2 * Copyright (C) 2012 Alexander Block. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/bsearch.h>
21 #include <linux/file.h>
22 #include <linux/sort.h>
23 #include <linux/mount.h>
24 #include <linux/xattr.h>
25 #include <linux/posix_acl_xattr.h>
26 #include <linux/radix-tree.h>
27 #include <linux/vmalloc.h>
28 #include <linux/string.h>
35 #include "btrfs_inode.h"
36 #include "transaction.h"
38 static int g_verbose = 0;
40 #define verbose_printk(...) if (g_verbose) printk(__VA_ARGS__)
43 * A fs_path is a helper to dynamically build path names with unknown size.
44 * It reallocates the internal buffer on demand.
45 * It allows fast adding of path elements on the right side (normal path) and
46 * fast adding to the left side (reversed path). A reversed path can also be
47 * unreversed if needed.
56 unsigned short buf_len:15;
57 unsigned short reversed:1;
61 * Average path length does not exceed 200 bytes, we'll have
62 * better packing in the slab and higher chance to satisfy
63 * a allocation later during send.
68 #define FS_PATH_INLINE_SIZE \
69 (sizeof(struct fs_path) - offsetof(struct fs_path, inline_buf))
72 /* reused for each extent */
74 struct btrfs_root *root;
81 #define SEND_CTX_MAX_NAME_CACHE_SIZE 128
82 #define SEND_CTX_NAME_CACHE_CLEAN_SIZE (SEND_CTX_MAX_NAME_CACHE_SIZE * 2)
85 struct file *send_filp;
91 u64 cmd_send_size[BTRFS_SEND_C_MAX + 1];
92 u64 flags; /* 'flags' member of btrfs_ioctl_send_args is u64 */
94 struct btrfs_root *send_root;
95 struct btrfs_root *parent_root;
96 struct clone_root *clone_roots;
99 /* current state of the compare_tree call */
100 struct btrfs_path *left_path;
101 struct btrfs_path *right_path;
102 struct btrfs_key *cmp_key;
105 * infos of the currently processed inode. In case of deleted inodes,
106 * these are the values from the deleted inode.
111 int cur_inode_new_gen;
112 int cur_inode_deleted;
116 u64 cur_inode_last_extent;
120 struct list_head new_refs;
121 struct list_head deleted_refs;
123 struct radix_tree_root name_cache;
124 struct list_head name_cache_list;
127 struct file_ra_state ra;
132 * We process inodes by their increasing order, so if before an
133 * incremental send we reverse the parent/child relationship of
134 * directories such that a directory with a lower inode number was
135 * the parent of a directory with a higher inode number, and the one
136 * becoming the new parent got renamed too, we can't rename/move the
137 * directory with lower inode number when we finish processing it - we
138 * must process the directory with higher inode number first, then
139 * rename/move it and then rename/move the directory with lower inode
140 * number. Example follows.
142 * Tree state when the first send was performed:
154 * Tree state when the second (incremental) send is performed:
163 * The sequence of steps that lead to the second state was:
165 * mv /a/b/c/d /a/b/c2/d2
166 * mv /a/b/c /a/b/c2/d2/cc
168 * "c" has lower inode number, but we can't move it (2nd mv operation)
169 * before we move "d", which has higher inode number.
171 * So we just memorize which move/rename operations must be performed
172 * later when their respective parent is processed and moved/renamed.
175 /* Indexed by parent directory inode number. */
176 struct rb_root pending_dir_moves;
179 * Reverse index, indexed by the inode number of a directory that
180 * is waiting for the move/rename of its immediate parent before its
181 * own move/rename can be performed.
183 struct rb_root waiting_dir_moves;
186 * A directory that is going to be rm'ed might have a child directory
187 * which is in the pending directory moves index above. In this case,
188 * the directory can only be removed after the move/rename of its child
189 * is performed. Example:
209 * Sequence of steps that lead to the send snapshot:
210 * rm -f /a/b/c/foo.txt
212 * mv /a/b/c/x /a/b/YY
215 * When the child is processed, its move/rename is delayed until its
216 * parent is processed (as explained above), but all other operations
217 * like update utimes, chown, chgrp, etc, are performed and the paths
218 * that it uses for those operations must use the orphanized name of
219 * its parent (the directory we're going to rm later), so we need to
220 * memorize that name.
222 * Indexed by the inode number of the directory to be deleted.
224 struct rb_root orphan_dirs;
227 struct pending_dir_move {
229 struct list_head list;
234 struct list_head update_refs;
237 struct waiting_dir_move {
241 * There might be some directory that could not be removed because it
242 * was waiting for this directory inode to be moved first. Therefore
243 * after this directory is moved, we can try to rmdir the ino rmdir_ino.
249 struct orphan_dir_info {
255 struct name_cache_entry {
256 struct list_head list;
258 * radix_tree has only 32bit entries but we need to handle 64bit inums.
259 * We use the lower 32bit of the 64bit inum to store it in the tree. If
260 * more then one inum would fall into the same entry, we use radix_list
261 * to store the additional entries. radix_list is also used to store
262 * entries where two entries have the same inum but different
265 struct list_head radix_list;
271 int need_later_update;
276 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino);
278 static struct waiting_dir_move *
279 get_waiting_dir_move(struct send_ctx *sctx, u64 ino);
281 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino);
283 static int need_send_hole(struct send_ctx *sctx)
285 return (sctx->parent_root && !sctx->cur_inode_new &&
286 !sctx->cur_inode_new_gen && !sctx->cur_inode_deleted &&
287 S_ISREG(sctx->cur_inode_mode));
290 static void fs_path_reset(struct fs_path *p)
293 p->start = p->buf + p->buf_len - 1;
303 static struct fs_path *fs_path_alloc(void)
307 p = kmalloc(sizeof(*p), GFP_KERNEL);
311 p->buf = p->inline_buf;
312 p->buf_len = FS_PATH_INLINE_SIZE;
317 static struct fs_path *fs_path_alloc_reversed(void)
329 static void fs_path_free(struct fs_path *p)
333 if (p->buf != p->inline_buf)
338 static int fs_path_len(struct fs_path *p)
340 return p->end - p->start;
343 static int fs_path_ensure_buf(struct fs_path *p, int len)
351 if (p->buf_len >= len)
354 if (len > PATH_MAX) {
359 path_len = p->end - p->start;
360 old_buf_len = p->buf_len;
363 * First time the inline_buf does not suffice
365 if (p->buf == p->inline_buf) {
366 tmp_buf = kmalloc(len, GFP_KERNEL);
368 memcpy(tmp_buf, p->buf, old_buf_len);
370 tmp_buf = krealloc(p->buf, len, GFP_KERNEL);
376 * The real size of the buffer is bigger, this will let the fast path
377 * happen most of the time
379 p->buf_len = ksize(p->buf);
382 tmp_buf = p->buf + old_buf_len - path_len - 1;
383 p->end = p->buf + p->buf_len - 1;
384 p->start = p->end - path_len;
385 memmove(p->start, tmp_buf, path_len + 1);
388 p->end = p->start + path_len;
393 static int fs_path_prepare_for_add(struct fs_path *p, int name_len,
399 new_len = p->end - p->start + name_len;
400 if (p->start != p->end)
402 ret = fs_path_ensure_buf(p, new_len);
407 if (p->start != p->end)
409 p->start -= name_len;
410 *prepared = p->start;
412 if (p->start != p->end)
423 static int fs_path_add(struct fs_path *p, const char *name, int name_len)
428 ret = fs_path_prepare_for_add(p, name_len, &prepared);
431 memcpy(prepared, name, name_len);
437 static int fs_path_add_path(struct fs_path *p, struct fs_path *p2)
442 ret = fs_path_prepare_for_add(p, p2->end - p2->start, &prepared);
445 memcpy(prepared, p2->start, p2->end - p2->start);
451 static int fs_path_add_from_extent_buffer(struct fs_path *p,
452 struct extent_buffer *eb,
453 unsigned long off, int len)
458 ret = fs_path_prepare_for_add(p, len, &prepared);
462 read_extent_buffer(eb, prepared, off, len);
468 static int fs_path_copy(struct fs_path *p, struct fs_path *from)
472 p->reversed = from->reversed;
475 ret = fs_path_add_path(p, from);
481 static void fs_path_unreverse(struct fs_path *p)
490 len = p->end - p->start;
492 p->end = p->start + len;
493 memmove(p->start, tmp, len + 1);
497 static struct btrfs_path *alloc_path_for_send(void)
499 struct btrfs_path *path;
501 path = btrfs_alloc_path();
504 path->search_commit_root = 1;
505 path->skip_locking = 1;
506 path->need_commit_sem = 1;
510 static int write_buf(struct file *filp, const void *buf, u32 len, loff_t *off)
520 ret = vfs_write(filp, (__force const char __user *)buf + pos,
522 /* TODO handle that correctly */
523 /*if (ret == -ERESTARTSYS) {
542 static int tlv_put(struct send_ctx *sctx, u16 attr, const void *data, int len)
544 struct btrfs_tlv_header *hdr;
545 int total_len = sizeof(*hdr) + len;
546 int left = sctx->send_max_size - sctx->send_size;
548 if (unlikely(left < total_len))
551 hdr = (struct btrfs_tlv_header *) (sctx->send_buf + sctx->send_size);
552 hdr->tlv_type = cpu_to_le16(attr);
553 hdr->tlv_len = cpu_to_le16(len);
554 memcpy(hdr + 1, data, len);
555 sctx->send_size += total_len;
560 #define TLV_PUT_DEFINE_INT(bits) \
561 static int tlv_put_u##bits(struct send_ctx *sctx, \
562 u##bits attr, u##bits value) \
564 __le##bits __tmp = cpu_to_le##bits(value); \
565 return tlv_put(sctx, attr, &__tmp, sizeof(__tmp)); \
568 TLV_PUT_DEFINE_INT(64)
570 static int tlv_put_string(struct send_ctx *sctx, u16 attr,
571 const char *str, int len)
575 return tlv_put(sctx, attr, str, len);
578 static int tlv_put_uuid(struct send_ctx *sctx, u16 attr,
581 return tlv_put(sctx, attr, uuid, BTRFS_UUID_SIZE);
584 static int tlv_put_btrfs_timespec(struct send_ctx *sctx, u16 attr,
585 struct extent_buffer *eb,
586 struct btrfs_timespec *ts)
588 struct btrfs_timespec bts;
589 read_extent_buffer(eb, &bts, (unsigned long)ts, sizeof(bts));
590 return tlv_put(sctx, attr, &bts, sizeof(bts));
594 #define TLV_PUT(sctx, attrtype, attrlen, data) \
596 ret = tlv_put(sctx, attrtype, attrlen, data); \
598 goto tlv_put_failure; \
601 #define TLV_PUT_INT(sctx, attrtype, bits, value) \
603 ret = tlv_put_u##bits(sctx, attrtype, value); \
605 goto tlv_put_failure; \
608 #define TLV_PUT_U8(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 8, data)
609 #define TLV_PUT_U16(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 16, data)
610 #define TLV_PUT_U32(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 32, data)
611 #define TLV_PUT_U64(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 64, data)
612 #define TLV_PUT_STRING(sctx, attrtype, str, len) \
614 ret = tlv_put_string(sctx, attrtype, str, len); \
616 goto tlv_put_failure; \
618 #define TLV_PUT_PATH(sctx, attrtype, p) \
620 ret = tlv_put_string(sctx, attrtype, p->start, \
621 p->end - p->start); \
623 goto tlv_put_failure; \
625 #define TLV_PUT_UUID(sctx, attrtype, uuid) \
627 ret = tlv_put_uuid(sctx, attrtype, uuid); \
629 goto tlv_put_failure; \
631 #define TLV_PUT_BTRFS_TIMESPEC(sctx, attrtype, eb, ts) \
633 ret = tlv_put_btrfs_timespec(sctx, attrtype, eb, ts); \
635 goto tlv_put_failure; \
638 static int send_header(struct send_ctx *sctx)
640 struct btrfs_stream_header hdr;
642 strcpy(hdr.magic, BTRFS_SEND_STREAM_MAGIC);
643 hdr.version = cpu_to_le32(BTRFS_SEND_STREAM_VERSION);
645 return write_buf(sctx->send_filp, &hdr, sizeof(hdr),
650 * For each command/item we want to send to userspace, we call this function.
652 static int begin_cmd(struct send_ctx *sctx, int cmd)
654 struct btrfs_cmd_header *hdr;
656 if (WARN_ON(!sctx->send_buf))
659 BUG_ON(sctx->send_size);
661 sctx->send_size += sizeof(*hdr);
662 hdr = (struct btrfs_cmd_header *)sctx->send_buf;
663 hdr->cmd = cpu_to_le16(cmd);
668 static int send_cmd(struct send_ctx *sctx)
671 struct btrfs_cmd_header *hdr;
674 hdr = (struct btrfs_cmd_header *)sctx->send_buf;
675 hdr->len = cpu_to_le32(sctx->send_size - sizeof(*hdr));
678 crc = btrfs_crc32c(0, (unsigned char *)sctx->send_buf, sctx->send_size);
679 hdr->crc = cpu_to_le32(crc);
681 ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size,
684 sctx->total_send_size += sctx->send_size;
685 sctx->cmd_send_size[le16_to_cpu(hdr->cmd)] += sctx->send_size;
692 * Sends a move instruction to user space
694 static int send_rename(struct send_ctx *sctx,
695 struct fs_path *from, struct fs_path *to)
699 verbose_printk("btrfs: send_rename %s -> %s\n", from->start, to->start);
701 ret = begin_cmd(sctx, BTRFS_SEND_C_RENAME);
705 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, from);
706 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_TO, to);
708 ret = send_cmd(sctx);
716 * Sends a link instruction to user space
718 static int send_link(struct send_ctx *sctx,
719 struct fs_path *path, struct fs_path *lnk)
723 verbose_printk("btrfs: send_link %s -> %s\n", path->start, lnk->start);
725 ret = begin_cmd(sctx, BTRFS_SEND_C_LINK);
729 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
730 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, lnk);
732 ret = send_cmd(sctx);
740 * Sends an unlink instruction to user space
742 static int send_unlink(struct send_ctx *sctx, struct fs_path *path)
746 verbose_printk("btrfs: send_unlink %s\n", path->start);
748 ret = begin_cmd(sctx, BTRFS_SEND_C_UNLINK);
752 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
754 ret = send_cmd(sctx);
762 * Sends a rmdir instruction to user space
764 static int send_rmdir(struct send_ctx *sctx, struct fs_path *path)
768 verbose_printk("btrfs: send_rmdir %s\n", path->start);
770 ret = begin_cmd(sctx, BTRFS_SEND_C_RMDIR);
774 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
776 ret = send_cmd(sctx);
784 * Helper function to retrieve some fields from an inode item.
786 static int __get_inode_info(struct btrfs_root *root, struct btrfs_path *path,
787 u64 ino, u64 *size, u64 *gen, u64 *mode, u64 *uid,
791 struct btrfs_inode_item *ii;
792 struct btrfs_key key;
795 key.type = BTRFS_INODE_ITEM_KEY;
797 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
804 ii = btrfs_item_ptr(path->nodes[0], path->slots[0],
805 struct btrfs_inode_item);
807 *size = btrfs_inode_size(path->nodes[0], ii);
809 *gen = btrfs_inode_generation(path->nodes[0], ii);
811 *mode = btrfs_inode_mode(path->nodes[0], ii);
813 *uid = btrfs_inode_uid(path->nodes[0], ii);
815 *gid = btrfs_inode_gid(path->nodes[0], ii);
817 *rdev = btrfs_inode_rdev(path->nodes[0], ii);
822 static int get_inode_info(struct btrfs_root *root,
823 u64 ino, u64 *size, u64 *gen,
824 u64 *mode, u64 *uid, u64 *gid,
827 struct btrfs_path *path;
830 path = alloc_path_for_send();
833 ret = __get_inode_info(root, path, ino, size, gen, mode, uid, gid,
835 btrfs_free_path(path);
839 typedef int (*iterate_inode_ref_t)(int num, u64 dir, int index,
844 * Helper function to iterate the entries in ONE btrfs_inode_ref or
845 * btrfs_inode_extref.
846 * The iterate callback may return a non zero value to stop iteration. This can
847 * be a negative value for error codes or 1 to simply stop it.
849 * path must point to the INODE_REF or INODE_EXTREF when called.
851 static int iterate_inode_ref(struct btrfs_root *root, struct btrfs_path *path,
852 struct btrfs_key *found_key, int resolve,
853 iterate_inode_ref_t iterate, void *ctx)
855 struct extent_buffer *eb = path->nodes[0];
856 struct btrfs_item *item;
857 struct btrfs_inode_ref *iref;
858 struct btrfs_inode_extref *extref;
859 struct btrfs_path *tmp_path;
863 int slot = path->slots[0];
870 unsigned long name_off;
871 unsigned long elem_size;
874 p = fs_path_alloc_reversed();
878 tmp_path = alloc_path_for_send();
885 if (found_key->type == BTRFS_INODE_REF_KEY) {
886 ptr = (unsigned long)btrfs_item_ptr(eb, slot,
887 struct btrfs_inode_ref);
888 item = btrfs_item_nr(slot);
889 total = btrfs_item_size(eb, item);
890 elem_size = sizeof(*iref);
892 ptr = btrfs_item_ptr_offset(eb, slot);
893 total = btrfs_item_size_nr(eb, slot);
894 elem_size = sizeof(*extref);
897 while (cur < total) {
900 if (found_key->type == BTRFS_INODE_REF_KEY) {
901 iref = (struct btrfs_inode_ref *)(ptr + cur);
902 name_len = btrfs_inode_ref_name_len(eb, iref);
903 name_off = (unsigned long)(iref + 1);
904 index = btrfs_inode_ref_index(eb, iref);
905 dir = found_key->offset;
907 extref = (struct btrfs_inode_extref *)(ptr + cur);
908 name_len = btrfs_inode_extref_name_len(eb, extref);
909 name_off = (unsigned long)&extref->name;
910 index = btrfs_inode_extref_index(eb, extref);
911 dir = btrfs_inode_extref_parent(eb, extref);
915 start = btrfs_ref_to_path(root, tmp_path, name_len,
919 ret = PTR_ERR(start);
922 if (start < p->buf) {
923 /* overflow , try again with larger buffer */
924 ret = fs_path_ensure_buf(p,
925 p->buf_len + p->buf - start);
928 start = btrfs_ref_to_path(root, tmp_path,
933 ret = PTR_ERR(start);
936 BUG_ON(start < p->buf);
940 ret = fs_path_add_from_extent_buffer(p, eb, name_off,
946 cur += elem_size + name_len;
947 ret = iterate(num, dir, index, p, ctx);
954 btrfs_free_path(tmp_path);
959 typedef int (*iterate_dir_item_t)(int num, struct btrfs_key *di_key,
960 const char *name, int name_len,
961 const char *data, int data_len,
965 * Helper function to iterate the entries in ONE btrfs_dir_item.
966 * The iterate callback may return a non zero value to stop iteration. This can
967 * be a negative value for error codes or 1 to simply stop it.
969 * path must point to the dir item when called.
971 static int iterate_dir_item(struct btrfs_root *root, struct btrfs_path *path,
972 struct btrfs_key *found_key,
973 iterate_dir_item_t iterate, void *ctx)
976 struct extent_buffer *eb;
977 struct btrfs_item *item;
978 struct btrfs_dir_item *di;
979 struct btrfs_key di_key;
992 * Start with a small buffer (1 page). If later we end up needing more
993 * space, which can happen for xattrs on a fs with a leaf size greater
994 * then the page size, attempt to increase the buffer. Typically xattr
998 buf = kmalloc(buf_len, GFP_KERNEL);
1004 eb = path->nodes[0];
1005 slot = path->slots[0];
1006 item = btrfs_item_nr(slot);
1007 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
1010 total = btrfs_item_size(eb, item);
1013 while (cur < total) {
1014 name_len = btrfs_dir_name_len(eb, di);
1015 data_len = btrfs_dir_data_len(eb, di);
1016 type = btrfs_dir_type(eb, di);
1017 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
1019 if (type == BTRFS_FT_XATTR) {
1020 if (name_len > XATTR_NAME_MAX) {
1021 ret = -ENAMETOOLONG;
1024 if (name_len + data_len > BTRFS_MAX_XATTR_SIZE(root)) {
1032 if (name_len + data_len > PATH_MAX) {
1033 ret = -ENAMETOOLONG;
1038 if (name_len + data_len > buf_len) {
1039 buf_len = name_len + data_len;
1040 if (is_vmalloc_addr(buf)) {
1044 char *tmp = krealloc(buf, buf_len,
1045 GFP_KERNEL | __GFP_NOWARN);
1052 buf = vmalloc(buf_len);
1060 read_extent_buffer(eb, buf, (unsigned long)(di + 1),
1061 name_len + data_len);
1063 len = sizeof(*di) + name_len + data_len;
1064 di = (struct btrfs_dir_item *)((char *)di + len);
1067 ret = iterate(num, &di_key, buf, name_len, buf + name_len,
1068 data_len, type, ctx);
1084 static int __copy_first_ref(int num, u64 dir, int index,
1085 struct fs_path *p, void *ctx)
1088 struct fs_path *pt = ctx;
1090 ret = fs_path_copy(pt, p);
1094 /* we want the first only */
1099 * Retrieve the first path of an inode. If an inode has more then one
1100 * ref/hardlink, this is ignored.
1102 static int get_inode_path(struct btrfs_root *root,
1103 u64 ino, struct fs_path *path)
1106 struct btrfs_key key, found_key;
1107 struct btrfs_path *p;
1109 p = alloc_path_for_send();
1113 fs_path_reset(path);
1116 key.type = BTRFS_INODE_REF_KEY;
1119 ret = btrfs_search_slot_for_read(root, &key, p, 1, 0);
1126 btrfs_item_key_to_cpu(p->nodes[0], &found_key, p->slots[0]);
1127 if (found_key.objectid != ino ||
1128 (found_key.type != BTRFS_INODE_REF_KEY &&
1129 found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1134 ret = iterate_inode_ref(root, p, &found_key, 1,
1135 __copy_first_ref, path);
1145 struct backref_ctx {
1146 struct send_ctx *sctx;
1148 struct btrfs_path *path;
1149 /* number of total found references */
1153 * used for clones found in send_root. clones found behind cur_objectid
1154 * and cur_offset are not considered as allowed clones.
1159 /* may be truncated in case it's the last extent in a file */
1162 /* data offset in the file extent item */
1165 /* Just to check for bugs in backref resolving */
1169 static int __clone_root_cmp_bsearch(const void *key, const void *elt)
1171 u64 root = (u64)(uintptr_t)key;
1172 struct clone_root *cr = (struct clone_root *)elt;
1174 if (root < cr->root->objectid)
1176 if (root > cr->root->objectid)
1181 static int __clone_root_cmp_sort(const void *e1, const void *e2)
1183 struct clone_root *cr1 = (struct clone_root *)e1;
1184 struct clone_root *cr2 = (struct clone_root *)e2;
1186 if (cr1->root->objectid < cr2->root->objectid)
1188 if (cr1->root->objectid > cr2->root->objectid)
1194 * Called for every backref that is found for the current extent.
1195 * Results are collected in sctx->clone_roots->ino/offset/found_refs
1197 static int __iterate_backrefs(u64 ino, u64 offset, u64 root, void *ctx_)
1199 struct backref_ctx *bctx = ctx_;
1200 struct clone_root *found;
1204 /* First check if the root is in the list of accepted clone sources */
1205 found = bsearch((void *)(uintptr_t)root, bctx->sctx->clone_roots,
1206 bctx->sctx->clone_roots_cnt,
1207 sizeof(struct clone_root),
1208 __clone_root_cmp_bsearch);
1212 if (found->root == bctx->sctx->send_root &&
1213 ino == bctx->cur_objectid &&
1214 offset == bctx->cur_offset) {
1215 bctx->found_itself = 1;
1219 * There are inodes that have extents that lie behind its i_size. Don't
1220 * accept clones from these extents.
1222 ret = __get_inode_info(found->root, bctx->path, ino, &i_size, NULL, NULL,
1224 btrfs_release_path(bctx->path);
1228 if (offset + bctx->data_offset + bctx->extent_len > i_size)
1232 * Make sure we don't consider clones from send_root that are
1233 * behind the current inode/offset.
1235 if (found->root == bctx->sctx->send_root) {
1237 * TODO for the moment we don't accept clones from the inode
1238 * that is currently send. We may change this when
1239 * BTRFS_IOC_CLONE_RANGE supports cloning from and to the same
1242 if (ino >= bctx->cur_objectid)
1245 if (ino > bctx->cur_objectid)
1247 if (offset + bctx->extent_len > bctx->cur_offset)
1253 found->found_refs++;
1254 if (ino < found->ino) {
1256 found->offset = offset;
1257 } else if (found->ino == ino) {
1259 * same extent found more then once in the same file.
1261 if (found->offset > offset + bctx->extent_len)
1262 found->offset = offset;
1269 * Given an inode, offset and extent item, it finds a good clone for a clone
1270 * instruction. Returns -ENOENT when none could be found. The function makes
1271 * sure that the returned clone is usable at the point where sending is at the
1272 * moment. This means, that no clones are accepted which lie behind the current
1275 * path must point to the extent item when called.
1277 static int find_extent_clone(struct send_ctx *sctx,
1278 struct btrfs_path *path,
1279 u64 ino, u64 data_offset,
1281 struct clone_root **found)
1288 u64 extent_item_pos;
1290 struct btrfs_file_extent_item *fi;
1291 struct extent_buffer *eb = path->nodes[0];
1292 struct backref_ctx *backref_ctx = NULL;
1293 struct clone_root *cur_clone_root;
1294 struct btrfs_key found_key;
1295 struct btrfs_path *tmp_path;
1299 tmp_path = alloc_path_for_send();
1303 /* We only use this path under the commit sem */
1304 tmp_path->need_commit_sem = 0;
1306 backref_ctx = kmalloc(sizeof(*backref_ctx), GFP_KERNEL);
1312 backref_ctx->path = tmp_path;
1314 if (data_offset >= ino_size) {
1316 * There may be extents that lie behind the file's size.
1317 * I at least had this in combination with snapshotting while
1318 * writing large files.
1324 fi = btrfs_item_ptr(eb, path->slots[0],
1325 struct btrfs_file_extent_item);
1326 extent_type = btrfs_file_extent_type(eb, fi);
1327 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1331 compressed = btrfs_file_extent_compression(eb, fi);
1333 num_bytes = btrfs_file_extent_num_bytes(eb, fi);
1334 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
1335 if (disk_byte == 0) {
1339 logical = disk_byte + btrfs_file_extent_offset(eb, fi);
1341 down_read(&sctx->send_root->fs_info->commit_root_sem);
1342 ret = extent_from_logical(sctx->send_root->fs_info, disk_byte, tmp_path,
1343 &found_key, &flags);
1344 up_read(&sctx->send_root->fs_info->commit_root_sem);
1345 btrfs_release_path(tmp_path);
1349 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1355 * Setup the clone roots.
1357 for (i = 0; i < sctx->clone_roots_cnt; i++) {
1358 cur_clone_root = sctx->clone_roots + i;
1359 cur_clone_root->ino = (u64)-1;
1360 cur_clone_root->offset = 0;
1361 cur_clone_root->found_refs = 0;
1364 backref_ctx->sctx = sctx;
1365 backref_ctx->found = 0;
1366 backref_ctx->cur_objectid = ino;
1367 backref_ctx->cur_offset = data_offset;
1368 backref_ctx->found_itself = 0;
1369 backref_ctx->extent_len = num_bytes;
1371 * For non-compressed extents iterate_extent_inodes() gives us extent
1372 * offsets that already take into account the data offset, but not for
1373 * compressed extents, since the offset is logical and not relative to
1374 * the physical extent locations. We must take this into account to
1375 * avoid sending clone offsets that go beyond the source file's size,
1376 * which would result in the clone ioctl failing with -EINVAL on the
1379 if (compressed == BTRFS_COMPRESS_NONE)
1380 backref_ctx->data_offset = 0;
1382 backref_ctx->data_offset = btrfs_file_extent_offset(eb, fi);
1385 * The last extent of a file may be too large due to page alignment.
1386 * We need to adjust extent_len in this case so that the checks in
1387 * __iterate_backrefs work.
1389 if (data_offset + num_bytes >= ino_size)
1390 backref_ctx->extent_len = ino_size - data_offset;
1393 * Now collect all backrefs.
1395 if (compressed == BTRFS_COMPRESS_NONE)
1396 extent_item_pos = logical - found_key.objectid;
1398 extent_item_pos = 0;
1399 ret = iterate_extent_inodes(sctx->send_root->fs_info,
1400 found_key.objectid, extent_item_pos, 1,
1401 __iterate_backrefs, backref_ctx);
1406 if (!backref_ctx->found_itself) {
1407 /* found a bug in backref code? */
1409 btrfs_err(sctx->send_root->fs_info, "did not find backref in "
1410 "send_root. inode=%llu, offset=%llu, "
1411 "disk_byte=%llu found extent=%llu",
1412 ino, data_offset, disk_byte, found_key.objectid);
1416 verbose_printk(KERN_DEBUG "btrfs: find_extent_clone: data_offset=%llu, "
1418 "num_bytes=%llu, logical=%llu\n",
1419 data_offset, ino, num_bytes, logical);
1421 if (!backref_ctx->found)
1422 verbose_printk("btrfs: no clones found\n");
1424 cur_clone_root = NULL;
1425 for (i = 0; i < sctx->clone_roots_cnt; i++) {
1426 if (sctx->clone_roots[i].found_refs) {
1427 if (!cur_clone_root)
1428 cur_clone_root = sctx->clone_roots + i;
1429 else if (sctx->clone_roots[i].root == sctx->send_root)
1430 /* prefer clones from send_root over others */
1431 cur_clone_root = sctx->clone_roots + i;
1436 if (cur_clone_root) {
1437 *found = cur_clone_root;
1444 btrfs_free_path(tmp_path);
1449 static int read_symlink(struct btrfs_root *root,
1451 struct fs_path *dest)
1454 struct btrfs_path *path;
1455 struct btrfs_key key;
1456 struct btrfs_file_extent_item *ei;
1462 path = alloc_path_for_send();
1467 key.type = BTRFS_EXTENT_DATA_KEY;
1469 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1474 * An empty symlink inode. Can happen in rare error paths when
1475 * creating a symlink (transaction committed before the inode
1476 * eviction handler removed the symlink inode items and a crash
1477 * happened in between or the subvol was snapshoted in between).
1478 * Print an informative message to dmesg/syslog so that the user
1479 * can delete the symlink.
1481 btrfs_err(root->fs_info,
1482 "Found empty symlink inode %llu at root %llu",
1483 ino, root->root_key.objectid);
1488 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
1489 struct btrfs_file_extent_item);
1490 type = btrfs_file_extent_type(path->nodes[0], ei);
1491 compression = btrfs_file_extent_compression(path->nodes[0], ei);
1492 BUG_ON(type != BTRFS_FILE_EXTENT_INLINE);
1493 BUG_ON(compression);
1495 off = btrfs_file_extent_inline_start(ei);
1496 len = btrfs_file_extent_inline_len(path->nodes[0], path->slots[0], ei);
1498 ret = fs_path_add_from_extent_buffer(dest, path->nodes[0], off, len);
1501 btrfs_free_path(path);
1506 * Helper function to generate a file name that is unique in the root of
1507 * send_root and parent_root. This is used to generate names for orphan inodes.
1509 static int gen_unique_name(struct send_ctx *sctx,
1511 struct fs_path *dest)
1514 struct btrfs_path *path;
1515 struct btrfs_dir_item *di;
1520 path = alloc_path_for_send();
1525 len = snprintf(tmp, sizeof(tmp), "o%llu-%llu-%llu",
1527 ASSERT(len < sizeof(tmp));
1529 di = btrfs_lookup_dir_item(NULL, sctx->send_root,
1530 path, BTRFS_FIRST_FREE_OBJECTID,
1531 tmp, strlen(tmp), 0);
1532 btrfs_release_path(path);
1538 /* not unique, try again */
1543 if (!sctx->parent_root) {
1549 di = btrfs_lookup_dir_item(NULL, sctx->parent_root,
1550 path, BTRFS_FIRST_FREE_OBJECTID,
1551 tmp, strlen(tmp), 0);
1552 btrfs_release_path(path);
1558 /* not unique, try again */
1566 ret = fs_path_add(dest, tmp, strlen(tmp));
1569 btrfs_free_path(path);
1574 inode_state_no_change,
1575 inode_state_will_create,
1576 inode_state_did_create,
1577 inode_state_will_delete,
1578 inode_state_did_delete,
1581 static int get_cur_inode_state(struct send_ctx *sctx, u64 ino, u64 gen)
1589 ret = get_inode_info(sctx->send_root, ino, NULL, &left_gen, NULL, NULL,
1591 if (ret < 0 && ret != -ENOENT)
1595 if (!sctx->parent_root) {
1596 right_ret = -ENOENT;
1598 ret = get_inode_info(sctx->parent_root, ino, NULL, &right_gen,
1599 NULL, NULL, NULL, NULL);
1600 if (ret < 0 && ret != -ENOENT)
1605 if (!left_ret && !right_ret) {
1606 if (left_gen == gen && right_gen == gen) {
1607 ret = inode_state_no_change;
1608 } else if (left_gen == gen) {
1609 if (ino < sctx->send_progress)
1610 ret = inode_state_did_create;
1612 ret = inode_state_will_create;
1613 } else if (right_gen == gen) {
1614 if (ino < sctx->send_progress)
1615 ret = inode_state_did_delete;
1617 ret = inode_state_will_delete;
1621 } else if (!left_ret) {
1622 if (left_gen == gen) {
1623 if (ino < sctx->send_progress)
1624 ret = inode_state_did_create;
1626 ret = inode_state_will_create;
1630 } else if (!right_ret) {
1631 if (right_gen == gen) {
1632 if (ino < sctx->send_progress)
1633 ret = inode_state_did_delete;
1635 ret = inode_state_will_delete;
1647 static int is_inode_existent(struct send_ctx *sctx, u64 ino, u64 gen)
1651 ret = get_cur_inode_state(sctx, ino, gen);
1655 if (ret == inode_state_no_change ||
1656 ret == inode_state_did_create ||
1657 ret == inode_state_will_delete)
1667 * Helper function to lookup a dir item in a dir.
1669 static int lookup_dir_item_inode(struct btrfs_root *root,
1670 u64 dir, const char *name, int name_len,
1675 struct btrfs_dir_item *di;
1676 struct btrfs_key key;
1677 struct btrfs_path *path;
1679 path = alloc_path_for_send();
1683 di = btrfs_lookup_dir_item(NULL, root, path,
1684 dir, name, name_len, 0);
1693 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
1694 if (key.type == BTRFS_ROOT_ITEM_KEY) {
1698 *found_inode = key.objectid;
1699 *found_type = btrfs_dir_type(path->nodes[0], di);
1702 btrfs_free_path(path);
1707 * Looks up the first btrfs_inode_ref of a given ino. It returns the parent dir,
1708 * generation of the parent dir and the name of the dir entry.
1710 static int get_first_ref(struct btrfs_root *root, u64 ino,
1711 u64 *dir, u64 *dir_gen, struct fs_path *name)
1714 struct btrfs_key key;
1715 struct btrfs_key found_key;
1716 struct btrfs_path *path;
1720 path = alloc_path_for_send();
1725 key.type = BTRFS_INODE_REF_KEY;
1728 ret = btrfs_search_slot_for_read(root, &key, path, 1, 0);
1732 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1734 if (ret || found_key.objectid != ino ||
1735 (found_key.type != BTRFS_INODE_REF_KEY &&
1736 found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1741 if (found_key.type == BTRFS_INODE_REF_KEY) {
1742 struct btrfs_inode_ref *iref;
1743 iref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1744 struct btrfs_inode_ref);
1745 len = btrfs_inode_ref_name_len(path->nodes[0], iref);
1746 ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1747 (unsigned long)(iref + 1),
1749 parent_dir = found_key.offset;
1751 struct btrfs_inode_extref *extref;
1752 extref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1753 struct btrfs_inode_extref);
1754 len = btrfs_inode_extref_name_len(path->nodes[0], extref);
1755 ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1756 (unsigned long)&extref->name, len);
1757 parent_dir = btrfs_inode_extref_parent(path->nodes[0], extref);
1761 btrfs_release_path(path);
1764 ret = get_inode_info(root, parent_dir, NULL, dir_gen, NULL,
1773 btrfs_free_path(path);
1777 static int is_first_ref(struct btrfs_root *root,
1779 const char *name, int name_len)
1782 struct fs_path *tmp_name;
1785 tmp_name = fs_path_alloc();
1789 ret = get_first_ref(root, ino, &tmp_dir, NULL, tmp_name);
1793 if (dir != tmp_dir || name_len != fs_path_len(tmp_name)) {
1798 ret = !memcmp(tmp_name->start, name, name_len);
1801 fs_path_free(tmp_name);
1806 * Used by process_recorded_refs to determine if a new ref would overwrite an
1807 * already existing ref. In case it detects an overwrite, it returns the
1808 * inode/gen in who_ino/who_gen.
1809 * When an overwrite is detected, process_recorded_refs does proper orphanizing
1810 * to make sure later references to the overwritten inode are possible.
1811 * Orphanizing is however only required for the first ref of an inode.
1812 * process_recorded_refs does an additional is_first_ref check to see if
1813 * orphanizing is really required.
1815 static int will_overwrite_ref(struct send_ctx *sctx, u64 dir, u64 dir_gen,
1816 const char *name, int name_len,
1817 u64 *who_ino, u64 *who_gen)
1821 u64 other_inode = 0;
1824 if (!sctx->parent_root)
1827 ret = is_inode_existent(sctx, dir, dir_gen);
1832 * If we have a parent root we need to verify that the parent dir was
1833 * not delted and then re-created, if it was then we have no overwrite
1834 * and we can just unlink this entry.
1836 if (sctx->parent_root) {
1837 ret = get_inode_info(sctx->parent_root, dir, NULL, &gen, NULL,
1839 if (ret < 0 && ret != -ENOENT)
1849 ret = lookup_dir_item_inode(sctx->parent_root, dir, name, name_len,
1850 &other_inode, &other_type);
1851 if (ret < 0 && ret != -ENOENT)
1859 * Check if the overwritten ref was already processed. If yes, the ref
1860 * was already unlinked/moved, so we can safely assume that we will not
1861 * overwrite anything at this point in time.
1863 if (other_inode > sctx->send_progress) {
1864 ret = get_inode_info(sctx->parent_root, other_inode, NULL,
1865 who_gen, NULL, NULL, NULL, NULL);
1870 *who_ino = other_inode;
1880 * Checks if the ref was overwritten by an already processed inode. This is
1881 * used by __get_cur_name_and_parent to find out if the ref was orphanized and
1882 * thus the orphan name needs be used.
1883 * process_recorded_refs also uses it to avoid unlinking of refs that were
1886 static int did_overwrite_ref(struct send_ctx *sctx,
1887 u64 dir, u64 dir_gen,
1888 u64 ino, u64 ino_gen,
1889 const char *name, int name_len)
1896 if (!sctx->parent_root)
1899 ret = is_inode_existent(sctx, dir, dir_gen);
1903 /* check if the ref was overwritten by another ref */
1904 ret = lookup_dir_item_inode(sctx->send_root, dir, name, name_len,
1905 &ow_inode, &other_type);
1906 if (ret < 0 && ret != -ENOENT)
1909 /* was never and will never be overwritten */
1914 ret = get_inode_info(sctx->send_root, ow_inode, NULL, &gen, NULL, NULL,
1919 if (ow_inode == ino && gen == ino_gen) {
1925 * We know that it is or will be overwritten. Check this now.
1926 * The current inode being processed might have been the one that caused
1927 * inode 'ino' to be orphanized, therefore check if ow_inode matches
1928 * the current inode being processed.
1930 if ((ow_inode < sctx->send_progress) ||
1931 (ino != sctx->cur_ino && ow_inode == sctx->cur_ino &&
1932 gen == sctx->cur_inode_gen))
1942 * Same as did_overwrite_ref, but also checks if it is the first ref of an inode
1943 * that got overwritten. This is used by process_recorded_refs to determine
1944 * if it has to use the path as returned by get_cur_path or the orphan name.
1946 static int did_overwrite_first_ref(struct send_ctx *sctx, u64 ino, u64 gen)
1949 struct fs_path *name = NULL;
1953 if (!sctx->parent_root)
1956 name = fs_path_alloc();
1960 ret = get_first_ref(sctx->parent_root, ino, &dir, &dir_gen, name);
1964 ret = did_overwrite_ref(sctx, dir, dir_gen, ino, gen,
1965 name->start, fs_path_len(name));
1973 * Insert a name cache entry. On 32bit kernels the radix tree index is 32bit,
1974 * so we need to do some special handling in case we have clashes. This function
1975 * takes care of this with the help of name_cache_entry::radix_list.
1976 * In case of error, nce is kfreed.
1978 static int name_cache_insert(struct send_ctx *sctx,
1979 struct name_cache_entry *nce)
1982 struct list_head *nce_head;
1984 nce_head = radix_tree_lookup(&sctx->name_cache,
1985 (unsigned long)nce->ino);
1987 nce_head = kmalloc(sizeof(*nce_head), GFP_KERNEL);
1992 INIT_LIST_HEAD(nce_head);
1994 ret = radix_tree_insert(&sctx->name_cache, nce->ino, nce_head);
2001 list_add_tail(&nce->radix_list, nce_head);
2002 list_add_tail(&nce->list, &sctx->name_cache_list);
2003 sctx->name_cache_size++;
2008 static void name_cache_delete(struct send_ctx *sctx,
2009 struct name_cache_entry *nce)
2011 struct list_head *nce_head;
2013 nce_head = radix_tree_lookup(&sctx->name_cache,
2014 (unsigned long)nce->ino);
2016 btrfs_err(sctx->send_root->fs_info,
2017 "name_cache_delete lookup failed ino %llu cache size %d, leaking memory",
2018 nce->ino, sctx->name_cache_size);
2021 list_del(&nce->radix_list);
2022 list_del(&nce->list);
2023 sctx->name_cache_size--;
2026 * We may not get to the final release of nce_head if the lookup fails
2028 if (nce_head && list_empty(nce_head)) {
2029 radix_tree_delete(&sctx->name_cache, (unsigned long)nce->ino);
2034 static struct name_cache_entry *name_cache_search(struct send_ctx *sctx,
2037 struct list_head *nce_head;
2038 struct name_cache_entry *cur;
2040 nce_head = radix_tree_lookup(&sctx->name_cache, (unsigned long)ino);
2044 list_for_each_entry(cur, nce_head, radix_list) {
2045 if (cur->ino == ino && cur->gen == gen)
2052 * Removes the entry from the list and adds it back to the end. This marks the
2053 * entry as recently used so that name_cache_clean_unused does not remove it.
2055 static void name_cache_used(struct send_ctx *sctx, struct name_cache_entry *nce)
2057 list_del(&nce->list);
2058 list_add_tail(&nce->list, &sctx->name_cache_list);
2062 * Remove some entries from the beginning of name_cache_list.
2064 static void name_cache_clean_unused(struct send_ctx *sctx)
2066 struct name_cache_entry *nce;
2068 if (sctx->name_cache_size < SEND_CTX_NAME_CACHE_CLEAN_SIZE)
2071 while (sctx->name_cache_size > SEND_CTX_MAX_NAME_CACHE_SIZE) {
2072 nce = list_entry(sctx->name_cache_list.next,
2073 struct name_cache_entry, list);
2074 name_cache_delete(sctx, nce);
2079 static void name_cache_free(struct send_ctx *sctx)
2081 struct name_cache_entry *nce;
2083 while (!list_empty(&sctx->name_cache_list)) {
2084 nce = list_entry(sctx->name_cache_list.next,
2085 struct name_cache_entry, list);
2086 name_cache_delete(sctx, nce);
2092 * Used by get_cur_path for each ref up to the root.
2093 * Returns 0 if it succeeded.
2094 * Returns 1 if the inode is not existent or got overwritten. In that case, the
2095 * name is an orphan name. This instructs get_cur_path to stop iterating. If 1
2096 * is returned, parent_ino/parent_gen are not guaranteed to be valid.
2097 * Returns <0 in case of error.
2099 static int __get_cur_name_and_parent(struct send_ctx *sctx,
2103 struct fs_path *dest)
2107 struct name_cache_entry *nce = NULL;
2110 * First check if we already did a call to this function with the same
2111 * ino/gen. If yes, check if the cache entry is still up-to-date. If yes
2112 * return the cached result.
2114 nce = name_cache_search(sctx, ino, gen);
2116 if (ino < sctx->send_progress && nce->need_later_update) {
2117 name_cache_delete(sctx, nce);
2121 name_cache_used(sctx, nce);
2122 *parent_ino = nce->parent_ino;
2123 *parent_gen = nce->parent_gen;
2124 ret = fs_path_add(dest, nce->name, nce->name_len);
2133 * If the inode is not existent yet, add the orphan name and return 1.
2134 * This should only happen for the parent dir that we determine in
2137 ret = is_inode_existent(sctx, ino, gen);
2142 ret = gen_unique_name(sctx, ino, gen, dest);
2150 * Depending on whether the inode was already processed or not, use
2151 * send_root or parent_root for ref lookup.
2153 if (ino < sctx->send_progress)
2154 ret = get_first_ref(sctx->send_root, ino,
2155 parent_ino, parent_gen, dest);
2157 ret = get_first_ref(sctx->parent_root, ino,
2158 parent_ino, parent_gen, dest);
2163 * Check if the ref was overwritten by an inode's ref that was processed
2164 * earlier. If yes, treat as orphan and return 1.
2166 ret = did_overwrite_ref(sctx, *parent_ino, *parent_gen, ino, gen,
2167 dest->start, dest->end - dest->start);
2171 fs_path_reset(dest);
2172 ret = gen_unique_name(sctx, ino, gen, dest);
2180 * Store the result of the lookup in the name cache.
2182 nce = kmalloc(sizeof(*nce) + fs_path_len(dest) + 1, GFP_KERNEL);
2190 nce->parent_ino = *parent_ino;
2191 nce->parent_gen = *parent_gen;
2192 nce->name_len = fs_path_len(dest);
2194 strcpy(nce->name, dest->start);
2196 if (ino < sctx->send_progress)
2197 nce->need_later_update = 0;
2199 nce->need_later_update = 1;
2201 nce_ret = name_cache_insert(sctx, nce);
2204 name_cache_clean_unused(sctx);
2211 * Magic happens here. This function returns the first ref to an inode as it
2212 * would look like while receiving the stream at this point in time.
2213 * We walk the path up to the root. For every inode in between, we check if it
2214 * was already processed/sent. If yes, we continue with the parent as found
2215 * in send_root. If not, we continue with the parent as found in parent_root.
2216 * If we encounter an inode that was deleted at this point in time, we use the
2217 * inodes "orphan" name instead of the real name and stop. Same with new inodes
2218 * that were not created yet and overwritten inodes/refs.
2220 * When do we have have orphan inodes:
2221 * 1. When an inode is freshly created and thus no valid refs are available yet
2222 * 2. When a directory lost all it's refs (deleted) but still has dir items
2223 * inside which were not processed yet (pending for move/delete). If anyone
2224 * tried to get the path to the dir items, it would get a path inside that
2226 * 3. When an inode is moved around or gets new links, it may overwrite the ref
2227 * of an unprocessed inode. If in that case the first ref would be
2228 * overwritten, the overwritten inode gets "orphanized". Later when we
2229 * process this overwritten inode, it is restored at a new place by moving
2232 * sctx->send_progress tells this function at which point in time receiving
2235 static int get_cur_path(struct send_ctx *sctx, u64 ino, u64 gen,
2236 struct fs_path *dest)
2239 struct fs_path *name = NULL;
2240 u64 parent_inode = 0;
2244 name = fs_path_alloc();
2251 fs_path_reset(dest);
2253 while (!stop && ino != BTRFS_FIRST_FREE_OBJECTID) {
2254 struct waiting_dir_move *wdm;
2256 fs_path_reset(name);
2258 if (is_waiting_for_rm(sctx, ino)) {
2259 ret = gen_unique_name(sctx, ino, gen, name);
2262 ret = fs_path_add_path(dest, name);
2266 wdm = get_waiting_dir_move(sctx, ino);
2267 if (wdm && wdm->orphanized) {
2268 ret = gen_unique_name(sctx, ino, gen, name);
2271 ret = get_first_ref(sctx->parent_root, ino,
2272 &parent_inode, &parent_gen, name);
2274 ret = __get_cur_name_and_parent(sctx, ino, gen,
2284 ret = fs_path_add_path(dest, name);
2295 fs_path_unreverse(dest);
2300 * Sends a BTRFS_SEND_C_SUBVOL command/item to userspace
2302 static int send_subvol_begin(struct send_ctx *sctx)
2305 struct btrfs_root *send_root = sctx->send_root;
2306 struct btrfs_root *parent_root = sctx->parent_root;
2307 struct btrfs_path *path;
2308 struct btrfs_key key;
2309 struct btrfs_root_ref *ref;
2310 struct extent_buffer *leaf;
2314 path = btrfs_alloc_path();
2318 name = kmalloc(BTRFS_PATH_NAME_MAX, GFP_KERNEL);
2320 btrfs_free_path(path);
2324 key.objectid = send_root->objectid;
2325 key.type = BTRFS_ROOT_BACKREF_KEY;
2328 ret = btrfs_search_slot_for_read(send_root->fs_info->tree_root,
2337 leaf = path->nodes[0];
2338 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2339 if (key.type != BTRFS_ROOT_BACKREF_KEY ||
2340 key.objectid != send_root->objectid) {
2344 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
2345 namelen = btrfs_root_ref_name_len(leaf, ref);
2346 read_extent_buffer(leaf, name, (unsigned long)(ref + 1), namelen);
2347 btrfs_release_path(path);
2350 ret = begin_cmd(sctx, BTRFS_SEND_C_SNAPSHOT);
2354 ret = begin_cmd(sctx, BTRFS_SEND_C_SUBVOL);
2359 TLV_PUT_STRING(sctx, BTRFS_SEND_A_PATH, name, namelen);
2361 if (!btrfs_is_empty_uuid(sctx->send_root->root_item.received_uuid))
2362 TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2363 sctx->send_root->root_item.received_uuid);
2365 TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2366 sctx->send_root->root_item.uuid);
2368 TLV_PUT_U64(sctx, BTRFS_SEND_A_CTRANSID,
2369 le64_to_cpu(sctx->send_root->root_item.ctransid));
2371 if (!btrfs_is_empty_uuid(parent_root->root_item.received_uuid))
2372 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2373 parent_root->root_item.received_uuid);
2375 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2376 parent_root->root_item.uuid);
2377 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
2378 le64_to_cpu(sctx->parent_root->root_item.ctransid));
2381 ret = send_cmd(sctx);
2385 btrfs_free_path(path);
2390 static int send_truncate(struct send_ctx *sctx, u64 ino, u64 gen, u64 size)
2395 verbose_printk("btrfs: send_truncate %llu size=%llu\n", ino, size);
2397 p = fs_path_alloc();
2401 ret = begin_cmd(sctx, BTRFS_SEND_C_TRUNCATE);
2405 ret = get_cur_path(sctx, ino, gen, p);
2408 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2409 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, size);
2411 ret = send_cmd(sctx);
2419 static int send_chmod(struct send_ctx *sctx, u64 ino, u64 gen, u64 mode)
2424 verbose_printk("btrfs: send_chmod %llu mode=%llu\n", ino, mode);
2426 p = fs_path_alloc();
2430 ret = begin_cmd(sctx, BTRFS_SEND_C_CHMOD);
2434 ret = get_cur_path(sctx, ino, gen, p);
2437 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2438 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode & 07777);
2440 ret = send_cmd(sctx);
2448 static int send_chown(struct send_ctx *sctx, u64 ino, u64 gen, u64 uid, u64 gid)
2453 verbose_printk("btrfs: send_chown %llu uid=%llu, gid=%llu\n", ino, uid, gid);
2455 p = fs_path_alloc();
2459 ret = begin_cmd(sctx, BTRFS_SEND_C_CHOWN);
2463 ret = get_cur_path(sctx, ino, gen, p);
2466 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2467 TLV_PUT_U64(sctx, BTRFS_SEND_A_UID, uid);
2468 TLV_PUT_U64(sctx, BTRFS_SEND_A_GID, gid);
2470 ret = send_cmd(sctx);
2478 static int send_utimes(struct send_ctx *sctx, u64 ino, u64 gen)
2481 struct fs_path *p = NULL;
2482 struct btrfs_inode_item *ii;
2483 struct btrfs_path *path = NULL;
2484 struct extent_buffer *eb;
2485 struct btrfs_key key;
2488 verbose_printk("btrfs: send_utimes %llu\n", ino);
2490 p = fs_path_alloc();
2494 path = alloc_path_for_send();
2501 key.type = BTRFS_INODE_ITEM_KEY;
2503 ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2507 eb = path->nodes[0];
2508 slot = path->slots[0];
2509 ii = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
2511 ret = begin_cmd(sctx, BTRFS_SEND_C_UTIMES);
2515 ret = get_cur_path(sctx, ino, gen, p);
2518 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2519 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_ATIME, eb, &ii->atime);
2520 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_MTIME, eb, &ii->mtime);
2521 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_CTIME, eb, &ii->ctime);
2522 /* TODO Add otime support when the otime patches get into upstream */
2524 ret = send_cmd(sctx);
2529 btrfs_free_path(path);
2534 * Sends a BTRFS_SEND_C_MKXXX or SYMLINK command to user space. We don't have
2535 * a valid path yet because we did not process the refs yet. So, the inode
2536 * is created as orphan.
2538 static int send_create_inode(struct send_ctx *sctx, u64 ino)
2547 verbose_printk("btrfs: send_create_inode %llu\n", ino);
2549 p = fs_path_alloc();
2553 if (ino != sctx->cur_ino) {
2554 ret = get_inode_info(sctx->send_root, ino, NULL, &gen, &mode,
2559 gen = sctx->cur_inode_gen;
2560 mode = sctx->cur_inode_mode;
2561 rdev = sctx->cur_inode_rdev;
2564 if (S_ISREG(mode)) {
2565 cmd = BTRFS_SEND_C_MKFILE;
2566 } else if (S_ISDIR(mode)) {
2567 cmd = BTRFS_SEND_C_MKDIR;
2568 } else if (S_ISLNK(mode)) {
2569 cmd = BTRFS_SEND_C_SYMLINK;
2570 } else if (S_ISCHR(mode) || S_ISBLK(mode)) {
2571 cmd = BTRFS_SEND_C_MKNOD;
2572 } else if (S_ISFIFO(mode)) {
2573 cmd = BTRFS_SEND_C_MKFIFO;
2574 } else if (S_ISSOCK(mode)) {
2575 cmd = BTRFS_SEND_C_MKSOCK;
2577 btrfs_warn(sctx->send_root->fs_info, "unexpected inode type %o",
2578 (int)(mode & S_IFMT));
2583 ret = begin_cmd(sctx, cmd);
2587 ret = gen_unique_name(sctx, ino, gen, p);
2591 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2592 TLV_PUT_U64(sctx, BTRFS_SEND_A_INO, ino);
2594 if (S_ISLNK(mode)) {
2596 ret = read_symlink(sctx->send_root, ino, p);
2599 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, p);
2600 } else if (S_ISCHR(mode) || S_ISBLK(mode) ||
2601 S_ISFIFO(mode) || S_ISSOCK(mode)) {
2602 TLV_PUT_U64(sctx, BTRFS_SEND_A_RDEV, new_encode_dev(rdev));
2603 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode);
2606 ret = send_cmd(sctx);
2618 * We need some special handling for inodes that get processed before the parent
2619 * directory got created. See process_recorded_refs for details.
2620 * This function does the check if we already created the dir out of order.
2622 static int did_create_dir(struct send_ctx *sctx, u64 dir)
2625 struct btrfs_path *path = NULL;
2626 struct btrfs_key key;
2627 struct btrfs_key found_key;
2628 struct btrfs_key di_key;
2629 struct extent_buffer *eb;
2630 struct btrfs_dir_item *di;
2633 path = alloc_path_for_send();
2640 key.type = BTRFS_DIR_INDEX_KEY;
2642 ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2647 eb = path->nodes[0];
2648 slot = path->slots[0];
2649 if (slot >= btrfs_header_nritems(eb)) {
2650 ret = btrfs_next_leaf(sctx->send_root, path);
2653 } else if (ret > 0) {
2660 btrfs_item_key_to_cpu(eb, &found_key, slot);
2661 if (found_key.objectid != key.objectid ||
2662 found_key.type != key.type) {
2667 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
2668 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2670 if (di_key.type != BTRFS_ROOT_ITEM_KEY &&
2671 di_key.objectid < sctx->send_progress) {
2680 btrfs_free_path(path);
2685 * Only creates the inode if it is:
2686 * 1. Not a directory
2687 * 2. Or a directory which was not created already due to out of order
2688 * directories. See did_create_dir and process_recorded_refs for details.
2690 static int send_create_inode_if_needed(struct send_ctx *sctx)
2694 if (S_ISDIR(sctx->cur_inode_mode)) {
2695 ret = did_create_dir(sctx, sctx->cur_ino);
2704 ret = send_create_inode(sctx, sctx->cur_ino);
2712 struct recorded_ref {
2713 struct list_head list;
2716 struct fs_path *full_path;
2724 * We need to process new refs before deleted refs, but compare_tree gives us
2725 * everything mixed. So we first record all refs and later process them.
2726 * This function is a helper to record one ref.
2728 static int __record_ref(struct list_head *head, u64 dir,
2729 u64 dir_gen, struct fs_path *path)
2731 struct recorded_ref *ref;
2733 ref = kmalloc(sizeof(*ref), GFP_KERNEL);
2738 ref->dir_gen = dir_gen;
2739 ref->full_path = path;
2741 ref->name = (char *)kbasename(ref->full_path->start);
2742 ref->name_len = ref->full_path->end - ref->name;
2743 ref->dir_path = ref->full_path->start;
2744 if (ref->name == ref->full_path->start)
2745 ref->dir_path_len = 0;
2747 ref->dir_path_len = ref->full_path->end -
2748 ref->full_path->start - 1 - ref->name_len;
2750 list_add_tail(&ref->list, head);
2754 static int dup_ref(struct recorded_ref *ref, struct list_head *list)
2756 struct recorded_ref *new;
2758 new = kmalloc(sizeof(*ref), GFP_KERNEL);
2762 new->dir = ref->dir;
2763 new->dir_gen = ref->dir_gen;
2764 new->full_path = NULL;
2765 INIT_LIST_HEAD(&new->list);
2766 list_add_tail(&new->list, list);
2770 static void __free_recorded_refs(struct list_head *head)
2772 struct recorded_ref *cur;
2774 while (!list_empty(head)) {
2775 cur = list_entry(head->next, struct recorded_ref, list);
2776 fs_path_free(cur->full_path);
2777 list_del(&cur->list);
2782 static void free_recorded_refs(struct send_ctx *sctx)
2784 __free_recorded_refs(&sctx->new_refs);
2785 __free_recorded_refs(&sctx->deleted_refs);
2789 * Renames/moves a file/dir to its orphan name. Used when the first
2790 * ref of an unprocessed inode gets overwritten and for all non empty
2793 static int orphanize_inode(struct send_ctx *sctx, u64 ino, u64 gen,
2794 struct fs_path *path)
2797 struct fs_path *orphan;
2799 orphan = fs_path_alloc();
2803 ret = gen_unique_name(sctx, ino, gen, orphan);
2807 ret = send_rename(sctx, path, orphan);
2810 fs_path_free(orphan);
2814 static struct orphan_dir_info *
2815 add_orphan_dir_info(struct send_ctx *sctx, u64 dir_ino)
2817 struct rb_node **p = &sctx->orphan_dirs.rb_node;
2818 struct rb_node *parent = NULL;
2819 struct orphan_dir_info *entry, *odi;
2821 odi = kmalloc(sizeof(*odi), GFP_KERNEL);
2823 return ERR_PTR(-ENOMEM);
2829 entry = rb_entry(parent, struct orphan_dir_info, node);
2830 if (dir_ino < entry->ino) {
2832 } else if (dir_ino > entry->ino) {
2833 p = &(*p)->rb_right;
2840 rb_link_node(&odi->node, parent, p);
2841 rb_insert_color(&odi->node, &sctx->orphan_dirs);
2845 static struct orphan_dir_info *
2846 get_orphan_dir_info(struct send_ctx *sctx, u64 dir_ino)
2848 struct rb_node *n = sctx->orphan_dirs.rb_node;
2849 struct orphan_dir_info *entry;
2852 entry = rb_entry(n, struct orphan_dir_info, node);
2853 if (dir_ino < entry->ino)
2855 else if (dir_ino > entry->ino)
2863 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino)
2865 struct orphan_dir_info *odi = get_orphan_dir_info(sctx, dir_ino);
2870 static void free_orphan_dir_info(struct send_ctx *sctx,
2871 struct orphan_dir_info *odi)
2875 rb_erase(&odi->node, &sctx->orphan_dirs);
2880 * Returns 1 if a directory can be removed at this point in time.
2881 * We check this by iterating all dir items and checking if the inode behind
2882 * the dir item was already processed.
2884 static int can_rmdir(struct send_ctx *sctx, u64 dir, u64 dir_gen,
2888 struct btrfs_root *root = sctx->parent_root;
2889 struct btrfs_path *path;
2890 struct btrfs_key key;
2891 struct btrfs_key found_key;
2892 struct btrfs_key loc;
2893 struct btrfs_dir_item *di;
2896 * Don't try to rmdir the top/root subvolume dir.
2898 if (dir == BTRFS_FIRST_FREE_OBJECTID)
2901 path = alloc_path_for_send();
2906 key.type = BTRFS_DIR_INDEX_KEY;
2908 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2913 struct waiting_dir_move *dm;
2915 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2916 ret = btrfs_next_leaf(root, path);
2923 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2925 if (found_key.objectid != key.objectid ||
2926 found_key.type != key.type)
2929 di = btrfs_item_ptr(path->nodes[0], path->slots[0],
2930 struct btrfs_dir_item);
2931 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc);
2933 dm = get_waiting_dir_move(sctx, loc.objectid);
2935 struct orphan_dir_info *odi;
2937 odi = add_orphan_dir_info(sctx, dir);
2943 dm->rmdir_ino = dir;
2948 if (loc.objectid > send_progress) {
2959 btrfs_free_path(path);
2963 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino)
2965 struct waiting_dir_move *entry = get_waiting_dir_move(sctx, ino);
2967 return entry != NULL;
2970 static int add_waiting_dir_move(struct send_ctx *sctx, u64 ino, bool orphanized)
2972 struct rb_node **p = &sctx->waiting_dir_moves.rb_node;
2973 struct rb_node *parent = NULL;
2974 struct waiting_dir_move *entry, *dm;
2976 dm = kmalloc(sizeof(*dm), GFP_KERNEL);
2981 dm->orphanized = orphanized;
2985 entry = rb_entry(parent, struct waiting_dir_move, node);
2986 if (ino < entry->ino) {
2988 } else if (ino > entry->ino) {
2989 p = &(*p)->rb_right;
2996 rb_link_node(&dm->node, parent, p);
2997 rb_insert_color(&dm->node, &sctx->waiting_dir_moves);
3001 static struct waiting_dir_move *
3002 get_waiting_dir_move(struct send_ctx *sctx, u64 ino)
3004 struct rb_node *n = sctx->waiting_dir_moves.rb_node;
3005 struct waiting_dir_move *entry;
3008 entry = rb_entry(n, struct waiting_dir_move, node);
3009 if (ino < entry->ino)
3011 else if (ino > entry->ino)
3019 static void free_waiting_dir_move(struct send_ctx *sctx,
3020 struct waiting_dir_move *dm)
3024 rb_erase(&dm->node, &sctx->waiting_dir_moves);
3028 static int add_pending_dir_move(struct send_ctx *sctx,
3032 struct list_head *new_refs,
3033 struct list_head *deleted_refs,
3034 const bool is_orphan)
3036 struct rb_node **p = &sctx->pending_dir_moves.rb_node;
3037 struct rb_node *parent = NULL;
3038 struct pending_dir_move *entry = NULL, *pm;
3039 struct recorded_ref *cur;
3043 pm = kmalloc(sizeof(*pm), GFP_KERNEL);
3046 pm->parent_ino = parent_ino;
3049 pm->is_orphan = is_orphan;
3050 INIT_LIST_HEAD(&pm->list);
3051 INIT_LIST_HEAD(&pm->update_refs);
3052 RB_CLEAR_NODE(&pm->node);
3056 entry = rb_entry(parent, struct pending_dir_move, node);
3057 if (parent_ino < entry->parent_ino) {
3059 } else if (parent_ino > entry->parent_ino) {
3060 p = &(*p)->rb_right;
3067 list_for_each_entry(cur, deleted_refs, list) {
3068 ret = dup_ref(cur, &pm->update_refs);
3072 list_for_each_entry(cur, new_refs, list) {
3073 ret = dup_ref(cur, &pm->update_refs);
3078 ret = add_waiting_dir_move(sctx, pm->ino, is_orphan);
3083 list_add_tail(&pm->list, &entry->list);
3085 rb_link_node(&pm->node, parent, p);
3086 rb_insert_color(&pm->node, &sctx->pending_dir_moves);
3091 __free_recorded_refs(&pm->update_refs);
3097 static struct pending_dir_move *get_pending_dir_moves(struct send_ctx *sctx,
3100 struct rb_node *n = sctx->pending_dir_moves.rb_node;
3101 struct pending_dir_move *entry;
3104 entry = rb_entry(n, struct pending_dir_move, node);
3105 if (parent_ino < entry->parent_ino)
3107 else if (parent_ino > entry->parent_ino)
3115 static int apply_dir_move(struct send_ctx *sctx, struct pending_dir_move *pm)
3117 struct fs_path *from_path = NULL;
3118 struct fs_path *to_path = NULL;
3119 struct fs_path *name = NULL;
3120 u64 orig_progress = sctx->send_progress;
3121 struct recorded_ref *cur;
3122 u64 parent_ino, parent_gen;
3123 struct waiting_dir_move *dm = NULL;
3127 name = fs_path_alloc();
3128 from_path = fs_path_alloc();
3129 if (!name || !from_path) {
3134 dm = get_waiting_dir_move(sctx, pm->ino);
3136 rmdir_ino = dm->rmdir_ino;
3137 free_waiting_dir_move(sctx, dm);
3139 if (pm->is_orphan) {
3140 ret = gen_unique_name(sctx, pm->ino,
3141 pm->gen, from_path);
3143 ret = get_first_ref(sctx->parent_root, pm->ino,
3144 &parent_ino, &parent_gen, name);
3147 ret = get_cur_path(sctx, parent_ino, parent_gen,
3151 ret = fs_path_add_path(from_path, name);
3156 sctx->send_progress = sctx->cur_ino + 1;
3157 fs_path_reset(name);
3160 ret = get_cur_path(sctx, pm->ino, pm->gen, to_path);
3164 ret = send_rename(sctx, from_path, to_path);
3169 struct orphan_dir_info *odi;
3171 odi = get_orphan_dir_info(sctx, rmdir_ino);
3173 /* already deleted */
3176 ret = can_rmdir(sctx, rmdir_ino, odi->gen, sctx->cur_ino + 1);
3182 name = fs_path_alloc();
3187 ret = get_cur_path(sctx, rmdir_ino, odi->gen, name);
3190 ret = send_rmdir(sctx, name);
3193 free_orphan_dir_info(sctx, odi);
3197 ret = send_utimes(sctx, pm->ino, pm->gen);
3202 * After rename/move, need to update the utimes of both new parent(s)
3203 * and old parent(s).
3205 list_for_each_entry(cur, &pm->update_refs, list) {
3206 if (cur->dir == rmdir_ino)
3208 ret = send_utimes(sctx, cur->dir, cur->dir_gen);
3215 fs_path_free(from_path);
3216 fs_path_free(to_path);
3217 sctx->send_progress = orig_progress;
3222 static void free_pending_move(struct send_ctx *sctx, struct pending_dir_move *m)
3224 if (!list_empty(&m->list))
3226 if (!RB_EMPTY_NODE(&m->node))
3227 rb_erase(&m->node, &sctx->pending_dir_moves);
3228 __free_recorded_refs(&m->update_refs);
3232 static void tail_append_pending_moves(struct pending_dir_move *moves,
3233 struct list_head *stack)
3235 if (list_empty(&moves->list)) {
3236 list_add_tail(&moves->list, stack);
3239 list_splice_init(&moves->list, &list);
3240 list_add_tail(&moves->list, stack);
3241 list_splice_tail(&list, stack);
3245 static int apply_children_dir_moves(struct send_ctx *sctx)
3247 struct pending_dir_move *pm;
3248 struct list_head stack;
3249 u64 parent_ino = sctx->cur_ino;
3252 pm = get_pending_dir_moves(sctx, parent_ino);
3256 INIT_LIST_HEAD(&stack);
3257 tail_append_pending_moves(pm, &stack);
3259 while (!list_empty(&stack)) {
3260 pm = list_first_entry(&stack, struct pending_dir_move, list);
3261 parent_ino = pm->ino;
3262 ret = apply_dir_move(sctx, pm);
3263 free_pending_move(sctx, pm);
3266 pm = get_pending_dir_moves(sctx, parent_ino);
3268 tail_append_pending_moves(pm, &stack);
3273 while (!list_empty(&stack)) {
3274 pm = list_first_entry(&stack, struct pending_dir_move, list);
3275 free_pending_move(sctx, pm);
3281 * We might need to delay a directory rename even when no ancestor directory
3282 * (in the send root) with a higher inode number than ours (sctx->cur_ino) was
3283 * renamed. This happens when we rename a directory to the old name (the name
3284 * in the parent root) of some other unrelated directory that got its rename
3285 * delayed due to some ancestor with higher number that got renamed.
3291 * |---- a/ (ino 257)
3292 * | |---- file (ino 260)
3294 * |---- b/ (ino 258)
3295 * |---- c/ (ino 259)
3299 * |---- a/ (ino 258)
3300 * |---- x/ (ino 259)
3301 * |---- y/ (ino 257)
3302 * |----- file (ino 260)
3304 * Here we can not rename 258 from 'b' to 'a' without the rename of inode 257
3305 * from 'a' to 'x/y' happening first, which in turn depends on the rename of
3306 * inode 259 from 'c' to 'x'. So the order of rename commands the send stream
3309 * 1 - rename 259 from 'c' to 'x'
3310 * 2 - rename 257 from 'a' to 'x/y'
3311 * 3 - rename 258 from 'b' to 'a'
3313 * Returns 1 if the rename of sctx->cur_ino needs to be delayed, 0 if it can
3314 * be done right away and < 0 on error.
3316 static int wait_for_dest_dir_move(struct send_ctx *sctx,
3317 struct recorded_ref *parent_ref,
3318 const bool is_orphan)
3320 struct btrfs_path *path;
3321 struct btrfs_key key;
3322 struct btrfs_key di_key;
3323 struct btrfs_dir_item *di;
3328 if (RB_EMPTY_ROOT(&sctx->waiting_dir_moves))
3331 path = alloc_path_for_send();
3335 key.objectid = parent_ref->dir;
3336 key.type = BTRFS_DIR_ITEM_KEY;
3337 key.offset = btrfs_name_hash(parent_ref->name, parent_ref->name_len);
3339 ret = btrfs_search_slot(NULL, sctx->parent_root, &key, path, 0, 0);
3342 } else if (ret > 0) {
3347 di = btrfs_match_dir_item_name(sctx->parent_root, path,
3348 parent_ref->name, parent_ref->name_len);
3354 * di_key.objectid has the number of the inode that has a dentry in the
3355 * parent directory with the same name that sctx->cur_ino is being
3356 * renamed to. We need to check if that inode is in the send root as
3357 * well and if it is currently marked as an inode with a pending rename,
3358 * if it is, we need to delay the rename of sctx->cur_ino as well, so
3359 * that it happens after that other inode is renamed.
3361 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &di_key);
3362 if (di_key.type != BTRFS_INODE_ITEM_KEY) {
3367 ret = get_inode_info(sctx->parent_root, di_key.objectid, NULL,
3368 &left_gen, NULL, NULL, NULL, NULL);
3371 ret = get_inode_info(sctx->send_root, di_key.objectid, NULL,
3372 &right_gen, NULL, NULL, NULL, NULL);
3379 /* Different inode, no need to delay the rename of sctx->cur_ino */
3380 if (right_gen != left_gen) {
3385 if (is_waiting_for_move(sctx, di_key.objectid)) {
3386 ret = add_pending_dir_move(sctx,
3388 sctx->cur_inode_gen,
3391 &sctx->deleted_refs,
3397 btrfs_free_path(path);
3402 * Check if ino ino1 is an ancestor of inode ino2 in the given root.
3403 * Return 1 if true, 0 if false and < 0 on error.
3405 static int is_ancestor(struct btrfs_root *root,
3409 struct fs_path *fs_path)
3413 while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3418 fs_path_reset(fs_path);
3419 ret = get_first_ref(root, ino, &parent, &parent_gen, fs_path);
3421 if (ret == -ENOENT && ino == ino2)
3426 return parent_gen == ino1_gen ? 1 : 0;
3432 static int wait_for_parent_move(struct send_ctx *sctx,
3433 struct recorded_ref *parent_ref,
3434 const bool is_orphan)
3437 u64 ino = parent_ref->dir;
3438 u64 parent_ino_before, parent_ino_after;
3439 struct fs_path *path_before = NULL;
3440 struct fs_path *path_after = NULL;
3443 path_after = fs_path_alloc();
3444 path_before = fs_path_alloc();
3445 if (!path_after || !path_before) {
3451 * Our current directory inode may not yet be renamed/moved because some
3452 * ancestor (immediate or not) has to be renamed/moved first. So find if
3453 * such ancestor exists and make sure our own rename/move happens after
3454 * that ancestor is processed to avoid path build infinite loops (done
3455 * at get_cur_path()).
3457 while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3458 if (is_waiting_for_move(sctx, ino)) {
3460 * If the current inode is an ancestor of ino in the
3461 * parent root, we need to delay the rename of the
3462 * current inode, otherwise don't delayed the rename
3463 * because we can end up with a circular dependency
3464 * of renames, resulting in some directories never
3465 * getting the respective rename operations issued in
3466 * the send stream or getting into infinite path build
3469 ret = is_ancestor(sctx->parent_root,
3470 sctx->cur_ino, sctx->cur_inode_gen,
3475 fs_path_reset(path_before);
3476 fs_path_reset(path_after);
3478 ret = get_first_ref(sctx->send_root, ino, &parent_ino_after,
3482 ret = get_first_ref(sctx->parent_root, ino, &parent_ino_before,
3484 if (ret < 0 && ret != -ENOENT) {
3486 } else if (ret == -ENOENT) {
3491 len1 = fs_path_len(path_before);
3492 len2 = fs_path_len(path_after);
3493 if (ino > sctx->cur_ino &&
3494 (parent_ino_before != parent_ino_after || len1 != len2 ||
3495 memcmp(path_before->start, path_after->start, len1))) {
3499 ino = parent_ino_after;
3503 fs_path_free(path_before);
3504 fs_path_free(path_after);
3507 ret = add_pending_dir_move(sctx,
3509 sctx->cur_inode_gen,
3512 &sctx->deleted_refs,
3522 * This does all the move/link/unlink/rmdir magic.
3524 static int process_recorded_refs(struct send_ctx *sctx, int *pending_move)
3527 struct recorded_ref *cur;
3528 struct recorded_ref *cur2;
3529 struct list_head check_dirs;
3530 struct fs_path *valid_path = NULL;
3533 int did_overwrite = 0;
3535 u64 last_dir_ino_rm = 0;
3536 bool can_rename = true;
3538 verbose_printk("btrfs: process_recorded_refs %llu\n", sctx->cur_ino);
3541 * This should never happen as the root dir always has the same ref
3542 * which is always '..'
3544 BUG_ON(sctx->cur_ino <= BTRFS_FIRST_FREE_OBJECTID);
3545 INIT_LIST_HEAD(&check_dirs);
3547 valid_path = fs_path_alloc();
3554 * First, check if the first ref of the current inode was overwritten
3555 * before. If yes, we know that the current inode was already orphanized
3556 * and thus use the orphan name. If not, we can use get_cur_path to
3557 * get the path of the first ref as it would like while receiving at
3558 * this point in time.
3559 * New inodes are always orphan at the beginning, so force to use the
3560 * orphan name in this case.
3561 * The first ref is stored in valid_path and will be updated if it
3562 * gets moved around.
3564 if (!sctx->cur_inode_new) {
3565 ret = did_overwrite_first_ref(sctx, sctx->cur_ino,
3566 sctx->cur_inode_gen);
3572 if (sctx->cur_inode_new || did_overwrite) {
3573 ret = gen_unique_name(sctx, sctx->cur_ino,
3574 sctx->cur_inode_gen, valid_path);
3579 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen,
3585 list_for_each_entry(cur, &sctx->new_refs, list) {
3587 * We may have refs where the parent directory does not exist
3588 * yet. This happens if the parent directories inum is higher
3589 * the the current inum. To handle this case, we create the
3590 * parent directory out of order. But we need to check if this
3591 * did already happen before due to other refs in the same dir.
3593 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
3596 if (ret == inode_state_will_create) {
3599 * First check if any of the current inodes refs did
3600 * already create the dir.
3602 list_for_each_entry(cur2, &sctx->new_refs, list) {
3605 if (cur2->dir == cur->dir) {
3612 * If that did not happen, check if a previous inode
3613 * did already create the dir.
3616 ret = did_create_dir(sctx, cur->dir);
3620 ret = send_create_inode(sctx, cur->dir);
3627 * Check if this new ref would overwrite the first ref of
3628 * another unprocessed inode. If yes, orphanize the
3629 * overwritten inode. If we find an overwritten ref that is
3630 * not the first ref, simply unlink it.
3632 ret = will_overwrite_ref(sctx, cur->dir, cur->dir_gen,
3633 cur->name, cur->name_len,
3634 &ow_inode, &ow_gen);
3638 ret = is_first_ref(sctx->parent_root,
3639 ow_inode, cur->dir, cur->name,
3644 struct name_cache_entry *nce;
3646 ret = orphanize_inode(sctx, ow_inode, ow_gen,
3651 * Make sure we clear our orphanized inode's
3652 * name from the name cache. This is because the
3653 * inode ow_inode might be an ancestor of some
3654 * other inode that will be orphanized as well
3655 * later and has an inode number greater than
3656 * sctx->send_progress. We need to prevent
3657 * future name lookups from using the old name
3658 * and get instead the orphan name.
3660 nce = name_cache_search(sctx, ow_inode, ow_gen);
3662 name_cache_delete(sctx, nce);
3666 ret = send_unlink(sctx, cur->full_path);
3672 if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root) {
3673 ret = wait_for_dest_dir_move(sctx, cur, is_orphan);
3682 if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root &&
3684 ret = wait_for_parent_move(sctx, cur, is_orphan);
3694 * link/move the ref to the new place. If we have an orphan
3695 * inode, move it and update valid_path. If not, link or move
3696 * it depending on the inode mode.
3698 if (is_orphan && can_rename) {
3699 ret = send_rename(sctx, valid_path, cur->full_path);
3703 ret = fs_path_copy(valid_path, cur->full_path);
3706 } else if (can_rename) {
3707 if (S_ISDIR(sctx->cur_inode_mode)) {
3709 * Dirs can't be linked, so move it. For moved
3710 * dirs, we always have one new and one deleted
3711 * ref. The deleted ref is ignored later.
3713 ret = send_rename(sctx, valid_path,
3716 ret = fs_path_copy(valid_path,
3721 ret = send_link(sctx, cur->full_path,
3727 ret = dup_ref(cur, &check_dirs);
3732 if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_deleted) {
3734 * Check if we can already rmdir the directory. If not,
3735 * orphanize it. For every dir item inside that gets deleted
3736 * later, we do this check again and rmdir it then if possible.
3737 * See the use of check_dirs for more details.
3739 ret = can_rmdir(sctx, sctx->cur_ino, sctx->cur_inode_gen,
3744 ret = send_rmdir(sctx, valid_path);
3747 } else if (!is_orphan) {
3748 ret = orphanize_inode(sctx, sctx->cur_ino,
3749 sctx->cur_inode_gen, valid_path);
3755 list_for_each_entry(cur, &sctx->deleted_refs, list) {
3756 ret = dup_ref(cur, &check_dirs);
3760 } else if (S_ISDIR(sctx->cur_inode_mode) &&
3761 !list_empty(&sctx->deleted_refs)) {
3763 * We have a moved dir. Add the old parent to check_dirs
3765 cur = list_entry(sctx->deleted_refs.next, struct recorded_ref,
3767 ret = dup_ref(cur, &check_dirs);
3770 } else if (!S_ISDIR(sctx->cur_inode_mode)) {
3772 * We have a non dir inode. Go through all deleted refs and
3773 * unlink them if they were not already overwritten by other
3776 list_for_each_entry(cur, &sctx->deleted_refs, list) {
3777 ret = did_overwrite_ref(sctx, cur->dir, cur->dir_gen,
3778 sctx->cur_ino, sctx->cur_inode_gen,
3779 cur->name, cur->name_len);
3783 ret = send_unlink(sctx, cur->full_path);
3787 ret = dup_ref(cur, &check_dirs);
3792 * If the inode is still orphan, unlink the orphan. This may
3793 * happen when a previous inode did overwrite the first ref
3794 * of this inode and no new refs were added for the current
3795 * inode. Unlinking does not mean that the inode is deleted in
3796 * all cases. There may still be links to this inode in other
3800 ret = send_unlink(sctx, valid_path);
3807 * We did collect all parent dirs where cur_inode was once located. We
3808 * now go through all these dirs and check if they are pending for
3809 * deletion and if it's finally possible to perform the rmdir now.
3810 * We also update the inode stats of the parent dirs here.
3812 list_for_each_entry(cur, &check_dirs, list) {
3814 * In case we had refs into dirs that were not processed yet,
3815 * we don't need to do the utime and rmdir logic for these dirs.
3816 * The dir will be processed later.
3818 if (cur->dir > sctx->cur_ino)
3821 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
3825 if (ret == inode_state_did_create ||
3826 ret == inode_state_no_change) {
3827 /* TODO delayed utimes */
3828 ret = send_utimes(sctx, cur->dir, cur->dir_gen);
3831 } else if (ret == inode_state_did_delete &&
3832 cur->dir != last_dir_ino_rm) {
3833 ret = can_rmdir(sctx, cur->dir, cur->dir_gen,
3838 ret = get_cur_path(sctx, cur->dir,
3839 cur->dir_gen, valid_path);
3842 ret = send_rmdir(sctx, valid_path);
3845 last_dir_ino_rm = cur->dir;
3853 __free_recorded_refs(&check_dirs);
3854 free_recorded_refs(sctx);
3855 fs_path_free(valid_path);
3859 static int record_ref(struct btrfs_root *root, int num, u64 dir, int index,
3860 struct fs_path *name, void *ctx, struct list_head *refs)
3863 struct send_ctx *sctx = ctx;
3867 p = fs_path_alloc();
3871 ret = get_inode_info(root, dir, NULL, &gen, NULL, NULL,
3876 ret = get_cur_path(sctx, dir, gen, p);
3879 ret = fs_path_add_path(p, name);
3883 ret = __record_ref(refs, dir, gen, p);
3891 static int __record_new_ref(int num, u64 dir, int index,
3892 struct fs_path *name,
3895 struct send_ctx *sctx = ctx;
3896 return record_ref(sctx->send_root, num, dir, index, name,
3897 ctx, &sctx->new_refs);
3901 static int __record_deleted_ref(int num, u64 dir, int index,
3902 struct fs_path *name,
3905 struct send_ctx *sctx = ctx;
3906 return record_ref(sctx->parent_root, num, dir, index, name,
3907 ctx, &sctx->deleted_refs);
3910 static int record_new_ref(struct send_ctx *sctx)
3914 ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
3915 sctx->cmp_key, 0, __record_new_ref, sctx);
3924 static int record_deleted_ref(struct send_ctx *sctx)
3928 ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
3929 sctx->cmp_key, 0, __record_deleted_ref, sctx);
3938 struct find_ref_ctx {
3941 struct btrfs_root *root;
3942 struct fs_path *name;
3946 static int __find_iref(int num, u64 dir, int index,
3947 struct fs_path *name,
3950 struct find_ref_ctx *ctx = ctx_;
3954 if (dir == ctx->dir && fs_path_len(name) == fs_path_len(ctx->name) &&
3955 strncmp(name->start, ctx->name->start, fs_path_len(name)) == 0) {
3957 * To avoid doing extra lookups we'll only do this if everything
3960 ret = get_inode_info(ctx->root, dir, NULL, &dir_gen, NULL,
3964 if (dir_gen != ctx->dir_gen)
3966 ctx->found_idx = num;
3972 static int find_iref(struct btrfs_root *root,
3973 struct btrfs_path *path,
3974 struct btrfs_key *key,
3975 u64 dir, u64 dir_gen, struct fs_path *name)
3978 struct find_ref_ctx ctx;
3982 ctx.dir_gen = dir_gen;
3986 ret = iterate_inode_ref(root, path, key, 0, __find_iref, &ctx);
3990 if (ctx.found_idx == -1)
3993 return ctx.found_idx;
3996 static int __record_changed_new_ref(int num, u64 dir, int index,
3997 struct fs_path *name,
4002 struct send_ctx *sctx = ctx;
4004 ret = get_inode_info(sctx->send_root, dir, NULL, &dir_gen, NULL,
4009 ret = find_iref(sctx->parent_root, sctx->right_path,
4010 sctx->cmp_key, dir, dir_gen, name);
4012 ret = __record_new_ref(num, dir, index, name, sctx);
4019 static int __record_changed_deleted_ref(int num, u64 dir, int index,
4020 struct fs_path *name,
4025 struct send_ctx *sctx = ctx;
4027 ret = get_inode_info(sctx->parent_root, dir, NULL, &dir_gen, NULL,
4032 ret = find_iref(sctx->send_root, sctx->left_path, sctx->cmp_key,
4033 dir, dir_gen, name);
4035 ret = __record_deleted_ref(num, dir, index, name, sctx);
4042 static int record_changed_ref(struct send_ctx *sctx)
4046 ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
4047 sctx->cmp_key, 0, __record_changed_new_ref, sctx);
4050 ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
4051 sctx->cmp_key, 0, __record_changed_deleted_ref, sctx);
4061 * Record and process all refs at once. Needed when an inode changes the
4062 * generation number, which means that it was deleted and recreated.
4064 static int process_all_refs(struct send_ctx *sctx,
4065 enum btrfs_compare_tree_result cmd)
4068 struct btrfs_root *root;
4069 struct btrfs_path *path;
4070 struct btrfs_key key;
4071 struct btrfs_key found_key;
4072 struct extent_buffer *eb;
4074 iterate_inode_ref_t cb;
4075 int pending_move = 0;
4077 path = alloc_path_for_send();
4081 if (cmd == BTRFS_COMPARE_TREE_NEW) {
4082 root = sctx->send_root;
4083 cb = __record_new_ref;
4084 } else if (cmd == BTRFS_COMPARE_TREE_DELETED) {
4085 root = sctx->parent_root;
4086 cb = __record_deleted_ref;
4088 btrfs_err(sctx->send_root->fs_info,
4089 "Wrong command %d in process_all_refs", cmd);
4094 key.objectid = sctx->cmp_key->objectid;
4095 key.type = BTRFS_INODE_REF_KEY;
4097 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4102 eb = path->nodes[0];
4103 slot = path->slots[0];
4104 if (slot >= btrfs_header_nritems(eb)) {
4105 ret = btrfs_next_leaf(root, path);
4113 btrfs_item_key_to_cpu(eb, &found_key, slot);
4115 if (found_key.objectid != key.objectid ||
4116 (found_key.type != BTRFS_INODE_REF_KEY &&
4117 found_key.type != BTRFS_INODE_EXTREF_KEY))
4120 ret = iterate_inode_ref(root, path, &found_key, 0, cb, sctx);
4126 btrfs_release_path(path);
4128 ret = process_recorded_refs(sctx, &pending_move);
4129 /* Only applicable to an incremental send. */
4130 ASSERT(pending_move == 0);
4133 btrfs_free_path(path);
4137 static int send_set_xattr(struct send_ctx *sctx,
4138 struct fs_path *path,
4139 const char *name, int name_len,
4140 const char *data, int data_len)
4144 ret = begin_cmd(sctx, BTRFS_SEND_C_SET_XATTR);
4148 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4149 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4150 TLV_PUT(sctx, BTRFS_SEND_A_XATTR_DATA, data, data_len);
4152 ret = send_cmd(sctx);
4159 static int send_remove_xattr(struct send_ctx *sctx,
4160 struct fs_path *path,
4161 const char *name, int name_len)
4165 ret = begin_cmd(sctx, BTRFS_SEND_C_REMOVE_XATTR);
4169 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4170 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4172 ret = send_cmd(sctx);
4179 static int __process_new_xattr(int num, struct btrfs_key *di_key,
4180 const char *name, int name_len,
4181 const char *data, int data_len,
4185 struct send_ctx *sctx = ctx;
4187 posix_acl_xattr_header dummy_acl;
4189 p = fs_path_alloc();
4194 * This hack is needed because empty acl's are stored as zero byte
4195 * data in xattrs. Problem with that is, that receiving these zero byte
4196 * acl's will fail later. To fix this, we send a dummy acl list that
4197 * only contains the version number and no entries.
4199 if (!strncmp(name, XATTR_NAME_POSIX_ACL_ACCESS, name_len) ||
4200 !strncmp(name, XATTR_NAME_POSIX_ACL_DEFAULT, name_len)) {
4201 if (data_len == 0) {
4202 dummy_acl.a_version =
4203 cpu_to_le32(POSIX_ACL_XATTR_VERSION);
4204 data = (char *)&dummy_acl;
4205 data_len = sizeof(dummy_acl);
4209 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4213 ret = send_set_xattr(sctx, p, name, name_len, data, data_len);
4220 static int __process_deleted_xattr(int num, struct btrfs_key *di_key,
4221 const char *name, int name_len,
4222 const char *data, int data_len,
4226 struct send_ctx *sctx = ctx;
4229 p = fs_path_alloc();
4233 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4237 ret = send_remove_xattr(sctx, p, name, name_len);
4244 static int process_new_xattr(struct send_ctx *sctx)
4248 ret = iterate_dir_item(sctx->send_root, sctx->left_path,
4249 sctx->cmp_key, __process_new_xattr, sctx);
4254 static int process_deleted_xattr(struct send_ctx *sctx)
4258 ret = iterate_dir_item(sctx->parent_root, sctx->right_path,
4259 sctx->cmp_key, __process_deleted_xattr, sctx);
4264 struct find_xattr_ctx {
4272 static int __find_xattr(int num, struct btrfs_key *di_key,
4273 const char *name, int name_len,
4274 const char *data, int data_len,
4275 u8 type, void *vctx)
4277 struct find_xattr_ctx *ctx = vctx;
4279 if (name_len == ctx->name_len &&
4280 strncmp(name, ctx->name, name_len) == 0) {
4281 ctx->found_idx = num;
4282 ctx->found_data_len = data_len;
4283 ctx->found_data = kmemdup(data, data_len, GFP_KERNEL);
4284 if (!ctx->found_data)
4291 static int find_xattr(struct btrfs_root *root,
4292 struct btrfs_path *path,
4293 struct btrfs_key *key,
4294 const char *name, int name_len,
4295 char **data, int *data_len)
4298 struct find_xattr_ctx ctx;
4301 ctx.name_len = name_len;
4303 ctx.found_data = NULL;
4304 ctx.found_data_len = 0;
4306 ret = iterate_dir_item(root, path, key, __find_xattr, &ctx);
4310 if (ctx.found_idx == -1)
4313 *data = ctx.found_data;
4314 *data_len = ctx.found_data_len;
4316 kfree(ctx.found_data);
4318 return ctx.found_idx;
4322 static int __process_changed_new_xattr(int num, struct btrfs_key *di_key,
4323 const char *name, int name_len,
4324 const char *data, int data_len,
4328 struct send_ctx *sctx = ctx;
4329 char *found_data = NULL;
4330 int found_data_len = 0;
4332 ret = find_xattr(sctx->parent_root, sctx->right_path,
4333 sctx->cmp_key, name, name_len, &found_data,
4335 if (ret == -ENOENT) {
4336 ret = __process_new_xattr(num, di_key, name, name_len, data,
4337 data_len, type, ctx);
4338 } else if (ret >= 0) {
4339 if (data_len != found_data_len ||
4340 memcmp(data, found_data, data_len)) {
4341 ret = __process_new_xattr(num, di_key, name, name_len,
4342 data, data_len, type, ctx);
4352 static int __process_changed_deleted_xattr(int num, struct btrfs_key *di_key,
4353 const char *name, int name_len,
4354 const char *data, int data_len,
4358 struct send_ctx *sctx = ctx;
4360 ret = find_xattr(sctx->send_root, sctx->left_path, sctx->cmp_key,
4361 name, name_len, NULL, NULL);
4363 ret = __process_deleted_xattr(num, di_key, name, name_len, data,
4364 data_len, type, ctx);
4371 static int process_changed_xattr(struct send_ctx *sctx)
4375 ret = iterate_dir_item(sctx->send_root, sctx->left_path,
4376 sctx->cmp_key, __process_changed_new_xattr, sctx);
4379 ret = iterate_dir_item(sctx->parent_root, sctx->right_path,
4380 sctx->cmp_key, __process_changed_deleted_xattr, sctx);
4386 static int process_all_new_xattrs(struct send_ctx *sctx)
4389 struct btrfs_root *root;
4390 struct btrfs_path *path;
4391 struct btrfs_key key;
4392 struct btrfs_key found_key;
4393 struct extent_buffer *eb;
4396 path = alloc_path_for_send();
4400 root = sctx->send_root;
4402 key.objectid = sctx->cmp_key->objectid;
4403 key.type = BTRFS_XATTR_ITEM_KEY;
4405 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4410 eb = path->nodes[0];
4411 slot = path->slots[0];
4412 if (slot >= btrfs_header_nritems(eb)) {
4413 ret = btrfs_next_leaf(root, path);
4416 } else if (ret > 0) {
4423 btrfs_item_key_to_cpu(eb, &found_key, slot);
4424 if (found_key.objectid != key.objectid ||
4425 found_key.type != key.type) {
4430 ret = iterate_dir_item(root, path, &found_key,
4431 __process_new_xattr, sctx);
4439 btrfs_free_path(path);
4443 static ssize_t fill_read_buf(struct send_ctx *sctx, u64 offset, u32 len)
4445 struct btrfs_root *root = sctx->send_root;
4446 struct btrfs_fs_info *fs_info = root->fs_info;
4447 struct inode *inode;
4450 struct btrfs_key key;
4451 pgoff_t index = offset >> PAGE_CACHE_SHIFT;
4453 unsigned pg_offset = offset & ~PAGE_CACHE_MASK;
4456 key.objectid = sctx->cur_ino;
4457 key.type = BTRFS_INODE_ITEM_KEY;
4460 inode = btrfs_iget(fs_info->sb, &key, root, NULL);
4462 return PTR_ERR(inode);
4464 if (offset + len > i_size_read(inode)) {
4465 if (offset > i_size_read(inode))
4468 len = offset - i_size_read(inode);
4473 last_index = (offset + len - 1) >> PAGE_CACHE_SHIFT;
4475 /* initial readahead */
4476 memset(&sctx->ra, 0, sizeof(struct file_ra_state));
4477 file_ra_state_init(&sctx->ra, inode->i_mapping);
4478 btrfs_force_ra(inode->i_mapping, &sctx->ra, NULL, index,
4479 last_index - index + 1);
4481 while (index <= last_index) {
4482 unsigned cur_len = min_t(unsigned, len,
4483 PAGE_CACHE_SIZE - pg_offset);
4484 page = find_or_create_page(inode->i_mapping, index, GFP_KERNEL);
4490 if (!PageUptodate(page)) {
4491 btrfs_readpage(NULL, page);
4493 if (!PageUptodate(page)) {
4495 page_cache_release(page);
4502 memcpy(sctx->read_buf + ret, addr + pg_offset, cur_len);
4505 page_cache_release(page);
4517 * Read some bytes from the current inode/file and send a write command to
4520 static int send_write(struct send_ctx *sctx, u64 offset, u32 len)
4524 ssize_t num_read = 0;
4526 p = fs_path_alloc();
4530 verbose_printk("btrfs: send_write offset=%llu, len=%d\n", offset, len);
4532 num_read = fill_read_buf(sctx, offset, len);
4533 if (num_read <= 0) {
4539 ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
4543 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4547 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4548 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4549 TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, num_read);
4551 ret = send_cmd(sctx);
4562 * Send a clone command to user space.
4564 static int send_clone(struct send_ctx *sctx,
4565 u64 offset, u32 len,
4566 struct clone_root *clone_root)
4572 verbose_printk("btrfs: send_clone offset=%llu, len=%d, clone_root=%llu, "
4573 "clone_inode=%llu, clone_offset=%llu\n", offset, len,
4574 clone_root->root->objectid, clone_root->ino,
4575 clone_root->offset);
4577 p = fs_path_alloc();
4581 ret = begin_cmd(sctx, BTRFS_SEND_C_CLONE);
4585 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4589 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4590 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_LEN, len);
4591 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4593 if (clone_root->root == sctx->send_root) {
4594 ret = get_inode_info(sctx->send_root, clone_root->ino, NULL,
4595 &gen, NULL, NULL, NULL, NULL);
4598 ret = get_cur_path(sctx, clone_root->ino, gen, p);
4600 ret = get_inode_path(clone_root->root, clone_root->ino, p);
4606 * If the parent we're using has a received_uuid set then use that as
4607 * our clone source as that is what we will look for when doing a
4610 * This covers the case that we create a snapshot off of a received
4611 * subvolume and then use that as the parent and try to receive on a
4614 if (!btrfs_is_empty_uuid(clone_root->root->root_item.received_uuid))
4615 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
4616 clone_root->root->root_item.received_uuid);
4618 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
4619 clone_root->root->root_item.uuid);
4620 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
4621 le64_to_cpu(clone_root->root->root_item.ctransid));
4622 TLV_PUT_PATH(sctx, BTRFS_SEND_A_CLONE_PATH, p);
4623 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_OFFSET,
4624 clone_root->offset);
4626 ret = send_cmd(sctx);
4635 * Send an update extent command to user space.
4637 static int send_update_extent(struct send_ctx *sctx,
4638 u64 offset, u32 len)
4643 p = fs_path_alloc();
4647 ret = begin_cmd(sctx, BTRFS_SEND_C_UPDATE_EXTENT);
4651 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4655 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4656 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4657 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, len);
4659 ret = send_cmd(sctx);
4667 static int send_hole(struct send_ctx *sctx, u64 end)
4669 struct fs_path *p = NULL;
4670 u64 offset = sctx->cur_inode_last_extent;
4674 p = fs_path_alloc();
4677 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4679 goto tlv_put_failure;
4680 memset(sctx->read_buf, 0, BTRFS_SEND_READ_SIZE);
4681 while (offset < end) {
4682 len = min_t(u64, end - offset, BTRFS_SEND_READ_SIZE);
4684 ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
4687 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4688 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4689 TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, len);
4690 ret = send_cmd(sctx);
4700 static int send_extent_data(struct send_ctx *sctx,
4706 if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA)
4707 return send_update_extent(sctx, offset, len);
4709 while (sent < len) {
4710 u64 size = len - sent;
4713 if (size > BTRFS_SEND_READ_SIZE)
4714 size = BTRFS_SEND_READ_SIZE;
4715 ret = send_write(sctx, offset + sent, size);
4725 static int clone_range(struct send_ctx *sctx,
4726 struct clone_root *clone_root,
4727 const u64 disk_byte,
4732 struct btrfs_path *path;
4733 struct btrfs_key key;
4736 path = alloc_path_for_send();
4741 * We can't send a clone operation for the entire range if we find
4742 * extent items in the respective range in the source file that
4743 * refer to different extents or if we find holes.
4744 * So check for that and do a mix of clone and regular write/copy
4745 * operations if needed.
4749 * mkfs.btrfs -f /dev/sda
4750 * mount /dev/sda /mnt
4751 * xfs_io -f -c "pwrite -S 0xaa 0K 100K" /mnt/foo
4752 * cp --reflink=always /mnt/foo /mnt/bar
4753 * xfs_io -c "pwrite -S 0xbb 50K 50K" /mnt/foo
4754 * btrfs subvolume snapshot -r /mnt /mnt/snap
4756 * If when we send the snapshot and we are processing file bar (which
4757 * has a higher inode number than foo) we blindly send a clone operation
4758 * for the [0, 100K[ range from foo to bar, the receiver ends up getting
4759 * a file bar that matches the content of file foo - iow, doesn't match
4760 * the content from bar in the original filesystem.
4762 key.objectid = clone_root->ino;
4763 key.type = BTRFS_EXTENT_DATA_KEY;
4764 key.offset = clone_root->offset;
4765 ret = btrfs_search_slot(NULL, clone_root->root, &key, path, 0, 0);
4768 if (ret > 0 && path->slots[0] > 0) {
4769 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
4770 if (key.objectid == clone_root->ino &&
4771 key.type == BTRFS_EXTENT_DATA_KEY)
4776 struct extent_buffer *leaf = path->nodes[0];
4777 int slot = path->slots[0];
4778 struct btrfs_file_extent_item *ei;
4783 if (slot >= btrfs_header_nritems(leaf)) {
4784 ret = btrfs_next_leaf(clone_root->root, path);
4792 btrfs_item_key_to_cpu(leaf, &key, slot);
4795 * We might have an implicit trailing hole (NO_HOLES feature
4796 * enabled). We deal with it after leaving this loop.
4798 if (key.objectid != clone_root->ino ||
4799 key.type != BTRFS_EXTENT_DATA_KEY)
4802 ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
4803 type = btrfs_file_extent_type(leaf, ei);
4804 if (type == BTRFS_FILE_EXTENT_INLINE) {
4805 ext_len = btrfs_file_extent_inline_len(leaf, slot, ei);
4806 ext_len = PAGE_CACHE_ALIGN(ext_len);
4808 ext_len = btrfs_file_extent_num_bytes(leaf, ei);
4811 if (key.offset + ext_len <= clone_root->offset)
4814 if (key.offset > clone_root->offset) {
4815 /* Implicit hole, NO_HOLES feature enabled. */
4816 u64 hole_len = key.offset - clone_root->offset;
4820 ret = send_extent_data(sctx, offset, hole_len);
4828 clone_root->offset += hole_len;
4829 data_offset += hole_len;
4832 if (key.offset >= clone_root->offset + len)
4835 clone_len = min_t(u64, ext_len, len);
4837 if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte &&
4838 btrfs_file_extent_offset(leaf, ei) == data_offset)
4839 ret = send_clone(sctx, offset, clone_len, clone_root);
4841 ret = send_extent_data(sctx, offset, clone_len);
4849 offset += clone_len;
4850 clone_root->offset += clone_len;
4851 data_offset += clone_len;
4857 ret = send_extent_data(sctx, offset, len);
4861 btrfs_free_path(path);
4865 static int send_write_or_clone(struct send_ctx *sctx,
4866 struct btrfs_path *path,
4867 struct btrfs_key *key,
4868 struct clone_root *clone_root)
4871 struct btrfs_file_extent_item *ei;
4872 u64 offset = key->offset;
4875 u64 bs = sctx->send_root->fs_info->sb->s_blocksize;
4877 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
4878 struct btrfs_file_extent_item);
4879 type = btrfs_file_extent_type(path->nodes[0], ei);
4880 if (type == BTRFS_FILE_EXTENT_INLINE) {
4881 len = btrfs_file_extent_inline_len(path->nodes[0],
4882 path->slots[0], ei);
4884 * it is possible the inline item won't cover the whole page,
4885 * but there may be items after this page. Make
4886 * sure to send the whole thing
4888 len = PAGE_CACHE_ALIGN(len);
4890 len = btrfs_file_extent_num_bytes(path->nodes[0], ei);
4893 if (offset + len > sctx->cur_inode_size)
4894 len = sctx->cur_inode_size - offset;
4900 if (clone_root && IS_ALIGNED(offset + len, bs)) {
4904 disk_byte = btrfs_file_extent_disk_bytenr(path->nodes[0], ei);
4905 data_offset = btrfs_file_extent_offset(path->nodes[0], ei);
4906 ret = clone_range(sctx, clone_root, disk_byte, data_offset,
4909 ret = send_extent_data(sctx, offset, len);
4915 static int is_extent_unchanged(struct send_ctx *sctx,
4916 struct btrfs_path *left_path,
4917 struct btrfs_key *ekey)
4920 struct btrfs_key key;
4921 struct btrfs_path *path = NULL;
4922 struct extent_buffer *eb;
4924 struct btrfs_key found_key;
4925 struct btrfs_file_extent_item *ei;
4930 u64 left_offset_fixed;
4938 path = alloc_path_for_send();
4942 eb = left_path->nodes[0];
4943 slot = left_path->slots[0];
4944 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
4945 left_type = btrfs_file_extent_type(eb, ei);
4947 if (left_type != BTRFS_FILE_EXTENT_REG) {
4951 left_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
4952 left_len = btrfs_file_extent_num_bytes(eb, ei);
4953 left_offset = btrfs_file_extent_offset(eb, ei);
4954 left_gen = btrfs_file_extent_generation(eb, ei);
4957 * Following comments will refer to these graphics. L is the left
4958 * extents which we are checking at the moment. 1-8 are the right
4959 * extents that we iterate.
4962 * |-1-|-2a-|-3-|-4-|-5-|-6-|
4965 * |--1--|-2b-|...(same as above)
4967 * Alternative situation. Happens on files where extents got split.
4969 * |-----------7-----------|-6-|
4971 * Alternative situation. Happens on files which got larger.
4974 * Nothing follows after 8.
4977 key.objectid = ekey->objectid;
4978 key.type = BTRFS_EXTENT_DATA_KEY;
4979 key.offset = ekey->offset;
4980 ret = btrfs_search_slot_for_read(sctx->parent_root, &key, path, 0, 0);
4989 * Handle special case where the right side has no extents at all.
4991 eb = path->nodes[0];
4992 slot = path->slots[0];
4993 btrfs_item_key_to_cpu(eb, &found_key, slot);
4994 if (found_key.objectid != key.objectid ||
4995 found_key.type != key.type) {
4996 /* If we're a hole then just pretend nothing changed */
4997 ret = (left_disknr) ? 0 : 1;
5002 * We're now on 2a, 2b or 7.
5005 while (key.offset < ekey->offset + left_len) {
5006 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
5007 right_type = btrfs_file_extent_type(eb, ei);
5008 if (right_type != BTRFS_FILE_EXTENT_REG) {
5013 right_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
5014 right_len = btrfs_file_extent_num_bytes(eb, ei);
5015 right_offset = btrfs_file_extent_offset(eb, ei);
5016 right_gen = btrfs_file_extent_generation(eb, ei);
5019 * Are we at extent 8? If yes, we know the extent is changed.
5020 * This may only happen on the first iteration.
5022 if (found_key.offset + right_len <= ekey->offset) {
5023 /* If we're a hole just pretend nothing changed */
5024 ret = (left_disknr) ? 0 : 1;
5028 left_offset_fixed = left_offset;
5029 if (key.offset < ekey->offset) {
5030 /* Fix the right offset for 2a and 7. */
5031 right_offset += ekey->offset - key.offset;
5033 /* Fix the left offset for all behind 2a and 2b */
5034 left_offset_fixed += key.offset - ekey->offset;
5038 * Check if we have the same extent.
5040 if (left_disknr != right_disknr ||
5041 left_offset_fixed != right_offset ||
5042 left_gen != right_gen) {
5048 * Go to the next extent.
5050 ret = btrfs_next_item(sctx->parent_root, path);
5054 eb = path->nodes[0];
5055 slot = path->slots[0];
5056 btrfs_item_key_to_cpu(eb, &found_key, slot);
5058 if (ret || found_key.objectid != key.objectid ||
5059 found_key.type != key.type) {
5060 key.offset += right_len;
5063 if (found_key.offset != key.offset + right_len) {
5071 * We're now behind the left extent (treat as unchanged) or at the end
5072 * of the right side (treat as changed).
5074 if (key.offset >= ekey->offset + left_len)
5081 btrfs_free_path(path);
5085 static int get_last_extent(struct send_ctx *sctx, u64 offset)
5087 struct btrfs_path *path;
5088 struct btrfs_root *root = sctx->send_root;
5089 struct btrfs_file_extent_item *fi;
5090 struct btrfs_key key;
5095 path = alloc_path_for_send();
5099 sctx->cur_inode_last_extent = 0;
5101 key.objectid = sctx->cur_ino;
5102 key.type = BTRFS_EXTENT_DATA_KEY;
5103 key.offset = offset;
5104 ret = btrfs_search_slot_for_read(root, &key, path, 0, 1);
5108 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
5109 if (key.objectid != sctx->cur_ino || key.type != BTRFS_EXTENT_DATA_KEY)
5112 fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
5113 struct btrfs_file_extent_item);
5114 type = btrfs_file_extent_type(path->nodes[0], fi);
5115 if (type == BTRFS_FILE_EXTENT_INLINE) {
5116 u64 size = btrfs_file_extent_inline_len(path->nodes[0],
5117 path->slots[0], fi);
5118 extent_end = ALIGN(key.offset + size,
5119 sctx->send_root->sectorsize);
5121 extent_end = key.offset +
5122 btrfs_file_extent_num_bytes(path->nodes[0], fi);
5124 sctx->cur_inode_last_extent = extent_end;
5126 btrfs_free_path(path);
5130 static int maybe_send_hole(struct send_ctx *sctx, struct btrfs_path *path,
5131 struct btrfs_key *key)
5133 struct btrfs_file_extent_item *fi;
5138 if (sctx->cur_ino != key->objectid || !need_send_hole(sctx))
5141 if (sctx->cur_inode_last_extent == (u64)-1) {
5142 ret = get_last_extent(sctx, key->offset - 1);
5147 fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
5148 struct btrfs_file_extent_item);
5149 type = btrfs_file_extent_type(path->nodes[0], fi);
5150 if (type == BTRFS_FILE_EXTENT_INLINE) {
5151 u64 size = btrfs_file_extent_inline_len(path->nodes[0],
5152 path->slots[0], fi);
5153 extent_end = ALIGN(key->offset + size,
5154 sctx->send_root->sectorsize);
5156 extent_end = key->offset +
5157 btrfs_file_extent_num_bytes(path->nodes[0], fi);
5160 if (path->slots[0] == 0 &&
5161 sctx->cur_inode_last_extent < key->offset) {
5163 * We might have skipped entire leafs that contained only
5164 * file extent items for our current inode. These leafs have
5165 * a generation number smaller (older) than the one in the
5166 * current leaf and the leaf our last extent came from, and
5167 * are located between these 2 leafs.
5169 ret = get_last_extent(sctx, key->offset - 1);
5174 if (sctx->cur_inode_last_extent < key->offset)
5175 ret = send_hole(sctx, key->offset);
5176 sctx->cur_inode_last_extent = extent_end;
5180 static int process_extent(struct send_ctx *sctx,
5181 struct btrfs_path *path,
5182 struct btrfs_key *key)
5184 struct clone_root *found_clone = NULL;
5187 if (S_ISLNK(sctx->cur_inode_mode))
5190 if (sctx->parent_root && !sctx->cur_inode_new) {
5191 ret = is_extent_unchanged(sctx, path, key);
5199 struct btrfs_file_extent_item *ei;
5202 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
5203 struct btrfs_file_extent_item);
5204 type = btrfs_file_extent_type(path->nodes[0], ei);
5205 if (type == BTRFS_FILE_EXTENT_PREALLOC ||
5206 type == BTRFS_FILE_EXTENT_REG) {
5208 * The send spec does not have a prealloc command yet,
5209 * so just leave a hole for prealloc'ed extents until
5210 * we have enough commands queued up to justify rev'ing
5213 if (type == BTRFS_FILE_EXTENT_PREALLOC) {
5218 /* Have a hole, just skip it. */
5219 if (btrfs_file_extent_disk_bytenr(path->nodes[0], ei) == 0) {
5226 ret = find_extent_clone(sctx, path, key->objectid, key->offset,
5227 sctx->cur_inode_size, &found_clone);
5228 if (ret != -ENOENT && ret < 0)
5231 ret = send_write_or_clone(sctx, path, key, found_clone);
5235 ret = maybe_send_hole(sctx, path, key);
5240 static int process_all_extents(struct send_ctx *sctx)
5243 struct btrfs_root *root;
5244 struct btrfs_path *path;
5245 struct btrfs_key key;
5246 struct btrfs_key found_key;
5247 struct extent_buffer *eb;
5250 root = sctx->send_root;
5251 path = alloc_path_for_send();
5255 key.objectid = sctx->cmp_key->objectid;
5256 key.type = BTRFS_EXTENT_DATA_KEY;
5258 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5263 eb = path->nodes[0];
5264 slot = path->slots[0];
5266 if (slot >= btrfs_header_nritems(eb)) {
5267 ret = btrfs_next_leaf(root, path);
5270 } else if (ret > 0) {
5277 btrfs_item_key_to_cpu(eb, &found_key, slot);
5279 if (found_key.objectid != key.objectid ||
5280 found_key.type != key.type) {
5285 ret = process_extent(sctx, path, &found_key);
5293 btrfs_free_path(path);
5297 static int process_recorded_refs_if_needed(struct send_ctx *sctx, int at_end,
5299 int *refs_processed)
5303 if (sctx->cur_ino == 0)
5305 if (!at_end && sctx->cur_ino == sctx->cmp_key->objectid &&
5306 sctx->cmp_key->type <= BTRFS_INODE_EXTREF_KEY)
5308 if (list_empty(&sctx->new_refs) && list_empty(&sctx->deleted_refs))
5311 ret = process_recorded_refs(sctx, pending_move);
5315 *refs_processed = 1;
5320 static int finish_inode_if_needed(struct send_ctx *sctx, int at_end)
5331 int pending_move = 0;
5332 int refs_processed = 0;
5334 ret = process_recorded_refs_if_needed(sctx, at_end, &pending_move,
5340 * We have processed the refs and thus need to advance send_progress.
5341 * Now, calls to get_cur_xxx will take the updated refs of the current
5342 * inode into account.
5344 * On the other hand, if our current inode is a directory and couldn't
5345 * be moved/renamed because its parent was renamed/moved too and it has
5346 * a higher inode number, we can only move/rename our current inode
5347 * after we moved/renamed its parent. Therefore in this case operate on
5348 * the old path (pre move/rename) of our current inode, and the
5349 * move/rename will be performed later.
5351 if (refs_processed && !pending_move)
5352 sctx->send_progress = sctx->cur_ino + 1;
5354 if (sctx->cur_ino == 0 || sctx->cur_inode_deleted)
5356 if (!at_end && sctx->cmp_key->objectid == sctx->cur_ino)
5359 ret = get_inode_info(sctx->send_root, sctx->cur_ino, NULL, NULL,
5360 &left_mode, &left_uid, &left_gid, NULL);
5364 if (!sctx->parent_root || sctx->cur_inode_new) {
5366 if (!S_ISLNK(sctx->cur_inode_mode))
5369 ret = get_inode_info(sctx->parent_root, sctx->cur_ino,
5370 NULL, NULL, &right_mode, &right_uid,
5375 if (left_uid != right_uid || left_gid != right_gid)
5377 if (!S_ISLNK(sctx->cur_inode_mode) && left_mode != right_mode)
5381 if (S_ISREG(sctx->cur_inode_mode)) {
5382 if (need_send_hole(sctx)) {
5383 if (sctx->cur_inode_last_extent == (u64)-1 ||
5384 sctx->cur_inode_last_extent <
5385 sctx->cur_inode_size) {
5386 ret = get_last_extent(sctx, (u64)-1);
5390 if (sctx->cur_inode_last_extent <
5391 sctx->cur_inode_size) {
5392 ret = send_hole(sctx, sctx->cur_inode_size);
5397 ret = send_truncate(sctx, sctx->cur_ino, sctx->cur_inode_gen,
5398 sctx->cur_inode_size);
5404 ret = send_chown(sctx, sctx->cur_ino, sctx->cur_inode_gen,
5405 left_uid, left_gid);
5410 ret = send_chmod(sctx, sctx->cur_ino, sctx->cur_inode_gen,
5417 * If other directory inodes depended on our current directory
5418 * inode's move/rename, now do their move/rename operations.
5420 if (!is_waiting_for_move(sctx, sctx->cur_ino)) {
5421 ret = apply_children_dir_moves(sctx);
5425 * Need to send that every time, no matter if it actually
5426 * changed between the two trees as we have done changes to
5427 * the inode before. If our inode is a directory and it's
5428 * waiting to be moved/renamed, we will send its utimes when
5429 * it's moved/renamed, therefore we don't need to do it here.
5431 sctx->send_progress = sctx->cur_ino + 1;
5432 ret = send_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen);
5441 static int changed_inode(struct send_ctx *sctx,
5442 enum btrfs_compare_tree_result result)
5445 struct btrfs_key *key = sctx->cmp_key;
5446 struct btrfs_inode_item *left_ii = NULL;
5447 struct btrfs_inode_item *right_ii = NULL;
5451 sctx->cur_ino = key->objectid;
5452 sctx->cur_inode_new_gen = 0;
5453 sctx->cur_inode_last_extent = (u64)-1;
5456 * Set send_progress to current inode. This will tell all get_cur_xxx
5457 * functions that the current inode's refs are not updated yet. Later,
5458 * when process_recorded_refs is finished, it is set to cur_ino + 1.
5460 sctx->send_progress = sctx->cur_ino;
5462 if (result == BTRFS_COMPARE_TREE_NEW ||
5463 result == BTRFS_COMPARE_TREE_CHANGED) {
5464 left_ii = btrfs_item_ptr(sctx->left_path->nodes[0],
5465 sctx->left_path->slots[0],
5466 struct btrfs_inode_item);
5467 left_gen = btrfs_inode_generation(sctx->left_path->nodes[0],
5470 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
5471 sctx->right_path->slots[0],
5472 struct btrfs_inode_item);
5473 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
5476 if (result == BTRFS_COMPARE_TREE_CHANGED) {
5477 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
5478 sctx->right_path->slots[0],
5479 struct btrfs_inode_item);
5481 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
5485 * The cur_ino = root dir case is special here. We can't treat
5486 * the inode as deleted+reused because it would generate a
5487 * stream that tries to delete/mkdir the root dir.
5489 if (left_gen != right_gen &&
5490 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
5491 sctx->cur_inode_new_gen = 1;
5494 if (result == BTRFS_COMPARE_TREE_NEW) {
5495 sctx->cur_inode_gen = left_gen;
5496 sctx->cur_inode_new = 1;
5497 sctx->cur_inode_deleted = 0;
5498 sctx->cur_inode_size = btrfs_inode_size(
5499 sctx->left_path->nodes[0], left_ii);
5500 sctx->cur_inode_mode = btrfs_inode_mode(
5501 sctx->left_path->nodes[0], left_ii);
5502 sctx->cur_inode_rdev = btrfs_inode_rdev(
5503 sctx->left_path->nodes[0], left_ii);
5504 if (sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
5505 ret = send_create_inode_if_needed(sctx);
5506 } else if (result == BTRFS_COMPARE_TREE_DELETED) {
5507 sctx->cur_inode_gen = right_gen;
5508 sctx->cur_inode_new = 0;
5509 sctx->cur_inode_deleted = 1;
5510 sctx->cur_inode_size = btrfs_inode_size(
5511 sctx->right_path->nodes[0], right_ii);
5512 sctx->cur_inode_mode = btrfs_inode_mode(
5513 sctx->right_path->nodes[0], right_ii);
5514 } else if (result == BTRFS_COMPARE_TREE_CHANGED) {
5516 * We need to do some special handling in case the inode was
5517 * reported as changed with a changed generation number. This
5518 * means that the original inode was deleted and new inode
5519 * reused the same inum. So we have to treat the old inode as
5520 * deleted and the new one as new.
5522 if (sctx->cur_inode_new_gen) {
5524 * First, process the inode as if it was deleted.
5526 sctx->cur_inode_gen = right_gen;
5527 sctx->cur_inode_new = 0;
5528 sctx->cur_inode_deleted = 1;
5529 sctx->cur_inode_size = btrfs_inode_size(
5530 sctx->right_path->nodes[0], right_ii);
5531 sctx->cur_inode_mode = btrfs_inode_mode(
5532 sctx->right_path->nodes[0], right_ii);
5533 ret = process_all_refs(sctx,
5534 BTRFS_COMPARE_TREE_DELETED);
5539 * Now process the inode as if it was new.
5541 sctx->cur_inode_gen = left_gen;
5542 sctx->cur_inode_new = 1;
5543 sctx->cur_inode_deleted = 0;
5544 sctx->cur_inode_size = btrfs_inode_size(
5545 sctx->left_path->nodes[0], left_ii);
5546 sctx->cur_inode_mode = btrfs_inode_mode(
5547 sctx->left_path->nodes[0], left_ii);
5548 sctx->cur_inode_rdev = btrfs_inode_rdev(
5549 sctx->left_path->nodes[0], left_ii);
5550 ret = send_create_inode_if_needed(sctx);
5554 ret = process_all_refs(sctx, BTRFS_COMPARE_TREE_NEW);
5558 * Advance send_progress now as we did not get into
5559 * process_recorded_refs_if_needed in the new_gen case.
5561 sctx->send_progress = sctx->cur_ino + 1;
5564 * Now process all extents and xattrs of the inode as if
5565 * they were all new.
5567 ret = process_all_extents(sctx);
5570 ret = process_all_new_xattrs(sctx);
5574 sctx->cur_inode_gen = left_gen;
5575 sctx->cur_inode_new = 0;
5576 sctx->cur_inode_new_gen = 0;
5577 sctx->cur_inode_deleted = 0;
5578 sctx->cur_inode_size = btrfs_inode_size(
5579 sctx->left_path->nodes[0], left_ii);
5580 sctx->cur_inode_mode = btrfs_inode_mode(
5581 sctx->left_path->nodes[0], left_ii);
5590 * We have to process new refs before deleted refs, but compare_trees gives us
5591 * the new and deleted refs mixed. To fix this, we record the new/deleted refs
5592 * first and later process them in process_recorded_refs.
5593 * For the cur_inode_new_gen case, we skip recording completely because
5594 * changed_inode did already initiate processing of refs. The reason for this is
5595 * that in this case, compare_tree actually compares the refs of 2 different
5596 * inodes. To fix this, process_all_refs is used in changed_inode to handle all
5597 * refs of the right tree as deleted and all refs of the left tree as new.
5599 static int changed_ref(struct send_ctx *sctx,
5600 enum btrfs_compare_tree_result result)
5604 BUG_ON(sctx->cur_ino != sctx->cmp_key->objectid);
5606 if (!sctx->cur_inode_new_gen &&
5607 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) {
5608 if (result == BTRFS_COMPARE_TREE_NEW)
5609 ret = record_new_ref(sctx);
5610 else if (result == BTRFS_COMPARE_TREE_DELETED)
5611 ret = record_deleted_ref(sctx);
5612 else if (result == BTRFS_COMPARE_TREE_CHANGED)
5613 ret = record_changed_ref(sctx);
5620 * Process new/deleted/changed xattrs. We skip processing in the
5621 * cur_inode_new_gen case because changed_inode did already initiate processing
5622 * of xattrs. The reason is the same as in changed_ref
5624 static int changed_xattr(struct send_ctx *sctx,
5625 enum btrfs_compare_tree_result result)
5629 BUG_ON(sctx->cur_ino != sctx->cmp_key->objectid);
5631 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
5632 if (result == BTRFS_COMPARE_TREE_NEW)
5633 ret = process_new_xattr(sctx);
5634 else if (result == BTRFS_COMPARE_TREE_DELETED)
5635 ret = process_deleted_xattr(sctx);
5636 else if (result == BTRFS_COMPARE_TREE_CHANGED)
5637 ret = process_changed_xattr(sctx);
5644 * Process new/deleted/changed extents. We skip processing in the
5645 * cur_inode_new_gen case because changed_inode did already initiate processing
5646 * of extents. The reason is the same as in changed_ref
5648 static int changed_extent(struct send_ctx *sctx,
5649 enum btrfs_compare_tree_result result)
5653 BUG_ON(sctx->cur_ino != sctx->cmp_key->objectid);
5655 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
5656 if (result != BTRFS_COMPARE_TREE_DELETED)
5657 ret = process_extent(sctx, sctx->left_path,
5664 static int dir_changed(struct send_ctx *sctx, u64 dir)
5666 u64 orig_gen, new_gen;
5669 ret = get_inode_info(sctx->send_root, dir, NULL, &new_gen, NULL, NULL,
5674 ret = get_inode_info(sctx->parent_root, dir, NULL, &orig_gen, NULL,
5679 return (orig_gen != new_gen) ? 1 : 0;
5682 static int compare_refs(struct send_ctx *sctx, struct btrfs_path *path,
5683 struct btrfs_key *key)
5685 struct btrfs_inode_extref *extref;
5686 struct extent_buffer *leaf;
5687 u64 dirid = 0, last_dirid = 0;
5694 /* Easy case, just check this one dirid */
5695 if (key->type == BTRFS_INODE_REF_KEY) {
5696 dirid = key->offset;
5698 ret = dir_changed(sctx, dirid);
5702 leaf = path->nodes[0];
5703 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
5704 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
5705 while (cur_offset < item_size) {
5706 extref = (struct btrfs_inode_extref *)(ptr +
5708 dirid = btrfs_inode_extref_parent(leaf, extref);
5709 ref_name_len = btrfs_inode_extref_name_len(leaf, extref);
5710 cur_offset += ref_name_len + sizeof(*extref);
5711 if (dirid == last_dirid)
5713 ret = dir_changed(sctx, dirid);
5723 * Updates compare related fields in sctx and simply forwards to the actual
5724 * changed_xxx functions.
5726 static int changed_cb(struct btrfs_root *left_root,
5727 struct btrfs_root *right_root,
5728 struct btrfs_path *left_path,
5729 struct btrfs_path *right_path,
5730 struct btrfs_key *key,
5731 enum btrfs_compare_tree_result result,
5735 struct send_ctx *sctx = ctx;
5737 if (result == BTRFS_COMPARE_TREE_SAME) {
5738 if (key->type == BTRFS_INODE_REF_KEY ||
5739 key->type == BTRFS_INODE_EXTREF_KEY) {
5740 ret = compare_refs(sctx, left_path, key);
5745 } else if (key->type == BTRFS_EXTENT_DATA_KEY) {
5746 return maybe_send_hole(sctx, left_path, key);
5750 result = BTRFS_COMPARE_TREE_CHANGED;
5754 sctx->left_path = left_path;
5755 sctx->right_path = right_path;
5756 sctx->cmp_key = key;
5758 ret = finish_inode_if_needed(sctx, 0);
5762 /* Ignore non-FS objects */
5763 if (key->objectid == BTRFS_FREE_INO_OBJECTID ||
5764 key->objectid == BTRFS_FREE_SPACE_OBJECTID)
5767 if (key->type == BTRFS_INODE_ITEM_KEY)
5768 ret = changed_inode(sctx, result);
5769 else if (key->type == BTRFS_INODE_REF_KEY ||
5770 key->type == BTRFS_INODE_EXTREF_KEY)
5771 ret = changed_ref(sctx, result);
5772 else if (key->type == BTRFS_XATTR_ITEM_KEY)
5773 ret = changed_xattr(sctx, result);
5774 else if (key->type == BTRFS_EXTENT_DATA_KEY)
5775 ret = changed_extent(sctx, result);
5781 static int full_send_tree(struct send_ctx *sctx)
5784 struct btrfs_root *send_root = sctx->send_root;
5785 struct btrfs_key key;
5786 struct btrfs_key found_key;
5787 struct btrfs_path *path;
5788 struct extent_buffer *eb;
5791 path = alloc_path_for_send();
5795 key.objectid = BTRFS_FIRST_FREE_OBJECTID;
5796 key.type = BTRFS_INODE_ITEM_KEY;
5799 ret = btrfs_search_slot_for_read(send_root, &key, path, 1, 0);
5806 eb = path->nodes[0];
5807 slot = path->slots[0];
5808 btrfs_item_key_to_cpu(eb, &found_key, slot);
5810 ret = changed_cb(send_root, NULL, path, NULL,
5811 &found_key, BTRFS_COMPARE_TREE_NEW, sctx);
5815 key.objectid = found_key.objectid;
5816 key.type = found_key.type;
5817 key.offset = found_key.offset + 1;
5819 ret = btrfs_next_item(send_root, path);
5829 ret = finish_inode_if_needed(sctx, 1);
5832 btrfs_free_path(path);
5836 static int send_subvol(struct send_ctx *sctx)
5840 if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_STREAM_HEADER)) {
5841 ret = send_header(sctx);
5846 ret = send_subvol_begin(sctx);
5850 if (sctx->parent_root) {
5851 ret = btrfs_compare_trees(sctx->send_root, sctx->parent_root,
5855 ret = finish_inode_if_needed(sctx, 1);
5859 ret = full_send_tree(sctx);
5865 free_recorded_refs(sctx);
5870 * If orphan cleanup did remove any orphans from a root, it means the tree
5871 * was modified and therefore the commit root is not the same as the current
5872 * root anymore. This is a problem, because send uses the commit root and
5873 * therefore can see inode items that don't exist in the current root anymore,
5874 * and for example make calls to btrfs_iget, which will do tree lookups based
5875 * on the current root and not on the commit root. Those lookups will fail,
5876 * returning a -ESTALE error, and making send fail with that error. So make
5877 * sure a send does not see any orphans we have just removed, and that it will
5878 * see the same inodes regardless of whether a transaction commit happened
5879 * before it started (meaning that the commit root will be the same as the
5880 * current root) or not.
5882 static int ensure_commit_roots_uptodate(struct send_ctx *sctx)
5885 struct btrfs_trans_handle *trans = NULL;
5888 if (sctx->parent_root &&
5889 sctx->parent_root->node != sctx->parent_root->commit_root)
5892 for (i = 0; i < sctx->clone_roots_cnt; i++)
5893 if (sctx->clone_roots[i].root->node !=
5894 sctx->clone_roots[i].root->commit_root)
5898 return btrfs_end_transaction(trans, sctx->send_root);
5903 /* Use any root, all fs roots will get their commit roots updated. */
5905 trans = btrfs_join_transaction(sctx->send_root);
5907 return PTR_ERR(trans);
5911 return btrfs_commit_transaction(trans, sctx->send_root);
5914 static void btrfs_root_dec_send_in_progress(struct btrfs_root* root)
5916 spin_lock(&root->root_item_lock);
5917 root->send_in_progress--;
5919 * Not much left to do, we don't know why it's unbalanced and
5920 * can't blindly reset it to 0.
5922 if (root->send_in_progress < 0)
5923 btrfs_err(root->fs_info,
5924 "send_in_progres unbalanced %d root %llu",
5925 root->send_in_progress, root->root_key.objectid);
5926 spin_unlock(&root->root_item_lock);
5929 long btrfs_ioctl_send(struct file *mnt_file, void __user *arg_)
5932 struct btrfs_root *send_root;
5933 struct btrfs_root *clone_root;
5934 struct btrfs_fs_info *fs_info;
5935 struct btrfs_ioctl_send_args *arg = NULL;
5936 struct btrfs_key key;
5937 struct send_ctx *sctx = NULL;
5939 u64 *clone_sources_tmp = NULL;
5940 int clone_sources_to_rollback = 0;
5941 int sort_clone_roots = 0;
5944 if (!capable(CAP_SYS_ADMIN))
5947 send_root = BTRFS_I(file_inode(mnt_file))->root;
5948 fs_info = send_root->fs_info;
5951 * The subvolume must remain read-only during send, protect against
5952 * making it RW. This also protects against deletion.
5954 spin_lock(&send_root->root_item_lock);
5955 send_root->send_in_progress++;
5956 spin_unlock(&send_root->root_item_lock);
5959 * This is done when we lookup the root, it should already be complete
5960 * by the time we get here.
5962 WARN_ON(send_root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE);
5965 * Userspace tools do the checks and warn the user if it's
5968 if (!btrfs_root_readonly(send_root)) {
5973 arg = memdup_user(arg_, sizeof(*arg));
5980 if (!access_ok(VERIFY_READ, arg->clone_sources,
5981 sizeof(*arg->clone_sources) *
5982 arg->clone_sources_count)) {
5987 if (arg->flags & ~BTRFS_SEND_FLAG_MASK) {
5992 sctx = kzalloc(sizeof(struct send_ctx), GFP_KERNEL);
5998 INIT_LIST_HEAD(&sctx->new_refs);
5999 INIT_LIST_HEAD(&sctx->deleted_refs);
6000 INIT_RADIX_TREE(&sctx->name_cache, GFP_KERNEL);
6001 INIT_LIST_HEAD(&sctx->name_cache_list);
6003 sctx->flags = arg->flags;
6005 sctx->send_filp = fget(arg->send_fd);
6006 if (!sctx->send_filp) {
6011 sctx->send_root = send_root;
6013 * Unlikely but possible, if the subvolume is marked for deletion but
6014 * is slow to remove the directory entry, send can still be started
6016 if (btrfs_root_dead(sctx->send_root)) {
6021 sctx->clone_roots_cnt = arg->clone_sources_count;
6023 sctx->send_max_size = BTRFS_SEND_BUF_SIZE;
6024 sctx->send_buf = vmalloc(sctx->send_max_size);
6025 if (!sctx->send_buf) {
6030 sctx->read_buf = vmalloc(BTRFS_SEND_READ_SIZE);
6031 if (!sctx->read_buf) {
6036 sctx->pending_dir_moves = RB_ROOT;
6037 sctx->waiting_dir_moves = RB_ROOT;
6038 sctx->orphan_dirs = RB_ROOT;
6040 sctx->clone_roots = vzalloc(sizeof(struct clone_root) *
6041 (arg->clone_sources_count + 1));
6042 if (!sctx->clone_roots) {
6047 if (arg->clone_sources_count) {
6048 clone_sources_tmp = vmalloc(arg->clone_sources_count *
6049 sizeof(*arg->clone_sources));
6050 if (!clone_sources_tmp) {
6055 ret = copy_from_user(clone_sources_tmp, arg->clone_sources,
6056 arg->clone_sources_count *
6057 sizeof(*arg->clone_sources));
6063 for (i = 0; i < arg->clone_sources_count; i++) {
6064 key.objectid = clone_sources_tmp[i];
6065 key.type = BTRFS_ROOT_ITEM_KEY;
6066 key.offset = (u64)-1;
6068 index = srcu_read_lock(&fs_info->subvol_srcu);
6070 clone_root = btrfs_read_fs_root_no_name(fs_info, &key);
6071 if (IS_ERR(clone_root)) {
6072 srcu_read_unlock(&fs_info->subvol_srcu, index);
6073 ret = PTR_ERR(clone_root);
6076 spin_lock(&clone_root->root_item_lock);
6077 if (!btrfs_root_readonly(clone_root) ||
6078 btrfs_root_dead(clone_root)) {
6079 spin_unlock(&clone_root->root_item_lock);
6080 srcu_read_unlock(&fs_info->subvol_srcu, index);
6084 clone_root->send_in_progress++;
6085 spin_unlock(&clone_root->root_item_lock);
6086 srcu_read_unlock(&fs_info->subvol_srcu, index);
6088 sctx->clone_roots[i].root = clone_root;
6089 clone_sources_to_rollback = i + 1;
6091 vfree(clone_sources_tmp);
6092 clone_sources_tmp = NULL;
6095 if (arg->parent_root) {
6096 key.objectid = arg->parent_root;
6097 key.type = BTRFS_ROOT_ITEM_KEY;
6098 key.offset = (u64)-1;
6100 index = srcu_read_lock(&fs_info->subvol_srcu);
6102 sctx->parent_root = btrfs_read_fs_root_no_name(fs_info, &key);
6103 if (IS_ERR(sctx->parent_root)) {
6104 srcu_read_unlock(&fs_info->subvol_srcu, index);
6105 ret = PTR_ERR(sctx->parent_root);
6109 spin_lock(&sctx->parent_root->root_item_lock);
6110 sctx->parent_root->send_in_progress++;
6111 if (!btrfs_root_readonly(sctx->parent_root) ||
6112 btrfs_root_dead(sctx->parent_root)) {
6113 spin_unlock(&sctx->parent_root->root_item_lock);
6114 srcu_read_unlock(&fs_info->subvol_srcu, index);
6118 spin_unlock(&sctx->parent_root->root_item_lock);
6120 srcu_read_unlock(&fs_info->subvol_srcu, index);
6124 * Clones from send_root are allowed, but only if the clone source
6125 * is behind the current send position. This is checked while searching
6126 * for possible clone sources.
6128 sctx->clone_roots[sctx->clone_roots_cnt++].root = sctx->send_root;
6130 /* We do a bsearch later */
6131 sort(sctx->clone_roots, sctx->clone_roots_cnt,
6132 sizeof(*sctx->clone_roots), __clone_root_cmp_sort,
6134 sort_clone_roots = 1;
6136 ret = ensure_commit_roots_uptodate(sctx);
6140 current->journal_info = BTRFS_SEND_TRANS_STUB;
6141 ret = send_subvol(sctx);
6142 current->journal_info = NULL;
6146 if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_END_CMD)) {
6147 ret = begin_cmd(sctx, BTRFS_SEND_C_END);
6150 ret = send_cmd(sctx);
6156 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->pending_dir_moves));
6157 while (sctx && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)) {
6159 struct pending_dir_move *pm;
6161 n = rb_first(&sctx->pending_dir_moves);
6162 pm = rb_entry(n, struct pending_dir_move, node);
6163 while (!list_empty(&pm->list)) {
6164 struct pending_dir_move *pm2;
6166 pm2 = list_first_entry(&pm->list,
6167 struct pending_dir_move, list);
6168 free_pending_move(sctx, pm2);
6170 free_pending_move(sctx, pm);
6173 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves));
6174 while (sctx && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) {
6176 struct waiting_dir_move *dm;
6178 n = rb_first(&sctx->waiting_dir_moves);
6179 dm = rb_entry(n, struct waiting_dir_move, node);
6180 rb_erase(&dm->node, &sctx->waiting_dir_moves);
6184 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->orphan_dirs));
6185 while (sctx && !RB_EMPTY_ROOT(&sctx->orphan_dirs)) {
6187 struct orphan_dir_info *odi;
6189 n = rb_first(&sctx->orphan_dirs);
6190 odi = rb_entry(n, struct orphan_dir_info, node);
6191 free_orphan_dir_info(sctx, odi);
6194 if (sort_clone_roots) {
6195 for (i = 0; i < sctx->clone_roots_cnt; i++)
6196 btrfs_root_dec_send_in_progress(
6197 sctx->clone_roots[i].root);
6199 for (i = 0; sctx && i < clone_sources_to_rollback; i++)
6200 btrfs_root_dec_send_in_progress(
6201 sctx->clone_roots[i].root);
6203 btrfs_root_dec_send_in_progress(send_root);
6205 if (sctx && !IS_ERR_OR_NULL(sctx->parent_root))
6206 btrfs_root_dec_send_in_progress(sctx->parent_root);
6209 vfree(clone_sources_tmp);
6212 if (sctx->send_filp)
6213 fput(sctx->send_filp);
6215 vfree(sctx->clone_roots);
6216 vfree(sctx->send_buf);
6217 vfree(sctx->read_buf);
6219 name_cache_free(sctx);