]> git.karo-electronics.de Git - mv-sheeva.git/blob - fs/btrfs/super.c
Btrfs: put ENOSPC debugging under a mount option
[mv-sheeva.git] / fs / btrfs / super.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/blkdev.h>
20 #include <linux/module.h>
21 #include <linux/buffer_head.h>
22 #include <linux/fs.h>
23 #include <linux/pagemap.h>
24 #include <linux/highmem.h>
25 #include <linux/time.h>
26 #include <linux/init.h>
27 #include <linux/seq_file.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mount.h>
31 #include <linux/mpage.h>
32 #include <linux/swap.h>
33 #include <linux/writeback.h>
34 #include <linux/statfs.h>
35 #include <linux/compat.h>
36 #include <linux/parser.h>
37 #include <linux/ctype.h>
38 #include <linux/namei.h>
39 #include <linux/miscdevice.h>
40 #include <linux/magic.h>
41 #include <linux/slab.h>
42 #include "compat.h"
43 #include "ctree.h"
44 #include "disk-io.h"
45 #include "transaction.h"
46 #include "btrfs_inode.h"
47 #include "ioctl.h"
48 #include "print-tree.h"
49 #include "xattr.h"
50 #include "volumes.h"
51 #include "version.h"
52 #include "export.h"
53 #include "compression.h"
54
55 static const struct super_operations btrfs_super_ops;
56
57 static const char *btrfs_decode_error(struct btrfs_fs_info *fs_info, int errno,
58                                       char nbuf[16])
59 {
60         char *errstr = NULL;
61
62         switch (errno) {
63         case -EIO:
64                 errstr = "IO failure";
65                 break;
66         case -ENOMEM:
67                 errstr = "Out of memory";
68                 break;
69         case -EROFS:
70                 errstr = "Readonly filesystem";
71                 break;
72         default:
73                 if (nbuf) {
74                         if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
75                                 errstr = nbuf;
76                 }
77                 break;
78         }
79
80         return errstr;
81 }
82
83 static void __save_error_info(struct btrfs_fs_info *fs_info)
84 {
85         /*
86          * today we only save the error info into ram.  Long term we'll
87          * also send it down to the disk
88          */
89         fs_info->fs_state = BTRFS_SUPER_FLAG_ERROR;
90 }
91
92 /* NOTE:
93  *      We move write_super stuff at umount in order to avoid deadlock
94  *      for umount hold all lock.
95  */
96 static void save_error_info(struct btrfs_fs_info *fs_info)
97 {
98         __save_error_info(fs_info);
99 }
100
101 /* btrfs handle error by forcing the filesystem readonly */
102 static void btrfs_handle_error(struct btrfs_fs_info *fs_info)
103 {
104         struct super_block *sb = fs_info->sb;
105
106         if (sb->s_flags & MS_RDONLY)
107                 return;
108
109         if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
110                 sb->s_flags |= MS_RDONLY;
111                 printk(KERN_INFO "btrfs is forced readonly\n");
112         }
113 }
114
115 /*
116  * __btrfs_std_error decodes expected errors from the caller and
117  * invokes the approciate error response.
118  */
119 void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function,
120                      unsigned int line, int errno)
121 {
122         struct super_block *sb = fs_info->sb;
123         char nbuf[16];
124         const char *errstr;
125
126         /*
127          * Special case: if the error is EROFS, and we're already
128          * under MS_RDONLY, then it is safe here.
129          */
130         if (errno == -EROFS && (sb->s_flags & MS_RDONLY))
131                 return;
132
133         errstr = btrfs_decode_error(fs_info, errno, nbuf);
134         printk(KERN_CRIT "BTRFS error (device %s) in %s:%d: %s\n",
135                 sb->s_id, function, line, errstr);
136         save_error_info(fs_info);
137
138         btrfs_handle_error(fs_info);
139 }
140
141 static void btrfs_put_super(struct super_block *sb)
142 {
143         struct btrfs_root *root = btrfs_sb(sb);
144         int ret;
145
146         ret = close_ctree(root);
147         sb->s_fs_info = NULL;
148
149         (void)ret; /* FIXME: need to fix VFS to return error? */
150 }
151
152 enum {
153         Opt_degraded, Opt_subvol, Opt_subvolid, Opt_device, Opt_nodatasum,
154         Opt_nodatacow, Opt_max_inline, Opt_alloc_start, Opt_nobarrier, Opt_ssd,
155         Opt_nossd, Opt_ssd_spread, Opt_thread_pool, Opt_noacl, Opt_compress,
156         Opt_compress_type, Opt_compress_force, Opt_compress_force_type,
157         Opt_notreelog, Opt_ratio, Opt_flushoncommit, Opt_discard,
158         Opt_space_cache, Opt_clear_cache, Opt_user_subvol_rm_allowed,
159         Opt_enospc_debug, Opt_err,
160 };
161
162 static match_table_t tokens = {
163         {Opt_degraded, "degraded"},
164         {Opt_subvol, "subvol=%s"},
165         {Opt_subvolid, "subvolid=%d"},
166         {Opt_device, "device=%s"},
167         {Opt_nodatasum, "nodatasum"},
168         {Opt_nodatacow, "nodatacow"},
169         {Opt_nobarrier, "nobarrier"},
170         {Opt_max_inline, "max_inline=%s"},
171         {Opt_alloc_start, "alloc_start=%s"},
172         {Opt_thread_pool, "thread_pool=%d"},
173         {Opt_compress, "compress"},
174         {Opt_compress_type, "compress=%s"},
175         {Opt_compress_force, "compress-force"},
176         {Opt_compress_force_type, "compress-force=%s"},
177         {Opt_ssd, "ssd"},
178         {Opt_ssd_spread, "ssd_spread"},
179         {Opt_nossd, "nossd"},
180         {Opt_noacl, "noacl"},
181         {Opt_notreelog, "notreelog"},
182         {Opt_flushoncommit, "flushoncommit"},
183         {Opt_ratio, "metadata_ratio=%d"},
184         {Opt_discard, "discard"},
185         {Opt_space_cache, "space_cache"},
186         {Opt_clear_cache, "clear_cache"},
187         {Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"},
188         {Opt_enospc_debug, "enospc_debug"},
189         {Opt_err, NULL},
190 };
191
192 /*
193  * Regular mount options parser.  Everything that is needed only when
194  * reading in a new superblock is parsed here.
195  */
196 int btrfs_parse_options(struct btrfs_root *root, char *options)
197 {
198         struct btrfs_fs_info *info = root->fs_info;
199         substring_t args[MAX_OPT_ARGS];
200         char *p, *num, *orig;
201         int intarg;
202         int ret = 0;
203         char *compress_type;
204         bool compress_force = false;
205
206         if (!options)
207                 return 0;
208
209         /*
210          * strsep changes the string, duplicate it because parse_options
211          * gets called twice
212          */
213         options = kstrdup(options, GFP_NOFS);
214         if (!options)
215                 return -ENOMEM;
216
217         orig = options;
218
219         while ((p = strsep(&options, ",")) != NULL) {
220                 int token;
221                 if (!*p)
222                         continue;
223
224                 token = match_token(p, tokens, args);
225                 switch (token) {
226                 case Opt_degraded:
227                         printk(KERN_INFO "btrfs: allowing degraded mounts\n");
228                         btrfs_set_opt(info->mount_opt, DEGRADED);
229                         break;
230                 case Opt_subvol:
231                 case Opt_subvolid:
232                 case Opt_device:
233                         /*
234                          * These are parsed by btrfs_parse_early_options
235                          * and can be happily ignored here.
236                          */
237                         break;
238                 case Opt_nodatasum:
239                         printk(KERN_INFO "btrfs: setting nodatasum\n");
240                         btrfs_set_opt(info->mount_opt, NODATASUM);
241                         break;
242                 case Opt_nodatacow:
243                         printk(KERN_INFO "btrfs: setting nodatacow\n");
244                         btrfs_set_opt(info->mount_opt, NODATACOW);
245                         btrfs_set_opt(info->mount_opt, NODATASUM);
246                         break;
247                 case Opt_compress_force:
248                 case Opt_compress_force_type:
249                         compress_force = true;
250                 case Opt_compress:
251                 case Opt_compress_type:
252                         if (token == Opt_compress ||
253                             token == Opt_compress_force ||
254                             strcmp(args[0].from, "zlib") == 0) {
255                                 compress_type = "zlib";
256                                 info->compress_type = BTRFS_COMPRESS_ZLIB;
257                         } else if (strcmp(args[0].from, "lzo") == 0) {
258                                 compress_type = "lzo";
259                                 info->compress_type = BTRFS_COMPRESS_LZO;
260                         } else {
261                                 ret = -EINVAL;
262                                 goto out;
263                         }
264
265                         btrfs_set_opt(info->mount_opt, COMPRESS);
266                         if (compress_force) {
267                                 btrfs_set_opt(info->mount_opt, FORCE_COMPRESS);
268                                 pr_info("btrfs: force %s compression\n",
269                                         compress_type);
270                         } else
271                                 pr_info("btrfs: use %s compression\n",
272                                         compress_type);
273                         break;
274                 case Opt_ssd:
275                         printk(KERN_INFO "btrfs: use ssd allocation scheme\n");
276                         btrfs_set_opt(info->mount_opt, SSD);
277                         break;
278                 case Opt_ssd_spread:
279                         printk(KERN_INFO "btrfs: use spread ssd "
280                                "allocation scheme\n");
281                         btrfs_set_opt(info->mount_opt, SSD);
282                         btrfs_set_opt(info->mount_opt, SSD_SPREAD);
283                         break;
284                 case Opt_nossd:
285                         printk(KERN_INFO "btrfs: not using ssd allocation "
286                                "scheme\n");
287                         btrfs_set_opt(info->mount_opt, NOSSD);
288                         btrfs_clear_opt(info->mount_opt, SSD);
289                         btrfs_clear_opt(info->mount_opt, SSD_SPREAD);
290                         break;
291                 case Opt_nobarrier:
292                         printk(KERN_INFO "btrfs: turning off barriers\n");
293                         btrfs_set_opt(info->mount_opt, NOBARRIER);
294                         break;
295                 case Opt_thread_pool:
296                         intarg = 0;
297                         match_int(&args[0], &intarg);
298                         if (intarg) {
299                                 info->thread_pool_size = intarg;
300                                 printk(KERN_INFO "btrfs: thread pool %d\n",
301                                        info->thread_pool_size);
302                         }
303                         break;
304                 case Opt_max_inline:
305                         num = match_strdup(&args[0]);
306                         if (num) {
307                                 info->max_inline = memparse(num, NULL);
308                                 kfree(num);
309
310                                 if (info->max_inline) {
311                                         info->max_inline = max_t(u64,
312                                                 info->max_inline,
313                                                 root->sectorsize);
314                                 }
315                                 printk(KERN_INFO "btrfs: max_inline at %llu\n",
316                                         (unsigned long long)info->max_inline);
317                         }
318                         break;
319                 case Opt_alloc_start:
320                         num = match_strdup(&args[0]);
321                         if (num) {
322                                 info->alloc_start = memparse(num, NULL);
323                                 kfree(num);
324                                 printk(KERN_INFO
325                                         "btrfs: allocations start at %llu\n",
326                                         (unsigned long long)info->alloc_start);
327                         }
328                         break;
329                 case Opt_noacl:
330                         root->fs_info->sb->s_flags &= ~MS_POSIXACL;
331                         break;
332                 case Opt_notreelog:
333                         printk(KERN_INFO "btrfs: disabling tree log\n");
334                         btrfs_set_opt(info->mount_opt, NOTREELOG);
335                         break;
336                 case Opt_flushoncommit:
337                         printk(KERN_INFO "btrfs: turning on flush-on-commit\n");
338                         btrfs_set_opt(info->mount_opt, FLUSHONCOMMIT);
339                         break;
340                 case Opt_ratio:
341                         intarg = 0;
342                         match_int(&args[0], &intarg);
343                         if (intarg) {
344                                 info->metadata_ratio = intarg;
345                                 printk(KERN_INFO "btrfs: metadata ratio %d\n",
346                                        info->metadata_ratio);
347                         }
348                         break;
349                 case Opt_discard:
350                         btrfs_set_opt(info->mount_opt, DISCARD);
351                         break;
352                 case Opt_space_cache:
353                         printk(KERN_INFO "btrfs: enabling disk space caching\n");
354                         btrfs_set_opt(info->mount_opt, SPACE_CACHE);
355                         break;
356                 case Opt_clear_cache:
357                         printk(KERN_INFO "btrfs: force clearing of disk cache\n");
358                         btrfs_set_opt(info->mount_opt, CLEAR_CACHE);
359                         break;
360                 case Opt_user_subvol_rm_allowed:
361                         btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED);
362                         break;
363                 case Opt_enospc_debug:
364                         btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG);
365                         break;
366                 case Opt_err:
367                         printk(KERN_INFO "btrfs: unrecognized mount option "
368                                "'%s'\n", p);
369                         ret = -EINVAL;
370                         goto out;
371                 default:
372                         break;
373                 }
374         }
375 out:
376         kfree(orig);
377         return ret;
378 }
379
380 /*
381  * Parse mount options that are required early in the mount process.
382  *
383  * All other options will be parsed on much later in the mount process and
384  * only when we need to allocate a new super block.
385  */
386 static int btrfs_parse_early_options(const char *options, fmode_t flags,
387                 void *holder, char **subvol_name, u64 *subvol_objectid,
388                 struct btrfs_fs_devices **fs_devices)
389 {
390         substring_t args[MAX_OPT_ARGS];
391         char *opts, *orig, *p;
392         int error = 0;
393         int intarg;
394
395         if (!options)
396                 goto out;
397
398         /*
399          * strsep changes the string, duplicate it because parse_options
400          * gets called twice
401          */
402         opts = kstrdup(options, GFP_KERNEL);
403         if (!opts)
404                 return -ENOMEM;
405         orig = opts;
406
407         while ((p = strsep(&opts, ",")) != NULL) {
408                 int token;
409                 if (!*p)
410                         continue;
411
412                 token = match_token(p, tokens, args);
413                 switch (token) {
414                 case Opt_subvol:
415                         *subvol_name = match_strdup(&args[0]);
416                         break;
417                 case Opt_subvolid:
418                         intarg = 0;
419                         error = match_int(&args[0], &intarg);
420                         if (!error) {
421                                 /* we want the original fs_tree */
422                                 if (!intarg)
423                                         *subvol_objectid =
424                                                 BTRFS_FS_TREE_OBJECTID;
425                                 else
426                                         *subvol_objectid = intarg;
427                         }
428                         break;
429                 case Opt_device:
430                         error = btrfs_scan_one_device(match_strdup(&args[0]),
431                                         flags, holder, fs_devices);
432                         if (error)
433                                 goto out_free_opts;
434                         break;
435                 default:
436                         break;
437                 }
438         }
439
440  out_free_opts:
441         kfree(orig);
442  out:
443         /*
444          * If no subvolume name is specified we use the default one.  Allocate
445          * a copy of the string "." here so that code later in the
446          * mount path doesn't care if it's the default volume or another one.
447          */
448         if (!*subvol_name) {
449                 *subvol_name = kstrdup(".", GFP_KERNEL);
450                 if (!*subvol_name)
451                         return -ENOMEM;
452         }
453         return error;
454 }
455
456 static struct dentry *get_default_root(struct super_block *sb,
457                                        u64 subvol_objectid)
458 {
459         struct btrfs_root *root = sb->s_fs_info;
460         struct btrfs_root *new_root;
461         struct btrfs_dir_item *di;
462         struct btrfs_path *path;
463         struct btrfs_key location;
464         struct inode *inode;
465         struct dentry *dentry;
466         u64 dir_id;
467         int new = 0;
468
469         /*
470          * We have a specific subvol we want to mount, just setup location and
471          * go look up the root.
472          */
473         if (subvol_objectid) {
474                 location.objectid = subvol_objectid;
475                 location.type = BTRFS_ROOT_ITEM_KEY;
476                 location.offset = (u64)-1;
477                 goto find_root;
478         }
479
480         path = btrfs_alloc_path();
481         if (!path)
482                 return ERR_PTR(-ENOMEM);
483         path->leave_spinning = 1;
484
485         /*
486          * Find the "default" dir item which points to the root item that we
487          * will mount by default if we haven't been given a specific subvolume
488          * to mount.
489          */
490         dir_id = btrfs_super_root_dir(&root->fs_info->super_copy);
491         di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0);
492         if (IS_ERR(di))
493                 return ERR_CAST(di);
494         if (!di) {
495                 /*
496                  * Ok the default dir item isn't there.  This is weird since
497                  * it's always been there, but don't freak out, just try and
498                  * mount to root most subvolume.
499                  */
500                 btrfs_free_path(path);
501                 dir_id = BTRFS_FIRST_FREE_OBJECTID;
502                 new_root = root->fs_info->fs_root;
503                 goto setup_root;
504         }
505
506         btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
507         btrfs_free_path(path);
508
509 find_root:
510         new_root = btrfs_read_fs_root_no_name(root->fs_info, &location);
511         if (IS_ERR(new_root))
512                 return ERR_CAST(new_root);
513
514         if (btrfs_root_refs(&new_root->root_item) == 0)
515                 return ERR_PTR(-ENOENT);
516
517         dir_id = btrfs_root_dirid(&new_root->root_item);
518 setup_root:
519         location.objectid = dir_id;
520         location.type = BTRFS_INODE_ITEM_KEY;
521         location.offset = 0;
522
523         inode = btrfs_iget(sb, &location, new_root, &new);
524         if (IS_ERR(inode))
525                 return ERR_CAST(inode);
526
527         /*
528          * If we're just mounting the root most subvol put the inode and return
529          * a reference to the dentry.  We will have already gotten a reference
530          * to the inode in btrfs_fill_super so we're good to go.
531          */
532         if (!new && sb->s_root->d_inode == inode) {
533                 iput(inode);
534                 return dget(sb->s_root);
535         }
536
537         if (new) {
538                 const struct qstr name = { .name = "/", .len = 1 };
539
540                 /*
541                  * New inode, we need to make the dentry a sibling of s_root so
542                  * everything gets cleaned up properly on unmount.
543                  */
544                 dentry = d_alloc(sb->s_root, &name);
545                 if (!dentry) {
546                         iput(inode);
547                         return ERR_PTR(-ENOMEM);
548                 }
549                 d_splice_alias(inode, dentry);
550         } else {
551                 /*
552                  * We found the inode in cache, just find a dentry for it and
553                  * put the reference to the inode we just got.
554                  */
555                 dentry = d_find_alias(inode);
556                 iput(inode);
557         }
558
559         return dentry;
560 }
561
562 static int btrfs_fill_super(struct super_block *sb,
563                             struct btrfs_fs_devices *fs_devices,
564                             void *data, int silent)
565 {
566         struct inode *inode;
567         struct dentry *root_dentry;
568         struct btrfs_root *tree_root;
569         struct btrfs_key key;
570         int err;
571
572         sb->s_maxbytes = MAX_LFS_FILESIZE;
573         sb->s_magic = BTRFS_SUPER_MAGIC;
574         sb->s_op = &btrfs_super_ops;
575         sb->s_export_op = &btrfs_export_ops;
576         sb->s_xattr = btrfs_xattr_handlers;
577         sb->s_time_gran = 1;
578 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
579         sb->s_flags |= MS_POSIXACL;
580 #endif
581
582         tree_root = open_ctree(sb, fs_devices, (char *)data);
583
584         if (IS_ERR(tree_root)) {
585                 printk("btrfs: open_ctree failed\n");
586                 return PTR_ERR(tree_root);
587         }
588         sb->s_fs_info = tree_root;
589
590         key.objectid = BTRFS_FIRST_FREE_OBJECTID;
591         key.type = BTRFS_INODE_ITEM_KEY;
592         key.offset = 0;
593         inode = btrfs_iget(sb, &key, tree_root->fs_info->fs_root, NULL);
594         if (IS_ERR(inode)) {
595                 err = PTR_ERR(inode);
596                 goto fail_close;
597         }
598
599         root_dentry = d_alloc_root(inode);
600         if (!root_dentry) {
601                 iput(inode);
602                 err = -ENOMEM;
603                 goto fail_close;
604         }
605
606         sb->s_root = root_dentry;
607
608         save_mount_options(sb, data);
609         return 0;
610
611 fail_close:
612         close_ctree(tree_root);
613         return err;
614 }
615
616 int btrfs_sync_fs(struct super_block *sb, int wait)
617 {
618         struct btrfs_trans_handle *trans;
619         struct btrfs_root *root = btrfs_sb(sb);
620         int ret;
621
622         if (!wait) {
623                 filemap_flush(root->fs_info->btree_inode->i_mapping);
624                 return 0;
625         }
626
627         btrfs_start_delalloc_inodes(root, 0);
628         btrfs_wait_ordered_extents(root, 0, 0);
629
630         trans = btrfs_start_transaction(root, 0);
631         if (IS_ERR(trans))
632                 return PTR_ERR(trans);
633         ret = btrfs_commit_transaction(trans, root);
634         return ret;
635 }
636
637 static int btrfs_show_options(struct seq_file *seq, struct vfsmount *vfs)
638 {
639         struct btrfs_root *root = btrfs_sb(vfs->mnt_sb);
640         struct btrfs_fs_info *info = root->fs_info;
641
642         if (btrfs_test_opt(root, DEGRADED))
643                 seq_puts(seq, ",degraded");
644         if (btrfs_test_opt(root, NODATASUM))
645                 seq_puts(seq, ",nodatasum");
646         if (btrfs_test_opt(root, NODATACOW))
647                 seq_puts(seq, ",nodatacow");
648         if (btrfs_test_opt(root, NOBARRIER))
649                 seq_puts(seq, ",nobarrier");
650         if (info->max_inline != 8192 * 1024)
651                 seq_printf(seq, ",max_inline=%llu",
652                            (unsigned long long)info->max_inline);
653         if (info->alloc_start != 0)
654                 seq_printf(seq, ",alloc_start=%llu",
655                            (unsigned long long)info->alloc_start);
656         if (info->thread_pool_size !=  min_t(unsigned long,
657                                              num_online_cpus() + 2, 8))
658                 seq_printf(seq, ",thread_pool=%d", info->thread_pool_size);
659         if (btrfs_test_opt(root, COMPRESS))
660                 seq_puts(seq, ",compress");
661         if (btrfs_test_opt(root, NOSSD))
662                 seq_puts(seq, ",nossd");
663         if (btrfs_test_opt(root, SSD_SPREAD))
664                 seq_puts(seq, ",ssd_spread");
665         else if (btrfs_test_opt(root, SSD))
666                 seq_puts(seq, ",ssd");
667         if (btrfs_test_opt(root, NOTREELOG))
668                 seq_puts(seq, ",notreelog");
669         if (btrfs_test_opt(root, FLUSHONCOMMIT))
670                 seq_puts(seq, ",flushoncommit");
671         if (btrfs_test_opt(root, DISCARD))
672                 seq_puts(seq, ",discard");
673         if (!(root->fs_info->sb->s_flags & MS_POSIXACL))
674                 seq_puts(seq, ",noacl");
675         return 0;
676 }
677
678 static int btrfs_test_super(struct super_block *s, void *data)
679 {
680         struct btrfs_root *test_root = data;
681         struct btrfs_root *root = btrfs_sb(s);
682
683         /*
684          * If this super block is going away, return false as it
685          * can't match as an existing super block.
686          */
687         if (!atomic_read(&s->s_active))
688                 return 0;
689         return root->fs_info->fs_devices == test_root->fs_info->fs_devices;
690 }
691
692 static int btrfs_set_super(struct super_block *s, void *data)
693 {
694         s->s_fs_info = data;
695
696         return set_anon_super(s, data);
697 }
698
699
700 /*
701  * Find a superblock for the given device / mount point.
702  *
703  * Note:  This is based on get_sb_bdev from fs/super.c with a few additions
704  *        for multiple device setup.  Make sure to keep it in sync.
705  */
706 static int btrfs_get_sb(struct file_system_type *fs_type, int flags,
707                 const char *dev_name, void *data, struct vfsmount *mnt)
708 {
709         struct block_device *bdev = NULL;
710         struct super_block *s;
711         struct dentry *root;
712         struct btrfs_fs_devices *fs_devices = NULL;
713         struct btrfs_root *tree_root = NULL;
714         struct btrfs_fs_info *fs_info = NULL;
715         fmode_t mode = FMODE_READ;
716         char *subvol_name = NULL;
717         u64 subvol_objectid = 0;
718         int error = 0;
719
720         if (!(flags & MS_RDONLY))
721                 mode |= FMODE_WRITE;
722
723         error = btrfs_parse_early_options(data, mode, fs_type,
724                                           &subvol_name, &subvol_objectid,
725                                           &fs_devices);
726         if (error)
727                 return error;
728
729         error = btrfs_scan_one_device(dev_name, mode, fs_type, &fs_devices);
730         if (error)
731                 goto error_free_subvol_name;
732
733         error = btrfs_open_devices(fs_devices, mode, fs_type);
734         if (error)
735                 goto error_free_subvol_name;
736
737         if (!(flags & MS_RDONLY) && fs_devices->rw_devices == 0) {
738                 error = -EACCES;
739                 goto error_close_devices;
740         }
741
742         /*
743          * Setup a dummy root and fs_info for test/set super.  This is because
744          * we don't actually fill this stuff out until open_ctree, but we need
745          * it for searching for existing supers, so this lets us do that and
746          * then open_ctree will properly initialize everything later.
747          */
748         fs_info = kzalloc(sizeof(struct btrfs_fs_info), GFP_NOFS);
749         tree_root = kzalloc(sizeof(struct btrfs_root), GFP_NOFS);
750         if (!fs_info || !tree_root) {
751                 error = -ENOMEM;
752                 goto error_close_devices;
753         }
754         fs_info->tree_root = tree_root;
755         fs_info->fs_devices = fs_devices;
756         tree_root->fs_info = fs_info;
757
758         bdev = fs_devices->latest_bdev;
759         s = sget(fs_type, btrfs_test_super, btrfs_set_super, tree_root);
760         if (IS_ERR(s))
761                 goto error_s;
762
763         if (s->s_root) {
764                 if ((flags ^ s->s_flags) & MS_RDONLY) {
765                         deactivate_locked_super(s);
766                         error = -EBUSY;
767                         goto error_close_devices;
768                 }
769
770                 btrfs_close_devices(fs_devices);
771                 kfree(fs_info);
772                 kfree(tree_root);
773         } else {
774                 char b[BDEVNAME_SIZE];
775
776                 s->s_flags = flags;
777                 strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));
778                 error = btrfs_fill_super(s, fs_devices, data,
779                                          flags & MS_SILENT ? 1 : 0);
780                 if (error) {
781                         deactivate_locked_super(s);
782                         goto error_free_subvol_name;
783                 }
784
785                 btrfs_sb(s)->fs_info->bdev_holder = fs_type;
786                 s->s_flags |= MS_ACTIVE;
787         }
788
789         root = get_default_root(s, subvol_objectid);
790         if (IS_ERR(root)) {
791                 error = PTR_ERR(root);
792                 deactivate_locked_super(s);
793                 goto error_free_subvol_name;
794         }
795         /* if they gave us a subvolume name bind mount into that */
796         if (strcmp(subvol_name, ".")) {
797                 struct dentry *new_root;
798                 mutex_lock(&root->d_inode->i_mutex);
799                 new_root = lookup_one_len(subvol_name, root,
800                                       strlen(subvol_name));
801                 mutex_unlock(&root->d_inode->i_mutex);
802
803                 if (IS_ERR(new_root)) {
804                         dput(root);
805                         deactivate_locked_super(s);
806                         error = PTR_ERR(new_root);
807                         goto error_free_subvol_name;
808                 }
809                 if (!new_root->d_inode) {
810                         dput(root);
811                         dput(new_root);
812                         deactivate_locked_super(s);
813                         error = -ENXIO;
814                         goto error_free_subvol_name;
815                 }
816                 dput(root);
817                 root = new_root;
818         }
819
820         mnt->mnt_sb = s;
821         mnt->mnt_root = root;
822
823         kfree(subvol_name);
824         return 0;
825
826 error_s:
827         error = PTR_ERR(s);
828 error_close_devices:
829         btrfs_close_devices(fs_devices);
830         kfree(fs_info);
831         kfree(tree_root);
832 error_free_subvol_name:
833         kfree(subvol_name);
834         return error;
835 }
836
837 static int btrfs_remount(struct super_block *sb, int *flags, char *data)
838 {
839         struct btrfs_root *root = btrfs_sb(sb);
840         int ret;
841
842         ret = btrfs_parse_options(root, data);
843         if (ret)
844                 return -EINVAL;
845
846         if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
847                 return 0;
848
849         if (*flags & MS_RDONLY) {
850                 sb->s_flags |= MS_RDONLY;
851
852                 ret =  btrfs_commit_super(root);
853                 WARN_ON(ret);
854         } else {
855                 if (root->fs_info->fs_devices->rw_devices == 0)
856                         return -EACCES;
857
858                 if (btrfs_super_log_root(&root->fs_info->super_copy) != 0)
859                         return -EINVAL;
860
861                 ret = btrfs_cleanup_fs_roots(root->fs_info);
862                 WARN_ON(ret);
863
864                 /* recover relocation */
865                 ret = btrfs_recover_relocation(root);
866                 WARN_ON(ret);
867
868                 sb->s_flags &= ~MS_RDONLY;
869         }
870
871         return 0;
872 }
873
874 /*
875  * The helper to calc the free space on the devices that can be used to store
876  * file data.
877  */
878 static int btrfs_calc_avail_data_space(struct btrfs_root *root, u64 *free_bytes)
879 {
880         struct btrfs_fs_info *fs_info = root->fs_info;
881         struct btrfs_device_info *devices_info;
882         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
883         struct btrfs_device *device;
884         u64 skip_space;
885         u64 type;
886         u64 avail_space;
887         u64 used_space;
888         u64 min_stripe_size;
889         int min_stripes = 1;
890         int i = 0, nr_devices;
891         int ret;
892
893         nr_devices = fs_info->fs_devices->rw_devices;
894         BUG_ON(!nr_devices);
895
896         devices_info = kmalloc(sizeof(*devices_info) * nr_devices,
897                                GFP_NOFS);
898         if (!devices_info)
899                 return -ENOMEM;
900
901         /* calc min stripe number for data space alloction */
902         type = btrfs_get_alloc_profile(root, 1);
903         if (type & BTRFS_BLOCK_GROUP_RAID0)
904                 min_stripes = 2;
905         else if (type & BTRFS_BLOCK_GROUP_RAID1)
906                 min_stripes = 2;
907         else if (type & BTRFS_BLOCK_GROUP_RAID10)
908                 min_stripes = 4;
909
910         if (type & BTRFS_BLOCK_GROUP_DUP)
911                 min_stripe_size = 2 * BTRFS_STRIPE_LEN;
912         else
913                 min_stripe_size = BTRFS_STRIPE_LEN;
914
915         list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
916                 if (!device->in_fs_metadata)
917                         continue;
918
919                 avail_space = device->total_bytes - device->bytes_used;
920
921                 /* align with stripe_len */
922                 do_div(avail_space, BTRFS_STRIPE_LEN);
923                 avail_space *= BTRFS_STRIPE_LEN;
924
925                 /*
926                  * In order to avoid overwritting the superblock on the drive,
927                  * btrfs starts at an offset of at least 1MB when doing chunk
928                  * allocation.
929                  */
930                 skip_space = 1024 * 1024;
931
932                 /* user can set the offset in fs_info->alloc_start. */
933                 if (fs_info->alloc_start + BTRFS_STRIPE_LEN <=
934                     device->total_bytes)
935                         skip_space = max(fs_info->alloc_start, skip_space);
936
937                 /*
938                  * btrfs can not use the free space in [0, skip_space - 1],
939                  * we must subtract it from the total. In order to implement
940                  * it, we account the used space in this range first.
941                  */
942                 ret = btrfs_account_dev_extents_size(device, 0, skip_space - 1,
943                                                      &used_space);
944                 if (ret) {
945                         kfree(devices_info);
946                         return ret;
947                 }
948
949                 /* calc the free space in [0, skip_space - 1] */
950                 skip_space -= used_space;
951
952                 /*
953                  * we can use the free space in [0, skip_space - 1], subtract
954                  * it from the total.
955                  */
956                 if (avail_space && avail_space >= skip_space)
957                         avail_space -= skip_space;
958                 else
959                         avail_space = 0;
960
961                 if (avail_space < min_stripe_size)
962                         continue;
963
964                 devices_info[i].dev = device;
965                 devices_info[i].max_avail = avail_space;
966
967                 i++;
968         }
969
970         nr_devices = i;
971
972         btrfs_descending_sort_devices(devices_info, nr_devices);
973
974         i = nr_devices - 1;
975         avail_space = 0;
976         while (nr_devices >= min_stripes) {
977                 if (devices_info[i].max_avail >= min_stripe_size) {
978                         int j;
979                         u64 alloc_size;
980
981                         avail_space += devices_info[i].max_avail * min_stripes;
982                         alloc_size = devices_info[i].max_avail;
983                         for (j = i + 1 - min_stripes; j <= i; j++)
984                                 devices_info[j].max_avail -= alloc_size;
985                 }
986                 i--;
987                 nr_devices--;
988         }
989
990         kfree(devices_info);
991         *free_bytes = avail_space;
992         return 0;
993 }
994
995 static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf)
996 {
997         struct btrfs_root *root = btrfs_sb(dentry->d_sb);
998         struct btrfs_super_block *disk_super = &root->fs_info->super_copy;
999         struct list_head *head = &root->fs_info->space_info;
1000         struct btrfs_space_info *found;
1001         u64 total_used = 0;
1002         u64 total_free_data = 0;
1003         int bits = dentry->d_sb->s_blocksize_bits;
1004         __be32 *fsid = (__be32 *)root->fs_info->fsid;
1005         int ret;
1006
1007         /* holding chunk_muext to avoid allocating new chunks */
1008         mutex_lock(&root->fs_info->chunk_mutex);
1009         rcu_read_lock();
1010         list_for_each_entry_rcu(found, head, list) {
1011                 if (found->flags & BTRFS_BLOCK_GROUP_DATA) {
1012                         total_free_data += found->disk_total - found->disk_used;
1013                         total_free_data -=
1014                                 btrfs_account_ro_block_groups_free_space(found);
1015                 }
1016
1017                 total_used += found->disk_used;
1018         }
1019         rcu_read_unlock();
1020
1021         buf->f_namelen = BTRFS_NAME_LEN;
1022         buf->f_blocks = btrfs_super_total_bytes(disk_super) >> bits;
1023         buf->f_bfree = buf->f_blocks - (total_used >> bits);
1024         buf->f_bsize = dentry->d_sb->s_blocksize;
1025         buf->f_type = BTRFS_SUPER_MAGIC;
1026         buf->f_bavail = total_free_data;
1027         ret = btrfs_calc_avail_data_space(root, &total_free_data);
1028         if (ret) {
1029                 mutex_unlock(&root->fs_info->chunk_mutex);
1030                 return ret;
1031         }
1032         buf->f_bavail += total_free_data;
1033         buf->f_bavail = buf->f_bavail >> bits;
1034         mutex_unlock(&root->fs_info->chunk_mutex);
1035
1036         /* We treat it as constant endianness (it doesn't matter _which_)
1037            because we want the fsid to come out the same whether mounted
1038            on a big-endian or little-endian host */
1039         buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]);
1040         buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]);
1041         /* Mask in the root object ID too, to disambiguate subvols */
1042         buf->f_fsid.val[0] ^= BTRFS_I(dentry->d_inode)->root->objectid >> 32;
1043         buf->f_fsid.val[1] ^= BTRFS_I(dentry->d_inode)->root->objectid;
1044
1045         return 0;
1046 }
1047
1048 static struct file_system_type btrfs_fs_type = {
1049         .owner          = THIS_MODULE,
1050         .name           = "btrfs",
1051         .get_sb         = btrfs_get_sb,
1052         .kill_sb        = kill_anon_super,
1053         .fs_flags       = FS_REQUIRES_DEV,
1054 };
1055
1056 /*
1057  * used by btrfsctl to scan devices when no FS is mounted
1058  */
1059 static long btrfs_control_ioctl(struct file *file, unsigned int cmd,
1060                                 unsigned long arg)
1061 {
1062         struct btrfs_ioctl_vol_args *vol;
1063         struct btrfs_fs_devices *fs_devices;
1064         int ret = -ENOTTY;
1065
1066         if (!capable(CAP_SYS_ADMIN))
1067                 return -EPERM;
1068
1069         vol = memdup_user((void __user *)arg, sizeof(*vol));
1070         if (IS_ERR(vol))
1071                 return PTR_ERR(vol);
1072
1073         switch (cmd) {
1074         case BTRFS_IOC_SCAN_DEV:
1075                 ret = btrfs_scan_one_device(vol->name, FMODE_READ,
1076                                             &btrfs_fs_type, &fs_devices);
1077                 break;
1078         }
1079
1080         kfree(vol);
1081         return ret;
1082 }
1083
1084 static int btrfs_freeze(struct super_block *sb)
1085 {
1086         struct btrfs_root *root = btrfs_sb(sb);
1087         mutex_lock(&root->fs_info->transaction_kthread_mutex);
1088         mutex_lock(&root->fs_info->cleaner_mutex);
1089         return 0;
1090 }
1091
1092 static int btrfs_unfreeze(struct super_block *sb)
1093 {
1094         struct btrfs_root *root = btrfs_sb(sb);
1095         mutex_unlock(&root->fs_info->cleaner_mutex);
1096         mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1097         return 0;
1098 }
1099
1100 static const struct super_operations btrfs_super_ops = {
1101         .drop_inode     = btrfs_drop_inode,
1102         .evict_inode    = btrfs_evict_inode,
1103         .put_super      = btrfs_put_super,
1104         .sync_fs        = btrfs_sync_fs,
1105         .show_options   = btrfs_show_options,
1106         .write_inode    = btrfs_write_inode,
1107         .dirty_inode    = btrfs_dirty_inode,
1108         .alloc_inode    = btrfs_alloc_inode,
1109         .destroy_inode  = btrfs_destroy_inode,
1110         .statfs         = btrfs_statfs,
1111         .remount_fs     = btrfs_remount,
1112         .freeze_fs      = btrfs_freeze,
1113         .unfreeze_fs    = btrfs_unfreeze,
1114 };
1115
1116 static const struct file_operations btrfs_ctl_fops = {
1117         .unlocked_ioctl  = btrfs_control_ioctl,
1118         .compat_ioctl = btrfs_control_ioctl,
1119         .owner   = THIS_MODULE,
1120 };
1121
1122 static struct miscdevice btrfs_misc = {
1123         .minor          = BTRFS_MINOR,
1124         .name           = "btrfs-control",
1125         .fops           = &btrfs_ctl_fops
1126 };
1127
1128 MODULE_ALIAS_MISCDEV(BTRFS_MINOR);
1129 MODULE_ALIAS("devname:btrfs-control");
1130
1131 static int btrfs_interface_init(void)
1132 {
1133         return misc_register(&btrfs_misc);
1134 }
1135
1136 static void btrfs_interface_exit(void)
1137 {
1138         if (misc_deregister(&btrfs_misc) < 0)
1139                 printk(KERN_INFO "misc_deregister failed for control device");
1140 }
1141
1142 static int __init init_btrfs_fs(void)
1143 {
1144         int err;
1145
1146         err = btrfs_init_sysfs();
1147         if (err)
1148                 return err;
1149
1150         err = btrfs_init_compress();
1151         if (err)
1152                 goto free_sysfs;
1153
1154         err = btrfs_init_cachep();
1155         if (err)
1156                 goto free_compress;
1157
1158         err = extent_io_init();
1159         if (err)
1160                 goto free_cachep;
1161
1162         err = extent_map_init();
1163         if (err)
1164                 goto free_extent_io;
1165
1166         err = btrfs_interface_init();
1167         if (err)
1168                 goto free_extent_map;
1169
1170         err = register_filesystem(&btrfs_fs_type);
1171         if (err)
1172                 goto unregister_ioctl;
1173
1174         printk(KERN_INFO "%s loaded\n", BTRFS_BUILD_VERSION);
1175         return 0;
1176
1177 unregister_ioctl:
1178         btrfs_interface_exit();
1179 free_extent_map:
1180         extent_map_exit();
1181 free_extent_io:
1182         extent_io_exit();
1183 free_cachep:
1184         btrfs_destroy_cachep();
1185 free_compress:
1186         btrfs_exit_compress();
1187 free_sysfs:
1188         btrfs_exit_sysfs();
1189         return err;
1190 }
1191
1192 static void __exit exit_btrfs_fs(void)
1193 {
1194         btrfs_destroy_cachep();
1195         extent_map_exit();
1196         extent_io_exit();
1197         btrfs_interface_exit();
1198         unregister_filesystem(&btrfs_fs_type);
1199         btrfs_exit_sysfs();
1200         btrfs_cleanup_fs_uuids();
1201         btrfs_exit_compress();
1202 }
1203
1204 module_init(init_btrfs_fs)
1205 module_exit(exit_btrfs_fs)
1206
1207 MODULE_LICENSE("GPL");