2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/blkdev.h>
20 #include <linux/module.h>
21 #include <linux/buffer_head.h>
23 #include <linux/pagemap.h>
24 #include <linux/highmem.h>
25 #include <linux/time.h>
26 #include <linux/init.h>
27 #include <linux/seq_file.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mount.h>
31 #include <linux/mpage.h>
32 #include <linux/swap.h>
33 #include <linux/writeback.h>
34 #include <linux/statfs.h>
35 #include <linux/compat.h>
36 #include <linux/parser.h>
37 #include <linux/ctype.h>
38 #include <linux/namei.h>
39 #include <linux/miscdevice.h>
40 #include <linux/magic.h>
41 #include <linux/slab.h>
42 #include <linux/cleancache.h>
43 #include <linux/ratelimit.h>
45 #include "delayed-inode.h"
48 #include "transaction.h"
49 #include "btrfs_inode.h"
51 #include "print-tree.h"
56 #include "compression.h"
57 #include "rcu-string.h"
59 #define CREATE_TRACE_POINTS
60 #include <trace/events/btrfs.h>
62 static const struct super_operations btrfs_super_ops;
63 static struct file_system_type btrfs_fs_type;
65 static const char *btrfs_decode_error(struct btrfs_fs_info *fs_info, int errno,
72 errstr = "IO failure";
75 errstr = "Out of memory";
78 errstr = "Readonly filesystem";
81 errstr = "Object already exists";
85 if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
94 static void __save_error_info(struct btrfs_fs_info *fs_info)
97 * today we only save the error info into ram. Long term we'll
98 * also send it down to the disk
100 fs_info->fs_state = BTRFS_SUPER_FLAG_ERROR;
103 static void save_error_info(struct btrfs_fs_info *fs_info)
105 __save_error_info(fs_info);
108 /* btrfs handle error by forcing the filesystem readonly */
109 static void btrfs_handle_error(struct btrfs_fs_info *fs_info)
111 struct super_block *sb = fs_info->sb;
113 if (sb->s_flags & MS_RDONLY)
116 if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
117 sb->s_flags |= MS_RDONLY;
118 printk(KERN_INFO "btrfs is forced readonly\n");
119 __btrfs_scrub_cancel(fs_info);
126 * __btrfs_std_error decodes expected errors from the caller and
127 * invokes the approciate error response.
129 void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function,
130 unsigned int line, int errno, const char *fmt, ...)
132 struct super_block *sb = fs_info->sb;
139 * Special case: if the error is EROFS, and we're already
140 * under MS_RDONLY, then it is safe here.
142 if (errno == -EROFS && (sb->s_flags & MS_RDONLY))
145 errstr = btrfs_decode_error(fs_info, errno, nbuf);
147 struct va_format vaf = {
152 printk(KERN_CRIT "BTRFS error (device %s) in %s:%d: %s (%pV)\n",
153 sb->s_id, function, line, errstr, &vaf);
155 printk(KERN_CRIT "BTRFS error (device %s) in %s:%d: %s\n",
156 sb->s_id, function, line, errstr);
159 /* Don't go through full error handling during mount */
160 if (sb->s_flags & MS_BORN) {
161 save_error_info(fs_info);
162 btrfs_handle_error(fs_info);
167 static const char * const logtypes[] = {
178 void btrfs_printk(struct btrfs_fs_info *fs_info, const char *fmt, ...)
180 struct super_block *sb = fs_info->sb;
182 struct va_format vaf;
184 const char *type = logtypes[4];
189 kern_level = printk_get_level(fmt);
191 size_t size = printk_skip_level(fmt) - fmt;
192 memcpy(lvl, fmt, size);
195 type = logtypes[kern_level - '0'];
202 printk("%sBTRFS %s (device %s): %pV", lvl, type, sb->s_id, &vaf);
209 void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function,
210 unsigned int line, int errno, const char *fmt, ...)
212 struct super_block *sb = fs_info->sb;
215 * Special case: if the error is EROFS, and we're already
216 * under MS_RDONLY, then it is safe here.
218 if (errno == -EROFS && (sb->s_flags & MS_RDONLY))
221 /* Don't go through full error handling during mount */
222 if (sb->s_flags & MS_BORN) {
223 save_error_info(fs_info);
224 btrfs_handle_error(fs_info);
230 * We only mark the transaction aborted and then set the file system read-only.
231 * This will prevent new transactions from starting or trying to join this
234 * This means that error recovery at the call site is limited to freeing
235 * any local memory allocations and passing the error code up without
236 * further cleanup. The transaction should complete as it normally would
237 * in the call path but will return -EIO.
239 * We'll complete the cleanup in btrfs_end_transaction and
240 * btrfs_commit_transaction.
242 void __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
243 struct btrfs_root *root, const char *function,
244 unsigned int line, int errno)
246 WARN_ONCE(1, KERN_DEBUG "btrfs: Transaction aborted\n");
247 trans->aborted = errno;
248 /* Nothing used. The other threads that have joined this
249 * transaction may be able to continue. */
250 if (!trans->blocks_used) {
254 errstr = btrfs_decode_error(root->fs_info, errno, nbuf);
255 btrfs_printk(root->fs_info,
256 "%s:%d: Aborting unused transaction(%s).\n",
257 function, line, errstr);
260 trans->transaction->aborted = errno;
261 __btrfs_std_error(root->fs_info, function, line, errno, NULL);
264 * __btrfs_panic decodes unexpected, fatal errors from the caller,
265 * issues an alert, and either panics or BUGs, depending on mount options.
267 void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function,
268 unsigned int line, int errno, const char *fmt, ...)
271 char *s_id = "<unknown>";
273 struct va_format vaf = { .fmt = fmt };
277 s_id = fs_info->sb->s_id;
282 errstr = btrfs_decode_error(fs_info, errno, nbuf);
283 if (fs_info->mount_opt & BTRFS_MOUNT_PANIC_ON_FATAL_ERROR)
284 panic(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (%s)\n",
285 s_id, function, line, &vaf, errstr);
287 printk(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (%s)\n",
288 s_id, function, line, &vaf, errstr);
290 /* Caller calls BUG() */
293 static void btrfs_put_super(struct super_block *sb)
295 (void)close_ctree(btrfs_sb(sb)->tree_root);
296 /* FIXME: need to fix VFS to return error? */
297 /* AV: return it _where_? ->put_super() can be triggered by any number
298 * of async events, up to and including delivery of SIGKILL to the
299 * last process that kept it busy. Or segfault in the aforementioned
300 * process... Whom would you report that to?
305 Opt_degraded, Opt_subvol, Opt_subvolid, Opt_device, Opt_nodatasum,
306 Opt_nodatacow, Opt_max_inline, Opt_alloc_start, Opt_nobarrier, Opt_ssd,
307 Opt_nossd, Opt_ssd_spread, Opt_thread_pool, Opt_noacl, Opt_compress,
308 Opt_compress_type, Opt_compress_force, Opt_compress_force_type,
309 Opt_notreelog, Opt_ratio, Opt_flushoncommit, Opt_discard,
310 Opt_space_cache, Opt_clear_cache, Opt_user_subvol_rm_allowed,
311 Opt_enospc_debug, Opt_subvolrootid, Opt_defrag, Opt_inode_cache,
312 Opt_no_space_cache, Opt_recovery, Opt_skip_balance,
313 Opt_check_integrity, Opt_check_integrity_including_extent_data,
314 Opt_check_integrity_print_mask, Opt_fatal_errors,
318 static match_table_t tokens = {
319 {Opt_degraded, "degraded"},
320 {Opt_subvol, "subvol=%s"},
321 {Opt_subvolid, "subvolid=%d"},
322 {Opt_device, "device=%s"},
323 {Opt_nodatasum, "nodatasum"},
324 {Opt_nodatacow, "nodatacow"},
325 {Opt_nobarrier, "nobarrier"},
326 {Opt_max_inline, "max_inline=%s"},
327 {Opt_alloc_start, "alloc_start=%s"},
328 {Opt_thread_pool, "thread_pool=%d"},
329 {Opt_compress, "compress"},
330 {Opt_compress_type, "compress=%s"},
331 {Opt_compress_force, "compress-force"},
332 {Opt_compress_force_type, "compress-force=%s"},
334 {Opt_ssd_spread, "ssd_spread"},
335 {Opt_nossd, "nossd"},
336 {Opt_noacl, "noacl"},
337 {Opt_notreelog, "notreelog"},
338 {Opt_flushoncommit, "flushoncommit"},
339 {Opt_ratio, "metadata_ratio=%d"},
340 {Opt_discard, "discard"},
341 {Opt_space_cache, "space_cache"},
342 {Opt_clear_cache, "clear_cache"},
343 {Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"},
344 {Opt_enospc_debug, "enospc_debug"},
345 {Opt_subvolrootid, "subvolrootid=%d"},
346 {Opt_defrag, "autodefrag"},
347 {Opt_inode_cache, "inode_cache"},
348 {Opt_no_space_cache, "nospace_cache"},
349 {Opt_recovery, "recovery"},
350 {Opt_skip_balance, "skip_balance"},
351 {Opt_check_integrity, "check_int"},
352 {Opt_check_integrity_including_extent_data, "check_int_data"},
353 {Opt_check_integrity_print_mask, "check_int_print_mask=%d"},
354 {Opt_fatal_errors, "fatal_errors=%s"},
359 * Regular mount options parser. Everything that is needed only when
360 * reading in a new superblock is parsed here.
361 * XXX JDM: This needs to be cleaned up for remount.
363 int btrfs_parse_options(struct btrfs_root *root, char *options)
365 struct btrfs_fs_info *info = root->fs_info;
366 substring_t args[MAX_OPT_ARGS];
367 char *p, *num, *orig = NULL;
372 bool compress_force = false;
374 cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
376 btrfs_set_opt(info->mount_opt, SPACE_CACHE);
382 * strsep changes the string, duplicate it because parse_options
385 options = kstrdup(options, GFP_NOFS);
391 while ((p = strsep(&options, ",")) != NULL) {
396 token = match_token(p, tokens, args);
399 printk(KERN_INFO "btrfs: allowing degraded mounts\n");
400 btrfs_set_opt(info->mount_opt, DEGRADED);
404 case Opt_subvolrootid:
407 * These are parsed by btrfs_parse_early_options
408 * and can be happily ignored here.
412 printk(KERN_INFO "btrfs: setting nodatasum\n");
413 btrfs_set_opt(info->mount_opt, NODATASUM);
416 if (!btrfs_test_opt(root, COMPRESS) ||
417 !btrfs_test_opt(root, FORCE_COMPRESS)) {
418 printk(KERN_INFO "btrfs: setting nodatacow, compression disabled\n");
420 printk(KERN_INFO "btrfs: setting nodatacow\n");
422 info->compress_type = BTRFS_COMPRESS_NONE;
423 btrfs_clear_opt(info->mount_opt, COMPRESS);
424 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
425 btrfs_set_opt(info->mount_opt, NODATACOW);
426 btrfs_set_opt(info->mount_opt, NODATASUM);
428 case Opt_compress_force:
429 case Opt_compress_force_type:
430 compress_force = true;
432 case Opt_compress_type:
433 if (token == Opt_compress ||
434 token == Opt_compress_force ||
435 strcmp(args[0].from, "zlib") == 0) {
436 compress_type = "zlib";
437 info->compress_type = BTRFS_COMPRESS_ZLIB;
438 btrfs_set_opt(info->mount_opt, COMPRESS);
439 btrfs_clear_opt(info->mount_opt, NODATACOW);
440 btrfs_clear_opt(info->mount_opt, NODATASUM);
441 } else if (strcmp(args[0].from, "lzo") == 0) {
442 compress_type = "lzo";
443 info->compress_type = BTRFS_COMPRESS_LZO;
444 btrfs_set_opt(info->mount_opt, COMPRESS);
445 btrfs_clear_opt(info->mount_opt, NODATACOW);
446 btrfs_clear_opt(info->mount_opt, NODATASUM);
447 btrfs_set_fs_incompat(info, COMPRESS_LZO);
448 } else if (strncmp(args[0].from, "no", 2) == 0) {
449 compress_type = "no";
450 info->compress_type = BTRFS_COMPRESS_NONE;
451 btrfs_clear_opt(info->mount_opt, COMPRESS);
452 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
453 compress_force = false;
459 if (compress_force) {
460 btrfs_set_opt(info->mount_opt, FORCE_COMPRESS);
461 pr_info("btrfs: force %s compression\n",
464 pr_info("btrfs: use %s compression\n",
468 printk(KERN_INFO "btrfs: use ssd allocation scheme\n");
469 btrfs_set_opt(info->mount_opt, SSD);
472 printk(KERN_INFO "btrfs: use spread ssd "
473 "allocation scheme\n");
474 btrfs_set_opt(info->mount_opt, SSD);
475 btrfs_set_opt(info->mount_opt, SSD_SPREAD);
478 printk(KERN_INFO "btrfs: not using ssd allocation "
480 btrfs_set_opt(info->mount_opt, NOSSD);
481 btrfs_clear_opt(info->mount_opt, SSD);
482 btrfs_clear_opt(info->mount_opt, SSD_SPREAD);
485 printk(KERN_INFO "btrfs: turning off barriers\n");
486 btrfs_set_opt(info->mount_opt, NOBARRIER);
488 case Opt_thread_pool:
490 match_int(&args[0], &intarg);
492 info->thread_pool_size = intarg;
495 num = match_strdup(&args[0]);
497 info->max_inline = memparse(num, NULL);
500 if (info->max_inline) {
501 info->max_inline = max_t(u64,
505 printk(KERN_INFO "btrfs: max_inline at %llu\n",
506 (unsigned long long)info->max_inline);
509 case Opt_alloc_start:
510 num = match_strdup(&args[0]);
512 info->alloc_start = memparse(num, NULL);
515 "btrfs: allocations start at %llu\n",
516 (unsigned long long)info->alloc_start);
520 root->fs_info->sb->s_flags &= ~MS_POSIXACL;
523 printk(KERN_INFO "btrfs: disabling tree log\n");
524 btrfs_set_opt(info->mount_opt, NOTREELOG);
526 case Opt_flushoncommit:
527 printk(KERN_INFO "btrfs: turning on flush-on-commit\n");
528 btrfs_set_opt(info->mount_opt, FLUSHONCOMMIT);
532 match_int(&args[0], &intarg);
534 info->metadata_ratio = intarg;
535 printk(KERN_INFO "btrfs: metadata ratio %d\n",
536 info->metadata_ratio);
540 btrfs_set_opt(info->mount_opt, DISCARD);
542 case Opt_space_cache:
543 btrfs_set_opt(info->mount_opt, SPACE_CACHE);
545 case Opt_no_space_cache:
546 printk(KERN_INFO "btrfs: disabling disk space caching\n");
547 btrfs_clear_opt(info->mount_opt, SPACE_CACHE);
549 case Opt_inode_cache:
550 printk(KERN_INFO "btrfs: enabling inode map caching\n");
551 btrfs_set_opt(info->mount_opt, INODE_MAP_CACHE);
553 case Opt_clear_cache:
554 printk(KERN_INFO "btrfs: force clearing of disk cache\n");
555 btrfs_set_opt(info->mount_opt, CLEAR_CACHE);
557 case Opt_user_subvol_rm_allowed:
558 btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED);
560 case Opt_enospc_debug:
561 btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG);
564 printk(KERN_INFO "btrfs: enabling auto defrag\n");
565 btrfs_set_opt(info->mount_opt, AUTO_DEFRAG);
568 printk(KERN_INFO "btrfs: enabling auto recovery\n");
569 btrfs_set_opt(info->mount_opt, RECOVERY);
571 case Opt_skip_balance:
572 btrfs_set_opt(info->mount_opt, SKIP_BALANCE);
574 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
575 case Opt_check_integrity_including_extent_data:
576 printk(KERN_INFO "btrfs: enabling check integrity"
577 " including extent data\n");
578 btrfs_set_opt(info->mount_opt,
579 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA);
580 btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
582 case Opt_check_integrity:
583 printk(KERN_INFO "btrfs: enabling check integrity\n");
584 btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
586 case Opt_check_integrity_print_mask:
588 match_int(&args[0], &intarg);
590 info->check_integrity_print_mask = intarg;
591 printk(KERN_INFO "btrfs:"
592 " check_integrity_print_mask 0x%x\n",
593 info->check_integrity_print_mask);
597 case Opt_check_integrity_including_extent_data:
598 case Opt_check_integrity:
599 case Opt_check_integrity_print_mask:
600 printk(KERN_ERR "btrfs: support for check_integrity*"
601 " not compiled in!\n");
605 case Opt_fatal_errors:
606 if (strcmp(args[0].from, "panic") == 0)
607 btrfs_set_opt(info->mount_opt,
608 PANIC_ON_FATAL_ERROR);
609 else if (strcmp(args[0].from, "bug") == 0)
610 btrfs_clear_opt(info->mount_opt,
611 PANIC_ON_FATAL_ERROR);
618 printk(KERN_INFO "btrfs: unrecognized mount option "
627 if (!ret && btrfs_test_opt(root, SPACE_CACHE))
628 printk(KERN_INFO "btrfs: disk space caching is enabled\n");
634 * Parse mount options that are required early in the mount process.
636 * All other options will be parsed on much later in the mount process and
637 * only when we need to allocate a new super block.
639 static int btrfs_parse_early_options(const char *options, fmode_t flags,
640 void *holder, char **subvol_name, u64 *subvol_objectid,
641 u64 *subvol_rootid, struct btrfs_fs_devices **fs_devices)
643 substring_t args[MAX_OPT_ARGS];
644 char *device_name, *opts, *orig, *p;
652 * strsep changes the string, duplicate it because parse_options
655 opts = kstrdup(options, GFP_KERNEL);
660 while ((p = strsep(&opts, ",")) != NULL) {
665 token = match_token(p, tokens, args);
669 *subvol_name = match_strdup(&args[0]);
673 error = match_int(&args[0], &intarg);
675 /* we want the original fs_tree */
678 BTRFS_FS_TREE_OBJECTID;
680 *subvol_objectid = intarg;
683 case Opt_subvolrootid:
685 error = match_int(&args[0], &intarg);
687 /* we want the original fs_tree */
690 BTRFS_FS_TREE_OBJECTID;
692 *subvol_rootid = intarg;
696 device_name = match_strdup(&args[0]);
701 error = btrfs_scan_one_device(device_name,
702 flags, holder, fs_devices);
717 static struct dentry *get_default_root(struct super_block *sb,
720 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
721 struct btrfs_root *root = fs_info->tree_root;
722 struct btrfs_root *new_root;
723 struct btrfs_dir_item *di;
724 struct btrfs_path *path;
725 struct btrfs_key location;
731 * We have a specific subvol we want to mount, just setup location and
732 * go look up the root.
734 if (subvol_objectid) {
735 location.objectid = subvol_objectid;
736 location.type = BTRFS_ROOT_ITEM_KEY;
737 location.offset = (u64)-1;
741 path = btrfs_alloc_path();
743 return ERR_PTR(-ENOMEM);
744 path->leave_spinning = 1;
747 * Find the "default" dir item which points to the root item that we
748 * will mount by default if we haven't been given a specific subvolume
751 dir_id = btrfs_super_root_dir(fs_info->super_copy);
752 di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0);
754 btrfs_free_path(path);
759 * Ok the default dir item isn't there. This is weird since
760 * it's always been there, but don't freak out, just try and
761 * mount to root most subvolume.
763 btrfs_free_path(path);
764 dir_id = BTRFS_FIRST_FREE_OBJECTID;
765 new_root = fs_info->fs_root;
769 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
770 btrfs_free_path(path);
773 new_root = btrfs_read_fs_root_no_name(fs_info, &location);
774 if (IS_ERR(new_root))
775 return ERR_CAST(new_root);
777 if (btrfs_root_refs(&new_root->root_item) == 0)
778 return ERR_PTR(-ENOENT);
780 dir_id = btrfs_root_dirid(&new_root->root_item);
782 location.objectid = dir_id;
783 location.type = BTRFS_INODE_ITEM_KEY;
786 inode = btrfs_iget(sb, &location, new_root, &new);
788 return ERR_CAST(inode);
791 * If we're just mounting the root most subvol put the inode and return
792 * a reference to the dentry. We will have already gotten a reference
793 * to the inode in btrfs_fill_super so we're good to go.
795 if (!new && sb->s_root->d_inode == inode) {
797 return dget(sb->s_root);
800 return d_obtain_alias(inode);
803 static int btrfs_fill_super(struct super_block *sb,
804 struct btrfs_fs_devices *fs_devices,
805 void *data, int silent)
808 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
809 struct btrfs_key key;
812 sb->s_maxbytes = MAX_LFS_FILESIZE;
813 sb->s_magic = BTRFS_SUPER_MAGIC;
814 sb->s_op = &btrfs_super_ops;
815 sb->s_d_op = &btrfs_dentry_operations;
816 sb->s_export_op = &btrfs_export_ops;
817 sb->s_xattr = btrfs_xattr_handlers;
819 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
820 sb->s_flags |= MS_POSIXACL;
822 sb->s_flags |= MS_I_VERSION;
823 err = open_ctree(sb, fs_devices, (char *)data);
825 printk("btrfs: open_ctree failed\n");
829 key.objectid = BTRFS_FIRST_FREE_OBJECTID;
830 key.type = BTRFS_INODE_ITEM_KEY;
832 inode = btrfs_iget(sb, &key, fs_info->fs_root, NULL);
834 err = PTR_ERR(inode);
838 sb->s_root = d_make_root(inode);
844 save_mount_options(sb, data);
845 cleancache_init_fs(sb);
846 sb->s_flags |= MS_ACTIVE;
850 close_ctree(fs_info->tree_root);
854 int btrfs_sync_fs(struct super_block *sb, int wait)
856 struct btrfs_trans_handle *trans;
857 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
858 struct btrfs_root *root = fs_info->tree_root;
860 trace_btrfs_sync_fs(wait);
863 filemap_flush(fs_info->btree_inode->i_mapping);
867 btrfs_wait_ordered_extents(root, 0);
869 trans = btrfs_attach_transaction(root);
871 /* no transaction, don't bother */
872 if (PTR_ERR(trans) == -ENOENT)
874 return PTR_ERR(trans);
876 return btrfs_commit_transaction(trans, root);
879 static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry)
881 struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb);
882 struct btrfs_root *root = info->tree_root;
885 if (btrfs_test_opt(root, DEGRADED))
886 seq_puts(seq, ",degraded");
887 if (btrfs_test_opt(root, NODATASUM))
888 seq_puts(seq, ",nodatasum");
889 if (btrfs_test_opt(root, NODATACOW))
890 seq_puts(seq, ",nodatacow");
891 if (btrfs_test_opt(root, NOBARRIER))
892 seq_puts(seq, ",nobarrier");
893 if (info->max_inline != 8192 * 1024)
894 seq_printf(seq, ",max_inline=%llu",
895 (unsigned long long)info->max_inline);
896 if (info->alloc_start != 0)
897 seq_printf(seq, ",alloc_start=%llu",
898 (unsigned long long)info->alloc_start);
899 if (info->thread_pool_size != min_t(unsigned long,
900 num_online_cpus() + 2, 8))
901 seq_printf(seq, ",thread_pool=%d", info->thread_pool_size);
902 if (btrfs_test_opt(root, COMPRESS)) {
903 if (info->compress_type == BTRFS_COMPRESS_ZLIB)
904 compress_type = "zlib";
906 compress_type = "lzo";
907 if (btrfs_test_opt(root, FORCE_COMPRESS))
908 seq_printf(seq, ",compress-force=%s", compress_type);
910 seq_printf(seq, ",compress=%s", compress_type);
912 if (btrfs_test_opt(root, NOSSD))
913 seq_puts(seq, ",nossd");
914 if (btrfs_test_opt(root, SSD_SPREAD))
915 seq_puts(seq, ",ssd_spread");
916 else if (btrfs_test_opt(root, SSD))
917 seq_puts(seq, ",ssd");
918 if (btrfs_test_opt(root, NOTREELOG))
919 seq_puts(seq, ",notreelog");
920 if (btrfs_test_opt(root, FLUSHONCOMMIT))
921 seq_puts(seq, ",flushoncommit");
922 if (btrfs_test_opt(root, DISCARD))
923 seq_puts(seq, ",discard");
924 if (!(root->fs_info->sb->s_flags & MS_POSIXACL))
925 seq_puts(seq, ",noacl");
926 if (btrfs_test_opt(root, SPACE_CACHE))
927 seq_puts(seq, ",space_cache");
929 seq_puts(seq, ",nospace_cache");
930 if (btrfs_test_opt(root, CLEAR_CACHE))
931 seq_puts(seq, ",clear_cache");
932 if (btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED))
933 seq_puts(seq, ",user_subvol_rm_allowed");
934 if (btrfs_test_opt(root, ENOSPC_DEBUG))
935 seq_puts(seq, ",enospc_debug");
936 if (btrfs_test_opt(root, AUTO_DEFRAG))
937 seq_puts(seq, ",autodefrag");
938 if (btrfs_test_opt(root, INODE_MAP_CACHE))
939 seq_puts(seq, ",inode_cache");
940 if (btrfs_test_opt(root, SKIP_BALANCE))
941 seq_puts(seq, ",skip_balance");
942 if (btrfs_test_opt(root, PANIC_ON_FATAL_ERROR))
943 seq_puts(seq, ",fatal_errors=panic");
947 static int btrfs_test_super(struct super_block *s, void *data)
949 struct btrfs_fs_info *p = data;
950 struct btrfs_fs_info *fs_info = btrfs_sb(s);
952 return fs_info->fs_devices == p->fs_devices;
955 static int btrfs_set_super(struct super_block *s, void *data)
957 int err = set_anon_super(s, data);
964 * subvolumes are identified by ino 256
966 static inline int is_subvolume_inode(struct inode *inode)
968 if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
974 * This will strip out the subvol=%s argument for an argument string and add
975 * subvolid=0 to make sure we get the actual tree root for path walking to the
978 static char *setup_root_args(char *args)
980 unsigned len = strlen(args) + 2 + 1;
981 char *src, *dst, *buf;
984 * We need the same args as before, but with this substitution:
985 * s!subvol=[^,]+!subvolid=0!
987 * Since the replacement string is up to 2 bytes longer than the
988 * original, allocate strlen(args) + 2 + 1 bytes.
991 src = strstr(args, "subvol=");
992 /* This shouldn't happen, but just in case.. */
996 buf = dst = kmalloc(len, GFP_NOFS);
1001 * If the subvol= arg is not at the start of the string,
1002 * copy whatever precedes it into buf.
1007 dst += strlen(args);
1010 strcpy(dst, "subvolid=0");
1011 dst += strlen("subvolid=0");
1014 * If there is a "," after the original subvol=... string,
1015 * copy that suffix into our buffer. Otherwise, we're done.
1017 src = strchr(src, ',');
1024 static struct dentry *mount_subvol(const char *subvol_name, int flags,
1025 const char *device_name, char *data)
1027 struct dentry *root;
1028 struct vfsmount *mnt;
1031 newargs = setup_root_args(data);
1033 return ERR_PTR(-ENOMEM);
1034 mnt = vfs_kern_mount(&btrfs_fs_type, flags, device_name,
1038 return ERR_CAST(mnt);
1040 root = mount_subtree(mnt, subvol_name);
1042 if (!IS_ERR(root) && !is_subvolume_inode(root->d_inode)) {
1043 struct super_block *s = root->d_sb;
1045 root = ERR_PTR(-EINVAL);
1046 deactivate_locked_super(s);
1047 printk(KERN_ERR "btrfs: '%s' is not a valid subvolume\n",
1055 * Find a superblock for the given device / mount point.
1057 * Note: This is based on get_sb_bdev from fs/super.c with a few additions
1058 * for multiple device setup. Make sure to keep it in sync.
1060 static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags,
1061 const char *device_name, void *data)
1063 struct block_device *bdev = NULL;
1064 struct super_block *s;
1065 struct dentry *root;
1066 struct btrfs_fs_devices *fs_devices = NULL;
1067 struct btrfs_fs_info *fs_info = NULL;
1068 fmode_t mode = FMODE_READ;
1069 char *subvol_name = NULL;
1070 u64 subvol_objectid = 0;
1071 u64 subvol_rootid = 0;
1074 if (!(flags & MS_RDONLY))
1075 mode |= FMODE_WRITE;
1077 error = btrfs_parse_early_options(data, mode, fs_type,
1078 &subvol_name, &subvol_objectid,
1079 &subvol_rootid, &fs_devices);
1082 return ERR_PTR(error);
1086 root = mount_subvol(subvol_name, flags, device_name, data);
1091 error = btrfs_scan_one_device(device_name, mode, fs_type, &fs_devices);
1093 return ERR_PTR(error);
1096 * Setup a dummy root and fs_info for test/set super. This is because
1097 * we don't actually fill this stuff out until open_ctree, but we need
1098 * it for searching for existing supers, so this lets us do that and
1099 * then open_ctree will properly initialize everything later.
1101 fs_info = kzalloc(sizeof(struct btrfs_fs_info), GFP_NOFS);
1103 return ERR_PTR(-ENOMEM);
1105 fs_info->fs_devices = fs_devices;
1107 fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS);
1108 fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS);
1109 if (!fs_info->super_copy || !fs_info->super_for_commit) {
1114 error = btrfs_open_devices(fs_devices, mode, fs_type);
1118 if (!(flags & MS_RDONLY) && fs_devices->rw_devices == 0) {
1120 goto error_close_devices;
1123 bdev = fs_devices->latest_bdev;
1124 s = sget(fs_type, btrfs_test_super, btrfs_set_super, flags | MS_NOSEC,
1128 goto error_close_devices;
1132 btrfs_close_devices(fs_devices);
1133 free_fs_info(fs_info);
1134 if ((flags ^ s->s_flags) & MS_RDONLY)
1137 char b[BDEVNAME_SIZE];
1139 strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));
1140 btrfs_sb(s)->bdev_holder = fs_type;
1141 error = btrfs_fill_super(s, fs_devices, data,
1142 flags & MS_SILENT ? 1 : 0);
1145 root = !error ? get_default_root(s, subvol_objectid) : ERR_PTR(error);
1147 deactivate_locked_super(s);
1151 error_close_devices:
1152 btrfs_close_devices(fs_devices);
1154 free_fs_info(fs_info);
1155 return ERR_PTR(error);
1158 static void btrfs_set_max_workers(struct btrfs_workers *workers, int new_limit)
1160 spin_lock_irq(&workers->lock);
1161 workers->max_workers = new_limit;
1162 spin_unlock_irq(&workers->lock);
1165 static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info,
1166 int new_pool_size, int old_pool_size)
1168 if (new_pool_size == old_pool_size)
1171 fs_info->thread_pool_size = new_pool_size;
1173 printk(KERN_INFO "btrfs: resize thread pool %d -> %d\n",
1174 old_pool_size, new_pool_size);
1176 btrfs_set_max_workers(&fs_info->generic_worker, new_pool_size);
1177 btrfs_set_max_workers(&fs_info->workers, new_pool_size);
1178 btrfs_set_max_workers(&fs_info->delalloc_workers, new_pool_size);
1179 btrfs_set_max_workers(&fs_info->submit_workers, new_pool_size);
1180 btrfs_set_max_workers(&fs_info->caching_workers, new_pool_size);
1181 btrfs_set_max_workers(&fs_info->fixup_workers, new_pool_size);
1182 btrfs_set_max_workers(&fs_info->endio_workers, new_pool_size);
1183 btrfs_set_max_workers(&fs_info->endio_meta_workers, new_pool_size);
1184 btrfs_set_max_workers(&fs_info->endio_meta_write_workers, new_pool_size);
1185 btrfs_set_max_workers(&fs_info->endio_write_workers, new_pool_size);
1186 btrfs_set_max_workers(&fs_info->endio_freespace_worker, new_pool_size);
1187 btrfs_set_max_workers(&fs_info->delayed_workers, new_pool_size);
1188 btrfs_set_max_workers(&fs_info->readahead_workers, new_pool_size);
1189 btrfs_set_max_workers(&fs_info->scrub_workers, new_pool_size);
1192 static int btrfs_remount(struct super_block *sb, int *flags, char *data)
1194 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1195 struct btrfs_root *root = fs_info->tree_root;
1196 unsigned old_flags = sb->s_flags;
1197 unsigned long old_opts = fs_info->mount_opt;
1198 unsigned long old_compress_type = fs_info->compress_type;
1199 u64 old_max_inline = fs_info->max_inline;
1200 u64 old_alloc_start = fs_info->alloc_start;
1201 int old_thread_pool_size = fs_info->thread_pool_size;
1202 unsigned int old_metadata_ratio = fs_info->metadata_ratio;
1205 ret = btrfs_parse_options(root, data);
1211 btrfs_resize_thread_pool(fs_info,
1212 fs_info->thread_pool_size, old_thread_pool_size);
1214 if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
1217 if (*flags & MS_RDONLY) {
1218 sb->s_flags |= MS_RDONLY;
1220 ret = btrfs_commit_super(root);
1224 if (fs_info->fs_devices->rw_devices == 0) {
1229 if (btrfs_super_log_root(fs_info->super_copy) != 0) {
1234 ret = btrfs_cleanup_fs_roots(fs_info);
1238 /* recover relocation */
1239 ret = btrfs_recover_relocation(root);
1243 ret = btrfs_resume_balance_async(fs_info);
1247 sb->s_flags &= ~MS_RDONLY;
1253 /* We've hit an error - don't reset MS_RDONLY */
1254 if (sb->s_flags & MS_RDONLY)
1255 old_flags |= MS_RDONLY;
1256 sb->s_flags = old_flags;
1257 fs_info->mount_opt = old_opts;
1258 fs_info->compress_type = old_compress_type;
1259 fs_info->max_inline = old_max_inline;
1260 fs_info->alloc_start = old_alloc_start;
1261 btrfs_resize_thread_pool(fs_info,
1262 old_thread_pool_size, fs_info->thread_pool_size);
1263 fs_info->metadata_ratio = old_metadata_ratio;
1267 /* Used to sort the devices by max_avail(descending sort) */
1268 static int btrfs_cmp_device_free_bytes(const void *dev_info1,
1269 const void *dev_info2)
1271 if (((struct btrfs_device_info *)dev_info1)->max_avail >
1272 ((struct btrfs_device_info *)dev_info2)->max_avail)
1274 else if (((struct btrfs_device_info *)dev_info1)->max_avail <
1275 ((struct btrfs_device_info *)dev_info2)->max_avail)
1282 * sort the devices by max_avail, in which max free extent size of each device
1283 * is stored.(Descending Sort)
1285 static inline void btrfs_descending_sort_devices(
1286 struct btrfs_device_info *devices,
1289 sort(devices, nr_devices, sizeof(struct btrfs_device_info),
1290 btrfs_cmp_device_free_bytes, NULL);
1294 * The helper to calc the free space on the devices that can be used to store
1297 static int btrfs_calc_avail_data_space(struct btrfs_root *root, u64 *free_bytes)
1299 struct btrfs_fs_info *fs_info = root->fs_info;
1300 struct btrfs_device_info *devices_info;
1301 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
1302 struct btrfs_device *device;
1307 u64 min_stripe_size;
1308 int min_stripes = 1, num_stripes = 1;
1309 int i = 0, nr_devices;
1312 nr_devices = fs_info->fs_devices->open_devices;
1313 BUG_ON(!nr_devices);
1315 devices_info = kmalloc(sizeof(*devices_info) * nr_devices,
1320 /* calc min stripe number for data space alloction */
1321 type = btrfs_get_alloc_profile(root, 1);
1322 if (type & BTRFS_BLOCK_GROUP_RAID0) {
1324 num_stripes = nr_devices;
1325 } else if (type & BTRFS_BLOCK_GROUP_RAID1) {
1328 } else if (type & BTRFS_BLOCK_GROUP_RAID10) {
1333 if (type & BTRFS_BLOCK_GROUP_DUP)
1334 min_stripe_size = 2 * BTRFS_STRIPE_LEN;
1336 min_stripe_size = BTRFS_STRIPE_LEN;
1338 list_for_each_entry(device, &fs_devices->devices, dev_list) {
1339 if (!device->in_fs_metadata || !device->bdev)
1342 avail_space = device->total_bytes - device->bytes_used;
1344 /* align with stripe_len */
1345 do_div(avail_space, BTRFS_STRIPE_LEN);
1346 avail_space *= BTRFS_STRIPE_LEN;
1349 * In order to avoid overwritting the superblock on the drive,
1350 * btrfs starts at an offset of at least 1MB when doing chunk
1353 skip_space = 1024 * 1024;
1355 /* user can set the offset in fs_info->alloc_start. */
1356 if (fs_info->alloc_start + BTRFS_STRIPE_LEN <=
1357 device->total_bytes)
1358 skip_space = max(fs_info->alloc_start, skip_space);
1361 * btrfs can not use the free space in [0, skip_space - 1],
1362 * we must subtract it from the total. In order to implement
1363 * it, we account the used space in this range first.
1365 ret = btrfs_account_dev_extents_size(device, 0, skip_space - 1,
1368 kfree(devices_info);
1372 /* calc the free space in [0, skip_space - 1] */
1373 skip_space -= used_space;
1376 * we can use the free space in [0, skip_space - 1], subtract
1377 * it from the total.
1379 if (avail_space && avail_space >= skip_space)
1380 avail_space -= skip_space;
1384 if (avail_space < min_stripe_size)
1387 devices_info[i].dev = device;
1388 devices_info[i].max_avail = avail_space;
1395 btrfs_descending_sort_devices(devices_info, nr_devices);
1399 while (nr_devices >= min_stripes) {
1400 if (num_stripes > nr_devices)
1401 num_stripes = nr_devices;
1403 if (devices_info[i].max_avail >= min_stripe_size) {
1407 avail_space += devices_info[i].max_avail * num_stripes;
1408 alloc_size = devices_info[i].max_avail;
1409 for (j = i + 1 - num_stripes; j <= i; j++)
1410 devices_info[j].max_avail -= alloc_size;
1416 kfree(devices_info);
1417 *free_bytes = avail_space;
1421 static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf)
1423 struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
1424 struct btrfs_super_block *disk_super = fs_info->super_copy;
1425 struct list_head *head = &fs_info->space_info;
1426 struct btrfs_space_info *found;
1428 u64 total_free_data = 0;
1429 int bits = dentry->d_sb->s_blocksize_bits;
1430 __be32 *fsid = (__be32 *)fs_info->fsid;
1433 /* holding chunk_muext to avoid allocating new chunks */
1434 mutex_lock(&fs_info->chunk_mutex);
1436 list_for_each_entry_rcu(found, head, list) {
1437 if (found->flags & BTRFS_BLOCK_GROUP_DATA) {
1438 total_free_data += found->disk_total - found->disk_used;
1440 btrfs_account_ro_block_groups_free_space(found);
1443 total_used += found->disk_used;
1447 buf->f_namelen = BTRFS_NAME_LEN;
1448 buf->f_blocks = btrfs_super_total_bytes(disk_super) >> bits;
1449 buf->f_bfree = buf->f_blocks - (total_used >> bits);
1450 buf->f_bsize = dentry->d_sb->s_blocksize;
1451 buf->f_type = BTRFS_SUPER_MAGIC;
1452 buf->f_bavail = total_free_data;
1453 ret = btrfs_calc_avail_data_space(fs_info->tree_root, &total_free_data);
1455 mutex_unlock(&fs_info->chunk_mutex);
1458 buf->f_bavail += total_free_data;
1459 buf->f_bavail = buf->f_bavail >> bits;
1460 mutex_unlock(&fs_info->chunk_mutex);
1462 /* We treat it as constant endianness (it doesn't matter _which_)
1463 because we want the fsid to come out the same whether mounted
1464 on a big-endian or little-endian host */
1465 buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]);
1466 buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]);
1467 /* Mask in the root object ID too, to disambiguate subvols */
1468 buf->f_fsid.val[0] ^= BTRFS_I(dentry->d_inode)->root->objectid >> 32;
1469 buf->f_fsid.val[1] ^= BTRFS_I(dentry->d_inode)->root->objectid;
1474 static void btrfs_kill_super(struct super_block *sb)
1476 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1477 kill_anon_super(sb);
1478 free_fs_info(fs_info);
1481 static struct file_system_type btrfs_fs_type = {
1482 .owner = THIS_MODULE,
1484 .mount = btrfs_mount,
1485 .kill_sb = btrfs_kill_super,
1486 .fs_flags = FS_REQUIRES_DEV,
1490 * used by btrfsctl to scan devices when no FS is mounted
1492 static long btrfs_control_ioctl(struct file *file, unsigned int cmd,
1495 struct btrfs_ioctl_vol_args *vol;
1496 struct btrfs_fs_devices *fs_devices;
1499 if (!capable(CAP_SYS_ADMIN))
1502 vol = memdup_user((void __user *)arg, sizeof(*vol));
1504 return PTR_ERR(vol);
1507 case BTRFS_IOC_SCAN_DEV:
1508 ret = btrfs_scan_one_device(vol->name, FMODE_READ,
1509 &btrfs_fs_type, &fs_devices);
1511 case BTRFS_IOC_DEVICES_READY:
1512 ret = btrfs_scan_one_device(vol->name, FMODE_READ,
1513 &btrfs_fs_type, &fs_devices);
1516 ret = !(fs_devices->num_devices == fs_devices->total_devices);
1524 static int btrfs_freeze(struct super_block *sb)
1526 struct btrfs_trans_handle *trans;
1527 struct btrfs_root *root = btrfs_sb(sb)->tree_root;
1529 trans = btrfs_attach_transaction(root);
1530 if (IS_ERR(trans)) {
1531 /* no transaction, don't bother */
1532 if (PTR_ERR(trans) == -ENOENT)
1534 return PTR_ERR(trans);
1536 return btrfs_commit_transaction(trans, root);
1539 static int btrfs_unfreeze(struct super_block *sb)
1544 static int btrfs_show_devname(struct seq_file *m, struct dentry *root)
1546 struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb);
1547 struct btrfs_fs_devices *cur_devices;
1548 struct btrfs_device *dev, *first_dev = NULL;
1549 struct list_head *head;
1550 struct rcu_string *name;
1552 mutex_lock(&fs_info->fs_devices->device_list_mutex);
1553 cur_devices = fs_info->fs_devices;
1554 while (cur_devices) {
1555 head = &cur_devices->devices;
1556 list_for_each_entry(dev, head, dev_list) {
1559 if (!first_dev || dev->devid < first_dev->devid)
1562 cur_devices = cur_devices->seed;
1567 name = rcu_dereference(first_dev->name);
1568 seq_escape(m, name->str, " \t\n\\");
1573 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
1577 static const struct super_operations btrfs_super_ops = {
1578 .drop_inode = btrfs_drop_inode,
1579 .evict_inode = btrfs_evict_inode,
1580 .put_super = btrfs_put_super,
1581 .sync_fs = btrfs_sync_fs,
1582 .show_options = btrfs_show_options,
1583 .show_devname = btrfs_show_devname,
1584 .write_inode = btrfs_write_inode,
1585 .alloc_inode = btrfs_alloc_inode,
1586 .destroy_inode = btrfs_destroy_inode,
1587 .statfs = btrfs_statfs,
1588 .remount_fs = btrfs_remount,
1589 .freeze_fs = btrfs_freeze,
1590 .unfreeze_fs = btrfs_unfreeze,
1593 static const struct file_operations btrfs_ctl_fops = {
1594 .unlocked_ioctl = btrfs_control_ioctl,
1595 .compat_ioctl = btrfs_control_ioctl,
1596 .owner = THIS_MODULE,
1597 .llseek = noop_llseek,
1600 static struct miscdevice btrfs_misc = {
1601 .minor = BTRFS_MINOR,
1602 .name = "btrfs-control",
1603 .fops = &btrfs_ctl_fops
1606 MODULE_ALIAS_MISCDEV(BTRFS_MINOR);
1607 MODULE_ALIAS("devname:btrfs-control");
1609 static int btrfs_interface_init(void)
1611 return misc_register(&btrfs_misc);
1614 static void btrfs_interface_exit(void)
1616 if (misc_deregister(&btrfs_misc) < 0)
1617 printk(KERN_INFO "btrfs: misc_deregister failed for control device\n");
1620 static int __init init_btrfs_fs(void)
1624 err = btrfs_init_sysfs();
1628 btrfs_init_compress();
1630 err = btrfs_init_cachep();
1634 err = extent_io_init();
1638 err = extent_map_init();
1640 goto free_extent_io;
1642 err = ordered_data_init();
1644 goto free_extent_map;
1646 err = btrfs_delayed_inode_init();
1648 goto free_ordered_data;
1650 err = btrfs_interface_init();
1652 goto free_delayed_inode;
1654 err = register_filesystem(&btrfs_fs_type);
1656 goto unregister_ioctl;
1658 btrfs_init_lockdep();
1660 printk(KERN_INFO "%s loaded\n", BTRFS_BUILD_VERSION);
1664 btrfs_interface_exit();
1666 btrfs_delayed_inode_exit();
1668 ordered_data_exit();
1674 btrfs_destroy_cachep();
1676 btrfs_exit_compress();
1681 static void __exit exit_btrfs_fs(void)
1683 btrfs_destroy_cachep();
1684 btrfs_delayed_inode_exit();
1685 ordered_data_exit();
1688 btrfs_interface_exit();
1689 unregister_filesystem(&btrfs_fs_type);
1691 btrfs_cleanup_fs_uuids();
1692 btrfs_exit_compress();
1695 module_init(init_btrfs_fs)
1696 module_exit(exit_btrfs_fs)
1698 MODULE_LICENSE("GPL");