]> git.karo-electronics.de Git - karo-tx-linux.git/blob - fs/btrfs/super.c
btrfs: remove root parameter from transaction commit/end routines
[karo-tx-linux.git] / fs / btrfs / super.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/blkdev.h>
20 #include <linux/module.h>
21 #include <linux/buffer_head.h>
22 #include <linux/fs.h>
23 #include <linux/pagemap.h>
24 #include <linux/highmem.h>
25 #include <linux/time.h>
26 #include <linux/init.h>
27 #include <linux/seq_file.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mount.h>
31 #include <linux/mpage.h>
32 #include <linux/swap.h>
33 #include <linux/writeback.h>
34 #include <linux/statfs.h>
35 #include <linux/compat.h>
36 #include <linux/parser.h>
37 #include <linux/ctype.h>
38 #include <linux/namei.h>
39 #include <linux/miscdevice.h>
40 #include <linux/magic.h>
41 #include <linux/slab.h>
42 #include <linux/cleancache.h>
43 #include <linux/ratelimit.h>
44 #include <linux/btrfs.h>
45 #include "delayed-inode.h"
46 #include "ctree.h"
47 #include "disk-io.h"
48 #include "transaction.h"
49 #include "btrfs_inode.h"
50 #include "print-tree.h"
51 #include "hash.h"
52 #include "props.h"
53 #include "xattr.h"
54 #include "volumes.h"
55 #include "export.h"
56 #include "compression.h"
57 #include "rcu-string.h"
58 #include "dev-replace.h"
59 #include "free-space-cache.h"
60 #include "backref.h"
61 #include "tests/btrfs-tests.h"
62
63 #include "qgroup.h"
64 #define CREATE_TRACE_POINTS
65 #include <trace/events/btrfs.h>
66
67 static const struct super_operations btrfs_super_ops;
68 static struct file_system_type btrfs_fs_type;
69
70 static int btrfs_remount(struct super_block *sb, int *flags, char *data);
71
72 const char *btrfs_decode_error(int errno)
73 {
74         char *errstr = "unknown";
75
76         switch (errno) {
77         case -EIO:
78                 errstr = "IO failure";
79                 break;
80         case -ENOMEM:
81                 errstr = "Out of memory";
82                 break;
83         case -EROFS:
84                 errstr = "Readonly filesystem";
85                 break;
86         case -EEXIST:
87                 errstr = "Object already exists";
88                 break;
89         case -ENOSPC:
90                 errstr = "No space left";
91                 break;
92         case -ENOENT:
93                 errstr = "No such entry";
94                 break;
95         }
96
97         return errstr;
98 }
99
100 /* btrfs handle error by forcing the filesystem readonly */
101 static void btrfs_handle_error(struct btrfs_fs_info *fs_info)
102 {
103         struct super_block *sb = fs_info->sb;
104
105         if (sb->s_flags & MS_RDONLY)
106                 return;
107
108         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
109                 sb->s_flags |= MS_RDONLY;
110                 btrfs_info(fs_info, "forced readonly");
111                 /*
112                  * Note that a running device replace operation is not
113                  * canceled here although there is no way to update
114                  * the progress. It would add the risk of a deadlock,
115                  * therefore the canceling is omitted. The only penalty
116                  * is that some I/O remains active until the procedure
117                  * completes. The next time when the filesystem is
118                  * mounted writeable again, the device replace
119                  * operation continues.
120                  */
121         }
122 }
123
124 /*
125  * __btrfs_handle_fs_error decodes expected errors from the caller and
126  * invokes the approciate error response.
127  */
128 __cold
129 void __btrfs_handle_fs_error(struct btrfs_fs_info *fs_info, const char *function,
130                        unsigned int line, int errno, const char *fmt, ...)
131 {
132         struct super_block *sb = fs_info->sb;
133 #ifdef CONFIG_PRINTK
134         const char *errstr;
135 #endif
136
137         /*
138          * Special case: if the error is EROFS, and we're already
139          * under MS_RDONLY, then it is safe here.
140          */
141         if (errno == -EROFS && (sb->s_flags & MS_RDONLY))
142                 return;
143
144 #ifdef CONFIG_PRINTK
145         errstr = btrfs_decode_error(errno);
146         if (fmt) {
147                 struct va_format vaf;
148                 va_list args;
149
150                 va_start(args, fmt);
151                 vaf.fmt = fmt;
152                 vaf.va = &args;
153
154                 pr_crit("BTRFS: error (device %s) in %s:%d: errno=%d %s (%pV)\n",
155                         sb->s_id, function, line, errno, errstr, &vaf);
156                 va_end(args);
157         } else {
158                 pr_crit("BTRFS: error (device %s) in %s:%d: errno=%d %s\n",
159                         sb->s_id, function, line, errno, errstr);
160         }
161 #endif
162
163         /*
164          * Today we only save the error info to memory.  Long term we'll
165          * also send it down to the disk
166          */
167         set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
168
169         /* Don't go through full error handling during mount */
170         if (sb->s_flags & MS_BORN)
171                 btrfs_handle_error(fs_info);
172 }
173
174 #ifdef CONFIG_PRINTK
175 static const char * const logtypes[] = {
176         "emergency",
177         "alert",
178         "critical",
179         "error",
180         "warning",
181         "notice",
182         "info",
183         "debug",
184 };
185
186
187 /*
188  * Use one ratelimit state per log level so that a flood of less important
189  * messages doesn't cause more important ones to be dropped.
190  */
191 static struct ratelimit_state printk_limits[] = {
192         RATELIMIT_STATE_INIT(printk_limits[0], DEFAULT_RATELIMIT_INTERVAL, 100),
193         RATELIMIT_STATE_INIT(printk_limits[1], DEFAULT_RATELIMIT_INTERVAL, 100),
194         RATELIMIT_STATE_INIT(printk_limits[2], DEFAULT_RATELIMIT_INTERVAL, 100),
195         RATELIMIT_STATE_INIT(printk_limits[3], DEFAULT_RATELIMIT_INTERVAL, 100),
196         RATELIMIT_STATE_INIT(printk_limits[4], DEFAULT_RATELIMIT_INTERVAL, 100),
197         RATELIMIT_STATE_INIT(printk_limits[5], DEFAULT_RATELIMIT_INTERVAL, 100),
198         RATELIMIT_STATE_INIT(printk_limits[6], DEFAULT_RATELIMIT_INTERVAL, 100),
199         RATELIMIT_STATE_INIT(printk_limits[7], DEFAULT_RATELIMIT_INTERVAL, 100),
200 };
201
202 void btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...)
203 {
204         struct super_block *sb = fs_info->sb;
205         char lvl[4];
206         struct va_format vaf;
207         va_list args;
208         const char *type = logtypes[4];
209         int kern_level;
210         struct ratelimit_state *ratelimit;
211
212         va_start(args, fmt);
213
214         kern_level = printk_get_level(fmt);
215         if (kern_level) {
216                 size_t size = printk_skip_level(fmt) - fmt;
217                 memcpy(lvl, fmt,  size);
218                 lvl[size] = '\0';
219                 fmt += size;
220                 type = logtypes[kern_level - '0'];
221                 ratelimit = &printk_limits[kern_level - '0'];
222         } else {
223                 *lvl = '\0';
224                 /* Default to debug output */
225                 ratelimit = &printk_limits[7];
226         }
227
228         vaf.fmt = fmt;
229         vaf.va = &args;
230
231         if (__ratelimit(ratelimit))
232                 printk("%sBTRFS %s (device %s): %pV\n", lvl, type, sb->s_id, &vaf);
233
234         va_end(args);
235 }
236 #endif
237
238 /*
239  * We only mark the transaction aborted and then set the file system read-only.
240  * This will prevent new transactions from starting or trying to join this
241  * one.
242  *
243  * This means that error recovery at the call site is limited to freeing
244  * any local memory allocations and passing the error code up without
245  * further cleanup. The transaction should complete as it normally would
246  * in the call path but will return -EIO.
247  *
248  * We'll complete the cleanup in btrfs_end_transaction and
249  * btrfs_commit_transaction.
250  */
251 __cold
252 void __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
253                                const char *function,
254                                unsigned int line, int errno)
255 {
256         struct btrfs_fs_info *fs_info = trans->fs_info;
257
258         trans->aborted = errno;
259         /* Nothing used. The other threads that have joined this
260          * transaction may be able to continue. */
261         if (!trans->dirty && list_empty(&trans->new_bgs)) {
262                 const char *errstr;
263
264                 errstr = btrfs_decode_error(errno);
265                 btrfs_warn(fs_info,
266                            "%s:%d: Aborting unused transaction(%s).",
267                            function, line, errstr);
268                 return;
269         }
270         ACCESS_ONCE(trans->transaction->aborted) = errno;
271         /* Wake up anybody who may be waiting on this transaction */
272         wake_up(&fs_info->transaction_wait);
273         wake_up(&fs_info->transaction_blocked_wait);
274         __btrfs_handle_fs_error(fs_info, function, line, errno, NULL);
275 }
276 /*
277  * __btrfs_panic decodes unexpected, fatal errors from the caller,
278  * issues an alert, and either panics or BUGs, depending on mount options.
279  */
280 __cold
281 void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function,
282                    unsigned int line, int errno, const char *fmt, ...)
283 {
284         char *s_id = "<unknown>";
285         const char *errstr;
286         struct va_format vaf = { .fmt = fmt };
287         va_list args;
288
289         if (fs_info)
290                 s_id = fs_info->sb->s_id;
291
292         va_start(args, fmt);
293         vaf.va = &args;
294
295         errstr = btrfs_decode_error(errno);
296         if (fs_info && (fs_info->mount_opt & BTRFS_MOUNT_PANIC_ON_FATAL_ERROR))
297                 panic(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (errno=%d %s)\n",
298                         s_id, function, line, &vaf, errno, errstr);
299
300         btrfs_crit(fs_info, "panic in %s:%d: %pV (errno=%d %s)",
301                    function, line, &vaf, errno, errstr);
302         va_end(args);
303         /* Caller calls BUG() */
304 }
305
306 static void btrfs_put_super(struct super_block *sb)
307 {
308         close_ctree(btrfs_sb(sb));
309 }
310
311 enum {
312         Opt_degraded, Opt_subvol, Opt_subvolid, Opt_device, Opt_nodatasum,
313         Opt_nodatacow, Opt_max_inline, Opt_alloc_start, Opt_nobarrier, Opt_ssd,
314         Opt_nossd, Opt_ssd_spread, Opt_thread_pool, Opt_noacl, Opt_compress,
315         Opt_compress_type, Opt_compress_force, Opt_compress_force_type,
316         Opt_notreelog, Opt_ratio, Opt_flushoncommit, Opt_discard,
317         Opt_space_cache, Opt_space_cache_version, Opt_clear_cache,
318         Opt_user_subvol_rm_allowed, Opt_enospc_debug, Opt_subvolrootid,
319         Opt_defrag, Opt_inode_cache, Opt_no_space_cache, Opt_recovery,
320         Opt_skip_balance, Opt_check_integrity,
321         Opt_check_integrity_including_extent_data,
322         Opt_check_integrity_print_mask, Opt_fatal_errors, Opt_rescan_uuid_tree,
323         Opt_commit_interval, Opt_barrier, Opt_nodefrag, Opt_nodiscard,
324         Opt_noenospc_debug, Opt_noflushoncommit, Opt_acl, Opt_datacow,
325         Opt_datasum, Opt_treelog, Opt_noinode_cache, Opt_usebackuproot,
326         Opt_nologreplay, Opt_norecovery,
327 #ifdef CONFIG_BTRFS_DEBUG
328         Opt_fragment_data, Opt_fragment_metadata, Opt_fragment_all,
329 #endif
330         Opt_err,
331 };
332
333 static const match_table_t tokens = {
334         {Opt_degraded, "degraded"},
335         {Opt_subvol, "subvol=%s"},
336         {Opt_subvolid, "subvolid=%s"},
337         {Opt_device, "device=%s"},
338         {Opt_nodatasum, "nodatasum"},
339         {Opt_datasum, "datasum"},
340         {Opt_nodatacow, "nodatacow"},
341         {Opt_datacow, "datacow"},
342         {Opt_nobarrier, "nobarrier"},
343         {Opt_barrier, "barrier"},
344         {Opt_max_inline, "max_inline=%s"},
345         {Opt_alloc_start, "alloc_start=%s"},
346         {Opt_thread_pool, "thread_pool=%d"},
347         {Opt_compress, "compress"},
348         {Opt_compress_type, "compress=%s"},
349         {Opt_compress_force, "compress-force"},
350         {Opt_compress_force_type, "compress-force=%s"},
351         {Opt_ssd, "ssd"},
352         {Opt_ssd_spread, "ssd_spread"},
353         {Opt_nossd, "nossd"},
354         {Opt_acl, "acl"},
355         {Opt_noacl, "noacl"},
356         {Opt_notreelog, "notreelog"},
357         {Opt_treelog, "treelog"},
358         {Opt_nologreplay, "nologreplay"},
359         {Opt_norecovery, "norecovery"},
360         {Opt_flushoncommit, "flushoncommit"},
361         {Opt_noflushoncommit, "noflushoncommit"},
362         {Opt_ratio, "metadata_ratio=%d"},
363         {Opt_discard, "discard"},
364         {Opt_nodiscard, "nodiscard"},
365         {Opt_space_cache, "space_cache"},
366         {Opt_space_cache_version, "space_cache=%s"},
367         {Opt_clear_cache, "clear_cache"},
368         {Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"},
369         {Opt_enospc_debug, "enospc_debug"},
370         {Opt_noenospc_debug, "noenospc_debug"},
371         {Opt_subvolrootid, "subvolrootid=%d"},
372         {Opt_defrag, "autodefrag"},
373         {Opt_nodefrag, "noautodefrag"},
374         {Opt_inode_cache, "inode_cache"},
375         {Opt_noinode_cache, "noinode_cache"},
376         {Opt_no_space_cache, "nospace_cache"},
377         {Opt_recovery, "recovery"}, /* deprecated */
378         {Opt_usebackuproot, "usebackuproot"},
379         {Opt_skip_balance, "skip_balance"},
380         {Opt_check_integrity, "check_int"},
381         {Opt_check_integrity_including_extent_data, "check_int_data"},
382         {Opt_check_integrity_print_mask, "check_int_print_mask=%d"},
383         {Opt_rescan_uuid_tree, "rescan_uuid_tree"},
384         {Opt_fatal_errors, "fatal_errors=%s"},
385         {Opt_commit_interval, "commit=%d"},
386 #ifdef CONFIG_BTRFS_DEBUG
387         {Opt_fragment_data, "fragment=data"},
388         {Opt_fragment_metadata, "fragment=metadata"},
389         {Opt_fragment_all, "fragment=all"},
390 #endif
391         {Opt_err, NULL},
392 };
393
394 /*
395  * Regular mount options parser.  Everything that is needed only when
396  * reading in a new superblock is parsed here.
397  * XXX JDM: This needs to be cleaned up for remount.
398  */
399 int btrfs_parse_options(struct btrfs_fs_info *info, char *options,
400                         unsigned long new_flags)
401 {
402         substring_t args[MAX_OPT_ARGS];
403         char *p, *num, *orig = NULL;
404         u64 cache_gen;
405         int intarg;
406         int ret = 0;
407         char *compress_type;
408         bool compress_force = false;
409         enum btrfs_compression_type saved_compress_type;
410         bool saved_compress_force;
411         int no_compress = 0;
412
413         cache_gen = btrfs_super_cache_generation(info->super_copy);
414         if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE))
415                 btrfs_set_opt(info->mount_opt, FREE_SPACE_TREE);
416         else if (cache_gen)
417                 btrfs_set_opt(info->mount_opt, SPACE_CACHE);
418
419         /*
420          * Even the options are empty, we still need to do extra check
421          * against new flags
422          */
423         if (!options)
424                 goto check;
425
426         /*
427          * strsep changes the string, duplicate it because parse_options
428          * gets called twice
429          */
430         options = kstrdup(options, GFP_NOFS);
431         if (!options)
432                 return -ENOMEM;
433
434         orig = options;
435
436         while ((p = strsep(&options, ",")) != NULL) {
437                 int token;
438                 if (!*p)
439                         continue;
440
441                 token = match_token(p, tokens, args);
442                 switch (token) {
443                 case Opt_degraded:
444                         btrfs_info(info, "allowing degraded mounts");
445                         btrfs_set_opt(info->mount_opt, DEGRADED);
446                         break;
447                 case Opt_subvol:
448                 case Opt_subvolid:
449                 case Opt_subvolrootid:
450                 case Opt_device:
451                         /*
452                          * These are parsed by btrfs_parse_early_options
453                          * and can be happily ignored here.
454                          */
455                         break;
456                 case Opt_nodatasum:
457                         btrfs_set_and_info(info, NODATASUM,
458                                            "setting nodatasum");
459                         break;
460                 case Opt_datasum:
461                         if (btrfs_test_opt(info, NODATASUM)) {
462                                 if (btrfs_test_opt(info, NODATACOW))
463                                         btrfs_info(info,
464                                                    "setting datasum, datacow enabled");
465                                 else
466                                         btrfs_info(info, "setting datasum");
467                         }
468                         btrfs_clear_opt(info->mount_opt, NODATACOW);
469                         btrfs_clear_opt(info->mount_opt, NODATASUM);
470                         break;
471                 case Opt_nodatacow:
472                         if (!btrfs_test_opt(info, NODATACOW)) {
473                                 if (!btrfs_test_opt(info, COMPRESS) ||
474                                     !btrfs_test_opt(info, FORCE_COMPRESS)) {
475                                         btrfs_info(info,
476                                                    "setting nodatacow, compression disabled");
477                                 } else {
478                                         btrfs_info(info, "setting nodatacow");
479                                 }
480                         }
481                         btrfs_clear_opt(info->mount_opt, COMPRESS);
482                         btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
483                         btrfs_set_opt(info->mount_opt, NODATACOW);
484                         btrfs_set_opt(info->mount_opt, NODATASUM);
485                         break;
486                 case Opt_datacow:
487                         btrfs_clear_and_info(info, NODATACOW,
488                                              "setting datacow");
489                         break;
490                 case Opt_compress_force:
491                 case Opt_compress_force_type:
492                         compress_force = true;
493                         /* Fallthrough */
494                 case Opt_compress:
495                 case Opt_compress_type:
496                         saved_compress_type = btrfs_test_opt(info,
497                                                              COMPRESS) ?
498                                 info->compress_type : BTRFS_COMPRESS_NONE;
499                         saved_compress_force =
500                                 btrfs_test_opt(info, FORCE_COMPRESS);
501                         if (token == Opt_compress ||
502                             token == Opt_compress_force ||
503                             strcmp(args[0].from, "zlib") == 0) {
504                                 compress_type = "zlib";
505                                 info->compress_type = BTRFS_COMPRESS_ZLIB;
506                                 btrfs_set_opt(info->mount_opt, COMPRESS);
507                                 btrfs_clear_opt(info->mount_opt, NODATACOW);
508                                 btrfs_clear_opt(info->mount_opt, NODATASUM);
509                                 no_compress = 0;
510                         } else if (strcmp(args[0].from, "lzo") == 0) {
511                                 compress_type = "lzo";
512                                 info->compress_type = BTRFS_COMPRESS_LZO;
513                                 btrfs_set_opt(info->mount_opt, COMPRESS);
514                                 btrfs_clear_opt(info->mount_opt, NODATACOW);
515                                 btrfs_clear_opt(info->mount_opt, NODATASUM);
516                                 btrfs_set_fs_incompat(info, COMPRESS_LZO);
517                                 no_compress = 0;
518                         } else if (strncmp(args[0].from, "no", 2) == 0) {
519                                 compress_type = "no";
520                                 btrfs_clear_opt(info->mount_opt, COMPRESS);
521                                 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
522                                 compress_force = false;
523                                 no_compress++;
524                         } else {
525                                 ret = -EINVAL;
526                                 goto out;
527                         }
528
529                         if (compress_force) {
530                                 btrfs_set_opt(info->mount_opt, FORCE_COMPRESS);
531                         } else {
532                                 /*
533                                  * If we remount from compress-force=xxx to
534                                  * compress=xxx, we need clear FORCE_COMPRESS
535                                  * flag, otherwise, there is no way for users
536                                  * to disable forcible compression separately.
537                                  */
538                                 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
539                         }
540                         if ((btrfs_test_opt(info, COMPRESS) &&
541                              (info->compress_type != saved_compress_type ||
542                               compress_force != saved_compress_force)) ||
543                             (!btrfs_test_opt(info, COMPRESS) &&
544                              no_compress == 1)) {
545                                 btrfs_info(info, "%s %s compression",
546                                            (compress_force) ? "force" : "use",
547                                            compress_type);
548                         }
549                         compress_force = false;
550                         break;
551                 case Opt_ssd:
552                         btrfs_set_and_info(info, SSD,
553                                            "use ssd allocation scheme");
554                         break;
555                 case Opt_ssd_spread:
556                         btrfs_set_and_info(info, SSD_SPREAD,
557                                            "use spread ssd allocation scheme");
558                         btrfs_set_opt(info->mount_opt, SSD);
559                         break;
560                 case Opt_nossd:
561                         btrfs_set_and_info(info, NOSSD,
562                                              "not using ssd allocation scheme");
563                         btrfs_clear_opt(info->mount_opt, SSD);
564                         break;
565                 case Opt_barrier:
566                         btrfs_clear_and_info(info, NOBARRIER,
567                                              "turning on barriers");
568                         break;
569                 case Opt_nobarrier:
570                         btrfs_set_and_info(info, NOBARRIER,
571                                            "turning off barriers");
572                         break;
573                 case Opt_thread_pool:
574                         ret = match_int(&args[0], &intarg);
575                         if (ret) {
576                                 goto out;
577                         } else if (intarg > 0) {
578                                 info->thread_pool_size = intarg;
579                         } else {
580                                 ret = -EINVAL;
581                                 goto out;
582                         }
583                         break;
584                 case Opt_max_inline:
585                         num = match_strdup(&args[0]);
586                         if (num) {
587                                 info->max_inline = memparse(num, NULL);
588                                 kfree(num);
589
590                                 if (info->max_inline) {
591                                         info->max_inline = min_t(u64,
592                                                 info->max_inline,
593                                                 info->sectorsize);
594                                 }
595                                 btrfs_info(info, "max_inline at %llu",
596                                            info->max_inline);
597                         } else {
598                                 ret = -ENOMEM;
599                                 goto out;
600                         }
601                         break;
602                 case Opt_alloc_start:
603                         num = match_strdup(&args[0]);
604                         if (num) {
605                                 mutex_lock(&info->chunk_mutex);
606                                 info->alloc_start = memparse(num, NULL);
607                                 mutex_unlock(&info->chunk_mutex);
608                                 kfree(num);
609                                 btrfs_info(info, "allocations start at %llu",
610                                            info->alloc_start);
611                         } else {
612                                 ret = -ENOMEM;
613                                 goto out;
614                         }
615                         break;
616                 case Opt_acl:
617 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
618                         info->sb->s_flags |= MS_POSIXACL;
619                         break;
620 #else
621                         btrfs_err(info, "support for ACL not compiled in!");
622                         ret = -EINVAL;
623                         goto out;
624 #endif
625                 case Opt_noacl:
626                         info->sb->s_flags &= ~MS_POSIXACL;
627                         break;
628                 case Opt_notreelog:
629                         btrfs_set_and_info(info, NOTREELOG,
630                                            "disabling tree log");
631                         break;
632                 case Opt_treelog:
633                         btrfs_clear_and_info(info, NOTREELOG,
634                                              "enabling tree log");
635                         break;
636                 case Opt_norecovery:
637                 case Opt_nologreplay:
638                         btrfs_set_and_info(info, NOLOGREPLAY,
639                                            "disabling log replay at mount time");
640                         break;
641                 case Opt_flushoncommit:
642                         btrfs_set_and_info(info, FLUSHONCOMMIT,
643                                            "turning on flush-on-commit");
644                         break;
645                 case Opt_noflushoncommit:
646                         btrfs_clear_and_info(info, FLUSHONCOMMIT,
647                                              "turning off flush-on-commit");
648                         break;
649                 case Opt_ratio:
650                         ret = match_int(&args[0], &intarg);
651                         if (ret) {
652                                 goto out;
653                         } else if (intarg >= 0) {
654                                 info->metadata_ratio = intarg;
655                                 btrfs_info(info, "metadata ratio %d",
656                                            info->metadata_ratio);
657                         } else {
658                                 ret = -EINVAL;
659                                 goto out;
660                         }
661                         break;
662                 case Opt_discard:
663                         btrfs_set_and_info(info, DISCARD,
664                                            "turning on discard");
665                         break;
666                 case Opt_nodiscard:
667                         btrfs_clear_and_info(info, DISCARD,
668                                              "turning off discard");
669                         break;
670                 case Opt_space_cache:
671                 case Opt_space_cache_version:
672                         if (token == Opt_space_cache ||
673                             strcmp(args[0].from, "v1") == 0) {
674                                 btrfs_clear_opt(info->mount_opt,
675                                                 FREE_SPACE_TREE);
676                                 btrfs_set_and_info(info, SPACE_CACHE,
677                                            "enabling disk space caching");
678                         } else if (strcmp(args[0].from, "v2") == 0) {
679                                 btrfs_clear_opt(info->mount_opt,
680                                                 SPACE_CACHE);
681                                 btrfs_set_and_info(info, FREE_SPACE_TREE,
682                                                    "enabling free space tree");
683                         } else {
684                                 ret = -EINVAL;
685                                 goto out;
686                         }
687                         break;
688                 case Opt_rescan_uuid_tree:
689                         btrfs_set_opt(info->mount_opt, RESCAN_UUID_TREE);
690                         break;
691                 case Opt_no_space_cache:
692                         if (btrfs_test_opt(info, SPACE_CACHE)) {
693                                 btrfs_clear_and_info(info, SPACE_CACHE,
694                                              "disabling disk space caching");
695                         }
696                         if (btrfs_test_opt(info, FREE_SPACE_TREE)) {
697                                 btrfs_clear_and_info(info, FREE_SPACE_TREE,
698                                              "disabling free space tree");
699                         }
700                         break;
701                 case Opt_inode_cache:
702                         btrfs_set_pending_and_info(info, INODE_MAP_CACHE,
703                                            "enabling inode map caching");
704                         break;
705                 case Opt_noinode_cache:
706                         btrfs_clear_pending_and_info(info, INODE_MAP_CACHE,
707                                              "disabling inode map caching");
708                         break;
709                 case Opt_clear_cache:
710                         btrfs_set_and_info(info, CLEAR_CACHE,
711                                            "force clearing of disk cache");
712                         break;
713                 case Opt_user_subvol_rm_allowed:
714                         btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED);
715                         break;
716                 case Opt_enospc_debug:
717                         btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG);
718                         break;
719                 case Opt_noenospc_debug:
720                         btrfs_clear_opt(info->mount_opt, ENOSPC_DEBUG);
721                         break;
722                 case Opt_defrag:
723                         btrfs_set_and_info(info, AUTO_DEFRAG,
724                                            "enabling auto defrag");
725                         break;
726                 case Opt_nodefrag:
727                         btrfs_clear_and_info(info, AUTO_DEFRAG,
728                                              "disabling auto defrag");
729                         break;
730                 case Opt_recovery:
731                         btrfs_warn(info,
732                                    "'recovery' is deprecated, use 'usebackuproot' instead");
733                 case Opt_usebackuproot:
734                         btrfs_info(info,
735                                    "trying to use backup root at mount time");
736                         btrfs_set_opt(info->mount_opt, USEBACKUPROOT);
737                         break;
738                 case Opt_skip_balance:
739                         btrfs_set_opt(info->mount_opt, SKIP_BALANCE);
740                         break;
741 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
742                 case Opt_check_integrity_including_extent_data:
743                         btrfs_info(info,
744                                    "enabling check integrity including extent data");
745                         btrfs_set_opt(info->mount_opt,
746                                       CHECK_INTEGRITY_INCLUDING_EXTENT_DATA);
747                         btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
748                         break;
749                 case Opt_check_integrity:
750                         btrfs_info(info, "enabling check integrity");
751                         btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
752                         break;
753                 case Opt_check_integrity_print_mask:
754                         ret = match_int(&args[0], &intarg);
755                         if (ret) {
756                                 goto out;
757                         } else if (intarg >= 0) {
758                                 info->check_integrity_print_mask = intarg;
759                                 btrfs_info(info,
760                                            "check_integrity_print_mask 0x%x",
761                                            info->check_integrity_print_mask);
762                         } else {
763                                 ret = -EINVAL;
764                                 goto out;
765                         }
766                         break;
767 #else
768                 case Opt_check_integrity_including_extent_data:
769                 case Opt_check_integrity:
770                 case Opt_check_integrity_print_mask:
771                         btrfs_err(info,
772                                   "support for check_integrity* not compiled in!");
773                         ret = -EINVAL;
774                         goto out;
775 #endif
776                 case Opt_fatal_errors:
777                         if (strcmp(args[0].from, "panic") == 0)
778                                 btrfs_set_opt(info->mount_opt,
779                                               PANIC_ON_FATAL_ERROR);
780                         else if (strcmp(args[0].from, "bug") == 0)
781                                 btrfs_clear_opt(info->mount_opt,
782                                               PANIC_ON_FATAL_ERROR);
783                         else {
784                                 ret = -EINVAL;
785                                 goto out;
786                         }
787                         break;
788                 case Opt_commit_interval:
789                         intarg = 0;
790                         ret = match_int(&args[0], &intarg);
791                         if (ret < 0) {
792                                 btrfs_err(info, "invalid commit interval");
793                                 ret = -EINVAL;
794                                 goto out;
795                         }
796                         if (intarg > 0) {
797                                 if (intarg > 300) {
798                                         btrfs_warn(info,
799                                                 "excessive commit interval %d",
800                                                 intarg);
801                                 }
802                                 info->commit_interval = intarg;
803                         } else {
804                                 btrfs_info(info,
805                                            "using default commit interval %ds",
806                                            BTRFS_DEFAULT_COMMIT_INTERVAL);
807                                 info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
808                         }
809                         break;
810 #ifdef CONFIG_BTRFS_DEBUG
811                 case Opt_fragment_all:
812                         btrfs_info(info, "fragmenting all space");
813                         btrfs_set_opt(info->mount_opt, FRAGMENT_DATA);
814                         btrfs_set_opt(info->mount_opt, FRAGMENT_METADATA);
815                         break;
816                 case Opt_fragment_metadata:
817                         btrfs_info(info, "fragmenting metadata");
818                         btrfs_set_opt(info->mount_opt,
819                                       FRAGMENT_METADATA);
820                         break;
821                 case Opt_fragment_data:
822                         btrfs_info(info, "fragmenting data");
823                         btrfs_set_opt(info->mount_opt, FRAGMENT_DATA);
824                         break;
825 #endif
826                 case Opt_err:
827                         btrfs_info(info, "unrecognized mount option '%s'", p);
828                         ret = -EINVAL;
829                         goto out;
830                 default:
831                         break;
832                 }
833         }
834 check:
835         /*
836          * Extra check for current option against current flag
837          */
838         if (btrfs_test_opt(info, NOLOGREPLAY) && !(new_flags & MS_RDONLY)) {
839                 btrfs_err(info,
840                           "nologreplay must be used with ro mount option");
841                 ret = -EINVAL;
842         }
843 out:
844         if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE) &&
845             !btrfs_test_opt(info, FREE_SPACE_TREE) &&
846             !btrfs_test_opt(info, CLEAR_CACHE)) {
847                 btrfs_err(info, "cannot disable free space tree");
848                 ret = -EINVAL;
849
850         }
851         if (!ret && btrfs_test_opt(info, SPACE_CACHE))
852                 btrfs_info(info, "disk space caching is enabled");
853         if (!ret && btrfs_test_opt(info, FREE_SPACE_TREE))
854                 btrfs_info(info, "using free space tree");
855         kfree(orig);
856         return ret;
857 }
858
859 /*
860  * Parse mount options that are required early in the mount process.
861  *
862  * All other options will be parsed on much later in the mount process and
863  * only when we need to allocate a new super block.
864  */
865 static int btrfs_parse_early_options(const char *options, fmode_t flags,
866                 void *holder, char **subvol_name, u64 *subvol_objectid,
867                 struct btrfs_fs_devices **fs_devices)
868 {
869         substring_t args[MAX_OPT_ARGS];
870         char *device_name, *opts, *orig, *p;
871         char *num = NULL;
872         int error = 0;
873
874         if (!options)
875                 return 0;
876
877         /*
878          * strsep changes the string, duplicate it because parse_options
879          * gets called twice
880          */
881         opts = kstrdup(options, GFP_KERNEL);
882         if (!opts)
883                 return -ENOMEM;
884         orig = opts;
885
886         while ((p = strsep(&opts, ",")) != NULL) {
887                 int token;
888                 if (!*p)
889                         continue;
890
891                 token = match_token(p, tokens, args);
892                 switch (token) {
893                 case Opt_subvol:
894                         kfree(*subvol_name);
895                         *subvol_name = match_strdup(&args[0]);
896                         if (!*subvol_name) {
897                                 error = -ENOMEM;
898                                 goto out;
899                         }
900                         break;
901                 case Opt_subvolid:
902                         num = match_strdup(&args[0]);
903                         if (num) {
904                                 *subvol_objectid = memparse(num, NULL);
905                                 kfree(num);
906                                 /* we want the original fs_tree */
907                                 if (!*subvol_objectid)
908                                         *subvol_objectid =
909                                                 BTRFS_FS_TREE_OBJECTID;
910                         } else {
911                                 error = -EINVAL;
912                                 goto out;
913                         }
914                         break;
915                 case Opt_subvolrootid:
916                         pr_warn("BTRFS: 'subvolrootid' mount option is deprecated and has no effect\n");
917                         break;
918                 case Opt_device:
919                         device_name = match_strdup(&args[0]);
920                         if (!device_name) {
921                                 error = -ENOMEM;
922                                 goto out;
923                         }
924                         error = btrfs_scan_one_device(device_name,
925                                         flags, holder, fs_devices);
926                         kfree(device_name);
927                         if (error)
928                                 goto out;
929                         break;
930                 default:
931                         break;
932                 }
933         }
934
935 out:
936         kfree(orig);
937         return error;
938 }
939
940 static char *get_subvol_name_from_objectid(struct btrfs_fs_info *fs_info,
941                                            u64 subvol_objectid)
942 {
943         struct btrfs_root *root = fs_info->tree_root;
944         struct btrfs_root *fs_root;
945         struct btrfs_root_ref *root_ref;
946         struct btrfs_inode_ref *inode_ref;
947         struct btrfs_key key;
948         struct btrfs_path *path = NULL;
949         char *name = NULL, *ptr;
950         u64 dirid;
951         int len;
952         int ret;
953
954         path = btrfs_alloc_path();
955         if (!path) {
956                 ret = -ENOMEM;
957                 goto err;
958         }
959         path->leave_spinning = 1;
960
961         name = kmalloc(PATH_MAX, GFP_NOFS);
962         if (!name) {
963                 ret = -ENOMEM;
964                 goto err;
965         }
966         ptr = name + PATH_MAX - 1;
967         ptr[0] = '\0';
968
969         /*
970          * Walk up the subvolume trees in the tree of tree roots by root
971          * backrefs until we hit the top-level subvolume.
972          */
973         while (subvol_objectid != BTRFS_FS_TREE_OBJECTID) {
974                 key.objectid = subvol_objectid;
975                 key.type = BTRFS_ROOT_BACKREF_KEY;
976                 key.offset = (u64)-1;
977
978                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
979                 if (ret < 0) {
980                         goto err;
981                 } else if (ret > 0) {
982                         ret = btrfs_previous_item(root, path, subvol_objectid,
983                                                   BTRFS_ROOT_BACKREF_KEY);
984                         if (ret < 0) {
985                                 goto err;
986                         } else if (ret > 0) {
987                                 ret = -ENOENT;
988                                 goto err;
989                         }
990                 }
991
992                 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
993                 subvol_objectid = key.offset;
994
995                 root_ref = btrfs_item_ptr(path->nodes[0], path->slots[0],
996                                           struct btrfs_root_ref);
997                 len = btrfs_root_ref_name_len(path->nodes[0], root_ref);
998                 ptr -= len + 1;
999                 if (ptr < name) {
1000                         ret = -ENAMETOOLONG;
1001                         goto err;
1002                 }
1003                 read_extent_buffer(path->nodes[0], ptr + 1,
1004                                    (unsigned long)(root_ref + 1), len);
1005                 ptr[0] = '/';
1006                 dirid = btrfs_root_ref_dirid(path->nodes[0], root_ref);
1007                 btrfs_release_path(path);
1008
1009                 key.objectid = subvol_objectid;
1010                 key.type = BTRFS_ROOT_ITEM_KEY;
1011                 key.offset = (u64)-1;
1012                 fs_root = btrfs_read_fs_root_no_name(fs_info, &key);
1013                 if (IS_ERR(fs_root)) {
1014                         ret = PTR_ERR(fs_root);
1015                         goto err;
1016                 }
1017
1018                 /*
1019                  * Walk up the filesystem tree by inode refs until we hit the
1020                  * root directory.
1021                  */
1022                 while (dirid != BTRFS_FIRST_FREE_OBJECTID) {
1023                         key.objectid = dirid;
1024                         key.type = BTRFS_INODE_REF_KEY;
1025                         key.offset = (u64)-1;
1026
1027                         ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
1028                         if (ret < 0) {
1029                                 goto err;
1030                         } else if (ret > 0) {
1031                                 ret = btrfs_previous_item(fs_root, path, dirid,
1032                                                           BTRFS_INODE_REF_KEY);
1033                                 if (ret < 0) {
1034                                         goto err;
1035                                 } else if (ret > 0) {
1036                                         ret = -ENOENT;
1037                                         goto err;
1038                                 }
1039                         }
1040
1041                         btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1042                         dirid = key.offset;
1043
1044                         inode_ref = btrfs_item_ptr(path->nodes[0],
1045                                                    path->slots[0],
1046                                                    struct btrfs_inode_ref);
1047                         len = btrfs_inode_ref_name_len(path->nodes[0],
1048                                                        inode_ref);
1049                         ptr -= len + 1;
1050                         if (ptr < name) {
1051                                 ret = -ENAMETOOLONG;
1052                                 goto err;
1053                         }
1054                         read_extent_buffer(path->nodes[0], ptr + 1,
1055                                            (unsigned long)(inode_ref + 1), len);
1056                         ptr[0] = '/';
1057                         btrfs_release_path(path);
1058                 }
1059         }
1060
1061         btrfs_free_path(path);
1062         if (ptr == name + PATH_MAX - 1) {
1063                 name[0] = '/';
1064                 name[1] = '\0';
1065         } else {
1066                 memmove(name, ptr, name + PATH_MAX - ptr);
1067         }
1068         return name;
1069
1070 err:
1071         btrfs_free_path(path);
1072         kfree(name);
1073         return ERR_PTR(ret);
1074 }
1075
1076 static int get_default_subvol_objectid(struct btrfs_fs_info *fs_info, u64 *objectid)
1077 {
1078         struct btrfs_root *root = fs_info->tree_root;
1079         struct btrfs_dir_item *di;
1080         struct btrfs_path *path;
1081         struct btrfs_key location;
1082         u64 dir_id;
1083
1084         path = btrfs_alloc_path();
1085         if (!path)
1086                 return -ENOMEM;
1087         path->leave_spinning = 1;
1088
1089         /*
1090          * Find the "default" dir item which points to the root item that we
1091          * will mount by default if we haven't been given a specific subvolume
1092          * to mount.
1093          */
1094         dir_id = btrfs_super_root_dir(fs_info->super_copy);
1095         di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0);
1096         if (IS_ERR(di)) {
1097                 btrfs_free_path(path);
1098                 return PTR_ERR(di);
1099         }
1100         if (!di) {
1101                 /*
1102                  * Ok the default dir item isn't there.  This is weird since
1103                  * it's always been there, but don't freak out, just try and
1104                  * mount the top-level subvolume.
1105                  */
1106                 btrfs_free_path(path);
1107                 *objectid = BTRFS_FS_TREE_OBJECTID;
1108                 return 0;
1109         }
1110
1111         btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
1112         btrfs_free_path(path);
1113         *objectid = location.objectid;
1114         return 0;
1115 }
1116
1117 static int btrfs_fill_super(struct super_block *sb,
1118                             struct btrfs_fs_devices *fs_devices,
1119                             void *data, int silent)
1120 {
1121         struct inode *inode;
1122         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1123         struct btrfs_key key;
1124         int err;
1125
1126         sb->s_maxbytes = MAX_LFS_FILESIZE;
1127         sb->s_magic = BTRFS_SUPER_MAGIC;
1128         sb->s_op = &btrfs_super_ops;
1129         sb->s_d_op = &btrfs_dentry_operations;
1130         sb->s_export_op = &btrfs_export_ops;
1131         sb->s_xattr = btrfs_xattr_handlers;
1132         sb->s_time_gran = 1;
1133 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
1134         sb->s_flags |= MS_POSIXACL;
1135 #endif
1136         sb->s_flags |= MS_I_VERSION;
1137         sb->s_iflags |= SB_I_CGROUPWB;
1138         err = open_ctree(sb, fs_devices, (char *)data);
1139         if (err) {
1140                 btrfs_err(fs_info, "open_ctree failed");
1141                 return err;
1142         }
1143
1144         key.objectid = BTRFS_FIRST_FREE_OBJECTID;
1145         key.type = BTRFS_INODE_ITEM_KEY;
1146         key.offset = 0;
1147         inode = btrfs_iget(sb, &key, fs_info->fs_root, NULL);
1148         if (IS_ERR(inode)) {
1149                 err = PTR_ERR(inode);
1150                 goto fail_close;
1151         }
1152
1153         sb->s_root = d_make_root(inode);
1154         if (!sb->s_root) {
1155                 err = -ENOMEM;
1156                 goto fail_close;
1157         }
1158
1159         save_mount_options(sb, data);
1160         cleancache_init_fs(sb);
1161         sb->s_flags |= MS_ACTIVE;
1162         return 0;
1163
1164 fail_close:
1165         close_ctree(fs_info);
1166         return err;
1167 }
1168
1169 int btrfs_sync_fs(struct super_block *sb, int wait)
1170 {
1171         struct btrfs_trans_handle *trans;
1172         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1173         struct btrfs_root *root = fs_info->tree_root;
1174
1175         trace_btrfs_sync_fs(fs_info, wait);
1176
1177         if (!wait) {
1178                 filemap_flush(fs_info->btree_inode->i_mapping);
1179                 return 0;
1180         }
1181
1182         btrfs_wait_ordered_roots(fs_info, -1, 0, (u64)-1);
1183
1184         trans = btrfs_attach_transaction_barrier(root);
1185         if (IS_ERR(trans)) {
1186                 /* no transaction, don't bother */
1187                 if (PTR_ERR(trans) == -ENOENT) {
1188                         /*
1189                          * Exit unless we have some pending changes
1190                          * that need to go through commit
1191                          */
1192                         if (fs_info->pending_changes == 0)
1193                                 return 0;
1194                         /*
1195                          * A non-blocking test if the fs is frozen. We must not
1196                          * start a new transaction here otherwise a deadlock
1197                          * happens. The pending operations are delayed to the
1198                          * next commit after thawing.
1199                          */
1200                         if (__sb_start_write(sb, SB_FREEZE_WRITE, false))
1201                                 __sb_end_write(sb, SB_FREEZE_WRITE);
1202                         else
1203                                 return 0;
1204                         trans = btrfs_start_transaction(root, 0);
1205                 }
1206                 if (IS_ERR(trans))
1207                         return PTR_ERR(trans);
1208         }
1209         return btrfs_commit_transaction(trans);
1210 }
1211
1212 static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry)
1213 {
1214         struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb);
1215         char *compress_type;
1216
1217         if (btrfs_test_opt(info, DEGRADED))
1218                 seq_puts(seq, ",degraded");
1219         if (btrfs_test_opt(info, NODATASUM))
1220                 seq_puts(seq, ",nodatasum");
1221         if (btrfs_test_opt(info, NODATACOW))
1222                 seq_puts(seq, ",nodatacow");
1223         if (btrfs_test_opt(info, NOBARRIER))
1224                 seq_puts(seq, ",nobarrier");
1225         if (info->max_inline != BTRFS_DEFAULT_MAX_INLINE)
1226                 seq_printf(seq, ",max_inline=%llu", info->max_inline);
1227         if (info->alloc_start != 0)
1228                 seq_printf(seq, ",alloc_start=%llu", info->alloc_start);
1229         if (info->thread_pool_size !=  min_t(unsigned long,
1230                                              num_online_cpus() + 2, 8))
1231                 seq_printf(seq, ",thread_pool=%d", info->thread_pool_size);
1232         if (btrfs_test_opt(info, COMPRESS)) {
1233                 if (info->compress_type == BTRFS_COMPRESS_ZLIB)
1234                         compress_type = "zlib";
1235                 else
1236                         compress_type = "lzo";
1237                 if (btrfs_test_opt(info, FORCE_COMPRESS))
1238                         seq_printf(seq, ",compress-force=%s", compress_type);
1239                 else
1240                         seq_printf(seq, ",compress=%s", compress_type);
1241         }
1242         if (btrfs_test_opt(info, NOSSD))
1243                 seq_puts(seq, ",nossd");
1244         if (btrfs_test_opt(info, SSD_SPREAD))
1245                 seq_puts(seq, ",ssd_spread");
1246         else if (btrfs_test_opt(info, SSD))
1247                 seq_puts(seq, ",ssd");
1248         if (btrfs_test_opt(info, NOTREELOG))
1249                 seq_puts(seq, ",notreelog");
1250         if (btrfs_test_opt(info, NOLOGREPLAY))
1251                 seq_puts(seq, ",nologreplay");
1252         if (btrfs_test_opt(info, FLUSHONCOMMIT))
1253                 seq_puts(seq, ",flushoncommit");
1254         if (btrfs_test_opt(info, DISCARD))
1255                 seq_puts(seq, ",discard");
1256         if (!(info->sb->s_flags & MS_POSIXACL))
1257                 seq_puts(seq, ",noacl");
1258         if (btrfs_test_opt(info, SPACE_CACHE))
1259                 seq_puts(seq, ",space_cache");
1260         else if (btrfs_test_opt(info, FREE_SPACE_TREE))
1261                 seq_puts(seq, ",space_cache=v2");
1262         else
1263                 seq_puts(seq, ",nospace_cache");
1264         if (btrfs_test_opt(info, RESCAN_UUID_TREE))
1265                 seq_puts(seq, ",rescan_uuid_tree");
1266         if (btrfs_test_opt(info, CLEAR_CACHE))
1267                 seq_puts(seq, ",clear_cache");
1268         if (btrfs_test_opt(info, USER_SUBVOL_RM_ALLOWED))
1269                 seq_puts(seq, ",user_subvol_rm_allowed");
1270         if (btrfs_test_opt(info, ENOSPC_DEBUG))
1271                 seq_puts(seq, ",enospc_debug");
1272         if (btrfs_test_opt(info, AUTO_DEFRAG))
1273                 seq_puts(seq, ",autodefrag");
1274         if (btrfs_test_opt(info, INODE_MAP_CACHE))
1275                 seq_puts(seq, ",inode_cache");
1276         if (btrfs_test_opt(info, SKIP_BALANCE))
1277                 seq_puts(seq, ",skip_balance");
1278 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
1279         if (btrfs_test_opt(info, CHECK_INTEGRITY_INCLUDING_EXTENT_DATA))
1280                 seq_puts(seq, ",check_int_data");
1281         else if (btrfs_test_opt(info, CHECK_INTEGRITY))
1282                 seq_puts(seq, ",check_int");
1283         if (info->check_integrity_print_mask)
1284                 seq_printf(seq, ",check_int_print_mask=%d",
1285                                 info->check_integrity_print_mask);
1286 #endif
1287         if (info->metadata_ratio)
1288                 seq_printf(seq, ",metadata_ratio=%d",
1289                                 info->metadata_ratio);
1290         if (btrfs_test_opt(info, PANIC_ON_FATAL_ERROR))
1291                 seq_puts(seq, ",fatal_errors=panic");
1292         if (info->commit_interval != BTRFS_DEFAULT_COMMIT_INTERVAL)
1293                 seq_printf(seq, ",commit=%d", info->commit_interval);
1294 #ifdef CONFIG_BTRFS_DEBUG
1295         if (btrfs_test_opt(info, FRAGMENT_DATA))
1296                 seq_puts(seq, ",fragment=data");
1297         if (btrfs_test_opt(info, FRAGMENT_METADATA))
1298                 seq_puts(seq, ",fragment=metadata");
1299 #endif
1300         seq_printf(seq, ",subvolid=%llu",
1301                   BTRFS_I(d_inode(dentry))->root->root_key.objectid);
1302         seq_puts(seq, ",subvol=");
1303         seq_dentry(seq, dentry, " \t\n\\");
1304         return 0;
1305 }
1306
1307 static int btrfs_test_super(struct super_block *s, void *data)
1308 {
1309         struct btrfs_fs_info *p = data;
1310         struct btrfs_fs_info *fs_info = btrfs_sb(s);
1311
1312         return fs_info->fs_devices == p->fs_devices;
1313 }
1314
1315 static int btrfs_set_super(struct super_block *s, void *data)
1316 {
1317         int err = set_anon_super(s, data);
1318         if (!err)
1319                 s->s_fs_info = data;
1320         return err;
1321 }
1322
1323 /*
1324  * subvolumes are identified by ino 256
1325  */
1326 static inline int is_subvolume_inode(struct inode *inode)
1327 {
1328         if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
1329                 return 1;
1330         return 0;
1331 }
1332
1333 /*
1334  * This will add subvolid=0 to the argument string while removing any subvol=
1335  * and subvolid= arguments to make sure we get the top-level root for path
1336  * walking to the subvol we want.
1337  */
1338 static char *setup_root_args(char *args)
1339 {
1340         char *buf, *dst, *sep;
1341
1342         if (!args)
1343                 return kstrdup("subvolid=0", GFP_NOFS);
1344
1345         /* The worst case is that we add ",subvolid=0" to the end. */
1346         buf = dst = kmalloc(strlen(args) + strlen(",subvolid=0") + 1, GFP_NOFS);
1347         if (!buf)
1348                 return NULL;
1349
1350         while (1) {
1351                 sep = strchrnul(args, ',');
1352                 if (!strstarts(args, "subvol=") &&
1353                     !strstarts(args, "subvolid=")) {
1354                         memcpy(dst, args, sep - args);
1355                         dst += sep - args;
1356                         *dst++ = ',';
1357                 }
1358                 if (*sep)
1359                         args = sep + 1;
1360                 else
1361                         break;
1362         }
1363         strcpy(dst, "subvolid=0");
1364
1365         return buf;
1366 }
1367
1368 static struct dentry *mount_subvol(const char *subvol_name, u64 subvol_objectid,
1369                                    int flags, const char *device_name,
1370                                    char *data)
1371 {
1372         struct dentry *root;
1373         struct vfsmount *mnt = NULL;
1374         char *newargs;
1375         int ret;
1376
1377         newargs = setup_root_args(data);
1378         if (!newargs) {
1379                 root = ERR_PTR(-ENOMEM);
1380                 goto out;
1381         }
1382
1383         mnt = vfs_kern_mount(&btrfs_fs_type, flags, device_name, newargs);
1384         if (PTR_ERR_OR_ZERO(mnt) == -EBUSY) {
1385                 if (flags & MS_RDONLY) {
1386                         mnt = vfs_kern_mount(&btrfs_fs_type, flags & ~MS_RDONLY,
1387                                              device_name, newargs);
1388                 } else {
1389                         mnt = vfs_kern_mount(&btrfs_fs_type, flags | MS_RDONLY,
1390                                              device_name, newargs);
1391                         if (IS_ERR(mnt)) {
1392                                 root = ERR_CAST(mnt);
1393                                 mnt = NULL;
1394                                 goto out;
1395                         }
1396
1397                         down_write(&mnt->mnt_sb->s_umount);
1398                         ret = btrfs_remount(mnt->mnt_sb, &flags, NULL);
1399                         up_write(&mnt->mnt_sb->s_umount);
1400                         if (ret < 0) {
1401                                 root = ERR_PTR(ret);
1402                                 goto out;
1403                         }
1404                 }
1405         }
1406         if (IS_ERR(mnt)) {
1407                 root = ERR_CAST(mnt);
1408                 mnt = NULL;
1409                 goto out;
1410         }
1411
1412         if (!subvol_name) {
1413                 if (!subvol_objectid) {
1414                         ret = get_default_subvol_objectid(btrfs_sb(mnt->mnt_sb),
1415                                                           &subvol_objectid);
1416                         if (ret) {
1417                                 root = ERR_PTR(ret);
1418                                 goto out;
1419                         }
1420                 }
1421                 subvol_name = get_subvol_name_from_objectid(btrfs_sb(mnt->mnt_sb),
1422                                                             subvol_objectid);
1423                 if (IS_ERR(subvol_name)) {
1424                         root = ERR_CAST(subvol_name);
1425                         subvol_name = NULL;
1426                         goto out;
1427                 }
1428
1429         }
1430
1431         root = mount_subtree(mnt, subvol_name);
1432         /* mount_subtree() drops our reference on the vfsmount. */
1433         mnt = NULL;
1434
1435         if (!IS_ERR(root)) {
1436                 struct super_block *s = root->d_sb;
1437                 struct btrfs_fs_info *fs_info = btrfs_sb(s);
1438                 struct inode *root_inode = d_inode(root);
1439                 u64 root_objectid = BTRFS_I(root_inode)->root->root_key.objectid;
1440
1441                 ret = 0;
1442                 if (!is_subvolume_inode(root_inode)) {
1443                         btrfs_err(fs_info, "'%s' is not a valid subvolume",
1444                                subvol_name);
1445                         ret = -EINVAL;
1446                 }
1447                 if (subvol_objectid && root_objectid != subvol_objectid) {
1448                         /*
1449                          * This will also catch a race condition where a
1450                          * subvolume which was passed by ID is renamed and
1451                          * another subvolume is renamed over the old location.
1452                          */
1453                         btrfs_err(fs_info,
1454                                   "subvol '%s' does not match subvolid %llu",
1455                                   subvol_name, subvol_objectid);
1456                         ret = -EINVAL;
1457                 }
1458                 if (ret) {
1459                         dput(root);
1460                         root = ERR_PTR(ret);
1461                         deactivate_locked_super(s);
1462                 }
1463         }
1464
1465 out:
1466         mntput(mnt);
1467         kfree(newargs);
1468         kfree(subvol_name);
1469         return root;
1470 }
1471
1472 static int parse_security_options(char *orig_opts,
1473                                   struct security_mnt_opts *sec_opts)
1474 {
1475         char *secdata = NULL;
1476         int ret = 0;
1477
1478         secdata = alloc_secdata();
1479         if (!secdata)
1480                 return -ENOMEM;
1481         ret = security_sb_copy_data(orig_opts, secdata);
1482         if (ret) {
1483                 free_secdata(secdata);
1484                 return ret;
1485         }
1486         ret = security_sb_parse_opts_str(secdata, sec_opts);
1487         free_secdata(secdata);
1488         return ret;
1489 }
1490
1491 static int setup_security_options(struct btrfs_fs_info *fs_info,
1492                                   struct super_block *sb,
1493                                   struct security_mnt_opts *sec_opts)
1494 {
1495         int ret = 0;
1496
1497         /*
1498          * Call security_sb_set_mnt_opts() to check whether new sec_opts
1499          * is valid.
1500          */
1501         ret = security_sb_set_mnt_opts(sb, sec_opts, 0, NULL);
1502         if (ret)
1503                 return ret;
1504
1505 #ifdef CONFIG_SECURITY
1506         if (!fs_info->security_opts.num_mnt_opts) {
1507                 /* first time security setup, copy sec_opts to fs_info */
1508                 memcpy(&fs_info->security_opts, sec_opts, sizeof(*sec_opts));
1509         } else {
1510                 /*
1511                  * Since SELinux (the only one supporting security_mnt_opts)
1512                  * does NOT support changing context during remount/mount of
1513                  * the same sb, this must be the same or part of the same
1514                  * security options, just free it.
1515                  */
1516                 security_free_mnt_opts(sec_opts);
1517         }
1518 #endif
1519         return ret;
1520 }
1521
1522 /*
1523  * Find a superblock for the given device / mount point.
1524  *
1525  * Note:  This is based on get_sb_bdev from fs/super.c with a few additions
1526  *        for multiple device setup.  Make sure to keep it in sync.
1527  */
1528 static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags,
1529                 const char *device_name, void *data)
1530 {
1531         struct block_device *bdev = NULL;
1532         struct super_block *s;
1533         struct btrfs_fs_devices *fs_devices = NULL;
1534         struct btrfs_fs_info *fs_info = NULL;
1535         struct security_mnt_opts new_sec_opts;
1536         fmode_t mode = FMODE_READ;
1537         char *subvol_name = NULL;
1538         u64 subvol_objectid = 0;
1539         int error = 0;
1540
1541         if (!(flags & MS_RDONLY))
1542                 mode |= FMODE_WRITE;
1543
1544         error = btrfs_parse_early_options(data, mode, fs_type,
1545                                           &subvol_name, &subvol_objectid,
1546                                           &fs_devices);
1547         if (error) {
1548                 kfree(subvol_name);
1549                 return ERR_PTR(error);
1550         }
1551
1552         if (subvol_name || subvol_objectid != BTRFS_FS_TREE_OBJECTID) {
1553                 /* mount_subvol() will free subvol_name. */
1554                 return mount_subvol(subvol_name, subvol_objectid, flags,
1555                                     device_name, data);
1556         }
1557
1558         security_init_mnt_opts(&new_sec_opts);
1559         if (data) {
1560                 error = parse_security_options(data, &new_sec_opts);
1561                 if (error)
1562                         return ERR_PTR(error);
1563         }
1564
1565         error = btrfs_scan_one_device(device_name, mode, fs_type, &fs_devices);
1566         if (error)
1567                 goto error_sec_opts;
1568
1569         /*
1570          * Setup a dummy root and fs_info for test/set super.  This is because
1571          * we don't actually fill this stuff out until open_ctree, but we need
1572          * it for searching for existing supers, so this lets us do that and
1573          * then open_ctree will properly initialize everything later.
1574          */
1575         fs_info = kzalloc(sizeof(struct btrfs_fs_info), GFP_NOFS);
1576         if (!fs_info) {
1577                 error = -ENOMEM;
1578                 goto error_sec_opts;
1579         }
1580
1581         fs_info->fs_devices = fs_devices;
1582
1583         fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS);
1584         fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS);
1585         security_init_mnt_opts(&fs_info->security_opts);
1586         if (!fs_info->super_copy || !fs_info->super_for_commit) {
1587                 error = -ENOMEM;
1588                 goto error_fs_info;
1589         }
1590
1591         error = btrfs_open_devices(fs_devices, mode, fs_type);
1592         if (error)
1593                 goto error_fs_info;
1594
1595         if (!(flags & MS_RDONLY) && fs_devices->rw_devices == 0) {
1596                 error = -EACCES;
1597                 goto error_close_devices;
1598         }
1599
1600         bdev = fs_devices->latest_bdev;
1601         s = sget(fs_type, btrfs_test_super, btrfs_set_super, flags | MS_NOSEC,
1602                  fs_info);
1603         if (IS_ERR(s)) {
1604                 error = PTR_ERR(s);
1605                 goto error_close_devices;
1606         }
1607
1608         if (s->s_root) {
1609                 btrfs_close_devices(fs_devices);
1610                 free_fs_info(fs_info);
1611                 if ((flags ^ s->s_flags) & MS_RDONLY)
1612                         error = -EBUSY;
1613         } else {
1614                 snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev);
1615                 btrfs_sb(s)->bdev_holder = fs_type;
1616                 error = btrfs_fill_super(s, fs_devices, data,
1617                                          flags & MS_SILENT ? 1 : 0);
1618         }
1619         if (error) {
1620                 deactivate_locked_super(s);
1621                 goto error_sec_opts;
1622         }
1623
1624         fs_info = btrfs_sb(s);
1625         error = setup_security_options(fs_info, s, &new_sec_opts);
1626         if (error) {
1627                 deactivate_locked_super(s);
1628                 goto error_sec_opts;
1629         }
1630
1631         return dget(s->s_root);
1632
1633 error_close_devices:
1634         btrfs_close_devices(fs_devices);
1635 error_fs_info:
1636         free_fs_info(fs_info);
1637 error_sec_opts:
1638         security_free_mnt_opts(&new_sec_opts);
1639         return ERR_PTR(error);
1640 }
1641
1642 static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info,
1643                                      int new_pool_size, int old_pool_size)
1644 {
1645         if (new_pool_size == old_pool_size)
1646                 return;
1647
1648         fs_info->thread_pool_size = new_pool_size;
1649
1650         btrfs_info(fs_info, "resize thread pool %d -> %d",
1651                old_pool_size, new_pool_size);
1652
1653         btrfs_workqueue_set_max(fs_info->workers, new_pool_size);
1654         btrfs_workqueue_set_max(fs_info->delalloc_workers, new_pool_size);
1655         btrfs_workqueue_set_max(fs_info->submit_workers, new_pool_size);
1656         btrfs_workqueue_set_max(fs_info->caching_workers, new_pool_size);
1657         btrfs_workqueue_set_max(fs_info->endio_workers, new_pool_size);
1658         btrfs_workqueue_set_max(fs_info->endio_meta_workers, new_pool_size);
1659         btrfs_workqueue_set_max(fs_info->endio_meta_write_workers,
1660                                 new_pool_size);
1661         btrfs_workqueue_set_max(fs_info->endio_write_workers, new_pool_size);
1662         btrfs_workqueue_set_max(fs_info->endio_freespace_worker, new_pool_size);
1663         btrfs_workqueue_set_max(fs_info->delayed_workers, new_pool_size);
1664         btrfs_workqueue_set_max(fs_info->readahead_workers, new_pool_size);
1665         btrfs_workqueue_set_max(fs_info->scrub_wr_completion_workers,
1666                                 new_pool_size);
1667 }
1668
1669 static inline void btrfs_remount_prepare(struct btrfs_fs_info *fs_info)
1670 {
1671         set_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1672 }
1673
1674 static inline void btrfs_remount_begin(struct btrfs_fs_info *fs_info,
1675                                        unsigned long old_opts, int flags)
1676 {
1677         if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1678             (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) ||
1679              (flags & MS_RDONLY))) {
1680                 /* wait for any defraggers to finish */
1681                 wait_event(fs_info->transaction_wait,
1682                            (atomic_read(&fs_info->defrag_running) == 0));
1683                 if (flags & MS_RDONLY)
1684                         sync_filesystem(fs_info->sb);
1685         }
1686 }
1687
1688 static inline void btrfs_remount_cleanup(struct btrfs_fs_info *fs_info,
1689                                          unsigned long old_opts)
1690 {
1691         /*
1692          * We need to cleanup all defragable inodes if the autodefragment is
1693          * close or the filesystem is read only.
1694          */
1695         if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1696             (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) ||
1697              (fs_info->sb->s_flags & MS_RDONLY))) {
1698                 btrfs_cleanup_defrag_inodes(fs_info);
1699         }
1700
1701         clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1702 }
1703
1704 static int btrfs_remount(struct super_block *sb, int *flags, char *data)
1705 {
1706         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1707         struct btrfs_root *root = fs_info->tree_root;
1708         unsigned old_flags = sb->s_flags;
1709         unsigned long old_opts = fs_info->mount_opt;
1710         unsigned long old_compress_type = fs_info->compress_type;
1711         u64 old_max_inline = fs_info->max_inline;
1712         u64 old_alloc_start = fs_info->alloc_start;
1713         int old_thread_pool_size = fs_info->thread_pool_size;
1714         unsigned int old_metadata_ratio = fs_info->metadata_ratio;
1715         int ret;
1716
1717         sync_filesystem(sb);
1718         btrfs_remount_prepare(fs_info);
1719
1720         if (data) {
1721                 struct security_mnt_opts new_sec_opts;
1722
1723                 security_init_mnt_opts(&new_sec_opts);
1724                 ret = parse_security_options(data, &new_sec_opts);
1725                 if (ret)
1726                         goto restore;
1727                 ret = setup_security_options(fs_info, sb,
1728                                              &new_sec_opts);
1729                 if (ret) {
1730                         security_free_mnt_opts(&new_sec_opts);
1731                         goto restore;
1732                 }
1733         }
1734
1735         ret = btrfs_parse_options(fs_info, data, *flags);
1736         if (ret) {
1737                 ret = -EINVAL;
1738                 goto restore;
1739         }
1740
1741         btrfs_remount_begin(fs_info, old_opts, *flags);
1742         btrfs_resize_thread_pool(fs_info,
1743                 fs_info->thread_pool_size, old_thread_pool_size);
1744
1745         if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
1746                 goto out;
1747
1748         if (*flags & MS_RDONLY) {
1749                 /*
1750                  * this also happens on 'umount -rf' or on shutdown, when
1751                  * the filesystem is busy.
1752                  */
1753                 cancel_work_sync(&fs_info->async_reclaim_work);
1754
1755                 /* wait for the uuid_scan task to finish */
1756                 down(&fs_info->uuid_tree_rescan_sem);
1757                 /* avoid complains from lockdep et al. */
1758                 up(&fs_info->uuid_tree_rescan_sem);
1759
1760                 sb->s_flags |= MS_RDONLY;
1761
1762                 /*
1763                  * Setting MS_RDONLY will put the cleaner thread to
1764                  * sleep at the next loop if it's already active.
1765                  * If it's already asleep, we'll leave unused block
1766                  * groups on disk until we're mounted read-write again
1767                  * unless we clean them up here.
1768                  */
1769                 btrfs_delete_unused_bgs(fs_info);
1770
1771                 btrfs_dev_replace_suspend_for_unmount(fs_info);
1772                 btrfs_scrub_cancel(fs_info);
1773                 btrfs_pause_balance(fs_info);
1774
1775                 ret = btrfs_commit_super(fs_info);
1776                 if (ret)
1777                         goto restore;
1778         } else {
1779                 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
1780                         btrfs_err(fs_info,
1781                                 "Remounting read-write after error is not allowed");
1782                         ret = -EINVAL;
1783                         goto restore;
1784                 }
1785                 if (fs_info->fs_devices->rw_devices == 0) {
1786                         ret = -EACCES;
1787                         goto restore;
1788                 }
1789
1790                 if (fs_info->fs_devices->missing_devices >
1791                      fs_info->num_tolerated_disk_barrier_failures &&
1792                     !(*flags & MS_RDONLY)) {
1793                         btrfs_warn(fs_info,
1794                                 "too many missing devices, writeable remount is not allowed");
1795                         ret = -EACCES;
1796                         goto restore;
1797                 }
1798
1799                 if (btrfs_super_log_root(fs_info->super_copy) != 0) {
1800                         ret = -EINVAL;
1801                         goto restore;
1802                 }
1803
1804                 ret = btrfs_cleanup_fs_roots(fs_info);
1805                 if (ret)
1806                         goto restore;
1807
1808                 /* recover relocation */
1809                 mutex_lock(&fs_info->cleaner_mutex);
1810                 ret = btrfs_recover_relocation(root);
1811                 mutex_unlock(&fs_info->cleaner_mutex);
1812                 if (ret)
1813                         goto restore;
1814
1815                 ret = btrfs_resume_balance_async(fs_info);
1816                 if (ret)
1817                         goto restore;
1818
1819                 ret = btrfs_resume_dev_replace_async(fs_info);
1820                 if (ret) {
1821                         btrfs_warn(fs_info, "failed to resume dev_replace");
1822                         goto restore;
1823                 }
1824
1825                 if (!fs_info->uuid_root) {
1826                         btrfs_info(fs_info, "creating UUID tree");
1827                         ret = btrfs_create_uuid_tree(fs_info);
1828                         if (ret) {
1829                                 btrfs_warn(fs_info,
1830                                            "failed to create the UUID tree %d",
1831                                            ret);
1832                                 goto restore;
1833                         }
1834                 }
1835                 sb->s_flags &= ~MS_RDONLY;
1836
1837                 set_bit(BTRFS_FS_OPEN, &fs_info->flags);
1838         }
1839 out:
1840         wake_up_process(fs_info->transaction_kthread);
1841         btrfs_remount_cleanup(fs_info, old_opts);
1842         return 0;
1843
1844 restore:
1845         /* We've hit an error - don't reset MS_RDONLY */
1846         if (sb->s_flags & MS_RDONLY)
1847                 old_flags |= MS_RDONLY;
1848         sb->s_flags = old_flags;
1849         fs_info->mount_opt = old_opts;
1850         fs_info->compress_type = old_compress_type;
1851         fs_info->max_inline = old_max_inline;
1852         mutex_lock(&fs_info->chunk_mutex);
1853         fs_info->alloc_start = old_alloc_start;
1854         mutex_unlock(&fs_info->chunk_mutex);
1855         btrfs_resize_thread_pool(fs_info,
1856                 old_thread_pool_size, fs_info->thread_pool_size);
1857         fs_info->metadata_ratio = old_metadata_ratio;
1858         btrfs_remount_cleanup(fs_info, old_opts);
1859         return ret;
1860 }
1861
1862 /* Used to sort the devices by max_avail(descending sort) */
1863 static int btrfs_cmp_device_free_bytes(const void *dev_info1,
1864                                        const void *dev_info2)
1865 {
1866         if (((struct btrfs_device_info *)dev_info1)->max_avail >
1867             ((struct btrfs_device_info *)dev_info2)->max_avail)
1868                 return -1;
1869         else if (((struct btrfs_device_info *)dev_info1)->max_avail <
1870                  ((struct btrfs_device_info *)dev_info2)->max_avail)
1871                 return 1;
1872         else
1873         return 0;
1874 }
1875
1876 /*
1877  * sort the devices by max_avail, in which max free extent size of each device
1878  * is stored.(Descending Sort)
1879  */
1880 static inline void btrfs_descending_sort_devices(
1881                                         struct btrfs_device_info *devices,
1882                                         size_t nr_devices)
1883 {
1884         sort(devices, nr_devices, sizeof(struct btrfs_device_info),
1885              btrfs_cmp_device_free_bytes, NULL);
1886 }
1887
1888 /*
1889  * The helper to calc the free space on the devices that can be used to store
1890  * file data.
1891  */
1892 static int btrfs_calc_avail_data_space(struct btrfs_fs_info *fs_info,
1893                                        u64 *free_bytes)
1894 {
1895         struct btrfs_root *root = fs_info->tree_root;
1896         struct btrfs_device_info *devices_info;
1897         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
1898         struct btrfs_device *device;
1899         u64 skip_space;
1900         u64 type;
1901         u64 avail_space;
1902         u64 used_space;
1903         u64 min_stripe_size;
1904         int min_stripes = 1, num_stripes = 1;
1905         int i = 0, nr_devices;
1906         int ret;
1907
1908         /*
1909          * We aren't under the device list lock, so this is racy-ish, but good
1910          * enough for our purposes.
1911          */
1912         nr_devices = fs_info->fs_devices->open_devices;
1913         if (!nr_devices) {
1914                 smp_mb();
1915                 nr_devices = fs_info->fs_devices->open_devices;
1916                 ASSERT(nr_devices);
1917                 if (!nr_devices) {
1918                         *free_bytes = 0;
1919                         return 0;
1920                 }
1921         }
1922
1923         devices_info = kmalloc_array(nr_devices, sizeof(*devices_info),
1924                                GFP_NOFS);
1925         if (!devices_info)
1926                 return -ENOMEM;
1927
1928         /* calc min stripe number for data space allocation */
1929         type = btrfs_get_alloc_profile(root, 1);
1930         if (type & BTRFS_BLOCK_GROUP_RAID0) {
1931                 min_stripes = 2;
1932                 num_stripes = nr_devices;
1933         } else if (type & BTRFS_BLOCK_GROUP_RAID1) {
1934                 min_stripes = 2;
1935                 num_stripes = 2;
1936         } else if (type & BTRFS_BLOCK_GROUP_RAID10) {
1937                 min_stripes = 4;
1938                 num_stripes = 4;
1939         }
1940
1941         if (type & BTRFS_BLOCK_GROUP_DUP)
1942                 min_stripe_size = 2 * BTRFS_STRIPE_LEN;
1943         else
1944                 min_stripe_size = BTRFS_STRIPE_LEN;
1945
1946         if (fs_info->alloc_start)
1947                 mutex_lock(&fs_devices->device_list_mutex);
1948         rcu_read_lock();
1949         list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
1950                 if (!device->in_fs_metadata || !device->bdev ||
1951                     device->is_tgtdev_for_dev_replace)
1952                         continue;
1953
1954                 if (i >= nr_devices)
1955                         break;
1956
1957                 avail_space = device->total_bytes - device->bytes_used;
1958
1959                 /* align with stripe_len */
1960                 avail_space = div_u64(avail_space, BTRFS_STRIPE_LEN);
1961                 avail_space *= BTRFS_STRIPE_LEN;
1962
1963                 /*
1964                  * In order to avoid overwriting the superblock on the drive,
1965                  * btrfs starts at an offset of at least 1MB when doing chunk
1966                  * allocation.
1967                  */
1968                 skip_space = SZ_1M;
1969
1970                 /* user can set the offset in fs_info->alloc_start. */
1971                 if (fs_info->alloc_start &&
1972                     fs_info->alloc_start + BTRFS_STRIPE_LEN <=
1973                     device->total_bytes) {
1974                         rcu_read_unlock();
1975                         skip_space = max(fs_info->alloc_start, skip_space);
1976
1977                         /*
1978                          * btrfs can not use the free space in
1979                          * [0, skip_space - 1], we must subtract it from the
1980                          * total. In order to implement it, we account the used
1981                          * space in this range first.
1982                          */
1983                         ret = btrfs_account_dev_extents_size(device, 0,
1984                                                              skip_space - 1,
1985                                                              &used_space);
1986                         if (ret) {
1987                                 kfree(devices_info);
1988                                 mutex_unlock(&fs_devices->device_list_mutex);
1989                                 return ret;
1990                         }
1991
1992                         rcu_read_lock();
1993
1994                         /* calc the free space in [0, skip_space - 1] */
1995                         skip_space -= used_space;
1996                 }
1997
1998                 /*
1999                  * we can use the free space in [0, skip_space - 1], subtract
2000                  * it from the total.
2001                  */
2002                 if (avail_space && avail_space >= skip_space)
2003                         avail_space -= skip_space;
2004                 else
2005                         avail_space = 0;
2006
2007                 if (avail_space < min_stripe_size)
2008                         continue;
2009
2010                 devices_info[i].dev = device;
2011                 devices_info[i].max_avail = avail_space;
2012
2013                 i++;
2014         }
2015         rcu_read_unlock();
2016         if (fs_info->alloc_start)
2017                 mutex_unlock(&fs_devices->device_list_mutex);
2018
2019         nr_devices = i;
2020
2021         btrfs_descending_sort_devices(devices_info, nr_devices);
2022
2023         i = nr_devices - 1;
2024         avail_space = 0;
2025         while (nr_devices >= min_stripes) {
2026                 if (num_stripes > nr_devices)
2027                         num_stripes = nr_devices;
2028
2029                 if (devices_info[i].max_avail >= min_stripe_size) {
2030                         int j;
2031                         u64 alloc_size;
2032
2033                         avail_space += devices_info[i].max_avail * num_stripes;
2034                         alloc_size = devices_info[i].max_avail;
2035                         for (j = i + 1 - num_stripes; j <= i; j++)
2036                                 devices_info[j].max_avail -= alloc_size;
2037                 }
2038                 i--;
2039                 nr_devices--;
2040         }
2041
2042         kfree(devices_info);
2043         *free_bytes = avail_space;
2044         return 0;
2045 }
2046
2047 /*
2048  * Calculate numbers for 'df', pessimistic in case of mixed raid profiles.
2049  *
2050  * If there's a redundant raid level at DATA block groups, use the respective
2051  * multiplier to scale the sizes.
2052  *
2053  * Unused device space usage is based on simulating the chunk allocator
2054  * algorithm that respects the device sizes, order of allocations and the
2055  * 'alloc_start' value, this is a close approximation of the actual use but
2056  * there are other factors that may change the result (like a new metadata
2057  * chunk).
2058  *
2059  * If metadata is exhausted, f_bavail will be 0.
2060  */
2061 static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf)
2062 {
2063         struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
2064         struct btrfs_super_block *disk_super = fs_info->super_copy;
2065         struct list_head *head = &fs_info->space_info;
2066         struct btrfs_space_info *found;
2067         u64 total_used = 0;
2068         u64 total_free_data = 0;
2069         u64 total_free_meta = 0;
2070         int bits = dentry->d_sb->s_blocksize_bits;
2071         __be32 *fsid = (__be32 *)fs_info->fsid;
2072         unsigned factor = 1;
2073         struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
2074         int ret;
2075         u64 thresh = 0;
2076         int mixed = 0;
2077
2078         rcu_read_lock();
2079         list_for_each_entry_rcu(found, head, list) {
2080                 if (found->flags & BTRFS_BLOCK_GROUP_DATA) {
2081                         int i;
2082
2083                         total_free_data += found->disk_total - found->disk_used;
2084                         total_free_data -=
2085                                 btrfs_account_ro_block_groups_free_space(found);
2086
2087                         for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
2088                                 if (!list_empty(&found->block_groups[i])) {
2089                                         switch (i) {
2090                                         case BTRFS_RAID_DUP:
2091                                         case BTRFS_RAID_RAID1:
2092                                         case BTRFS_RAID_RAID10:
2093                                                 factor = 2;
2094                                         }
2095                                 }
2096                         }
2097                 }
2098
2099                 /*
2100                  * Metadata in mixed block goup profiles are accounted in data
2101                  */
2102                 if (!mixed && found->flags & BTRFS_BLOCK_GROUP_METADATA) {
2103                         if (found->flags & BTRFS_BLOCK_GROUP_DATA)
2104                                 mixed = 1;
2105                         else
2106                                 total_free_meta += found->disk_total -
2107                                         found->disk_used;
2108                 }
2109
2110                 total_used += found->disk_used;
2111         }
2112
2113         rcu_read_unlock();
2114
2115         buf->f_blocks = div_u64(btrfs_super_total_bytes(disk_super), factor);
2116         buf->f_blocks >>= bits;
2117         buf->f_bfree = buf->f_blocks - (div_u64(total_used, factor) >> bits);
2118
2119         /* Account global block reserve as used, it's in logical size already */
2120         spin_lock(&block_rsv->lock);
2121         /* Mixed block groups accounting is not byte-accurate, avoid overflow */
2122         if (buf->f_bfree >= block_rsv->size >> bits)
2123                 buf->f_bfree -= block_rsv->size >> bits;
2124         else
2125                 buf->f_bfree = 0;
2126         spin_unlock(&block_rsv->lock);
2127
2128         buf->f_bavail = div_u64(total_free_data, factor);
2129         ret = btrfs_calc_avail_data_space(fs_info, &total_free_data);
2130         if (ret)
2131                 return ret;
2132         buf->f_bavail += div_u64(total_free_data, factor);
2133         buf->f_bavail = buf->f_bavail >> bits;
2134
2135         /*
2136          * We calculate the remaining metadata space minus global reserve. If
2137          * this is (supposedly) smaller than zero, there's no space. But this
2138          * does not hold in practice, the exhausted state happens where's still
2139          * some positive delta. So we apply some guesswork and compare the
2140          * delta to a 4M threshold.  (Practically observed delta was ~2M.)
2141          *
2142          * We probably cannot calculate the exact threshold value because this
2143          * depends on the internal reservations requested by various
2144          * operations, so some operations that consume a few metadata will
2145          * succeed even if the Avail is zero. But this is better than the other
2146          * way around.
2147          */
2148         thresh = 4 * 1024 * 1024;
2149
2150         if (!mixed && total_free_meta - thresh < block_rsv->size)
2151                 buf->f_bavail = 0;
2152
2153         buf->f_type = BTRFS_SUPER_MAGIC;
2154         buf->f_bsize = dentry->d_sb->s_blocksize;
2155         buf->f_namelen = BTRFS_NAME_LEN;
2156
2157         /* We treat it as constant endianness (it doesn't matter _which_)
2158            because we want the fsid to come out the same whether mounted
2159            on a big-endian or little-endian host */
2160         buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]);
2161         buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]);
2162         /* Mask in the root object ID too, to disambiguate subvols */
2163         buf->f_fsid.val[0] ^= BTRFS_I(d_inode(dentry))->root->objectid >> 32;
2164         buf->f_fsid.val[1] ^= BTRFS_I(d_inode(dentry))->root->objectid;
2165
2166         return 0;
2167 }
2168
2169 static void btrfs_kill_super(struct super_block *sb)
2170 {
2171         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2172         kill_anon_super(sb);
2173         free_fs_info(fs_info);
2174 }
2175
2176 static struct file_system_type btrfs_fs_type = {
2177         .owner          = THIS_MODULE,
2178         .name           = "btrfs",
2179         .mount          = btrfs_mount,
2180         .kill_sb        = btrfs_kill_super,
2181         .fs_flags       = FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA,
2182 };
2183 MODULE_ALIAS_FS("btrfs");
2184
2185 static int btrfs_control_open(struct inode *inode, struct file *file)
2186 {
2187         /*
2188          * The control file's private_data is used to hold the
2189          * transaction when it is started and is used to keep
2190          * track of whether a transaction is already in progress.
2191          */
2192         file->private_data = NULL;
2193         return 0;
2194 }
2195
2196 /*
2197  * used by btrfsctl to scan devices when no FS is mounted
2198  */
2199 static long btrfs_control_ioctl(struct file *file, unsigned int cmd,
2200                                 unsigned long arg)
2201 {
2202         struct btrfs_ioctl_vol_args *vol;
2203         struct btrfs_fs_devices *fs_devices;
2204         int ret = -ENOTTY;
2205
2206         if (!capable(CAP_SYS_ADMIN))
2207                 return -EPERM;
2208
2209         vol = memdup_user((void __user *)arg, sizeof(*vol));
2210         if (IS_ERR(vol))
2211                 return PTR_ERR(vol);
2212
2213         switch (cmd) {
2214         case BTRFS_IOC_SCAN_DEV:
2215                 ret = btrfs_scan_one_device(vol->name, FMODE_READ,
2216                                             &btrfs_fs_type, &fs_devices);
2217                 break;
2218         case BTRFS_IOC_DEVICES_READY:
2219                 ret = btrfs_scan_one_device(vol->name, FMODE_READ,
2220                                             &btrfs_fs_type, &fs_devices);
2221                 if (ret)
2222                         break;
2223                 ret = !(fs_devices->num_devices == fs_devices->total_devices);
2224                 break;
2225         case BTRFS_IOC_GET_SUPPORTED_FEATURES:
2226                 ret = btrfs_ioctl_get_supported_features((void __user*)arg);
2227                 break;
2228         }
2229
2230         kfree(vol);
2231         return ret;
2232 }
2233
2234 static int btrfs_freeze(struct super_block *sb)
2235 {
2236         struct btrfs_trans_handle *trans;
2237         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2238         struct btrfs_root *root = fs_info->tree_root;
2239
2240         fs_info->fs_frozen = 1;
2241         /*
2242          * We don't need a barrier here, we'll wait for any transaction that
2243          * could be in progress on other threads (and do delayed iputs that
2244          * we want to avoid on a frozen filesystem), or do the commit
2245          * ourselves.
2246          */
2247         trans = btrfs_attach_transaction_barrier(root);
2248         if (IS_ERR(trans)) {
2249                 /* no transaction, don't bother */
2250                 if (PTR_ERR(trans) == -ENOENT)
2251                         return 0;
2252                 return PTR_ERR(trans);
2253         }
2254         return btrfs_commit_transaction(trans);
2255 }
2256
2257 static int btrfs_unfreeze(struct super_block *sb)
2258 {
2259         btrfs_sb(sb)->fs_frozen = 0;
2260         return 0;
2261 }
2262
2263 static int btrfs_show_devname(struct seq_file *m, struct dentry *root)
2264 {
2265         struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb);
2266         struct btrfs_fs_devices *cur_devices;
2267         struct btrfs_device *dev, *first_dev = NULL;
2268         struct list_head *head;
2269         struct rcu_string *name;
2270
2271         mutex_lock(&fs_info->fs_devices->device_list_mutex);
2272         cur_devices = fs_info->fs_devices;
2273         while (cur_devices) {
2274                 head = &cur_devices->devices;
2275                 list_for_each_entry(dev, head, dev_list) {
2276                         if (dev->missing)
2277                                 continue;
2278                         if (!dev->name)
2279                                 continue;
2280                         if (!first_dev || dev->devid < first_dev->devid)
2281                                 first_dev = dev;
2282                 }
2283                 cur_devices = cur_devices->seed;
2284         }
2285
2286         if (first_dev) {
2287                 rcu_read_lock();
2288                 name = rcu_dereference(first_dev->name);
2289                 seq_escape(m, name->str, " \t\n\\");
2290                 rcu_read_unlock();
2291         } else {
2292                 WARN_ON(1);
2293         }
2294         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2295         return 0;
2296 }
2297
2298 static const struct super_operations btrfs_super_ops = {
2299         .drop_inode     = btrfs_drop_inode,
2300         .evict_inode    = btrfs_evict_inode,
2301         .put_super      = btrfs_put_super,
2302         .sync_fs        = btrfs_sync_fs,
2303         .show_options   = btrfs_show_options,
2304         .show_devname   = btrfs_show_devname,
2305         .write_inode    = btrfs_write_inode,
2306         .alloc_inode    = btrfs_alloc_inode,
2307         .destroy_inode  = btrfs_destroy_inode,
2308         .statfs         = btrfs_statfs,
2309         .remount_fs     = btrfs_remount,
2310         .freeze_fs      = btrfs_freeze,
2311         .unfreeze_fs    = btrfs_unfreeze,
2312 };
2313
2314 static const struct file_operations btrfs_ctl_fops = {
2315         .open = btrfs_control_open,
2316         .unlocked_ioctl  = btrfs_control_ioctl,
2317         .compat_ioctl = btrfs_control_ioctl,
2318         .owner   = THIS_MODULE,
2319         .llseek = noop_llseek,
2320 };
2321
2322 static struct miscdevice btrfs_misc = {
2323         .minor          = BTRFS_MINOR,
2324         .name           = "btrfs-control",
2325         .fops           = &btrfs_ctl_fops
2326 };
2327
2328 MODULE_ALIAS_MISCDEV(BTRFS_MINOR);
2329 MODULE_ALIAS("devname:btrfs-control");
2330
2331 static int btrfs_interface_init(void)
2332 {
2333         return misc_register(&btrfs_misc);
2334 }
2335
2336 static void btrfs_interface_exit(void)
2337 {
2338         misc_deregister(&btrfs_misc);
2339 }
2340
2341 static void btrfs_print_mod_info(void)
2342 {
2343         pr_info("Btrfs loaded, crc32c=%s"
2344 #ifdef CONFIG_BTRFS_DEBUG
2345                         ", debug=on"
2346 #endif
2347 #ifdef CONFIG_BTRFS_ASSERT
2348                         ", assert=on"
2349 #endif
2350 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2351                         ", integrity-checker=on"
2352 #endif
2353                         "\n",
2354                         btrfs_crc32c_impl());
2355 }
2356
2357 static int __init init_btrfs_fs(void)
2358 {
2359         int err;
2360
2361         err = btrfs_hash_init();
2362         if (err)
2363                 return err;
2364
2365         btrfs_props_init();
2366
2367         err = btrfs_init_sysfs();
2368         if (err)
2369                 goto free_hash;
2370
2371         btrfs_init_compress();
2372
2373         err = btrfs_init_cachep();
2374         if (err)
2375                 goto free_compress;
2376
2377         err = extent_io_init();
2378         if (err)
2379                 goto free_cachep;
2380
2381         err = extent_map_init();
2382         if (err)
2383                 goto free_extent_io;
2384
2385         err = ordered_data_init();
2386         if (err)
2387                 goto free_extent_map;
2388
2389         err = btrfs_delayed_inode_init();
2390         if (err)
2391                 goto free_ordered_data;
2392
2393         err = btrfs_auto_defrag_init();
2394         if (err)
2395                 goto free_delayed_inode;
2396
2397         err = btrfs_delayed_ref_init();
2398         if (err)
2399                 goto free_auto_defrag;
2400
2401         err = btrfs_prelim_ref_init();
2402         if (err)
2403                 goto free_delayed_ref;
2404
2405         err = btrfs_end_io_wq_init();
2406         if (err)
2407                 goto free_prelim_ref;
2408
2409         err = btrfs_interface_init();
2410         if (err)
2411                 goto free_end_io_wq;
2412
2413         btrfs_init_lockdep();
2414
2415         btrfs_print_mod_info();
2416
2417         err = btrfs_run_sanity_tests();
2418         if (err)
2419                 goto unregister_ioctl;
2420
2421         err = register_filesystem(&btrfs_fs_type);
2422         if (err)
2423                 goto unregister_ioctl;
2424
2425         return 0;
2426
2427 unregister_ioctl:
2428         btrfs_interface_exit();
2429 free_end_io_wq:
2430         btrfs_end_io_wq_exit();
2431 free_prelim_ref:
2432         btrfs_prelim_ref_exit();
2433 free_delayed_ref:
2434         btrfs_delayed_ref_exit();
2435 free_auto_defrag:
2436         btrfs_auto_defrag_exit();
2437 free_delayed_inode:
2438         btrfs_delayed_inode_exit();
2439 free_ordered_data:
2440         ordered_data_exit();
2441 free_extent_map:
2442         extent_map_exit();
2443 free_extent_io:
2444         extent_io_exit();
2445 free_cachep:
2446         btrfs_destroy_cachep();
2447 free_compress:
2448         btrfs_exit_compress();
2449         btrfs_exit_sysfs();
2450 free_hash:
2451         btrfs_hash_exit();
2452         return err;
2453 }
2454
2455 static void __exit exit_btrfs_fs(void)
2456 {
2457         btrfs_destroy_cachep();
2458         btrfs_delayed_ref_exit();
2459         btrfs_auto_defrag_exit();
2460         btrfs_delayed_inode_exit();
2461         btrfs_prelim_ref_exit();
2462         ordered_data_exit();
2463         extent_map_exit();
2464         extent_io_exit();
2465         btrfs_interface_exit();
2466         btrfs_end_io_wq_exit();
2467         unregister_filesystem(&btrfs_fs_type);
2468         btrfs_exit_sysfs();
2469         btrfs_cleanup_fs_uuids();
2470         btrfs_exit_compress();
2471         btrfs_hash_exit();
2472 }
2473
2474 late_initcall(init_btrfs_fs);
2475 module_exit(exit_btrfs_fs)
2476
2477 MODULE_LICENSE("GPL");