->is_dev_replace = is_dev_replace;
417 sctx->pages_per_rd_bio = pages_per_rd_bio;
419 sctx->dev_root = dev->dev_root;
420 for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
421 struct scrub_bio *sbio;
423 sbio = kzalloc(sizeof(*sbio), GFP_NOFS);
426 sctx->bios[i] = sbio;
430 sbio->page_count = 0;
431 btrfs_init_work(&sbio->work, scrub_bio_end_io_worker,
434 if (i != SCRUB_BIOS_PER_SCTX - 1)
435 sctx->bios[i]->next_free = i + 1;
437 sctx->bios[i]->next_free = -1;
439 sctx->first_free = 0;
440 sctx->nodesize = dev->dev_root->nodesize;
441 sctx->leafsize = dev->dev_root->leafsize;
442 sctx->sectorsize = dev->dev_root->sectorsize;
443 atomic_set(&sctx->bios_in_flight, 0);
444 atomic_set(&sctx->workers_pending, 0);
445 atomic_set(&sctx->cancel_req, 0);
446 sctx->csum_size = btrfs_super_csum_size(fs_info->super_copy);
447 INIT_LIST_HEAD(&sctx->csum_list);
449 spin_lock_init(&sctx->list_lock);
450 spin_lock_init(&sctx->stat_lock);
451 init_waitqueue_head(&sctx->list_wait);
453 ret = scrub_setup_wr_ctx(sctx, &sctx->wr_ctx, fs_info,
454 fs_info->dev_replace.tgtdev, is_dev_replace);
456 scrub_free_ctx(sctx);
462 scrub_free_ctx(sctx);
463 return ERR_PTR(-ENOMEM);
466 static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root,
473 struct extent_buffer *eb;
474 struct btrfs_inode_item *inode_item;
475 struct scrub_warning *swarn = warn_ctx;
476 struct btrfs_fs_info *fs_info = swarn->dev->dev_root->fs_info;
477 struct inode_fs_paths *ipath = NULL;
478 struct btrfs_root *local_root;
479 struct btrfs_key root_key;
481 root_key.objectid = root;
482 root_key.type = BTRFS_ROOT_ITEM_KEY;
483 root_key.offset = (u64)-1;
484 local_root = btrfs_read_fs_root_no_name(fs_info, &root_key);
485 if (IS_ERR(local_root)) {
486 ret = PTR_ERR(local_root);
490 ret = inode_item_info(inum, 0, local_root, swarn->path);
492 btrfs_release_path(swarn->path);
496 eb = swarn->path->nodes[0];
497 inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
498 struct btrfs_inode_item);
499 isize = btrfs_inode_size(eb, inode_item);
500 nlink = btrfs_inode_nlink(eb, inode_item);
501 btrfs_release_path(swarn->path);
503 ipath = init_ipath(4096, local_root, swarn->path);
505 ret = PTR_ERR(ipath);
509 ret = paths_from_inode(inum, ipath);
515 * we deliberately ignore the bit ipath might have been too small to
516 * hold all of the paths here
518 for (i = 0; i < ipath->fspath->elem_cnt; ++i)
519 printk_in_rcu(KERN_WARNING "BTRFS: %s at logical %llu on dev "
520 "%s, sector %llu, root %llu, inode %llu, offset %llu, "
521 "length %llu, links %u (path: %s)\n", swarn->errstr,
522 swarn->logical, rcu_str_deref(swarn->dev->name),
523 (unsigned long long)swarn->sector, root, inum, offset,
524 min(isize - offset, (u64)PAGE_SIZE), nlink,
525 (char *)(unsigned long)ipath->fspath->val[i]);
531 printk_in_rcu(KERN_WARNING "BTRFS: %s at logical %llu on dev "
532 "%s, sector %llu, root %llu, inode %llu, offset %llu: path "
533 "resolving failed with ret=%d\n", swarn->errstr,
534 swarn->logical, rcu_str_deref(swarn->dev->name),
535 (unsigned long long)swarn->sector, root, inum, offset, ret);
541 static void scrub_print_warning(const char *errstr, struct scrub_block *sblock)
543 struct btrfs_device *dev;
544 struct btrfs_fs_info *fs_info;
545 struct btrfs_path *path;
546 struct btrfs_key found_key;
547 struct extent_buffer *eb;
548 struct btrfs_extent_item *ei;
549 struct scrub_warning swarn;
550 unsigned long ptr = 0;
556 const int bufsize = 4096;
559 WARN_ON(sblock->page_count < 1);
560 dev = sblock->pagev[0]->dev;
561 fs_info = sblock->sctx->dev_root->fs_info;
563 path = btrfs_alloc_path();
565 swarn.scratch_buf = kmalloc(bufsize, GFP_NOFS);
566 swarn.msg_buf = kmalloc(bufsize, GFP_NOFS);
567 swarn.sector = (sblock->pagev[0]->physical) >> 9;
568 swarn.logical = sblock->pagev[0]->logical;
569 swarn.errstr = errstr;
571 swarn.msg_bufsize = bufsize;
572 swarn.scratch_bufsize = bufsize;
574 if (!path || !swarn.scratch_buf || !swarn.msg_buf)
577 ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
582 extent_item_pos = swarn.logical - found_key.objectid;
583 swarn.extent_item_size = found_key.offset;
586 ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
587 item_size = btrfs_item_size_nr(eb, path->slots[0]);
589 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
591 ret = tree_backref_for_extent(&ptr, eb, ei, item_size,
592 &ref_root, &ref_level);
593 printk_in_rcu(KERN_WARNING
594 "BTRFS: %s at logical %llu on dev %s, "
595 "sector %llu: metadata %s (level %d) in tree "
596 "%llu\n", errstr, swarn.logical,
597 rcu_str_deref(dev->name),
598 (unsigned long long)swarn.sector,
599 ref_level ? "node" : "leaf",
600 ret < 0 ? -1 : ref_level,
601 ret < 0 ? -1 : ref_root);
603 btrfs_release_path(path);
605 btrfs_release_path(path);
608 iterate_extent_inodes(fs_info, found_key.objectid,
610 scrub_print_warning_inode, &swarn);
614 btrfs_free_path(path);
615 kfree(swarn.scratch_buf);
616 kfree(swarn.msg_buf);
619 static int scrub_fixup_readpage(u64 inum, u64 offset, u64 root, void *fixup_ctx)
621 struct page *page = NULL;
623 struct scrub_fixup_nodatasum *fixup = fixup_ctx;
626 struct btrfs_key key;
627 struct inode *inode = NULL;
628 struct btrfs_fs_info *fs_info;
629 u64 end = offset + PAGE_SIZE - 1;
630 struct btrfs_root *local_root;
634 key.type = BTRFS_ROOT_ITEM_KEY;
635 key.offset = (u64)-1;
637 fs_info = fixup->root->fs_info;
638 srcu_index = srcu_read_lock(&fs_info->subvol_srcu);
640 local_root = btrfs_read_fs_root_no_name(fs_info, &key);
641 if (IS_ERR(local_root)) {
642 srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
643 return PTR_ERR(local_root);
646 key.type = BTRFS_INODE_ITEM_KEY;
649 inode = btrfs_iget(fs_info->sb, &key, local_root, NULL);
650 srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
652 return PTR_ERR(inode);
654 index = offset >> PAGE_CACHE_SHIFT;
656 page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
662 if (PageUptodate(page)) {
663 if (PageDirty(page)) {
665 * we need to write the data to the defect sector. the
666 * data that was in that sector is not in memory,
667 * because the page was modified. we must not write the
668 * modified page to that sector.
670 * TODO: what could be done here: wait for the delalloc
671 * runner to write out that page (might involve
672 * COW) and see whether the sector is still
673 * referenced afterwards.
675 * For the meantime, we'll treat this error
676 * incorrectable, although there is a chance that a
677 * later scrub will find the bad sector again and that
678 * there's no dirty page in memory, then.
683 fs_info = BTRFS_I(inode)->root->fs_info;
684 ret = repair_io_failure(fs_info, offset, PAGE_SIZE,
685 fixup->logical, page,
691 * we need to get good data first. the general readpage path
692 * will call repair_io_failure for us, we just have to make
693 * sure we read the bad mirror.
695 ret = set_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
696 EXTENT_DAMAGED, GFP_NOFS);
698 /* set_extent_bits should give proper error */
705 ret = extent_read_full_page(&BTRFS_I(inode)->io_tree, page,
708 wait_on_page_locked(page);
710 corrected = !test_range_bit(&BTRFS_I(inode)->io_tree, offset,
711 end, EXTENT_DAMAGED, 0, NULL);
713 clear_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
714 EXTENT_DAMAGED, GFP_NOFS);
726 if (ret == 0 && corrected) {
728 * we only need to call readpage for one of the inodes belonging
729 * to this extent. so make iterate_extent_inodes stop
737 static void scrub_fixup_nodatasum(struct btrfs_work *work)
740 struct scrub_fixup_nodatasum *fixup;
741 struct scrub_ctx *sctx;
742 struct btrfs_trans_handle *trans = NULL;
743 struct btrfs_path *path;
744 int uncorrectable = 0;
746 fixup = container_of(work, struct scrub_fixup_nodatasum, work);
749 path = btrfs_alloc_path();
751 spin_lock(&sctx->stat_lock);
752 ++sctx->stat.malloc_errors;
753 spin_unlock(&sctx->stat_lock);
758 trans = btrfs_join_transaction(fixup->root);
765 * the idea is to trigger a regular read through the standard path. we
766 * read a page from the (failed) logical address by specifying the
767 * corresponding copynum of the failed sector. thus, that readpage is
769 * that is the point where on-the-fly error correction will kick in
770 * (once it's finished) and rewrite the failed sector if a good copy
773 ret = iterate_inodes_from_logical(fixup->logical, fixup->root->fs_info,
774 path, scrub_fixup_readpage,
782 spin_lock(&sctx->stat_lock);
783 ++sctx->stat.corrected_errors;
784 spin_unlock(&sctx->stat_lock);
787 if (trans && !IS_ERR(trans))
788 btrfs_end_transaction(trans, fixup->root);
790 spin_lock(&sctx->stat_lock);
791 ++sctx->stat.uncorrectable_errors;
792 spin_unlock(&sctx->stat_lock);
793 btrfs_dev_replace_stats_inc(
794 &sctx->dev_root->fs_info->dev_replace.
795 num_uncorrectable_read_errors);
796 printk_ratelimited_in_rcu(KERN_ERR "BTRFS: "
797 "unable to fixup (nodatasum) error at logical %llu on dev %s\n",
798 fixup->logical, rcu_str_deref(fixup->dev->name));
801 btrfs_free_path(path);
804 scrub_pending_trans_workers_dec(sctx);
808 * scrub_handle_errored_block gets called when either verification of the
809 * pages failed or the bio failed to read, e.g. with EIO. In the latter
810 * case, this function handles all pages in the bio, even though only one
812 * The goal of this function is to repair the errored block by using the
813 * contents of one of the mirrors.
815 static int scrub_handle_errored_block(struct scrub_block *sblock_to_check)
817 struct scrub_ctx *sctx = sblock_to_check->sctx;
818 struct btrfs_device *dev;
819 struct btrfs_fs_info *fs_info;
823 unsigned int failed_mirror_index;
824 unsigned int is_metadata;
825 unsigned int have_csum;
827 struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */
828 struct scrub_block *sblock_bad;
833 static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
834 DEFAULT_RATELIMIT_BURST);
836 BUG_ON(sblock_to_check->page_count < 1);
837 fs_info = sctx->dev_root->fs_info;
838 if (sblock_to_check->pagev[0]->flags & BTRFS_EXTENT_FLAG_SUPER) {
840 * if we find an error in a super block, we just report it.
841 * They will get written with the next transaction commit
844 spin_lock(&sctx->stat_lock);
845 ++sctx->stat.super_errors;
846 spin_unlock(&sctx->stat_lock);
849 length = sblock_to_check->page_count * PAGE_SIZE;
850 logical = sblock_to_check->pagev[0]->logical;
851 generation = sblock_to_check->pagev[0]->generation;
852 BUG_ON(sblock_to_check->pagev[0]->mirror_num < 1);
853 failed_mirror_index = sblock_to_check->pagev[0]->mirror_num - 1;
854 is_metadata = !(sblock_to_check->pagev[0]->flags &
855 BTRFS_EXTENT_FLAG_DATA);
856 have_csum = sblock_to_check->pagev[0]->have_csum;
857 csum = sblock_to_check->pagev[0]->csum;
858 dev = sblock_to_check->pagev[0]->dev;
860 if (sctx->is_dev_replace && !is_metadata && !have_csum) {
861 sblocks_for_recheck = NULL;
866 * read all mirrors one after the other. This includes to
867 * re-read the extent or metadata block that failed (that was
868 * the cause that this fixup code is called) another time,
869 * page by page this time in order to know which pages
870 * caused I/O errors and which ones are good (for all mirrors).
871 * It is the goal to handle the situation when more than one
872 * mirror contains I/O errors, but the errors do not
873 * overlap, i.e. the data can be repaired by selecting the
874 * pages from those mirrors without I/O error on the
875 * particular pages. One example (with blocks >= 2 * PAGE_SIZE)
876 * would be that mirror #1 has an I/O error on the first page,
877 * the second page is good, and mirror #2 has an I/O error on
878 * the second page, but the first page is good.
879 * Then the first page of the first mirror can be repaired by
880 * taking the first page of the second mirror, and the
881 * second page of the second mirror can be repaired by
882 * copying the contents of the 2nd page of the 1st mirror.
883 * One more note: if the pages of one mirror contain I/O
884 * errors, the checksum cannot be verified. In order to get
885 * the best data for repairing, the first attempt is to find
886 * a mirror without I/O errors and with a validated checksum.
887 * Only if this is not possible, the pages are picked from
888 * mirrors with I/O errors without considering the checksum.
889 * If the latter is the case, at the end, the checksum of the
890 * repaired area is verified in order to correctly maintain
894 sblocks_for_recheck = kzalloc(BTRFS_MAX_MIRRORS *
895 sizeof(*sblocks_for_recheck),
897 if (!sblocks_for_recheck) {
898 spin_lock(&sctx->stat_lock);
899 sctx->stat.malloc_errors++;
900 sctx->stat.read_errors++;
901 sctx->stat.uncorrectable_errors++;
902 spin_unlock(&sctx->stat_lock);
903 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
907 /* setup the context, map the logical blocks and alloc the pages */
908 ret = scrub_setup_recheck_block(sctx, fs_info, sblock_to_check, length,
909 logical, sblocks_for_recheck);
911 spin_lock(&sctx->stat_lock);
912 sctx->stat.read_errors++;
913 sctx->stat.uncorrectable_errors++;
914 spin_unlock(&sctx->stat_lock);
915 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
918 BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS);
919 sblock_bad = sblocks_for_recheck + failed_mirror_index;
921 /* build and submit the bios for the failed mirror, check checksums */
922 scrub_recheck_block(fs_info, sblock_bad, is_metadata, have_csum,
923 csum, generation, sctx->csum_size);
925 if (!sblock_bad->header_error && !sblock_bad->checksum_error &&
926 sblock_bad->no_io_error_seen) {
928 * the error disappeared after reading page by page, or
929 * the area was part of a huge bio and other parts of the
930 * bio caused I/O errors, or the block layer merged several
931 * read requests into one and the error is caused by a
932 * different bio (usually one of the two latter cases is
935 spin_lock(&sctx->stat_lock);
936 sctx->stat.unverified_errors++;
937 spin_unlock(&sctx->stat_lock);
939 if (sctx->is_dev_replace)
940 scrub_write_block_to_dev_replace(sblock_bad);
944 if (!sblock_bad->no_io_error_seen) {
945 spin_lock(&sctx->stat_lock);
946 sctx->stat.read_errors++;
947 spin_unlock(&sctx->stat_lock);
948 if (__ratelimit(&_rs))
949 scrub_print_warning("i/o error", sblock_to_check);
950 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
951 } else if (sblock_bad->checksum_error) {
952 spin_lock(&sctx->stat_lock);
953 sctx->stat.csum_errors++;
954 spin_unlock(&sctx->stat_lock);
955 if (__ratelimit(&_rs))
956 scrub_print_warning("checksum error", sblock_to_check);
957 btrfs_dev_stat_inc_and_print(dev,
958 BTRFS_DEV_STAT_CORRUPTION_ERRS);
959 } else if (sblock_bad->header_error) {
960 spin_lock(&sctx->stat_lock);
961 sctx->stat.verify_errors++;
962 spin_unlock(&sctx->stat_lock);
963 if (__ratelimit(&_rs))
964 scrub_print_warning("checksum/header error",
966 if (sblock_bad->generation_error)
967 btrfs_dev_stat_inc_and_print(dev,
968 BTRFS_DEV_STAT_GENERATION_ERRS);
970 btrfs_dev_stat_inc_and_print(dev,
971 BTRFS_DEV_STAT_CORRUPTION_ERRS);
974 if (sctx->readonly) {
975 ASSERT(!sctx->is_dev_replace);
979 if (!is_metadata && !have_csum) {
980 struct scrub_fixup_nodatasum *fixup_nodatasum;
983 WARN_ON(sctx->is_dev_replace);
986 * !is_metadata and !have_csum, this means that the data
987 * might not be COW'ed, that it might be modified
988 * concurrently. The general strategy to work on the
989 * commit root does not help in the case when COW is not
992 fixup_nodatasum = kzalloc(sizeof(*fixup_nodatasum), GFP_NOFS);
993 if (!fixup_nodatasum)
994 goto did_not_correct_error;
995 fixup_nodatasum->sctx = sctx;
996 fixup_nodatasum->dev = dev;
997 fixup_nodatasum->logical = logical;
998 fixup_nodatasum->root = fs_info->extent_root;
999 fixup_nodatasum->mirror_num = failed_mirror_index + 1;
1000 scrub_pending_trans_workers_inc(sctx);
1001 btrfs_init_work(&fixup_nodatasum->work, scrub_fixup_nodatasum,
1003 btrfs_queue_work(fs_info->scrub_workers,
1004 &fixup_nodatasum->work);
1009 * now build and submit the bios for the other mirrors, check
1011 * First try to pick the mirror which is completely without I/O
1012 * errors and also does not have a checksum error.
1013 * If one is found, and if a checksum is present, the full block
1014 * that is known to contain an error is rewritten. Afterwards
1015 * the block is known to be corrected.
1016 * If a mirror is found which is completely correct, and no
1017 * checksum is present, only those pages are rewritten that had
1018 * an I/O error in the block to be repaired, since it cannot be
1019 * determined, which copy of the other pages is better (and it
1020 * could happen otherwise that a correct page would be
1021 * overwritten by a bad one).
1023 for (mirror_index = 0;
1024 mirror_index < BTRFS_MAX_MIRRORS &&
1025 sblocks_for_recheck[mirror_index].page_count > 0;
1027 struct scrub_block *sblock_other;
1029 if (mirror_index == failed_mirror_index)
1031 sblock_other = sblocks_for_recheck + mirror_index;
1033 /* build and submit the bios, check checksums */
1034 scrub_recheck_block(fs_info, sblock_other, is_metadata,
1035 have_csum, csum, generation,
1038 if (!sblock_other->header_error &&
1039 !sblock_other->checksum_error &&
1040 sblock_other->no_io_error_seen) {
1041 if (sctx->is_dev_replace) {
1042 scrub_write_block_to_dev_replace(sblock_other);
1044 int force_write = is_metadata || have_csum;
1046 ret = scrub_repair_block_from_good_copy(
1047 sblock_bad, sblock_other,
1051 goto corrected_error;
1056 * for dev_replace, pick good pages and write to the target device.
1058 if (sctx->is_dev_replace) {
1060 for (page_num = 0; page_num < sblock_bad->page_count;
1065 for (mirror_index = 0;
1066 mirror_index < BTRFS_MAX_MIRRORS &&
1067 sblocks_for_recheck[mirror_index].page_count > 0;
1069 struct scrub_block *sblock_other =
1070 sblocks_for_recheck + mirror_index;
1071 struct scrub_page *page_other =
1072 sblock_other->pagev[page_num];
1074 if (!page_other->io_error) {
1075 ret = scrub_write_page_to_dev_replace(
1076 sblock_other, page_num);
1078 /* succeeded for this page */
1082 btrfs_dev_replace_stats_inc(
1084 fs_info->dev_replace.
1092 * did not find a mirror to fetch the page
1093 * from. scrub_write_page_to_dev_replace()
1094 * handles this case (page->io_error), by
1095 * filling the block with zeros before
1096 * submitting the write request
1099 ret = scrub_write_page_to_dev_replace(
1100 sblock_bad, page_num);
1102 btrfs_dev_replace_stats_inc(
1103 &sctx->dev_root->fs_info->
1104 dev_replace.num_write_errors);
1112 * for regular scrub, repair those pages that are errored.
1113 * In case of I/O errors in the area that is supposed to be
1114 * repaired, continue by picking good copies of those pages.
1115 * Select the good pages from mirrors to rewrite bad pages from
1116 * the area to fix. Afterwards verify the checksum of the block
1117 * that is supposed to be repaired. This verification step is
1118 * only done for the purpose of statistic counting and for the
1119 * final scrub report, whether errors remain.
1120 * A perfect algorithm could make use of the checksum and try
1121 * all possible combinations of pages from the different mirrors
1122 * until the checksum verification succeeds. For example, when
1123 * the 2nd page of mirror #1 faces I/O errors, and the 2nd page
1124 * of mirror #2 is readable but the final checksum test fails,
1125 * then the 2nd page of mirror #3 could be tried, whether now
1126 * the final checksum succeedes. But this would be a rare
1127 * exception and is therefore not implemented. At least it is
1128 * avoided that the good copy is overwritten.
1129 * A more useful improvement would be to pick the sectors
1130 * without I/O error based on sector sizes (512 bytes on legacy
1131 * disks) instead of on PAGE_SIZE. Then maybe 512 byte of one
1132 * mirror could be repaired by taking 512 byte of a different
1133 * mirror, even if other 512 byte sectors in the same PAGE_SIZE
1134 * area are unreadable.
1137 /* can only fix I/O errors from here on */
1138 if (sblock_bad->no_io_error_seen)
1139 goto did_not_correct_error;
1142 for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
1143 struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1145 if (!page_bad->io_error)
1148 for (mirror_index = 0;
1149 mirror_index < BTRFS_MAX_MIRRORS &&
1150 sblocks_for_recheck[mirror_index].page_count > 0;
1152 struct scrub_block *sblock_other = sblocks_for_recheck +
1154 struct scrub_page *page_other = sblock_other->pagev[
1157 if (!page_other->io_error) {
1158 ret = scrub_repair_page_from_good_copy(
1159 sblock_bad, sblock_other, page_num, 0);
1161 page_bad->io_error = 0;
1162 break; /* succeeded for this page */
1167 if (page_bad->io_error) {
1168 /* did not find a mirror to copy the page from */
1174 if (is_metadata || have_csum) {
1176 * need to verify the checksum now that all
1177 * sectors on disk are repaired (the write
1178 * request for data to be repaired is on its way).
1179 * Just be lazy and use scrub_recheck_block()
1180 * which re-reads the data before the checksum
1181 * is verified, but most likely the data comes out
1182 * of the page cache.
1184 scrub_recheck_block(fs_info, sblock_bad,
1185 is_metadata, have_csum, csum,
1186 generation, sctx->csum_size);
1187 if (!sblock_bad->header_error &&
1188 !sblock_bad->checksum_error &&
1189 sblock_bad->no_io_error_seen)
1190 goto corrected_error;
1192 goto did_not_correct_error;
1195 spin_lock(&sctx->stat_lock);
1196 sctx->stat.corrected_errors++;
1197 spin_unlock(&sctx->stat_lock);
1198 printk_ratelimited_in_rcu(KERN_ERR
1199 "BTRFS: fixed up error at logical %llu on dev %s\n",
1200 logical, rcu_str_deref(dev->name));
1203 did_not_correct_error:
1204 spin_lock(&sctx->stat_lock);
1205 sctx->stat.uncorrectable_errors++;
1206 spin_unlock(&sctx->stat_lock);
1207 printk_ratelimited_in_rcu(KERN_ERR
1208 "BTRFS: unable to fixup (regular) error at logical %llu on dev %s\n",
1209 logical, rcu_str_deref(dev->name));
1213 if (sblocks_for_recheck) {
1214 for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS;
1216 struct scrub_block *sblock = sblocks_for_recheck +
1220 for (page_index = 0; page_index < sblock->page_count;
1222 sblock->pagev[page_index]->sblock = NULL;
1223 scrub_page_put(sblock->pagev[page_index]);
1226 kfree(sblocks_for_recheck);
1232 static int scrub_setup_recheck_block(struct scrub_ctx *sctx,
1233 struct btrfs_fs_info *fs_info,
1234 struct scrub_block *original_sblock,
1235 u64 length, u64 logical,
1236 struct scrub_block *sblocks_for_recheck)
1243 * note: the two members ref_count and outstanding_pages
1244 * are not used (and not set) in the blocks that are used for
1245 * the recheck procedure
1249 while (length > 0) {
1250 u64 sublen = min_t(u64, length, PAGE_SIZE);
1251 u64 mapped_length = sublen;
1252 struct btrfs_bio *bbio = NULL;
1255 * with a length of PAGE_SIZE, each returned stripe
1256 * represents one mirror
1258 ret = btrfs_map_block(fs_info, REQ_GET_READ_MIRRORS, logical,
1259 &mapped_length, &bbio, 0);
1260 if (ret || !bbio || mapped_length < sublen) {
1265 BUG_ON(page_index >= SCRUB_PAGES_PER_RD_BIO);
1266 for (mirror_index = 0; mirror_index < (int)bbio->num_stripes;
1268 struct scrub_block *sblock;
1269 struct scrub_page *page;
1271 if (mirror_index >= BTRFS_MAX_MIRRORS)
1274 sblock = sblocks_for_recheck + mirror_index;
1275 sblock->sctx = sctx;
1276 page = kzalloc(sizeof(*page), GFP_NOFS);
1279 spin_lock(&sctx->stat_lock);
1280 sctx->stat.malloc_errors++;
1281 spin_unlock(&sctx->stat_lock);
1285 scrub_page_get(page);
1286 sblock->pagev[page_index] = page;
1287 page->logical = logical;
1288 page->physical = bbio->stripes[mirror_index].physical;
1289 BUG_ON(page_index >= original_sblock->page_count);
1290 page->physical_for_dev_replace =
1291 original_sblock->pagev[page_index]->
1292 physical_for_dev_replace;
1293 /* for missing devices, dev->bdev is NULL */
1294 page->dev = bbio->stripes[mirror_index].dev;
1295 page->mirror_num = mirror_index + 1;
1296 sblock->page_count++;
1297 page->page = alloc_page(GFP_NOFS);
1311 * this function will check the on disk data for checksum errors, header
1312 * errors and read I/O errors. If any I/O errors happen, the exact pages
1313 * which are errored are marked as being bad. The goal is to enable scrub
1314 * to take those pages that are not errored from all the mirrors so that
1315 * the pages that are errored in the just handled mirror can be repaired.
1317 static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
1318 struct scrub_block *sblock, int is_metadata,
1319 int have_csum, u8 *csum, u64 generation,
1324 sblock->no_io_error_seen = 1;
1325 sblock->header_error = 0;
1326 sblock->checksum_error = 0;
1328 for (page_num = 0; page_num < sblock->page_count; page_num++) {
1330 struct scrub_page *page = sblock->pagev[page_num];
1332 if (page->dev->bdev == NULL) {
1334 sblock->no_io_error_seen = 0;
1338 WARN_ON(!page->page);
1339 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
1342 sblock->no_io_error_seen = 0;
1345 bio->bi_bdev = page->dev->bdev;
1346 bio->bi_iter.bi_sector = page->physical >> 9;
1348 bio_add_page(bio, page->page, PAGE_SIZE, 0);
1349 if (btrfsic_submit_bio_wait(READ, bio))
1350 sblock->no_io_error_seen = 0;
1355 if (sblock->no_io_error_seen)
1356 scrub_recheck_block_checksum(fs_info, sblock, is_metadata,
1357 have_csum, csum, generation,
1363 static void scrub_recheck_block_checksum(struct btrfs_fs_info *fs_info,
1364 struct scrub_block *sblock,
1365 int is_metadata, int have_csum,
1366 const u8 *csum, u64 generation,
1370 u8 calculated_csum[BTRFS_CSUM_SIZE];
1372 void *mapped_buffer;
1374 WARN_ON(!sblock->pagev[0]->page);
1376 struct btrfs_header *h;
1378 mapped_buffer = kmap_atomic(sblock->pagev[0]->page);
1379 h = (struct btrfs_header *)mapped_buffer;
1381 if (sblock->pagev[0]->logical != btrfs_stack_header_bytenr(h) ||
1382 memcmp(h->fsid, fs_info->fsid, BTRFS_UUID_SIZE) ||
1383 memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
1385 sblock->header_error = 1;
1386 } else if (generation != btrfs_stack_header_generation(h)) {
1387 sblock->header_error = 1;
1388 sblock->generation_error = 1;
1395 mapped_buffer = kmap_atomic(sblock->pagev[0]->page);
1398 for (page_num = 0;;) {
1399 if (page_num == 0 && is_metadata)
1400 crc = btrfs_csum_data(
1401 ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE,
1402 crc, PAGE_SIZE - BTRFS_CSUM_SIZE);
1404 crc = btrfs_csum_data(mapped_buffer, crc, PAGE_SIZE);
1406 kunmap_atomic(mapped_buffer);
1408 if (page_num >= sblock->page_count)
1410 WARN_ON(!sblock->pagev[page_num]->page);
1412 mapped_buffer = kmap_atomic(sblock->pagev[page_num]->page);
1415 btrfs_csum_final(crc, calculated_csum);
1416 if (memcmp(calculated_csum, csum, csum_size))
1417 sblock->checksum_error = 1;
1420 static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
1421 struct scrub_block *sblock_good,
1427 for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
1430 ret_sub = scrub_repair_page_from_good_copy(sblock_bad,
1441 static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
1442 struct scrub_block *sblock_good,
1443 int page_num, int force_write)
1445 struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1446 struct scrub_page *page_good = sblock_good->pagev[page_num];
1448 BUG_ON(page_bad->page == NULL);
1449 BUG_ON(page_good->page == NULL);
1450 if (force_write || sblock_bad->header_error ||
1451 sblock_bad->checksum_error || page_bad->io_error) {
1455 if (!page_bad->dev->bdev) {
1456 printk_ratelimited(KERN_WARNING "BTRFS: "
1457 "scrub_repair_page_from_good_copy(bdev == NULL) "
1458 "is unexpected!\n");
1462 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
1465 bio->bi_bdev = page_bad->dev->bdev;
1466 bio->bi_iter.bi_sector = page_bad->physical >> 9;
1468 ret = bio_add_page(bio, page_good->page, PAGE_SIZE, 0);
1469 if (PAGE_SIZE != ret) {
1474 if (btrfsic_submit_bio_wait(WRITE, bio)) {
1475 btrfs_dev_stat_inc_and_print(page_bad->dev,
1476 BTRFS_DEV_STAT_WRITE_ERRS);
1477 btrfs_dev_replace_stats_inc(
1478 &sblock_bad->sctx->dev_root->fs_info->
1479 dev_replace.num_write_errors);
1489 static void scrub_write_block_to_dev_replace(struct scrub_block *sblock)
1493 for (page_num = 0; page_num < sblock->page_count; page_num++) {
1496 ret = scrub_write_page_to_dev_replace(sblock, page_num);
1498 btrfs_dev_replace_stats_inc(
1499 &sblock->sctx->dev_root->fs_info->dev_replace.
1504 static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
1507 struct scrub_page *spage = sblock->pagev[page_num];
1509 BUG_ON(spage->page == NULL);
1510 if (spage->io_error) {
1511 void *mapped_buffer = kmap_atomic(spage->page);
1513 memset(mapped_buffer, 0, PAGE_CACHE_SIZE);
1514 flush_dcache_page(spage->page);
1515 kunmap_atomic(mapped_buffer);
1517 return scrub_add_page_to_wr_bio(sblock->sctx, spage);
1520 static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
1521 struct scrub_page *spage)
1523 struct scrub_wr_ctx *wr_ctx = &sctx->wr_ctx;
1524 struct scrub_bio *sbio;
1527 mutex_lock(&wr_ctx->wr_lock);
1529 if (!wr_ctx->wr_curr_bio) {
1530 wr_ctx->wr_curr_bio = kzalloc(sizeof(*wr_ctx->wr_curr_bio),
1532 if (!wr_ctx->wr_curr_bio) {
1533 mutex_unlock(&wr_ctx->wr_lock);
1536 wr_ctx->wr_curr_bio->sctx = sctx;
1537 wr_ctx->wr_curr_bio->page_count = 0;
1539 sbio = wr_ctx->wr_curr_bio;
1540 if (sbio->page_count == 0) {
1543 sbio->physical = spage->physical_for_dev_replace;
1544 sbio->logical = spage->logical;
1545 sbio->dev = wr_ctx->tgtdev;
1548 bio = btrfs_io_bio_alloc(GFP_NOFS, wr_ctx->pages_per_wr_bio);
1550 mutex_unlock(&wr_ctx->wr_lock);
1556 bio->bi_private = sbio;
1557 bio->bi_end_io = scrub_wr_bio_end_io;
1558 bio->bi_bdev = sbio->dev->bdev;
1559 bio->bi_iter.bi_sector = sbio->physical >> 9;
1561 } else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
1562 spage->physical_for_dev_replace ||
1563 sbio->logical + sbio->page_count * PAGE_SIZE !=
1565 scrub_wr_submit(sctx);
1569 ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
1570 if (ret != PAGE_SIZE) {
1571 if (sbio->page_count < 1) {
1574 mutex_unlock(&wr_ctx->wr_lock);
1577 scrub_wr_submit(sctx);
1581 sbio->pagev[sbio->page_count] = spage;
1582 scrub_page_get(spage);
1584 if (sbio->page_count == wr_ctx->pages_per_wr_bio)
1585 scrub_wr_submit(sctx);
1586 mutex_unlock(&wr_ctx->wr_lock);
1591 static void scrub_wr_submit(struct scrub_ctx *sctx)
1593 struct scrub_wr_ctx *wr_ctx = &sctx->wr_ctx;
1594 struct scrub_bio *sbio;
1596 if (!wr_ctx->wr_curr_bio)
1599 sbio = wr_ctx->wr_curr_bio;
1600 wr_ctx->wr_curr_bio = NULL;
1601 WARN_ON(!sbio->bio->bi_bdev);
1602 scrub_pending_bio_inc(sctx);
1603 /* process all writes in a single worker thread. Then the block layer
1604 * orders the requests before sending them to the driver which
1605 * doubled the write performance on spinning disks when measured
1607 btrfsic_submit_bio(WRITE, sbio->bio);
1610 static void scrub_wr_bio_end_io(struct bio *bio, int err)
1612 struct scrub_bio *sbio = bio->bi_private;
1613 struct btrfs_fs_info *fs_info = sbio->dev->dev_root->fs_info;
1618 btrfs_init_work(&sbio->work, scrub_wr_bio_end_io_worker, NULL, NULL);
1619 btrfs_queue_work(fs_info->scrub_wr_completion_workers, &sbio->work);
1622 static void scrub_wr_bio_end_io_worker(struct btrfs_work *work)
1624 struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
1625 struct scrub_ctx *sctx = sbio->sctx;
1628 WARN_ON(sbio->page_count > SCRUB_PAGES_PER_WR_BIO);
1630 struct btrfs_dev_replace *dev_replace =
1631 &sbio->sctx->dev_root->fs_info->dev_replace;
1633 for (i = 0; i < sbio->page_count; i++) {
1634 struct scrub_page *spage = sbio->pagev[i];
1636 spage->io_error = 1;
1637 btrfs_dev_replace_stats_inc(&dev_replace->
1642 for (i = 0; i < sbio->page_count; i++)
1643 scrub_page_put(sbio->pagev[i]);
1647 scrub_pending_bio_dec(sctx);
1650 static int scrub_checksum(struct scrub_block *sblock)
1655 WARN_ON(sblock->page_count < 1);
1656 flags = sblock->pagev[0]->flags;
1658 if (flags & BTRFS_EXTENT_FLAG_DATA)
1659 ret = scrub_checksum_data(sblock);
1660 else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1661 ret = scrub_checksum_tree_block(sblock);
1662 else if (flags & BTRFS_EXTENT_FLAG_SUPER)
1663 (void)scrub_checksum_super(sblock);
1667 scrub_handle_errored_block(sblock);
1672 static int scrub_checksum_data(struct scrub_block *sblock)
1674 struct scrub_ctx *sctx = sblock->sctx;
1675 u8 csum[BTRFS_CSUM_SIZE];
1684 BUG_ON(sblock->page_count < 1);
1685 if (!sblock->pagev[0]->have_csum)
1688 on_disk_csum = sblock->pagev[0]->csum;
1689 page = sblock->pagev[0]->page;
1690 buffer = kmap_atomic(page);
1692 len = sctx->sectorsize;
1695 u64 l = min_t(u64, len, PAGE_SIZE);
1697 crc = btrfs_csum_data(buffer, crc, l);
1698 kunmap_atomic(buffer);
1703 BUG_ON(index >= sblock->page_count);
1704 BUG_ON(!sblock->pagev[index]->page);
1705 page = sblock->pagev[index]->page;
1706 buffer = kmap_atomic(page);
1709 btrfs_csum_final(crc, csum);
1710 if (memcmp(csum, on_disk_csum, sctx->csum_size))
1716 static int scrub_checksum_tree_block(struct scrub_block *sblock)
1718 struct scrub_ctx *sctx = sblock->sctx;
1719 struct btrfs_header *h;
1720 struct btrfs_root *root = sctx->dev_root;
1721 struct btrfs_fs_info *fs_info = root->fs_info;
1722 u8 calculated_csum[BTRFS_CSUM_SIZE];
1723 u8 on_disk_csum[BTRFS_CSUM_SIZE];
1725 void *mapped_buffer;
1734 BUG_ON(sblock->page_count < 1);
1735 page = sblock->pagev[0]->page;
1736 mapped_buffer = kmap_atomic(page);
1737 h = (struct btrfs_header *)mapped_buffer;
1738 memcpy(on_disk_csum, h->csum, sctx->csum_size);
1741 * we don't use the getter functions here, as we
1742 * a) don't have an extent buffer and
1743 * b) the page is already kmapped
1746 if (sblock->pagev[0]->logical != btrfs_stack_header_bytenr(h))
1749 if (sblock->pagev[0]->generation != btrfs_stack_header_generation(h))
1752 if (memcmp(h->fsid, fs_info->fsid, BTRFS_UUID_SIZE))
1755 if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
1759 WARN_ON(sctx->nodesize != sctx->leafsize);
1760 len = sctx->nodesize - BTRFS_CSUM_SIZE;
1761 mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
1762 p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
1765 u64 l = min_t(u64, len, mapped_size);
1767 crc = btrfs_csum_data(p, crc, l);
1768 kunmap_atomic(mapped_buffer);
1773 BUG_ON(index >= sblock->page_count);
1774 BUG_ON(!sblock->pagev[index]->page);
1775 page = sblock->pagev[index]->page;
1776 mapped_buffer = kmap_atomic(page);
1777 mapped_size = PAGE_SIZE;
1781 btrfs_csum_final(crc, calculated_csum);
1782 if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
1785 return fail || crc_fail;
1788 static int scrub_checksum_super(struct scrub_block *sblock)
1790 struct btrfs_super_block *s;
1791 struct scrub_ctx *sctx = sblock->sctx;
1792 struct btrfs_root *root = sctx->dev_root;
1793 struct btrfs_fs_info *fs_info = root->fs_info;
1794 u8 calculated_csum[BTRFS_CSUM_SIZE];
1795 u8 on_disk_csum[BTRFS_CSUM_SIZE];
1797 void *mapped_buffer;
1806 BUG_ON(sblock->page_count < 1);
1807 page = sblock->pagev[0]->page;
1808 mapped_buffer = kmap_atomic(page);
1809 s = (struct btrfs_super_block *)mapped_buffer;
1810 memcpy(on_disk_csum, s->csum, sctx->csum_size);
1812 if (sblock->pagev[0]->logical != btrfs_super_bytenr(s))
1815 if (sblock->pagev[0]->generation != btrfs_super_generation(s))
1818 if (memcmp(s->fsid, fs_info->fsid, BTRFS_UUID_SIZE))
1821 len = BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE;
1822 mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
1823 p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
1826 u64 l = min_t(u64, len, mapped_size);
1828 crc = btrfs_csum_data(p, crc, l);
1829 kunmap_atomic(mapped_buffer);
1834 BUG_ON(index >= sblock->page_count);
1835 BUG_ON(!sblock->pagev[index]->page);
1836 page = sblock->pagev[index]->page;
1837 mapped_buffer = kmap_atomic(page);
1838 mapped_size = PAGE_SIZE;
1842 btrfs_csum_final(crc, calculated_csum);
1843 if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
1846 if (fail_cor + fail_gen) {
1848 * if we find an error in a super block, we just report it.
1849 * They will get written with the next transaction commit
1852 spin_lock(&sctx->stat_lock);
1853 ++sctx->stat.super_errors;
1854 spin_unlock(&sctx->stat_lock);
1856 btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
1857 BTRFS_DEV_STAT_CORRUPTION_ERRS);
1859 btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
1860 BTRFS_DEV_STAT_GENERATION_ERRS);
1863 return fail_cor + fail_gen;
1866 static void scrub_block_get(struct scrub_block *sblock)
1868 atomic_inc(&sblock->ref_count);
1871 static void scrub_block_put(struct scrub_block *sblock)
1873 if (atomic_dec_and_test(&sblock->ref_count)) {
1876 for (i = 0; i < sblock->page_count; i++)
1877 scrub_page_put(sblock->pagev[i]);
1882 static void scrub_page_get(struct scrub_page *spage)
1884 atomic_inc(&spage->ref_count);
1887 static void scrub_page_put(struct scrub_page *spage)
1889 if (atomic_dec_and_test(&spage->ref_count)) {
1891 __free_page(spage->page);
1896 static void scrub_submit(struct scrub_ctx *sctx)
1898 struct scrub_bio *sbio;
1900 if (sctx->curr == -1)
1903 sbio = sctx->bios[sctx->curr];
1905 scrub_pending_bio_inc(sctx);
1907 if (!sbio->bio->bi_bdev) {
1909 * this case should not happen. If btrfs_map_block() is
1910 * wrong, it could happen for dev-replace operations on
1911 * missing devices when no mirrors are available, but in
1912 * this case it should already fail the mount.
1913 * This case is handled correctly (but _very_ slowly).
1915 printk_ratelimited(KERN_WARNING
1916 "BTRFS: scrub_submit(bio bdev == NULL) is unexpected!\n");
1917 bio_endio(sbio->bio, -EIO);
1919 btrfsic_submit_bio(READ, sbio->bio);
1923 static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
1924 struct scrub_page *spage)
1926 struct scrub_block *sblock = spage->sblock;
1927 struct scrub_bio *sbio;
1932 * grab a fresh bio or wait for one to become available
1934 while (sctx->curr == -1) {
1935 spin_lock(&sctx->list_lock);
1936 sctx->curr = sctx->first_free;
1937 if (sctx->curr != -1) {
1938 sctx->first_free = sctx->bios[sctx->curr]->next_free;
1939 sctx->bios[sctx->curr]->next_free = -1;
1940 sctx->bios[sctx->curr]->page_count = 0;
1941 spin_unlock(&sctx->list_lock);
1943 spin_unlock(&sctx->list_lock);
1944 wait_event(sctx->list_wait, sctx->first_free != -1);
1947 sbio = sctx->bios[sctx->curr];
1948 if (sbio->page_count == 0) {
1951 sbio->physical = spage->physical;
1952 sbio->logical = spage->logical;
1953 sbio->dev = spage->dev;
1956 bio = btrfs_io_bio_alloc(GFP_NOFS, sctx->pages_per_rd_bio);
1962 bio->bi_private = sbio;
1963 bio->bi_end_io = scrub_bio_end_io;
1964 bio->bi_bdev = sbio->dev->bdev;
1965 bio->bi_iter.bi_sector = sbio->physical >> 9;
1967 } else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
1969 sbio->logical + sbio->page_count * PAGE_SIZE !=
1971 sbio->dev != spage->dev) {
1976 sbio->pagev[sbio->page_count] = spage;
1977 ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
1978 if (ret != PAGE_SIZE) {
1979 if (sbio->page_count < 1) {
1988 scrub_block_get(sblock); /* one for the page added to the bio */
1989 atomic_inc(&sblock->outstanding_pages);
1991 if (sbio->page_count == sctx->pages_per_rd_bio)
1997 static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
1998 u64 physical, struct btrfs_device *dev, u64 flags,
1999 u64 gen, int mirror_num, u8 *csum, int force,
2000 u64 physical_for_dev_replace)
2002 struct scrub_block *sblock;
2005 sblock = kzalloc(sizeof(*sblock), GFP_NOFS);
2007 spin_lock(&sctx->stat_lock);
2008 sctx->stat.malloc_errors++;
2009 spin_unlock(&sctx->stat_lock);
2013 /* one ref inside this function, plus one for each page added to
2015 atomic_set(&sblock->ref_count, 1);
2016 sblock->sctx = sctx;
2017 sblock->no_io_error_seen = 1;
2019 for (index = 0; len > 0; index++) {
2020 struct scrub_page *spage;
2021 u64 l = min_t(u64, len, PAGE_SIZE);
2023 spage = kzalloc(sizeof(*spage), GFP_NOFS);
2026 spin_lock(&sctx->stat_lock);
2027 sctx->stat.malloc_errors++;
2028 spin_unlock(&sctx->stat_lock);
2029 scrub_block_put(sblock);
2032 BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
2033 scrub_page_get(spage);
2034 sblock->pagev[index] = spage;
2035 spage->sblock = sblock;
2037 spage->flags = flags;
2038 spage->generation = gen;
2039 spage->logical = logical;
2040 spage->physical = physical;
2041 spage->physical_for_dev_replace = physical_for_dev_replace;
2042 spage->mirror_num = mirror_num;
2044 spage->have_csum = 1;
2045 memcpy(spage->csum, csum, sctx->csum_size);
2047 spage->have_csum = 0;
2049 sblock->page_count++;
2050 spage->page = alloc_page(GFP_NOFS);
2056 physical_for_dev_replace += l;
2059 WARN_ON(sblock->page_count == 0);
2060 for (index = 0; index < sblock->page_count; index++) {
2061 struct scrub_page *spage = sblock->pagev[index];
2064 ret = scrub_add_page_to_rd_bio(sctx, spage);
2066 scrub_block_put(sblock);
2074 /* last one frees, either here or in bio completion for last page */
2075 scrub_block_put(sblock);
2079 static void scrub_bio_end_io(struct bio *bio, int err)
2081 struct scrub_bio *sbio = bio->bi_private;
2082 struct btrfs_fs_info *fs_info = sbio->dev->dev_root->fs_info;
2087 btrfs_queue_work(fs_info->scrub_workers, &sbio->work);
2090 static void scrub_bio_end_io_worker(struct btrfs_work *work)
2092 struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
2093 struct scrub_ctx *sctx = sbio->sctx;
2096 BUG_ON(sbio->page_count > SCRUB_PAGES_PER_RD_BIO);
2098 for (i = 0; i < sbio->page_count; i++) {
2099 struct scrub_page *spage = sbio->pagev[i];
2101 spage->io_error = 1;
2102 spage->sblock->no_io_error_seen = 0;
2106 /* now complete the scrub_block items that have all pages completed */
2107 for (i = 0; i < sbio->page_count; i++) {
2108 struct scrub_page *spage = sbio->pagev[i];
2109 struct scrub_block *sblock = spage->sblock;
2111 if (atomic_dec_and_test(&sblock->outstanding_pages))
2112 scrub_block_complete(sblock);
2113 scrub_block_put(sblock);
2118 spin_lock(&sctx->list_lock);
2119 sbio->next_free = sctx->first_free;
2120 sctx->first_free = sbio->index;
2121 spin_unlock(&sctx->list_lock);
2123 if (sctx->is_dev_replace &&
2124 atomic_read(&sctx->wr_ctx.flush_all_writes)) {
2125 mutex_lock(&sctx->wr_ctx.wr_lock);
2126 scrub_wr_submit(sctx);
2127 mutex_unlock(&sctx->wr_ctx.wr_lock);
2130 scrub_pending_bio_dec(sctx);
2133 static void scrub_block_complete(struct scrub_block *sblock)
2135 if (!sblock->no_io_error_seen) {
2136 scrub_handle_errored_block(sblock);
2139 * if has checksum error, write via repair mechanism in
2140 * dev replace case, otherwise write here in dev replace
2143 if (!scrub_checksum(sblock) && sblock->sctx->is_dev_replace)
2144 scrub_write_block_to_dev_replace(sblock);
2148 static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u64 len,
2151 struct btrfs_ordered_sum *sum = NULL;
2152 unsigned long index;
2153 unsigned long num_sectors;
2155 while (!list_empty(&sctx->csum_list)) {
2156 sum = list_first_entry(&sctx->csum_list,
2157 struct btrfs_ordered_sum, list);
2158 if (sum->bytenr > logical)
2160 if (sum->bytenr + sum->len > logical)
2163 ++sctx->stat.csum_discards;
2164 list_del(&sum->list);
2171 index = ((u32)(logical - sum->bytenr)) / sctx->sectorsize;
2172 num_sectors = sum->len / sctx->sectorsize;
2173 memcpy(csum, sum->sums + index, sctx->csum_size);
2174 if (index == num_sectors - 1) {
2175 list_del(&sum->list);
2181 /* scrub extent tries to collect up to 64 kB for each bio */
2182 static int scrub_extent(struct scrub_ctx *sctx, u64 logical, u64 len,
2183 u64 physical, struct btrfs_device *dev, u64 flags,
2184 u64 gen, int mirror_num, u64 physical_for_dev_replace)
2187 u8 csum[BTRFS_CSUM_SIZE];
2190 if (flags & BTRFS_EXTENT_FLAG_DATA) {
2191 blocksize = sctx->sectorsize;
2192 spin_lock(&sctx->stat_lock);
2193 sctx->stat.data_extents_scrubbed++;
2194 sctx->stat.data_bytes_scrubbed += len;
2195 spin_unlock(&sctx->stat_lock);
2196 } else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2197 WARN_ON(sctx->nodesize != sctx->leafsize);
2198 blocksize = sctx->nodesize;
2199 spin_lock(&sctx->stat_lock);
2200 sctx->stat.tree_extents_scrubbed++;
2201 sctx->stat.tree_bytes_scrubbed += len;
2202 spin_unlock(&sctx->stat_lock);
2204 blocksize = sctx->sectorsize;
2209 u64 l = min_t(u64, len, blocksize);
2212 if (flags & BTRFS_EXTENT_FLAG_DATA) {
2213 /* push csums to sbio */
2214 have_csum = scrub_find_csum(sctx, logical, l, csum);
2216 ++sctx->stat.no_csum;
2217 if (sctx->is_dev_replace && !have_csum) {
2218 ret = copy_nocow_pages(sctx, logical, l,
2220 physical_for_dev_replace);
2221 goto behind_scrub_pages;
2224 ret = scrub_pages(sctx, logical, l, physical, dev, flags, gen,
2225 mirror_num, have_csum ? csum : NULL, 0,
2226 physical_for_dev_replace);
2233 physical_for_dev_replace += l;
2239 * Given a physical address, this will calculate it's
2240 * logical offset. if this is a parity stripe, it will return
2241 * the most left data stripe's logical offset.
2243 * return 0 if it is a data stripe, 1 means parity stripe.
2245 static int get_raid56_logic_offset(u64 physical, int num,
2246 struct map_lookup *map, u64 *offset)
2255 last_offset = (physical - map->stripes[num].physical) *
2256 nr_data_stripes(map);
2257 *offset = last_offset;
2258 for (i = 0; i < nr_data_stripes(map); i++) {
2259 *offset = last_offset + i * map->stripe_len;
2261 stripe_nr = *offset;
2262 do_div(stripe_nr, map->stripe_len);
2263 do_div(stripe_nr, nr_data_stripes(map));
2265 /* Work out the disk rotation on this stripe-set */
2266 rot = do_div(stripe_nr, map->num_stripes);
2267 /* calculate which stripe this data locates */
2269 stripe_index = rot % map->num_stripes;
2270 if (stripe_index == num)
2272 if (stripe_index < num)
2275 *offset = last_offset + j * map->stripe_len;
2279 static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
2280 struct map_lookup *map,
2281 struct btrfs_device *scrub_dev,
2282 int num, u64 base, u64 length,
2285 struct btrfs_path *path;
2286 struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
2287 struct btrfs_root *root = fs_info->extent_root;
2288 struct btrfs_root *csum_root = fs_info->csum_root;
2289 struct btrfs_extent_item *extent;
2290 struct blk_plug plug;
2295 struct extent_buffer *l;
2296 struct btrfs_key key;
2303 struct reada_control *reada1;
2304 struct reada_control *reada2;
2305 struct btrfs_key key_start;
2306 struct btrfs_key key_end;
2307 u64 increment = map->stripe_len;
2310 u64 extent_physical;
2312 struct btrfs_device *extent_dev;
2313 int extent_mirror_num;
2317 physical = map->stripes[num].physical;
2319 do_div(nstripes, map->stripe_len);
2320 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
2321 offset = map->stripe_len * num;
2322 increment = map->stripe_len * map->num_stripes;
2324 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
2325 int factor = map->num_stripes / map->sub_stripes;
2326 offset = map->stripe_len * (num / map->sub_stripes);
2327 increment = map->stripe_len * factor;
2328 mirror_num = num % map->sub_stripes + 1;
2329 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
2330 increment = map->stripe_len;
2331 mirror_num = num % map->num_stripes + 1;
2332 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
2333 increment = map->stripe_len;
2334 mirror_num = num % map->num_stripes + 1;
2335 } else if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
2336 BTRFS_BLOCK_GROUP_RAID6)) {
2337 get_raid56_logic_offset(physical, num, map, &offset);
2338 increment = map->stripe_len * nr_data_stripes(map);
2341 increment = map->stripe_len;
2345 path = btrfs_alloc_path();
2350 * work on commit root. The related disk blocks are static as
2351 * long as COW is applied. This means, it is save to rewrite
2352 * them to repair disk errors without any race conditions
2354 path->search_commit_root = 1;
2355 path->skip_locking = 1;
2358 * trigger the readahead for extent tree csum tree and wait for
2359 * completion. During readahead, the scrub is officially paused
2360 * to not hold off transaction commits
2362 logical = base + offset;
2363 physical_end = physical + nstripes * map->stripe_len;
2364 if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
2365 BTRFS_BLOCK_GROUP_RAID6)) {
2366 get_raid56_logic_offset(physical_end, num,
2370 logic_end = logical + increment * nstripes;
2372 wait_event(sctx->list_wait,
2373 atomic_read(&sctx->bios_in_flight) == 0);
2374 scrub_blocked_if_needed(fs_info);
2376 /* FIXME it might be better to start readahead at commit root */
2377 key_start.objectid = logical;
2378 key_start.type = BTRFS_EXTENT_ITEM_KEY;
2379 key_start.offset = (u64)0;
2380 key_end.objectid = logic_end;
2381 key_end.type = BTRFS_METADATA_ITEM_KEY;
2382 key_end.offset = (u64)-1;
2383 reada1 = btrfs_reada_add(root, &key_start, &key_end);
2385 key_start.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
2386 key_start.type = BTRFS_EXTENT_CSUM_KEY;
2387 key_start.offset = logical;
2388 key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
2389 key_end.type = BTRFS_EXTENT_CSUM_KEY;
2390 key_end.offset = logic_end;
2391 reada2 = btrfs_reada_add(csum_root, &key_start, &key_end);
2393 if (!IS_ERR(reada1))
2394 btrfs_reada_wait(reada1);
2395 if (!IS_ERR(reada2))
2396 btrfs_reada_wait(reada2);
2400 * collect all data csums for the stripe to avoid seeking during
2401 * the scrub. This might currently (crc32) end up to be about 1MB
2403 blk_start_plug(&plug);
2406 * now find all extents for each stripe and scrub them
2409 while (physical < physical_end) {
2410 /* for raid56, we skip parity stripe */
2411 if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
2412 BTRFS_BLOCK_GROUP_RAID6)) {
2413 ret = get_raid56_logic_offset(physical, num,
2422 if (atomic_read(&fs_info->scrub_cancel_req) ||
2423 atomic_read(&sctx->cancel_req)) {
2428 * check to see if we have to pause
2430 if (atomic_read(&fs_info->scrub_pause_req)) {
2431 /* push queued extents */
2432 atomic_set(&sctx->wr_ctx.flush_all_writes, 1);
2434 mutex_lock(&sctx->wr_ctx.wr_lock);
2435 scrub_wr_submit(sctx);
2436 mutex_unlock(&sctx->wr_ctx.wr_lock);
2437 wait_event(sctx->list_wait,
2438 atomic_read(&sctx->bios_in_flight) == 0);
2439 atomic_set(&sctx->wr_ctx.flush_all_writes, 0);
2440 scrub_blocked_if_needed(fs_info);
2443 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2444 key.type = BTRFS_METADATA_ITEM_KEY;
2446 key.type = BTRFS_EXTENT_ITEM_KEY;
2447 key.objectid = logical;
2448 key.offset = (u64)-1;
2450 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2455 ret = btrfs_previous_extent_item(root, path, 0);
2459 /* there's no smaller item, so stick with the
2461 btrfs_release_path(path);
2462 ret = btrfs_search_slot(NULL, root, &key,
2474 slot = path->slots[0];
2475 if (slot >= btrfs_header_nritems(l)) {
2476 ret = btrfs_next_leaf(root, path);
2485 btrfs_item_key_to_cpu(l, &key, slot);
2487 if (key.type == BTRFS_METADATA_ITEM_KEY)
2488 bytes = root->leafsize;
2492 if (key.objectid + bytes <= logical)
2495 if (key.type != BTRFS_EXTENT_ITEM_KEY &&
2496 key.type != BTRFS_METADATA_ITEM_KEY)
2499 if (key.objectid >= logical + map->stripe_len) {
2500 /* out of this device extent */
2501 if (key.objectid >= logic_end)
2506 extent = btrfs_item_ptr(l, slot,
2507 struct btrfs_extent_item);
2508 flags = btrfs_extent_flags(l, extent);
2509 generation = btrfs_extent_generation(l, extent);
2511 if (key.objectid < logical &&
2512 (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)) {
2514 "scrub: tree block %llu spanning "
2515 "stripes, ignored. logical=%llu",
2516 key.objectid, logical);
2521 extent_logical = key.objectid;
2525 * trim extent to this stripe
2527 if (extent_logical < logical) {
2528 extent_len -= logical - extent_logical;
2529 extent_logical = logical;
2531 if (extent_logical + extent_len >
2532 logical + map->stripe_len) {
2533 extent_len = logical + map->stripe_len -
2537 extent_physical = extent_logical - logical + physical;
2538 extent_dev = scrub_dev;
2539 extent_mirror_num = mirror_num;
2541 scrub_remap_extent(fs_info, extent_logical,
2542 extent_len, &extent_physical,
2544 &extent_mirror_num);
2546 ret = btrfs_lookup_csums_range(csum_root, logical,
2547 logical + map->stripe_len - 1,
2548 &sctx->csum_list, 1);
2552 ret = scrub_extent(sctx, extent_logical, extent_len,
2553 extent_physical, extent_dev, flags,
2554 generation, extent_mirror_num,
2555 extent_logical - logical + physical);
2559 scrub_free_csums(sctx);
2560 if (extent_logical + extent_len <
2561 key.objectid + bytes) {
2562 if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
2563 BTRFS_BLOCK_GROUP_RAID6)) {
2565 * loop until we find next data stripe
2566 * or we have finished all stripes.
2569 physical += map->stripe_len;
2570 ret = get_raid56_logic_offset(
2574 } while (physical < physical_end && ret);
2576 physical += map->stripe_len;
2577 logical += increment;
2579 if (logical < key.objectid + bytes) {
2584 if (physical >= physical_end) {
2592 btrfs_release_path(path);
2594 logical += increment;
2595 physical += map->stripe_len;
2596 spin_lock(&sctx->stat_lock);
2598 sctx->stat.last_physical = map->stripes[num].physical +
2601 sctx->stat.last_physical = physical;
2602 spin_unlock(&sctx->stat_lock);
2607 /* push queued extents */
2609 mutex_lock(&sctx->wr_ctx.wr_lock);
2610 scrub_wr_submit(sctx);
2611 mutex_unlock(&sctx->wr_ctx.wr_lock);
2613 blk_finish_plug(&plug);
2614 btrfs_free_path(path);
2615 return ret < 0 ? ret : 0;
2618 static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
2619 struct btrfs_device *scrub_dev,
2620 u64 chunk_tree, u64 chunk_objectid,
2621 u64 chunk_offset, u64 length,
2622 u64 dev_offset, int is_dev_replace)
2624 struct btrfs_mapping_tree *map_tree =
2625 &sctx->dev_root->fs_info->mapping_tree;
2626 struct map_lookup *map;
2627 struct extent_map *em;
2631 read_lock(&map_tree->map_tree.lock);
2632 em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
2633 read_unlock(&map_tree->map_tree.lock);
2638 map = (struct map_lookup *)em->bdev;
2639 if (em->start != chunk_offset)
2642 if (em->len < length)
2645 for (i = 0; i < map->num_stripes; ++i) {
2646 if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
2647 map->stripes[i].physical == dev_offset) {
2648 ret = scrub_stripe(sctx, map, scrub_dev, i,
2649 chunk_offset, length,
2656 free_extent_map(em);
2661 static noinline_for_stack
2662 int scrub_enumerate_chunks(struct scrub_ctx *sctx,
2663 struct btrfs_device *scrub_dev, u64 start, u64 end,
2666 struct btrfs_dev_extent *dev_extent = NULL;
2667 struct btrfs_path *path;
2668 struct btrfs_root *root = sctx->dev_root;
2669 struct btrfs_fs_info *fs_info = root->fs_info;
2676 struct extent_buffer *l;
2677 struct btrfs_key key;
2678 struct btrfs_key found_key;
2679 struct btrfs_block_group_cache *cache;
2680 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
2682 path = btrfs_alloc_path();
2687 path->search_commit_root = 1;
2688 path->skip_locking = 1;
2690 key.objectid = scrub_dev->devid;
2692 key.type = BTRFS_DEV_EXTENT_KEY;
2695 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2699 if (path->slots[0] >=
2700 btrfs_header_nritems(path->nodes[0])) {
2701 ret = btrfs_next_leaf(root, path);
2708 slot = path->slots[0];
2710 btrfs_item_key_to_cpu(l, &found_key, slot);
2712 if (found_key.objectid != scrub_dev->devid)
2715 if (btrfs_key_type(&found_key) != BTRFS_DEV_EXTENT_KEY)
2718 if (found_key.offset >= end)
2721 if (found_key.offset < key.offset)
2724 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
2725 length = btrfs_dev_extent_length(l, dev_extent);
2727 if (found_key.offset + length <= start) {
2728 key.offset = found_key.offset + length;
2729 btrfs_release_path(path);
2733 chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent);
2734 chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
2735 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
2738 * get a reference on the corresponding block group to prevent
2739 * the chunk from going away while we scrub it
2741 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
2746 dev_replace->cursor_right = found_key.offset + length;
2747 dev_replace->cursor_left = found_key.offset;
2748 dev_replace->item_needs_writeback = 1;
2749 ret = scrub_chunk(sctx, scrub_dev, chunk_tree, chunk_objectid,
2750 chunk_offset, length, found_key.offset,
2754 * flush, submit all pending read and write bios, afterwards
2756 * Note that in the dev replace case, a read request causes
2757 * write requests that are submitted in the read completion
2758 * worker. Therefore in the current situation, it is required
2759 * that all write requests are flushed, so that all read and
2760 * write requests are really completed when bios_in_flight
2763 atomic_set(&sctx->wr_ctx.flush_all_writes, 1);
2765 mutex_lock(&sctx->wr_ctx.wr_lock);
2766 scrub_wr_submit(sctx);
2767 mutex_unlock(&sctx->wr_ctx.wr_lock);
2769 wait_event(sctx->list_wait,
2770 atomic_read(&sctx->bios_in_flight) == 0);
2771 atomic_inc(&fs_info->scrubs_paused);
2772 wake_up(&fs_info->scrub_pause_wait);
2775 * must be called before we decrease @scrub_paused.
2776 * make sure we don't block transaction commit while
2777 * we are waiting pending workers finished.
2779 wait_event(sctx->list_wait,
2780 atomic_read(&sctx->workers_pending) == 0);
2781 atomic_set(&sctx->wr_ctx.flush_all_writes, 0);
2783 mutex_lock(&fs_info->scrub_lock);
2784 __scrub_blocked_if_needed(fs_info);
2785 atomic_dec(&fs_info->scrubs_paused);
2786 mutex_unlock(&fs_info->scrub_lock);
2787 wake_up(&fs_info->scrub_pause_wait);
2789 btrfs_put_block_group(cache);
2792 if (is_dev_replace &&
2793 atomic64_read(&dev_replace->num_write_errors) > 0) {
2797 if (sctx->stat.malloc_errors > 0) {
2802 dev_replace->cursor_left = dev_replace->cursor_right;
2803 dev_replace->item_needs_writeback = 1;
2805 key.offset = found_key.offset + length;
2806 btrfs_release_path(path);
2809 btrfs_free_path(path);
2812 * ret can still be 1 from search_slot or next_leaf,
2813 * that's not an error
2815 return ret < 0 ? ret : 0;
2818 static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
2819 struct btrfs_device *scrub_dev)
2825 struct btrfs_root *root = sctx->dev_root;
2827 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
2830 gen = root->fs_info->last_trans_committed;
2832 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
2833 bytenr = btrfs_sb_offset(i);
2834 if (bytenr + BTRFS_SUPER_INFO_SIZE > scrub_dev->total_bytes)
2837 ret = scrub_pages(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr,
2838 scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i,
2843 wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
2849 * get a reference count on fs_info->scrub_workers. start worker if necessary
2851 static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info,
2855 int flags = WQ_FREEZABLE | WQ_UNBOUND;
2856 int max_active = fs_info->thread_pool_size;
2858 if (fs_info->scrub_workers_refcnt == 0) {
2860 fs_info->scrub_workers =
2861 btrfs_alloc_workqueue("btrfs-scrub", flags,
2864 fs_info->scrub_workers =
2865 btrfs_alloc_workqueue("btrfs-scrub", flags,
2867 if (!fs_info->scrub_workers) {
2871 fs_info->scrub_wr_completion_workers =
2872 btrfs_alloc_workqueue("btrfs-scrubwrc", flags,
2874 if (!fs_info->scrub_wr_completion_workers) {
2878 fs_info->scrub_nocow_workers =
2879 btrfs_alloc_workqueue("btrfs-scrubnc", flags, 1, 0);
2880 if (!fs_info->scrub_nocow_workers) {
2885 ++fs_info->scrub_workers_refcnt;
2890 static noinline_for_stack void scrub_workers_put(struct btrfs_fs_info *fs_info)
2892 if (--fs_info->scrub_workers_refcnt == 0) {
2893 btrfs_destroy_workqueue(fs_info->scrub_workers);
2894 btrfs_destroy_workqueue(fs_info->scrub_wr_completion_workers);
2895 btrfs_destroy_workqueue(fs_info->scrub_nocow_workers);
2897 WARN_ON(fs_info->scrub_workers_refcnt < 0);
2900 int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
2901 u64 end, struct btrfs_scrub_progress *progress,
2902 int readonly, int is_dev_replace)
2904 struct scrub_ctx *sctx;
2906 struct btrfs_device *dev;
2908 if (btrfs_fs_closing(fs_info))
2912 * check some assumptions
2914 if (fs_info->chunk_root->nodesize != fs_info->chunk_root->leafsize) {
2916 "scrub: size assumption nodesize == leafsize (%d == %d) fails",
2917 fs_info->chunk_root->nodesize,
2918 fs_info->chunk_root->leafsize);
2922 if (fs_info->chunk_root->nodesize > BTRFS_STRIPE_LEN) {
2924 * in this case scrub is unable to calculate the checksum
2925 * the way scrub is implemented. Do not handle this
2926 * situation at all because it won't ever happen.
2929 "scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails",
2930 fs_info->chunk_root->nodesize, BTRFS_STRIPE_LEN);
2934 if (fs_info->chunk_root->sectorsize != PAGE_SIZE) {
2935 /* not supported for data w/o checksums */
2937 "scrub: size assumption sectorsize != PAGE_SIZE "
2938 "(%d != %lu) fails",
2939 fs_info->chunk_root->sectorsize, PAGE_SIZE);
2943 if (fs_info->chunk_root->nodesize >
2944 PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK ||
2945 fs_info->chunk_root->sectorsize >
2946 PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK) {
2948 * would exhaust the array bounds of pagev member in
2949 * struct scrub_block
2951 btrfs_err(fs_info, "scrub: size assumption nodesize and sectorsize "
2952 "<= SCRUB_MAX_PAGES_PER_BLOCK (%d <= %d && %d <= %d) fails",
2953 fs_info->chunk_root->nodesize,
2954 SCRUB_MAX_PAGES_PER_BLOCK,
2955 fs_info->chunk_root->sectorsize,
2956 SCRUB_MAX_PAGES_PER_BLOCK);
2961 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2962 dev = btrfs_find_device(fs_info, devid, NULL, NULL);
2963 if (!dev || (dev->missing && !is_dev_replace)) {
2964 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2968 mutex_lock(&fs_info->scrub_lock);
2969 if (!dev->in_fs_metadata || dev->is_tgtdev_for_dev_replace) {
2970 mutex_unlock(&fs_info->scrub_lock);
2971 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2975 btrfs_dev_replace_lock(&fs_info->dev_replace);
2976 if (dev->scrub_device ||
2978 btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
2979 btrfs_dev_replace_unlock(&fs_info->dev_replace);
2980 mutex_unlock(&fs_info->scrub_lock);
2981 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2982 return -EINPROGRESS;
2984 btrfs_dev_replace_unlock(&fs_info->dev_replace);
2986 ret = scrub_workers_get(fs_info, is_dev_replace);
2988 mutex_unlock(&fs_info->scrub_lock);
2989 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2993 sctx = scrub_setup_ctx(dev, is_dev_replace);
2995 mutex_unlock(&fs_info->scrub_lock);
2996 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2997 scrub_workers_put(fs_info);
2998 return PTR_ERR(sctx);
3000 sctx->readonly = readonly;
3001 dev->scrub_device = sctx;
3002 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3005 * checking @scrub_pause_req here, we can avoid
3006 * race between committing transaction and scrubbing.
3008 __scrub_blocked_if_needed(fs_info);
3009 atomic_inc(&fs_info->scrubs_running);
3010 mutex_unlock(&fs_info->scrub_lock);
3012 if (!is_dev_replace) {
3014 * by holding device list mutex, we can
3015 * kick off writing super in log tree sync.
3017 mutex_lock(&fs_info->fs_devices->device_list_mutex);
3018 ret = scrub_supers(sctx, dev);
3019 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3023 ret = scrub_enumerate_chunks(sctx, dev, start, end,
3026 wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
3027 atomic_dec(&fs_info->scrubs_running);
3028 wake_up(&fs_info->scrub_pause_wait);
3030 wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0);
3033 memcpy(progress, &sctx->stat, sizeof(*progress));
3035 mutex_lock(&fs_info->scrub_lock);
3036 dev->scrub_device = NULL;
3037 scrub_workers_put(fs_info);
3038 mutex_unlock(&fs_info->scrub_lock);
3040 scrub_free_ctx(sctx);
3045 void btrfs_scrub_pause(struct btrfs_root *root)
3047 struct btrfs_fs_info *fs_info = root->fs_info;
3049 mutex_lock(&fs_info->scrub_lock);
3050 atomic_inc(&fs_info->scrub_pause_req);
3051 while (atomic_read(&fs_info->scrubs_paused) !=
3052 atomic_read(&fs_info->scrubs_running)) {
3053 mutex_unlock(&fs_info->scrub_lock);
3054 wait_event(fs_info->scrub_pause_wait,
3055 atomic_read(&fs_info->scrubs_paused) ==
3056 atomic_read(&fs_info->scrubs_running));
3057 mutex_lock(&fs_info->scrub_lock);
3059 mutex_unlock(&fs_info->scrub_lock);
3062 void btrfs_scrub_continue(struct btrfs_root *root)
3064 struct btrfs_fs_info *fs_info = root->fs_info;
3066 atomic_dec(&fs_info->scrub_pause_req);
3067 wake_up(&fs_info->scrub_pause_wait);
3070 int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
3072 mutex_lock(&fs_info->scrub_lock);
3073 if (!atomic_read(&fs_info->scrubs_running)) {
3074 mutex_unlock(&fs_info->scrub_lock);
3078 atomic_inc(&fs_info->scrub_cancel_req);
3079 while (atomic_read(&fs_info->scrubs_running)) {
3080 mutex_unlock(&fs_info->scrub_lock);
3081 wait_event(fs_info->scrub_pause_wait,
3082 atomic_read(&fs_info->scrubs_running) == 0);
3083 mutex_lock(&fs_info->scrub_lock);
3085 atomic_dec(&fs_info->scrub_cancel_req);
3086 mutex_unlock(&fs_info->scrub_lock);
3091 int btrfs_scrub_cancel_dev(struct btrfs_fs_info *fs_info,
3092 struct btrfs_device *dev)
3094 struct scrub_ctx *sctx;
3096 mutex_lock(&fs_info->scrub_lock);
3097 sctx = dev->scrub_device;
3099 mutex_unlock(&fs_info->scrub_lock);
3102 atomic_inc(&sctx->cancel_req);
3103 while (dev->scrub_device) {
3104 mutex_unlock(&fs_info->scrub_lock);
3105 wait_event(fs_info->scrub_pause_wait,
3106 dev->scrub_device == NULL);
3107 mutex_lock(&fs_info->scrub_lock);
3109 mutex_unlock(&fs_info->scrub_lock);
3114 int btrfs_scrub_progress(struct btrfs_root *root, u64 devid,
3115 struct btrfs_scrub_progress *progress)
3117 struct btrfs_device *dev;
3118 struct scrub_ctx *sctx = NULL;
3120 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
3121 dev = btrfs_find_device(root->fs_info, devid, NULL, NULL);
3123 sctx = dev->scrub_device;
3125 memcpy(progress, &sctx->stat, sizeof(*progress));
3126 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3128 return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
3131 static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
3132 u64 extent_logical, u64 extent_len,
3133 u64 *extent_physical,
3134 struct btrfs_device **extent_dev,
3135 int *extent_mirror_num)
3138 struct btrfs_bio *bbio = NULL;
3141 mapped_length = extent_len;
3142 ret = btrfs_map_block(fs_info, READ, extent_logical,
3143 &mapped_length, &bbio, 0);
3144 if (ret || !bbio || mapped_length < extent_len ||
3145 !bbio->stripes[0].dev->bdev) {
3150 *extent_physical = bbio->stripes[0].physical;
3151 *extent_mirror_num = bbio->mirror_num;
3152 *extent_dev = bbio->stripes[0].dev;
3156 static int scrub_setup_wr_ctx(struct scrub_ctx *sctx,
3157 struct scrub_wr_ctx *wr_ctx,
3158 struct btrfs_fs_info *fs_info,
3159 struct btrfs_device *dev,
3162 WARN_ON(wr_ctx->wr_curr_bio != NULL);
3164 mutex_init(&wr_ctx->wr_lock);
3165 wr_ctx->wr_curr_bio = NULL;
3166 if (!is_dev_replace)
3169 WARN_ON(!dev->bdev);
3170 wr_ctx->pages_per_wr_bio = min_t(int, SCRUB_PAGES_PER_WR_BIO,
3171 bio_get_nr_vecs(dev->bdev));
3172 wr_ctx->tgtdev = dev;
3173 atomic_set(&wr_ctx->flush_all_writes, 0);
3177 static void scrub_free_wr_ctx(struct scrub_wr_ctx *wr_ctx)
3179 mutex_lock(&wr_ctx->wr_lock);
3180 kfree(wr_ctx->wr_curr_bio);
3181 wr_ctx->wr_curr_bio = NULL;
3182 mutex_unlock(&wr_ctx->wr_lock);
3185 static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
3186 int mirror_num, u64 physical_for_dev_replace)
3188 struct scrub_copy_nocow_ctx *nocow_ctx;
3189 struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
3191 nocow_ctx = kzalloc(sizeof(*nocow_ctx), GFP_NOFS);
3193 spin_lock(&sctx->stat_lock);
3194 sctx->stat.malloc_errors++;
3195 spin_unlock(&sctx->stat_lock);
3199 scrub_pending_trans_workers_inc(sctx);
3201 nocow_ctx->sctx = sctx;
3202 nocow_ctx->logical = logical;
3203 nocow_ctx->len = len;
3204 nocow_ctx->mirror_num = mirror_num;
3205 nocow_ctx->physical_for_dev_replace = physical_for_dev_replace;
3206 btrfs_init_work(&nocow_ctx->work, copy_nocow_pages_worker, NULL, NULL);
3207 INIT_LIST_HEAD(&nocow_ctx->inodes);
3208 btrfs_queue_work(fs_info->scrub_nocow_workers,
3214 static int record_inode_for_nocow(u64 inum, u64 offset, u64 root, void *ctx)
3216 struct scrub_copy_nocow_ctx *nocow_ctx = ctx;
3217 struct scrub_nocow_inode *nocow_inode;
3219 nocow_inode = kzalloc(sizeof(*nocow_inode), GFP_NOFS);
3222 nocow_inode->inum = inum;
3223 nocow_inode->offset = offset;
3224 nocow_inode->root = root;
3225 list_add_tail(&nocow_inode->list, &nocow_ctx->inodes);
3229 #define COPY_COMPLETE 1
3231 static void copy_nocow_pages_worker(struct btrfs_work *work)
3233 struct scrub_copy_nocow_ctx *nocow_ctx =
3234 container_of(work, struct scrub_copy_nocow_ctx, work);
3235 struct scrub_ctx *sctx = nocow_ctx->sctx;
3236 u64 logical = nocow_ctx->logical;
3237 u64 len = nocow_ctx->len;
3238 int mirror_num = nocow_ctx->mirror_num;
3239 u64 physical_for_dev_replace = nocow_ctx->physical_for_dev_replace;
3241 struct btrfs_trans_handle *trans = NULL;
3242 struct btrfs_fs_info *fs_info;
3243 struct btrfs_path *path;
3244 struct btrfs_root *root;
3245 int not_written = 0;
3247 fs_info = sctx->dev_root->fs_info;
3248 root = fs_info->extent_root;
3250 path = btrfs_alloc_path();
3252 spin_lock(&sctx->stat_lock);
3253 sctx->stat.malloc_errors++;
3254 spin_unlock(&sctx->stat_lock);
3259 trans = btrfs_join_transaction(root);
3260 if (IS_ERR(trans)) {
3265 ret = iterate_inodes_from_logical(logical, fs_info, path,
3266 record_inode_for_nocow, nocow_ctx);
3267 if (ret != 0 && ret != -ENOENT) {
3268 btrfs_warn(fs_info, "iterate_inodes_from_logical() failed: log %llu, "
3269 "phys %llu, len %llu, mir %u, ret %d",
3270 logical, physical_for_dev_replace, len, mirror_num,
3276 btrfs_end_transaction(trans, root);
3278 while (!list_empty(&nocow_ctx->inodes)) {
3279 struct scrub_nocow_inode *entry;
3280 entry = list_first_entry(&nocow_ctx->inodes,
3281 struct scrub_nocow_inode,
3283 list_del_init(&entry->list);
3284 ret = copy_nocow_pages_for_inode(entry->inum, entry->offset,
3285 entry->root, nocow_ctx);
3287 if (ret == COPY_COMPLETE) {
3295 while (!list_empty(&nocow_ctx->inodes)) {
3296 struct scrub_nocow_inode *entry;
3297 entry = list_first_entry(&nocow_ctx->inodes,
3298 struct scrub_nocow_inode,
3300 list_del_init(&entry->list);
3303 if (trans && !IS_ERR(trans))
3304 btrfs_end_transaction(trans, root);
3306 btrfs_dev_replace_stats_inc(&fs_info->dev_replace.
3307 num_uncorrectable_read_errors);
3309 btrfs_free_path(path);
3312 scrub_pending_trans_workers_dec(sctx);
3315 static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root,
3316 struct scrub_copy_nocow_ctx *nocow_ctx)
3318 struct btrfs_fs_info *fs_info = nocow_ctx->sctx->dev_root->fs_info;
3319 struct btrfs_key key;
3320 struct inode *inode;
3322 struct btrfs_root *local_root;
3323 struct btrfs_ordered_extent *ordered;
3324 struct extent_map *em;
3325 struct extent_state *cached_state = NULL;
3326 struct extent_io_tree *io_tree;
3327 u64 physical_for_dev_replace;
3328 u64 len = nocow_ctx->len;
3329 u64 lockstart = offset, lockend = offset + len - 1;
3330 unsigned long index;
3335 key.objectid = root;
3336 key.type = BTRFS_ROOT_ITEM_KEY;
3337 key.offset = (u64)-1;
3339 srcu_index = srcu_read_lock(&fs_info->subvol_srcu);
3341 local_root = btrfs_read_fs_root_no_name(fs_info, &key);
3342 if (IS_ERR(local_root)) {
3343 srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
3344 return PTR_ERR(local_root);
3347 key.type = BTRFS_INODE_ITEM_KEY;
3348 key.objectid = inum;
3350 inode = btrfs_iget(fs_info->sb, &key, local_root, NULL);
3351 srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
3353 return PTR_ERR(inode);
3355 /* Avoid truncate/dio/punch hole.. */
3356 mutex_lock(&inode->i_mutex);
3357 inode_dio_wait(inode);
3359 physical_for_dev_replace = nocow_ctx->physical_for_dev_replace;
3360 io_tree = &BTRFS_I(inode)->io_tree;
3362 lock_extent_bits(io_tree, lockstart, lockend, 0, &cached_state);
3363 ordered = btrfs_lookup_ordered_range(inode, lockstart, len);
3365 btrfs_put_ordered_extent(ordered);
3369 em = btrfs_get_extent(inode, NULL, 0, lockstart, len, 0);
3376 * This extent does not actually cover the logical extent anymore,
3377 * move on to the next inode.
3379 if (em->block_start > nocow_ctx->logical ||
3380 em->block_start + em->block_len < nocow_ctx->logical + len) {
3381 free_extent_map(em);
3384 free_extent_map(em);
3386 while (len >= PAGE_CACHE_SIZE) {
3387 index = offset >> PAGE_CACHE_SHIFT;
3389 page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
3391 btrfs_err(fs_info, "find_or_create_page() failed");
3396 if (PageUptodate(page)) {
3397 if (PageDirty(page))
3400 ClearPageError(page);
3401 err = extent_read_full_page_nolock(io_tree, page,
3403 nocow_ctx->mirror_num);
3411 * If the page has been remove from the page cache,
3412 * the data on it is meaningless, because it may be
3413 * old one, the new data may be written into the new
3414 * page in the page cache.
3416 if (page->mapping != inode->i_mapping) {
3418 page_cache_release(page);
3421 if (!PageUptodate(page)) {
3426 err = write_page_nocow(nocow_ctx->sctx,
3427 physical_for_dev_replace, page);
3432 page_cache_release(page);
3437 offset += PAGE_CACHE_SIZE;
3438 physical_for_dev_replace += PAGE_CACHE_SIZE;
3439 len -= PAGE_CACHE_SIZE;
3441 ret = COPY_COMPLETE;
3443 unlock_extent_cached(io_tree, lockstart, lockend, &cached_state,
3446 mutex_unlock(&inode->i_mutex);
3451 static int write_page_nocow(struct scrub_ctx *sctx,
3452 u64 physical_for_dev_replace, struct page *page)
3455 struct btrfs_device *dev;
3458 dev = sctx->wr_ctx.tgtdev;
3462 printk_ratelimited(KERN_WARNING
3463 "BTRFS: scrub write_page_nocow(bdev == NULL) is unexpected!\n");
3466 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
3468 spin_lock(&sctx->stat_lock);
3469 sctx->stat.malloc_errors++;
3470 spin_unlock(&sctx->stat_lock);
3473 bio->bi_iter.bi_size = 0;
3474 bio->bi_iter.bi_sector = physical_for_dev_replace >> 9;
3475 bio->bi_bdev = dev->bdev;
3476 ret = bio_add_page(bio, page, PAGE_CACHE_SIZE, 0);
3477 if (ret != PAGE_CACHE_SIZE) {
3480 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
3484 if (btrfsic_submit_bio_wait(WRITE_SYNC, bio))
3485 goto leave_with_eio;