]> git.karo-electronics.de Git - mv-sheeva.git/blob - fs/btrfs/super.c
Merge branch 'cleanups_and_fixes' into inode_numbers
[mv-sheeva.git] / fs / btrfs / super.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/blkdev.h>
20 #include <linux/module.h>
21 #include <linux/buffer_head.h>
22 #include <linux/fs.h>
23 #include <linux/pagemap.h>
24 #include <linux/highmem.h>
25 #include <linux/time.h>
26 #include <linux/init.h>
27 #include <linux/seq_file.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mount.h>
31 #include <linux/mpage.h>
32 #include <linux/swap.h>
33 #include <linux/writeback.h>
34 #include <linux/statfs.h>
35 #include <linux/compat.h>
36 #include <linux/parser.h>
37 #include <linux/ctype.h>
38 #include <linux/namei.h>
39 #include <linux/miscdevice.h>
40 #include <linux/magic.h>
41 #include <linux/slab.h>
42 #include "compat.h"
43 #include "delayed-inode.h"
44 #include "ctree.h"
45 #include "disk-io.h"
46 #include "transaction.h"
47 #include "btrfs_inode.h"
48 #include "ioctl.h"
49 #include "print-tree.h"
50 #include "xattr.h"
51 #include "volumes.h"
52 #include "version.h"
53 #include "export.h"
54 #include "compression.h"
55
56 #define CREATE_TRACE_POINTS
57 #include <trace/events/btrfs.h>
58
59 static const struct super_operations btrfs_super_ops;
60
61 static const char *btrfs_decode_error(struct btrfs_fs_info *fs_info, int errno,
62                                       char nbuf[16])
63 {
64         char *errstr = NULL;
65
66         switch (errno) {
67         case -EIO:
68                 errstr = "IO failure";
69                 break;
70         case -ENOMEM:
71                 errstr = "Out of memory";
72                 break;
73         case -EROFS:
74                 errstr = "Readonly filesystem";
75                 break;
76         default:
77                 if (nbuf) {
78                         if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
79                                 errstr = nbuf;
80                 }
81                 break;
82         }
83
84         return errstr;
85 }
86
87 static void __save_error_info(struct btrfs_fs_info *fs_info)
88 {
89         /*
90          * today we only save the error info into ram.  Long term we'll
91          * also send it down to the disk
92          */
93         fs_info->fs_state = BTRFS_SUPER_FLAG_ERROR;
94 }
95
96 /* NOTE:
97  *      We move write_super stuff at umount in order to avoid deadlock
98  *      for umount hold all lock.
99  */
100 static void save_error_info(struct btrfs_fs_info *fs_info)
101 {
102         __save_error_info(fs_info);
103 }
104
105 /* btrfs handle error by forcing the filesystem readonly */
106 static void btrfs_handle_error(struct btrfs_fs_info *fs_info)
107 {
108         struct super_block *sb = fs_info->sb;
109
110         if (sb->s_flags & MS_RDONLY)
111                 return;
112
113         if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
114                 sb->s_flags |= MS_RDONLY;
115                 printk(KERN_INFO "btrfs is forced readonly\n");
116         }
117 }
118
119 /*
120  * __btrfs_std_error decodes expected errors from the caller and
121  * invokes the approciate error response.
122  */
123 void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function,
124                      unsigned int line, int errno)
125 {
126         struct super_block *sb = fs_info->sb;
127         char nbuf[16];
128         const char *errstr;
129
130         /*
131          * Special case: if the error is EROFS, and we're already
132          * under MS_RDONLY, then it is safe here.
133          */
134         if (errno == -EROFS && (sb->s_flags & MS_RDONLY))
135                 return;
136
137         errstr = btrfs_decode_error(fs_info, errno, nbuf);
138         printk(KERN_CRIT "BTRFS error (device %s) in %s:%d: %s\n",
139                 sb->s_id, function, line, errstr);
140         save_error_info(fs_info);
141
142         btrfs_handle_error(fs_info);
143 }
144
145 static void btrfs_put_super(struct super_block *sb)
146 {
147         struct btrfs_root *root = btrfs_sb(sb);
148         int ret;
149
150         ret = close_ctree(root);
151         sb->s_fs_info = NULL;
152
153         (void)ret; /* FIXME: need to fix VFS to return error? */
154 }
155
156 enum {
157         Opt_degraded, Opt_subvol, Opt_subvolid, Opt_device, Opt_nodatasum,
158         Opt_nodatacow, Opt_max_inline, Opt_alloc_start, Opt_nobarrier, Opt_ssd,
159         Opt_nossd, Opt_ssd_spread, Opt_thread_pool, Opt_noacl, Opt_compress,
160         Opt_compress_type, Opt_compress_force, Opt_compress_force_type,
161         Opt_notreelog, Opt_ratio, Opt_flushoncommit, Opt_discard,
162         Opt_space_cache, Opt_clear_cache, Opt_user_subvol_rm_allowed,
163         Opt_enospc_debug, Opt_subvolrootid, Opt_err,
164 };
165
166 static match_table_t tokens = {
167         {Opt_degraded, "degraded"},
168         {Opt_subvol, "subvol=%s"},
169         {Opt_subvolid, "subvolid=%d"},
170         {Opt_device, "device=%s"},
171         {Opt_nodatasum, "nodatasum"},
172         {Opt_nodatacow, "nodatacow"},
173         {Opt_nobarrier, "nobarrier"},
174         {Opt_max_inline, "max_inline=%s"},
175         {Opt_alloc_start, "alloc_start=%s"},
176         {Opt_thread_pool, "thread_pool=%d"},
177         {Opt_compress, "compress"},
178         {Opt_compress_type, "compress=%s"},
179         {Opt_compress_force, "compress-force"},
180         {Opt_compress_force_type, "compress-force=%s"},
181         {Opt_ssd, "ssd"},
182         {Opt_ssd_spread, "ssd_spread"},
183         {Opt_nossd, "nossd"},
184         {Opt_noacl, "noacl"},
185         {Opt_notreelog, "notreelog"},
186         {Opt_flushoncommit, "flushoncommit"},
187         {Opt_ratio, "metadata_ratio=%d"},
188         {Opt_discard, "discard"},
189         {Opt_space_cache, "space_cache"},
190         {Opt_clear_cache, "clear_cache"},
191         {Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"},
192         {Opt_enospc_debug, "enospc_debug"},
193         {Opt_subvolrootid, "subvolrootid=%d"},
194         {Opt_err, NULL},
195 };
196
197 /*
198  * Regular mount options parser.  Everything that is needed only when
199  * reading in a new superblock is parsed here.
200  */
201 int btrfs_parse_options(struct btrfs_root *root, char *options)
202 {
203         struct btrfs_fs_info *info = root->fs_info;
204         substring_t args[MAX_OPT_ARGS];
205         char *p, *num, *orig;
206         int intarg;
207         int ret = 0;
208         char *compress_type;
209         bool compress_force = false;
210
211         if (!options)
212                 return 0;
213
214         /*
215          * strsep changes the string, duplicate it because parse_options
216          * gets called twice
217          */
218         options = kstrdup(options, GFP_NOFS);
219         if (!options)
220                 return -ENOMEM;
221
222         orig = options;
223
224         while ((p = strsep(&options, ",")) != NULL) {
225                 int token;
226                 if (!*p)
227                         continue;
228
229                 token = match_token(p, tokens, args);
230                 switch (token) {
231                 case Opt_degraded:
232                         printk(KERN_INFO "btrfs: allowing degraded mounts\n");
233                         btrfs_set_opt(info->mount_opt, DEGRADED);
234                         break;
235                 case Opt_subvol:
236                 case Opt_subvolid:
237                 case Opt_subvolrootid:
238                 case Opt_device:
239                         /*
240                          * These are parsed by btrfs_parse_early_options
241                          * and can be happily ignored here.
242                          */
243                         break;
244                 case Opt_nodatasum:
245                         printk(KERN_INFO "btrfs: setting nodatasum\n");
246                         btrfs_set_opt(info->mount_opt, NODATASUM);
247                         break;
248                 case Opt_nodatacow:
249                         printk(KERN_INFO "btrfs: setting nodatacow\n");
250                         btrfs_set_opt(info->mount_opt, NODATACOW);
251                         btrfs_set_opt(info->mount_opt, NODATASUM);
252                         break;
253                 case Opt_compress_force:
254                 case Opt_compress_force_type:
255                         compress_force = true;
256                 case Opt_compress:
257                 case Opt_compress_type:
258                         if (token == Opt_compress ||
259                             token == Opt_compress_force ||
260                             strcmp(args[0].from, "zlib") == 0) {
261                                 compress_type = "zlib";
262                                 info->compress_type = BTRFS_COMPRESS_ZLIB;
263                         } else if (strcmp(args[0].from, "lzo") == 0) {
264                                 compress_type = "lzo";
265                                 info->compress_type = BTRFS_COMPRESS_LZO;
266                         } else {
267                                 ret = -EINVAL;
268                                 goto out;
269                         }
270
271                         btrfs_set_opt(info->mount_opt, COMPRESS);
272                         if (compress_force) {
273                                 btrfs_set_opt(info->mount_opt, FORCE_COMPRESS);
274                                 pr_info("btrfs: force %s compression\n",
275                                         compress_type);
276                         } else
277                                 pr_info("btrfs: use %s compression\n",
278                                         compress_type);
279                         break;
280                 case Opt_ssd:
281                         printk(KERN_INFO "btrfs: use ssd allocation scheme\n");
282                         btrfs_set_opt(info->mount_opt, SSD);
283                         break;
284                 case Opt_ssd_spread:
285                         printk(KERN_INFO "btrfs: use spread ssd "
286                                "allocation scheme\n");
287                         btrfs_set_opt(info->mount_opt, SSD);
288                         btrfs_set_opt(info->mount_opt, SSD_SPREAD);
289                         break;
290                 case Opt_nossd:
291                         printk(KERN_INFO "btrfs: not using ssd allocation "
292                                "scheme\n");
293                         btrfs_set_opt(info->mount_opt, NOSSD);
294                         btrfs_clear_opt(info->mount_opt, SSD);
295                         btrfs_clear_opt(info->mount_opt, SSD_SPREAD);
296                         break;
297                 case Opt_nobarrier:
298                         printk(KERN_INFO "btrfs: turning off barriers\n");
299                         btrfs_set_opt(info->mount_opt, NOBARRIER);
300                         break;
301                 case Opt_thread_pool:
302                         intarg = 0;
303                         match_int(&args[0], &intarg);
304                         if (intarg) {
305                                 info->thread_pool_size = intarg;
306                                 printk(KERN_INFO "btrfs: thread pool %d\n",
307                                        info->thread_pool_size);
308                         }
309                         break;
310                 case Opt_max_inline:
311                         num = match_strdup(&args[0]);
312                         if (num) {
313                                 info->max_inline = memparse(num, NULL);
314                                 kfree(num);
315
316                                 if (info->max_inline) {
317                                         info->max_inline = max_t(u64,
318                                                 info->max_inline,
319                                                 root->sectorsize);
320                                 }
321                                 printk(KERN_INFO "btrfs: max_inline at %llu\n",
322                                         (unsigned long long)info->max_inline);
323                         }
324                         break;
325                 case Opt_alloc_start:
326                         num = match_strdup(&args[0]);
327                         if (num) {
328                                 info->alloc_start = memparse(num, NULL);
329                                 kfree(num);
330                                 printk(KERN_INFO
331                                         "btrfs: allocations start at %llu\n",
332                                         (unsigned long long)info->alloc_start);
333                         }
334                         break;
335                 case Opt_noacl:
336                         root->fs_info->sb->s_flags &= ~MS_POSIXACL;
337                         break;
338                 case Opt_notreelog:
339                         printk(KERN_INFO "btrfs: disabling tree log\n");
340                         btrfs_set_opt(info->mount_opt, NOTREELOG);
341                         break;
342                 case Opt_flushoncommit:
343                         printk(KERN_INFO "btrfs: turning on flush-on-commit\n");
344                         btrfs_set_opt(info->mount_opt, FLUSHONCOMMIT);
345                         break;
346                 case Opt_ratio:
347                         intarg = 0;
348                         match_int(&args[0], &intarg);
349                         if (intarg) {
350                                 info->metadata_ratio = intarg;
351                                 printk(KERN_INFO "btrfs: metadata ratio %d\n",
352                                        info->metadata_ratio);
353                         }
354                         break;
355                 case Opt_discard:
356                         btrfs_set_opt(info->mount_opt, DISCARD);
357                         break;
358                 case Opt_space_cache:
359                         printk(KERN_INFO "btrfs: enabling disk space caching\n");
360                         btrfs_set_opt(info->mount_opt, SPACE_CACHE);
361                         break;
362                 case Opt_clear_cache:
363                         printk(KERN_INFO "btrfs: force clearing of disk cache\n");
364                         btrfs_set_opt(info->mount_opt, CLEAR_CACHE);
365                         break;
366                 case Opt_user_subvol_rm_allowed:
367                         btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED);
368                         break;
369                 case Opt_enospc_debug:
370                         btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG);
371                         break;
372                 case Opt_err:
373                         printk(KERN_INFO "btrfs: unrecognized mount option "
374                                "'%s'\n", p);
375                         ret = -EINVAL;
376                         goto out;
377                 default:
378                         break;
379                 }
380         }
381 out:
382         kfree(orig);
383         return ret;
384 }
385
386 /*
387  * Parse mount options that are required early in the mount process.
388  *
389  * All other options will be parsed on much later in the mount process and
390  * only when we need to allocate a new super block.
391  */
392 static int btrfs_parse_early_options(const char *options, fmode_t flags,
393                 void *holder, char **subvol_name, u64 *subvol_objectid,
394                 u64 *subvol_rootid, struct btrfs_fs_devices **fs_devices)
395 {
396         substring_t args[MAX_OPT_ARGS];
397         char *opts, *orig, *p;
398         int error = 0;
399         int intarg;
400
401         if (!options)
402                 goto out;
403
404         /*
405          * strsep changes the string, duplicate it because parse_options
406          * gets called twice
407          */
408         opts = kstrdup(options, GFP_KERNEL);
409         if (!opts)
410                 return -ENOMEM;
411         orig = opts;
412
413         while ((p = strsep(&opts, ",")) != NULL) {
414                 int token;
415                 if (!*p)
416                         continue;
417
418                 token = match_token(p, tokens, args);
419                 switch (token) {
420                 case Opt_subvol:
421                         *subvol_name = match_strdup(&args[0]);
422                         break;
423                 case Opt_subvolid:
424                         intarg = 0;
425                         error = match_int(&args[0], &intarg);
426                         if (!error) {
427                                 /* we want the original fs_tree */
428                                 if (!intarg)
429                                         *subvol_objectid =
430                                                 BTRFS_FS_TREE_OBJECTID;
431                                 else
432                                         *subvol_objectid = intarg;
433                         }
434                         break;
435                 case Opt_subvolrootid:
436                         intarg = 0;
437                         error = match_int(&args[0], &intarg);
438                         if (!error) {
439                                 /* we want the original fs_tree */
440                                 if (!intarg)
441                                         *subvol_rootid =
442                                                 BTRFS_FS_TREE_OBJECTID;
443                                 else
444                                         *subvol_rootid = intarg;
445                         }
446                         break;
447                 case Opt_device:
448                         error = btrfs_scan_one_device(match_strdup(&args[0]),
449                                         flags, holder, fs_devices);
450                         if (error)
451                                 goto out_free_opts;
452                         break;
453                 default:
454                         break;
455                 }
456         }
457
458  out_free_opts:
459         kfree(orig);
460  out:
461         /*
462          * If no subvolume name is specified we use the default one.  Allocate
463          * a copy of the string "." here so that code later in the
464          * mount path doesn't care if it's the default volume or another one.
465          */
466         if (!*subvol_name) {
467                 *subvol_name = kstrdup(".", GFP_KERNEL);
468                 if (!*subvol_name)
469                         return -ENOMEM;
470         }
471         return error;
472 }
473
474 static struct dentry *get_default_root(struct super_block *sb,
475                                        u64 subvol_objectid)
476 {
477         struct btrfs_root *root = sb->s_fs_info;
478         struct btrfs_root *new_root;
479         struct btrfs_dir_item *di;
480         struct btrfs_path *path;
481         struct btrfs_key location;
482         struct inode *inode;
483         struct dentry *dentry;
484         u64 dir_id;
485         int new = 0;
486
487         /*
488          * We have a specific subvol we want to mount, just setup location and
489          * go look up the root.
490          */
491         if (subvol_objectid) {
492                 location.objectid = subvol_objectid;
493                 location.type = BTRFS_ROOT_ITEM_KEY;
494                 location.offset = (u64)-1;
495                 goto find_root;
496         }
497
498         path = btrfs_alloc_path();
499         if (!path)
500                 return ERR_PTR(-ENOMEM);
501         path->leave_spinning = 1;
502
503         /*
504          * Find the "default" dir item which points to the root item that we
505          * will mount by default if we haven't been given a specific subvolume
506          * to mount.
507          */
508         dir_id = btrfs_super_root_dir(&root->fs_info->super_copy);
509         di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0);
510         if (IS_ERR(di)) {
511                 btrfs_free_path(path);
512                 return ERR_CAST(di);
513         }
514         if (!di) {
515                 /*
516                  * Ok the default dir item isn't there.  This is weird since
517                  * it's always been there, but don't freak out, just try and
518                  * mount to root most subvolume.
519                  */
520                 btrfs_free_path(path);
521                 dir_id = BTRFS_FIRST_FREE_OBJECTID;
522                 new_root = root->fs_info->fs_root;
523                 goto setup_root;
524         }
525
526         btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
527         btrfs_free_path(path);
528
529 find_root:
530         new_root = btrfs_read_fs_root_no_name(root->fs_info, &location);
531         if (IS_ERR(new_root))
532                 return ERR_CAST(new_root);
533
534         if (btrfs_root_refs(&new_root->root_item) == 0)
535                 return ERR_PTR(-ENOENT);
536
537         dir_id = btrfs_root_dirid(&new_root->root_item);
538 setup_root:
539         location.objectid = dir_id;
540         location.type = BTRFS_INODE_ITEM_KEY;
541         location.offset = 0;
542
543         inode = btrfs_iget(sb, &location, new_root, &new);
544         if (IS_ERR(inode))
545                 return ERR_CAST(inode);
546
547         /*
548          * If we're just mounting the root most subvol put the inode and return
549          * a reference to the dentry.  We will have already gotten a reference
550          * to the inode in btrfs_fill_super so we're good to go.
551          */
552         if (!new && sb->s_root->d_inode == inode) {
553                 iput(inode);
554                 return dget(sb->s_root);
555         }
556
557         if (new) {
558                 const struct qstr name = { .name = "/", .len = 1 };
559
560                 /*
561                  * New inode, we need to make the dentry a sibling of s_root so
562                  * everything gets cleaned up properly on unmount.
563                  */
564                 dentry = d_alloc(sb->s_root, &name);
565                 if (!dentry) {
566                         iput(inode);
567                         return ERR_PTR(-ENOMEM);
568                 }
569                 d_splice_alias(inode, dentry);
570         } else {
571                 /*
572                  * We found the inode in cache, just find a dentry for it and
573                  * put the reference to the inode we just got.
574                  */
575                 dentry = d_find_alias(inode);
576                 iput(inode);
577         }
578
579         return dentry;
580 }
581
582 static int btrfs_fill_super(struct super_block *sb,
583                             struct btrfs_fs_devices *fs_devices,
584                             void *data, int silent)
585 {
586         struct inode *inode;
587         struct dentry *root_dentry;
588         struct btrfs_root *tree_root;
589         struct btrfs_key key;
590         int err;
591
592         sb->s_maxbytes = MAX_LFS_FILESIZE;
593         sb->s_magic = BTRFS_SUPER_MAGIC;
594         sb->s_op = &btrfs_super_ops;
595         sb->s_d_op = &btrfs_dentry_operations;
596         sb->s_export_op = &btrfs_export_ops;
597         sb->s_xattr = btrfs_xattr_handlers;
598         sb->s_time_gran = 1;
599 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
600         sb->s_flags |= MS_POSIXACL;
601 #endif
602
603         tree_root = open_ctree(sb, fs_devices, (char *)data);
604
605         if (IS_ERR(tree_root)) {
606                 printk("btrfs: open_ctree failed\n");
607                 return PTR_ERR(tree_root);
608         }
609         sb->s_fs_info = tree_root;
610
611         key.objectid = BTRFS_FIRST_FREE_OBJECTID;
612         key.type = BTRFS_INODE_ITEM_KEY;
613         key.offset = 0;
614         inode = btrfs_iget(sb, &key, tree_root->fs_info->fs_root, NULL);
615         if (IS_ERR(inode)) {
616                 err = PTR_ERR(inode);
617                 goto fail_close;
618         }
619
620         root_dentry = d_alloc_root(inode);
621         if (!root_dentry) {
622                 iput(inode);
623                 err = -ENOMEM;
624                 goto fail_close;
625         }
626
627         sb->s_root = root_dentry;
628
629         save_mount_options(sb, data);
630         return 0;
631
632 fail_close:
633         close_ctree(tree_root);
634         return err;
635 }
636
637 int btrfs_sync_fs(struct super_block *sb, int wait)
638 {
639         struct btrfs_trans_handle *trans;
640         struct btrfs_root *root = btrfs_sb(sb);
641         int ret;
642
643         trace_btrfs_sync_fs(wait);
644
645         if (!wait) {
646                 filemap_flush(root->fs_info->btree_inode->i_mapping);
647                 return 0;
648         }
649
650         btrfs_start_delalloc_inodes(root, 0);
651         btrfs_wait_ordered_extents(root, 0, 0);
652
653         trans = btrfs_start_transaction(root, 0);
654         if (IS_ERR(trans))
655                 return PTR_ERR(trans);
656         ret = btrfs_commit_transaction(trans, root);
657         return ret;
658 }
659
660 static int btrfs_show_options(struct seq_file *seq, struct vfsmount *vfs)
661 {
662         struct btrfs_root *root = btrfs_sb(vfs->mnt_sb);
663         struct btrfs_fs_info *info = root->fs_info;
664         char *compress_type;
665
666         if (btrfs_test_opt(root, DEGRADED))
667                 seq_puts(seq, ",degraded");
668         if (btrfs_test_opt(root, NODATASUM))
669                 seq_puts(seq, ",nodatasum");
670         if (btrfs_test_opt(root, NODATACOW))
671                 seq_puts(seq, ",nodatacow");
672         if (btrfs_test_opt(root, NOBARRIER))
673                 seq_puts(seq, ",nobarrier");
674         if (info->max_inline != 8192 * 1024)
675                 seq_printf(seq, ",max_inline=%llu",
676                            (unsigned long long)info->max_inline);
677         if (info->alloc_start != 0)
678                 seq_printf(seq, ",alloc_start=%llu",
679                            (unsigned long long)info->alloc_start);
680         if (info->thread_pool_size !=  min_t(unsigned long,
681                                              num_online_cpus() + 2, 8))
682                 seq_printf(seq, ",thread_pool=%d", info->thread_pool_size);
683         if (btrfs_test_opt(root, COMPRESS)) {
684                 if (info->compress_type == BTRFS_COMPRESS_ZLIB)
685                         compress_type = "zlib";
686                 else
687                         compress_type = "lzo";
688                 if (btrfs_test_opt(root, FORCE_COMPRESS))
689                         seq_printf(seq, ",compress-force=%s", compress_type);
690                 else
691                         seq_printf(seq, ",compress=%s", compress_type);
692         }
693         if (btrfs_test_opt(root, NOSSD))
694                 seq_puts(seq, ",nossd");
695         if (btrfs_test_opt(root, SSD_SPREAD))
696                 seq_puts(seq, ",ssd_spread");
697         else if (btrfs_test_opt(root, SSD))
698                 seq_puts(seq, ",ssd");
699         if (btrfs_test_opt(root, NOTREELOG))
700                 seq_puts(seq, ",notreelog");
701         if (btrfs_test_opt(root, FLUSHONCOMMIT))
702                 seq_puts(seq, ",flushoncommit");
703         if (btrfs_test_opt(root, DISCARD))
704                 seq_puts(seq, ",discard");
705         if (!(root->fs_info->sb->s_flags & MS_POSIXACL))
706                 seq_puts(seq, ",noacl");
707         if (btrfs_test_opt(root, SPACE_CACHE))
708                 seq_puts(seq, ",space_cache");
709         if (btrfs_test_opt(root, CLEAR_CACHE))
710                 seq_puts(seq, ",clear_cache");
711         if (btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED))
712                 seq_puts(seq, ",user_subvol_rm_allowed");
713         return 0;
714 }
715
716 static int btrfs_test_super(struct super_block *s, void *data)
717 {
718         struct btrfs_root *test_root = data;
719         struct btrfs_root *root = btrfs_sb(s);
720
721         /*
722          * If this super block is going away, return false as it
723          * can't match as an existing super block.
724          */
725         if (!atomic_read(&s->s_active))
726                 return 0;
727         return root->fs_info->fs_devices == test_root->fs_info->fs_devices;
728 }
729
730 static int btrfs_set_super(struct super_block *s, void *data)
731 {
732         s->s_fs_info = data;
733
734         return set_anon_super(s, data);
735 }
736
737
738 /*
739  * Find a superblock for the given device / mount point.
740  *
741  * Note:  This is based on get_sb_bdev from fs/super.c with a few additions
742  *        for multiple device setup.  Make sure to keep it in sync.
743  */
744 static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags,
745                 const char *device_name, void *data)
746 {
747         struct block_device *bdev = NULL;
748         struct super_block *s;
749         struct dentry *root;
750         struct btrfs_fs_devices *fs_devices = NULL;
751         struct btrfs_root *tree_root = NULL;
752         struct btrfs_fs_info *fs_info = NULL;
753         fmode_t mode = FMODE_READ;
754         char *subvol_name = NULL;
755         u64 subvol_objectid = 0;
756         u64 subvol_rootid = 0;
757         int error = 0;
758
759         if (!(flags & MS_RDONLY))
760                 mode |= FMODE_WRITE;
761
762         error = btrfs_parse_early_options(data, mode, fs_type,
763                                           &subvol_name, &subvol_objectid,
764                                           &subvol_rootid, &fs_devices);
765         if (error)
766                 return ERR_PTR(error);
767
768         error = btrfs_scan_one_device(device_name, mode, fs_type, &fs_devices);
769         if (error)
770                 goto error_free_subvol_name;
771
772         error = btrfs_open_devices(fs_devices, mode, fs_type);
773         if (error)
774                 goto error_free_subvol_name;
775
776         if (!(flags & MS_RDONLY) && fs_devices->rw_devices == 0) {
777                 error = -EACCES;
778                 goto error_close_devices;
779         }
780
781         /*
782          * Setup a dummy root and fs_info for test/set super.  This is because
783          * we don't actually fill this stuff out until open_ctree, but we need
784          * it for searching for existing supers, so this lets us do that and
785          * then open_ctree will properly initialize everything later.
786          */
787         fs_info = kzalloc(sizeof(struct btrfs_fs_info), GFP_NOFS);
788         tree_root = kzalloc(sizeof(struct btrfs_root), GFP_NOFS);
789         if (!fs_info || !tree_root) {
790                 error = -ENOMEM;
791                 goto error_close_devices;
792         }
793         fs_info->tree_root = tree_root;
794         fs_info->fs_devices = fs_devices;
795         tree_root->fs_info = fs_info;
796
797         bdev = fs_devices->latest_bdev;
798         s = sget(fs_type, btrfs_test_super, btrfs_set_super, tree_root);
799         if (IS_ERR(s))
800                 goto error_s;
801
802         if (s->s_root) {
803                 if ((flags ^ s->s_flags) & MS_RDONLY) {
804                         deactivate_locked_super(s);
805                         error = -EBUSY;
806                         goto error_close_devices;
807                 }
808
809                 btrfs_close_devices(fs_devices);
810                 kfree(fs_info);
811                 kfree(tree_root);
812         } else {
813                 char b[BDEVNAME_SIZE];
814
815                 s->s_flags = flags;
816                 strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));
817                 error = btrfs_fill_super(s, fs_devices, data,
818                                          flags & MS_SILENT ? 1 : 0);
819                 if (error) {
820                         deactivate_locked_super(s);
821                         goto error_free_subvol_name;
822                 }
823
824                 btrfs_sb(s)->fs_info->bdev_holder = fs_type;
825                 s->s_flags |= MS_ACTIVE;
826         }
827
828         /* if they gave us a subvolume name bind mount into that */
829         if (strcmp(subvol_name, ".")) {
830                 struct dentry *new_root;
831
832                 root = get_default_root(s, subvol_rootid);
833                 if (IS_ERR(root)) {
834                         error = PTR_ERR(root);
835                         deactivate_locked_super(s);
836                         goto error_free_subvol_name;
837                 }
838
839                 mutex_lock(&root->d_inode->i_mutex);
840                 new_root = lookup_one_len(subvol_name, root,
841                                       strlen(subvol_name));
842                 mutex_unlock(&root->d_inode->i_mutex);
843
844                 if (IS_ERR(new_root)) {
845                         dput(root);
846                         deactivate_locked_super(s);
847                         error = PTR_ERR(new_root);
848                         goto error_free_subvol_name;
849                 }
850                 if (!new_root->d_inode) {
851                         dput(root);
852                         dput(new_root);
853                         deactivate_locked_super(s);
854                         error = -ENXIO;
855                         goto error_free_subvol_name;
856                 }
857                 dput(root);
858                 root = new_root;
859         } else {
860                 root = get_default_root(s, subvol_objectid);
861                 if (IS_ERR(root)) {
862                         error = PTR_ERR(root);
863                         deactivate_locked_super(s);
864                         goto error_free_subvol_name;
865                 }
866         }
867
868         kfree(subvol_name);
869         return root;
870
871 error_s:
872         error = PTR_ERR(s);
873 error_close_devices:
874         btrfs_close_devices(fs_devices);
875         kfree(fs_info);
876         kfree(tree_root);
877 error_free_subvol_name:
878         kfree(subvol_name);
879         return ERR_PTR(error);
880 }
881
882 static int btrfs_remount(struct super_block *sb, int *flags, char *data)
883 {
884         struct btrfs_root *root = btrfs_sb(sb);
885         int ret;
886
887         ret = btrfs_parse_options(root, data);
888         if (ret)
889                 return -EINVAL;
890
891         if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
892                 return 0;
893
894         if (*flags & MS_RDONLY) {
895                 sb->s_flags |= MS_RDONLY;
896
897                 ret =  btrfs_commit_super(root);
898                 WARN_ON(ret);
899         } else {
900                 if (root->fs_info->fs_devices->rw_devices == 0)
901                         return -EACCES;
902
903                 if (btrfs_super_log_root(&root->fs_info->super_copy) != 0)
904                         return -EINVAL;
905
906                 ret = btrfs_cleanup_fs_roots(root->fs_info);
907                 WARN_ON(ret);
908
909                 /* recover relocation */
910                 ret = btrfs_recover_relocation(root);
911                 WARN_ON(ret);
912
913                 sb->s_flags &= ~MS_RDONLY;
914         }
915
916         return 0;
917 }
918
919 /* Used to sort the devices by max_avail(descending sort) */
920 static int btrfs_cmp_device_free_bytes(const void *dev_info1,
921                                        const void *dev_info2)
922 {
923         if (((struct btrfs_device_info *)dev_info1)->max_avail >
924             ((struct btrfs_device_info *)dev_info2)->max_avail)
925                 return -1;
926         else if (((struct btrfs_device_info *)dev_info1)->max_avail <
927                  ((struct btrfs_device_info *)dev_info2)->max_avail)
928                 return 1;
929         else
930         return 0;
931 }
932
933 /*
934  * sort the devices by max_avail, in which max free extent size of each device
935  * is stored.(Descending Sort)
936  */
937 static inline void btrfs_descending_sort_devices(
938                                         struct btrfs_device_info *devices,
939                                         size_t nr_devices)
940 {
941         sort(devices, nr_devices, sizeof(struct btrfs_device_info),
942              btrfs_cmp_device_free_bytes, NULL);
943 }
944
945 /*
946  * The helper to calc the free space on the devices that can be used to store
947  * file data.
948  */
949 static int btrfs_calc_avail_data_space(struct btrfs_root *root, u64 *free_bytes)
950 {
951         struct btrfs_fs_info *fs_info = root->fs_info;
952         struct btrfs_device_info *devices_info;
953         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
954         struct btrfs_device *device;
955         u64 skip_space;
956         u64 type;
957         u64 avail_space;
958         u64 used_space;
959         u64 min_stripe_size;
960         int min_stripes = 1;
961         int i = 0, nr_devices;
962         int ret;
963
964         nr_devices = fs_info->fs_devices->rw_devices;
965         BUG_ON(!nr_devices);
966
967         devices_info = kmalloc(sizeof(*devices_info) * nr_devices,
968                                GFP_NOFS);
969         if (!devices_info)
970                 return -ENOMEM;
971
972         /* calc min stripe number for data space alloction */
973         type = btrfs_get_alloc_profile(root, 1);
974         if (type & BTRFS_BLOCK_GROUP_RAID0)
975                 min_stripes = 2;
976         else if (type & BTRFS_BLOCK_GROUP_RAID1)
977                 min_stripes = 2;
978         else if (type & BTRFS_BLOCK_GROUP_RAID10)
979                 min_stripes = 4;
980
981         if (type & BTRFS_BLOCK_GROUP_DUP)
982                 min_stripe_size = 2 * BTRFS_STRIPE_LEN;
983         else
984                 min_stripe_size = BTRFS_STRIPE_LEN;
985
986         list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
987                 if (!device->in_fs_metadata)
988                         continue;
989
990                 avail_space = device->total_bytes - device->bytes_used;
991
992                 /* align with stripe_len */
993                 do_div(avail_space, BTRFS_STRIPE_LEN);
994                 avail_space *= BTRFS_STRIPE_LEN;
995
996                 /*
997                  * In order to avoid overwritting the superblock on the drive,
998                  * btrfs starts at an offset of at least 1MB when doing chunk
999                  * allocation.
1000                  */
1001                 skip_space = 1024 * 1024;
1002
1003                 /* user can set the offset in fs_info->alloc_start. */
1004                 if (fs_info->alloc_start + BTRFS_STRIPE_LEN <=
1005                     device->total_bytes)
1006                         skip_space = max(fs_info->alloc_start, skip_space);
1007
1008                 /*
1009                  * btrfs can not use the free space in [0, skip_space - 1],
1010                  * we must subtract it from the total. In order to implement
1011                  * it, we account the used space in this range first.
1012                  */
1013                 ret = btrfs_account_dev_extents_size(device, 0, skip_space - 1,
1014                                                      &used_space);
1015                 if (ret) {
1016                         kfree(devices_info);
1017                         return ret;
1018                 }
1019
1020                 /* calc the free space in [0, skip_space - 1] */
1021                 skip_space -= used_space;
1022
1023                 /*
1024                  * we can use the free space in [0, skip_space - 1], subtract
1025                  * it from the total.
1026                  */
1027                 if (avail_space && avail_space >= skip_space)
1028                         avail_space -= skip_space;
1029                 else
1030                         avail_space = 0;
1031
1032                 if (avail_space < min_stripe_size)
1033                         continue;
1034
1035                 devices_info[i].dev = device;
1036                 devices_info[i].max_avail = avail_space;
1037
1038                 i++;
1039         }
1040
1041         nr_devices = i;
1042
1043         btrfs_descending_sort_devices(devices_info, nr_devices);
1044
1045         i = nr_devices - 1;
1046         avail_space = 0;
1047         while (nr_devices >= min_stripes) {
1048                 if (devices_info[i].max_avail >= min_stripe_size) {
1049                         int j;
1050                         u64 alloc_size;
1051
1052                         avail_space += devices_info[i].max_avail * min_stripes;
1053                         alloc_size = devices_info[i].max_avail;
1054                         for (j = i + 1 - min_stripes; j <= i; j++)
1055                                 devices_info[j].max_avail -= alloc_size;
1056                 }
1057                 i--;
1058                 nr_devices--;
1059         }
1060
1061         kfree(devices_info);
1062         *free_bytes = avail_space;
1063         return 0;
1064 }
1065
1066 static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf)
1067 {
1068         struct btrfs_root *root = btrfs_sb(dentry->d_sb);
1069         struct btrfs_super_block *disk_super = &root->fs_info->super_copy;
1070         struct list_head *head = &root->fs_info->space_info;
1071         struct btrfs_space_info *found;
1072         u64 total_used = 0;
1073         u64 total_free_data = 0;
1074         int bits = dentry->d_sb->s_blocksize_bits;
1075         __be32 *fsid = (__be32 *)root->fs_info->fsid;
1076         int ret;
1077
1078         /* holding chunk_muext to avoid allocating new chunks */
1079         mutex_lock(&root->fs_info->chunk_mutex);
1080         rcu_read_lock();
1081         list_for_each_entry_rcu(found, head, list) {
1082                 if (found->flags & BTRFS_BLOCK_GROUP_DATA) {
1083                         total_free_data += found->disk_total - found->disk_used;
1084                         total_free_data -=
1085                                 btrfs_account_ro_block_groups_free_space(found);
1086                 }
1087
1088                 total_used += found->disk_used;
1089         }
1090         rcu_read_unlock();
1091
1092         buf->f_namelen = BTRFS_NAME_LEN;
1093         buf->f_blocks = btrfs_super_total_bytes(disk_super) >> bits;
1094         buf->f_bfree = buf->f_blocks - (total_used >> bits);
1095         buf->f_bsize = dentry->d_sb->s_blocksize;
1096         buf->f_type = BTRFS_SUPER_MAGIC;
1097         buf->f_bavail = total_free_data;
1098         ret = btrfs_calc_avail_data_space(root, &total_free_data);
1099         if (ret) {
1100                 mutex_unlock(&root->fs_info->chunk_mutex);
1101                 return ret;
1102         }
1103         buf->f_bavail += total_free_data;
1104         buf->f_bavail = buf->f_bavail >> bits;
1105         mutex_unlock(&root->fs_info->chunk_mutex);
1106
1107         /* We treat it as constant endianness (it doesn't matter _which_)
1108            because we want the fsid to come out the same whether mounted
1109            on a big-endian or little-endian host */
1110         buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]);
1111         buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]);
1112         /* Mask in the root object ID too, to disambiguate subvols */
1113         buf->f_fsid.val[0] ^= BTRFS_I(dentry->d_inode)->root->objectid >> 32;
1114         buf->f_fsid.val[1] ^= BTRFS_I(dentry->d_inode)->root->objectid;
1115
1116         return 0;
1117 }
1118
1119 static struct file_system_type btrfs_fs_type = {
1120         .owner          = THIS_MODULE,
1121         .name           = "btrfs",
1122         .mount          = btrfs_mount,
1123         .kill_sb        = kill_anon_super,
1124         .fs_flags       = FS_REQUIRES_DEV,
1125 };
1126
1127 /*
1128  * used by btrfsctl to scan devices when no FS is mounted
1129  */
1130 static long btrfs_control_ioctl(struct file *file, unsigned int cmd,
1131                                 unsigned long arg)
1132 {
1133         struct btrfs_ioctl_vol_args *vol;
1134         struct btrfs_fs_devices *fs_devices;
1135         int ret = -ENOTTY;
1136
1137         if (!capable(CAP_SYS_ADMIN))
1138                 return -EPERM;
1139
1140         vol = memdup_user((void __user *)arg, sizeof(*vol));
1141         if (IS_ERR(vol))
1142                 return PTR_ERR(vol);
1143
1144         switch (cmd) {
1145         case BTRFS_IOC_SCAN_DEV:
1146                 ret = btrfs_scan_one_device(vol->name, FMODE_READ,
1147                                             &btrfs_fs_type, &fs_devices);
1148                 break;
1149         }
1150
1151         kfree(vol);
1152         return ret;
1153 }
1154
1155 static int btrfs_freeze(struct super_block *sb)
1156 {
1157         struct btrfs_root *root = btrfs_sb(sb);
1158         mutex_lock(&root->fs_info->transaction_kthread_mutex);
1159         mutex_lock(&root->fs_info->cleaner_mutex);
1160         return 0;
1161 }
1162
1163 static int btrfs_unfreeze(struct super_block *sb)
1164 {
1165         struct btrfs_root *root = btrfs_sb(sb);
1166         mutex_unlock(&root->fs_info->cleaner_mutex);
1167         mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1168         return 0;
1169 }
1170
1171 static const struct super_operations btrfs_super_ops = {
1172         .drop_inode     = btrfs_drop_inode,
1173         .evict_inode    = btrfs_evict_inode,
1174         .put_super      = btrfs_put_super,
1175         .sync_fs        = btrfs_sync_fs,
1176         .show_options   = btrfs_show_options,
1177         .write_inode    = btrfs_write_inode,
1178         .dirty_inode    = btrfs_dirty_inode,
1179         .alloc_inode    = btrfs_alloc_inode,
1180         .destroy_inode  = btrfs_destroy_inode,
1181         .statfs         = btrfs_statfs,
1182         .remount_fs     = btrfs_remount,
1183         .freeze_fs      = btrfs_freeze,
1184         .unfreeze_fs    = btrfs_unfreeze,
1185 };
1186
1187 static const struct file_operations btrfs_ctl_fops = {
1188         .unlocked_ioctl  = btrfs_control_ioctl,
1189         .compat_ioctl = btrfs_control_ioctl,
1190         .owner   = THIS_MODULE,
1191         .llseek = noop_llseek,
1192 };
1193
1194 static struct miscdevice btrfs_misc = {
1195         .minor          = BTRFS_MINOR,
1196         .name           = "btrfs-control",
1197         .fops           = &btrfs_ctl_fops
1198 };
1199
1200 MODULE_ALIAS_MISCDEV(BTRFS_MINOR);
1201 MODULE_ALIAS("devname:btrfs-control");
1202
1203 static int btrfs_interface_init(void)
1204 {
1205         return misc_register(&btrfs_misc);
1206 }
1207
1208 static void btrfs_interface_exit(void)
1209 {
1210         if (misc_deregister(&btrfs_misc) < 0)
1211                 printk(KERN_INFO "misc_deregister failed for control device");
1212 }
1213
1214 static int __init init_btrfs_fs(void)
1215 {
1216         int err;
1217
1218         err = btrfs_init_sysfs();
1219         if (err)
1220                 return err;
1221
1222         err = btrfs_init_compress();
1223         if (err)
1224                 goto free_sysfs;
1225
1226         err = btrfs_init_cachep();
1227         if (err)
1228                 goto free_compress;
1229
1230         err = extent_io_init();
1231         if (err)
1232                 goto free_cachep;
1233
1234         err = extent_map_init();
1235         if (err)
1236                 goto free_extent_io;
1237
1238         err = btrfs_delayed_inode_init();
1239         if (err)
1240                 goto free_extent_map;
1241
1242         err = btrfs_interface_init();
1243         if (err)
1244                 goto free_delayed_inode;
1245
1246         err = register_filesystem(&btrfs_fs_type);
1247         if (err)
1248                 goto unregister_ioctl;
1249
1250         printk(KERN_INFO "%s loaded\n", BTRFS_BUILD_VERSION);
1251         return 0;
1252
1253 unregister_ioctl:
1254         btrfs_interface_exit();
1255 free_delayed_inode:
1256         btrfs_delayed_inode_exit();
1257 free_extent_map:
1258         extent_map_exit();
1259 free_extent_io:
1260         extent_io_exit();
1261 free_cachep:
1262         btrfs_destroy_cachep();
1263 free_compress:
1264         btrfs_exit_compress();
1265 free_sysfs:
1266         btrfs_exit_sysfs();
1267         return err;
1268 }
1269
1270 static void __exit exit_btrfs_fs(void)
1271 {
1272         btrfs_destroy_cachep();
1273         btrfs_delayed_inode_exit();
1274         extent_map_exit();
1275         extent_io_exit();
1276         btrfs_interface_exit();
1277         unregister_filesystem(&btrfs_fs_type);
1278         btrfs_exit_sysfs();
1279         btrfs_cleanup_fs_uuids();
1280         btrfs_exit_compress();
1281 }
1282
1283 module_init(init_btrfs_fs)
1284 module_exit(exit_btrfs_fs)
1285
1286 MODULE_LICENSE("GPL");