]> git.karo-electronics.de Git - karo-tx-linux.git/blob - fs/btrfs/super.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux...
[karo-tx-linux.git] / fs / btrfs / super.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/blkdev.h>
20 #include <linux/module.h>
21 #include <linux/buffer_head.h>
22 #include <linux/fs.h>
23 #include <linux/pagemap.h>
24 #include <linux/highmem.h>
25 #include <linux/time.h>
26 #include <linux/init.h>
27 #include <linux/seq_file.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mount.h>
31 #include <linux/mpage.h>
32 #include <linux/swap.h>
33 #include <linux/writeback.h>
34 #include <linux/statfs.h>
35 #include <linux/compat.h>
36 #include <linux/parser.h>
37 #include <linux/ctype.h>
38 #include <linux/namei.h>
39 #include <linux/miscdevice.h>
40 #include <linux/magic.h>
41 #include <linux/slab.h>
42 #include <linux/cleancache.h>
43 #include <linux/ratelimit.h>
44 #include "compat.h"
45 #include "delayed-inode.h"
46 #include "ctree.h"
47 #include "disk-io.h"
48 #include "transaction.h"
49 #include "btrfs_inode.h"
50 #include "ioctl.h"
51 #include "print-tree.h"
52 #include "xattr.h"
53 #include "volumes.h"
54 #include "version.h"
55 #include "export.h"
56 #include "compression.h"
57 #include "rcu-string.h"
58
59 #define CREATE_TRACE_POINTS
60 #include <trace/events/btrfs.h>
61
62 static const struct super_operations btrfs_super_ops;
63 static struct file_system_type btrfs_fs_type;
64
65 static const char *btrfs_decode_error(struct btrfs_fs_info *fs_info, int errno,
66                                       char nbuf[16])
67 {
68         char *errstr = NULL;
69
70         switch (errno) {
71         case -EIO:
72                 errstr = "IO failure";
73                 break;
74         case -ENOMEM:
75                 errstr = "Out of memory";
76                 break;
77         case -EROFS:
78                 errstr = "Readonly filesystem";
79                 break;
80         case -EEXIST:
81                 errstr = "Object already exists";
82                 break;
83         default:
84                 if (nbuf) {
85                         if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
86                                 errstr = nbuf;
87                 }
88                 break;
89         }
90
91         return errstr;
92 }
93
94 static void __save_error_info(struct btrfs_fs_info *fs_info)
95 {
96         /*
97          * today we only save the error info into ram.  Long term we'll
98          * also send it down to the disk
99          */
100         fs_info->fs_state = BTRFS_SUPER_FLAG_ERROR;
101 }
102
103 static void save_error_info(struct btrfs_fs_info *fs_info)
104 {
105         __save_error_info(fs_info);
106 }
107
108 /* btrfs handle error by forcing the filesystem readonly */
109 static void btrfs_handle_error(struct btrfs_fs_info *fs_info)
110 {
111         struct super_block *sb = fs_info->sb;
112
113         if (sb->s_flags & MS_RDONLY)
114                 return;
115
116         if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
117                 sb->s_flags |= MS_RDONLY;
118                 printk(KERN_INFO "btrfs is forced readonly\n");
119                 __btrfs_scrub_cancel(fs_info);
120 //              WARN_ON(1);
121         }
122 }
123
124 #ifdef CONFIG_PRINTK
125 /*
126  * __btrfs_std_error decodes expected errors from the caller and
127  * invokes the approciate error response.
128  */
129 void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function,
130                        unsigned int line, int errno, const char *fmt, ...)
131 {
132         struct super_block *sb = fs_info->sb;
133         char nbuf[16];
134         const char *errstr;
135         va_list args;
136         va_start(args, fmt);
137
138         /*
139          * Special case: if the error is EROFS, and we're already
140          * under MS_RDONLY, then it is safe here.
141          */
142         if (errno == -EROFS && (sb->s_flags & MS_RDONLY))
143                 return;
144
145         errstr = btrfs_decode_error(fs_info, errno, nbuf);
146         if (fmt) {
147                 struct va_format vaf = {
148                         .fmt = fmt,
149                         .va = &args,
150                 };
151
152                 printk(KERN_CRIT "BTRFS error (device %s) in %s:%d: %s (%pV)\n",
153                         sb->s_id, function, line, errstr, &vaf);
154         } else {
155                 printk(KERN_CRIT "BTRFS error (device %s) in %s:%d: %s\n",
156                         sb->s_id, function, line, errstr);
157         }
158
159         /* Don't go through full error handling during mount */
160         if (sb->s_flags & MS_BORN) {
161                 save_error_info(fs_info);
162                 btrfs_handle_error(fs_info);
163         }
164         va_end(args);
165 }
166
167 static const char * const logtypes[] = {
168         "emergency",
169         "alert",
170         "critical",
171         "error",
172         "warning",
173         "notice",
174         "info",
175         "debug",
176 };
177
178 void btrfs_printk(struct btrfs_fs_info *fs_info, const char *fmt, ...)
179 {
180         struct super_block *sb = fs_info->sb;
181         char lvl[4];
182         struct va_format vaf;
183         va_list args;
184         const char *type = logtypes[4];
185         int kern_level;
186
187         va_start(args, fmt);
188
189         kern_level = printk_get_level(fmt);
190         if (kern_level) {
191                 size_t size = printk_skip_level(fmt) - fmt;
192                 memcpy(lvl, fmt,  size);
193                 lvl[size] = '\0';
194                 fmt += size;
195                 type = logtypes[kern_level - '0'];
196         } else
197                 *lvl = '\0';
198
199         vaf.fmt = fmt;
200         vaf.va = &args;
201
202         printk("%sBTRFS %s (device %s): %pV", lvl, type, sb->s_id, &vaf);
203
204         va_end(args);
205 }
206
207 #else
208
209 void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function,
210                        unsigned int line, int errno, const char *fmt, ...)
211 {
212         struct super_block *sb = fs_info->sb;
213
214         /*
215          * Special case: if the error is EROFS, and we're already
216          * under MS_RDONLY, then it is safe here.
217          */
218         if (errno == -EROFS && (sb->s_flags & MS_RDONLY))
219                 return;
220
221         /* Don't go through full error handling during mount */
222         if (sb->s_flags & MS_BORN) {
223                 save_error_info(fs_info);
224                 btrfs_handle_error(fs_info);
225         }
226 }
227 #endif
228
229 /*
230  * We only mark the transaction aborted and then set the file system read-only.
231  * This will prevent new transactions from starting or trying to join this
232  * one.
233  *
234  * This means that error recovery at the call site is limited to freeing
235  * any local memory allocations and passing the error code up without
236  * further cleanup. The transaction should complete as it normally would
237  * in the call path but will return -EIO.
238  *
239  * We'll complete the cleanup in btrfs_end_transaction and
240  * btrfs_commit_transaction.
241  */
242 void __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
243                                struct btrfs_root *root, const char *function,
244                                unsigned int line, int errno)
245 {
246         WARN_ONCE(1, KERN_DEBUG "btrfs: Transaction aborted");
247         trans->aborted = errno;
248         /* Nothing used. The other threads that have joined this
249          * transaction may be able to continue. */
250         if (!trans->blocks_used) {
251                 btrfs_printk(root->fs_info, "Aborting unused transaction.\n");
252                 return;
253         }
254         trans->transaction->aborted = errno;
255         __btrfs_std_error(root->fs_info, function, line, errno, NULL);
256 }
257 /*
258  * __btrfs_panic decodes unexpected, fatal errors from the caller,
259  * issues an alert, and either panics or BUGs, depending on mount options.
260  */
261 void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function,
262                    unsigned int line, int errno, const char *fmt, ...)
263 {
264         char nbuf[16];
265         char *s_id = "<unknown>";
266         const char *errstr;
267         struct va_format vaf = { .fmt = fmt };
268         va_list args;
269
270         if (fs_info)
271                 s_id = fs_info->sb->s_id;
272
273         va_start(args, fmt);
274         vaf.va = &args;
275
276         errstr = btrfs_decode_error(fs_info, errno, nbuf);
277         if (fs_info->mount_opt & BTRFS_MOUNT_PANIC_ON_FATAL_ERROR)
278                 panic(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (%s)\n",
279                         s_id, function, line, &vaf, errstr);
280
281         printk(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (%s)\n",
282                s_id, function, line, &vaf, errstr);
283         va_end(args);
284         /* Caller calls BUG() */
285 }
286
287 static void btrfs_put_super(struct super_block *sb)
288 {
289         (void)close_ctree(btrfs_sb(sb)->tree_root);
290         /* FIXME: need to fix VFS to return error? */
291         /* AV: return it _where_?  ->put_super() can be triggered by any number
292          * of async events, up to and including delivery of SIGKILL to the
293          * last process that kept it busy.  Or segfault in the aforementioned
294          * process...  Whom would you report that to?
295          */
296 }
297
298 enum {
299         Opt_degraded, Opt_subvol, Opt_subvolid, Opt_device, Opt_nodatasum,
300         Opt_nodatacow, Opt_max_inline, Opt_alloc_start, Opt_nobarrier, Opt_ssd,
301         Opt_nossd, Opt_ssd_spread, Opt_thread_pool, Opt_noacl, Opt_compress,
302         Opt_compress_type, Opt_compress_force, Opt_compress_force_type,
303         Opt_notreelog, Opt_ratio, Opt_flushoncommit, Opt_discard,
304         Opt_space_cache, Opt_clear_cache, Opt_user_subvol_rm_allowed,
305         Opt_enospc_debug, Opt_subvolrootid, Opt_defrag, Opt_inode_cache,
306         Opt_no_space_cache, Opt_recovery, Opt_skip_balance,
307         Opt_check_integrity, Opt_check_integrity_including_extent_data,
308         Opt_check_integrity_print_mask, Opt_fatal_errors,
309         Opt_err,
310 };
311
312 static match_table_t tokens = {
313         {Opt_degraded, "degraded"},
314         {Opt_subvol, "subvol=%s"},
315         {Opt_subvolid, "subvolid=%d"},
316         {Opt_device, "device=%s"},
317         {Opt_nodatasum, "nodatasum"},
318         {Opt_nodatacow, "nodatacow"},
319         {Opt_nobarrier, "nobarrier"},
320         {Opt_max_inline, "max_inline=%s"},
321         {Opt_alloc_start, "alloc_start=%s"},
322         {Opt_thread_pool, "thread_pool=%d"},
323         {Opt_compress, "compress"},
324         {Opt_compress_type, "compress=%s"},
325         {Opt_compress_force, "compress-force"},
326         {Opt_compress_force_type, "compress-force=%s"},
327         {Opt_ssd, "ssd"},
328         {Opt_ssd_spread, "ssd_spread"},
329         {Opt_nossd, "nossd"},
330         {Opt_noacl, "noacl"},
331         {Opt_notreelog, "notreelog"},
332         {Opt_flushoncommit, "flushoncommit"},
333         {Opt_ratio, "metadata_ratio=%d"},
334         {Opt_discard, "discard"},
335         {Opt_space_cache, "space_cache"},
336         {Opt_clear_cache, "clear_cache"},
337         {Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"},
338         {Opt_enospc_debug, "enospc_debug"},
339         {Opt_subvolrootid, "subvolrootid=%d"},
340         {Opt_defrag, "autodefrag"},
341         {Opt_inode_cache, "inode_cache"},
342         {Opt_no_space_cache, "nospace_cache"},
343         {Opt_recovery, "recovery"},
344         {Opt_skip_balance, "skip_balance"},
345         {Opt_check_integrity, "check_int"},
346         {Opt_check_integrity_including_extent_data, "check_int_data"},
347         {Opt_check_integrity_print_mask, "check_int_print_mask=%d"},
348         {Opt_fatal_errors, "fatal_errors=%s"},
349         {Opt_err, NULL},
350 };
351
352 /*
353  * Regular mount options parser.  Everything that is needed only when
354  * reading in a new superblock is parsed here.
355  * XXX JDM: This needs to be cleaned up for remount.
356  */
357 int btrfs_parse_options(struct btrfs_root *root, char *options)
358 {
359         struct btrfs_fs_info *info = root->fs_info;
360         substring_t args[MAX_OPT_ARGS];
361         char *p, *num, *orig = NULL;
362         u64 cache_gen;
363         int intarg;
364         int ret = 0;
365         char *compress_type;
366         bool compress_force = false;
367
368         cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
369         if (cache_gen)
370                 btrfs_set_opt(info->mount_opt, SPACE_CACHE);
371
372         if (!options)
373                 goto out;
374
375         /*
376          * strsep changes the string, duplicate it because parse_options
377          * gets called twice
378          */
379         options = kstrdup(options, GFP_NOFS);
380         if (!options)
381                 return -ENOMEM;
382
383         orig = options;
384
385         while ((p = strsep(&options, ",")) != NULL) {
386                 int token;
387                 if (!*p)
388                         continue;
389
390                 token = match_token(p, tokens, args);
391                 switch (token) {
392                 case Opt_degraded:
393                         printk(KERN_INFO "btrfs: allowing degraded mounts\n");
394                         btrfs_set_opt(info->mount_opt, DEGRADED);
395                         break;
396                 case Opt_subvol:
397                 case Opt_subvolid:
398                 case Opt_subvolrootid:
399                 case Opt_device:
400                         /*
401                          * These are parsed by btrfs_parse_early_options
402                          * and can be happily ignored here.
403                          */
404                         break;
405                 case Opt_nodatasum:
406                         printk(KERN_INFO "btrfs: setting nodatasum\n");
407                         btrfs_set_opt(info->mount_opt, NODATASUM);
408                         break;
409                 case Opt_nodatacow:
410                         printk(KERN_INFO "btrfs: setting nodatacow\n");
411                         btrfs_set_opt(info->mount_opt, NODATACOW);
412                         btrfs_set_opt(info->mount_opt, NODATASUM);
413                         break;
414                 case Opt_compress_force:
415                 case Opt_compress_force_type:
416                         compress_force = true;
417                 case Opt_compress:
418                 case Opt_compress_type:
419                         if (token == Opt_compress ||
420                             token == Opt_compress_force ||
421                             strcmp(args[0].from, "zlib") == 0) {
422                                 compress_type = "zlib";
423                                 info->compress_type = BTRFS_COMPRESS_ZLIB;
424                                 btrfs_set_opt(info->mount_opt, COMPRESS);
425                         } else if (strcmp(args[0].from, "lzo") == 0) {
426                                 compress_type = "lzo";
427                                 info->compress_type = BTRFS_COMPRESS_LZO;
428                                 btrfs_set_opt(info->mount_opt, COMPRESS);
429                                 btrfs_set_fs_incompat(info, COMPRESS_LZO);
430                         } else if (strncmp(args[0].from, "no", 2) == 0) {
431                                 compress_type = "no";
432                                 info->compress_type = BTRFS_COMPRESS_NONE;
433                                 btrfs_clear_opt(info->mount_opt, COMPRESS);
434                                 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
435                                 compress_force = false;
436                         } else {
437                                 ret = -EINVAL;
438                                 goto out;
439                         }
440
441                         if (compress_force) {
442                                 btrfs_set_opt(info->mount_opt, FORCE_COMPRESS);
443                                 pr_info("btrfs: force %s compression\n",
444                                         compress_type);
445                         } else
446                                 pr_info("btrfs: use %s compression\n",
447                                         compress_type);
448                         break;
449                 case Opt_ssd:
450                         printk(KERN_INFO "btrfs: use ssd allocation scheme\n");
451                         btrfs_set_opt(info->mount_opt, SSD);
452                         break;
453                 case Opt_ssd_spread:
454                         printk(KERN_INFO "btrfs: use spread ssd "
455                                "allocation scheme\n");
456                         btrfs_set_opt(info->mount_opt, SSD);
457                         btrfs_set_opt(info->mount_opt, SSD_SPREAD);
458                         break;
459                 case Opt_nossd:
460                         printk(KERN_INFO "btrfs: not using ssd allocation "
461                                "scheme\n");
462                         btrfs_set_opt(info->mount_opt, NOSSD);
463                         btrfs_clear_opt(info->mount_opt, SSD);
464                         btrfs_clear_opt(info->mount_opt, SSD_SPREAD);
465                         break;
466                 case Opt_nobarrier:
467                         printk(KERN_INFO "btrfs: turning off barriers\n");
468                         btrfs_set_opt(info->mount_opt, NOBARRIER);
469                         break;
470                 case Opt_thread_pool:
471                         intarg = 0;
472                         match_int(&args[0], &intarg);
473                         if (intarg)
474                                 info->thread_pool_size = intarg;
475                         break;
476                 case Opt_max_inline:
477                         num = match_strdup(&args[0]);
478                         if (num) {
479                                 info->max_inline = memparse(num, NULL);
480                                 kfree(num);
481
482                                 if (info->max_inline) {
483                                         info->max_inline = max_t(u64,
484                                                 info->max_inline,
485                                                 root->sectorsize);
486                                 }
487                                 printk(KERN_INFO "btrfs: max_inline at %llu\n",
488                                         (unsigned long long)info->max_inline);
489                         }
490                         break;
491                 case Opt_alloc_start:
492                         num = match_strdup(&args[0]);
493                         if (num) {
494                                 info->alloc_start = memparse(num, NULL);
495                                 kfree(num);
496                                 printk(KERN_INFO
497                                         "btrfs: allocations start at %llu\n",
498                                         (unsigned long long)info->alloc_start);
499                         }
500                         break;
501                 case Opt_noacl:
502                         root->fs_info->sb->s_flags &= ~MS_POSIXACL;
503                         break;
504                 case Opt_notreelog:
505                         printk(KERN_INFO "btrfs: disabling tree log\n");
506                         btrfs_set_opt(info->mount_opt, NOTREELOG);
507                         break;
508                 case Opt_flushoncommit:
509                         printk(KERN_INFO "btrfs: turning on flush-on-commit\n");
510                         btrfs_set_opt(info->mount_opt, FLUSHONCOMMIT);
511                         break;
512                 case Opt_ratio:
513                         intarg = 0;
514                         match_int(&args[0], &intarg);
515                         if (intarg) {
516                                 info->metadata_ratio = intarg;
517                                 printk(KERN_INFO "btrfs: metadata ratio %d\n",
518                                        info->metadata_ratio);
519                         }
520                         break;
521                 case Opt_discard:
522                         btrfs_set_opt(info->mount_opt, DISCARD);
523                         break;
524                 case Opt_space_cache:
525                         btrfs_set_opt(info->mount_opt, SPACE_CACHE);
526                         break;
527                 case Opt_no_space_cache:
528                         printk(KERN_INFO "btrfs: disabling disk space caching\n");
529                         btrfs_clear_opt(info->mount_opt, SPACE_CACHE);
530                         break;
531                 case Opt_inode_cache:
532                         printk(KERN_INFO "btrfs: enabling inode map caching\n");
533                         btrfs_set_opt(info->mount_opt, INODE_MAP_CACHE);
534                         break;
535                 case Opt_clear_cache:
536                         printk(KERN_INFO "btrfs: force clearing of disk cache\n");
537                         btrfs_set_opt(info->mount_opt, CLEAR_CACHE);
538                         break;
539                 case Opt_user_subvol_rm_allowed:
540                         btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED);
541                         break;
542                 case Opt_enospc_debug:
543                         btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG);
544                         break;
545                 case Opt_defrag:
546                         printk(KERN_INFO "btrfs: enabling auto defrag");
547                         btrfs_set_opt(info->mount_opt, AUTO_DEFRAG);
548                         break;
549                 case Opt_recovery:
550                         printk(KERN_INFO "btrfs: enabling auto recovery");
551                         btrfs_set_opt(info->mount_opt, RECOVERY);
552                         break;
553                 case Opt_skip_balance:
554                         btrfs_set_opt(info->mount_opt, SKIP_BALANCE);
555                         break;
556 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
557                 case Opt_check_integrity_including_extent_data:
558                         printk(KERN_INFO "btrfs: enabling check integrity"
559                                " including extent data\n");
560                         btrfs_set_opt(info->mount_opt,
561                                       CHECK_INTEGRITY_INCLUDING_EXTENT_DATA);
562                         btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
563                         break;
564                 case Opt_check_integrity:
565                         printk(KERN_INFO "btrfs: enabling check integrity\n");
566                         btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
567                         break;
568                 case Opt_check_integrity_print_mask:
569                         intarg = 0;
570                         match_int(&args[0], &intarg);
571                         if (intarg) {
572                                 info->check_integrity_print_mask = intarg;
573                                 printk(KERN_INFO "btrfs:"
574                                        " check_integrity_print_mask 0x%x\n",
575                                        info->check_integrity_print_mask);
576                         }
577                         break;
578 #else
579                 case Opt_check_integrity_including_extent_data:
580                 case Opt_check_integrity:
581                 case Opt_check_integrity_print_mask:
582                         printk(KERN_ERR "btrfs: support for check_integrity*"
583                                " not compiled in!\n");
584                         ret = -EINVAL;
585                         goto out;
586 #endif
587                 case Opt_fatal_errors:
588                         if (strcmp(args[0].from, "panic") == 0)
589                                 btrfs_set_opt(info->mount_opt,
590                                               PANIC_ON_FATAL_ERROR);
591                         else if (strcmp(args[0].from, "bug") == 0)
592                                 btrfs_clear_opt(info->mount_opt,
593                                               PANIC_ON_FATAL_ERROR);
594                         else {
595                                 ret = -EINVAL;
596                                 goto out;
597                         }
598                         break;
599                 case Opt_err:
600                         printk(KERN_INFO "btrfs: unrecognized mount option "
601                                "'%s'\n", p);
602                         ret = -EINVAL;
603                         goto out;
604                 default:
605                         break;
606                 }
607         }
608 out:
609         if (!ret && btrfs_test_opt(root, SPACE_CACHE))
610                 printk(KERN_INFO "btrfs: disk space caching is enabled\n");
611         kfree(orig);
612         return ret;
613 }
614
615 /*
616  * Parse mount options that are required early in the mount process.
617  *
618  * All other options will be parsed on much later in the mount process and
619  * only when we need to allocate a new super block.
620  */
621 static int btrfs_parse_early_options(const char *options, fmode_t flags,
622                 void *holder, char **subvol_name, u64 *subvol_objectid,
623                 u64 *subvol_rootid, struct btrfs_fs_devices **fs_devices)
624 {
625         substring_t args[MAX_OPT_ARGS];
626         char *device_name, *opts, *orig, *p;
627         int error = 0;
628         int intarg;
629
630         if (!options)
631                 return 0;
632
633         /*
634          * strsep changes the string, duplicate it because parse_options
635          * gets called twice
636          */
637         opts = kstrdup(options, GFP_KERNEL);
638         if (!opts)
639                 return -ENOMEM;
640         orig = opts;
641
642         while ((p = strsep(&opts, ",")) != NULL) {
643                 int token;
644                 if (!*p)
645                         continue;
646
647                 token = match_token(p, tokens, args);
648                 switch (token) {
649                 case Opt_subvol:
650                         kfree(*subvol_name);
651                         *subvol_name = match_strdup(&args[0]);
652                         break;
653                 case Opt_subvolid:
654                         intarg = 0;
655                         error = match_int(&args[0], &intarg);
656                         if (!error) {
657                                 /* we want the original fs_tree */
658                                 if (!intarg)
659                                         *subvol_objectid =
660                                                 BTRFS_FS_TREE_OBJECTID;
661                                 else
662                                         *subvol_objectid = intarg;
663                         }
664                         break;
665                 case Opt_subvolrootid:
666                         intarg = 0;
667                         error = match_int(&args[0], &intarg);
668                         if (!error) {
669                                 /* we want the original fs_tree */
670                                 if (!intarg)
671                                         *subvol_rootid =
672                                                 BTRFS_FS_TREE_OBJECTID;
673                                 else
674                                         *subvol_rootid = intarg;
675                         }
676                         break;
677                 case Opt_device:
678                         device_name = match_strdup(&args[0]);
679                         if (!device_name) {
680                                 error = -ENOMEM;
681                                 goto out;
682                         }
683                         error = btrfs_scan_one_device(device_name,
684                                         flags, holder, fs_devices);
685                         kfree(device_name);
686                         if (error)
687                                 goto out;
688                         break;
689                 default:
690                         break;
691                 }
692         }
693
694 out:
695         kfree(orig);
696         return error;
697 }
698
699 static struct dentry *get_default_root(struct super_block *sb,
700                                        u64 subvol_objectid)
701 {
702         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
703         struct btrfs_root *root = fs_info->tree_root;
704         struct btrfs_root *new_root;
705         struct btrfs_dir_item *di;
706         struct btrfs_path *path;
707         struct btrfs_key location;
708         struct inode *inode;
709         u64 dir_id;
710         int new = 0;
711
712         /*
713          * We have a specific subvol we want to mount, just setup location and
714          * go look up the root.
715          */
716         if (subvol_objectid) {
717                 location.objectid = subvol_objectid;
718                 location.type = BTRFS_ROOT_ITEM_KEY;
719                 location.offset = (u64)-1;
720                 goto find_root;
721         }
722
723         path = btrfs_alloc_path();
724         if (!path)
725                 return ERR_PTR(-ENOMEM);
726         path->leave_spinning = 1;
727
728         /*
729          * Find the "default" dir item which points to the root item that we
730          * will mount by default if we haven't been given a specific subvolume
731          * to mount.
732          */
733         dir_id = btrfs_super_root_dir(fs_info->super_copy);
734         di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0);
735         if (IS_ERR(di)) {
736                 btrfs_free_path(path);
737                 return ERR_CAST(di);
738         }
739         if (!di) {
740                 /*
741                  * Ok the default dir item isn't there.  This is weird since
742                  * it's always been there, but don't freak out, just try and
743                  * mount to root most subvolume.
744                  */
745                 btrfs_free_path(path);
746                 dir_id = BTRFS_FIRST_FREE_OBJECTID;
747                 new_root = fs_info->fs_root;
748                 goto setup_root;
749         }
750
751         btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
752         btrfs_free_path(path);
753
754 find_root:
755         new_root = btrfs_read_fs_root_no_name(fs_info, &location);
756         if (IS_ERR(new_root))
757                 return ERR_CAST(new_root);
758
759         if (btrfs_root_refs(&new_root->root_item) == 0)
760                 return ERR_PTR(-ENOENT);
761
762         dir_id = btrfs_root_dirid(&new_root->root_item);
763 setup_root:
764         location.objectid = dir_id;
765         location.type = BTRFS_INODE_ITEM_KEY;
766         location.offset = 0;
767
768         inode = btrfs_iget(sb, &location, new_root, &new);
769         if (IS_ERR(inode))
770                 return ERR_CAST(inode);
771
772         /*
773          * If we're just mounting the root most subvol put the inode and return
774          * a reference to the dentry.  We will have already gotten a reference
775          * to the inode in btrfs_fill_super so we're good to go.
776          */
777         if (!new && sb->s_root->d_inode == inode) {
778                 iput(inode);
779                 return dget(sb->s_root);
780         }
781
782         return d_obtain_alias(inode);
783 }
784
785 static int btrfs_fill_super(struct super_block *sb,
786                             struct btrfs_fs_devices *fs_devices,
787                             void *data, int silent)
788 {
789         struct inode *inode;
790         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
791         struct btrfs_key key;
792         int err;
793
794         sb->s_maxbytes = MAX_LFS_FILESIZE;
795         sb->s_magic = BTRFS_SUPER_MAGIC;
796         sb->s_op = &btrfs_super_ops;
797         sb->s_d_op = &btrfs_dentry_operations;
798         sb->s_export_op = &btrfs_export_ops;
799         sb->s_xattr = btrfs_xattr_handlers;
800         sb->s_time_gran = 1;
801 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
802         sb->s_flags |= MS_POSIXACL;
803 #endif
804         sb->s_flags |= MS_I_VERSION;
805         err = open_ctree(sb, fs_devices, (char *)data);
806         if (err) {
807                 printk("btrfs: open_ctree failed\n");
808                 return err;
809         }
810
811         key.objectid = BTRFS_FIRST_FREE_OBJECTID;
812         key.type = BTRFS_INODE_ITEM_KEY;
813         key.offset = 0;
814         inode = btrfs_iget(sb, &key, fs_info->fs_root, NULL);
815         if (IS_ERR(inode)) {
816                 err = PTR_ERR(inode);
817                 goto fail_close;
818         }
819
820         sb->s_root = d_make_root(inode);
821         if (!sb->s_root) {
822                 err = -ENOMEM;
823                 goto fail_close;
824         }
825
826         save_mount_options(sb, data);
827         cleancache_init_fs(sb);
828         sb->s_flags |= MS_ACTIVE;
829         return 0;
830
831 fail_close:
832         close_ctree(fs_info->tree_root);
833         return err;
834 }
835
836 int btrfs_sync_fs(struct super_block *sb, int wait)
837 {
838         struct btrfs_trans_handle *trans;
839         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
840         struct btrfs_root *root = fs_info->tree_root;
841
842         trace_btrfs_sync_fs(wait);
843
844         if (!wait) {
845                 filemap_flush(fs_info->btree_inode->i_mapping);
846                 return 0;
847         }
848
849         btrfs_wait_ordered_extents(root, 0, 0);
850
851         spin_lock(&fs_info->trans_lock);
852         if (!fs_info->running_transaction) {
853                 spin_unlock(&fs_info->trans_lock);
854                 return 0;
855         }
856         spin_unlock(&fs_info->trans_lock);
857
858         trans = btrfs_join_transaction(root);
859         if (IS_ERR(trans))
860                 return PTR_ERR(trans);
861         return btrfs_commit_transaction(trans, root);
862 }
863
864 static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry)
865 {
866         struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb);
867         struct btrfs_root *root = info->tree_root;
868         char *compress_type;
869
870         if (btrfs_test_opt(root, DEGRADED))
871                 seq_puts(seq, ",degraded");
872         if (btrfs_test_opt(root, NODATASUM))
873                 seq_puts(seq, ",nodatasum");
874         if (btrfs_test_opt(root, NODATACOW))
875                 seq_puts(seq, ",nodatacow");
876         if (btrfs_test_opt(root, NOBARRIER))
877                 seq_puts(seq, ",nobarrier");
878         if (info->max_inline != 8192 * 1024)
879                 seq_printf(seq, ",max_inline=%llu",
880                            (unsigned long long)info->max_inline);
881         if (info->alloc_start != 0)
882                 seq_printf(seq, ",alloc_start=%llu",
883                            (unsigned long long)info->alloc_start);
884         if (info->thread_pool_size !=  min_t(unsigned long,
885                                              num_online_cpus() + 2, 8))
886                 seq_printf(seq, ",thread_pool=%d", info->thread_pool_size);
887         if (btrfs_test_opt(root, COMPRESS)) {
888                 if (info->compress_type == BTRFS_COMPRESS_ZLIB)
889                         compress_type = "zlib";
890                 else
891                         compress_type = "lzo";
892                 if (btrfs_test_opt(root, FORCE_COMPRESS))
893                         seq_printf(seq, ",compress-force=%s", compress_type);
894                 else
895                         seq_printf(seq, ",compress=%s", compress_type);
896         }
897         if (btrfs_test_opt(root, NOSSD))
898                 seq_puts(seq, ",nossd");
899         if (btrfs_test_opt(root, SSD_SPREAD))
900                 seq_puts(seq, ",ssd_spread");
901         else if (btrfs_test_opt(root, SSD))
902                 seq_puts(seq, ",ssd");
903         if (btrfs_test_opt(root, NOTREELOG))
904                 seq_puts(seq, ",notreelog");
905         if (btrfs_test_opt(root, FLUSHONCOMMIT))
906                 seq_puts(seq, ",flushoncommit");
907         if (btrfs_test_opt(root, DISCARD))
908                 seq_puts(seq, ",discard");
909         if (!(root->fs_info->sb->s_flags & MS_POSIXACL))
910                 seq_puts(seq, ",noacl");
911         if (btrfs_test_opt(root, SPACE_CACHE))
912                 seq_puts(seq, ",space_cache");
913         else
914                 seq_puts(seq, ",nospace_cache");
915         if (btrfs_test_opt(root, CLEAR_CACHE))
916                 seq_puts(seq, ",clear_cache");
917         if (btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED))
918                 seq_puts(seq, ",user_subvol_rm_allowed");
919         if (btrfs_test_opt(root, ENOSPC_DEBUG))
920                 seq_puts(seq, ",enospc_debug");
921         if (btrfs_test_opt(root, AUTO_DEFRAG))
922                 seq_puts(seq, ",autodefrag");
923         if (btrfs_test_opt(root, INODE_MAP_CACHE))
924                 seq_puts(seq, ",inode_cache");
925         if (btrfs_test_opt(root, SKIP_BALANCE))
926                 seq_puts(seq, ",skip_balance");
927         if (btrfs_test_opt(root, PANIC_ON_FATAL_ERROR))
928                 seq_puts(seq, ",fatal_errors=panic");
929         return 0;
930 }
931
932 static int btrfs_test_super(struct super_block *s, void *data)
933 {
934         struct btrfs_fs_info *p = data;
935         struct btrfs_fs_info *fs_info = btrfs_sb(s);
936
937         return fs_info->fs_devices == p->fs_devices;
938 }
939
940 static int btrfs_set_super(struct super_block *s, void *data)
941 {
942         int err = set_anon_super(s, data);
943         if (!err)
944                 s->s_fs_info = data;
945         return err;
946 }
947
948 /*
949  * subvolumes are identified by ino 256
950  */
951 static inline int is_subvolume_inode(struct inode *inode)
952 {
953         if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
954                 return 1;
955         return 0;
956 }
957
958 /*
959  * This will strip out the subvol=%s argument for an argument string and add
960  * subvolid=0 to make sure we get the actual tree root for path walking to the
961  * subvol we want.
962  */
963 static char *setup_root_args(char *args)
964 {
965         unsigned len = strlen(args) + 2 + 1;
966         char *src, *dst, *buf;
967
968         /*
969          * We need the same args as before, but with this substitution:
970          * s!subvol=[^,]+!subvolid=0!
971          *
972          * Since the replacement string is up to 2 bytes longer than the
973          * original, allocate strlen(args) + 2 + 1 bytes.
974          */
975
976         src = strstr(args, "subvol=");
977         /* This shouldn't happen, but just in case.. */
978         if (!src)
979                 return NULL;
980
981         buf = dst = kmalloc(len, GFP_NOFS);
982         if (!buf)
983                 return NULL;
984
985         /*
986          * If the subvol= arg is not at the start of the string,
987          * copy whatever precedes it into buf.
988          */
989         if (src != args) {
990                 *src++ = '\0';
991                 strcpy(buf, args);
992                 dst += strlen(args);
993         }
994
995         strcpy(dst, "subvolid=0");
996         dst += strlen("subvolid=0");
997
998         /*
999          * If there is a "," after the original subvol=... string,
1000          * copy that suffix into our buffer.  Otherwise, we're done.
1001          */
1002         src = strchr(src, ',');
1003         if (src)
1004                 strcpy(dst, src);
1005
1006         return buf;
1007 }
1008
1009 static struct dentry *mount_subvol(const char *subvol_name, int flags,
1010                                    const char *device_name, char *data)
1011 {
1012         struct dentry *root;
1013         struct vfsmount *mnt;
1014         char *newargs;
1015
1016         newargs = setup_root_args(data);
1017         if (!newargs)
1018                 return ERR_PTR(-ENOMEM);
1019         mnt = vfs_kern_mount(&btrfs_fs_type, flags, device_name,
1020                              newargs);
1021         kfree(newargs);
1022         if (IS_ERR(mnt))
1023                 return ERR_CAST(mnt);
1024
1025         root = mount_subtree(mnt, subvol_name);
1026
1027         if (!IS_ERR(root) && !is_subvolume_inode(root->d_inode)) {
1028                 struct super_block *s = root->d_sb;
1029                 dput(root);
1030                 root = ERR_PTR(-EINVAL);
1031                 deactivate_locked_super(s);
1032                 printk(KERN_ERR "btrfs: '%s' is not a valid subvolume\n",
1033                                 subvol_name);
1034         }
1035
1036         return root;
1037 }
1038
1039 /*
1040  * Find a superblock for the given device / mount point.
1041  *
1042  * Note:  This is based on get_sb_bdev from fs/super.c with a few additions
1043  *        for multiple device setup.  Make sure to keep it in sync.
1044  */
1045 static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags,
1046                 const char *device_name, void *data)
1047 {
1048         struct block_device *bdev = NULL;
1049         struct super_block *s;
1050         struct dentry *root;
1051         struct btrfs_fs_devices *fs_devices = NULL;
1052         struct btrfs_fs_info *fs_info = NULL;
1053         fmode_t mode = FMODE_READ;
1054         char *subvol_name = NULL;
1055         u64 subvol_objectid = 0;
1056         u64 subvol_rootid = 0;
1057         int error = 0;
1058
1059         if (!(flags & MS_RDONLY))
1060                 mode |= FMODE_WRITE;
1061
1062         error = btrfs_parse_early_options(data, mode, fs_type,
1063                                           &subvol_name, &subvol_objectid,
1064                                           &subvol_rootid, &fs_devices);
1065         if (error) {
1066                 kfree(subvol_name);
1067                 return ERR_PTR(error);
1068         }
1069
1070         if (subvol_name) {
1071                 root = mount_subvol(subvol_name, flags, device_name, data);
1072                 kfree(subvol_name);
1073                 return root;
1074         }
1075
1076         error = btrfs_scan_one_device(device_name, mode, fs_type, &fs_devices);
1077         if (error)
1078                 return ERR_PTR(error);
1079
1080         /*
1081          * Setup a dummy root and fs_info for test/set super.  This is because
1082          * we don't actually fill this stuff out until open_ctree, but we need
1083          * it for searching for existing supers, so this lets us do that and
1084          * then open_ctree will properly initialize everything later.
1085          */
1086         fs_info = kzalloc(sizeof(struct btrfs_fs_info), GFP_NOFS);
1087         if (!fs_info)
1088                 return ERR_PTR(-ENOMEM);
1089
1090         fs_info->fs_devices = fs_devices;
1091
1092         fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS);
1093         fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS);
1094         if (!fs_info->super_copy || !fs_info->super_for_commit) {
1095                 error = -ENOMEM;
1096                 goto error_fs_info;
1097         }
1098
1099         error = btrfs_open_devices(fs_devices, mode, fs_type);
1100         if (error)
1101                 goto error_fs_info;
1102
1103         if (!(flags & MS_RDONLY) && fs_devices->rw_devices == 0) {
1104                 error = -EACCES;
1105                 goto error_close_devices;
1106         }
1107
1108         bdev = fs_devices->latest_bdev;
1109         s = sget(fs_type, btrfs_test_super, btrfs_set_super, flags | MS_NOSEC,
1110                  fs_info);
1111         if (IS_ERR(s)) {
1112                 error = PTR_ERR(s);
1113                 goto error_close_devices;
1114         }
1115
1116         if (s->s_root) {
1117                 btrfs_close_devices(fs_devices);
1118                 free_fs_info(fs_info);
1119                 if ((flags ^ s->s_flags) & MS_RDONLY)
1120                         error = -EBUSY;
1121         } else {
1122                 char b[BDEVNAME_SIZE];
1123
1124                 strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));
1125                 btrfs_sb(s)->bdev_holder = fs_type;
1126                 error = btrfs_fill_super(s, fs_devices, data,
1127                                          flags & MS_SILENT ? 1 : 0);
1128         }
1129
1130         root = !error ? get_default_root(s, subvol_objectid) : ERR_PTR(error);
1131         if (IS_ERR(root))
1132                 deactivate_locked_super(s);
1133
1134         return root;
1135
1136 error_close_devices:
1137         btrfs_close_devices(fs_devices);
1138 error_fs_info:
1139         free_fs_info(fs_info);
1140         return ERR_PTR(error);
1141 }
1142
1143 static void btrfs_set_max_workers(struct btrfs_workers *workers, int new_limit)
1144 {
1145         spin_lock_irq(&workers->lock);
1146         workers->max_workers = new_limit;
1147         spin_unlock_irq(&workers->lock);
1148 }
1149
1150 static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info,
1151                                      int new_pool_size, int old_pool_size)
1152 {
1153         if (new_pool_size == old_pool_size)
1154                 return;
1155
1156         fs_info->thread_pool_size = new_pool_size;
1157
1158         printk(KERN_INFO "btrfs: resize thread pool %d -> %d\n",
1159                old_pool_size, new_pool_size);
1160
1161         btrfs_set_max_workers(&fs_info->generic_worker, new_pool_size);
1162         btrfs_set_max_workers(&fs_info->workers, new_pool_size);
1163         btrfs_set_max_workers(&fs_info->delalloc_workers, new_pool_size);
1164         btrfs_set_max_workers(&fs_info->submit_workers, new_pool_size);
1165         btrfs_set_max_workers(&fs_info->caching_workers, new_pool_size);
1166         btrfs_set_max_workers(&fs_info->fixup_workers, new_pool_size);
1167         btrfs_set_max_workers(&fs_info->endio_workers, new_pool_size);
1168         btrfs_set_max_workers(&fs_info->endio_meta_workers, new_pool_size);
1169         btrfs_set_max_workers(&fs_info->endio_meta_write_workers, new_pool_size);
1170         btrfs_set_max_workers(&fs_info->endio_write_workers, new_pool_size);
1171         btrfs_set_max_workers(&fs_info->endio_freespace_worker, new_pool_size);
1172         btrfs_set_max_workers(&fs_info->delayed_workers, new_pool_size);
1173         btrfs_set_max_workers(&fs_info->readahead_workers, new_pool_size);
1174         btrfs_set_max_workers(&fs_info->scrub_workers, new_pool_size);
1175 }
1176
1177 static int btrfs_remount(struct super_block *sb, int *flags, char *data)
1178 {
1179         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1180         struct btrfs_root *root = fs_info->tree_root;
1181         unsigned old_flags = sb->s_flags;
1182         unsigned long old_opts = fs_info->mount_opt;
1183         unsigned long old_compress_type = fs_info->compress_type;
1184         u64 old_max_inline = fs_info->max_inline;
1185         u64 old_alloc_start = fs_info->alloc_start;
1186         int old_thread_pool_size = fs_info->thread_pool_size;
1187         unsigned int old_metadata_ratio = fs_info->metadata_ratio;
1188         int ret;
1189
1190         ret = btrfs_parse_options(root, data);
1191         if (ret) {
1192                 ret = -EINVAL;
1193                 goto restore;
1194         }
1195
1196         btrfs_resize_thread_pool(fs_info,
1197                 fs_info->thread_pool_size, old_thread_pool_size);
1198
1199         if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
1200                 return 0;
1201
1202         if (*flags & MS_RDONLY) {
1203                 sb->s_flags |= MS_RDONLY;
1204
1205                 ret = btrfs_commit_super(root);
1206                 if (ret)
1207                         goto restore;
1208         } else {
1209                 if (fs_info->fs_devices->rw_devices == 0) {
1210                         ret = -EACCES;
1211                         goto restore;
1212                 }
1213
1214                 if (btrfs_super_log_root(fs_info->super_copy) != 0) {
1215                         ret = -EINVAL;
1216                         goto restore;
1217                 }
1218
1219                 ret = btrfs_cleanup_fs_roots(fs_info);
1220                 if (ret)
1221                         goto restore;
1222
1223                 /* recover relocation */
1224                 ret = btrfs_recover_relocation(root);
1225                 if (ret)
1226                         goto restore;
1227
1228                 ret = btrfs_resume_balance_async(fs_info);
1229                 if (ret)
1230                         goto restore;
1231
1232                 sb->s_flags &= ~MS_RDONLY;
1233         }
1234
1235         return 0;
1236
1237 restore:
1238         /* We've hit an error - don't reset MS_RDONLY */
1239         if (sb->s_flags & MS_RDONLY)
1240                 old_flags |= MS_RDONLY;
1241         sb->s_flags = old_flags;
1242         fs_info->mount_opt = old_opts;
1243         fs_info->compress_type = old_compress_type;
1244         fs_info->max_inline = old_max_inline;
1245         fs_info->alloc_start = old_alloc_start;
1246         btrfs_resize_thread_pool(fs_info,
1247                 old_thread_pool_size, fs_info->thread_pool_size);
1248         fs_info->metadata_ratio = old_metadata_ratio;
1249         return ret;
1250 }
1251
1252 /* Used to sort the devices by max_avail(descending sort) */
1253 static int btrfs_cmp_device_free_bytes(const void *dev_info1,
1254                                        const void *dev_info2)
1255 {
1256         if (((struct btrfs_device_info *)dev_info1)->max_avail >
1257             ((struct btrfs_device_info *)dev_info2)->max_avail)
1258                 return -1;
1259         else if (((struct btrfs_device_info *)dev_info1)->max_avail <
1260                  ((struct btrfs_device_info *)dev_info2)->max_avail)
1261                 return 1;
1262         else
1263         return 0;
1264 }
1265
1266 /*
1267  * sort the devices by max_avail, in which max free extent size of each device
1268  * is stored.(Descending Sort)
1269  */
1270 static inline void btrfs_descending_sort_devices(
1271                                         struct btrfs_device_info *devices,
1272                                         size_t nr_devices)
1273 {
1274         sort(devices, nr_devices, sizeof(struct btrfs_device_info),
1275              btrfs_cmp_device_free_bytes, NULL);
1276 }
1277
1278 /*
1279  * The helper to calc the free space on the devices that can be used to store
1280  * file data.
1281  */
1282 static int btrfs_calc_avail_data_space(struct btrfs_root *root, u64 *free_bytes)
1283 {
1284         struct btrfs_fs_info *fs_info = root->fs_info;
1285         struct btrfs_device_info *devices_info;
1286         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
1287         struct btrfs_device *device;
1288         u64 skip_space;
1289         u64 type;
1290         u64 avail_space;
1291         u64 used_space;
1292         u64 min_stripe_size;
1293         int min_stripes = 1, num_stripes = 1;
1294         int i = 0, nr_devices;
1295         int ret;
1296
1297         nr_devices = fs_info->fs_devices->open_devices;
1298         BUG_ON(!nr_devices);
1299
1300         devices_info = kmalloc(sizeof(*devices_info) * nr_devices,
1301                                GFP_NOFS);
1302         if (!devices_info)
1303                 return -ENOMEM;
1304
1305         /* calc min stripe number for data space alloction */
1306         type = btrfs_get_alloc_profile(root, 1);
1307         if (type & BTRFS_BLOCK_GROUP_RAID0) {
1308                 min_stripes = 2;
1309                 num_stripes = nr_devices;
1310         } else if (type & BTRFS_BLOCK_GROUP_RAID1) {
1311                 min_stripes = 2;
1312                 num_stripes = 2;
1313         } else if (type & BTRFS_BLOCK_GROUP_RAID10) {
1314                 min_stripes = 4;
1315                 num_stripes = 4;
1316         }
1317
1318         if (type & BTRFS_BLOCK_GROUP_DUP)
1319                 min_stripe_size = 2 * BTRFS_STRIPE_LEN;
1320         else
1321                 min_stripe_size = BTRFS_STRIPE_LEN;
1322
1323         list_for_each_entry(device, &fs_devices->devices, dev_list) {
1324                 if (!device->in_fs_metadata || !device->bdev)
1325                         continue;
1326
1327                 avail_space = device->total_bytes - device->bytes_used;
1328
1329                 /* align with stripe_len */
1330                 do_div(avail_space, BTRFS_STRIPE_LEN);
1331                 avail_space *= BTRFS_STRIPE_LEN;
1332
1333                 /*
1334                  * In order to avoid overwritting the superblock on the drive,
1335                  * btrfs starts at an offset of at least 1MB when doing chunk
1336                  * allocation.
1337                  */
1338                 skip_space = 1024 * 1024;
1339
1340                 /* user can set the offset in fs_info->alloc_start. */
1341                 if (fs_info->alloc_start + BTRFS_STRIPE_LEN <=
1342                     device->total_bytes)
1343                         skip_space = max(fs_info->alloc_start, skip_space);
1344
1345                 /*
1346                  * btrfs can not use the free space in [0, skip_space - 1],
1347                  * we must subtract it from the total. In order to implement
1348                  * it, we account the used space in this range first.
1349                  */
1350                 ret = btrfs_account_dev_extents_size(device, 0, skip_space - 1,
1351                                                      &used_space);
1352                 if (ret) {
1353                         kfree(devices_info);
1354                         return ret;
1355                 }
1356
1357                 /* calc the free space in [0, skip_space - 1] */
1358                 skip_space -= used_space;
1359
1360                 /*
1361                  * we can use the free space in [0, skip_space - 1], subtract
1362                  * it from the total.
1363                  */
1364                 if (avail_space && avail_space >= skip_space)
1365                         avail_space -= skip_space;
1366                 else
1367                         avail_space = 0;
1368
1369                 if (avail_space < min_stripe_size)
1370                         continue;
1371
1372                 devices_info[i].dev = device;
1373                 devices_info[i].max_avail = avail_space;
1374
1375                 i++;
1376         }
1377
1378         nr_devices = i;
1379
1380         btrfs_descending_sort_devices(devices_info, nr_devices);
1381
1382         i = nr_devices - 1;
1383         avail_space = 0;
1384         while (nr_devices >= min_stripes) {
1385                 if (num_stripes > nr_devices)
1386                         num_stripes = nr_devices;
1387
1388                 if (devices_info[i].max_avail >= min_stripe_size) {
1389                         int j;
1390                         u64 alloc_size;
1391
1392                         avail_space += devices_info[i].max_avail * num_stripes;
1393                         alloc_size = devices_info[i].max_avail;
1394                         for (j = i + 1 - num_stripes; j <= i; j++)
1395                                 devices_info[j].max_avail -= alloc_size;
1396                 }
1397                 i--;
1398                 nr_devices--;
1399         }
1400
1401         kfree(devices_info);
1402         *free_bytes = avail_space;
1403         return 0;
1404 }
1405
1406 static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf)
1407 {
1408         struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
1409         struct btrfs_super_block *disk_super = fs_info->super_copy;
1410         struct list_head *head = &fs_info->space_info;
1411         struct btrfs_space_info *found;
1412         u64 total_used = 0;
1413         u64 total_free_data = 0;
1414         int bits = dentry->d_sb->s_blocksize_bits;
1415         __be32 *fsid = (__be32 *)fs_info->fsid;
1416         int ret;
1417
1418         /* holding chunk_muext to avoid allocating new chunks */
1419         mutex_lock(&fs_info->chunk_mutex);
1420         rcu_read_lock();
1421         list_for_each_entry_rcu(found, head, list) {
1422                 if (found->flags & BTRFS_BLOCK_GROUP_DATA) {
1423                         total_free_data += found->disk_total - found->disk_used;
1424                         total_free_data -=
1425                                 btrfs_account_ro_block_groups_free_space(found);
1426                 }
1427
1428                 total_used += found->disk_used;
1429         }
1430         rcu_read_unlock();
1431
1432         buf->f_namelen = BTRFS_NAME_LEN;
1433         buf->f_blocks = btrfs_super_total_bytes(disk_super) >> bits;
1434         buf->f_bfree = buf->f_blocks - (total_used >> bits);
1435         buf->f_bsize = dentry->d_sb->s_blocksize;
1436         buf->f_type = BTRFS_SUPER_MAGIC;
1437         buf->f_bavail = total_free_data;
1438         ret = btrfs_calc_avail_data_space(fs_info->tree_root, &total_free_data);
1439         if (ret) {
1440                 mutex_unlock(&fs_info->chunk_mutex);
1441                 return ret;
1442         }
1443         buf->f_bavail += total_free_data;
1444         buf->f_bavail = buf->f_bavail >> bits;
1445         mutex_unlock(&fs_info->chunk_mutex);
1446
1447         /* We treat it as constant endianness (it doesn't matter _which_)
1448            because we want the fsid to come out the same whether mounted
1449            on a big-endian or little-endian host */
1450         buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]);
1451         buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]);
1452         /* Mask in the root object ID too, to disambiguate subvols */
1453         buf->f_fsid.val[0] ^= BTRFS_I(dentry->d_inode)->root->objectid >> 32;
1454         buf->f_fsid.val[1] ^= BTRFS_I(dentry->d_inode)->root->objectid;
1455
1456         return 0;
1457 }
1458
1459 static void btrfs_kill_super(struct super_block *sb)
1460 {
1461         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1462         kill_anon_super(sb);
1463         free_fs_info(fs_info);
1464 }
1465
1466 static struct file_system_type btrfs_fs_type = {
1467         .owner          = THIS_MODULE,
1468         .name           = "btrfs",
1469         .mount          = btrfs_mount,
1470         .kill_sb        = btrfs_kill_super,
1471         .fs_flags       = FS_REQUIRES_DEV,
1472 };
1473
1474 /*
1475  * used by btrfsctl to scan devices when no FS is mounted
1476  */
1477 static long btrfs_control_ioctl(struct file *file, unsigned int cmd,
1478                                 unsigned long arg)
1479 {
1480         struct btrfs_ioctl_vol_args *vol;
1481         struct btrfs_fs_devices *fs_devices;
1482         int ret = -ENOTTY;
1483
1484         if (!capable(CAP_SYS_ADMIN))
1485                 return -EPERM;
1486
1487         vol = memdup_user((void __user *)arg, sizeof(*vol));
1488         if (IS_ERR(vol))
1489                 return PTR_ERR(vol);
1490
1491         switch (cmd) {
1492         case BTRFS_IOC_SCAN_DEV:
1493                 ret = btrfs_scan_one_device(vol->name, FMODE_READ,
1494                                             &btrfs_fs_type, &fs_devices);
1495                 break;
1496         case BTRFS_IOC_DEVICES_READY:
1497                 ret = btrfs_scan_one_device(vol->name, FMODE_READ,
1498                                             &btrfs_fs_type, &fs_devices);
1499                 if (ret)
1500                         break;
1501                 ret = !(fs_devices->num_devices == fs_devices->total_devices);
1502                 break;
1503         }
1504
1505         kfree(vol);
1506         return ret;
1507 }
1508
1509 static int btrfs_freeze(struct super_block *sb)
1510 {
1511         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1512         mutex_lock(&fs_info->transaction_kthread_mutex);
1513         mutex_lock(&fs_info->cleaner_mutex);
1514         return 0;
1515 }
1516
1517 static int btrfs_unfreeze(struct super_block *sb)
1518 {
1519         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1520         mutex_unlock(&fs_info->cleaner_mutex);
1521         mutex_unlock(&fs_info->transaction_kthread_mutex);
1522         return 0;
1523 }
1524
1525 static int btrfs_show_devname(struct seq_file *m, struct dentry *root)
1526 {
1527         struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb);
1528         struct btrfs_fs_devices *cur_devices;
1529         struct btrfs_device *dev, *first_dev = NULL;
1530         struct list_head *head;
1531         struct rcu_string *name;
1532
1533         mutex_lock(&fs_info->fs_devices->device_list_mutex);
1534         cur_devices = fs_info->fs_devices;
1535         while (cur_devices) {
1536                 head = &cur_devices->devices;
1537                 list_for_each_entry(dev, head, dev_list) {
1538                         if (dev->missing)
1539                                 continue;
1540                         if (!first_dev || dev->devid < first_dev->devid)
1541                                 first_dev = dev;
1542                 }
1543                 cur_devices = cur_devices->seed;
1544         }
1545
1546         if (first_dev) {
1547                 rcu_read_lock();
1548                 name = rcu_dereference(first_dev->name);
1549                 seq_escape(m, name->str, " \t\n\\");
1550                 rcu_read_unlock();
1551         } else {
1552                 WARN_ON(1);
1553         }
1554         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
1555         return 0;
1556 }
1557
1558 static const struct super_operations btrfs_super_ops = {
1559         .drop_inode     = btrfs_drop_inode,
1560         .evict_inode    = btrfs_evict_inode,
1561         .put_super      = btrfs_put_super,
1562         .sync_fs        = btrfs_sync_fs,
1563         .show_options   = btrfs_show_options,
1564         .show_devname   = btrfs_show_devname,
1565         .write_inode    = btrfs_write_inode,
1566         .alloc_inode    = btrfs_alloc_inode,
1567         .destroy_inode  = btrfs_destroy_inode,
1568         .statfs         = btrfs_statfs,
1569         .remount_fs     = btrfs_remount,
1570         .freeze_fs      = btrfs_freeze,
1571         .unfreeze_fs    = btrfs_unfreeze,
1572 };
1573
1574 static const struct file_operations btrfs_ctl_fops = {
1575         .unlocked_ioctl  = btrfs_control_ioctl,
1576         .compat_ioctl = btrfs_control_ioctl,
1577         .owner   = THIS_MODULE,
1578         .llseek = noop_llseek,
1579 };
1580
1581 static struct miscdevice btrfs_misc = {
1582         .minor          = BTRFS_MINOR,
1583         .name           = "btrfs-control",
1584         .fops           = &btrfs_ctl_fops
1585 };
1586
1587 MODULE_ALIAS_MISCDEV(BTRFS_MINOR);
1588 MODULE_ALIAS("devname:btrfs-control");
1589
1590 static int btrfs_interface_init(void)
1591 {
1592         return misc_register(&btrfs_misc);
1593 }
1594
1595 static void btrfs_interface_exit(void)
1596 {
1597         if (misc_deregister(&btrfs_misc) < 0)
1598                 printk(KERN_INFO "misc_deregister failed for control device");
1599 }
1600
1601 static int __init init_btrfs_fs(void)
1602 {
1603         int err;
1604
1605         err = btrfs_init_sysfs();
1606         if (err)
1607                 return err;
1608
1609         btrfs_init_compress();
1610
1611         err = btrfs_init_cachep();
1612         if (err)
1613                 goto free_compress;
1614
1615         err = extent_io_init();
1616         if (err)
1617                 goto free_cachep;
1618
1619         err = extent_map_init();
1620         if (err)
1621                 goto free_extent_io;
1622
1623         err = btrfs_delayed_inode_init();
1624         if (err)
1625                 goto free_extent_map;
1626
1627         err = btrfs_interface_init();
1628         if (err)
1629                 goto free_delayed_inode;
1630
1631         err = register_filesystem(&btrfs_fs_type);
1632         if (err)
1633                 goto unregister_ioctl;
1634
1635         btrfs_init_lockdep();
1636
1637         printk(KERN_INFO "%s loaded\n", BTRFS_BUILD_VERSION);
1638         return 0;
1639
1640 unregister_ioctl:
1641         btrfs_interface_exit();
1642 free_delayed_inode:
1643         btrfs_delayed_inode_exit();
1644 free_extent_map:
1645         extent_map_exit();
1646 free_extent_io:
1647         extent_io_exit();
1648 free_cachep:
1649         btrfs_destroy_cachep();
1650 free_compress:
1651         btrfs_exit_compress();
1652         btrfs_exit_sysfs();
1653         return err;
1654 }
1655
1656 static void __exit exit_btrfs_fs(void)
1657 {
1658         btrfs_destroy_cachep();
1659         btrfs_delayed_inode_exit();
1660         extent_map_exit();
1661         extent_io_exit();
1662         btrfs_interface_exit();
1663         unregister_filesystem(&btrfs_fs_type);
1664         btrfs_exit_sysfs();
1665         btrfs_cleanup_fs_uuids();
1666         btrfs_exit_compress();
1667 }
1668
1669 module_init(init_btrfs_fs)
1670 module_exit(exit_btrfs_fs)
1671
1672 MODULE_LICENSE("GPL");